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Divisibility of Spheres with Measurable Pieces

Clinton T. Conley, Jan Grebík and Oleg Pikhurko

Abstract. For an A-tuple (W1, ... , WA ) of special orthogonal 3 × 3 matrices, we say that the

Euclidean (3 − 1)-dimensional sphere S3−1 is (W1, ... , WA )-divisible if there is a subset � ⊆

S

3−1 such that its translations by the rotations W1, ... , WA partition the sphere. Motivated by

some old open questions of Mycielski and Wagon, we investigate the version of this notion

where the set � has to be measurable with respect to the spherical measure. Our main result

shows that measurable divisibility is impossible for a “generic” (in various meanings) A-tuple

of rotations. This is in stark contrast to the recent result of Conley, Marks and Unger which

implies that, for every “generic” A-tuple, divisibility is possible with parts that have the prop-

erty of Baire.
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43A90, 57M60.

Keywords. Euclidean sphere, divisibility under a group action, measurable set, special

orthogonal group.

1. Introduction

Let SO(3) denote the group of special orthogonal 3 × 3 matrices, that is, real

3 × 3 matrices " such that the determinant of " is 1 and ")" = �3 , where �3

denotes the identity 3 × 3 matrix. The elements of this group are naturally identified

with orientation-preserving isometries of the Euclidean unit sphere

S

3−1
:= {x ∈ R3 | ‖x‖2 = 1},

and we will often refer to them as rotations.

For an A-tuple γ = (W1, ... , WA ) ∈ SO(3)A , we say that S3−1 is γ-divisible (or

admits a γ-division) if there is � ⊆ S3−1 such that its translates W1.�, ... , WA .� par-

tition S3−1 (that is, for every x ∈ S3−1 there are unique y ∈ � and 8 ∈ [A] such that

x = W8 .y, where we denote [A] := {1, ... , A}). Of course, a set � works for γ if and

only if WA .� works for β := (W1W
−1
A , ... , WA−1W

−1
A , �3). However, we do not normally
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assume that any particular rotation is the identity, mostly for the notational conveni-

ence so that all indices can be treated uniformly.

We say that S3−1 is A-divisible if there is an A-tuple γ ∈ SO(3)A such that S3−1 is

γ-divisible (or, in other words, if we can partition S3−1 into A congruent pieces). The

integer pairs 3, A > 2 such that S3−1 is A-divisible have been completely classified

(see e.g. Theorem 6.6 in the book by Tomkowicz and Wagon [23]). Namely, the only

pairs when the answer is in the negative are when A = 2 and 3 is odd. In this case, the

impossibility of any (W1, W2)-division follows from considering a fixed point x ∈ S3−1

of W−1

1
W2 which exists as the dimension 3 − 1 of the sphere is even. (Indeed, no set �

can work here: the translates W1.� and W2.� intersect if x ∈ � and do not cover W1.x

ifx ∉ �.) On the other hand, the case of 3 = 2 is trivial (e.g. one can take the A rotations

of the circle S1 by multiples of the angle 2c/A) while the first published solution for

S

2 seems to be by Robinson [22, Page 254]. Furthermore, the A-divisibility for S3−1

easily implies the A-divisibility of S3+1, see e.g. the proof of Theorem 6.6 in [23] or

Lemma 5.1 here.

Mycielski [18] showed that there is a subset � ⊆ S2 such that for every integer

A > 3 there are W1, ... , WA with W1.�, ... , WA .� partitioning the sphere. This should be

compared with the classical paradox of Hausdorff [13] who produced such a set �

that works, apart from a countable subset of S2 of errors, for every A > 2. (Note that

we cannot take A = 2 in Mycielski’s result because S2 is not 2-divisible.)

