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Abstract
We introduce a new definition of bubbles in discrete-time models based on the dis-
counted stock price losing mass under an equivalent martingale measure at some
finite drawdown. We provide equivalent probabilistic characterisations of this defini-
tion and give examples of discrete-time martingales that are bubbles and others that
are not. In the Markovian case, we provide sufficient analytic conditions for the pres-
ence of bubbles. We also show that the existence of bubbles is directly linked to the
existence of a non-trivial solution to a linear Volterra integral equation of the second
kind involving the Markov kernel. Finally, we show that our definition of bubbles
in discrete time is consistent with the strict local martingale definition of bubbles
in continuous time in the sense that a properly discretised strict local martingale in
continuous time is a bubble in discrete time.
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1 Introduction

Over the last 20 years, a mathematical theory of bubbles for continuous-time models
has been developed based on the concept of strict local martingales; see the seminal
papers by Loewenstein and Willard [12], Cox and Hobson [4], Jarrow et al. [9, 10]
as well as the survey article by Protter [17] and the references therein. In economic
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terms, an asset price bubble exists if the fundamental value of the asset deviates from
its current price. If the fundamental value is understood to be the expectation of the
(discounted) price process S = (St )t≥0 under the equivalent local martingale mea-
sure P, then the asset S has a P-bubble if E

P[ST ] < E
P[S0] for some fixed time

T > 0, i.e., if S is a strict local P-martingale, that is, a local P-martingale that fails to
be a P-martingale.

While many implications and extensions of this definition have been discussed in
the literature (see e.g. Ekström and Tysk [6], Bayraktar et al. [1], Biagini et al. [2],
Herdegen and Schweizer [7]), the strict local martingale definition of bubbles has
no direct analogue in discrete-time models. The reason for this is that a nonnegative
local martingale S = (Sk)k∈N0 in discrete time with S0 ∈ L1 is automatically a (true)
martingale. Hence, a definition of bubbles based on strict local martingales is void.
Also, trying to define a bubble in discrete time as a martingale S = (Sk)k∈N0 that is
not uniformly integrable does not lead to a meaningful concept as this would imply
that virtually all relevant models such as the standard binomial model (considered on
an unbounded time horizon) are bubbles, which seems absurd.

Despite the above negative results, the goal of this paper is to introduce a new def-
inition of bubbles for discrete-time models on an unbounded time horizon – keeping
the standard assumption that the discounted stock price is a martingale. This defini-
tion has to satisfy at least two conditions.

(I) It should split martingales that are not uniformly integrable into two sufficiently
rich classes: those that are bubbles and those that are not. In particular, standard
discrete-time models with i.i.d. returns like the binomial model should not be bubbles.

(II) It should be consistent with the strict local martingale definition in continuous
time in the sense that a continuous local martingale in continuous time is a strict local
martingale if and only if all appropriate discretisations thereof are bubbles in discrete
time.

To the best of our knowledge, there has been no attempt in the extant literature to
extend the martingale theory of bubbles to discrete time. The only slight exception
is Roch [18] who introduced the notion of asymptotic asset price bubbles using the
concept of weakly convergent discrete-time models (“large financial market”). More
precisely, he showed that even if the price process is a martingale in a sequence of
weakly convergent discrete-time models, it can have properties similar to a bubble
in that the fundamental value in the asymptotic market can be lower than the current
price in the asymptotic market. In contrast to [18], our approach is non-asymptotic.

To motivate our definition of a bubble in a discrete-time model, consider a non-
sophisticated investor who follows a simple buy-and-hold strategy to invest into an
asset with (discounted) price process S = (Sk)k∈N0 . The investor buys the asset at
time k = 0 and hopes that it will rise and rise. When the (discounted) asset price
drops for the first time, the investor fears to lose money and sells the asset. Denot-
ing by τ1 := inf{j > 0 : Sj < Sj−1} the time of the first drawdown of the asset, the
fundamental value under P of S at time 0 (viewed with regard to the first drawdown)
is EP[Sτ1], where P denotes an equivalent martingale measure. As the process S is a
nonnegative supermartingale, we always have EP[Sτ1 ] ≤ S0. If EP[Sτ1 ] < S0, the fun-
damental value of the asset (viewed with regard to the first drawdown) is lower than
its initial price and hence S might be considered a P-bubble. Indeed, if the market
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is complete, the predictable representation theorem implies that a sophisticated in-
vestor might choose a dynamic trading strategy ϑ whose (discounted) value process
V (ϑ) = (Vk(ϑ))k∈N0 satisfies V0(ϑ) = E

P[Sτ1] < S0 and Vτ (ϑ) = Sτ .
Of course, the requirement that S loses mass at the first drawdown is somewhat

arbitrary and unrealistic. For this reason, our precise definition of a bubble in discrete
time is more general and only requires S to lose mass at the kth drawdown for some
k ∈ N. While this definition is very simple, it leads to a rich theory.

In Sect. 2, we provide several equivalent probabilistic characterisations for a non-
negative discrete-time martingale to be a bubble. We also provide necessary and suf-
ficient characterisations for a discrete-time martingale with independent increments
to have a bubble. In particular, we show that i.i.d. returns models such as the stan-
dard binomial model do not have a bubble, which implies that Condition (I) above is
satisfied.

In Sect. 3, we look at the special case that S is a Markov martingale. We provide
characterisations for the presence or absence of bubbles, depending on the probability
a(x) = Px[S1 < x] of going down, and the relative recovery b(x) = Ex[S1

x
1{S1<x}]

when going down. Loosely speaking, it turns out that S is a bubble if and only if
b(x) converges to 0 fast enough as x → ∞. To make this precise, however, is quite
involved. While we are able to give sufficient conditions in the general case, we pro-
vide necessary and sufficient conditions in the case of complete markets.

In Sect. 4, we continue our study of Markov martingales by looking more closely
at the underlying Markov kernel. We show that the existence of bubbles for S is di-
rectly linked to the existence of a non-trivial nonnegative solution to a linear Volterra
integral equation of the second kind involving the Markov kernel. Among other
things, this allows us to give some additional sufficient conditions for the existence
of bubbles that cannot be covered with the results from Sect. 3.

Finally, in Sect. 5, we discuss how our definition of a bubble in discrete time re-
lates to the strict local martingale definition in continuous time. We show that when
discretising a positive continuous strict local martingale along sequences of stopping
times in a certain somewhat canonical class, one obtains a bubble in discrete time.
Conversely, we show that a positive continuous local martingale is a strict local mar-
tingale if for all localising sequences in the same class, the corresponding discretised
martingales are bubbles. This shows that Condition (II) above is also satisfied.1 To
prove these discretisation results, we rely on the deep change of measure techniques
first employed by Delbaen and Schachermayer [5] and further developed by Pal and
Protter [15], Kardaras et al. [11] and Perkowski and Ruf [16] that allow turning the
inverse of a nonnegative strict local martingale into a true martingale under a locally
dominating probability measure. Some technical proofs of this section are shifted to
the Appendix.

1As pointed out by one referee, our concept of a discrete-time bubble has a clear economic foundation
which the strict local martingale definition of bubbles in continuous time maybe lacks – at least at a
first glance. Hence, by showing that appropriately discretised strict local martingales yield discrete-time
bubbles, we provide additional and new support to modelling continuous-time bubbles by strict local mar-
tingales.
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2 Definition and characterisation of bubbles

In this section, we introduce our definition of a bubble in discrete time and provide
equivalent probabilistic characterisations of this concept.

Definition 2.1 Let (�,F ,F = (Fk)k∈N0,P) be a filtered probability space. A non-
negative (P,F)-martingale S = (Sk)k∈N0 is called a bubble if

E[Sτk
] < E [S0] (2.1)

for some k ∈ N, where τ0 := 0 and τk := inf{j > τk−1 : Sj < Sj−1}, k ∈ N, denotes
the kth drawdown of S. We also call P a bubble measure for S.

Some comments on the above definition are in order.

Remark 2.2 (a) We include the possibility that P[τk = ∞] > 0. Since S is a nonnega-
tive martingale, it converges P-a.s. to some integrable random variable S∞ by Doob’s
supermartingale convergence theorem. Hence Sτk

is well defined in any case.
(b) If S is a Markov process, S will be a bubble if and only if E[Sτ1 ] < E[S0];

cf. Sect. 3 below. In general, however, the above definition does not contain any
redundancy; one may think for example of dynamics with a change point.

