

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/167496

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/167496
mailto:wrap@warwick.ac.uk

Towards Virtual Certification of Gas Turbine
Engines With Performance-Portable Simulations

Gihan .R. Mudalige∗, Istvan Z. Reguly†, Arun Prabhakar∗, Dario Amirante‡, Leigh Lapworth§, Stephen A. Jarvis¶
∗University of Warwick, UK. {g.mudalige, arun.prabhakar}@warwick.ac.uk

† Pazmany Peter Catholic University, Hungary. reguly.istvan@itk.ppke.hu
‡University of Surrey, UK. d.amirante@surrey.ac.uk

§Rolls-Royce plc., UK. leigh.lapworth@Rolls-Royce.com
¶University of Birmingham, UK. s.a.jarvis@bham.ac.uk

Abstract—We present the large-scale, computational fluid dy-
namics (CFD) simulation of a full gas-turbine engine com-
pressor, demonstrating capability towards overcoming current
limitations for virtual certification of aero-engine design. The
simulation is carried out through a performance portable code-
base on multi-core/many-core HPC clusters with a CFD-to-CFD
coupled execution, combining an industrial CFD solver linked
using custom coupler software. The application innovates in its
design for performance portability through the OP2 domain
specific library for the CFD components, allowing the automatic
generation of highly optimized platform-specific parallelizations
for both multi-core (CPU) and many-core (GPU) clusters via
a single high-level source. The code is used for the simulation
of a 4.58B node, full-annulus 10-row production-grade test
compressor (DLR’s Rig250), using a coupled sliding-plane setup
on the ARCHER2 and Cirrus supercomputers at EPCC. The
OP2 generated multiple parallelizations, together with optimized
coupler configurations on heterogeneous/hybrid settings achieve,
for the first time, execution of 1 revolution in less than 6 hours
on 512 nodes of ARCHER2 (65k cores), with a parallel scaling
efficiency of over 80% compared to a 107 node run. Results
indicate a speed up of the CFD suite by an order of a magnitude
(≈ 30×) relative to current production capability. Benchmarking
and performance modelling project a time-to-solution of less than
5 hours on a cluster of 488×NVIDIA V100 GPUs, about 3×–
4× speedup over CPU clusters. The work demonstrates a step-
change towards achieving virtual certification of aircraft engines
with the requisite fidelity and tractable time-to-solution that was
previously out of reach under production settings.

Index Terms—DSL, Code Coupling, Virtual Certification, Gas
Turbine Engines

I. INTRODUCTION

The design of aero engines, and their continued developments
for improved efficiency, rely crucially on simulation and
modelling enabled by high performance computing. How-
ever, next generation engine designs will place demands on
computational simulation that cannot be met by incremental
changes to current techniques. Challenges not only include
engine efficiency demands in terms of performance, but also
emissions and pollution goals to meet environmental com-
mitments. Global Net Zero commitments such as [1], require
the use of sustainable aviation fuels and electric and hybrid-
electric flight. Governmental targets such as the EU ACARE
Flightpath 2050 goals [2] demand fundamental changes to
engine architectures to meet these challenges, and “virtual cer-

tification” of engine designs is recognised as a key technology
to deliver the required performance at this level.

A crucial component of virtual certification is the whole
engine test to certify operational performance and thrust.
The speed, fidelity and accuracy required for such a large,
multi-component simulation, for production turbo-machinery
are well beyond current simulation and high-performance
computing capability. True virtual certification simulations will
require new ultra-high resolution physical models and full
system simulations that drive us from today’s model sizes with
10-100 million mesh elements towards hundreds of billions of
elements. Completion of such models in tractable times then
critically depends on exploiting emerging and future massively
parallel computing platforms at extreme levels of scale. As
such, simulation software needs to be performance portable
and agile to efficiently utilize novel architectures in a rapidly
changing hardware landscape, capable of ultra-large scale
executions, while at the same time provide unprecedented
levels of trust in the accuracy of the simulations.

A key part of the full engine simulation will be devoted
to computing the flow of air through the engine. In a gas
turbine engine (see Fig. 1), cold air entering the engine at
atmospheric pressure is compressed in the order of 50:1 before
it is delivered to the combustion chamber, where it is sprayed
with fuel and ignited. The hot air exhaust from the resulting
combustion provides the thrust that drives the turbines which,
in turn, spins the compressor and fan. While the majority of
thrust that propels the aircraft is produced by the fan, the hot
air exhaust after combustion also contributes to the total thrust.

Flow simulation tools adopted within the industry rely heav-
ily on the steady RANS (Reynolds-Average Navier-Stokes)
models [3] based on the solution to the Navier-Stokes PDEs.
Here the flow is assumed to be steady, and circumferential
averaging is enforced at the interfaces between the blade
rows. RANS models do not consider the unsteady rotor-stator
interaction and can be limited to one blade passage for each
row. Extension to Unsteady-RANS (URANS) is known to
significantly improve performance predictions [4] but raises
the mesh requirements by two orders of magnitude for a full
annulus model. These refere to a full 360 degree domain
for a particular row of blades (such as a rotor or a stator),
and is generated from a single blade for the associated row,

based on the number of blades required to achieve a complete
360 degree domain. Use of smaller sectors is limited by
the condition that adjacent rotor/stator zones must have the
same sector angle, and in most cases, if not all, this requires
an alteration of the geometric pitch [5] which obviously
introduces an approximation error. To complicate matters,
unsteady simulations require methods to model the relative
motion between rotating and stationary parts of the mesh.
These techniques are, in general, not scalable [6]–[8]. All these
conditions render the cost of unsteady full annulus simulations
prohibitively high, and represent a key barrier on the path
towards virtual certification of engine designs.

This paper provides a contribution to overcome this limit,
for a problem size sufficient to meet the requirements for
virtual certification, for the first time achieved with a code
scaling to give a tractable time-to-solution. More specifically,
we present the simulation of a full industrial compressor
setup, the Rig250 from Deutsches Zentrum für Luft- und
Raumfahrt (DLR) [9] (see Fig. 2). The test case encompasses
some of the challenges outlined above. The full compressor
consists of a number of blade-rows, which we simulate with
Rolls-Royce’s Hydra CFD suite [10], coupled to the next
blade row using novel coupler software, leading to 10 rotor-
stator interfaces. URANS simulations are conducted for a
360 degree model, with the largest mesh size consisting
of 4.58 billion elements. Computations have been carried
out on the ARCHER2 and Cirrus supercomputers at the
Edinburgh Parallel Computing Centre (EPCC), achieving the
grand challenge problem of 1 compressor revolution in less
than 6 hours, when running on 512 nodes (2 × 64 cores) of
ARCHER2. This represents a 30× improvement over current
production capability, which is based on software that uses a
non-coupled monolithic execution of the Hydra CFD suite and
prior-generation hardware (Haswell/Broadwell). Performance
on the Cirrus GPU cluster indicates a speedup of approxi-
mately 3.4× over the ARCHER2 performance on a power-
equivalent number of nodes, for problems fitting in GPU
memory. Projected speedups on larger GPU clusters indicate a
3−3.5× speedup over the ARCHER2 (CPU) performance for
the full compressor achieved within the same power envelope
(≈ 122 nodes with 4×V100 GPUs per node).

This is a step-change in capability for the prohibitively
expensive simulation of a full gas-turbine engine compressor
and is a first for this domain. Two key factors lie behind the
significant reduction in the simulation costs: (1) OP2 [11],
[12], the domain specific library which automatically generates
highly optimised and scalable, platforms-specific paralleliza-
tion for both multi-core (CPU) and many-core (GPU) clusters,
and (2) JM76, the coupler software used to couple the flow
solutions computed by Hydra in different blade rows. In this
work we demonstrate how these applications and configura-
tions are used to overcome performance and scaling challenges
to realize this large-scale simulation. The work details how
the current prohibitive simulation costs can be significantly
reduced, enabling industrial developers to carry out tractable
and agile design explorations towards virtual certification,

Fig. 1: RR Trent XWB Engine (©Rolls-Royce plc. Reproduced with
Permission)

through increasingly cost-effective HPC systems.
This paper is organized as follows: Section II details the

background of the problem domain and the current state-of-
the-art HPC solutions in this area. The key contributions of
our work is presented in Section III, followed by performance
results from the simulations which are found in Section IV.
We discuss related work in Section V. Conclusions and future
work are presented in Section VI.