Let ` be the spherical measure on S3−1, which can be defined as the (3 − 1)-

dimensional Hausdorff measure with respect to the standard arc-length distance on

the sphere (where the distance between x, y ∈ S3−1 is the angle between the vectors

x and y). We call a subset ofS3−1 measurable if it belongs to the `-completion of the

Borel f-algebra. Note that the paradoxical set � in the results of Hausdorff [13] and

Mycielski [18] cannot be measurable with respect to the (rotation-invariant) measure

` on S2, for otherwise the existence of a partition W1.�, ... , WA .� of S3−1 up to a

countable (and thus `-null) set implies that `(�) = 1/A, a contradiction to A assuming

different values. Mycielski [19,20] asked if one can show thatS2 is A-divisible without

using the Axiom of Choice. Wagon [24, Question 4.15] (or Question 5.15 in [23])

asked if the 3-divisibility ofS2 can be shown with measurable sets (thus the Axiom of

Choice can be applied on a `-null set). Measurable divisibility for higher dimensional

spheres is easier because of a constructive way of lifting up a division from S

3−1

to S3+1. It is known that S3−1 is A-divisible with measurable pieces for A > 3 and odd

3 > 5 (which follows from the proof of Theorem 6.6(b) in [23], see Lemma 5.1 here)

and with Borel pieces for A > 2 and even 3 > 2 (see e.g. [23, Theorem 6.6(a)]).

The above questions by Mycielski and Wagon are still open, although some related

progress was obtained by Conley, Marks and Unger [4] whose general results imply

that, unless A = 2 and 3 is odd, the sphere S3−1 is A-divisible so that each piece has
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the property of Baire (that is, under one of equivalent definitions, each piece can be

represented as the symmetric difference of a Borel set and a meager set; for more

details see e.g. the textbook on descriptive set theory by Kechris [15, Section 8.F]).

The derivation of this result is given in Proposition 1.2 here.

Here we propose to study the more general question of describing the set of those

A-tuples γ ∈ SO(3)A such that S3−1 is γ-divisible with measurable pieces.

First, we consider the case when the rotations are “generic”. More precisely, let

us call an A-tuple of matrices γ = (W1, ... , WA ) ∈ SO(3)A generic if, for every poly-

nomial ? with rational coefficients in 32A variables, ?(γ) = 0 implies that ?(β) = 0

for every β ∈ SO(3)A , where e.g. ?(γ) denotes the value of ? on the 32A individual

entries of the matrices corresponding to W1, ... , WA under the standard basis of R3.

In other words, this property states that if a polynomial with rational (equivalently,

integer) coefficients vanishes on (the matrix entries of) γ then it necessarily vanishes

everywhere on SO(3)A .

Our main result shows that no generic γ works in the measurable setting, even in

a rather relaxed fractional version.

Theorem 1.1. Let 3 > 2 and A > 2 be integers. Let (W1, ... , WA ) ∈ SO(3)A be generic.

Then every 5 ∈ !2 (S3−1, `) with
∑A
8=1
W8 . 5 = 1 `-almost everywhere is the constant

function 1/A `-almost everywhere, where W8 . 5 denotes the function that maps x ∈

S

3−1 to 5 (W−1

8 .x).

In sharp contrast, we can derive with some extra work from the results in [4] that

every generic γ works with pieces that have the property of Baire.

Proposition 1.2. Let A > 2 and 3 > 2 be arbitrary integers, except if 3 is odd then we

require that A > 3. Let (W1, ... , WA ) ∈ SO(3)A be generic. Then there is a subset � of

S

3−1 with the property of Baire such that W1.�, ... , WA .� partition S3−1.

Theorem 1.1 and Proposition 1.2 add to a growing body of results in measur-

able combinatorics (see e.g. the recent survey by Kechris and Marks [16]), where the

requirements that the pieces are measurable and have the property of Baire respect-

ively lead to different answers.

The following lemma shows that, in various meanings, “most” elements of SO(3)A

are generic.

Lemma 1.3. Let A > 1, 3 > 2 and N be the set of A-tuples in SO(3)A that are not

generic. Then the following statements hold.

(i) The set N has measure 0 with respect to the Haar measure on the group

SO(3)A .
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(ii) The set N is a meager subset of SO(3)A with respect to the topology induced

by the Euclidean topology onR32A ⊇ SO(3)A .

