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Abstract
We study solutions of the equation ut −�u+λu = f , for initial data that is ‘large at infinity’
as treated in our previous papers on the unforced heat equation. When f = 0 we characterise
those (u0, λ) forwhich solutions converge to 0 as t → ∞, as not everyλ > 0 is able to achieve
that for all initial data. When f �= 0 we give conditions to guarantee that the solution is given
by the usual ‘variation of constants formula’ u(t) = e−λt S(t)u0+

∫ t
0 e

−λ(t−s)S(t−s) f (s) ds,
where S(·) is the heat semigroup.Weuse these results to treat the elliptic problem−�u+λu =
f when f is allowed to be ‘large at infinity’, giving conditions under which a solution exists
that is given by convolution with the usual Green’s function for the problem. Many of our
results are sharp when u0, f ≥ 0.
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1 Introduction

In previous papers, [4–6], we considered solutions of the heat equation

ut − �u = 0, x ∈ R
d , t > 0, u(x, 0) = u0(x) (1.1)

for some optimal classes of initial data that allow large values at infinity; despite the large
growth of these functions at infinity, solutions can still be written using the heat kernel,

u(x, t) = S(t)u0(x) := 1

(4π t)d/2

∫

Rd
e− |x−y|2

4t u0(y) dy, x ∈ R
d , t > 0. (1.2)

The paper [4] arose from the aim to identify the optimal class of initial data that gives
rise to a global classical solution and to analyse the long-time behaviour of such solutions.
However, our analysis also exposed some surprising features of this canonical linear model
that are more in line with nonlinear systems. In particular we showed that the equations can
exhibit finite-time blowup, and that solutions that exist for all times can have wild oscillatory
behaviour as t → ∞. All of these phenomena are due to a mechanism of mass coming from
infinity, as initial data have stored a lot of mass as |x | → ∞. As time evolves this mass
diffuses to bounded sets in R

d producing the nonlinear-like behaviour of solutions.
Those classes of initial data are given by the family of spaces

L1
ε(R

d) :=
{

f ∈ L1
loc(R

d) :
∫

Rd
e−ε|x |2 | f (x)| dx < ∞

}

,

which are Banach spaces when equipped with the norm

‖ f ‖L1
ε(R

d ) =
( ε

π

)d/2
∫

Rd
e−ε|x |2 | f (x)| dx .

Similar spaces of measures can be also considered, see (2.3) in Sect. 2.
A relevant feature of the solutions thus considered is that we cannot work in general with

a single space L1
ε(R

d) as the solution can only be estimated, for t > 0, in another space
L1

ε(t)(R
d) with ε(t) := 1

1−4εt , see Sect. 2. These estimates are optimal.
We proved then that global solutions are obtained provided that the initial data belongs to

the Frechet space

u0 ∈ L1
0(R

d) :=
⋂

ε>0

L1
ε(R

d). (1.3)

This sufficient condition is also necessary for non-negative 0 ≤ u0 ∈ L1
loc(R

d).
Several properties of the heat semigroup in this space have been analysed in [5], including

suitable L p − Lq type estimates using the family of spaces

L p
ε (Rd) := { f ∈ L p

loc(R
d) :

∫

Rd
e−ε|x |2 | f (x)|p dx < ∞}

with norm

‖ f ‖L p
ε

:=
( ε

π

)d/2p
(∫

Rd
e−ε|x |2 | f (x)|p dx

)1/p

(with a suitable definition for p = ∞) and the Frechet spaces

L p
0 (Rd) =

⋂

ε>0

L p
ε (Rd), and L∞

0 (Rd) =
⋂

ε>0

L∞
ε (Rd).
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Those estimates in [5] have been improved later in [6]. For example, for u0 ∈ L p
0 (Rd)with

1 ≤ p < ∞ then for any 1 ≤ p ≤ q < ∞, then the solution (1.2) satisfies u(t) ∈ Lq
0(R

d)

for all t > 0 and for any δ > 0, t > 0 we have

‖u(t)‖Lq
qδ(R

d ) ≤ cp,q
(1 + 4pδt

4pδt

) d
2

(
1
p − 1

q

)

‖u0‖L p
δp (t)(R

d ) (1.4)

for δp(t) = pδ
1+4pδt . Notice again that to estimate the solution in one space, at a given time

t , we need to estimate the initial data in another space that depends on t . See Sect. 2 for full
details. This improved estimates from [6] will be crucial in what follows.

We use these estimates here, starting in Sect. 3, where we give conditions on the initial
data for the solution of the problem

ut − �u + λu = 0, x ∈ R
d , t > 0, u(x, 0) = u0(x). (1.5)

to decay to zero as t → ∞. In contrast with the heat flow inmore standard spaces, we will see
below that not every λ > 0 is capable of producing decay in all solutions of (1.5). Actually,
we will prove that for functions that grow slower than any exponential (slower than ec|x |, for
every c > 0) as |x | → ∞, the additional dissipative term λu in the equation is able to bring
the solution to zero as t → ∞. For functions that grow like ec|x | then we need to take λ > c2

and this result is sharp. Finally for functions that grow faster than any exponential (faster
than ec|x |, for every c > 0), there is no λ > 0 that can bring the solution to zero as t → ∞.

In Sect. 4 we analyse solutions of the non-homogeneous problem

ut − �u + λu = f , x ∈ R
d , t > 0, u(x, 0) = u0(x) ∈ L1

ε(R
d) (1.6)

with λ ∈ R and a given f , in [0, T ], such that

[0, T ] 	 t 
→ f (t) ∈ L1
ε(t)(R

d)

for some ε : [0, T ] → (0,∞). We also consider the case in which u0 and f are only
measures.

In more standard settings we would expect that the solution of (1.6) is given by

u(t) = e−λt S(t)u0 +
∫ t

0
e−λ(t−s)S(t − s) f (s) ds. (1.7)

Here we show that (1.7) actually provides a suitable solution of (1.6) in the non-standard
setting of this paper. Since the term e−λt S(t)u0, has already been dealt with in [4, 5] and
Sect. 3 we will concentrate in Sect. 4 on the expression

U (t) := U (t, f ) =
∫ t

0
e−λ(t−s)S(t − s) f (s) ds. (1.8)

In Theorem 4.1 we prove that if f ∈ L1((0, T ), L1
ε(·)(Rd)) then there exist 0 < T0 ≤ T

and δ(t) > 0 for 0 < t < T0 such that U (t) ∈ L1
δ(t)(R

d) and for any τ < T0

sup
0≤t≤τ

‖U (t)‖L1
δ(t)(R

d ) ≤ C(τ )‖ f ‖L1((0,τ ),L1
ε(·))

. (1.9)

In particular, U ∈ C([0, T0), L1
δ(·)(Rd)), in the sense that for any fixed 0 < t < T0 and

δ̃ > δ(t) we have, as s → t , U (s) → U (t) in L1
δ̃
(Rd) and

lim
t→0

‖U (t)‖L1
δ(t)(R

d ) = 0, (1.10)
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and is a very weak solution of (1.6) in (0, T0).
Notice again that this result allows f (t) to belong to different spaces, varying with time,

and that U (t) is also estimated in a space that changes with time.
Then we prove in Theorem 4.4 that stronger assumptions on f allows us to obtain a strong

solution of (1.6). Indeed we show that if ε(s) = ε > 0 constant and f ∈ C1([0, T ], L1
ε(R

d)),
then for 0 < t < T0 and any δ > δ(t) = ε

1−4εt we have that U is differentiable, at t , in

L1
δ (R

d), −�U (t) ∈ L1
δ(R

d) and satisfies (1.6). Further regularising estimates onU and ∇U
are obtained in Sect. 4.2.

In Sect. 4.3 we give conditions forU to be a global solution, that is, defined for as long f
is defined, i.e. T0 = T . We also obtain global estimates of U and its gradient in terms of f .
Then, in Sect. 4.4, we analyse the possibility that U blows up in finite time. This is possible
due to the blow–up results for the solutions of (1.1) in [4] described above.

OurTheorem4.12 roughly states that if f ≥ 0 and T0 < T , thenU cannot be defined at any
point x ∈ R

d beyond T0. Then Proposition 4.14 considers the case when 0 ≤ f ∈ L1
ε(R

d)

is independent of t and then characterized the points x ∈ R
d such that the pointwise limit

lim
t→T

U (x, t) (1.11)

exists, where T = 1
4ε is the time at which S(t) f ceases to exist.

Finally in Sect. 5 we use these results to find conditions on f that guarantee the existence
of solutions of the elliptic problem

− �u∗ + λu∗ = f (1.12)

with λ ≥ 0 and f ∈ L1
0(R

d) (we also consider the case when f is only a measure). First
observe that since we are dealing with functions that can be very large at infinity, there is no
uniqueness for (1.12) for any value of λ. Indeed as observed in [4] for any λ ∈ R, we have
nontrivial solutions ϕ ∈ L1

0(R
d) of −�ϕ + λϕ = 0. Indeed, existence for (1.12) will not be

achieved for every f ∈ L1
0(R

d), as some restriction on the behavior of the L1
ε(R

d) norms of
f , for ε small will be required.
If we had a standard semigroup in a Banach space, we would expect that a solution of

(1.12) would be given by

u∗ = u∗( f ) = A−1 f =
∫ ∞

0
e−λt S(t) f dt .

In Theorem 5.1 we show that, for λ > 0 (or λ = 0 and d ≥ 3), if f ∈ L1
0(R

d) satisfies

∫

0+
e− λ

4s

s2
‖ f ‖L1

s (R
d ) ds < ∞ (1.13)

then u∗ ∈ L1
0(R

d), is a very weak solution of (1.12) and moreover u∗ ∈ Lq
0(R

d) for any 1 ≤
q < d

(d−2)+ . A slighter stronger condition than (1.13) allows us to obtain that∇u∗ ∈ L1
0(R

d),

u∗ is a weak solution of (1.12), and moreover, ∇u∗ ∈ Lr
0(R

d) for any 1 ≤ r < d
(d−1)+ . Our

results also imply that the mapping f 
→ u∗ is continuous in suitable norms.
In Theorem 5.5 we prove then that u∗ can be represented as the convolution of f with

the Green’s function, as in the classical results for the Poisson’s equation. But, even more,
conversely it states that, for f ≥ 0, if a solution of (1.12) can be represented using the Green’s
function, then f must satisfy (1.13) and the solution must be u∗. More precisely, we prove
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the following. Assume that 0 ≤ f ∈ L1
loc(R

d) and we define for λ > 0 (or λ = 0 and d ≥ 3)

U (x) =
∫

Rd
Gλ(x − y) f (y) dy, x ∈ R

d

where Gλ is the Green’s function for −� + λI in Rd . Then, if there exist x0 ∈ R
d such that

U (x0) < ∞ then f ∈ L1
0(R

d), satisfies (1.13), U (x) is finite for a.e. x ∈ R
d , U ∈ L1

0(R
d)

and U = u∗ as above.
The rest of Sect. 5 is devoted to completing the elliptic theory for (1.12) by proving results

of the type: if f ∈ L p
0 (Rd) 1 ≤ p < ∞ (plus some condition like (1.13)) then∇u∗ ∈ Lr

0(R
d)

for any r <
pd

(d−p)+ . If p > d then we can take r = ∞ as well. In particular if p > d
2 then

u∗ ∈ C(Rd). See Corollary 5.12.

2 Some Previous Results

In two previous papers [4, 5]we have developed a theory to treat solutions of the heat equation

ut − �u = 0, x ∈ R
d , t > 0, u(x, 0) = u0(x), (2.1)

on the whole of Rd for initial data that is large at infinity (and may be a Radon measure). In
[4] we identified the largest class of initial data for which solutions can be given in terms of
the heat kernel

u(x, t, u0) = S(t)u0(x) = 1

(4π t)d/2

∫

Rd
e− |x−y|2

4t du0(y), (2.2)

where u0 ∈ Mloc(R
d) is a Radon measure.

Our analysis makes use of various spaces of functions that are large at infinity. For every
ε > 0 we define the space Mε(R

d) of measures as

Mε(R
d) :=

{

μ ∈ Mloc(R
d) :

∫

Rd
e−ε|x |2 d|μ(x)| < ∞

}

; (2.3)

i.e. e−ε|x |2 ∈ L1(d|μ|), with the norm

‖μ‖Mε(Rd ) :=
( ε

π

)d/2
∫

Rd
e−ε|x |2 d|μ(x)|. (2.4)

For every ε > 0 set

ρε(x) =
( ε

π

)d/2
e−ε|x |2 ,

∫

Rd
ρε(x) dx = 1, (2.5)

and then, for 0 < ε1 < ε2,

ρε2(x) ≤
(

ε2

ε1

)d/2

ρε1(x); x ∈ R
d . (2.6)

Hence, the norms (2.4) satisfy for 0 < ε1 < ε2

‖μ‖Mε2 (Rd ) ≤
(

ε2

ε1

)d/2

‖μ‖Mε1 (Rd ). (2.7)
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We also define similarly a family of weighted L p spaces. Indeed for 1 ≤ p < ∞ we
define

L p
ε (Rd) :=

{

f ∈ L p
loc(R

d) :
∫

Rd
ρε(x)| f (x)|p dx < ∞

}

(2.8)

with the norm ‖ f ‖L p
ε (Rd ) :=

( ∫

Rd
ρε(x)| f (x)|p dx

) 1
p
; and for p = ∞,

L∞
ε (Rd) :=

{

f ∈ L∞
loc(R

d) : sup
x∈Rd

ρε(x)| f (x)| < ∞
}

(2.9)

with the norm ‖ f ‖L∞
ε (Rd ) := supx∈Rd ρε(x)| f (x)|. The spaces L p

ε (Rd) are Banach spaces

for every 1 ≤ p ≤ ∞ and every ε > 0, see [4]. Obviously L1
ε(R

d) ⊂ Mε(R
d) and if

f ∈ L1
ε(R

d) then ‖ f ‖Mε(Rd ) = ‖ f ‖L1
ε(R

d ).

The fundamental existence result from [4] guarantees that initial data in Mε(R
d) gives

rise to a smooth solution on (0, 1/4ε).

Theorem 2.1 Suppose that u0 ∈ Mε(R
d), set T (ε) = 1/4ε, and let u(x, t) = S(t)u0(x) be

given by (2.2). Then

(i) u(t) ∈ L∞
loc(R

d) for t ∈ (0, T (ε)). Also u ∈ C∞(Rd × (0, T (ε))) and satisfies

ut − �u = 0 for all x ∈ R
d , 0 < t < T (ε).

(ii) For every ϕ ∈ Cc(R
d) and 0 ≤ t < T (ε)

∫

Rd
ϕ u(t) =

∫

Rd
S(t)ϕ du0. (2.10)

In particular, u(t) → u0 as t → 0+ in the sense of measures, i.e.
∫

Rd
ϕ u(t) →

∫

Rd
ϕ du0

for every ϕ ∈ Cc(R
d). Furthermore, if u0 ∈ L1

ε(R
d) then for any δ > ε we have

u(t) → u0 in L1
δ (R

d) as t → 0+.