(c) By the stopping theorem for uniformly integrable martingales, S can only be a
bubble if it is not uniformly integrable. Example 2.9, however, shows that not every
martingale that fails to be uniformly integrable is a bubble. Also, note that the precise
definition of the stopping time τk in (2.1) is important and cannot naively be replaced
by an arbitrary stopping time.

(d) Our bubbles are strictly speaking P-bubbles since the definition depends on the
choice of the (equivalent) martingale measure P. In incomplete markets, it is possible
to have a P-bubble under some equivalent martingale measure (EMM) P but not a
P̃-bubble under a different EMM P̃. A simple Markovian trinomial-type example for
this can be constructed by using the results in Sect. 3. In this sense, our definition is
not robust with respect to the choice of EMM. Note that exactly the same issue arises
in the strict local martingale definition of bubbles in continuous time. Using similar
ideas as in Herdegen and Schweizer [7], one could introduce the notion of a strong
bubble in discrete time. We leave the details of this to future work.

(e) Definition 2.1 can be reformulated in the following way: For some k ∈ N,
the stopped processes Sτk fails to be uniformly integrable. This reformulation al-
lows applying results from the literature that are proved for general càdlàg (local)
martingales. For example, Hulley and Ruf [8] provide necessary and sufficient char-
acterisations for a càdlàg (local) martingale to be uniformly integrable. However, the
conditions given in [8] require calculating the distribution of the supremum of Sτk

and the distribution of the jumps of Sτk at certain hitting times, both of which are
difficult to get hold of. For this reason, they are not very useful in our discrete-time
setup.

We proceed to give a first simple example of a bubble in a complete market model.
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Example 2.3 Define the process S = (Sk)k∈N0 and the probability measure P recur-
sively by S0 = s0 > 1

2 and for k ∈N,

P

[
Sk = 2Sk−1 − 1

2

∣∣∣∣ Sk−1 >
1

2

]
= P

[
Sk = 1

2

∣∣∣∣ Sk−1 >
1

2

]
= 1

2
,

P

[
Sk = 1

2

∣∣∣∣ Sk−1 = 1

2

]
= 1.

Then S is a P-martingale for its natural filtration, we have τ1 < ∞ P-a.s., and
E[Sτ1] = 1

2 < s0 = E[S0], i.e., S is a bubble.

The following result provides two equivalent characterisations of bubbles. The
first shows that a nonnegative martingale S is a bubble if and only if there exists a
deterministic time k ∈ N0 such that S loses mass at the first drawdown after k. The
second provides a limit characterisation. The latter characterisation is particularly
useful for checking whether or not a martingale S is a bubble.

Theorem 2.4 Let S = (Sk)k∈N0 be a nonnegative martingale. For k ∈ N0, define the
stopping time τ̃k by

τ̃k := inf{j > k : Sj < Sj−1}.
Then the following are equivalent:

(a) S is a bubble.
(b) There exists k ≥ 0 such that E[Sτ̃k

] < E[Sk].
(c) There exists k ≥ 0 such that limn→∞ E[(Sn − S∞)1{Sk≤Sk+1≤···≤Sn}] > 0.

Proof (a) ⇒ (b) Suppose that (b) is not true, i.e., E[Sτ̃k
] = E[Sk] for all k ≥ 0. Then

for all k ≥ 0, the stopped process Sτ̃k is a right-closed supermartingale which does
not lose mass at ∞ and hence is a uniformly integrable martingale. We proceed by
induction to show that E[Sτ�

] = E[S0] for all � ≥ 0, whence (a) is not true. The induc-
tion basis � = 0 is trivial. For the induction step, suppose that E[Sτ�−1 ] = E[S0] for
some � ≥ 1. Then using the stopping theorem for the uniformly integrable martingale
Sτ̃k in the third equality, we obtain

E[Sτ�
] =

∞∑
k=�−1

E[Sτ�
1{τ�−1=k}] +E[S∞1{τ�−1=∞}]

=
∞∑

k=�−1

E[Sτ̃k
1{τ�−1=k}] +E[Sτ�−1 1{τ�−1=∞}]

=
∞∑

k=�−1

E[Sτ�−11{τ�−1=k}] +E[Sτ�−1 1{τ�−1=∞}] = E[Sτ�−1 ] = E[S0].

(b) ⇒ (a) This follows from the fact that E[Sk] = E[S0] by the martingale property
of S together with the fact that τ̃k ≤ τk+1.
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(b) ⇔ (c) The equivalence follows from the following calculation, which uses the
martingale property of S in the third equality:

E[Sτ̃k
] = lim

n→∞

n∑
�=k+1

E[S�1{Sk≤Sk+1≤···≤S�−1>S�}] +E[S∞1{Sk≤Sk+1≤··· }]

= lim
n→∞

n∑
�=k+1

(E[S�1{Sk≤···≤S�−1}] −E[S�1{Sk≤···≤S�}])

+E[S∞1{Sk≤Sk+1≤··· }]

= lim
n→∞

n∑
�=k+1

(E[S�−11{Sk≤···≤S�−1}] −E[S�1{Sk≤···≤S�}])

+E[S∞1{Sk≤Sk+1≤··· }]
= E[Sk] + lim

n→∞E[(S∞ − Sn)1{Sk≤Sk+1≤···≤Sn}]. (2.2)

This finishes the proof. �

The characterisation (c) in Theorem 2.4 is generally the most useful to decide
whether or not S is a bubble. The following corollary strengthens this characterisa-
tion. It shows directly that bounded martingales fail to be bubbles. (Of course, this
follows directly from the fact that a bounded martingale is uniformly integrable.)

Corollary 2.5 Let S = (Sk)k∈N0 be a nonnegative martingale. Then the following are
equivalent:

(a) S is a bubble.
(b) There exist x ≥ 0 and k ≥ 0 such that

lim
n→∞E[(Sn − S∞)1{x≤Sk≤Sk+1≤···≤Sn}] > 0.

(c) For all x ≥ 0, there exists k ≥ 0 such that

lim
n→∞E[(Sn − S∞)1{x≤Sk≤Sk+1≤···≤Sn}] > 0.

Proof It is clear that (c) implies (b), and (b) a fortiori implies condition (c) of Theo-
rem 2.4, which by Theorem 2.4 gives (a). It remains to prove (a) ⇒ (c). So fix x ≥ 0.
Since S is a bubble, by Theorem 2.4 (b) and the martingale property of S, there exists
� ≥ 0 such that E[Sτ̃�

] < E[S�] = E[S0]. Define the stopping times σ�,x and τ
σ�,x

1 by

σ�,x := inf{k ≥ � : Sk ≥ x}, τ
σ�,x

1 := inf{j > σ�,x : Sj < Sj−1}.

Then σ�,x is the first hitting time of [x,∞) after �, and τ
σ�,x

1 is the first drawdown
of S after σ�,x . Since σ�,x ≥ �, it follows that τ

σ�,x

1 ≥ τ̃�.
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By the definition of σ�,x , the stopped process Sσ�,x is uniformly integrable because

S
σ�,x

k ≤ max(S0, . . . , S�, Sσ�,x
, x) ∈ L1.

This implies that E[Sσ�,x
] = E[S0]. Since τ

σ�,x

1 ≥ τ̃�, this in turn implies that

E
[
S

τ
σ�,x
1

] ≤ E
[
Sτ̃�

]
< E [S0] = E[Sσ�,x

].

A similar calculation as in (2.2) shows that

E
[
S

τ
σ�,x
1

] = E[Sσ�,x
] + lim

n→∞E[(S∞ − Sσ�,x+n)1{Sσ�,x
≤···≤Sσ�,x+n}1{σ�,x<∞}].

This together with the tower property of conditional expectations and dominated con-
vergence yields

E

[
lim

n→∞E[(Sσ�,x+n − S∞)1{Sσ�,x
≤Sσ�,x+1≤···≤Sσ�,x+n}|Fσ�,x

]1{σ�,x<∞}
]

> 0.

We may deduce that there is k ≥ � such that

E

[
lim

n→∞E[(Sk+n − S∞)1{Sk≤Sk+1≤···≤Sk+n}1{σ�,x=k}|Fk]
]

> 0.

Using that Sk ≥ x on {σ�,x = k}, this implies that

E

[
lim

n→∞E[(Sk+n − S∞)1{x≤Sk≤Sk+1≤···≤Sk+n}|Fk]
]

> 0.