II. BACKGROUND

The standard numerical algorithms used in industrial design
with CFD is based on the solution of the Navier-Stokes
equations, a broadly accepted mathematical model to describe
the motions of turbulent flow. The Reynolds-Averaged Navier-
Stokes (RANS) approach is the most commonly used in in-
dustry due to its low cost. However, RANS models have some
well known limitations [13] and advanced techniques such as
Unsteady RANS (URANS), Large Eddy Simulations (LES),
Hybrid RANS-LES and Direct Numerical Solutions (DNS) are
used for cases where RANS models are inadequate. Of course,
simulations based on these techniques becomes prohibitively
expensive for industrial design with DNS attempted only for
the simplest of flows, usually found in academic studies [9].

Navier-Stokes equations are essentially PDEs and the ma-
jority of industrial production CFD applications use finite
volume (FV) methods for their solution. Given the need to
model complex physical geometries, highly detailed mesh
typologies are essential for achieving the requisite accuracy.
Consequently, unstructured-mesh-based solutions are preferred
over structured-mesh designs. This is a feature common to the
majority of commercial or industrial solvers, such as Ansys
Fluent [14], Code Saturn [15] and Hydra [16], [17], the last
of which we use in our current study.

The key computation-communication pattern for the
unstructured-mesh motif [18] is indirect accesses, particularly
indirect increments that require special handling of data races
when parallelizing. For example, a parallel iteration over mesh
edges, incrementing some value on nodes connected to each
edge, would lead to multiple edges updating the same node
simultaneously. Depending on the parallel architecture, a range

of different techniques are required to handle such data races
and the orchestration of computation and communication.
These techniques are well documented with the best opti-
mizations and the resulting performance for each demonstrated
previously [19]–[22].

Typical production codes are designed to target a single
parallel architecture type, usually employing low-level lan-
guages such as C/C++ or Fortran, implementing one of the
data-race resolving techniques appropriate for the parallel
platform or parallelization model. Such applications, while
performant, have limited portability across different hardware.
More importantly they lack performance portability - the
ability for a single code-base to achieve good performance
on systems belonging to a range of architecture types, with-
out significant manual modifications. If multiple architecture
support is available, with each providing good performance, it
is often through separate code bases. In this case, significant
effort is required to maintain code and target new hardware,
particularly if the code-base runs to hundreds of thousands or
millions of lines of code. In some cases, code will need to
be entirely rewritten in a new programming model if it is to
best utilize novel hardware. Consequently, such static single
code-bases severely limit a production applications’ ability to
exploit modern massively parallel and emerging heterogeneous
systems, which are essential for achieving industrial virtual
certification goals. This problem continues to intensify in
the drive to deploy exascale HPC systems, with a rapidly
changing hardware landscape competing to deliver ExaFlop/s
performance.

A. High-Level Abstractions and DSLs

As a solution to the above, the idea of separation of con-
cerns for achieving performance portability has been gaining
widespread use in the HPC community. The use of do-
main specific languages (DSLs), C++ template libraries (e.g.
Kokkos [23] and Raja [24]) and similar high-level abstractions
allows the separation of the science source – what is to be com-
puted, from its parallel implementation – how to program the
hardware. For unstructured mesh applications, several frame-
works have demonstrated how performance portability can be
achieved on a wide range of hardware architectures. One of
the earliest of these frameworks is OP2 [11] which we use in
this paper. Other DSLs include FeniCS [25], Firedrake [26]
and PyFR [27] all of which provide a higher-level notation
for declaring problems and employ automatic code generation
to produce concrete parallel executables. Other notable DSLs,
aimed at different domains include Devito [28] for the solution
of finite difference problems on structured meshes, partic-
ularly arising in seismic inversion problems, STELLA [29]
(and its successor GridTools) and PSyclone [30], [31] for
weather/climate modelling and OPS [32] for multi-block struc-
tured mesh applications.

B. Code Coupling

While DSLs provide hardware and parallel programming
abstractions, separating a monolithic simulation code to its

Fig. 2: Rig250 Schematic. Blue – stationary zones, Pink – rotating
zones (reproduced with permission [9])

components and coupling them (usually interfaced via a sepa-
rate code) has also gained traction. This strategy is especially
advantageous for simulating complex multi-physics phenom-
ena allowing the utilization of optimal methods for modelling
the physics of each component. For the domain scientists, this
provides the flexibility to select, for instance, the best numer-
ical method and problem scale for each component, or even
parallelization/target architecture to execute the components.
It also simplifies code maintenance and extension. We view
coupling as implementing essentially a horizontal separation
of concerns [33], where expertise in developing different
simulation models for different domains can be leveraged to
gain the best results.

Code coupling is not a new technique and already there
exist a number of general frameworks for implementing the
information exchange between discrete pieces of simulation
codes. Data communicated between codes via a coupler could
have a direct correlation between the connected interfaces
or indeed would require some interpolation or connectivity
search if for example mesh elements are not aligned. General
frameworks such as MUI [34] and preCICE [35] act purely as
an interface where data can be sent and retrieved. Others such
as MCT [36], are more involved, with dedicated classes for
data fields and methods for interpolation and other transforma-
tions. The coupler framework, named JM76, used in our work
operates at a much lower level, with the communication and
interpolation specifically coded for the problem and routines
involved in the coupling. It most closely resembles the Open-
PALM framework, developed in-part by CERFACS [37]. In
the current study we utilize JM76 for implementing a sliding
planes interface between CFD simulations for modelling the
full Rig250 compressor.

C. Rig250 Compressor and Sliding-Planes

Rig250 is a 4.5 stage test rig assembled at DLR [9] (see
Fig. 2), modelling the high-pressure compressor in gas turbine
engines [38]. It consists of four rotor-stator stages followed
by an outlet guide vane at the exit, for a total of 9 distinct
fluid zones. To handle the relative motion between stator and
rotor passages, the flow equations in each zone are solved
in a relative frame of reference. While Rig250 represents an
industrial case and has been widely utilized in prior work [39]–
[41], it is particularly of interest in the work presented in this

paper as it contains a large number of grid zones in relative
motion.

In order to account for the unsteady coupling between rotors
and stators, it is necessary to employ appropriate strategies
for the corresponding interfaces. Sliding plane techniques
are the de-facto method used in turbo machinery unsteady
simulations for such interfaces. Here, in a pre-processing stage,
the two meshes, forming the interface, are extruded to form an
additional layer of halo nodes on both sides of the interface.
The two layers of halo nodes form a one-cell overlap with
the mesh of the adjacent zone. During the computation, the
flow variables computed in one zone are interpolated, after
appropriate rotation, to set the flow variables on the halo nodes
of the adjacent zone. As the relative position between the zones
varies with time, it is necessary to identify at any time step,
via a search, the donor element of each target node.

However, sliding planes are difficult to optimize for par-
allel efficiency [8]. Typical partitioning tools, such as Metis
or the Recursive Bisection method, optimise the workload
related to the discretization of flow equations, i.e. the con-
struction of Navier-Stokes equations and the subsequent time
advancement. The extra cost associated with sliding plane
nodes may result in an off-balance. As more processors are
used, the ratio between the sliding plane to the discretisation
workload increases significantly, since the sliding planes nodes
remain “trapped” in a limited number of processors. The
configuration does not allow for increasing/decreasing the
number of processes, as the assignment is done based on the
global partitioning. As a result, in large models consisting of
several rows, the sliding planes become the main bottle-neck
to achieve good scaling performance. Note that this is the
configuration adopted by the most popular commercial CFD
solvers as well as the current production version of Hydra.
Throughout the rest of the paper, this configuration will be
referred to as the “monolithic” approach.

In this paper we use a “coupler” approach, as discussed
above, where discrete coupler software runs separately, but
simultaneously to the CFD simulations of the blade rows,
on a set of processors dedicated exclusively to performing
the search and interpolation. This is reminiscent of the “ren-
dezvous” strategy discussed by Plimpton et al. [42]. For the
Rig250 problem, this approach has two major advantages.
First, it guarantees a more even distribution of the workload
and control of this distribution. Secondly, some of the opera-
tions needed (in particular, the search) can be overlapped with
the work done by the processes dedicated to CFD, enabling
better performance and scaling.

III. ADVANCES ACHIEVED

The CFD component of the Rig250 simulation consists of
a number of RANS solvers representing the rotors and sta-
tors of the Rig250 compressor. These were simulated using
Hydra [16], [17], Rolls-Royce’s in-house production CFD
solver. Hydra is a multi-component piece of software, which
was designed to simulate various aspects of turbomachinery
designs. It is an unstructured finite-volume solver for the

compressible Reynolds Averaged Navier-Stokes equations in
their steady or unsteady formulation (RANS/URANS). The
flow equations are solved in a time marching fashion. In a
first step, all the spatial differential operators are discretized
to form a residual. In a subsequent phase, the flow variables
are updated using a Runge-Kutta method. For steady RANS
computations, the flow equations are iterated towards steady
state. Unsteady computations (URANS) adopt a Dual Time
Stepping approach [16], with the flow iterations nested into a
further loop over the physical time steps.