(iii) If 0 ≤ u0 ∈ Mε(R
d) is nonzero then u(x, t) > 0 for all x ∈ R

d , t ∈ (0, T (ε)), i.e. the
Strong Maximum Principle holds.

Theorem 2.2 Suppose that u, defined in R
d × (0, T ], is such that for some δ > 0 and for

each 0 < t < T , u(t) ∈ L1
δ(R

d).

(i) Suppose furthermore that

u,∇u,�u ∈ L1
loc((0, T ), L1

δ (R
d)) (2.11)

and satisfies ut − �u = 0 almost everywhere in R
d × (0, T ). Then we have

u(t) = S(t − s)u(s) (2.12)

for any 0 < s < t < T .

Assume hereafter that u satisfies (2.12) for any 0 < s < t < T .
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(ii) Then for each 0 < t < T and every ϕ ∈ Cc(R
d) the following limit exist

lim
s→0

∫

Rd
u(s)S(t)ϕ =

∫

Rd
u(t)ϕ.

(iii) There exists u0 ∈ Mε(R
d) for some ε > 0 and such that u(t) = S(t)u0 for 0 < t < T

if and only if for every ϕ ∈ Cc(R
d) and t small enough

lim
s→0

∫

Rd
u(s)S(t)ϕ =

∫

Rd
S(t)ϕ du0. (2.13)

(iv) Condition (2.13) is satisfied provided that either one of the following holds:

(iv-a) For any function φ ∈ C0(R
d) such that |φ(x)| ≤ Ae−γ |x |2 , x ∈ R

d , with γ > ε we
have, as t → 0

lim
t→0

∫

Rd
φu(t) →

∫

Rd
φ du0. (2.14)

(iv-b) For some τ ≤ T small and 0 < t ≤ τ we have u(t) ∈ L1
ε(R

d) with
∫

Rd
e−ε|x |2 |u(x, t)| dx ≤ M t ∈ (0, τ ]; (2.15)

i.e. u ∈ L∞((0, τ ], L1
ε(R

d)) and for every ϕ ∈ Cc(R
d), as t → 0

∫

Rd
ϕ u(t) →

∫

Rd
ϕ du0. (2.16)

Proposition 2.3 Suppose that u0 ∈ Mε(R
d), set T (ε) = 1/4ε, and let u(x, t) be given by

(2.2). Then

(i) For 0 < t < T (ε) and for any δ ≥ 1
4(T (ε)−t) > ε we have u(t) ∈ L1

δ(R
d). Moreover if

we set ε(t) := 1
4(T (ε)−t) = ε

(1−4εt) then

‖u(t)‖L1
ε(t)(R

d ) ≤ ‖u0‖Mε(Rd ). (2.17)

(ii) For 0 ≤ s < t < T (ε), u(t) = S(t − s)u(s).
(iii) For any multi-index α ∈ N

d , for 0 < t < T (ε) and for any δ > 1
4(T (ε)−t) > ε we

have Dα
x u(t) ∈ L1

δ (R
d). Moreover for any γ > 1 and 0 < t <

T (ε)
γ

and if we set

δ(t) := 1
4(T (ε)−γ t) = ε

(1−4εγ t) then

‖Dα
x u(t)‖L1

δ(t)(R
d ) ≤ cα,γ

t
|α|
2

‖u0‖Mε(Rd ). (2.18)

(iv) For any multi-index α ∈ N
d , m ∈ N and for each t0 ∈ (0, T (ε)) there exists δ(t0) > ε

such that the mapping (0, T (ε)) 	 t 
→ Dα,m
x,t u(t) is continuous in L1

δ(t0)
(Rd) at t = t0.

We now define spaces of initial data for which S(t) in (2.2) is defined for all t ≥ 0. We
set

M0(R
d) :=

⋂

ε>0

Mε(R
d) and L p

0 (Rd) :=
⋂

ε>0

L p
ε (Rd), 1 ≤ p ≤ ∞.

These are Fréchet spaces with the corresponding family of norms (see Lemma 3.2 in [5]) and
satisfy

L p
0 (Rd) ⊂ Lq

0(R
d) ⊂ L1

0(R
d) ⊂ M0(R

d), 1 ≤ q ≤ p ≤ ∞.
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The following spaces naturally play a role in the next result.

Definition 2.4 The spaceM0,B(Rd) is the subspace ofM0(R
d) consisting of measures such

that

|||u0|||M0,B (Rd ) := sup
ε>0

‖u0‖Mε(Rd ) < ∞. (2.19)

Analogously, L1
0,B(Rd) is the subspace of L1

0(R
d) consisting of functions such that

|||u0|||L1
0,B (Rd ) := sup

ε>0
‖u0‖L1

ε(R
d ) < ∞ (2.20)

and clearly |||u0|||M0,B (Rd ) = |||u0|||L1
0,B (Rd ) for u0 ∈ L1

0,B(Rd).

The space M0,B(Rd) can be characterized as the space of all u0 ∈ Mloc(R
d) such that

the solution of the heat Eq. (1.1) given by (1.2) is defined for all t > 0 and u(·, ·; u0) is
uniformly bounded in sets |x |√

t
≤ R, with R > 0; see Lemma 3.7 in [5].

From Propositions 3.3, 3.5, 4.8 and 4.9 in [5] we get the following.

Proposition 2.5 If we define S(t)u0 by (2.2) then

S(t) : M0(R
d) → L1

0(R
d) and S(t) : L p

0 (Rd) → L p
0 (Rd).

These mappings are all linear, continuous, and order-preserving, and {S(t)}t≥0 is a contin-
uous semigroup on M0(R

d) and L p
0 (Rd) for every 1 ≤ p < ∞.

In L p
0 (RN ) the semigroup is continuous at t = 0, while in M0(R

d) the semigroup is
continuous in the sense of measures. Furthermore, for any multi-index α ∈ N

d , and any
1 ≤ p ≤ q ≤ ∞ and t > 0, Dα

x S(t) : L p
0 (Rd) −→ Lq

0(R
d) is linear and continuous.

For each u0 ∈ M0(R
d), any 1 ≤ p < ∞, and any multi-index α ∈ N

d , the solution
curve

(0,∞) 	 t 
−→ Dα
x S(t)u0 ∈ L p

0 (Rd)

is C∞. If additionally, u0 ∈ M0,B(Rd) as in (2.19), that is

sup
ε>0

‖u0‖Mε(Rd ) < ∞,

then the solution curve is Cω((0,∞), L p
0 (Rd)), i.e. analytic.

Also from Proposition 3.8 in [5] we have the following result concerning the solutions of
the heat equation with initial data in L1

0,B(Rd) or M0,B(Rd) as in Definition 2.4.

Proposition 2.6 The spaces L1
0,B(Rd) and M0,B(Rd) are invariant subspaces for the semi-

group S(t) in M0(R
d), which satisfies

|||S(t)u0|||L1
0,B (Rd ) ≤ |||u0|||M0,B (Rd ), t > 0

with equality if u0 ≥ 0. For any multi-index α ∈ N
d there exists a constant cα > 0 such that

∣
∣
∣
∣
∣
∣Dα

x S(t)u0
∣
∣
∣
∣
∣
∣
L1
0,B (Rd )

≤ cα

t
|α|
2

|||u0|||M0,B (Rd ), t > 0.

In particular S(t) : L1
0,B(Rd) → L1

0,B(Rd) is an analytic order-preserving contraction semi-
group.
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The following “L p–Lq" type estimates from [6] will be crucial in what follows.

Proposition 2.7 If u0 ∈ L p
0 (Rd) with 1 ≤ p < ∞ and for any 1 ≤ p ≤ q < ∞, then

u(t) ∈ Lq
0(R

d) for all t > 0 and for any δ > 0, t > 0 and δp(t) = pδ
1+4pδt we have

‖u(t)‖Lq
qδ(R

d ) ≤ cp,q

(
1 + 4pδt

4pδt

) d
2 ( 1

p − 1
q )

‖u0‖L p
δp (t)(R

d ) (2.21)

with cp,q = ( q
p

)d/2q
. For q = ∞ we have

‖u(t)‖L∞
δ (Rd ) ≤ cp,∞

(
1 + 4pδt

4pδt

) d
2p ‖u0‖L p

δp (t)(R
d ) (2.22)

with cp,∞ = (
δ
π

) d
2 . Finally, for p = ∞ and δ(t) = δ

1+4δt ,

‖u(t)‖L∞
δ (Rd ) ≤ (1 + 4δt)d‖u0‖L∞

δ(t)(R
d ). (2.23)

In particular, S(t) : L p
0 (Rd) −→ Lq

0(R
d), 1 ≤ p ≤ q ≤ ∞, is continuous.

Moreover, for any multi-index α ∈ N
d and for any 1 ≤ p ≤ q ≤ ∞, then for any δ > 0,

t > 0, γ > 1 δ̃p(t) = pδ
1+4pγ δt

‖Dα
x u(t)‖Lq

qδ(R
d ) ≤ cα,p,q,δ,γ

t
|α|
2

(
1 + 4pγ δt

t

) d
2 ( 1

p − 1
q )

‖u0‖L p
δ̃p (t)

(Rd ) (2.24)

and

‖Dα
x u(t)‖L∞

δ (Rd ) ≤ cα,p,δ,γ

t
|α|
2

(
1 + 4pγ δt

t

) d
2p ‖u0‖L p

δ̃p (t)
(Rd ).

If u0 ∈ M0(R
d) the same estimates are valid, setting p = 1 and replacing ‖u0‖L1

δ(t)(R
d )

on the right-hand side by ‖u0‖Mδ(t)(R
d ).

Notice, in particular, that taking 1 ≤ p = q < ∞we have the “contraction” type estimate

‖u(t)‖L p
pδ(R

d ) ≤ ‖u0‖L p
δp (t)(R

d ).

For non-negative initial data, the norm as a measure of the initial data is preserved. We make
this precise in the following proposition.

Proposition 2.8 Assume 0 ≤ u0 ∈ Mε(R
d) and let u(x, t) be given by (2.2).

(i) For every δ > ε and 0 ≤ t ≤ 1
4ε − 1

4δ = T (ε) − T (δ)

‖u(t)‖L1
δ (R

d ) = ‖u0‖Mδ(t)(R
d )

with δ(t) = δ
1+4δt . In particular, this estimate holds for any δ > 0 and t > 0 if

0 ≤ u0 ∈ M0(R
d).

(ii) For 0 ≤ t < T (ε) = 1
4ε and for ε(t) := 1

4(T (ε)−t) = ε
(1−4εt) we have

‖u(t)‖L1
ε(t)(R

d ) = ‖u0‖Mε(Rd ).
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The estimates in Proposition 2.7 hold for u0 ∈ L p
0 (Rd). Similar ones were also obtained

in [5] for the case of u0 ∈ L p
ε (Rd) which are therefore valid only in finite time intervals.

More precisely, we have the following.

Proposition 2.9 Assume that ε > 0 and T (ε) = 1
4ε . For every δ > ε take 0 ≤ t ≤ 1

4ε − 1
4δ =

T (ε) − T (δ) and define δ(t) = δ
1+4δt and δp(t) = pδ

1+4pδt .

(i) For any u0 ∈ Mε(R
d) we have

‖u(t)‖L1
δ (R

d ) ≤ ‖u0‖Mδ(t)(R
d ),

with equality if u0 ≥ 0, and also

‖u(t)‖L∞
δ (Rd ) ≤

(
1 + 4δt

4π t

)d/2

‖u0‖Mδ(t)(R
d )

‖u(t)‖Lq
qδ(R

d ) ≤ qd/2q
(
1 + 4δt

4δt

) d
2 (1− 1

q )

‖u0‖Mδ(t)(R
d )

for 1 ≤ q < ∞.
(ii) For any u0 ∈ L∞

ε (Rd) we have

‖u(t)‖L∞
δ (Rd ) ≤ (1 + 4δt)d‖u0‖L∞

δ(t)(R
d ).

(iii) For any u0 ∈ L p
pε(R

d) with 1 ≤ p < ∞ and for any 1 ≤ p ≤ q < ∞ we have

‖u(t)‖Lq
qδ(R

d ) ≤ cp,q
(1 + 4pδt

4pδt

) d
2 ( 1

p − 1
q )‖u0‖L p

δp (t)(R
d )

‖u(t)‖L∞
δ (Rd ) ≤ cp,∞

(1 + 4pδt

4pδt

) d
2p ‖u0‖L p

δp (t)(R
d )

which hold for 0 < t ≤ 1
p

(
T (ε) − T (δ)

)
.

(iv) Analogous derivative estimates to (2.24) also hold true.

At the opposite extreme we will need estimates on solutions of the heat equation with
rapidly decaying initial data.

Proposition 2.10 If |ϕ(x)| ≤ Ae−γ |x |2 , x ∈ R
d then u(t) = S(t)ϕ satisfies

|u(x, t)| ≤ A

(1 + 4γ t)d/2 e
− γ

1+4γ t |x |2 , x ∈ R
d , t > 0.

Remark 2.11 Observe that u(0, t, |u0|) = 1
(4π t)d/2

∫

Rd
e− |y|2

4t d|u0(y)| and so

‖u0‖Mε(Rd ) = u(0,
1

ε
, |u0|) = S(

1

ε
)|u0|(0).

3 The Equation with an Additional Linear Term+�u

In this section we consider a linear perturbation of Eq. (1.1). Our goal is to understand the
effect of this term on the asymptotic behaviour of solutions. Thus, we consider the equation

ut − �u + λu = 0, x ∈ R
d , t > 0, u(x, 0) = u0(x). (3.1)
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In contrast with the heat flow in more standard spaces, we will see below that not every λ > 0
is capable of producing decay for all solutions of (3.1).

We first get the following result for (3.1) using Theorem 4.1 in [4] with u(x, t) =
e−λtv(x, t), and Proposition 2.5.

Proposition 3.1 Suppose that v is defined in R
d × (0, T ) and is such that for some δ > 0

v,∇v,�v ∈ L1
loc((0, T ), L1

δ (R
d))

and

vt − �v + λv = 0, a.e. x ∈ R
d , 0 < t < T , (3.2)

with λ ∈ R. Suppose also that for every ϕ ∈ Cc(R
d) and t small enough v satisfies

lim
s→0

∫

Rd
v(s)S(t)ϕ =

∫

Rd
S(t)ϕ du0 (3.3)

for some u0 ∈ Mε(R
N ), for some ε > 0. Then

v(x, t) = e−λt u(x, t), x ∈ R
d , 0 < t < T ,

where u(x, t) is the solution of (1.1) with the same initial data.
In particular, (3.2) defines a semigroup in L1

0(R
d) and in M0(R

N ) given by

Sλ(t) = e−λt S(t), t ≥ 0,

which satisfies all the smoothing properties of S(t) stated in Proposition 2.5 and for any
δ > 0

‖Sλ(t)u0‖L1
δ (R

d ) ≤ e−λt‖u0‖Mδ(t)(R
d ), t > 0 (3.4)

with δ(t) = δ
1+4δt ; there is equality in (3.4) if u0 ≥ 0.