Also, by using some algebraic geometry, we can give a more concrete character-

isation of generic A-tuples of rotations. In particular, the following lemma allows us to

write an “explicit” generic point: just let the entries above the diagonals be sufficiently

small reals that are algebraically independent overQ and extend this to an element of

SO(3)A by Claim 8.3 here.

Lemma 1.4. Let A > 1, 3 > 2, and γ ∈ SO(3)A . Then γ is generic if and only if

the
(3
2

)
A-tuple of the matrix entries of γ strictly above the diagonals is algebraically

independent overQ.

In the extreme opposite case, we show that, for odd 3 > 3, γ-divisibility cannot

be attained when γ generates a finite subgroup of SO(3).

Proposition 1.5. Let 3 > 3 be odd. Suppose that W1, ... , WA ∈ SO(3), A > 3, generate

a finite subgroup � ⊆ SO(3). Then S3−1 is not (W1, ... , WA )-divisible.

Some standard general results of Borel combinatorics (e.g. Lemma 5.12 and The-

orem 5.23 from [21]) imply that if S3−1 is γ-divisible and every orbit of the subgroup

of SO(3) generated by W1, ... , WA is finite, then there is a Borel γ-division. The fol-

lowing result gives that just one finite orbit is enough to convert a γ-division into a

measurable one.

Proposition 1.6. Let 3 > 2 and γ = (W1, ... , WA ) ∈ SO(3)A . Let � be the subgroup

of SO(3) generated by W1, ... , WA . Suppose that there is z ∈ S3−1 such that its �-

orbit �.z is finite. Then S3−1 is γ-divisible if and only if S3−1 is γ-divisible with

measurable pieces.

Of course, this leaves a wide range of unresolved cases. As an initial partial step,

we completely characterise those A-tuples of rotations for which the circle S1 is divis-

ible with measurable pieces for A 6 3.

This paper is organised as follows. In Section 2 we give a quick overview of basic

definitions and facts about spherical harmonics and use these to prove Theorem 1.1,

which is the main result of this paper. Proposition 1.5 is proved in Section 3 using

Euler’s characteristic. Propositions 1.6 and 1.2 are proved in Sections 4 and 7 respect-

ively. In Section 5 we describe the standard construction of how an A-division of S3−1

can be lifted to S3+1 and observe that this gives measurable pieces (Lemma 5.1). In

Section 6 we study various versions of measurable divisibility when 3 = 2; in par-

ticular, we characterise A-tuples γ ∈ SO(2)A for which the circle S1 is γ-divisible
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with measurable pieces for A 6 3. The rather technical Section 8 is dedicated to prov-

ing Lemmas 1.3 and 1.4. Section 8.1 presents some basics of algebraic geometry. In

Section 8.2 we prove some results about SO(3)A and use them to prove Lemma 1.3.

In particular, we show that the variety SO(3)A ⊆ R32A is irreducible and the entries

above the diagonals form a transcendence basis for its function field. While these res-

ults are fairly standard, we present their proofs since we could not find any published

statements that suffice for our purposes. In Section 8.3 we prove an auxiliary lemma

from algebraic geometry and use it to derive Lemma 1.4.

2. Spherical harmonics

Let an integer 3 > 2 be fixed throughout this section.

For an introduction to spherical harmonics on S3−1 we refer to the book by Groe-

mer [10] whose notation we generally follow. Recall that ` denotes the spherical

measure on S3−1. Thus the total measure of the sphere is

f3 := `(S3−1) =
2c3/2

� (3/2)
.

As 3 is fixed, the dependence on 3 is usually not mentioned except for f3 (since

f3−1 will also appear in some formulas). Also, the shorthand a.e. stands for `-almost

everywhere.

By [10, Lemma 1.3.1], the density of the push-forward of ` under the projection

to any coordinate axis is

(2.1) d(C) :=

{
f3−1 (1 − C2) (3−3)/2, −1 < C < 1,

0, otherwise.