Hydra was first developed over 20 years ago starting from
Fortran 77 parallelized using the OPlus library, which pro-
vides an abstraction for MPI parallelization. Recent work
on Hydra [12], [43], including the work presented in this
paper makes use of the OP2 domain specific framework to
re-engineer the Hydra code-base to realize a performance
portable application, OP2-Hydra, capable of utilising modern
and emerging hardware.

A. OP2-Hydra

OP2 [11], [44], is a high-level embedded domain specific lan-
guage for writing unstructured-mesh algorithms. It has an API
embedded in C/C++ and Fortran and utilizes automatic code
generation to translate the specification of a problem written
with the high-level API to concrete parallelizations making use
of a range of multi-core and many-core programming mod-
els. These include SIMD [19], OpenMP, OpenACC, CUDA,
SYCL [45] on top of distributed memory parallelization with
MPI. The translated code can be executed on most of the
currently dominant processor architectures such as traditional
multi-core CPUs (from Intel, AMD, IBM, ARM), accelerators
such as GPUs (from NVIDIA, AMD and Intel) and their clus-
ters. The OP2 API, code-generation software and associated
libraries are maintained as open source software [44]. The
proprietary Hydra code, was converted to use OP2’s Fortran
API, using semi-automatic techniques.

1) The OP2 API: Declaration of an unstructured-mesh
problem with OP2 separates the algorithm into four distinct
parts: (1) types of mesh elements (called sets), (2) data defined
on sets, (3) connectivity between sets (called maps) and (4)
operations over sets. Sets can be, for example, mesh nodes,
edges, triangular faces, quadrilateral faces or 3-D elements
such as tetrahedrons. Data associated with these sets for
example can be node coordinates, edge weights, velocities.
Mappings between sets define how elements of one set connect
with the elements of another set. These allows an explicit
connectivity list (a mapping table) to be declared between sets.
The same notion of connectivity (defining the neighboring
elements) for regular structured-mesh computations is pro-
vided by a stencil. Computations over the mesh declared with
OP2, restricts itself to explicit numerical methods. These are
declared by a parallel loop construct together with an outlined
elemental kernel defining the per mesh element computation.
A parallel loop iterates over one set, accessing data declared
on the set directly, or accessing data declared on other sets
indirectly via a mapping table. The restriction to explicit

1 ! Declaring the mesh with OP2
2 ! sets
3 call op_decl_set(nnode,nodes,'nodes')
4 call op_decl_set(nedge,edges,'edges')
5 call op_decl_set(ncell,cells,'cells')
6 ! maps
7 call op_decl_map(edges,nodes,2,edge ,pedge ,'pedge')
8 call op_decl_map(edges,cells,2,ecell,pecell,'pecell')
9 ! data

10 call op_decl_dat(nodes,2,'real(8)',x,p_x,'p_x')
11 call op_decl_dat(cells,4,'real(8)',q,p_q,'p_q')
12 call op_decl_dat(cells,1,'real(8)',adt,p_adt,'p_adt')
13 call op_decl_dat(cells,4,'real(8)',res,p_res,'p_res')
14

15 ! Elemental kernel
16 subroutine res_calc(x1,x2,q1,q2,adt1,adt2,res1,res2)
17 IMPLICIT NONE
18 REAL(kind=8), DIMENSION(2), INTENT(IN) :: x1
19 REAL(kind=8), DIMENSION(2), INTENT(IN) :: x2
20 ...
21 REAL(kind=8) :: dx,dy,mu,ri,p1,vol1,p2,vol2,f
22 dx = x1(1) - x2(1)
23 dy = x1(2) - x2(2)
24 ...
25 f = 0.5 * (vol1 * q1(1) + vol2 * q2(1)) + &
26 & mu * (q1(1) - q2(1))
27 res1(1) = res1(1) + f
28 res2(1) = res2(1) - f
29 ...
30 end subroutine
31 ! Calculate flux residual - parallel loop over edges
32 call op_par_loop_8 (res_calc, edges, &
33 & op_arg_dat(x, 1, edge, 2,"real(8)", OP_READ), &
34 & op_arg_dat(x, 2, edge, 2,"real(8)", OP_READ), &
35 & op_arg_dat(q, 1, ecell, 4,"real(8)", OP_READ), &
36 & op_arg_dat(q, 2, ecell, 4,"real(8)", OP_READ), &
37 & op_arg_dat(adt, 1, ecell, 1,"real(8)", OP_READ), &
38 & op_arg_dat(adt, 2, ecell, 1,"real(8)", OP_READ), &
39 & op_arg_dat(res, 1, ecell, 4,"real(8)", OP_INC), &
40 & op_arg_dat(res, 2, ecell, 4,"real(8)", OP_INC))

Fig. 3: An OP2 loop with associated sets, maps, data and elemental
kernel declarations from [46].

methods narrows OP2’s domain, but still covers a wide range
of numerical solutions, particularly for solving PDEs. The
restriction also means that there is no order dependency in
which loop iterations are computed, allowing for maximum
parallelization possibilities.

Fig. 3 illustrates the OP2 API for declaring a parallel loop,
an op_par_loop, over mesh edges (see [46] for the full
application). The sets, maps and data used in the loop are
declared in lines 3-13. Here the op_par_loop describes
the iteration over mesh edges, detailing the per set element
computation as an outlined kernel (lines 16-30), while making
explicit indication as to how each argument to that kernel is
accessed (OP_READ - read only, OP_INC - increment) and
the mappings edge and ecell used for indirectly accessing
the data (x, q, adt and res) held on the sets. As can
be seen, the loop declaration is expressed in a purely scalar
manner without any indication of parallelization. The OP2-
Hydra application consists of about 300 such op_par_loops
with a total LoC of about 50K.

2) Automatic Code-generation: Once converted to the OP2
API, the workflow for generating concrete parallel implemen-
tations would be done as detailed in Fig. 4. The OP2 appli-
cation is parsed by the code-generation layer which produces

SYCL

MPI

Source-to-Source translator (Python / Clang-LLVM)

OP2 Platform Specific
Backend libraries

Conventional Compiler
(e.g. icc, nvcc, pgcc, clang, XL, Cray) + compiler flags

Hardware

Link

OpenMP

Application OP2 Application (Fortran/C/C++ API)

Modified, Platform Specific
OP2 Application

Platform Specific, Optimized,
Parallel Loop Implementations

Mesh
(hdf5)

Platform Specific
Binary Executable

CUDA

Vectorized

Sequential

Fig. 4: OP2 Application Development

modifications to the op par loop calls in the code, together
with concrete parallel code for each loop. Thus, for example
the code generator will produce an OpenMP version for multi-
threaded CPUs and a CUDA version for NVIDIA GPUs,
each making use of one of the data-race handling strategies
for implementing indirect increments. The generated code is
human readable and can be compiled using a conventional
compiler (e.g. gcc, icc, nvcc) and linked against platform
specific OP2 back-end libraries to generate the final exe-
cutable. These back-end libraries simply implement common
functions for each parallelization including distributed memory
parallelization and HDF5-based I/O. Generated parallel code
for the above loop using SIMD, OpenMP and CUDA (among
others) can be viewed in [46].

OP2 innovates in its code-generation tool-chain, written
using Python and Clang-libtooling, to generate radically differ-
ent code-paths for different parallelizations targeting different
hardware. The data races due to indirect increments can be
handled using several strategies, with the OP2 code generator
allowing the application developer to automatically generate
multiple versions. For a detailed description of these strategies
we refer the reader to [11], [21], [45]. For the Rig250
compressor performance benchmarking in this paper, we have
used the MPI and MPI+CUDA code generated through OP2.
The standard owner compute model with halo exchanges and
redundant computation is used at the MPI level, and atomic
operations are used on the GPUs to resolve data races. The
MPI parallelization automatically implements latency hiding
techniques to reduce message passing overheads.

3) Coupling and Optimizations: To integrate an OP2 appli-
cation to work with external coupler software, we implemented
specific interfacing capabilities in OP2 to give the coupler
direct access to the OP2 maps and dats. Such capability was
not previously available in OP2 and provides an example of a
DSL-based application interfacing with third-party software
for a production problem. The performance in Section IV
indicates that very good scaling can be achieved without loss
in performance. This was a result of a number of additional
optimizations to OP2 that was carried out to overcome the
scaling challenges of a sliding planes simulation. These in-
clude (1) partial halo exchanges to communicate only the
boundary elements of a set (2) grouping of MPI messages to
reduce the number of messages sent and (3) GPU-side gather

IGV
R1

CU

CU

CU

CU

CU

S1

HS3HS2HS1
HS9

S4

CU

Fig. 5: JM76 scheme for the Rig250. Each row passage corresponds
to a Hydra Session (HS). Hydra Sessions are interconnected by
Coupler Units (CU).

of data when communicating with JM76. In Section IV-A5 we
quantify the gains from these optimizations, focusing on how
they aided in reaching the requisite low-overhead scaling for
the full compressor simulation.