Since Sλ(t) = e−λt S(t) for t ≥ 0, we can deduce information on the boundedness and
decay of solutions of (3.2) for large times using Proposition 5.1 in [5].

Corollary 3.2 (i) If u0 ∈ M0(R
d) then u(t) = Sλ(t)u0 is bounded/decays to zero in L

q
0(R

d)

as t → ∞, for any 1 ≤ q ≤ ∞, provided that

e− λ
4ε ‖u0‖Mε(Rd ) is bounded/tends to zero as ε → 0. (3.5)

The converse is also true if u0 ≥ 0.
If λ > 0 and u0 ∈ M0,B(Rd) (as in Definition 2.4) then (3.5) holds.

(ii) If u0 ∈ L∞
0 (Rd) then u(t) = Sλ(t)u0 is bounded/decays to zero in L∞

0 (Rd) as t → ∞
if

e− λ
4ε

εd
‖u0‖L∞

ε (Rd ) is bounded/tends to zero as ε → 0.

(iii) If u0 ∈ L p
0 (Rd), 1 ≤ p < ∞, then u(t) = Sλ(t)u0 is bounded/decays to zero in L

q
0(R

d),
p ≤ q ≤ ∞ as t → ∞, if

e− λ
4ε ‖u0‖L p

ε (Rd ) is bounded/tends to zero as ε → 0.
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Proof Weuse Sλ(t) = e−λt S(t) and the estimates inProposition2.7 as follows. For (i) and (ii),
for fixed δ, t > 0 denote ε = δ(t) = δ

1+4δt , that is, t = 1
4ε − 1

4δ and then e
−λt‖u0‖Mδ(t)(R

d ) =
c(δ)e− λ

4ε ‖u0‖Mε(Rd ) and e
−λt (1+ 4δt)d‖u0‖L∞

δ(t)(R
d ) = c(δ) e

− λ
4ε

εd
‖u0‖Mε(Rd ) respectively.

If u0 ≥ 0, the converse in case of (i) follows from Proposition 2.8.
For (iii) we argue analogously with ε = δp(t) = pδ

1+4pδt , that is t = 1
4ε − 1

4pδ and then

cp,qe−λt
( 1+4pδt

4pδt

) d
2 ( 1

p − 1
q )‖u0‖L p

δp (t)(R
d ) ≤ c(δ, p, q)e− λ

4ε ‖u0‖L p
ε (Rd ).

Now we present some typical examples of elements inM0(R
d) and estimate their norms

in order to check whether they satisfy the condition for decay in (3.5).
As we will see below for functions that grow strictly slower than any exponential as

|x | → ∞, i.e. slower than ec|x | for every c > 0, the additional dissipative term λu in the
equation is able to drive the solution to zero as t → ∞. For functions that grow like ec|x |
then we need to take λ > c2 and this result is sharp. Finally for functions that grow faster
than ec|x | for every c > 0, no λ > 0 can bring the solution to zero as t → ∞.

We start with the cases of a delta function at a point x0 ∈ R
d and trigonometric functions.

Both proofs are immediate.

Example 3.3 For f = δx0 , x0 ∈ R
d , we have

‖ f ‖Mε(Rd ) =
(

ε

π

)d/2

e−ε|x0|2 .

Hence u0 = δx0 satisfies (3.5) for λ ≥ 0.

Example 3.4 For f (x) = eiωx , ω ∈ R
d , we have

‖ f ‖L1
ε(R

d ) ≤ 1, ε > 0.

Therefore, u0 = f satisfies (3.5) for any λ > 0.

For functions that grow less quickly than an exponential, we have the following.

Example 3.5 If f (x) = |x |β , β > 0, then f ∈ L1
0(R

d) and

‖ f ‖L1
ε(R

d ) = A

ε
β
2

for some A depending on β. Therefore, u0 = f satisfies (3.5) for any λ > 0.

Proof. Just notice that taking polar coordinates

‖ f ‖L1
ε(R

d ) =
( ε

π

)d/2
∫ ∞

0
e−εr2rβ+d−1 dr = 1

ε
β
2

(
1

π

)d/2 ∫ ∞

0
e−y2 yβ+d−1 dr .

Example 3.6 For f (x) = eωx , ω ∈ R
d , we have

‖ f ‖L1
ε(R

d ) = e
|ω|2
4ε , ε > 0.

Therefore, u0 = f satisfies (3.5) only for λ > |ω|2.
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Proof. Completing the square

ε|x |2 − ωx =
∣
∣
∣
∣
√

εx − ω

2
√

ε

∣
∣
∣
∣

2

− |ω|2
4ε

leads to

‖ f ‖L1
ε(R

d ) = e
|ω|2
4ε

( ε

π

)d/2
∫

Rd
e
−|√εx− ω

2
√

ε
|2
dx = e

|ω|2
4ε

( ε

π

)d/2
∫

Rd
e−ε|x |2 dx = e

|ω|2
4ε .

Example 3.7 If f (x) = ec|x |, c > 0, then f ∈ L1
0(R

d) and

exp

(
c2

4ε

)

≤ ‖ f ‖L1
ε(R

d ) ≤ A1 exp

(
A2

4ε

)

, ε > 0 (3.6)

for any A2 > c2 and some A1 > 1. Therefore, u0 = f satisfies (3.5) only for λ > c2.

Proof Notice that for any 0 < θ < 1 we have

−ε|x |2 + c|x | ≤ −(1 − θ)ε|x |2 + Aθ,ε, x ∈ R
d ,

where Aθ,ε = c2
4θε

> 0. Hence

‖ f ‖L1
ε (R

d ) ≤
( ε

π

)d/2
∫

Rd
e−ε|x |2+c|x | dx ≤

( ε

π

)d/2
eAθ,ε

∫

Rd
e−(1−θ)ε|x |2 dx = 1

(1 − θ)d/2 e
c2
4θε

and the upper bound in (3.6) follows.
Conversely, taking polar coordinates and completing the square yields

‖ f ‖L1
ε(R

d ) =
( ε

π

)d/2
∫ ∞

0
e−εr2+cr rd−1 dr =

( ε

π

)d/2
e
c2
4ε

∫ ∞

0
e−ε(r− c

2ε )2rd−1 dr

≥
( ε

π

)d/2
e
c2
4ε

∫ ∞
c
2ε

e−ε(r− c
2ε )2rd−1 dr

≥
( ε

π

)d/2
e
c2
4ε

∫ ∞
c
2ε

e−ε(r− c
2ε )2(r − c

2ε
)d−1 dr

=
( ε

π

)d/2
e
c2
4ε

∫ ∞

0
e−εz2 zd−1 dz = e

c2
4ε ,

which completes the proof of (3.6). The rest is immediate.

The next two examples show that the linear exponential above gives a threshold forwhether
or not the dissipative term λu can bring solutions down to zero as t → ∞.

Firs we treat functions that grow more slowly than an exponential.

Example 3.8 Assume f (x) is such that for every μ > 0 there exists c(μ) such that

| f (x)| ≤ eμ|x |+c(μ), x ∈ R
d

e.g. f (x) = ec|x |α , c > 0, 0 < α < 1. Then

‖ f ‖L1
ε(R

d ) ≤ A1 exp

(
A2

4ε

)

, ε > 0

for any A2 > μ2 and some A1 > 1.
Therefore, u0 = f satisfies (3.5) for any λ > 0.
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Proof The proof is immediate from the previous example.

Now we consider functions that grow more quickly than a linear exponential.

Example 3.9 Assume f (x) is such that for every μ > 0 there exists r(μ) > 0 such that

| f (x)| ≥ eμ|x |, for |x | ≥ r(μ),

e.g. f (x) = ec|x |α , 1 < α < 2, c > 0.
Then for 0 < ε ≤ ε0 = μ

2r(μ)
we have

‖ f ‖L1
ε(R

d ) ≥ e
μ2

4ε .

Since μ > 0 is arbitrary, (3.5) is not satisfied for any λ > 0.

Proof. Taking polar coordinates

‖ f ‖L1
ε(R

d ) ≥
( ε

π

)d/2
∫ ∞

r(μ)

e−εr2+μr rd−1 dr

and completing the square as above, we get

‖ f ‖L1
ε(R

d ) ≥
( ε

π

)d/2
e

μ2

4ε

∫ ∞

r(μ)

e−ε(r− μ
2ε )2rd−1 dr ≥

( ε

π

)d/2
e

μ2

4ε

∫ ∞
μ
2ε

e−ε(r− μ
2ε )2rd−1 dr

provided that r(μ) ≤ μ
2ε , which can be achieved for 0 < ε ≤ ε0 as in the statement. Hence,

for this range of ε we get

‖ f ‖L1
ε(R

d ) ≥
( ε

π

)d/2
e

μ2

4ε

∫ ∞
μ
2ε

e−ε(r− μ
2ε )2(r − μ

2ε
)d−1 dr = e

μ2

4ε .

4 The Variation of Constants Formula inM0(R
d)

In this section our aim is to solve, in a suitable sense, the non-homogeneous equation

ut − �u + λu = f , x ∈ R
d , t > 0, u(x, 0) = u0(x) ∈ Mε(R

d) (4.1)

with λ ∈ R and a given f , in [0, T ], such that

[0, T ] 	 t 
→ f (t) ∈ Mloc(R
d).

In more standard settings we would expect that the solution of (4.1) is given by

u(t) = e−λt S(t)u0 +
∫ t

0
e−λ(t−s)S(t − s) f (s) ds. (4.2)

Here we show that (4.2) actually provides a suitable solution of (4.1) in the non-standard
setting of this paper.
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4.1 Existence and Uniqueness

Since part of the solution of the homogeneous equation, namely e−λt S(t)u0, has already
been dealt with in Proposition 3.1, we will concentrate below on the term

U (t) := U (t, f ) =
∫ t

0
e−λ(t−s)S(t − s) f (s) ds. (4.3)

The following result gives sufficient conditions forU in (4.3) to be a “very weak" solution
of (4.1). For this, wewill use the following notation. For a given function ε : [0, T ] → (0,∞)

we say that

f ∈ L p((0, T ),Mε(·)(Rd))

for some 1 ≤ p ≤ ∞ if f (t) ∈ Mε(t)(R
d) for each 0 ≤ t ≤ T and

‖ f ‖L p((0,T ),Mε(·)(Rd )) :=

⎧
⎪⎨

⎪⎩

(∫ T

0
‖ f (s)‖p

Mε(s)(R
d )
ds

)1/p

1 ≤ p < ∞
supt∈[0,T ] ‖ f (t)‖Mε(t) p = ∞

⎫
⎪⎬

⎪⎭
< ∞.

Theorem 4.1 Assume that ε : [0, T ] → (0,∞) is such that ε(t) ≥ ε0 for some ε0 > 0 and
lim supt→0+ ε(t) < ∞. For t ∈ [0, T ] define the non-increasing function

e(t) = inf
0≤s≤t

(
1

4ε(s)
+ s

)

and determine T0 > 0 by setting

T0 := sup{t ∈ [0, T ], e(t) > t} ≤ T . (4.4)

Finally for 0 ≤ t < T0 define

δ(t) := 1

4(e(t) − t)
,

which is increasing and satisfies δ(t) ≥ ε(t).
Suppose that f ∈ L1((0, T ),Mε(·)(Rd)) and define

U (t) =
∫ t

0
e−λ(t−s)S(t − s) f (s) ds.

Then for 0 ≤ t < T0 we have U (t) ∈ L1
δ(t)(R

d) with

‖U (t)‖L1
δ(t)(R

d ) ≤ C(t)
∫ t

0
‖ f (s)‖Mε(s)(R

d ) ds,

where C(t) =
(

δ(t)
ε0

)d/2
sup0≤s≤t e

−λs . In particular, for any τ < T0

sup
0≤t≤τ

‖U (t)‖L1
δ(t)(R

d ) ≤ C(τ )‖ f ‖L1((0,τ ),Mε(·)). (4.5)

In particular, U ∈ C([0, T0), L1
δ(·)(Rd)), in the sense that for any fixed 0 < t < T0 and

δ̃ > δ(t) we have, as s → t , U (s) → U (t) in L1
δ̃
(Rd) and

lim
t→0

‖U (t)‖L1
δ(t)(R

d ) = 0, (4.6)
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and is a very weak solution of (4.1) in (0, T0), that is, for every ϕ ∈ C∞
c (Rd),

d

dt

∫

Rd
U (t)ϕ +

∫

Rd
U (t)(−�ϕ + λϕ) =

∫

Rd
ϕ d f (t), 0 < t < T0. (4.7)

Proof. Fix t ∈ [0, T ] and take δ > 0 to be chosen below. Then from Proposition 2.9

‖U (t)‖L1
δ (R

d ) ≤
∫ t

0
e−λ(t−s)‖ f (s)‖M

δ̃(t−s)(R
d ) ds (4.8)

with δ̃(s) = δ
1+4δs and U (t) is well defined provided that

δ̃(t − s) ≥ ε(s) for all 0 ≤ s ≤ t and
∫ t

0
‖ f (s)‖M

δ̃(t−s)(R
d ) ds < ∞.

The second condition is satisfied using the integrability assumption on f and (2.7),

‖ f (s)‖M
δ̃(t−s)(R

d ) ≤
(

δ

ε0

)d/2

‖ f (s)‖Mε(s)(R
d ), 0 < s < t . (4.9)

Now observe that the condition δ̃(t − s) ≥ ε(s) for all 0 ≤ s ≤ t is equivalent to requiring
e(t) ≥ 1

4δ + t . Since lim supt→0 ε(t) < ∞, e(t) is well defined and non increasing with
e(0) > 0. Therefore, T0 in (4.4) is well defined and is the only time at which e(t) and t may
cross in the interval [0, T ] since e(t) is non increasing. In particular, as e(t) ≥ 1

4δ + t , we
also get 0 < t ≤ T0.

Notice that the smallest choice for δ is δ = δ(t) with e(t) = 1
4δ(t) + t as in the stament.

Then by this definition of δ(t)we have δ̃(t−s) = 1
4(e(t)−s) , δ(t) ≥ ε(t) and δ(t) is increasing.

Hence with such choices we have for 0 < t < T0

‖U (t)‖L1
δ(t)(R

d ) ≤ C(t)
∫ t

0
‖ f (s)‖Mε(s)(R

d ) ds

with C(t) =
(

δ(t)
ε0

)d/2
sup0≤s≤t e

−λs , which also implies that limt→0 ‖U (t)‖L1
δ(t)(R

d ) = 0.

Now observe that for any 0 < τ < T0 we have

U (t) = e−λ(t−τ)S(t − τ)U (τ ) +
∫ t

τ

e−λ(t−s)S(t − s) f (s) ds, τ < t < T0. (4.10)

To see this, note that for ϕ ∈ C∞
c (Rd) we have, using (2.10),

I =
∫

Rd
e−λ(t−τ)S(t − τ)U (τ )ϕ = e−λ(t−τ)

∫

Rd
U (τ )S(t − τ)ϕ.