A polynomial ? ∈ R[x], x = (G1, ... , G3), is called harmonic if Δ ? = 0, where

Δ :=
m2

mG2

1

+ ... +
m2

mG2

3

is the Laplace operator. A spherical harmonic is a function from S

3−1 to the reals

which is the restriction to S3−1 of a harmonic polynomial on R3. Let H be the

vector space of all spherical harmonics. For an integer = > 0, let H= ⊆ H be the

linear subspace consisting of all functions 5 : S
3−1 → R that are the restrictions to

S

3−1 of some harmonic polynomial ? which is homogeneous of degree =, where we

regard the zero polynomial as homogeneous of any degree. By [10, Lemma 3.1.3], the

polynomial ? is uniquely determined by 5 ∈ H=, so we may switch between these two
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representations without mention. It can be derived from this ([10, Theorem 3.1.4])

that the dimension of H= is

(2.2) #= :=

(
3 + = − 1

=

)
−

(
3 + = − 3

= − 2

)
,

where we agree that
(3+=−3

=−2

)
= 0 for = = 0 or 1.

Let 〈·, ·〉 denote the scalar product on !2 (S3−1, `) (while x · y :=
∑3
8=1

G8H8

denotes the scalar product of x,y ∈ R3). It is known ([10, Theorem 3.2.1]) that

(2.3) 〈 5 , 6〉 = 0, for all 5 ∈ H8 and 6 ∈ H 9 with 8 ≠ 9 ,

that is, H0,H1, ... are pairwise orthogonal subspaces of H ⊆ !2 (S3−1, `). Note that

the group SO(3) acts naturally on !2 (S3−1, `) via the shift action

(2.4) (W. 5 ) (v) := 5 (W−1 .v), for W ∈ SO(3), 5 ∈ !2(S3−1, `), v ∈ S3−1.

Each space H= is invariant under this action ([10, Proposition 3.2.4]) since, on R3 ,

rotations preserve both the Laplace operator as well as the set of homogeneous degree-

= polynomials.

An important role is played by the Gegenbauer polynomials (%0, %1, ... ) which

are obtained from (1, C, C2, ... ) by the Gram-Schmidt orthonormalization process on

!2([−1, 1], d(C) dC), except they are normalised to assume value 1 at C = 1 (instead of

being unit vectors in the !2-norm). In the special case 3 = 3 (when d is the constant

function), we get the Legendre polynomials. Of course, the degree of %= is exactly =.

Let us collect some of their standard properties that we will use.

Lemma 2.1. For every integer = > 0 the following holds.

(i) The polynomial %= has rational coefficients.

(ii) For every v ∈ S3−1, the function %v= : S
=−1 → R, defined by

(2.5) %v= (x) := %= (v · x), for x ∈ S3−1,

belongs to H=.

(iii) There is a choice of v1, ... , v#=
∈ S3−1 such that the functions %

v8
= , 8 ∈ [#=],

form a basis of the vector space H=.

(iv) For every u,v ∈ S3−1, we have 〈%u= , %
v
= 〉 =

f3

#=
%= (u · v).

Proof. Part (i) follows from the formula of Rodrigues ([10, Proposition 3.3.7]) that

provides an explicit expression for %=, or from the standard recurrence relation that

writes %=+1 in terms of %= and %=−1 for = > 0 ([10, Proposition 3.3.11]) together with

the initial values %−1 (C) := 0 and %0(C) = 1.
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Part (ii), namely the claim that each %v= is in H=, is one of the statements of

[10, Theorem 3.3.3].

Part (iii) is the content of [10, Theorem 3.3.14]. Alternatively, notice that under

the action in (2.4) we have for every u, v ∈ S3−1 and W ∈ SO(3) that (W.%v= ) (u) =

%= (v · (W−1 .u)) = %= ((W.v) · u), that is,

(2.6) W.%v= = %
W.v
= .

Thus the linear span of %v= , v ∈ S3−1, is a non-zero SO(3)-invariant subspace of H=.

By [10, Theorem 3.3.4], the only such subspace is H= itself, giving the required.