B. JM76 Coupler

JM76 [47], [48] is a coupling framework designed for aero-
thermal simulations of complex configurations. It can be used
to couple an arbitrary number of models, providing specialised
treatment for fluid-solid and fluid-fluid interfaces. JM76 im-
plements a decentralized model as that of Larson et al. [36]
together with a client server scheme introduced in [8]. Fig. 5
illustrates the architecture of the Rig250 coupled solver setup.
The setup decomposes the mesh to be solved into a number
of Hydra Sessions (HS) communicating through individual
Coupler Units (CU). The HSs are distinct CFD simulations
over separate physical meshes. For the Rig250 a HS was
allocated to simulate each of the rows consisting of either
a rotor or a stator of the compressor. One or more CUs sits in
between two HSs, carrying out specific “transfer” procedures
between the HSs. In our problem the transfer procedures come
from the aforementioned requirements of the sliding-planes
operation where the mesh interface between two HSs moves
relative to each other during the simulation. Thus, the mapping
linking mesh elements in one interface to the other must be
recomputed every time the mesh moves. For Rig250, this
calculation represents the most performance critical aspect of
a CUs operation. Each mesh element in an interface needs to
compare itself with every other cell in the other interface, and
repeated for all interfaces, both moving and static [33]. Once
the “linking” has been found the CUs can transfer the required
data from one HS interface to the other usually involving
interpolation of data and communication.

The distributed-memory parallel setup of a simulation with
JM76 makes use of MPI and consists of a number of MPI
processes allocated to each of the HSs (each HS having
their own MPI sub-communicator with multiple processes)
and one or more MPI processes also allocated to each CU.
Given the intensity of the interface search routines a further
decomposition of work can be implemented by partitioning
the interface mesh and allocating separate segments to CUs,
thus allowing multiple CUs to work on separate parts of a
single interface. This then significantly reduces the search
time as discussed in [33]. The JM76 coupler used in this
paper makes use of a new parallel binary tree-search algo-
rithm, replacing the previous “brute-force” sequential search

Fig. 6: Rig250 Mesh 1− 104.58B - Pressure (Pa) contours at 1000
time-steps.

from [48]. The alternating digital tree (ADT) method [49]
is used where the data are sorted according to coordinates.
This improvement helped reduce coupler overheads and leads
to a 35% performance improvement for 30 to 40 CUs, the
main configuration we use in this paper. This, and the specific
quantitative improvements from the binary search algorithm,
is explored in Section IV-A5. The performance results in this
present work is also the first time the coupler was used to
scale simulations on HPC systems at over petascale machine
sizes, not to mention for a production CFD turbomachinery
component such as the Rig250 compressor.

IV. RESULTS

A. Specifications

1) Problem Sizes: Two models of the Rig250 are consid-
ered in our simulations. The first, includes the “swan neck”
row that is used to orient the flow into the inlet stage of the
compressor. This variant has 430M nodes and represents a
coarser grid over the Rig250 geometry. The Hydra sessions
simulate the flow through the 1 to 9 rows of its rotors and
stators (full annulus), plus the outlet guide vane at the exit.
This gives rise to a 1-10 row geometry. We call this mesh
1−10430M . The second model uses a finer grid, consisting of
4.58B nodes, but omits the swan neck (see Fig. 6). For this
version, the boundary conditions at the inlet of the first stage
of the compressor are replicated using flow variables from the
outflow of the swan neck stage. In our study we simulate the
flow for its 1 - 2 rows (which gives a 653M mesh, which
we call 1 − 2653M) as well as the full 1-10 rows making
up the 4.58B nodes grand challenge production problem (we
call this 1 − 104.58B). These meshes were selected such that
the 1 − 104.58B is roughly 10× larger than the 1 − 10430M
mesh and the 1 − 2653M is the first two rows of the full
1 − 104.58B mesh. The sizes allow us to investigate scaling
performance on the relatively smaller GPU cluster we have

TABLE I: Systems specifications.
System ARCHER2 Cirrus

HPE Cray EX [52] SGI/HPE 8600
GPU Cluster [53]

Processor AMD EPYC 7742 Intel Xeon Gold 6248
@ 2.25 GHz (Cascade Lake) @ 2.5 GHz

+ NVIDIA Tesla
V100-SXM2-16GB GPU

(procs×cores) 2×64 2×20 + 4×GPUs
/node
Memory/node 256 GB 384 GB + 40GB/GPU
Interconnect HPE Cray Slingshot Infiniband

2×100 Gb/s FDR, 54.5 Gb/s
bi-directional/node

OS HPE Cray LE Linux CentOS 7
(based on SLES 15)

Compilers GNU 10.2.0 nvfortran (nvhpc 21.2)
Compiler Flags -O2 -eF -fPIC CUDA 11.6 and sm 70

-O2 -Kieee
Power/node 660W ≈ 900W

access to for benchmarking and enable us to easily make
performance projections for larger GPU clusters that could
hold the full 10 row mesh. GPU global memory limits the
size of the total mesh that can be simulated.

2) Numerical Setup: All the variants of the meshes were
solved using the URANS equations in Hydra. The rotor speed
is set at 13000rpm for the 1 − 10430M mesh and 11000rpm
for the 1−104.58B mesh. These correspond to different points
on the compressor’s operating map. The speed of 13000rpm
is near the design point where boundary layers and corner
separations are well behaved. The speed of 11000rpm is near
the stall boundary where the higher resolution mesh is needed
to capture the larger scale separations that occur.

As previously noted, Hydra uses a dual time-stepping ap-
proach with an outer time accurate step, and a number of
inner iterations where acceleration schemes, such as pseudo
time-stepping and preconditioning, can be used. The choice
of outer time step is related to the physical phenomena being
modelled and ensuring consistency in the spatial and temporal
discretization. An explicit Runge-Kutta scheme is used for the
inner iterations and fixed time-steps of 2.725 × 10−6s and
1.929 × 10−6s for the outer steps for the 1 − 104.58B and
1−10430M meshes, respectively. All the simulations have been
conducted using the Spalart-Allmaras turbulence model [50],
enforcing subsonic pressure conditions [51] at the inlet/outlet
of the domain.

3) Systems: TABLE I briefly details the distributed mem-
ory cluster systems used, namely the HPE-Cray EX system
ARCHER2 and SGI/HPE 8600 GPU cluster Cirrus both
located at EPCC UK. ARCHER2 consists of nodes each
consisting of two AMD EPYC 7742 processors each with 64
cores (128 total cores) arranged in a 8 NUMA regions per node
(16 cores per NUMA region) configuration [52]. Each node
also consists of 256 GB memory. The nodes are interconnected
by a HPE Cray Slingshot, 2×100 Gb/s bi-directional per node
network. The full machine consists of 5,860 nodes (750,080
cores), but in our benchmarking we only scale as far as 65536
cores (512 nodes) for the largest problem size. How far we

TABLE II: Brute Force vs Binary Tree search for the JM76
coupler: 1−10430M mesh on ARCHER2 (runtime in seconds)

Nodes Brute Force Binary Tree
10CUs 20CUs 30CUs 40CUs 60CUs 10CUs 20CUs

10 957.37 644.29 555.95 623.13 358.90 382.37
27 739.45 396.66 236.56 206.56 140.76 137.62

scale to was determined by achieving a parallel efficiency
of over 75%, the physically available machine size, or the
availability of a limited compute budget (e.g 512 ARCHER2
nodes), which ever is larger. The GNU compiler collection
version 10.2.0 was used on ARCHER2 with compiler flags
noted in the table. The Cirrus GPU cluster consists of 4×V100
GPUs per node configuration, each node also consisting of
2×Intel Xeon Gold 6248 (Cascade Lake) processors, each
with 20 cores (40 total cores). Each node has 384GB main
memory and each GPU has 16GB global memory. The cluster
has 36 nodes in total limiting the problem size solved on the
GPUs to 36×4×16 = 2304 GB. However the 1 − 104.58B
mesh require a minimum of 7800GB (i.e needing a minimum
of 122 Cirrus-type nodes) and thus we were not able to run
this mesh on the GPU cluster.

On ARCHER2, both HSs and CUs run on the available
CPU cores in a node, whilst on Cirrus the HSs used the
GPUs (and one CPU core per GPU), using OP2-Hydra’s
CUDA parallelization compiled with NVIDIA’s nvfortran
and CUs were exclusively allocated to the Intel Cascade
Lake processor cores. Thus the Cirrus executions were a
heterogeneous processor execution.