Now

U (τ ) =
∫ τ

0
e−λ(τ−s)S(τ − s) f (s) ds

and Fubini’s Theorem and the semigroup property lead to

I = e−λ(t−τ)

∫ τ

0
e−λ(τ−s)

∫

Rd
S(τ − s) f (s)S(t − τ)ϕ ds =

∫ τ

0
e−λ(t−s)

∫

Rd
S(t − s) f (s)ϕ ds

that is

I =
∫

Rd

∫ τ

0
e−λ(t−s)S(t − s) f (s)ϕ ds.
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Since this is for every ϕ ∈ C∞
c (Rd) we obtain

e−λ(t−τ)S(t − τ)U (τ ) =
∫ τ

0
e−λ(t−s)S(t − s) f (s) ds

and (4.10) is proved.
Now, the same argument as in (4.6) gives that the norm in L1

δ(t)(R
d) of the integral term in

(4.10) goes to zero as t → τ . On the other hand, by Theorem 2.1 (ii), sinceU (τ ) ∈ L1
δ(τ )(R

d)

we have that e−λ(t−τ)S(t − τ)U (τ ) is continuous as t → τ in L1
δ̃
(Rd) for δ̃ > δ(τ). This

proves the time continuity , U ∈ C([0, T0), L1
δ(·)(Rd)) as in the statement.

Finally we prove U is a very weak solution of (4.1). For this, for every ϕ ∈ C∞
c (Rd),

∫

Rd
U (t)ϕ =

∫ t

0
e−λ(t−s)

∫

Rd
S(t − s) f (s)ϕ ds =

∫ t

0
e−λ(t−s)

∫

Rd
S(t − s)ϕ d f (s).

Hence

d

dt

∫

Rd
U (t)ϕ =

∫

Rd
ϕ d f (t) − λ

∫ t

0
e−λ(t−s)

∫

Rd
S(t − s)ϕ d f (s)

+
∫ t

0
e−λ(t−s)

∫

Rd
∂t S(t − s)ϕ d f (s)

=
∫

Rd
ϕ d f (t) − λ

∫ t

0
e−λ(t−s)

∫

Rd
S(t − s)ϕ d f (s)

+
∫ t

0
e−λ(t−s)

∫

Rd
S(t − s)�ϕ d f (s).

Another use of Fubini’s Theorem gives

d

dt

∫

Rd
U (t)ϕ =

∫

Rd
ϕ d f (t) +

∫

Rd
U (t)

(
�ϕ − λϕ).

Revisiting the proof of Theorem 4.1 we see that we can improve (4.8) to an equality if
f (t) is non-negative.

Corollary 4.2 With the assumptions and notations of Theorem 4.1 assume moreover that
f (t) ≥ 0 for all t . Then for each 0 ≤ t ≤ T0 and δ ≥ δ(t) = 1

4(e(t)−t)

‖U (t)‖L1
δ (R

d ) =
∫ t

0
e−λ(t−s)‖ f (s)‖M

δ̃(t−s)(R
d ) ds

with δ̃(s) = δ
1+4δs . In particular for δ = δ(t) then δ̃(t − s) = 1

4(e(t)−s) ≥ ε(s).

Proof To see this notice that

U (x, t) =
∫ t

0
e−λ(t−s)S(t − s) f (s)(x) ds, x ∈ R

d

and then for any δ ≥ δ(t)

e−δ|x |2U (x, t) =
∫ t

0
e−λ(t−s)S(t − s) f (s)(x)e−δ|x |2 ds.

Integrating in x ∈ R
d and using Fubini’s Theorem we get

‖U (t)‖L1
δ (R

d ) =
∫ t

0
e−λ(t−s)‖S(t − s) f (s)‖Mδ(Rd ) ds
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and using Proposition 2.8 we get

‖U (t)‖L1
δ (R

d ) =
∫ t

0
e−λ(t−s)‖ f (s)‖M

δ̃(t−s)(R
d ) ds.

The rest is as in Theorem 4.1.

Now we prove a uniqueness result for solutions of (4.1).

Proposition 4.3 There exists at most one function v is defined in R
d × (0, T ) such that for

some δ > 0

v,∇v,�v ∈ L1
loc((0, T ), L1

δ (R
d))

and satisfies, for every ϕ ∈ Cc(R
d) and t small enough

lim
s→0

∫

Rd
v(s)S(t)ϕ = 0

that is, (2.13) for u0 = 0 (e.g. (2.14) or (2.15) and (2.16), with u0 = 0) and

vt − �v + λv = f , a.e. x ∈ R
d , 0 < t < T .

Proof If there exist two such functions, apply Theorem 2.2 to eλt (v1(t) − v2(t)).

Now we prove that if f is suitably smooth in space and time then U = U ( f ) in (4.3),
actually satisfies the nonhomogeneous heat Eq. (4.1), with u0 = 0. In particular U is the
unique solution in Proposition 4.3. For simplicity we will consider f ∈ L1((0, T ),Mε(·))
with ε(s) = ε > 0 constant. This is the case if for example f does not depend on time that
will be analysed further below. In such a case in Theorem 4.1 we have ε0 = ε, e(t) = 1

4ε ,
T0 := sup{t ∈ [0, T ], e(t) > t} = min{ 1

4ε , T } and δ(t) = 1
4(e(t)−t) = ε

1−4εt .

Theorem 4.4 We consider the same expressions as in Theorem 4.1, but now assume that
f ∈ L1((0, T ),Mε(·)), where ε(s) = ε > 0 constant, and f ∈ C1([0, T ], L1

ε(R
d)).

Then for 0 < t < T0 and any δ > δ(t) = ε
1−4εt we have that U is differentiable, at t , in

L1
δ (R

d), −�U (t) ∈ L1
δ(R

d) and

Ut − �U + λU = f , x ∈ R
d , 0 < t < T0,

holds.

Proof As in Proposition 3.1, we set Sλ(t) = e−λt S(t). We proceed in several steps.

Step 1. From (4.10),U (t +h) = Sλ(h)U (t)+
∫ t+h

t
Sλ(t +h− s) f (s) ds, for h > 0, hence

U (t + h) −U (t)

h
= Sλ(h) − I

h
U (t) + 1

h

∫ t+h

t
Sλ(t + h − s) f (s) ds. (4.11)

We claim that the second term converges to f (t), as h → 0 in L1
δ (R

d) for any δ > ε. For
this, denote

J (h) = 1

h

∫ t+h

t
Sλ(t + h − s) f (s) ds − f (t) = 1

h

∫ t+h

t
(Sλ(t + h − s) f (s) − f (t)) ds

and write

J (h) = 1

h

∫ t+h

t
Sλ(t + h − s)[ f (s) − f (t)] + (Sλ(t + h − s) − I ) f (t) ds
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Now for every μ > 0 there exists h0 such that for evey h < h0, if s ∈ (t, t + h) we
have ‖ f (s) − f (t)‖L1

ε(R
d ) ≤ μ. Hence from (2.17) we have for any δ > ε, if h0 is small

enough, ‖Sλ(t +h− s)[ f (s)− f (t)]‖L1
δ (R

d ) ≤ μ/2, while from Theorem 2.1 (ii), ‖(Sλ(h)−
I ) f (t)‖L1

δ (R
d ) ≤ μ/2, and therefore ‖J (h)‖L1

δ (R
d ) ≤ μ.

Step 2.FromTheorem 4.1we haveU (t) ∈ L1
δ(t)(R

d). Thenwe show that if for some δ ≥ δ(t)

the term Sλ(h)−I
h U (t) has a limit in L1

δ (R
d) then the limit must be −�U (t) + λU (t). For

this, for every ϕ ∈ C∞
c (Rd),

∫

Rd

Sλ(h) − I

h
U (t)ϕ =

∫

Rd
U (t)

Sλ(h) − I

h
ϕ →

∫

Rd
U (t)(−� + λI )ϕ

see e.g. Section 6 in [5] for the heat flow in spaces of rapidly decaying functions.
With this, from (4.11) we obtain thatU (t) is differentiable in L1

δ (R
d), for some δ ≥ δ(t),

iff −�U (t) ∈ L1
δ(R

d) and in such a case (4.1) holds in R
d .

Step 3. We prove now that U is differentiable in L1
δ (R

d) for δ > δ(t). For this, we write,
using (4.3),

U (t + h) −U (t)

h
= 1

h

[∫ h

0
Sλ(t + h − s) f (s) ds

+
∫ t+h

h
Sλ(t + h − s) f (s) ds −

∫ t

0
Sλ(t − s) f (s) ds

]

in the middle term we change variables s = r + h to get

U (t + h) −U (t)

h
= 1

h

[∫ h

0
Sλ(t + h − s) f (s) ds

+
∫ t

0
Sλ(t − r) f (r + h) dr −

∫ t

0
Sλ(t − s) f (s) ds

]

= Sλ(t)
1

h

∫ h

0
Sλ(h − s) f (s) ds +

∫ t

0
Sλ(t − s)

f (s + h) − f (s)

h
ds.

As in Step 1 above the first term converges, as h → 0 in L1
δ (R

d), for any δ > ε,
to Sλ(t) f (0) while since f ∈ C1([0, T ], L1

ε(R
d)), using (4.5), the second converges to∫ t

0
Sλ(t − s) f ′(s) ds in L1

δ(t)(R
d) and we get the result.

4.2 Improved Regularity of U

We now show that when f has better integrability in time we get better regularity of U .

Corollary 4.5 We consider the same expressions as in Theorem 4.1, but now assume that for
some 1 < σ ≤ ∞, we have f ∈ Lσ ((0, T ),Mε(·)).

Then for any τ < T0

sup
0≤t≤τ

‖U (t)‖Lq
qδ(t)(R

d ) ≤ C(τ )‖ f ‖Lσ ((0,T ),Mε(·)) (4.12)

for δ(t) = 1
4(e(t)−t) , 1 ≤ q < d

(d−2)+ and 1
σ

+ d
2 < 1 + d

2q . Also, C(τ ) =
(

δ(τ )
ε0

)d/2
c(τ ),

and c(τ ) is uniformly bounded in τ if λ > 0.
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In particular U ∈ C([0, T0), Lq
qδ(·)(Rd)), in the sense that for any fixed 0 < t < T0 and

δ̃ > qδ(t) we have, as s → t , U (s) → U (t) in Lq
δ̃
(Rd) and

lim
t→0

‖U (t)‖Lq
qδ(t)(R

d ) = 0, (4.13)

Proof Using Proposition 2.9, we get for fixed 0 < t < T0, for any δ ≥ δ(t) and δ̃(t) = δ
1+4δt

‖U (t)‖Lq
qδ(R

d ) ≤ cq

∫ t

0
e−λ(t−s)φ1,q(t − s)‖ f (s)‖M

δ̃(t−s)(R
d ) ds,

with φ1,q(t) = ( 1+4δt
4δt

) d
2q′ . Using (4.9) and choosing δ = δ(t) as in Theorem 4.1, if 1 < σ <

∞,

‖U (t)‖Lq
qδ(t)(R

d ) ≤ c

(
δ(t)

ε0

)d/2 ( ∫ t

0
e−σ ′λsφσ ′

1,q(s) ds
) 1

σ ′ (
∫ T

0
‖ f (s)‖σ

Mε(s)(R
d )
ds

) 1
σ

provided that σ ′d
2q ′ < 1, that is, 1 < σ ′ <

2q ′
d , due to the singularity of the first integrand at

s = 0. This choice is possible only if q < d
(d−2)+ and, in such a case, if σ >

2q ′
2q ′−d , that is,

1
σ

< 1 − d
2q ′ = 1 − d

2 + d
2q . Also, if λ > 0 the first integral is bounded as t → ∞. Hence

we get (4.12).
If σ = ∞ we get (4.12) provided that d

2q ′ < 1, that is q < d
(d−2)+ .

For the time continuity, from (4.10), the estimates above imply that the integral term
converges to zero in Lq

qδ(t)(R
d) as t → τ . On the other hand, since U (τ ) ∈ Lq

qδ(τ )(R
d)

we have that e−λ(t−τ)S(t − τ)U (τ ) is continuous as t → τ in Lq
δ̃
(Rd) for δ̃ > qδ(τ ), see

Proposition 4.8 in [5].

With a similar argument we can also estimate the gradient of U ( f ) as follows. In such a
case, we also get that U ( f ) is a weak solution of (4.1).

Proposition 4.6 Under the notations of Theorem 4.1, assume moreover that for some σ > 2,
we have f ∈ Lσ ((0, T ),Mε(·)).

For any γ > 1 define the non increasing function eγ (t) := inf0<s<t
( 1
4ε(s) +γ s

)
and T0,γ

as 0 < T0,γ = sup{t ∈ [0, T ], eγ (t) > γ t} ≤ T . Finally define δγ (t) := 1
4(eγ (t)−γ t) .

Then e(t) ≤ eγ (t) ≤ γ e(t), T0,γ ≤ T0 and γ δγ (t) ≥ δ(t) and T0,γ → T0 as γ → 1.
Moreover for any τ < T0 and γ > 1 sufficiently close to 1 we have

sup
0≤t≤τ

‖∇U (t)‖L1
δγ (t)(R

d ) ≤ C(τ )‖ f ‖Lσ ((0,T ),Mε(·)) (4.14)

and C(τ ) =
(

δγ (τ )

ε0

)d/2
c(τ ), and c(τ ) is uniformly bounded in τ if λ > 0.

Moreover, U is a weak solution of (4.1) that is for every ϕ ∈ C∞
c (Rd),

d

dt

∫

Rd
U (t)ϕ +

∫

Rd
∇U (t)∇ϕ + λ

∫

Rd
U (t)ϕ =

∫

Rd
ϕ d f (t), 0 < t < T0.

(4.15)

In particular, ∇U ∈ C([0, T0), L1
δγ (·)(Rd)), in the sense that for any fixed 0 < t < T0

and δ̃ > δγ (t) we have, as s → t , ∇U (s) → ∇U (t) in L1
δ̃
(Rd) and

lim
t→0

‖∇U (t)‖L1
δγ (t)(R

d ) = 0, (4.16)
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Proof Now we use estimates for derivatives as in (2.24) and Proposition 2.9, to get for fixed
0 < t < T0, for some δ > 0 to be chosen below, δ̃(t) = δ

1+4γ δt with an arbitrary γ > 1,
using (4.9),

‖∇U (t)‖L1
δ (R

d ) ≤ c
∫ t

0

e−λ(t−s)

(t − s)1/2
‖ f (s)‖M

δ̃(t−s)(R
d ) ds

≤ c

(
δ

ε0

)d/2 ( ∫ t

0

e−σ ′λs

sσ ′/2 ds
) 1

σ ′ (
∫ T

0
‖ f (s)‖σ

Mε(s)(R
d )
ds

) 1
σ
,

(with obvious changes if σ = ∞) provided that δ̃(t − s) ≥ ε(s) for 0 < s < t and this is
finite if σ > 2. Also, if λ > 0 then the first integral is bounded uniformly as t → ∞. The
condition δ̃(t − s) ≥ ε(s) for 0 < s < t holds iff

γ t + 1

4δ
≤ eγ (t) := inf

0<s<t

( 1

4ε(s)
+ γ s

)
.