Dominated convergence and the tower property of conditional expectations give (c).
�

While characterisations (b) and (c) in Corollary 2.5 are an improvement of The-
orem 2.4 (c), they still depend on S∞, of which we generally do not have a good
knowledge. The following corollary provides a mild condition on S under which the
bubble behaviour of S can be characterised without involving S∞.

Proposition 2.6 Let S = (Sk)k∈N0 be a nonnegative martingale and x > 0. Suppose
that

∞∑
k=0

P[Sk < x or Sk > Sk+1|Fk] = ∞ P-a.s.

Then for each k ∈N0,

lim
n→∞E[S∞1{x≤Sk≤Sk+1≤···≤Sn}] = 0. (2.3)

In particular, S is a bubble if and only if there exists k ∈N0 such that

lim
n→∞E[Sn1{x≤Sk≤Sk+1≤···≤Sn}] > 0.
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Proof The conditional Borel–Cantelli lemma implies that

P

[
lim inf
k→∞ {x ≤ Sk ≤ Sk+1}

]
= 1 − P

[
lim sup
k→∞

({Sk < x} ∪ {Sk > Sk+1})
]

= 0.

This implies a fortiori that {x ≤ Sk ≤ Sk+1 ≤ · · · } is a P-null set for each k ∈N0. This
gives (2.3). The final claim now follows from Corollary 2.5. �

The following result gives simple necessary and sufficient conditions for a non-
negative martingale with independent increments to be a bubble.

Theorem 2.7 Let (Xk)k∈N be an independent sequence of nonnegative random vari-
ables with E[Xk] = 1 for k ∈ N. Define the process S = (Sk)k∈N0 by Sk = ∏k

�=1 X�

and the filtration F= (Fk)k∈N0 by Fk := σ(S0, . . . , Sk). Moreover, for k ∈ N, set

ak := P[Xk < 1] ∈ [0,1), bk := E[Xk1{Xk<1}] ∈ [0, ak].

Then S is a positive (P,F)-martingale. It is a bubble if and only if

∞∑
k=1

ak = ∞ and
∞∑

k=1

bk < ∞.

Proof It is clear by construction that S is a nonnegative (P,F)-martingale.
First, we argue that if

∑∞
k=1 ak < ∞, then S is uniformly integrable and hence

cannot be a bubble. To this end, note that

∞ >

∞∑
k=0

ak =
∞∑

k=0

P[Xk < 1] ≥
∞∑

k=0

E[(1 − √
Xk)1{Xk<1}] ≥

∞∑
k=0

E[(1 − √
Xk)].

By Kakutani’s theorem (see e.g. Williams [19, Theorem 14.12 (v)]), this implies that
S is uniformly integrable.

Next, if
∑∞

k=1 ak = ∞, by independence of the Xk ,

∞∑
k=0

P[Sk < 1 or Sk > Sk+1|Fk] ≥
∞∑

k=0

P[Xk+1 < 1|Fk] =
∞∑

k=1

ak = ∞.

This together with Corollary 2.5 implies that S is a bubble if and only if there exists
k ≥ 0 such that

lim
n→∞E[Sn1{1≤Sk≤Sk+1≤···≤Sn}] = P[Sk ≥ 1]

∞∏
�=k+1

E[X�1{X�≥1}]

= P [Sk ≥ 1]
∞∏

�=k+1

(1 − b�) > 0.
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Since P[Sk ≥ 1] > 0 and 1 − b� > 0 for all � ∈ N, this is equivalent to

∞∏
�=1

(1 − b�) > 0,

which in turn is equivalent to
∑∞

k=1 bk < ∞. �

We illustrate the above theorem by two examples. The first gives a bubble in a
time-dependent binomial-type model, where the downward jumps get more and more
severe.

Example 2.8 Let (Xk)k∈N be a sequence of independent random variables satisfying
P [Xk = 1

k
] = 1

k
and P [Xk = 1 + 1

k
] = 1 − 1

k
. Define the process S = (Sk)k∈N0 by

Sk := ∏k
�=1 X� and the filtration F = (Fk)k∈N0 by Fk := σ(S0, . . . , Sk). Then ak = 1

k

and bk = 1
k2 . Hence

∑∞
k=1 ak = ∞ and

∑∞
k=1 bk < ∞, whence S is a bubble.

The second example shows that a martingale with i.i.d. returns is never a bubble.
In particular, a standard binomial model is never a bubble, which agrees with our
intuition.

Example 2.9 Let (Xk)k∈N be a sequence of i.i.d. random variables that are nonnega-
tive and satisfy E[Xk] = 1 and P[Xk 
= 1] > 0. Define the process S = (Sk)k∈N0 by
Sk := ∏k

�=1 X� and the filtration F = (Fk)k∈N0 by Fk := σ(S0, . . . , Sk). Then S is
a martingale but fails to be uniformly integrable because E[logXk] < 1 implies that
Sn = exp(

∑n
k=1 logXk)

a.s.−→ 0 by the strong law of large numbers. However, setting
bk := E[Xk1{Xk<1}] = b > 0, we obtain

∞∑
k=1

bk = ∞.

Thus S fails to be a bubble.

3 Characterisation of bubble measures for Markov chains

Throughout this section, we suppose that S = (Sk)k∈N0 is a positive martingale
which is a Markov process with transition kernel K : (0,∞) × B(0,∞) → [0,∞)

and starting from S0 = x > 0. Our goal is to determine under which conditions on
the kernel K(x, dy) the measure Px is a bubble measure. To this end, we define the
functions a, b : (0,∞) → [0,1) by

a(x) := Px[S1 < x] =
∫

[0,x)

K(x,dy), (3.1)

b(x) := Ex

[
S1

x
1{S1<x}

]
=

∫
[0,x)

y

x
K(x,dy). (3.2)

Hence a(x) denotes the probability of a downward jump and b(x) the relative recov-
ery in case of a downward jump.
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First, we show we show that S cannot be a bubble unless the relative recovery
function b converges to zero at infinity.

Proposition 3.1 Assume that lim infx→∞ b(x) > 0. Then S fails to be a bubble under
Px for any x ∈ (0,∞).

Proof There exist x0 > 0 and ε ∈ (0,1) such that b(x) ≥ ε for all x ≥ x0. Pick
x ∈ (0,∞). By Corollary 2.5 and using that S∞ ≥ 0, it suffices to show that for each
k ∈N0,

lim
n→∞Ex[Sn1{x0≤Sk≤Sk+1≤···≤Sn}] = 0.

So let k < n. Then by the Markov property and the definition of b,

Ex[Sn1{x0≤Sk≤Sk+1≤···≤Sn}]

= Ex

[
Ex

[ Sn

Sn−1
1{Sn≥Sn−1}

∣∣∣Fn−1

]
Sn−11{x0≤Sk≤Sk+1≤···≤Sn−1}

]

= Ex

[(
1 − b(Sn−1)

)
Sn−11{x0≤Sk≤Sk+1≤···≤Sn−1}

]
≤ (1 − ε)Ex[Sn−11{x0≤Sk≤Sk+1≤···≤Sn−1}]
≤ (1 − ε)n−k

Ex[Sk1{x0≤Sk}] ≤ (1 − ε)n−kx.

Now the claim follows by letting n → ∞. �

We proceed to formulate a mild condition on the function a which allows us to
characterise the bubble behaviour of S without involving S∞.

Assumption 3.2 There exists xa > 0 such that infx∈[xa,y] a(x) > 0 for all y > xa .

Remark 3.3 Assumption 3.2 is in particular fulfilled if a is positive and lower semi-
continuous.

Proposition 3.4 Suppose Assumption 3.2 is satisfied for some xa > 0. Let x′ ≥ xa .
Then for each k ∈N0,

lim
n→∞Ex[S∞1{x′≤Sk≤Sk+1≤···≤Sn}] = 0. (3.3)

Moreover, S is a bubble under Px if and only if there exists k ∈ N0 such that

lim
n→∞Ex[Sn1{x′≤Sk≤Sk+1≤···≤Sn}] > 0.

Proof By Proposition 2.6, it suffices to check that Px-a.s.,

∞∑
k=0

Px[Sk < x′ or Sk > Sk+1|Fk] =
∞∑

k=0

(
1{Sk<x′} + a(Sk)1{Sk≥x′}

) = ∞.