Part (iv) follows from

〈%u= , %
v
= 〉 =

(∫
1

−1

(%= (C))
2d(C) dC

)
%= (u · v) =

f3

#=
%= (u · v),

where the first equality is a special case of the Funk-Hecke Formula ([10, Theorem

3.4.1]) and the second equality (which by (2.1) amounts to computing the !2-norm

of any %u= ∈ !2 (S3−1, `)) is proved in [10, Proposition 3.3.6].

We need the following strengthening of Lemma 2.1.(iii), where we additionally

require that the vectors v8 are rational.

Lemma 2.2. For every integer = > 0, there is a choice of v1, ... , v#=
∈ S3−1 ∩Q3

such that the functions %
v8
= , 8 ∈ [#=], form a basis of the vector space H=.

Proof. We pick v8 in S3−1 ∩Q3 one by one as long as possible so that the corres-

ponding functions %
v8
= are linearly independent as elements of H=. Let this procedure

produce v1, ... ,vℓ . Suppose that ℓ < #= as otherwise we are done. Let vℓ+1 = x, with

x = (G1, ... , G3 ) ∈ S
3−1 being viewed as a vector of unknown variables. Consider the

(ℓ + 1) × (ℓ + 1) matrix " = " (x) with entries

(2.7) "8 9 :=
1

f3
〈%v8
= , %

v 9

= 〉, for 8, 9 ∈ [ℓ + 1].

In other words, f3" is the Gram matrix of the vectors %
v1

= , ... , %
vℓ+1

= ∈ !2 (S3−1, `).

In particular, the determinant det(") of " is 0 if and only if %
vℓ+1

= is in the span of

the (linearly independent) vectors %
v1

= , ... , %
vℓ
= (by e.g. [14, Theorem 7.2.10]).

By Lemma 2.1.(iv) we have that "8 9 =
1

#=
%= (v8 · v 9). Thus the determinant of

" is a polynomial function of x.

By Lemma 2.1.(iii) and ℓ < #3 (and the linear independence of %
v1

= , ... , %
vℓ
= ),

there is some choice of vℓ+1 ∈ S
3−1 with det(") ≠ 0. That is, the polynomial det(")

is not identically zero on S3−1.

We need the following easy claim that can be proved, for example, by induction

on 3 > 2 with the base case 3 = 2 following from S1 containing all points of the form
1

<2+=2
(<2 − =2, 2<=) for (<, =) ∈ Z2 \ { (0, 0) }.
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Claim 2.3. For every 3 > 1, the set S3−1 ∩Q3 of the points on the sphere with all

coordinates rational is dense in S3−1 with respect to the standard topology on the

sphere (i.e. the one inherited from the Euclidean spaceR3 ⊇ S3−1).

Since det("), as a polynomial function ofx ∈S3−1, is continuous and not identic-

ally zero, it has to be non-zero on some point x of the dense subset S3−1 ∩Q3 . Thus,

if we let vℓ+1 to be such a vector x, then the functions %
v1

= , ... , %
vℓ+1

= ∈ !2(S3−1, `)

are linearly independent. This contradiction to the maximality of v1, ... , vℓ proves

the lemma.

For an integer = > 0, an A-tuple γ = (W1, ... , WA ) ∈ SO(3)A and a unit vector

v ∈ S3−1 define

(2.8) �v
=,γ :=

A∑
8=1

%
W−1

8
.v

= .

By Lemma 2.1.(ii), each function �v
=,γ : S3−1 →R, as a linear combination of some

spherical harmonics %
W−1

8
.v

= ∈ H=, is itself in H=.

Lemma 2.4. If γ ∈ SO(3)A is generic then, for every integer = > 0, the linear span

of {�v
=,γ | v ∈ S3−1} is the whole space H=.

Proof. By Lemma 2.2, we can fix some vectors v1, ... , v#=
∈ S3−1 ∩Q3 such that

%
v1

= , ... , %
v#=
= form a basis for H=. Let β = (V1, ... , VA ) be an arbitrary element of

SO(3)A (not necessarily generic). Consider the #= × #= matrix ! = !(β) with entries

!8 9 :=
1

f3
〈�v8

=,β
, %

v 9

= 〉, for 8, 9 ∈ [#=].