4) Node Power Consumption: ARCHER2 node power con-
sumption was obtained by querying the slurm scheduler after
the execution of jobs on the nodes giving on average 660W
per node. This was computed by dividing the total power
consumption (kWh) of the job used, by time and number
of nodes to get a fixed-point sample of the power per node.
Power consumption of longer runs increased linearly with time
and we did not see any indications of it varying with time.
However, we had no tools available to measure variance across
nodes.

For Cirrus, during the execution of the job, we used
nvidia-smi to poll instantaneous power consumption every
second, then averaged to arrive at 182W per GPU. The CPUs
are used to control GPUs (4 processes/node), and 4-12 pro-
cesses per node for the coupler (out of 40 cores). However, 80-
90% of the time (depending on the coupler overhead), coupler
processes are idle. Our direct power measurements on a Xeon
Gold 6226R (vs. Gold 6248 in Cirrus) on a similar workload
showed 154W power consumption of the system (excluding
GPUs). Accounting for the higher TDP, we estimate the power
consumption of a Cirrus node excluding GPUs to be 172W,
and therefore a total of ≈ 900W(⌈4 × 182 + 172⌉) per
Cirrus node. These estimates indicate approximately 1.36×
more power consumption by a GPU node compared to an
ARCHER2 node. We make use of this power equivalence
when directly comparing scaling performance on the two
systems in Section IV-B.

TABLE III: OP2 communications optimizations (runtime in
seconds). PH - Partial Halos exchanges, GH - Grouped Halos

ARCHER2
1− 10430M 1− 104.58B

10 nodes 27 nodes 107 nodes 283 nodes
Default 41.62 16.55 41.24 18.19
+PH 39.87 15.64 38.36 16.88

Cirrus
1− 10430M 1− 2653M

15 nodes 20 nodes 17 nodes
Default 19.07 13.58 23.79

+GG +PH +GH 5.09 4.23 6.74

5) Configurations: As noted before, JM76 distinguishes
between Hydra and Coupler processes. The choice of how to
distribute the resources is up to the user, and has to be carefully
evaluated. More CUs can be used to reduce the search time by
partitioning a single interface into smaller segments resulting
in a smaller search space per CU. On CPU clusters this
will require allocating more MPI processes for the increasing
CUs, and at the same time reducing the number of processes
allocatable to HSs. On GPU clusters one can increase CUs
up to the number of available CPU cores on a node, however
there are diminishing returns and increasing overheads from
having too many CUs, due to the extra communications.
TABLE II presents this trade-off for the 1− 10430M problem
on ARCHER2 using 10 and 27 nodes. The first 5 columns use
JM76’s initial brute-force search routine (BF) with increasing
number of CUs. Improving the search to a binary tree search
algorithm dramatically reduces the overheads as can be seen
from the final two columns of TABLE II. This allows us to
allocate a lower number of CUs, and thus more processes to
HSs to gain significantly better scaling. From experimenting
with the balance of CUs/HSs and MPI processes allocated to
them, we found that good performance can be gained with 30
CUs per interface, on CPU systems and 40 CUs per interface
on GPU systems for the Rig250 problem. Each CU was solved
with 1 MPI process running on 1 CPU core, using the Binary
Tree search routine.

Further scaling overhead reductions were gained through
optimizations to OP2. OP2’s default distributed memory par-
allelization back-end [54] required all the halo elements of
a set, held by an MPI process, to be updated / exchanged
if a parallel loop indirectly reads (READ) or read-writes
(RW) from data held on this set that has been updated by
a previous loop. However, sets representing the boundary of
the mesh, such as boundary nodes and boundary edges only
have connectivity with a few internal mesh elements. This
provides an opportunity for optimization where only a few
elements in the halo of an internal set require updating via an
MPI halo-exchange. The performance gains from this partial
halo exchange (PH) can be seen from TABLE III. We see
modest gains of about 5% to 7% for the lower node counts
on ARCHER2. An additional two optimizations, as discussed
before provided significant runtime reductions on the GPU
cluster. These include the GPU-side gather (GG) when OP2
hands over data to JM76 for communication between CUs, and

39.76

25.08

20.40

15.60

12.39

10.36
7.42

5.885.16 4.46
3.28

[15] [20] [25]
0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90

R
u

n
ti
m

e
/t
im

e
-s

te
p
 (

S
e

c
o

n
d

s
)

ARCHER2 Nodes (1 Cirrus node = 1.36 ARCHER2 nodes) [# Cirrus nodes]

ARCHER2

Cirrus

Ideal

Fig. 7: Rig250 1− 10430M Mesh Runtime.

36.29

24.15

18.97

14.82

7.907.10
5.72

4.19
[17]

[22] [29]
0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90

R
u

n
ti
m

e
/t

im
e

-s
te

p
 (

S
e

c
o

n
d

s
)

ARCHER2 Nodes (1 Cirrus node = 1.36 ARCHER2 nodes) [# Cirrus Nodes]

ARCHER2

Cirrus

Ideal

Fig. 8: Rig250 1− 2653M Mesh Runtime

38.90

26.13

21.00

16.89

9.90

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600

R
u

n
ti
m

e
/t

im
e

-s
te

p
 (

s
e

c
o

n
d

s
)

ARCHER2 Nodes

ARCHER2

Ideal

Fig. 9: Rig250 1− 104.58B Mesh Runtime

grouping halos sent per op_dat within an op_par_loop to
a single large MPI message (i.e. grouping of Halos, GH) thus
reducing the number of smaller messages sent, that require
separate copies over PCIe. Together these resulted in a 60 – 70
% reduction in runtime. However, grouping of halos to a single
message, marginally increased the runtime on ARCHER2
and thus it is not shown in this table. This was due to the
time required to combine messages (i.e. packing/unpacking)
outweighing the reduction in latency on the CPU clusters. As
such this optimization was not used for the full scale runs on
ARCHER2.

B. Scaling Performance

When designing the benchmark setup for scaling, we con-
sidered the differences in size of the various meshes, as
well as differences in power consumption between Cirrus
and ARCHER2 nodes. Node counts used on ARCHER2 for

running the 1 − 10430M problem were multiplied by 10.65×
for running the 1 − 104.58B problem. For the 1 − 2653M
problem, we used rounded node counts assigned to the first
two rows from the 1 − 104.58B problem. Cirrus node counts
were determined by dividing ARCHER2 node counts by 1.36
(the ratio of power consumption) and rounding them to the
nearest integer. This setup allows us to directly compare
the performance on different problems with runtime/time-step
values - see the first four data points on Figures 7 - 9.

1) 1 − 10430M Mesh Performance: When considering the
smaller 1 − 10430M problem, we observe a 94% parallel
efficiency scaling from 10 nodes to 34 nodes on ARCHER2,
on average 5-10% (at 10 and 34 nodes respectively) of time is
spent waiting for the coupler. These overheads of coupling are
partly due to the cost of interpolation on the interfaces, as well
as the load imbalance between HSs, which manifest as waiting
times in the coupler due to the implicit synchronization. Scal-
ing this problem out to 82 nodes, we still observe an 82.4%
parallel efficiency, with coupling overhead increasing to 20%.
At this extreme, there are only 41K mesh nodes per process.
For Cirrus, we could only collect 3 data points, running on
60, 80, and 100 GPUs (15, 20, 25 Cirrus nodes respectively,
which is plotted in the figures as equivalent to 20, 27 and 34
ARCHER2 nodes), at which point parallel efficiency is 94%,
with the wait time for the coupler between 15-20%. When
matching the two systems on the basis of power consumption
(1 Cirrus node = 1.36 ARCHER2 node), we see that Cirrus is
3.75− 3.95× faster than ARCHER2. In contrast the effect on
ARCHER2 is reduced due to the relatively slower HSs and the
fact that CUs can only be increased at the cost of reducing HS
processes. When comparing node-to-node performance, Cirrus
was 5.1− 5.37× faster than ARCHER2.

2) 1− 104.58B Mesh Performance: Moving to the full 1−
104.58B problem, we perform benchmarks on ARCHER2 on
10.65× more nodes compared to the scaled down problem to
match the number of elements per node. Fig. 9 shows closely
matching performance compared to the smaller problem, with
an 82% parallel efficiency when going from 107 nodes to 512
nodes - the coupling overheads increase slightly to 8–15%.