We now distinguish two cases. If ω ∈ lim supk→∞{Sk < x′}, it follows that we
have

∑∞
k=0 1{Sk(ω)<x′} = ∞. If ω ∈ lim infk→∞{Sk ≥ x′} ∩ {supk≥0 Sk < ∞}, then
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∑∞
k=0 a(Sk(ω))1{Sk(ω)≥x} = ∞ by the assumption on a. Since supk≥0 Sk < ∞ Px-a.s.

by Doob’s martingale convergence theorem, the claim follows. �

We next aim to give a sufficient condition for S to be a bubble. To this end, we
need to slightly relax the definition of the function b from (3.2). For ε > 0, define the
function bε : (0,∞) → (0,1] by

bε(x) := Ex

[
S1

x
1{S1<x(1+ε)}

]
=

∫
[0,x(1+ε))

y

x
K(x,dy).

Theorem 3.5 Suppose that Assumption 3.2 is satisfied and there exist ε > 0 and
xb > 0 with the property that the function bε is nonincreasing for x ≥ xb and sat-
isfies

∫ ∞
logxb

bε(exp(x))dx < ∞. Then S is a bubble under each Px for which S is not
Px -a.s. bounded.

Proof Suppose that S is not Px -a.s. bounded. Let xa be the constant in Assump-
tion 3.2. We may assume without loss of generality that xb ≥ xa . By Proposition 3.4,
it suffices to check that there is k ∈ N0 such that

lim
n→∞Ex[Sn1{xb≤Sk≤Sk+1≤···≤Sk+n}]

≥ lim
n→∞Ex

[
Sk1{Sk≥xb}

n∏
j=1

Sk+j

Sk+j−1
1{Sk+j ≥Sk+j−1(1+ε)}

]
> 0.

Since S is not Px -a.s. bounded, there exists k ∈ N0 with Ex[Sk1{Sk≥xb}] > 0. Fix
n ∈N. By the definition of bε , we obtain for j ∈ {1, . . . , n} that

Ex

[
Sk+j

Sk+j−1
1{Sj+k−1(1+ε)≤Sj+k}

∣∣∣∣Fk+j−1

]
= (

1 − bε(Sk+j−1)
)

Px-a.s.

This together with the tower property of conditional expectations and the fact that bε

is nonincreasing for x ≥ xb gives

Ex

[
Sk1{Sk≥xb}

n∏
j=1

Sk+j

Sk+j−1
1{Sk+j ≥Sk+j−1(1+ε)}

]

= Ex

[
Sk1{Sk≥xb}

( n−1∏
j=1

Sk+j

Sk+j−1
1{Sk+j ≥Sk+j−1(1+ε)}

)(
1 − bε(Sk+n−1)

)]

≥ Ex

[
Sk1{Sk≥xb}

( n−1∏
j=1

Sk+j

Sk+j−1
1{Sk+j ≥Sk+j−1(1+ε)}

)(
1 − bε

(
xb(1 + ε)n−1))]

≥ Ex

[
Sk1{Sk≥xb}

n−1∏
j=0

(
1 − bε

(
xb(1 + ε)j

))]

= Ex

[
Sk1{Sk≥xb}

] n−1∏
j=0

(
1 − bε

(
xb(1 + ε)j

))
.
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Thus it remains to show that
∏∞

j=0(1 − bε(xb(1 + ε)j )) > 0. The latter condition
is equivalent to

∑∞
j=0 bε(exp(logxb + log(1 + ε)j)) < ∞, which is equivalent to∫ ∞

logxb
bε(exp(x))dx < ∞. �

We illustrate the above result by two examples. The first is a “smooth” version of
Example 2.3; the second is an example of a “discrete diffusion” for the log price.

Example 3.6 Assume that the Markov kernel is given by

K(x,dy) =
{ 1

2 1(0,1)(y)dy + 1
2 1(2x−1,2x)(y)dy if x > 1,

1
2x

1(0,2x)(y)dy if x ≤ 1.

Then a(x) = 1
2 and for ε ∈ (0,1),

bε(x) = (1 + ε)2

4
1{x≤1} +

(
1 − x

(
1 − (1 + ε)2

4

))
1{1≤x≤ 1

1−ε
} + 1

4x
1{x> 1

1−ε
}.

By Theorem 3.5, S is a bubble under Px for all x > 0.

Example 3.7 Let (Zk)k∈N be a sequence of i.i.d. standard normal random variables
and σ : R → (0,∞) a measurable function such that σ(x) is nondecreasing for large
values of x. Define the process (Xk)k∈N0 recursively by X0 := 0 and

Xk+1 := Xk + σ(Xk)Zk+1 − σ 2(Xk)

2
, k ∈N0.

Then the process S = (Sk)k∈N0 defined by Sk := exp(Xk) for k ∈ N0 is a Markov
martingale.

Denoting by 	 the distribution function of a standard normal random variable, it
is not difficult to check that for x > 0 and ε ≥ 0,

a(x) = 	

(
σ(logx)

2

)
, bε(x) = 	

(
log(1 + ε)

σ (logx)
− σ(logx)

2

)
,

where b0 = b. Thus by Proposition 3.1, for S to be a bubble, it is necessary that
σ(x) → ∞ as x → ∞. Moreover, by Theorem 3.5, a sufficient condition for S to be
a bubble is given by

∫ ∞

x0

	

(
log 2

σ(x)
− σ(x)

2

)
dx < ∞ for some x0 ∈ R. (3.4)

Denoting the density function of a standard normal random variable by ϕ, using
Mills’ ratio and the fact that |( log 2

σ(x)
− σ(x)

2 )2 − (
σ(x)

2 )2| ≤ (
log 2
σ(x)

)2 + log 2 is uniformly
bounded for all sufficiently large x as σ is nondecreasing, it is not difficult to check
that (3.4) is equivalent to

∫ ∞

x0

1

σ(x)
ϕ

(
− σ(x)

2

)
dx < ∞ for some x0 ∈R. (3.5)
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Remark 3.8 It is insightful to compare Example 3.7 to the continuous-time theory of
bubbles. To this end, recall that in continuous time, the process S = (St )t≥0 given by
St := exp(Xt ), where X = (Xt )t≥0 solves the SDE

dXt = σ(Xt )dWt − 1

2
σ 2(Xt )dt,

is a strict local martingale and hence a bubble if and only if for some x0 ∈ R,

∫ ∞

x0

dx

σ 2(x)
< ∞; (3.6)

cf. Mijatović and Urusov [14, Corollary 4.3]. While (3.5) and (3.6) both say that S is
a bubble if and only if σ(x) → ∞ fast enough as x → ∞, the exact rate of increase
of σ required for a bubble is quite different as (3.6) is a much stronger requirement
on the growth of σ than (3.5). The reason for this is that the discretisation of the
diffusion model in continuous time should not be done along a deterministic time
grid, but along certain sequences of stopping times; see Sect. 5 below.

While Proposition 3.1 and Theorem 3.5 give useful general sufficient conditions
for the absence or presence of a bubble, respectively, these conditions are not neces-
sary. In the complete Markov case, we can give a necessary and sufficient characteri-
sation of bubbles under mild assumptions on the functions a and b.

Theorem 3.9 Suppose the Markov kernel is given by

K(x,dy) = a(x)δ b(x)x
a(x)

(dy) + (
1 − a(x)

)
δ (1−b(x))x

1−a(x)
(dy),

where 0 ≤ b(x) < a(x) < 1 and 0 < lim infx→∞ a(x) ≤ lim supx→∞ a(x) < 1.
Moreover, suppose that there exists xb > 0 such that the function b is nonincreas-
ing for x ≥ xb . Then S is a bubble under Px if and only if S is not Px -a.s. bounded
and

∫ ∞
logxb

b(exp(x))dx < ∞.

The above process corresponds to a binomial-type model where the probability of
downward jumps is bounded away from 0 and 1 and the relative recovery in case of
a downward jump decreases for large values.

Proof of Theorem 3.9 Suppose that S is not Px -a.s. bounded. We may focus on the
case where limx→∞ b(x) = 0. Indeed, otherwise it follows that limx→∞ b(x) > 0
and hence

∫ ∞
logxb

b(exp(x))dx = ∞, and S fails to be a bubble by Proposition 3.1.
Since limx→∞ b(x) = 0 and 0 < lim infx→∞ a(x) ≤ lim supx→∞ a(x) < 1, af-

ter potentially enlarging xb , we may assume that there exists 0 < c < C such that
1 + c ≤ 1−b(x)

1−a(x)
≤ 1 + C for all x ≥ xb . By Proposition 3.4, S is a bubble under Px if

and only if there exists k ≥ 0 such that

lim
n→∞Ex[Sn1{xb≤Sk≤Sk+1≤···≤Sk+n}] > 0.
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Using that {Sj ≤ Sj+1} = {Sj+1 = 1−b(Sj )

1−a(Sj )
Sj } for j ∈ N0 and arguing as in the proof

of Theorem 3.5 gives for each 0 ≤ k ≤ n that

Ex[Sk1{Sk≥xb}]
n−1∏
j=0

(
1 − b

(
xb(1 + C)j

)) ≥ Ex[Sn1{xb≤Sk≤Sk+1≤···≤Sk+n}]

≥ Ex[Sk1{Sk≥xb}]
n−1∏
j=0

(
1 − b

(
xb(1 + c)j

))
.