This is satisfied provided that 0 < t < T0,γ which is defined as

0 < T0,γ = sup{t ∈ [0, T ], eγ (t) > γ t} ≤ T .

Hence we chose the smallest possible value of δ that is, δ = δγ (t) := 1
4(eγ (t)−γ t) . Hence we

get (4.14).
Now observe that, with the notations in Theorem 4.1, e(t) ≤ eγ (t) ≤ γ e(t) and this

implies T0,γ ≤ T0 and δγ (t) ≥ γ δ(t). Also, notice that T0,γ → T0 as γ → 1.
Now, integrating by parts in (4.7) as in Lemma A.3 in [4], we get (4.15).
For the time continuity, from (4.10), the estimates above imply that the gradient of the

integral term converges to zero in L1
δγ (t)(R

d) as t → τ . On the other hand, since ∇U (τ ) ∈
L1

δγ (τ )(R
d) we have that using properties of the convolution e−λ(t−τ)∇S(t − τ)U (τ ) =

e−λ(t−τ)S(t − τ)∇U (τ ) and so is continuous as t → τ in L1
δ̃
(Rd) for δ̃ > δγ (τ ).

Similarly, we now obtain an Lr type estimate of the gradient of U ( f ).

Corollary 4.7 Under the notations of Theorem 4.1 and Proposition 4.6, assume moreover
that we have f ∈ Lσ ((0, T ),Mε(·)) for σ > 2.

Then for any τ < T0 and γ > 1 sufficiently close to 1 we have

sup
0≤t≤τ

‖∇U (t)‖Lrrδγ (t)(R
d ) ≤ C(τ )‖ f ‖Lσ ((0,T ),Mε(·)) (4.17)

where δγ (t) := 1
4(eγ (t)−γ t) and eγ (t) := inf0<s<t

( 1
4ε(s) + γ s

)
, 1 ≤ r < d

(d−1)+ and

1
σ

+ d
2 < 1

2 + d
2r . Also, C(τ ) =

(
δγ (τ )

ε0

)d/2
c(τ ), and c(τ ) is uniformly bounded in τ if λ > 0.

In particular, ∇U ∈ C([0, T0), Lr
rδγ (·)(Rd)), in the sense that for any fixed 0 < t < T0

and δ̃ > rδγ (t) we have, as s → t , ∇U (s) → ∇U (t) in Lr
δ̃
(Rd) and

lim
t→0

‖∇U (t)‖Lrrδγ (t)(R
d ) = 0, (4.18)

Proof Again from derivative estimates in Proposition 2.9 we get for fixed 0 < t < T0, for
some δ > 0 to be chosen below, δ̃(t) = δ

1+4γ δt with an arbitrary γ > 1, using (4.9),

‖∇U (t)‖Lrrδ(Rd ) ≤ c

(
δ

ε0

)d/2 ∫ t

0

e−λ(t−s)

(t − s)
1
2

�1,r (t − s)‖ f (s)‖M
δ̃(t−s)(R

d ) ds,
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with �1,r (t) = ( 1+4γ δt
t

) d
2r ′ provided that δ̃(t − s) ≥ ε(s) for 0 < s < t which holds iff

γ t + 1

4δ
≤ eγ (t) = inf

0<s<t

(
1

4ε(s)
+ γ s

)

.

Then we chose δ = δγ (t) as in Proposition 4.6 and hence

‖∇U (t)‖Lrrδγ (t)(R
d ) ≤ c

(
δγ (t)

ε0

)d/2 ( ∫ t

0

e−σ ′λs

s
σ ′
2

�σ ′
1,r (s) ds

) 1
σ ′ (

∫ T

0
‖ f (s)‖σ

Mε(s)(R
d )
ds

) 1
σ

provided that σ ′( 12 + d
2r ′ ) < 1, that is, 1 < σ ′ < 2r ′

d+r ′ , due to the singularity of the first
integrand at s = 0.Also ifλ > 0 thefirst integral is uniformly bounded as t → ∞. This choice
is possible if r < d

(d−1)+ and in such a case σ > 2r ′
r ′−d , that is,

1
σ

< 1
2 − d

2r ′ = 1
2 − d

2 + d
2r .

Hence we get (4.17). If σ = ∞ we get (4.17) provided that d
r ′ < 1, that is r < d

(d−1)+ .
The time continuity is as in Proposition 4.6.

In the next result, we assume f has better integrability in space and obtain further regularity
for U ( f ) and its gradient.

Proposition 4.8 Under the notations of Theorem 4.1 and Proposition 4.6, assume f ∈
Lσ ((0, T ), L p

ε(·)(Rd))

(i) Then for any τ < T0 and 1 ≤ p < ∞ and δ(t) := 1
4(e(t)−t) ,

sup
0≤t≤τ

‖U (t)‖Lq
q
p δ(t)

(Rd ) ≤ C(τ )‖ f ‖Lσ ((0,T ),L p
ε(·))

(4.19)

for p ≤ q <
pd

(d−2p)+ and 1
σ

+ d
2p < 1+ d

2q . Also, C(τ ) =
(
pδ(τ )
ε0

)d/2p
c(τ ), and c(τ )

is uniformly bounded in τ if λ > 0.
If p = ∞ and 1 ≤ σ ≤ ∞

sup
0≤t≤τ

‖U (t)‖L∞
δ(t)(R

d ) ≤ C(τ )‖ f ‖Lσ ((0,T ),L∞
ε(·)) (4.20)

with C(τ ) =
(

δ(τ )
ε0

)d/2
c(τ ), and c(τ ) is uniformly bounded in τ if λ > 0.

Also U ∈ C([0, T0), Lq
qδ(·)(Rd)), in the sense that for any fixed 0 < t < T0 and

δ̃ >
q
p δ(t) we have, as s → t , U (s) → U (t) in Lq

δ̃
(Rd) and

lim
t→0

‖U (t)‖Lq
q
p δ(t)

(Rd ) = 0, (4.21)

(ii) For any τ < T0 and 1 ≤ p ≤ r < ∞ and δγ (t) := 1
4(eγ (t)−γ t) with γ > 1 sufficiently

close to 1

sup
0≤t≤τ

‖∇U (t)‖Lrrδγ (t)(R
d ) ≤ C(τ )‖ f ‖Lσ ((0,T ),L p

ε(·))
(4.22)

for r <
pd

(d−p)+ and 1
σ

+ d
2p < 1

2 + d
2r and C(τ ) =

(
pδγ (t)

ε0

)d/2p
c(τ ), and c(τ ) is

uniformly bounded in τ if λ > 0.
In particular, if 1

σ
+ d

2p < 1 we can take r > d and then U (t) is continuous in R
d for

each t < T0.
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Also, ∇U ∈ C([0, T0), Lr
rδγ (·)(Rd)), in the sense that for any fixed 0 < t < T0 and

δ̃ > rδγ (t) we have, as s → t , ∇U (s) → ∇U (t) in Lr
δ̃
(Rd) and

lim
t→0

‖∇U (t)‖Lrrδγ (t)(R
d ) = 0, (4.23)

Proof (i) If 1 ≤ p ≤ q < ∞, from Proposition 2.9 (see also (2.21)) we get for fixed
0 < t < T0, for some δ > 0 to be chosen below and δ̃p(s) = pδ

1+4pδs

‖U (t)‖Lq
qδ(R

d ) ≤
∫ t

0
e−λ(t−s)φp,q(t − s)‖ f (s)‖L p

δ̃p (t−s)
(Rd ) ds,

with φp,q(t) = c
( 1+4pδt

4pδt

) d
2 ( 1

p − 1
q ). Now, analogously to (4.9), from (2.6) we have

‖ f (s)‖L p
δ̃p (t−s)

(Rd ) ≤
(
pδ

ε0

)d/2p

‖ f (s)‖L p
ε(s)(R

d ), 0 < s < t . (4.24)

provided that δ̃p(t − s) ≥ ε(s). In such a case

‖U (t)‖Lq
qδ(R

d ) ≤ c

(
pδ

ε0

)d/2p ( ∫ t

0
e−σ ′λsφσ ′

p,q(s) ds
) 1

σ ′ (
∫ T

0
‖ f (s)‖σ

L p
ε(s)(R

d )
ds

) 1
σ

(with obvious changes if σ = ∞) which is finite provided that 1 < σ ′ < 1
d
2 ( 1

p − 1
q )

due to the

singularity of the first integrand at s = 0. This choice is possible only if d
2 ( 1p − 1

q ) < 1, that

is q <
pd

(d−2p)+ and σ > 1
1− d

2 ( 1
p − 1

q )
, that is 1

σ
< 1− d

2 ( 1p − 1
q ). In such a case, if λ > 0, the

first integral is bounded uniformly as t → ∞. Now, the condition δ̃p(t − s) ≥ ε(s) translates
again into

t + 1

4pδ
≤ e(t) = inf

0<s<t

( 1

4ε(s)
+ s

)
.

Hence we choose δ = δp(t) such that t + 1
4pδp(t)

= e(t), that is,

δp(t) = 1

4p(e(t) − t)
= 1

p
δ(t)

and we get (4.19).
If p = ∞, we use Proposition 2.9 (see also (2.23)) and then for fixed 0 < t < T0, for

some δ > 0 to be chosen below and δ̃(s) = δ
1+4δs

‖U (t)‖L∞
δ (Rd ) ≤

∫ t

0
e−λ(t−s)φ∞,∞(t − s)‖ f (s)‖L∞

δ̃(t−s)
(Rd ) ds,

with φ∞,∞(t) = c
(
1 + 4pδt

)d . Hence

‖U (t)‖L∞
δ (Rd ) ≤ c(t)

∫ t

0
‖ f (s)‖L∞

δ̃(t−s)
(Rd ) ds,

with c(t) = sup0≤s≤t e
−λsφ∞,∞(s) and as in the proof of Theorem 4.1, the condition δ̃(t −

s) ≥ ε(s) is equivalent to e(t) ≥ 1
4δ + t , so we chose δ = δ(t) = 1

4(e(t)−t) . Therefore

‖U (t)‖L∞
δ(t)(R

d ) ≤ c(t)

(
δ(t)

ε0

)d/2 ∫ T

0
‖ f (s)‖L∞

ε(s)(R
d ) ds

123



Journal of Dynamics and Differential Equations

and we get (4.20).
The proof of the time continuity is as in Corollary 4.5.

(ii) For 1 ≤ p ≤ r < ∞, from the gradient estimates in Proposition 2.9 (see also (2.24)), we
have for for any τ < T0, γ > 1, δ > 0 to be chosen below and δ̃p(s) = pδ

1+4pδγ s

‖∇U (t)‖Lrrδ(Rd ) ≤
∫ t

0

e−λ(t−s)

(t − s)
1
2

�p,r (t − s)‖ f (s)‖L p
δ̃p (t−s)

(Rd ) ds,

with γ > 1 and �p,r (t) with �p,r (t) = c
( 1+4pγ δt

t

) d
2 ( 1

p − 1
r ) provided that δ̃p(t − s) ≥ ε(s).

In such a case, using (4.24),

‖∇U (t)‖Lrrδ(Rd ) ≤ c

(
pδ

ε0

)d/2p ( ∫ t

0

e−σ ′λs

s
σ ′
2

�σ ′
p,r (s) ds

) 1
σ ′ (

∫ T

0
‖ f (s)‖σ

L p
ε(s)(R

d )
ds

) 1
σ

(with obvious changes if σ = ∞) which is finite provided that 1 < σ ′ < 1
1
2+ d

2 ( 1
p − 1

r )
due

to the singularity of the first integrand at s = 0. Also, if λ > 0 the first integral above
is uniformly bounded as t → ∞. This choice is possible only if d

2 ( 1p − 1
r ) < 1

2 , that is

r <
pd

(d−p)+ and σ > 1
1
2− d

2 ( 1
p − 1

r )
, that is, 1

σ
< 1

2 − d
2 ( 1p − 1

r ).

As in Proposition 4.6 the condition δ̃p(t − s) ≥ ε(s) translates into δ ≥ δγ (t) :=
1

4(eγ (t)−γ t) . Taking δ = δγ (t) we get (4.22).

In particular, if 1
σ

+ d
2p < 1 we can take r > d such that 1

σ
+ d

2p < 1
2 + d

2r < 1 and then

for each t < T0 we have ∇U (t) ∈ Lr
loc(R

d) and therefore U (t) is continuous in Rd .
The proof of the time continuity is as in Proposition 4.6 and Corollary 4.7.

4.3 Global Solutions and Estimates

In this section we analyze when the functionU ( f ) above is a global solution, that is, defined
for as long f is defined. We are also interested in obtaining global (in the same sense)
estimates on U ( f ) in terms of f .

To begin with we observe that in (4.5), we can even take τ = T0 provided that

T < e(T ) = inf
0≤s≤T

(
1

4ε(s)
+ s

)

,

and then T0 = T and δ(T ) < ∞. This holds if and only if

ε(s) <
1

4(T − s)
, 0 ≤ s < T . (4.25)

Otherwise δ(t) → ∞ as t → T0.
If (4.25) holds, then (4.5), reads

sup
0≤t≤T

‖U (t)‖L1
δ(t)(R

d ) ≤ C(T )‖ f ‖L1((0,T ),Mε(·)) (4.26)

with C(T ) =
(

1
4ε0(e(T )−T )

)d/2
sup0≤s≤T e−λs . In the same way we obtain global estimates

for U in (4.12), (4.19), (4.20), with constants C(T ) =
(

p
4ε0(e(T )−T )

)d/2p
c(T ), where c(T )

is uniformly bounded in T if λ > 0.
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Analogously, for the estimates on the gradients, we can take τ = T provided that for some
γ > 1

T < eγ (T ) := inf
0<s<T

( 1

4ε(s)
+ γ s

)

that is,

ε(s) <
1

4(T − γ s)
, 0 ≤ s <

T

γ
,

and then δγ (T ) := 1
4(eγ (T )−γ T )

< ∞. Then (4.14) reads

sup
0≤t≤T

‖∇U (t)‖L1
δγ (t)(R

d ) ≤ C(T )‖ f ‖Lσ ((0,T ),Mε(·)) (4.27)

with C(T ) =
(

1
4ε0(eγ (T )−γ T )

)d/2
c(T ), and c(T ) is uniformly bounded in T if λ > 0. In

the same way we obtain global estimates for ∇U in (4.17), (4.22) with constants C(T ) =
(

p
4ε0(e(T )−T )

)d/2p
c(T ), where c(T ) is uniformly bounded in T if λ > 0.

We concentrate below on the significant special case in which f ∈ Lσ ((0, T ),Mε(·))
with ε(s) = ε > 0 constant. This is the case, if for example, f does not depend on time,
which will be analysed further below.

In such a case, then ε0 = ε, e(t) = 1
4ε , T0 := sup{t ∈ [0, T ], e(t) > t} = min{ 1

4ε , T }
and δ(t) = 1

4(e(t)−t) = ε
1−4εt .

Also, eγ (t) = 1
4ε , 0 < T0,γ = sup{t ∈ [0, T ], eγ (t) > γ t} = min{ 1

4εγ , T } and

δγ (t) = 1
4(eγ (t)−γ t) = ε

1−4εγ t .