Recall that the vectors %
v8
= , 8 ∈ [#=], form a (not necessarily orthonormal) basis

of the linear space H=. Write the vectors �
v8

=,β
in this basis:

(�v1

=,β
, ... , �

v#=

=,β
)) = � (%v1

= , ... , %
v#=
= )) ,

for some #= × #= matrix �. Then ! is the matrix product �" , where " is the

Gram matrix of the vectors %
v8
= multiplied by the constant f−1

3
(that is, the entries of

" are defined by the formula in (2.7)). The matrix " is non-singular by the linear

independence of %
v8
= , 8 ∈ [#=]. Thus det(!) ≠ 0 if and only if �

v1

=,β
, ... , �

v#=

=,β
are

linearly independent as vectors in H=.

By Lemma 2.1.(iv), we have for every 8, 9 ∈ [#3] that

!8 9 :=
1

f3

A∑
B=1

〈%
V−1
B .v8
= , %

v 9

= 〉 =
1

#=

A∑
B=1

%= ((V
−1

B .v8) · v 9) =
1

#=

A∑
B=1

%= (v8 · (VB .v 9)).
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Since v1, ... ,v#=
are fixed, this writes each !8 9 as a polynomial in the 32A entries

of the matrices V1, ... , VA . Moreover, all coefficients of this polynomial are rational

since each v8 belongs toQ3 and all coefficients of %= are rational by Lemma 2.1.(i).

Thus the determinant of ! is equal to ?(β) for some polynomial ? with coefficients

inQ.

Note that if we let each V8 be the identity matrix �3, then �v
=,β

becomes A%v= for

every v ∈ S3−1 and we have !8 9 =
A
f3

〈%
v8
= , %

v 9

= 〉 for 8, 9 ∈ [#=] and det(!) ≠ 0 (since

%
v1

= , ... , %
v#=
= are linearly independent). Thus ?(�3 , ... , �3 ) ≠ 0. Since γ ∈ SO(3)A is

generic, we have that ?(γ) ≠ 0, that is, the matrix ! for β := γ is non-singular. This

means that the functions �
v8
=,γ , 8 ∈ [#=], are linearly independent. Since they all lie

in H= and their number equals the dimension of this linear space, they span H=. The

lemma is proved.

Given the above auxiliary results, we can derive Theorem 1.1 rather easily.

Proof of Theorem 1.1. Recall that γ = (W1, ... , WA ) ∈ SO(3)A , A > 2, is generic and

we have to show that S3−1 is not “fractionally” γ-divisible.

So take any 5 ∈ !2 (S3−1, `) such that
∑A
8=1
W8 . 5 = 1 a.e. Since spherical harmon-

ics are dense in !2(S3−1, `) ([10, Corollary 3.2.7]) and we have the direct sum H =

⊕∞
==0

H= whose components are orthogonal to each other by (2.3), we can uniquely

write 5 =
∑∞
==0

�= in !2 (S3−1, `) with �= ∈ H= for every = > 0. Since the action

of SO(3) preserves each space H= as well as the scalar product on !2 (S3−1, `), we

have that W. 5 =
∑∞
==0

W.�= is the harmonic expansion of W. 5 ∈ !2 (S3−1, `).

Take any integer = > 1. Recall that the sum
∑A
8=1
W8 . 5 is a constant function 1 a.e.

By (2.3), the invariance of the scalar product under SO(3) and by (2.6), we have that,

for every v ∈ S3−1,

0 = 〈%v= , 1〉 = 〈%v= , W1. 5 + ... + WA . 5 〉 = 〈%v= , W1.�= + ... + WA .�=〉

= 〈W−1

1
.%v= + ... + W−1

A .%
v
= , �=〉 = 〈�v

=,γ , �=〉,

where �v
=,γ was defined by (2.8). Since the functions�v

=,γ , v ∈ S3−1, span the whole

space H= by Lemma 2.4, we must have that �= = 0.