Now using that for γ ∈ {c,C}, ∏∞
j=0(1 − b(xb(1 + γ )j )) > 0 if and only if

∞∑
j=0

b
(

exp
(

logxb + log(1 + γ )j
))

< ∞,

which in turn is equivalent to
∫ ∞

logxb
b(exp(x))dx < ∞, the claim follows. �

4 A fixed point equation associated to a Markovian bubble

In this section, we continue our study of Markov martingales, taking a more analytic
perspective. We assume throughout that S = (Sk)k∈N0 is a positive Markov martingale
with kernel K : (0,∞) × B(0,∞) → [0,∞), starting from S0 = x > 0. The key
object of this section is the default function of S.

Definition 4.1 The Borel-measurable function MS : (0,∞) → [0,∞) defined by

MS(x) := lim
n→∞Ex[(Sn − S∞)1{Sn≥Sn−1≥···≥S1≥x}]

is called the default function of S.

It follows from (2.2) (with k = 0) that MS(x) = Ex[Sτ1 ], so that MS measures the
loss of mass at the first drawdown of S. It is clear that Px is a bubble measure for S

if MS(x) > 0. The following two results show that M essentially fully characterises
the bubble behaviour of S under Px for all x > 0.

Proposition 4.2 Suppose MS(x) = 0 for all x ≥ x′ > 0. Then MS(x) = 0 for all
x > 0, and Px fails to be a bubble measure for S for any x > 0.

Proof Fix x > 0. Then for all k ∈ N0, the Markov property of S, the choice of x′ and
dominated convergence give

lim
n→∞Ex[(Sn − S∞)1{x′≤Sk≤Sk+1≤···≤Sn}]

= Ex

[
lim

n→∞ESk
[(Sn − S∞)1{Sk≤Sk+1≤···≤Sn}]1{Sk≥x′}

]

= Ex[MS(Sk)1{Sk≥x′}] = 0.

Thus Corollary 2.5 implies that S is not a bubble under Px , and so MS(x) = 0. �
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Proposition 4.3 Suppose that lim infx→∞ MS(x) > 0. Then S is a bubble under Px

for all x > 0 for which S is not Px -a.s. bounded.

Proof Fix x > 0 and suppose that S is not Px -a.s. bounded. By hypothesis, there
exists x′ ≥ x such that MS(y) > 0 for all y ≥ x′. Since S is not Px -a.s. bounded,
there is k ≥ 0 such that Px[Sk ≥ x′] > 0. Then by the Markov property of S, the
choice of x′ and dominated convergence,

lim
n→∞Ex[(Sn − S∞)1{x′≤Sk≤Sk+1≤···≤Sn}]

= Ex

[
lim

n→∞ESk
[(Sn − S∞)1{Sk≤Sk+1≤···≤Sn}]1{Sk≥x′}

]

= Ex[MS(Sk)1{Sk≥x′}] > 0.

Thus S is a bubble under Px by Corollary 2.5. �

In the remainder of this section, we seek to characterise the function MS in an
analytic way and provide conditions for it to be non-zero.

First, we show that MS solves a fixed point equation, more precisely a homoge-
neous Volterra integral equation of the second kind; cf. Brunner [3, Chap. 1.2] for a
textbook treatment.

Lemma 4.4 The default function MS is a solution to the Volterra integral equation

MS(x) =
∫

[x,∞)

MS(y)K(x,dy), x > 0. (4.1)

Proof Fix x > 0. Using the definition of MS , dominated convergence and the Markov
property of S, we obtain

∫
[x,∞)

MS(y)K(x,dy) = Ex[MS(S1)1{S1≥x}]

= Ex

[
lim

n→∞ES1 [(Sn − S∞)1{Sn≥Sn−1≥···≥S1≥x}]
]

= lim
n→∞Ex[(Sn − S∞)1{Sn≥Sn−1≥···≥S1≥x}] = MS(x). �

Note that (4.1) is non-standard in that the domain is non-compact. Therefore, we
cannot apply standard existence and uniqueness results for Volterra integral equa-
tions, cf. [3, Chap. 8]. In fact, existence is anyway not an issue since the zero func-
tion always solves (4.1). Since the bubble case corresponds to (4.1) having a non-zero
(nonnegative) solution, we are actually interested in non-uniqueness, i.e., the case that
(4.1) has multiple nonnegative solutions. By homogeneity of (4.1), we then always
have infinitely many solutions, and so it is clear that we need an additional condition
to pin down the default function MS .

It follows from the definition of MS that MS(x) ≤ x for all x > 0. So we consider
nonnegative solutions to (4.1) that are dominated by the identity. To this end, denote
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by I all Borel-measurable functions M : (0,∞) → [0,∞) satisfying M(x) ≤ x for
all x > 0. Using that

0 ≤
∫

[x,∞)

M(y)K(x,dy) ≤
∫

(0,∞)

M(y)K(x,dy) ≤
∫

(0,∞)

yK(x,dy) = x

for all M ∈ I and x > 0, we can define the map K : I → I by

K(M)(x) =
∫

[x,∞)

M(y)K(x,dy), x > 0.

Then the nonnegative solutions to (4.1) dominated by the identity are precisely given
by fixed points of K.

While the map K is in general not a contraction (and therefore (4.1) may have
multiple solutions on I), it is monotone, and this property will prove crucial for our
subsequent analysis.

Proposition 4.5 The map K is monotone on I .

Proof Let M1,M2 ∈ I with M1 ≤ M2. Then monotonicity of the integral gives for
x > 0 that

K(M1)(x) =
∫

[x,∞)

M1(y)K(x,dy) ≤
∫

[x,∞)

M2(y)K(x,dy) = K(M2)(x). �

Due to monotonicity of K, it is very useful to consider subsolutions and superso-
lutions to (4.1) on I .

Definition 4.6 A function M ∈ I is called a subsolution to (4.1) if

M(x) ≤
∫

[x,∞)

M(y)K(x, dy), x > 0.

It is called a supersolution to (4.1) if

M(x) ≥
∫

[x,∞)

M(y)K(x, dy), x > 0.

The following result shows that we can construct from each sub- or supersolution a
solution to (4.1) by Picard iteration. To this end, for n ∈N0, define Kn(M) recursively
by K0(M) := M and Kn(M) := K(Kn−1(M)) for n ≥ 1.

Proposition 4.7 Let M ∈ I be a sub- or supersolution to (4.1). Then the limit
K∞(M) = limn→∞ Kn(M) exists and is a solution to (4.1). Moreover,

– if M is a subsolution, then the sequence (Kn(M))n∈N is nondecreasing and
K∞(M) is the smallest solution dominating M ;

– if M is a supersolution, then the sequence (Kn(M))n∈N is nonincreasing and
K∞(M) is the largest solution dominated by M .
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Proof We only consider the case that M is a subsolution; the proof for the case that
M is a supersolution is analogous. If M is a subsolution, the sequence (Kn(M))n∈N0

is nondecreasing in M by monotonicity of K. Hence the limit limn→∞ Kn(M) exists
and is in I since each Kn(M) is in I . Moreover, it follows from monotone conver-
gence that

K∞(M)(x) = lim
n→∞Kn(M)(x) = lim

n→∞

∫
[x,∞)

Kn−1(M)(y)K(x,dy)

=
∫

[x,∞)

K∞(M)(y)K(x,dy), x > 0,

whence K∞(M) is a solution to (4.1).
Now let M̃ ∈ I be any solution to (4.1) dominating M . It suffices to show that

M̃ ≥ Kn(M) for all n ∈ N0. We argue by induction. The induction basis is trivial.
For the induction step, suppose that n ≥ 1 and M̃ ≥Kn−1(M). Then by the induction
hypothesis and the definition of Kn(M), for x > 0,

M̃(x) =
∫

[x,∞)

M̃(y)K(x,dy) ≥
∫

[x,∞)

Kn−1(M)(y)K(x,dy) = Kn(M)(x). �

We note the following important corollary.