In particular, we can take τ = T in (4.26) and (4.27) if γ εT < 1
4 , γ > 1. Therefore we

have proved the following result.

Corollary 4.9 Assume f ∈ Lσ ((0, T ),Mε) for ε > 0, 1 ≤ σ ≤ ∞ and εT < 1
4 . Then we

have, with the notations and ranges in (4.5), (4.12), (4.19), (4.20), (4.14), (4.17), (4.22),

sup
0≤t≤T

‖U (t)‖L1
δ(t)(R

d ) ≤ C(T )‖ f ‖L1((0,T ),Mε)

sup
0≤t≤T

‖U (t)‖Lq
qδ(t)(R

d ) ≤ C(T )‖ f ‖Lσ ((0,T ),Mε)

sup
0≤t≤T

‖U (t)‖Lq
q
p δ(t)

(Rd ) ≤ C(T )‖ f ‖Lσ ((0,T ),L p
ε )

sup
0≤t≤T

‖U (t)‖L∞
δ(t)(R

d ) ≤ C(T )‖ f ‖Lσ ((0,T ),L∞
ε )

with constants C(T ) =
(

p
1−4εT

)d/2p
c(T ), where c(T ) is uniformly bounded in T if λ > 0

and

sup
0≤t≤T

‖∇U (t)‖L1
δγ (t)(R

d ) ≤ C(T )‖ f ‖Lσ ((0,T ),Mε)

sup
0≤t≤T

‖∇U (t)‖Lrrδγ (t)(R
d ) ≤ C(T )‖ f ‖Lσ ((0,T ),Mε)

sup
0≤t≤T

‖∇U (t)‖Lrrδγ (t)(R
d ) ≤ C(T )‖ f ‖Lσ ((0,T ),L p

ε )
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with constants C(T ) =
(

p
1−4γ εT

)d/2p
c(T ), where γ > 1 and γ εT < 1

4 , c(T ) is uniformly

bounded in T if λ > 0.

Assume furthermore that

f ∈ L1((0, T ),M0(R
d))

in the sense that f ∈ L1((0, T ),Mε(R
d)) for every ε > 0 and ‖ f ‖L1((0,T ),Mε(Rd )) ≤ C <

∞ independent of ε > 0. Then we have the following result.

Corollary 4.10 WehaveU ∈ L∞((0, T ), L1
0(R

d)) and for any ε > 0 small, with the notations
and ranges in Corollary 4.9,

U ∈ L∞((0, T ), L1
0(R

d)) and sup
0≤t≤T

‖U (t)‖L1
2ε(R

d ) ≤ C(T )‖ f ‖L1((0,T ),Mε)

U ∈ L∞((0, T ), Lq
0(R

d)) and sup
0≤t≤T

‖U (t)‖Lq
q2ε(R

d ) ≤ C(T )‖ f ‖Lσ ((0,T ),Mε)

U ∈ L∞((0, T ), Lq
0(R

d)) and sup
0≤t≤T

‖U (t)‖Lq
q
p 2ε

(Rd ) ≤ C(T )‖ f ‖Lσ ((0,T ),L p
ε )

U ∈ L∞((0, T ), L∞
0 (Rd)) and sup

0≤t≤T
‖U (t)‖L∞

2ε (R
d ) ≤ C(T )‖ f ‖Lσ ((0,T ),L∞

ε )

and

∇U ∈ L∞((0, T ), L1
0(R

d)) and sup
0≤t≤T

‖∇U (t)‖L1
2ε(R

d ) ≤ C(T )‖ f ‖Lσ ((0,T ),Mε)

∇U ∈ L∞((0, T ), Lr
0(R

d)) and sup
0≤t≤T

‖∇U (t)‖Lrr2ε(Rd ) ≤ C(T )‖ f ‖Lσ ((0,T ),Mε)

∇U ∈ L∞((0, T ), Lr
0(R

d)) and sup
0≤t≤T

‖∇U (t)‖Lrr2ε(Rd ) ≤ C(T )‖ f ‖Lσ ((0,T ),L p
ε )

where γ > 1, and C(T ) is uniformly bounded in T if λ > 0. In such a case we can take
T → ∞ in the estimates above.

Proof We take 0 < ε < 1
8T and γ > 1 such that 0 < εγ ≤ 1

8T so the assumptions in
Corollary 4.9 are satisfied and also ε ≤ δ(t) = ε

1−4εt ≤ 2ε and ε ≤ δγ (t) = ε
1−4εγ t ≤ 2ε

for t ∈ [0, T ].
For example estimate (4.26) now gives, using (2.7),

1

2d/2 sup
0≤t≤T

‖U (t)‖L1
2ε(R

d ) ≤ sup
0≤t≤T

‖U (t)‖L1
δ(t)(R

d ) ≤ C(T )‖ f ‖L1((0,T ),Mε)

with C(T ) =
(

1
1−4εT

)d/2
sup0≤s≤T e−λs ≤ 2d/2 sup0≤s≤T e−λs . All other estimates are

obtained in the same way.

4.4 Finite-Time Blowup

In this sectionwe explore the possibility thatU ( f ) blows up in finite time. Before continuing,
we prove the following result for solutions of (1.1) and (4.1) regarding translations of the
initial data.
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Lemma 4.11 (i) Assume u0 ∈ Mε(R
d) for some ε > 0. Then for any y ∈ R

d we have

S(t)τ−yu0 = τ−y S(t)u0, 0 ≤ t ≤ 1

4ε
.

(ii) Whenever U = U ( f ) in (4.3) is defined,

U (t, τ−y f ) = τ−yU (t, f ).

Proof. From Lemma 5.4 in [4] we have

S(t)τ−yu0(x) = 1

(4π t)d/2

∫

Rd
e− |x−z|2

4t dτ−yu0(z)

= 1

(4π t)d/2

∫

Rd
e− |x+y−z|2

4t du0(z) = τ−y S(t)u0(x).

Using this we obtain

U (t, τ−y f ) =
∫ t

0
e−λ(t−s)S(t − s)τ−y f (s) ds

=
∫ t

0
e−λ(t−s)τ−y S(t − s) f (s) ds = τ−yU (t, f ).

Recall from [4] that given μ ∈ Mloc(R
d) we can consider its ‘optimal index’

0 ≤ ε0(μ) := inf{ε : μ ∈ Mε(R
d)} = sup{ε : μ /∈ Mε(R

d)} ≤ ∞. (4.28)

If f ≥ 0 with 0 < ε0( f ) < ∞ it follows Theorem 5.5 in [4] that S(t) f cannot be defined
at any point in R

d beyond the time T ( f ) = 1
4ε0( f )

. Now we can prove a converse result for
Theorem 4.1 for non-negative data.

Theorem 4.12 Assume that for each 0 ≤ t ≤ T , f (t) ≥ 0 and has optimal index ε0(t) < ∞.
Assume furthermore that for some x0 ∈ R

d and 0 < t ≤ T we have

U (x0, t) =
∫ t

0
e−λ(t−s)S(t − s) f (s)(x0) ds < ∞.

Then

(i) t ≤ e0(t) := inf0≤s≤t
( 1
4ε0(s)

+ s
)
, ε0(U (s)) < ∞ for 0 < s < t and U is a very weak

solution of (4.1) in (0, t), with U (0) = 0.
Therefore, U cannot be defined at any point x ∈ R

d beyond 0 < T0 ≤ T where T0 is
characterized by

T0 = sup{s ∈ [0, T ], e0(s) > s} ≤ T .

(ii) If

t < e0(t) := inf
0≤s≤t

( 1

4ε0(s)
+ s

)

then the optimal index of U (t) satisfies

1

4(e0(t) − t)
≤ ε0(U (t)) < ∞ and ε0(U (t)) ≥ ε0(t).
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Proof (i) Since

U (x0, t) =
∫ t

0
e−λ(t−s)S(t − s) f (s)(x0) ds < ∞

then for a.e. 0 < s < t we have S(t − s) f (s)(x0) < ∞ and then from Lemma 3.2 in [4],
f (s) ∈ Mε(s) for every ε(s) > 1

4(t−s) . This implies that

ε0(s) ≤ 1

4(t − s)
, 0 < s < t,

that is

t ≤ e0(t) = inf
0≤s≤t

( 1

4ε0(s)
+ s

)
.

Since e0(t) is non decreasing, this gives the characterization of the maximal existence time
T0 for U .

On the other hand, we can write, using Remark 2.11,

U (x0, t) =
∫ t

0
e−λ(t−s)S(t − s)τ−x0 f (s)(0) ds

=
∫ t

0
e−λ(t−s)‖τ−x0 f (s)‖M 1

4(t−s)
(Rd ) ds < ∞

which implies that
∫ t

0
‖τ−x0 f (s)‖M 1

4(t−s)
(Rd ) ds < ∞.

Hence, by Lemma 4.11, it follows that U (t, τ−x0 f ) = τ−x0U (t, f ) satisfies Theorem 4.1
with ε(s) = 1

4(t−s) in [0, τ ] for any 0 < s < τ < t . In particular ε0(U (s)) < ∞ for
0 < s < t and U is a very weak solution of (4.1) in (0, t) with U (0) = 0.
(ii) For any δ > ε0(U (t)) we have, as in Corollary 4.2,

‖U (t)‖L1
δ (R

d ) =
∫ t

0
e−λ(t−s)‖ f (s)‖M

δ̃(t−s)(R
d ) ds < ∞

with δ̃(s) = δ
1+4δs which implies that δ̃(t − s) ≥ ε0(s) for a.e. 0 ≤ s ≤ t . This condition

then reads

1

4δ
+ t ≤ e0(t) = inf

0≤s≤t

( 1

4ε0(s)
+ s

)

which gives δ ≥ 1
4(e(t)−t) and δ ≥ ε0(t) and the result follows.

When f does not depend on time the above results become much simpler.

Corollary 4.13 Assume that f ∈ Mε(R
d). Then

(i) Theorem 4.1 applies with e(t) = 1
4ε = T (ε), T < T (ε), T0 = T and δ(t) = δ > ε and

U is given by

U (t) =
∫ t

0
e−λs S(s) f ds, 0 ≤ t < T (ε).

In particular, if f ≥ 0 then U (t) is increasing in t.
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(ii) Moreover, if f has optimal index 0 < ε0 < ∞ then Theorem 4.12 applies with e0(t) =
1
4ε0

= T ( f ), T = T0 = T ( f ). Hence U cannot be defined at any point x ∈ R
d beyond

time T ( f ).

Notice that from the results in [4], if ε0 = ε0( f ) > 0 then there is a convex set K ⊂ R
d ,

with K = ∅ or K = R
d being possible, such that, as t → T ( f ) = T , S(t) f (x) has a finite

limit if and only if x ∈ K . This set is characterized by the property x ∈ K if and only if
τ−x f ∈ Mε0(R

d).
The following result identifies those points in R

d such that U (x, t) has a pointwise limit
as t → T . These include the set K plus some others for which f satisfies some additional
conditions.

Proposition 4.14 Assume 0 ≤ f is such that

0 < ε0( f ) < ∞;
define T ( f ) = 1

4ε0( f )
and consider U (t) = U (t, f ) as in Corollary 4.13.

Then the pointwise limit

lim
t→T ( f )

U (x, t)

exists if and only if x ∈ K or, if x /∈ K,
∫ ∞

ε0

1

r2
‖τ−x f ‖Mr (Rd ) dr < ∞.

This in turn is equivalent to the asymptotic condition

∫

|y|>1

e−ε0|y|2

|y|2 dτ−x f (y) < ∞ (4.29)

and a local condition, which for d ≥ 3 is
∫

|y|<1

1

|y|d−2 dτ−x f (y) < ∞ (4.30)

and for d = 2 is
∫

|y|<1
ln |y| dτ−x f (y) < ∞. (4.31)

Proof. Let K be the convex set {x ∈ R
d : τ−x f ∈ Mε0(R

d)} mentioned above. Hence, for
x ∈ K , as t → T ( f ) = T ,

U (x, t) =
∫ t

0
e−λs S(s) f (x) ds →

∫ T

0
e−λs S(s) f (x) ds = U (T ( f ), x).

If x /∈ K we write

U (x, t) =
∫ t

0
e−λs S(s) f (x) ds

=
∫ t

0
e−λs 1

(4πs)d/2

∫

Rd
e− |x−y|2

4s d f (y) ds
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=
∫ t

0
e−λs 1

(4πs)d/2

∫

Rd
e− |y|2

4s dτ−x f (y) ds

=
∫

Rd

∫ t

0
e−λs 1

(4πs)d/2 e
− |y|2

4s ds dτ−x f (y).

This converges monotonically, as t → T , to

I (x) =
∫

Rd
F(y) dτ−x f (y), where F(y) =

∫ T

0
e−λs 1

(4πs)d/2 e
− |y|2

4s ds.

(4.32)

Now notice that

I (x) =
∫ T

0
e−λs 1

(4πs)d/2

∫

Rd
e− |y|2

4s dτ−x f (y) ds =
∫ T

0
e−λs‖τ−x f ‖M1/4s (Rd ) ds

and changing variables with r = 1/4s leads to

I (x) =
∫ ∞

ε0

e
−λ
4r

r2
‖τ−x f ‖Mr (Rd ) dr

which, since ε0 > 0, is finite if and only if
∫ ∞

ε0

1

r2
‖τ−x f ‖Mr (Rd ) dr < ∞.

To analyze F(y) notice that changing variables with r = 1/4s leads to

F(y) = 1

4πd/2

∫ ∞

ε0

e
−λ
4r rd/2−2e−r |y|2 dr , y ∈ R

d

and since ε0 > 0 the term e
−λ
4r is bounded above and below independent of r so

F(y) ≈ H(y) =
∫ ∞

ε0

rd/2−2e−r |y|2 dr .

First, changing variables with ω = r |y|2 gives

H(y) = 1

|y|d−2

∫ ∞

ε0|y|2
ωd/2−2e−ω dω

and so for |y| ≤ 1 we get

H(y) ≈
{

1
|y|d−2 , d ≥ 3

1 + ln |y| d = 2.

On the other hand, for |y| ≥ 1 we can write

H(y) = e−ε0|y|2
∫ ∞

ε0

rd/2−2e−(r−ε0)|y|2 dr

and changing variables with ω = (r − ε0)|y|2 gives,

H(y) = e−ε0|y|2

|y|2
∫ ∞

0
(

ω

|y|2 + ε0)
d/2−2e−ω dω ≈ e−ε0|y|2

|y|2 .
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If ε0( f ) = 0 then all the above applies for any T < ∞. The asymptotic behaviour of
U (t) as t → ∞, will be considered in the next section.

5 Poisson’s Equation inM0(R
d)

In this section our goal is to give solvability results for the elliptic equation

− �u∗ + λu∗ = f (5.1)

with λ ≥ 0 and f ∈ M0(R
d).

First observe that since we are dealing with functions that can be very large at infinity,
there is no uniqueness for (5.1) for any value of λ. Indeed as observed in [4] for any λ ∈ R,
we have nontrivial solutions ϕ ∈ L1

0(R
d) of −�ϕ + λϕ = 0.