3) 1−2653M Mesh Performance: Considering that we could
not run the full 1−104.58B problem on Cirrus due to a lack of
GPU global memory, we also evaluate performance on just the
first two rows, as shown in Fig. 8. Performance on ARCHER2
is as expected, with a parallel efficiency of 88% going from 15
to 80 nodes, with a 2-8% coupling overhead. This overhead is
noticeably smaller compared to the full 10 rows both on the
scaled down and full meshes, because the load between the
two HSs is easier to balance. On Cirrus, the scaling efficiency
from 17 to 29 nodes is 98%, with a 10-12% coupling overhead.
Comparing the two systems (again by node counts matching
power on each system), we observe that Cirrus is 3.3− 3.4×
faster. When comparing node-to-node performance, Cirrus was
4.5− 4.6× faster than ARCHER2.

4) Projecting Performance: Projecting to the full 1 −
104.58B problem given enough GPUs (122 nodes, 488 GPUs)
on Cirrus, we believe, would still achieve over 3× speedup

over the power equivalent ARCHER2 setup (166 nodes).
Based on the above results, TABLE IV summarizes and
notes the full simulation time for 1 revolution of the Rig250
mesh. As stated before, the aim was to select machine sizes
for demonstrating capability of scaling at over 75% parallel
efficiency or as large as the machine would allow (in the case
of the GPU cluster), within a limited benchmarking budget
on these systems. For the full 1− 104.58B problem, the grand
challenge was to achieve 1 revolution in less than 24 hours (a
minimum requirement for tractable design explorations). The
selection of node counts for this, on both machines, again
aimed to push for runs as large as possible within the above
constraints.

Note here that we have indicated actual (A) and pro-
jected (P) runtimes. The predictions were done by running a
smaller number of time-steps and projecting the total runtime
for 2000 time-steps, which completes a full revolution. The
only exception to this projection was the Cirrus runtime for
1− 104.58B on 122 Cirrus nodes. In this case we considered
the 1 − 2653M problem and looked at the time per time-step
for Cirrus on 17 nodes (equivalent to 23 ARCHER2 nodes),
which is 7.1 seconds. Scaling up the problem to 10 rows will
need 122 nodes to fit on GPU memory. ARCHER2 coupling
overhead, which is 4% for 2 rows and 11% for 10 rows. On
Cirrus the coupling overhead is 10% at 2 rows. We therefore
speculate that at 10 rows the coupling overhead on Cirrus
should be between 20-30%. This results in 7.8 - 8.5 seconds
per time-step on Cirrus. Taking the upper limit (8.5 seconds)
for the overhead would give (8.5 × 2000/3600) 4.7 hours
for a full revolution on Cirrus for 1 − 104.58B . The power-
equivalent number of nodes comparable to 122 Cirrus nodes
on ARCHER2 is 166 nodes, which takes 14.5 hours for a
full revolution. To obtain a runtime closer to Cirrus’s 4.7 hour
time to solution, we will need over 3× more ARCHER2 nodes
(> 512 nodes).

5) Monolithic (non-coupled) application performance: TA-
BLE IV also includes predicted runtimes from the current
production setup based on a monolithic execution of the
problem, enabling us to compare it with the coupled version.
Again, in this case the predictions were done by actually
running a smaller number of time-steps, then projecting for
2000 time-steps, without carrying out a full revolution to save
time on the clusters. However, this is an estimate for the
best case, whereas in reality sliding-planes execution with
the monolithic code does not progress with a constant time
per time-step. As the simulation progresses, time per time-
step increases due to the moving mesh at higher time-step
counts compounding the runtime. Due to mesh generation
issues the 1 − 104.58B problem could not be assembled into
a monolithic mesh for our tests at this time. However, current
production simulations of this problem using the monolithic
execution setup, has been reported to demonstrate poor scaling,
leading to even the best runtime taking over a week for one
revolution on internal production clusters [55]. Production runs
on a 8000 core Intel Haswell cluster gave a 2000 second time
per time-step indicating 46 days for 1 revolution. On EPCC’s

TABLE IV: Achieved (A) and Projected (P) times to solution
(hours) : Rig250, 1 revolution

Rig250 Problem ARCHER2 Cirrus
Runime #nodes Runtime #nodes

1− 10430M - Monolithic 93.0 (P) 8
1− 10430M - Coupled 85.0 (P) 8 2.9 (P) 15
1− 10430M - Coupled 3.3 (P) 80 1.8 (P) 25
1− 2653M - Monolithic 110.0 (P) 8
1− 2653M - Coupled 40.0 (P) 8 3.9 (P) 17
1− 2653M - Coupled 8.2 (P) 40 3.2 (P) 22
1− 104.58B - Coupled 14.5 (A) 166 4.7 (P) 122
1− 104.58B - Coupled 9.4 (A) 256
1− 104.58B - Coupled 5.5 (A) 512

previous ARCHER1 system [56], a Cray XC30 with 2×
2.7 GHz, 12-core Intel E5-2697 v2 (Ivy Bridge) processors,
on 100K cores time for 1 revolution was estimated to be
at 9 days. As such, the overall speedups with the coupled
simulation suite from this work, together with the use of
modern heterogeneous multi-core/many-core hardware, points
to an order of magnitude (≈30×) improvement over current
production capability. We estimate that 2× to 3× of this is
due to next generation hardware for CPUs.

C. Flow Field

Snapshots of the flow field computed from our simulation are
presented in Fig. 10. The figure shows contour plots of various
fluid variables on a cylindrical surface cutting the rotors and
stators at approximately mid-radius, after one disc revolution.
It should be noted the continuity of the solution and the
absence of wiggles throughout the interfaces, indicating the
validity of the sliding plane treatment between the zones.

The flow enters at ambient conditions and the fluid pressure
becomes roughly 3.8 times larger as the flow moves through
the compressor stages. This visualization was extracted from
the solution of the 1 − 104.58B mesh, which corresponds to
off-design operating conditions. It can be seen, in fact, the de-
velopment of extended regions of reverse flow on the pressure
side of the stator in the second stage. Strong unsteadiness is
also visible in the last two stages. This is probably related to
the presence of shock waves developing across the stators at
stage 3. Here the Mach number shows a discontinuity in the
region where it approaches 1. Consistently, it is possible to
identify small filaments in the pressure field. As the flow on
the stator vanes changes according to the wake coming from
the preceding rotor blades, intensity and position of the shock
wave are subject to small changes. This prevents a perfect
stabilisation of the mass flow rate, and triggers the strong
unsteadiness observed in the latest stages.

V. RELATED WORK

This work is part of an ongoing push towards virtual cer-
tification by Rolls-Royce. Altitude strain gauge testing has
already been replaced by aero-mechanical analysis; and the
certification requirement to withstand the impact of a 4kg
bird on take-off or landing has been replaced with an ALE
simulation. Virtual certification replaces a physical test and
hence the analysis methods must initially be higher than

(a) Pressure (Pa)

(b) Axial Velocity (ms−1)

(c) Mach Number (Ma)

Fig. 10: Contours through rotors and stators at 1 rev.

those used in design. This, therefore, requires much greater
computing. Virtual certification is achieved by working closely
with the certification authorities and detailed validation of the
method. This often requires specific details around the way
calculations are run, meshes used and modelling parameters.

A number of related work on reaching virtual certification
objectives have been published. A 2016 study by Laskowski
et al. [57] provides estimates for the URANS simulation of
a full engine compressor as 38 days on a 100K CPU cores
(Figure 7), confirming prohibitive cost of such simulations.
Work by Saito et al. [58] and Haug et al. [59] again show
the high cost of unsteady full annulus simulations with their
use limited to research. The 2021 work on LES of a full
engine by Arroyo et al. at CERFACS [60], [61] demonstrated a
full annulus large-eddy simulation with over 2.1B cells of the
DGEN-380 demonstrator engine enclosing a fully integrated
fan, compressor and annular combustion chamber. It utilizes
coupling techniques similar to our work here, but simulates a
much smaller, number of compressor rows as part of the full
engine, using a code only executable on CPU clusters.

The present paper shows a calculation of a 4.8B element
mesh for a single compressor. It is currently believed to be
what is needed to meet the requirements for virtual certifi-
cation. However, the mesh is 50-100 times larger than what
current design tools use. The main limits on virtual certifica-
tion are three fold: firstly, the computing power is beyond what
industry could reasonably afford to make available to multiple
engineers. Secondly, given that models of this size have only
just become possible, there is, as yet, no validation database
on which to build. Thirdly, validation can only begin when
there is a code that scales on modern HPC platforms. The

work in this paper focuses and overcomes the third of those
limits. It took 10 years working with the FAA to certify the
4kg bird simulations. We are just at the start of this road, but
we expect the methodology and the scaling we have achieved
to be part of the process towards virtual certification.