Corollary 4.8 The largest solution to (4.1) on I is given by K∞(id), where id denotes
the identity function.

It follows from Lemma 4.4 and Corollary 4.8 that the default function MS is dom-
inated by K∞(id). Under a mild assumption on the kernel K , we can assert that MS

coincides with K∞(id). Thus in this case, we can characterise the default function
Ms as the maximal solution to (4.1) dominated by the identity.

Theorem 4.9 Suppose that Assumption 3.2 is satisfied for any xa > 0. Then MS is
the maximal solution to (4.1) dominated by the identity. It is given by MS = K∞(id).
Moreover, MS(x) < x for all x > 0 and if MS 
≡ 0, then

lim sup
x→∞

MS(x)

x
= 1. (4.2)

Proof We first show by induction that for each n ∈ N0, we have

Kn(id)(x) = Ex[Sn1{Sn≥Sn−1≥···≥S1≥S0}], x > 0.

The induction basis n = 0 follows from the martingale property of S. For the induc-
tion step, let n ≥ 1. By the definition of Kn(id) and the Markov property of S, we
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obtain

Kn(id)(x) =
∫

[x,∞)

Kn−1(id)(y)K(x,dy) = Ex[Kn−1(id)(S1)1{S1≥x}]

= Ex

[
ES1[Sn1{Sn≥Sn−1≥···≥S1}]1{S1≥x}

]
= Ex[Sn1{Sn≥Sn−1≥···≥S1≥S0}].

Hence the definitions of K∞(id) and MS together with (3.3) give

K∞(id)(x) = lim
n→∞Ex[Sn1{Sn≥Sn−1≥···≥S1≥S0}]

= lim
n→∞Ex[(Sn − S∞)1{Sn≥Sn−1≥···≥S1≥S0}] = MS(x), x > 0.

It follows from Corollary 4.8 that MS is the maximal solution to (4.1) dominated by
the identity. Moreover, MS ≤ id, the fact that Px[S1 < x] = a(x) > 0 for all x > 0
and the martingale property of S give

MS(x) = Ex[MS(S1)1{S1≥x}] ≤ Ex[S11{S1≥x}] < Ex[S1] = x.

Finally, to establish (4.2), let us define the function HS : (0,∞) → [0,1] by
HS(x) = supy≥x

MS(x)
x

. If MS 
≡ 0, it follows from Proposition 4.2 that HS(x) > 0
for all x > 0. It suffices to show that HS(x) = 1 for all x > 0. Seeking a con-
tradiction, suppose there exists x′ > 0 such that HS(x′) < 1. Define the function
M : (0,∞) → [0,∞) by

M(y) =
⎧⎨
⎩

0 if x < x′,
MS(x)
HS(x′) if x ≥ x′.

Then M ∈ I by the fact that HS(x′) ≥ MS(x)
x

for x ≥ x′. Moreover, M is a
subsolution to (4.1) and M(x) > MS(x) for x ≥ x′. This together with Proposi-
tion 4.7 implies that K∞(M) is a solution to (4.1) dominated by the identity. Since
K∞(M)(x) ≥ M(x) > MS(x) for x > x′, this is in contradiction to MS being the
maximal solution to (4.1) dominated by the identity. �

The following corollary shows that if we can find a non-trivial subsolution to (4.1),
then S is a bubble.

Corollary 4.10 Suppose Assumption 3.2 is satisfied for any xa > 0. If M ∈ I is a
subsolution to (4.1), then M ≤ MS . If in addition lim infx→∞ M(x) > 0, then S is a
bubble under Px for all x > 0 for which S is not Px -a.s. bounded.

Proof Proposition 4.7 and Theorem 4.9 give M ≤ K∞(M) ≤ MS . The additional
claim then follows from Proposition 4.3. �
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A typical candidate for a subsolution in Corollary 4.10 is given by the call function
M(x) = (x −L)+ for some L > 0. This is illustrated by the following example. Note
that this example cannot be addressed with the results from Sect. 3.

Example 4.11 Suppose that K(x,dy) = k(x, y)dy for all x > 0, where the density k

satisfies

k(x, y) = 2

3(x + 1)
1[x,2x](y) for y ≥ x > 0

and k(x, y) on {(x, y) : 0 < y < x} is chosen such that K is a martingale kernel.
Then the function a from (3.1) satisfies a(x) = 1 − ∫

[x,∞)
k(x, y)dy = 3+x

3+3x
≥ 1

3 so
that Assumption 3.2 is satisfied for any xa > 0. Consider M(x) := (x − 3)+. Then
trivially

∫ ∞
x

M(y)k(x, y)dy ≥ 0 = M(x) for x ≤ 3 and

∫ ∞

x

M(y)k(x, y)dy = x − 3
x

x + 1
≥ x − 3 = M(x) for x > 3.

It follows that M is subsolution to (4.1), and we deduce that S has a bubble under Px

for all x > 0 by Corollary 4.10 since S is not Px -a.s. bounded for any x > 0.

While Theorem 4.9 provides a characterisation of the default function M , it does
not provide a criterion to decide whether (4.1) has a non-trivial, i.e., a non-zero non-
negative solution dominated by the identity. Moreover, it does not provide a criterion
to decide whether a given candidate solution M to (4.1) is indeed maximal. Under
a stronger assumption on the kernel K , we can provide a sufficient criterion for the
existence of non-trivial solutions to (4.1) dominated by the identity. Moreover, we
obtain a local uniqueness result in this case. To this end, recall the definitions of the
functions a and b from (3.1) and (3.2), respectively. Moreover, denote by ‖ · ‖sup the
supremum norm.

Theorem 4.12 Suppose infx>0 a(x) > 0. Then the following are equivalent:

(a) supx>0 xb(x) < ∞.
(b) For all L > 0 sufficiently large, the call function M(x) = (x − L)+ is a subso-

lution to (4.1).
(c) The default function MS is non-trivial and satisfies ‖ id−MS‖sup < ∞.

Moreover, if one of the above conditions is satisfied, MS is the unique solution to (4.1)
among all solutions M ∈ I satisfying ‖ id−M‖sup < ∞.

Proof (a) ⇒ (b) Set α := infx>0 a(x) > 0, β := supx>0 xb(x) and L ≥ β
α

. Then
the call function M(x) := (x − L)+ satisfies

∫
[x,∞)

M(y)K(x,dy) ≥ 0 = M(x) for
x ≤ L and
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∫
[x,∞)

M(y)K(x, dy) = x
(
1 − b(x)

) − L
(
1 − a(x)

)

= M(x) − β(x)x + α(x)L

≥ M(x) − β + αL ≥ M(x), x > L.

Hence M is a subsolution to (4.1).
(b) ⇒ (c) Let L > 0 be such that M(x) = (x − L)+ is a subsolution to (4.1).

Then we obtain MS ≥ M by Corollary 4.10, whence MS is non-trivial and satisfies
‖ id−MS‖sup < ‖ id−M‖sup = L.

(c) ⇒ (a) Since K(id) ≥ K∞(id) = MS by Proposition 4.7 and Theorem 4.9, it
follows that ‖ id−K(id)‖sup ≤ ‖ id−MS‖sup < ∞. Now the claim follows from the
fact that xb(x) = ∫

(0,x)
yK(x,dy) = x −K(id)(x) = id(x) −K(id)(x) for x > 0.

For the additional claim, set Isup := {M ∈ I : ‖ id−M‖sup < ∞}. Then Isup is
a complete metric space for the metric generated by the supremum norm. More-
over, K maps Isup to itself. Indeed, for each M ∈ Isup, there exists by (b) some
L ≥ ‖ id−M‖sup such that M̃(x) := (x − L)+ is a subsolution to (4.1). Hence by
monotonicity of K and the fact that M̃ ≤ M is a subsolution, we get

‖ id−K(M)‖sup ≤ ‖ id−K(M̃)‖sup ≤ ‖ id−M̃‖sup = L < ∞.

Finally, we show that K is a contraction on Isup. Let M1,M2 ∈ Isup. Then

|K(M1)(x) −K(M2)(x)| =
∣∣∣∣
∫

[x,∞)

(
M1(y) − M2(y)

)
K(x,dy)

∣∣∣∣
≤ ‖M1 − M2‖sup

∫
[x,∞]

K(x,dy)

≤ (1 − α)‖M1 − M2‖sup.