Aswewill showbelow, existence for (5.1)will not either be achieved for any f ∈ M0(R
d),

or even any f ∈ L1
0(R

d), as some restriction on the behavior of theMε(R
d) norms of f , for

ε small will be required.
Now we describe our approach to solve (5.1). If we had a standard semigroup in a Banach

space, denoting A = −� + λI , standard results, e.g. Lemma 2.1.6 in page 40 in [3], would
give that using the semigroup generated by A, see Proposition 3.1, we should have in (5.1)

u∗ = u∗( f ) = A−1 f =
∫ ∞

0
e−λt S(t) f dt .

From classical results, e.g. [7], this is actually the solution of (5.1) if for example f ∈ L p(Rd)

with 1 ≤ p ≤ ∞. This is also de case if f ∈ L p
U (Rd) with 1 ≤ p < ∞; see [1]. Also we

easily recognise here u∗ as the (formal) limit as t → ∞ of the function U (t) in Corollary
4.13. However in the situation in this paper the convergence of the integral above requires
f ∈ M0(R

d) and some restrictions on the possible growth of the Mε(R
d) norms of f for

small enough ε as we now describe.

Theorem 5.1 For λ > 0 (or λ = 0 and d ≥ 3), assume f ∈ M0(R
d) satisfies

∫

0+
e− λ

4s

s2
‖ f ‖Ms (Rd ) ds < ∞. (5.2)

Then the equation

−�u∗ + λu∗ = f

has a very weak solution u∗ ∈ L1
0(R

d), that is, for every ϕ ∈ C∞
c (Rd),

∫

Rd
u∗(−�ϕ + λϕ) =

∫

Rd
ϕ d f .

In particular −�u∗ + λu∗ = f in distributional sense and �u∗ = λu∗ − f ∈ M0(R
d).

Moreover u∗ ∈ Lq
0(R

d) for any 1 ≤ q < d
(d−2)+ .

If f ≥ 0 and nontrivial, then u∗ > 0 in R
d .

If additionally

∫

0+
e− λ

4γ s

s3/2
‖ f ‖Ms (Rd ) ds < ∞. (5.3)
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for some γ > 1 then ∇u∗ ∈ L1
0(R

d) and is a weak solution of (5.1), that is, for every
ϕ ∈ C∞

c (Rd),
∫

Rd
∇u∗∇ϕ + λ

∫

Rd
u∗ϕ =

∫

Rd
ϕ d f .

Moreover, ∇u∗ ∈ Lr
0(R

d) for any 1 ≤ r < d
(d−1)+ .

Proof Define

u∗ = u∗( f ) =
∫ ∞

0
e−λt S(t) f dt . (5.4)

From the estimates in Proposition 2.7 we get for any δ > 0

‖u∗‖L1
δ (R

d ) ≤
∫ ∞

0
e−λt‖ f ‖Mδ(t)(R

d ) dt, δ(t) = δ

1 + 4δt
. (5.5)

Then observe that changing variables as s = δ(t), t = 1
4δ

(
δ−s
s ), dt = −1

4s2
ds

‖u∗‖L1
δ (R

d ) ≤ Cδ

∫ δ

0

e− λ
4s

s2
‖ f ‖Ms (Rd ) ds (5.6)

which is finite by assumption (5.2).
In a similar way, for any δ > 0 we get

‖u∗‖Lq
qδ(R

d ) ≤ cq

∫ ∞

0
e−λt(1 + 4δt

4δt

)d/2q ′ ‖ f ‖Mδ(t)(R
d ) dt, δ(t) = δ

1 + 4δt
(5.7)

which is integrable at t = 0 if d
2q ′ < 1, that is q < d

(d−2)+ . Changing variables as s = δ(t),

t = 1
4δ

(
δ−s
s ), dt = −1

4s2
ds

‖u∗‖Lq
qδ(R

d ) ≤ Cδ

∫ δ

0

e− λ
4s

s2(δ − s)
d
2q′

‖ f ‖Ms (Rd ) ds (5.8)

which is finite again by assumption (5.2).
Also, if f ≥ 0 and nontrivial, then from part (iii) in Theorem 2.1 we have S(t) f (x) > 0

for all x ∈ R
d and t > 0. Then (5.4) implies u∗ > 0 in R

d .
Now we prove u∗ is a very weak solution of (5.1). Indeed for every ϕ ∈ C∞

c (Rd), using
Fubini, we get

∫

Rd
u∗ (−�ϕ + λϕ) =

∫ ∞

0
e−λt

∫

Rd
S(t) f (x) (−�ϕ(x) + λϕ(x)) dx dt .

Now using part (ii) in Theorem 2.1 this equals
∫

Rd
u∗ (−�ϕ + λϕ) =

∫ ∞

0
e−λt

∫

Rd
S(t)(−�ϕ(x) + λϕ(x)) d f (x) dt .

Now observe that for ψ ∈ C∞
c (Rd) we have

∫ ∞

0

∫

Rd
e−λt |S(t)ψ |(x) d| f (x)| dt < ∞. (5.9)
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To see this observe that if ψ has support in the ball B(0, R), we have, for any t > 0,

S(t)ψ(x) = 1

(4π t)d/2

∫

B(0,R)

e− |x−y|2
4t ψ(y) dy;

using that for any 0 < β < 1, |x−y|2 ≥ (1−β)|x |2−( 1
β

−1)|y|2 ≥ (1−β)|x |2−( 1
β

−1)R2,
we get

|S(t)ψ(x)| ≤ 1

(4π t)d/2 e
−(1−β(t)) |x |2

4t +( 1
β(t) −1) R2

4t

∫

B(0,R)

|ψ(y)| dy (5.10)

for any 0 < β(t) < 1 for t > 0 which we will choose below.
Setting, δ(t) = δ

1+4δt , (5.10) yields to

I =
∫ ∞

1

∫

Rd
e−λt |S(t)ψ |(x) d| f (x)| dt

=
∫ ∞

1

∫

Rd
e−λt 1

ρδ(t)(x)
|S(t)ψ |(x)ρδ(t)(x) d| f (x)| dt

≤ c
∫ ∞

1

e−λte( 1
β(t) −1) R2

4t

(4π t)d/2 (
π

δ(t)
)
d
2

∫

Rd
e(δ(t)− (1−β(t))

4t )|x |2ρδ(t)(x) d| f (x)| dt

where ρδ are the exponential weights in (2.5). Now observe that we have δ(t) − 1−β(t)
4t < 0

provided that we choose

β(t) < 1 − 4tδ(t) = 1

1 + 4δt
.

This choice leads to

I ≤ c
∫ ∞

1
e−λte( 1

β(t) −1) R2
4t (

1 + 4δt

4δt
)
d
2 ‖ f ‖Mδ(t)(R

d ) dt .

Now ( 1
β(t) − 1) R2

4t is bounded above if and only if

β(t) ≥ 1

1 + 4Kt

for some sufficently large K > δ. With such a choice, we get

I ≤ c
∫ ∞

1
e−λt‖ f ‖Mδ(t)(R

d ) dt

which is finite, by (5.5).
On the other hand, for 0 < t < 1 and 0 < β < 1 write (5.10) as

|S(t)ψ(x)| ≤ C

(4π t)d/2 e
− (1−β)

4t (|x |2− R2
β

)
.

Then note that, for any γ > 0, |x |2− R2

β
≥ (1−β)|x |2+γ R2

β
provided that |x |2 ≥ (1+γ ) R2

β2 .
Hence, for such x we get for any 0 ≤ t ≤ 1

|S(t)ψ(x)| ≤ Ce− (1−β)
4t γ R2

β

(4π t)d/2 e− (1−β)2

4t |x |2 ≤ Ce− (1−β)2

4 |x |2 .
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In particular, with γ = 3, setting α = (1−β)2

4 and using ‖S(t)ψ‖L∞(Rd ) ≤ ‖ψ‖L∞(Rd ),
for any 0 ≤ t ≤ 1 we have

|S(t)ψ(x)| ≤
{

‖ψ‖L∞(Rd ), |x | ≤ 2R
β

Ce−α|x |2 , |x | ≥ 2R
β

.
(5.11)

This gives

∫ 1

0

∫

Rd
e−λt |S(t)ψ |(x) d| f (x)| dt ≤ c

∫

Rd
e−α|x |2 d| f (x)| < ∞

and this ends the proof of (5.9).
Hence Fubini once more leads to

∫

Rd
u∗ (−�ϕ + λϕ) =

∫

Rd

∫ ∞

0
e−λt S(t)(−�ϕ(x) + λϕ(x)) dt d f (x) (5.12)

and, if λ > 0, from Lemma 5.2 below we getG(x) =
∫ ∞

0
e−λt S(t)(−�ϕ(x)+λϕ(x)) dt =

ϕ(x). For λ = 0 and d ≥ 3 Lemma 5.2 implies −�G = −�ϕ. Since from the results in [4]
the only Harmonic functions in L1

0(R
d) are the constant ones then we conclude G = ϕ + c.

But then c = 0 since G ∈ L p(Rd) as in Lemma 5.2.
Hence from (5.12) for every ϕ ∈ C∞

c (Rd),
∫

Rd
u∗(−�ϕ + λϕ) dx =

∫

Rd
ϕ d f

hence u∗ is a very weak solution of (5.1). That is −�u∗ + λu∗ = f in distributional sense.
From this, �u∗ = λu∗ − f ∈ M0(R

d).
With the additional assumption on f in the statement, from the gradient estimates in

Proposition 2.7 we get

‖∇u∗‖L1
δ (R

d ) ≤ c
∫ ∞

0

e−λt

t1/2
‖ f ‖M

δ̃(t)(R
d ) dt, δ̃(t) = δ

1 + 4γ δt
, γ > 1.

(5.13)

Changing variables as s = δ̃(t), t = 1
4γ δ

(
δ−s
s ), dt = −1

4γ s2
ds, we get, using (5.3),

‖∇u∗‖L1
δ (R

d ) ≤ Cδ,γ

∫ δ

0

e− λ
4γ s

s3/2(δ − s)1/2
‖ f ‖Ms (Rd ) ds < ∞. (5.14)

Now for ϕ ∈ C∞
c (Rd) integrating by parts as in as in Lemma A.3 in [4],

∫

Rd
u∗(−�ϕ) =

∫

Rd
∇u∗∇ϕ

and u∗ is a weak solution of (5.1).
In a similar way for any δ > 0,

‖∇u∗‖Lrrδ(Rd ) ≤ c
∫ ∞

0

e−λt

t
1
2

(1 + 4γ δt

t

)d/2r ′ ‖ f ‖M
δ̃(t)(R

d ) dt, δ̃(t) = δ

1 + 4δγ t

(5.15)
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with γ > 1 which is integrable at t = 0 provided that d
r ′ < 1, that is r < d

(d−1)+ . Changing

variables as s = δ̃(t), t = 1
4γ δ

(
δ−s
s ), dt = −1

4γ s2
ds, we get

‖∇u∗‖Lrrδ(Rd ) ≤ Cδ,γ

∫ δ

0

e− λ
4γ s

s
3
2 (δ − s)

d
2r ′ + 1

2

‖ f ‖Ms (Rd ) ds < ∞. (5.16)

Now we prove the result used above.

Lemma 5.2 For λ > 0 and |g(x)| ≤ Ae−γ |x |2 , x ∈ R
d , the function

G =
∫ ∞

0
e−λt S(t)g dt ∈ L1(Rd) ∩ L∞(Rd)

satisfies −�G + λG = g. The same holds true for λ = 0 if d ≥ 3, with G ∈ L p(Rd) for
d

d−2 < p < ∞.

Proof Indeed from Proposition 2.10 since |g(x)| ≤ Ae−γ |x |2 , x ∈ R
d , then S(t)g satisfies

|S(t)g|(x) ≤ A

(1 + 4γ t)d/2 e
− γ

1+4γ t |x |2 , x ∈ R
d , t > 0

and then

‖G‖L p(Rd ) ≤
∫ ∞

0
e−λt‖S(t)g‖L p(Rd ) dt ≤

∫ ∞

0

ce−λt

(1 + 4γ t)
d
2 (1− 1

p )
dt

which is finite for 1 ≤ p ≤ ∞ if λ > 0. If λ = 0 then G ∈ L p(Rd) for p > d
d−2 and using

the bound above on |S(t)g|(x) and integrating in time

|G(x)| ≤ c

|x |d−2

∫ |x |2γ

0
z
d
2 −2e−z dz, x ∈ R

d .

Also denote, for λ > 0 (or λ = 0 and d ≥ 3)

Gε :=
∫ 1

ε

ε

e−λt S(t)g dt −→ G

in L p(Rd) as ε → 0 and

−�Gε =
∫ 1

ε

ε

e−λt ( − �S(t)g
)
dt = −

∫ 1
ε

ε

e−λt∂t S(t)g dt

= e−λεS(ε)g − e−λ 1
ε S(

1

ε
)g − λGε

and then

−�Gε + λGε = e−λεS(ε)g − e−λ 1
ε S(

1

ε
)g −→ g

in L p(Rd) as ε → 0. Hence, using the fact that −� is a closed operator in L p(Rd) we get

−�G + λG = g.
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Remark 5.3 Observe that by the definition of the norm, see (2.4), ‖ f ‖Ms (Rd ) is bounded for

s in compact sets in (0,∞) and e− λ
s

s2
→ 0 as s → 0 if λ > 0. Therefore the condition on f

in Theorem 5.1, (5.2), is a limitation in the growth of ‖ f ‖Ms (Rd ) as s → 0. Note that this
condition allows for

‖ f ‖Ms (Rd ) ≈ sme
λ
4s , s → 0

for some m > 1 for λ ≥ 0.
Observe that the integrability condition on f in Theorem 5.1, (5.2), can be written as

follows. For δ > 0 and δ(t) = δ
1+4δt define as in (5.5)

I =
∫ ∞

0
e−λt‖ f ‖Mδ(t)(R

d ) dt .

Then changing variables as s = δ(t), t = 1
4δ

(
δ−s
s ), dt = −1

4s2
ds we get as in (5.6),

I = e
λ
4δ

4

∫ δ

0

e− λ
4s

s2
‖ f ‖Ms (Rd ) ds < ∞.

On the other hand, changing variables as r = 1+4δt
4δ = 1

4δ(t) we get

I = e
λ
4δ

∫ ∞
1
4δ

e−λr‖ f ‖M 1
4r

(Rd ) dr = e
λ
4δ

∫ ∞
1
4δ

e−λr S(t)| f | (0) dr .

Remark 5.4 Observe that (5.6) and (5.14) and (5.8) and (5.16) reflect continuous dependence
of the solutions of the Poisson’s equation (5.1), that is of the mapping

f 
→ u∗

The next result states that the solution of (5.1) constructed in Theorem 5.1 can be rep-
resented as the convolution of f with the Green’s function, as in the classical results for
the Poisson’s equation. But, even more, conversely it states that, for non-negative data, if a
solution of (5.1) can be represented using the Green’s function, then f must be as in Theorem
5.1.

Theorem 5.5 Assume λ ≥ 0.