VI. CONCLUSIONS

In this work, we have performed time accurate simulations
for the full annulus model of the Rig250 test compressor
achieving a breakthrough time to solution of less than 6
hours on the ARCHER2 HPE-Cray EX system at EPCC. The
simulation code innovates in (1) its design for performance
portability by using the OP2 DSL for the CFD components
and (2) use of custom built discrete coupler software for
decomposing the sliding-planes problem leading to better load-
balance and heterogeneous execution. The current work further
demonstrates how key techniques consisting of reduction in
overheads through distributed memory communication avoid-
ance, including the reduction of host-device overheads on GPU
clusters, and faster coupler interface search algorithms play an
essential role in overcoming the challenges in scaling for such
problems.

The CFD component’s use of OP2 enabled us to auto-
matically generate highly optimized platform-specific paral-
lelizations for both multi-core (CPU) and many-core (GPU)
clusters via a single high-level source. Performance of the
GPU version of the code on reduced and partial meshes
of the same problem on a GPU cluster with Nvidia V100
GPUs indicate a 3.4× speedup over ARCHER2 on a power-
equivalent number of nodes. If a node-to-node comparison is
considered, then these results indicate that the GPU nodes in
Cirrus outperform the CPU nodes in ARCHER2 over 4.5×.
Such speedups point to an order of a magnitude improvement
compared to current production capability. These innovations
demonstrate how currently prohibitive simulation costs for
such problems can be dramatically reduced, enabling industrial
designs to be carried out in tractable times. As recognized in
one of the grand challenges in the CFD Vision 2030 study by
NASA [13], reaching such a capability, is crucial for achieving
the virtual certification goals of the industry. The work detailed
in this paper demonstrate a step-change towards achieving
these objectives with production applications.

ACKNOWLEDGMENT

This research is supported by Rolls-Royce plc., and by the
UK EPSRC (EP/S005072/1 – Strategic Partnership in Com-
putational Science for Advanced Simulation and Modelling
of Engineering Systems – ASiMoV). Gihan Mudalige was
supported by the Royal Society Industry Fellowship Scheme
(INF/R1/1800 12). István Reguly was supported by National
Research, Development and Innovation Fund of Hungary (PD
124905), under the PD 17 funding scheme. This work used
the ARCHER2 UK National Supercomputing Service (https:
//www.archer2.ac.uk). This work used the Cirrus UK National
Tier-2 HPC Service at EPCC (http://www.cirrus.ac.uk) funded
by the University of Edinburgh and EPSRC (EP/P020267/1).

We are thankful to EPCC for the support provided in using the
ARCHER2 and Cirrus clusters. We would also like to thank
Christopher Goddard, Paolo Adami and the Hydra developer
team at Rolls-Royce plc., for useful technical discussions.

REFERENCES

[1] Net Zero Strategy: Build Back Greener. HM Government, Crown
Copyright, 2021. UK Department for Business Energy and Industrial
Strategy.

[2] Flightpath 2050 : Europe’s vision for aviation : maintaining global lead-
ership and serving society’s needs. Publications Office, 2011. European
Commission and Directorate-General for Mobility and Transport and
Directorate-General for Research and Innovation.

[3] F. Wang, M. Carnevale, L. di Mare, and S. Gallimore, “Simulation of
Multistage Compressor at Off-Design Conditions,” Journal of Turboma-
chinery, vol. 140, 12 2017. 021011.

[4] L. Cozzi, F. Rubechini, M. Giovannini, M. Marconcini, A. Arnone,
A. Schneider, and P. Astrua, “Capturing Radial Mixing in Axial Com-
pressors With Computational Fluid Dynamics,” Journal of Turbomachin-
ery, vol. 141, 01 2019. 031012.

[5] S. Kim, K. Kim, and C. Son, “Three-Dimensional Unsteady Simulation
of a Multistage Axial Compressor With Labyrinth Seals and its Effects
On Overall Performance and Flow Characteristics,” Aerospace Science
and Technology, vol. 86, pp. 683–693, 2019.

[6] N. Hills, “Achieving high parallel performance for an unstructured
unsteady turbomachinery cfd code,” The Aeronautical Journal (1968),
vol. 111, no. 1117, p. 185–193, 2007.

[7] E. L. Blades and D. L. Marcum, “A sliding interface method for unsteady
unstructured flow simulations,” International Journal for Numerical
Methods in Fluids, vol. 53, no. 3, pp. 507–529, 2007.

[8] V. Ganine, D. Amirante, and N. Hills, “Enhancing performance and
scalability of data transfer across sliding grid interfaces for time-accurate
unsteady simulations of multistage turbomachinery flows,” Computers
and Fluids, vol. 115, pp. 140 – 153, 2015.

[9] V. Marciniak, A. Weber, and E. Kügeler, “Modelling transition for
the design of modern axial turbomachines,” in Proceedings of the 6th
European Conference on Computational Fluid Dynamics, Barcelona,
Spain, pp. 20–25, 2014.

[10] L. Lapworth, “Hydra-CFD: a framework for collaborative CFD de-
velopment,” in International conference on scientific and engineering
computation (IC-SEC), vol. 30, 2004.

[11] G. R. Mudalige, M. B. Giles, I. Reguly, C. Bertolli, and P. H. J.
Kelly, “OP2: An active library framework for solving unstructured mesh-
based applications on multi-core and many-core architectures,” 2012
Innovative Parallel Computing, InPar 2012, 2012.

[12] I. Z. Reguly, G. R. Mudalige, C. Bertolli, M. B. Giles, A. Betts, P. H. J.
Kelly, and D. Radford, “Acceleration of a Full-Scale Industrial CFD
Application with OP2,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 5, pp. 1265–1278, 2016.

[13] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie,
and D. Mavriplis, CFD Vision 2030 Study : A Path to Revolutionary
Computational Aerosciences. NASA-CR ; 2014-218178, National Aero-
nautics and Space Administration, Langley Research Center, 2014.

[14] A. Inc, “Ansys fluent user’s guide,” vol. Release 17.2, 2016.
[15] “Code Saturne,” 2022 (Online). https://www.code-saturne.org/cms/

web/.
[16] P. Moinier, J.-D. Muller, and M. B. Giles, “Edge-based multigrid

and preconditioning for hybrid grids,” AIAA Journal, vol. 40, no. 10,
pp. 1954–1960, 2002.

[17] M. B. Giles, M. C. Duta, J.-D. Muller, and N. A. Pierce, “Algorithm
developments for discrete adjoint methods,” AIAA Journal, vol. 41, no. 2,
pp. 198–205, 2003.

[18] P. Colella, “Defining Software Requirements for Scientific Computing.,”
2004. Presentation.

[19] G. R. Mudalige, I. Z. Reguly, and M. B. Giles, “Auto-vectorizing a large-
scale production unstructured-mesh cfd application,” in Proceedings of
the 3rd Workshop on Programming Models for SIMD/Vector Processing,
WPMVP ’16, (New York, NY, USA), Association for Computing
Machinery, 2016.

[20] I. Z. Reguly, E. László, G. R. Mudalige, and M. B. Giles, “Vec-
torizing unstructured mesh computations for many-core architectures,”
Concurrency and Computation: Practice and Experience, vol. 28, no. 2,
pp. 557–577, 2016.

[21] A. A. Sulyok, G. D. Balogh, I. Z. Reguly, and G. R. Mudalige, “Locality
optimized unstructured mesh algorithms on gpus,” Journal of Parallel
and Distributed Computing, vol. 134, pp. 50–64, 2019.

[22] G. R. Mudalige, M. B. Giles, C. Bertolli, and P. H. Kelly, “Predictive
modeling and analysis of op2 on distributed memory gpu clusters,”
PMBS ’11, (New York, NY, USA), p. 3–4, Association for Computing
Machinery, 2011.

[23] H. Carter Edwards, C. R. Trott, and D. Sunderland, “Kokkos,” J. Parallel
Distrib. Comput., vol. 74, pp. 3202–3216, Dec 2014.

[24] R. D. Hornung and J. A. Keasler, “The RAJA portability layer: Overview
and status,” tech. rep., Lawrence Livermore National Lab. (LLNL), 9
2014.

[25] K. B. Ølgaard, A. Logg, and G. N. Wells, “Automated Code Generation
for Discontinuous Galerkin Methods,” CoRR, vol. abs/1104.0628, 2011.

[26] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T.
McRae, G.-T. Bercea, G. R. Markall, and P. H. J. Kelly, “Firedrake:
Automating the Finite Element Method by Composing Abstractions,”
ACM Transactions on Mathematical Software, 2017.

[27] P. Vincent, F. Witherden, B. Vermeire, J. S. Park, and A. Iyer, “To-
wards green aviation with python at petascale,” in SC16: International
Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–11, Nov 2016.