Taking the supremum over x shows that K is indeed a contraction since α > 0. Now
Banach’s fixed point theorem implies that K has a unique fixed point, and by (c), this
fixed point is MS . �

We proceed to illustrate Theorem 4.12 by an example.

Example 4.13 Suppose that K(x,dy) = k(x, y)dy for all x > 0, where the density
satisfies

k(x, y) = e

2

1 − e−x

1 − e−y

1

x
e−y/x for y ≥ x > 0

and k(x, y) on {(x, y) : 0 < y < x} is chosen such that K is a martingale kernel. Note
that

∫ ∞

x

k(x, y)dy <
e

2

∫ ∞

x

1

x
e−y/x dy = 1

2
.
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This implies in particular that a(x) ≥ 1/2 for all x > 0. In this case, the fixed point
equation (4.1) is given by

M(x) =
∫ ∞

x

M(y)
e

2

1 − e−x

1 − e−y

1

x
e−y/x dy,

which is equivalent to

M(x)x

1 − e−x
= e

2

∫ ∞

x

M(y)

1 − e−y
e−y/x dy.

As one easily checks, the function Mλ(x) := λx(1 − e−x), x > 0, is a solution in
I to (4.1) for any λ ∈ [0,1]. As MS is the largest solution to (4.1) dominated by the
identity, this yields the candidate M1(x) = x(1−e−x). But ‖ id−M1‖sup = e−1 < ∞,
and so it follows from Theorem 4.12 that MS = M1.

Combining Theorem 4.12 with Proposition 4.3, we get the following existence
results for bubbles. Note that this result covers cases that cannot be treated with the
theory of Sect. 3.

Corollary 4.14 Suppose that infx>0 a(x) > 0 and supx>0 xb(x) < ∞. Then S is a
bubble under Px for all x > 0 for which S is not Px -a.s. bounded.

5 Relation to the strict local martingale definition of asset price
bubbles in continuous-time models

In this final section, we discuss how our definition of bubbles in discrete time re-
lates to the strict local martingale definition of bubbles in continuous time. To ap-
proach this question, one first has to discretise a positive continuous local martingale
X = (Xt )t≥0 in continuous time in such a way that it becomes a discrete-time martin-
gale. Of course, there are many ways to do this, and we choose a somewhat canonical
construction. More precisely, we consider localising sequences (τn)n∈N of stopping
times with τn → ∞ P-a.s. such that for each n, both τn and the stopped process Xτn

are uniformly bounded. We then define the discrete-time process S = (Sn)n∈N by
Sn := Xτn . Then S is a martingale by the stopping theorem and satisfies S∞ = X∞
P-a.s., which implies that S is uniformly integrable if and only if X is uniformly
integrable.

The simplest way to get localising sequences as above is to choose two increas-
ing sequences of positive real numbers a = (an)n∈N and b = (bn)n∈N converging to
infinity and to define the sequence (τ

a,b
n )n∈N of stopping times by τ

a,b
0 := 0 and

τa,b
n := inf{t ≥ 0 : Xt ≥ bn} ∧ an, n ∈ N. (5.1)

Then (τ
a,b
n )n∈N is a localising sequence of stopping times for X with τ

a,b
n ≤ an and

supt≥0 X
τ

a,b
n

t ≤ bn, by continuity of X.
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In the special case that X is a Markov process, we should like to stop in such a way
that the discrete-time process S is again a Markov process. In this case, the simplest
way to get localising sequences as above is to choose two constants α,β > 0 and to
define the sequence of stopping times (τ

α,β
n )n∈N by τ

α,β
0 := 0 and

τα,β
n := inf

{
t ≥ τ

α,β
n−1 : Xt ≥ (1 + β)X

τ
α,β
n−1

} ∧ (τ
α,β
n−1 + α), n ∈ N. (5.2)

In this case, it is still true that (τ
α,β
n )n∈N is a localising sequence of stopping times

for X and that τ
α,β
n and Xτ

α,β
n are uniformly bounded.

Our first goal in this section is to show that if X is a continuous positive strict
local martingale, then the discrete-time process S is a bubble for either choice of
stopping times above. The proof of this result relies on the following deep charac-
terisation of strict local martingales in continuous time; cf. Meyer [13], Delbaen and
Schachermayer [5] and Kardaras et al. [11]. Let X = (Xt )t≥0 be a positive càdlàg lo-
cal P-martingale with X0 = x. Then under some technical assumptions on the prob-
ability space and the underlying filtration, there exists a probability measure Q with
Q|Ft

� P|Ft
for all t ≥ 0 such that Y := 1/X is a nonnegative true Q-martingale,

and for all bounded stopping times τ and all A ∈Fτ ,

P[A] = xEQ [Yτ 1A] .

Especially, we have the identity

E
P[X0 − Xt ] = xQ[Yt = 0], t ≥ 0,

i.e., X is a strict local martingale on [0, t] if and only if Q[Yt = 0] > 0.
With this, we have the following two results.

Proposition 5.1 Let X = (Xt )t≥0 be a continuous positive strict local P-martingale.
Let a = (an)n∈N and b = (bn)n∈N be increasing sequences of positive real numbers
converging to ∞. Define the sequence of stopping times (τ

a,b
n )n∈N by (5.1) and set

S
a,b
n = X

τ
a,b
n

for n ∈N0. Then the measure P is a bubble measure for the discrete-time

martingale Sa,b = (S
a,b
n )n∈N0 .

Proposition 5.2 Let X = (Xt )t≥0 be a continuous positive strict local Markov mar-
tingale under the measure Px . Let α,β > 0, define the sequence of stopping times
(τ

α,β
n )n∈N by (5.2) and set S

α,β
n = X

τ
α,β
n

for n ∈ N0. Then the measure Px is a bubble

measure for the discrete-time Markov martingale Sα,β = (S
α,β
n )n∈N0 .

We only establish the proof of Proposition 5.1. The proof of Proposition 5.2 is
similar and left to the reader.



Bubbles in discrete-time models 921

Proof of Proposition 5.1 Since X is a local martingale with respect to its natural fil-
tration and (τ

a,b
n )n∈N is adapted to this filtration, we may assume without loss of

generality that X is the canonical process on C([0,∞); (0,∞]) with X0 = x > 0.
Set τ∞ := inf{t ≥ 0 : Xt = ∞}. Then τ

a,b
n < τ∞ for all n ∈N.

By the above results, there exists a measure Q on C([0,∞); (0,∞]) which has
Q|Ft

� P|Ft
for all t ≥ 0 and such that Y := 1/X is a nonnegative Q-martingale and

E
P [Xτ 1A] = xQ[A] for each bounded stopping time τ < τ∞ and each A ∈ Fτ . Let

k := min{n ∈ N : E[X0 − Xan] > 0}. Then for n ≥ k, using that τ
a,b
n is bounded by an

and τ
a,b
n < τ∞, we obtain

E
P
[
Sa,b

n 1{Sa,b
k ≤S

a,b
k+1≤···≤S

a,b
n }

] = E
P
[
X

τ
a,b
n

1{X
τ
a,b
k

≤X
τ
a,b
k+1

≤···≤X
τ
a,b
n

}
]

= xQ
[
Y

τ
a,b
n

≤ Y
τ

a,b
n−1

≤ · · · ≤ Y
τ

a,b
k

]

≥ xQ

[
Yan

<
1

bn

, . . . , Y ak+1 <
1

bk+1

]

≥ xQ[Y ak+1
= 0]

= E
P[X0 − Xak+1 ] > 0.

Taking the limit as n → ∞ on the left-hand side, it follows that P is a bubble measure
for S by Theorem 2.4. �

We proceed to illustrate Proposition 5.2 by an example.

Example 5.3 Let (Xt )t≥0 be the three-dimensional inverse Bessel process, i.e., X

is the unique strong solution to the SDE dXt = −X2
t dBt , where B = (Bt )t≥0 is

a Px -Brownian motion. The process Y := 1/X is then a Q1/x -Brownian motion
stopped when it reaches zero.

Fix α,β > 0. We proceed to calculate the Markov kernel K(x, dy) for Sα,β under
Px . Denote by W a standard Brownian motion starting at zero and by 	 the distribu-
tion function of a standard normal random variable. Using the reflection principle for
Brownian motion and denoting the running supremum and the running infimum of a
process Z by Z and Z, respectively, we obtain

Px[Sα,β

1 = (1 + β)x] = Px

[
X

τ
α,β
1

= (1 + β)x
]

= xE
Q

1/x

[
Y

τ
α,β
1

1{Y
τ
α,β
1

= 1
(1+β)x

}
] = 1

1 + β
Q1/x

[
Yα ≤ 1

(1 + β)x

]

= 1

1 + β
Q

[
Wα ≥ 1

x
− 1

(1 + β)x

]
= 2

1 + β
	

(
− β

(1 + β)x
√

α

)
.