(i) Under the assumptions λ > 0 (or λ = 0 and d ≥ 3) and (5.2) of Theorem 5.1, the
solution u∗ = u∗( f ) in (5.4) is given by

u∗(x) =
∫

Rd
Gλ(x − y) d f (y), x ∈ R

d

where Gλ is the Green’s function for −� + λI in R
d .

(ii) Conversely, assume 0 ≤ f ∈ Mloc(R
d) and define for λ > 0 (or λ = 0 and d ≥ 3)

U (x) =
∫

Rd
Gλ(x − y) d f (y), x ∈ R

d .

Then, if there exist x0 ∈ R
d such that U (x0) < ∞ then f ∈ M0(R

d), satisfies (5.2),
U (x) is finite for a.e. x ∈ R

d , U ∈ L1
0(R

d) and U = u∗( f ) as in (5.4) in Theorem 5.1.
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Proof (i) Observe that | f | satisfies the assumptions in Theorem 5.1 and then, clearly
|u∗( f )| ≤ u∗(| f |) ∈ L1

0(R
d). Then plugging (2.2), that is

S(t)| f |(x) = 1

(4π t)d/2

∫

Rd
e− |x−y|2

4t d| f |(y) x ∈ R
d

into expression (5.4), that is u∗(| f |) =
∫ ∞

0
e−λt S(t)| f | dt , then Fubini’s theorem gives

u∗(| f |)(x) =
∫

Rd
Gλ(x − y) d| f (y)|

where

Gλ(z) =
∫ ∞

0

e−λt

(4π t)d/2 e
− |z|2

4t dt =
∫ ∞

0
e−λt(S(t)δ0

)
(z) dt z ∈ R

d

is the Green’s function of −� + λI , see [7], page 132. Since all integrals are absolutely
convergent, we get part (i) for u∗( f ). The case λ = 0 and d ≥ 3 follows as well and in this
case

G0(z) = Cd

|z|d−2 , z ∈ R
d .

(ii) Since Gλ(z) =
∫ ∞

0

e−λt

(4π t)d/2 e
− |z|2

4t dt , see [7], page 132, Fubini’s theorem gives

U (x0) =
∫ ∞

0
e−λt S(t) f (x0) dt < ∞

and then Tonelli’s theorem implies that for a.e. 0 < t < ∞ we have

S(t)( f ) (x0) = 1

(4π t)d/2

∫

Rd
e− |x0−y|2

4t d f (y) < ∞.

Hence, Lemma 3.2 in [4] implies f ∈ M0(R
d).

Moreover, we can write
∫

Rd
e− |x0−y|2

4t d f (y) =
∫

Rd
e− |z|2

4t dτ−x0 f (z)

(see e.g. Lemma 5.4 in [4]) and then

U (x0) =
∫ ∞

0
e−λt S(t)τ−x0 f (0) dt =

∫ ∞

0
e−λt‖τ−x0 f ‖M 1

4t
(Rd ) dt < ∞.

Changing variables as s = 1
4t we get

U (x0) = 1

4

∫ ∞

0

e− λ
4s

s2
‖τ−x0 f ‖Ms (Rd ) ds < ∞.

In particular, g = τ−x0 f satisfies the assumption (5.2) in Theorem 5.1. Hence u∗(τ−x0 f ) in
(5.4) belongs to L1

0(R
d) and by part (i) we have, a.e. x ∈ R

d ,

u∗(τ−x0 f )(x) =
∫

Rd
Gλ(x − y) dτ−x0 f (y) =

∫

Rd
Gλ(x + x0 − y) d f (y) = U (x + x0),
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see e.g. Lemma 5.4 in [4]. That is, u∗(τ−x0 f ) = τ−x0U and then U is finite a.e. in R
d and

U ∈ L1
0(R

d).
Now, as in Corollary 4.2, since

U (x) =
∫ ∞

0
e−λt S(t) f (x) dt, x ∈ R

d

for any δ > 0

e−δ|x |2U (x) =
∫ ∞

0
e−λt S(t) f (x)e−δ|x |2 dt .

Integrating in x ∈ R
d and using Fubini we get

‖U‖L1
δ (R

d ) =
∫ ∞

0
e−λt‖S(t) f ‖Mδ(Rd ) dt

and using Proposition 2.8 we get

‖U‖L1
δ (R

d ) =
∫ ∞

0
e−λt‖ f ‖Mδ(t)(R

d ) dt < ∞.

So, by (5.5) and (5.6), f satisfies (5.2); see Remark 5.3.

Remark 5.6 Observe that the Green’s function

Gλ(y) =
∫ ∞

0
e−λs 1

(4πs)d/2 e
− |y|2

4s ds

decays, as |y| → ∞ as Gλ(y) ≈ e−
√

λ
2 |y|.

For this observe that λs + |y|2
4s ≥ √

λ|y| and if |y| ≥ 1 we also have λs + |y|2
4s ≥ λs + 1

4s .
Hence

Gλ(y) ≤ e−
√

λ
2 |y|

∫ ∞

0

1

(4πs)d/2 e
− 1

2 (λs+ 1
4s ) ds

Now we revise the whether or not the examples at the end of Sect. 3 satisfy condition
(5.2).

Example 5.7 The Dirac delta at a point, f = δx0 , x0 ∈ R
d , satisfies (5.2) for any λ > 0 and

for λ = 0 if d ≥ 3.

Example 5.8 The function f (x) = ec|x |α , 0 < α < 2, c > 0 satisfies (5.2) for 0 < α < 1
and any λ > 0 or α = 1 and λ > c2.

So by Theorem 5.5 for 1 < α < 2 there is no solution of the Poisson equation given by
the Green’s function.

Example 5.9 The function f (x) = (1 + |x |2)β , β > 0, satisfies (5.2) for any λ > 0.

The following corollary establishes the basin of attraction of u∗( f ) in M0(R
d).

Corollary 5.10 Under the assumptions of Theorem 5.1, for every u0 ∈ M0(R
d) such that

e− λ
4ε ‖u0‖Mε(Rd ) → 0 as ε → 0

the solution of (4.1) given by (4.2) satisfies

u(t) → u∗( f ), t → ∞
in L1

0(R
d). The converse is also true if u0 ≥ 0.
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Proof The result follows from (4.2) and Corollary 3.2, since with the notations in Corollary
4.13, we have U (t) → u∗ in L1

0(R
d), as t → ∞.

From the local regularity of u∗ we obtain the following result.

Corollary 5.11 Assume 0 ≤ f ∈ M0(R
d) is as in Theorem 5.1 and assume moreover that

f ∈ L p
0 (Rd) with p > d

2 .
Then, with the notations in Corollary 4.13 we have that

U (t) → u∗( f ), t → ∞,

uniformly in compact sets of Rd .

Proof Since f ∈ L p
loc(R

d)with p > d
2 the local regularity of weak solutions of−�v+λv =

f imply that u∗( f ) ∈ C(Rd). On the other hand, from Proposition 4.8 with σ = ∞ we get
U (t) ∈ C(Rd).

Since U (t) → u∗( f ) monotonically as t → ∞, then Dini’s criterium (c.f. [2, p. 194])
implies the convergence is uniform in compact sets.

Now using the estimates in Sect. 4.2 we obtain the following further regularity of the
solution of (5.1) given in Theorem 5.1.

Corollary 5.12 With the notations above, assume f ∈ L p
0 (Rd) with 1 ≤ p < ∞ and

∫

0+
e− λ

4s

s2
‖ f ‖L p

s (Rd ) ds < ∞.

If p = ∞ we require
∫

0+
e− λ

4s

sd+2 ‖ f ‖L p
s (Rd ) ds < ∞.

Then u∗ = u∗( f ) constructed in Theorem 5.1 satisfies u∗ ∈ Lq
0(R

d) for any 1 ≤ p ≤
q < ∞ such that q <

pd
(d−2p)+ . If p > d

2 then we can take q = ∞ as well.
If moreover

∫

0+
e− λ

4γ s

s
3
2

‖ f ‖L p
s (Rd ) ds < ∞

for some γ > 1 then ∇u∗ ∈ Lr
0(R

d) for any r <
pd

(d−p)+ . If p > d then we can take r = ∞
as well.

In particular if p > d
2 then u∗ ∈ C(Rd).

Proof Observe that from (5.4) and the estimates in Proposition 2.7, if 1 ≤ p ≤ q < ∞,

‖u∗‖Lq
qδ(R

d ) ≤
∫ ∞

0
e−λtφp,q(t)‖ f ‖L p

δp (t)(R
d ) dt, δp(t) = pδ

1 + 4pδt
(5.17)

withφp,q(t) = c
( 1+4pδt

4pδt

) d
2 ( 1

p − 1
q ), see (2.21), which is integrable at t = 0 if 1

p − 1
q < 2

d , that is

q <
pd

(d−2p)+ . Changing variables as s = δp(t), t = 1
4pδ

( pδ−s
s ), dt = −1

4s2
ds, 1+4pδt

4pδt = pδ
pδ−s

and

‖u∗‖Lq
qδ(R

d ) ≤ Cδ,p

∫ pδ

0

e− λ
4s

(pδ − s)
d
2 ( 1

p − 1
q )s2

‖ f ‖L p
s (Rd ) ds < ∞. (5.18)
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For q = ∞, by (2.22)

‖u∗‖L∞
δ (Rd ) ≤

∫ ∞

0
e−λtφp,∞(t)‖ f ‖L p

δp (t)(R
d ) dt, δp(t) = pδ

1 + 4pδt

with φp,∞(t) = c
( 1+4pδt

4pδt

) d
2p which is integrable at t = 0 if p > d

2 . Changing variables as
above leads to

‖u∗‖L∞
δ (Rd ) ≤ Cδ,p

∫ pδ

0

e− λ
4s

(pδ − s)
d
2p s2

‖ f ‖L p
s (Rd ) ds < ∞. (5.19)

The case p = ∞ follows as above using (2.23)

‖u∗‖L∞
δ (Rd ) ≤

∫ ∞

0
e−λtφ∞,∞(t)‖ f ‖L∞

δ(t)(R
d ) dt, δ(t) = δ

1 + 4δt

with φ∞,∞(t) = (1+ 4δt)d . Changing variables as s = δ(t), t = 1
4δ

(
δ−s
s ), dt = −1

4s2
ds, and

then

‖u∗‖L∞
δ (Rd ) ≤ Cδ

∫ δ

0

e− λ
4s

sd+2 ‖ f ‖L∞
s (Rd ) ds < ∞. (5.20)

For the estimate on the gradients, note that for 1 ≤ p ≤ r < ∞, from (2.24) in Proposi-
tion 2.7, we have

‖∇u∗‖Lrrδ(Rd ) ≤
∫ ∞

0

e−λt

t
1
2

�p,r (t)‖ f ‖L p
δ̃p (t)

(Rd ) dt, δ̃p(t) = pδ

1 + 4pγ δt

(5.21)

with γ > 1 and �p,r (t) = c
( 1+4pγ δt

t

) d
2 ( 1

p − 1
r ) which is integrable at t = 0 provided that

1
p − 1

r < 1
d , that is r <

pd
(d−p)+ . Changing variables as s = δ̃p(t), t = 1

4pγ δ

( pδ−s
s ),

dt = −1
4γ s2

ds, 1+4pδt
t = c

pδ−s and we get

‖∇u∗‖Lrrδ(Rd ) ≤ Cδ,p,γ

∫ pδ

0

e− λ
4γ s

(pδ − s)
d
2 ( 1

p − 1
r )s

3
2

‖ f ‖L p
s (Rd ) ds < ∞. (5.22)

Analogously, for r = ∞, we get

‖∇u∗‖L∞
δ (Rd ) ≤

∫ ∞

0

e−λt

t
1
2

�p,∞(t)‖ f ‖L p
δ̃p (t)

(Rd ) dt, δ̃p(t) = pδ

1 + 4pγ δt

(5.23)

with �p,∞(t) = c
( 1+4pγ δt

t

) d
2p , which is integrable at t = 0 provided that p > d . Changing

variables as above we conclude.
Finally, if p > d

2 then we can take r > d and then ∇u∗ ∈ Lr
loc(R

d) which implies
u∗ ∈ C(Rd).

Further properties of the solutions of (5.1) constructed in Theorem 5.1 can be obtained if,
in a similar way to (2.19) and (2.20) we define L p

0,B(Rd) as the subset of L p
0 (Rd) made of

functions such that

|||u0|||L p
0,B (Rd ) := sup

ε>0
‖u0‖L p

ε (Rd ) < ∞. (5.24)
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Notice that we have for 1 ≤ p ≤ q ≤ ∞
Lq
0,B(Rd) ⊂ L p

0,B(Rd) ⊂ L1
0,B(Rd) ⊂ M0,B(Rd).

Then from Theorem 5.1 and Corollary 5.12 we get at once the following result.

Corollary 5.13 Assume λ > 0. If f ∈ M0,B(Rd) as in (2.19) then u∗ constructed in Theo-
rem 5.1 satisfies

‖u∗‖L1
0,B (Rd ) + ‖∇u∗‖L1

0,B (Rd ) ≤ c

λ
‖ f ‖M0,B (Rd ) (5.25)

and

‖u∗‖Lq
0,B (Rd ) ≤ c(λ)‖ f ‖M0,B (Rd ), ‖∇u∗‖Lr0,B (Rd ) ≤ c(λ)‖ f ‖M0,B (Rd )

(5.26)

with 1 ≤ q < d
(d−2)+ and 1 ≤ r < d

(d−1)+ .

If moreover, f ∈ L p
0,B(Rd) as in (5.24) then

‖u∗‖Lq
0,B (Rd ) ≤ c(λ)‖ f ‖L p

0,B (Rd ), ‖∇u∗‖Lr0,B (Rd ) ≤ c(λ)‖ f ‖L p
0,B (Rd ) (5.27)

with q <
pd

(d−2p)+ and r <
pd

(d−p)+ . If p > d
2 or p > d then we can take q = ∞ or r = ∞

as well, respectively.

Proof If f ∈ M0,B(Rd) then (5.5) and (5.13) and (5.7) and (5.15) are finite for every λ > 0
and (5.25) and (5.26) follow. The rest is immediate.

We also get the following.

Corollary 5.14 The analytic semigroup S(t) of contractions in L1
0,B(Rd) in Proposition 2.6

has −� as its infinitesimal generator with a domain

D(−�) = {u0 ∈ L1
0,B(Rd), −�u0 ∈ L1

0,B(Rd)}
and if u0 ∈ D(−�) then u0 ∈ Lq

0(R
d) for any q < d

(d−2)+ and ∇u0 ∈ Lr
0(R

d) for any

r < d
(d−1)+ .

Proof A careful revision of the proof of the proof of Proposition 3.5 in [5] shows that if
u0 ∈ M0,B(Rd) then for t > 0, S(t+h)u0−S(t)u0

h + �S(t)u0 goes to zero in L1
0,B(RN ), as

h → 0. Hence the generator has to coincide with −� on its domain. Hence the description
of D(−�) in the statement follows.

Finally, from Corollary 5.13, we obtain the regularity of the functions in the domain.
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