[28] M. Lange, N. Kukreja, M. Louboutin, F. Luporini, F. Vieira, V. Pandolfo,
P. Velesko, P. Kazakas, and G. Gorman, “Devito: Towards a generic finite
difference dsl using symbolic python,” pp. 67–75, IEEE, 2016.

[29] T. Gysi, C. Osuna, O. Fuhrer, M. Bianco, and T. C. Schulthess, “Stella:
A domain-specific tool for structured grid methods in weather and
climate models,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
’15, (New York, NY, USA), pp. 41:1–41:12, ACM, 2015.

[30] “PSyclone Project - GitHub Repository,” 2022 (Online). https://github.
com/stfc/PSyclone.

[31] S. Adams, R. Ford, M. Hambley, J. Hobson, I. Kavčič, C. Maynard,
T. Melvin, E. Müller, S. Mullerworth, A. Porter, M. Rezny, B. Shipway,
and R. Wong, “Lfric: Meeting the challenges of scalability and perfor-
mance portability in weather and climate models,” Journal of Parallel
and Distributed Computing, vol. 132, pp. 383–396, 2019.

[32] I. Z. Reguly, G. R. Mudalige, and M. B. Giles, “Loop tiling in large-
scale stencil codes at run-time with ops,” IEEE Transactions on Parallel
and Distributed Systems, vol. 29, pp. 873–886, April 2018.

[33] A. Powell, K. Choudry, A. Prabhakar, I. Reguly, D. Amirante, S. Jarvis,
and G. Mudalige, “Predictive analysis of large-scale coupled cfd sim-
ulations with the cpx mini-app,” in 2021 IEEE 28th International
Conference on High Performance Computing, Data, and Analytics
(HiPC), pp. 141–151, 2021.

[34] Y.-H. Tang, S. Kudo, X. Bian, Z. Li, and G. E. Karniadakis, “Multiscale
universal interface: A concurrent framework for coupling heterogeneous
solvers,” Journal of Computational Physics, vol. 297, pp. 13–31, 2015.

[35] H.-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele,
A. Shukaev, and B. Uekermann, “precice–a fully parallel library for
multi-physics surface coupling,” Computers & Fluids, vol. 141, pp. 250–
258, 2016.

[36] J. Larson, R. Jacob, and E. Ong, “The model coupling toolkit: A new
fortran90 toolkit for building multiphysics parallel coupled models,”
The International Journal of High Performance Computing Applications,
vol. 19, no. 3, pp. 277–292, 2005.

[37] F. Duchaine, S. Jauré, D. Poitou, E. Quémerais, G. Staffelbach, T. Morel,
and L. Gicquel, “Analysis of high performance conjugate heat transfer
with the openpalm coupler,” Computational Science & Discovery, vol. 8,
no. 1, p. 015003, 2015.

[38] O. K. Reutter, G. A. Nicke Eberhard, and E. Kuegeler, “Comparison
of Experiments, Full-Annulus- Calculations and Harmonic-Balance-
Calculations of a Multi-Stage Compressor,” Zenodo, May 2018. GPPS
Montreal 2018 (GPPS-NA-2018), Montreal Canada.

[39] T. Röber, E. Kügeler, and A. Weber, “Investigation of Unsteady Flow
Effects in an Axial Compressor Based on Whole Annulus Computa-
tions,” vol. Volume 7: Turbomachinery, Parts A, B, and C of Turbo
Expo: Power for Land, Sea, and Air, pp. 2643–2655, 06 2010.

[40] A. Schmitz, M. Aulich, D. Schönweitz, and E. Nicke, “Novel Perfor-
mance Prediction of a Transonic 4.5 Stage Compressor,” vol. Volume
8: Turbomachinery, Parts A, B, and C of Turbo Expo: Power for Land,
Sea, and Air, pp. 2123–2134, 06 2012.

[41] C. Reiber and V. A. Chenaux, “Compressor Mild Surge Simulation With
Variable Nozzle Models: Influence of Throttle Area On Surge Behavior

and Aeroelastic Stability at Reverse Flow Conditions,” 13th European
Conference on Turbomachinery Fluid Dynamics and Thermodynamics,
2019.

[42] S. J. Plimpton, B. Hendrickson, and J. R. Stewart, “A parallel rendezvous
algorithm for interpolation between multiple grids,” Journal of Parallel
and Distributed Computing, vol. 64, no. 2, pp. 266–276, 2004.

[43] I. Z. Reguly and G. R. Mudalige, “Modernising an industrial cfd
application,” in 2020 Eighth International Symposium on Computing
and Networking Workshops (CANDARW), pp. 191–196, 2020.

[44] “OP2 for Many-Core Platforms,” 2022 (Online). https://github.com/OP-
DSL/OP2-Common.

[45] I. Z. Reguly, A. M. B. Owenson, A. Powell, S. A. Jarvis, and G. R.
Mudalige, “Under the hood of sycl – an initial performance analysis with
an unstructured-mesh cfd application,” in High Performance Computing
(B. Chamberlain, A.-L. Varbanescu, H. Ltaief, and P. Luszczek, eds.),
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 391–
410, Springer, Jun 2021.

[46] “OP2 Example Parallel Applications,” 2022 (Online). https://github.com/
OP-DSL/OP2-APPS.

[47] D. Amirante, P. Adami, and N. J. Hills, “A multifidelity aero-thermal
design approach for secondary air systems,” Journal of Engineering for
Gas Turbines and Power, vol. 143, no. 3, 2021.

[48] D. Amirante, V. Ganine, N. J. Hills, and P. Adami, “A coupling
framework for multi-domain modelling and multi-physics simulations,”
Entropy, vol. 23, no. 6, 2021.

[49] J. Bonet and J. Peraire, “An alternating digital tree (adt) algorithm for 3d
geometric searching and intersection problems,” International Journal
for Numerical Methods in Engineering, vol. 31, no. 1, pp. 1–17, 1991.

[50] P. Spalart and S. Allmaras, A one-equation turbulence model for
aerodynamic flows. AIAA 1992-439. 30th Aerospace Sciences Meeting
and Exhibit, January 1992.

[51] D. L. Rodriguez, M. J. Aftosmis, and M. Nemec, Correction: Formu-
lation and Implementation of Inflow/Outflow Boundary Conditions to
Simulate Propulsive Effects.

[52] “ARCHER2,” Accessed Jan 2022. https://www.archer2.ac.uk.
[53] “Cirrus,” Accessed Jan 2021. https://www.cirrus.ac.uk/.
[54] G. R. Mudalige, M. B. Giles, C. Bertolli, and P. H. Kelly, “Predictive

modeling and analysis of op2 on distributed memory gpu clusters,”
PMBS ’11, (New York, NY, USA), p. 3–4, Association for Computing
Machinery, 2011.

[55] “From discussions with rolls-royce hydra developer team,” Aug 2021 -
Jan 2022.

[56] “ARCHER,” Accessed Jan 2022. https://www.archer.ac.uk/.
[57] G. M. Laskowski, J. Kopriva, V. Michelassi, S. Shankaran, U. Paliath,

R. Bhaskaran, Q. Wang, C. Talnikar, Z. J. Wang, and F. Jia, Future
Directions of High Fidelity CFD for Aerothermal Turbomachinery
Analysis and Design. June 2016.

[58] S. Saito, K. Yamada, M. Furukawa, K. Watanabe, A. Matsuoka, and
N. Niwa, “Flow Structure and Unsteady Behavior of Hub-Corner Separa-
tion in a Stator Cascade of a Multi-Stage Transonic Axial Compressor,”
vol. Volume 2A: Turbomachinery of Turbo Expo: Power for Land, Sea,
and Air, 06 2018. V02AT39A030.

[59] J. P. Haug and R. Niehuis, “Full annulus simulations of a transonic
axial compressor stage with distorted inflow at transonic and subsonic
blade tip speed,” International Journal of Turbomachinery, Propulsion
and Power, vol. 3, no. 1, 2018.

[60] C. Pérez Arroyo, J. Dombard, F. Duchaine, L. Gicquel, B. Martin,
N. Odier, and G. Staffelbach, “Towards the large-eddy simulation of a
full engine: Integration of a 360 azimuthal degrees fan, compressor and
combustion chamber. part i: Methodology and initialisation,” Journal of
the Global Power and Propulsion Society, no. May, pp. 1–16, 2021.

[61] C. Pérez Arroyo, J. Dombard, F. Duchaine, L. Gicquel, B. Martin,
N. Odier, and G. Staffelbach, “Towards the large-eddy simulation of
a full engine: Integration of a 360 azimuthal degrees fan, compressor
and combustion chamber. part ii: Comparison against stand-alone simu-
lations,” Journal of the Global Power and Propulsion Society, no. May,
pp. 1–16, 2021.