Moreover, for z ∈ (0, (1 + β)x), using the joint density of Brownian motion and its
running supremum, we obtain
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Px[Sα,β
1 ≤ z] = Px

[
X

τ
α,β
1

≤ z
] = Px[Xα ≤ z,Xα < (1 + β)x]

= xE
Q

1/x

[
Yα1{Yα≥ 1

z
}1{Yα> 1

(1+β)x
}
]

= xEQ

[(
1

x
− Wα

)
1{Wα≤ 1

x
− 1

z
}1{Wα< 1

x
− 1

(1+β)x
}
]

= x

∫ 1
x
− 1

z

−∞

(
1

x
− y

)∫ β
(1+β)x

0

2(2u − y)√
2πα3

exp

(
− (2u − y)2

2α

)
dudy

= x

∫ 1
x
− 1

z

−∞

(
1

x
− y

)∫ 2β
(1+β)x

−y
√

α

−y√
α

v√
2πα

exp

(
−v2

2

)
dv dy

= x

∫ 1
x
− 1

z

−∞
1√
2πα

(
1

x
− y

)(
exp

(
− y2

2α

)
− exp

(
− (

2β
(1+β)x

− y)2

2α

))
dy

= x

∫ z

0

1√
2παw3

(
exp

(
− ( 1

x
− 1

w
)2

2α

)
− exp

(
− (

2β
(1+β)x

− 1
x

+ 1
w

)2

2α

))
dw.

Thus the Markov kernel K(x,dy) for Sα,β under Px is given by

K(x,dy) = 2

1 + β
	

(
− β

(1 + β)x
√

α

)
δ(1+β)x(dy)

+ x√
2παy3

(
e− ( 1

y − 1
x )2

2α − e− ( 1
y + β−1

(1+β)x
)2

2α

)
1(0,(1+β)x)(y)dy.

In this way, we have constructed a somewhat natural Markov bubble in discrete time.

We finish this section by providing a converse to Proposition 5.1.

Theorem 5.4 Let X = (Xt )t≥0 be a continuous local P-martingale that P-a.s. never
becomes constant, i.e., P[Xt = X∞ for all t ≥ s] = 0 for all s ≥ 0. Then X is a strict
local P-martingale if and only if for all sequences a = (an)n∈N and b = (bn)n∈N con-
verging to infinity, the measure P is a bubble measure for the discrete-time martingale
Sa,b = (S

a,b
n )n∈N0 .

Proof If X is a strict local martingale, the result follows from Proposition 5.1. Con-
versely, suppose X is a true P-martingale. As in the proof of Proposition 5.1, we as-
sume without loss of generality that X is the canonical process on C([0,∞); (0,∞])
with X0 = 1. Then there exists a measure Q on C([0,∞); (0,∞]) with Q|Ft

� P|Ft

for all t ≥ 0 and such that Y := 1/X is a positive Q-martingale that converges to 0
Q-almost surely and E

P [Xτ 1A] = Q[A] for each bounded stopping time τ < τ∞ and
each A ∈ Fτ . By Proposition A.1, there exists an increasing sequence a = (an)n∈N
converging to infinity such that for each k ∈ N,

Q[Yak
≥ Yak+1 ≥ · · · ] = 0. (5.3)
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Since Y is positive Q-a.s., we can find an increasing sequence b = (bn)n∈N converg-
ing to infinity such that Q[Yan

≤ 1/bn] < 2−n for all n ∈ N. By the Borel–Cantelli
lemma, this implies that

Q

[
Yak

≤ 1

bk

for infinitely many k

]
= 0. (5.4)

Then for any k ∈ N, using (5.3) and (5.4) and recalling that each τ
a,b
n is bounded by

an, we obtain

lim
n→∞E

P
[
Sa,b

n 1{Sa,b
k ≤S

a,b
k+1≤···≤S

a,b
n }

]

= lim
n→∞Q

[
Y

τ
a,b
n

≤ Y
τ

a,b
n−1

≤ · · · ≤ Y
τ

a,b
k

]

= Q
[
Y

τ
a,b
k

≥ Y
τ

a,b
k+1

≥ · · · ]

≤ Q

[
Ya�

≤ 1

b�

for infinitely many �

]
+Q[Ya�

≤ Ya�−1 eventually] = 0.

By Theorem 2.4, this shows that P is not a bubble measure for Sa,b . �

Appendix: Auxiliary results

Proposition A.1 Let (Mt)t≥0 be a positive continuous local martingale that P-a.s.
never becomes constant, i.e., P[Mt = M∞ for all t ≥ s] = 0 for all s ≥ 0. Then
there exists an increasing sequence of nonnegative real numbers (ak)k∈N satisfying
limk→∞ ak = ∞ such that for each k ∈N,

P [Mak
≥ Mak+1 ≥ · · · ] = 0.

Proof For n,m ∈ N0, set Dn
m := {n + j2−m : j ∈ N0}. Then for each fixed n ∈ N0,

Dn
m is increasing in m. Set Dn∞ := ⋃

m∈N0
Dn

m, which is dense in [n,∞). Since M

is a continuous local martingale that P-a.s. never becomes constant, its paths P-a.s.
never become monotone. By continuity of the paths of M , this implies that for each
n ∈N0,

P[Ms ≥ Mt for all s, t ∈ Dn∞ with s < t] = 0.

By σ -continuity of P, for each n ∈N0, there exists mn ∈N0 such that

P[Ms ≥ Mt for all s, t ∈ Dn
mn

with s < t] ≤ 2−n.

We may assume without loss of generality that the sequence (mn)n∈N is nondecreas-
ing. Define the set D by

D :=
⋃

n∈N0

(
Dn

mm
∩ [n,n + 1)

)
.
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Then D ∩ [n,∞) ⊇ Dn′
mn′ for all n′ ≥ n. This implies that for each k ∈ N0,

P [Ms ≥ Mt for all t, s ∈ D ∩ [n,∞) with s < t] ≤ lim
n′→∞

2−n′ = 0.

If (ak)k∈N is an enumeration of D in increasing order, the result follows. �

Remark A.2 Note that in the situation of Proposition A.1, there also exist in general
sequences (ak)k∈N with limk→∞ ak = ∞ such that

P [Ma1 ≥ Ma2 ≥ · · · ] > 0.

For example, let Mt = exp(Wt − t/2), where W is a Brownian motion. Define the
sequence (ak)k∈N by a1 = 1 and ak = ak−1 +k. Then using that Brownian motion has
independent and normally distributed increments, denoting the distribution function
of a standard normal random variable by 	, we obtain

P[Ma1 ≥ Ma2 ≥ · · · ] =
∞∏

k=1

	

(√
k

2

)
≥

∞∏
k=1

(
1 − 1√

2π
√

k
2

exp
(

− 1

8
k
))

> 0.
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14. Mijatović, A., Urusov, M.: On the martingale property of certain local martingales. Probab. Theory
Relat. Fields 152, 1–30 (2012)

15. Pal, S., Protter, P.: Analysis of continuous strict local martingales via h-transforms. Stoch. Process.
Appl. 120, 1424–1443 (2010)

16. Perkowski, N., Ruf, J.: Supermartingales as Radon–Nikodým densities and related measure exten-
sions. Ann. Probab. 43, 3133–3176 (2015)

17. Protter, P.: A mathematical theory of financial bubbles. In: Henderson, V., Sircar, R. (eds.) Paris-
Princeton Lectures on Mathematical Finance 2013. Lecture Notes in Mathematics, vol. 2081,
pp. 1–108. Springer, Cham (2013)

18. Roch, A.: Asymptotic asset pricing and bubbles. Math. Financ. Econ. 12, 275–304 (2018)
19. Williams, D.: Probability with Martingales. Cambridge University Press, Cambridge (1991)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	Bubbles in discrete-time models
	Abstract
	Introduction
	Definition and characterisation of bubbles
	Characterisation of bubble measures for Markov chains
	A fixed point equation associated to a Markovian bubble
	Relation to the strict local martingale definition of asset price bubbles in continuous-time models
	Appendix: Auxiliary results
	Acknowledgements
	References