As = > 1 was arbitrary, we have that 5 is a constant function a.e. (whose value

must be 1/A). This finishes the proof of Theorem 1.1.

Remark 2.5. The statement of Theorem 1.1 remains true also when WA = �3 and

(W1, ... , WA−1) is a generic point of SO(3)A−1. One way to see this is to run the same

proof except the A-th component of each encountered A-tuple of matrices is always set

to be the identity matrix �3.
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3. Rotations generating a finite subgroup

Proof of Proposition 1.5. We have to show that an even-dimensional sphere S3−1

is not (W1, ... , WA )-divisible if the subgroup � of SO(3) generated by the rotations

W1, ... , WA is finite.

Since 3 is odd, the 2-divisibility of S3−1 is impossible because of a fixed point

of W−1

1
W2. So assume that A > 3. Let

+ := �.{±e1, ... , ±e3},

that is, we take all possible images of the standard basis vectors and their negations

when moved by �. Clearly, the set + is a finite. Let % be the convex hull of + . Then %

is a full-dimensional polytope containing 0 in its interior (as already the convex hull

of {±e1, ... , ±e3} ⊆ + has these properties). Its boundary m% is homeomorphic to

S

3−1 by the map that sends x ∈ m% to x/‖x‖2 ∈ S3−1.

Let a hyperplane mean a (3 − 1)-dimensional affine subspace of R3 . Identify

each oriented hyperplane � ⊆ R3 with the pair (n, 0) ∈ S3−1 ×R so that

� = {x ∈ R3 | n · x = 0}.

Its open half-spaces are �+ := {x ∈R3 | n · x > 0} and �− := {x ∈R3 | n ·x < 0}.

Call � supporting if � ∩ % ≠ ∅ and �− ∩ % = ∅. Call � a facet hyperplane if it is

supporting and dimaff (� ∩ %) = 3 − 1, where dimaff (-) denotes the dimension of the

affine subspace ofR3 spanned by - .

The intersections of supporting hyperplanes with m% represent the boundary of

the polytope % as a CW-complex. Namely, for 8 ∈ {0, ... , 3 − 1}, its 8-dimensional

cells are precisely the 8-dimensional faces of %, that is, the convex hulls of the sets in

C8 := {- ⊆ + | dimaff (-) = 8 & ∃ supporting hyperplane � with � ∩ + = -}.

For a finite non-empty set - ⊆ R3 , let m- := 1

|- |

∑
x∈- x be the centre of mass

of - .

Let us show that for every 8 ∈ {0, ... , 3 − 1} and distinct -,. ∈ C8 we have m- ≠

m. . As it is well-known, see e.g. [11, Theorem 3.1.7], we can pick facet hyperplanes

�1, ... , �: such that + ∩ (∩:
9=1
� 9) = - . Since - ≠ . , the affine subspaces that these

two sets span differ. Since these subspaces have the same dimension, there is y ∈ .

not in the affine span of - . Since y ∈ + and each � 9 is supporting, there is 9 ∈ [:]

such that y belongs to the open half-space �+
9 . From . ⊆ � 9 ∪ �

+
9 , it follows that

m. belongs to �+
9

and cannot be equal to m- ∈ � 9 , as claimed.

Also, it holds that m- ≠ 0 for any - ∈ C8 . Indeed, with �1, ... , �: as above we

have that 0, which is in the interior of %, belongs to, say, the open half-space �+
1

so

cannot be equal to m- ∈ �1.
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Thus |"8 | = |C8 |, where "8 := {m-/‖m- ‖2 | - ∈ C8} ⊆ S
3−1 denotes the set of

the normalised centres of mass of the vertex sets of 8-dimensional faces. Clearly, the

set family C8 is invariant under the natural action of � on finite subsets of S3−1. Thus

the set "8 ⊆ S
3−1 is also �-invariant.

Since 3 is odd, the Euler characteristic j(S3−1) of the (3 − 1)-dimensional sphere

is 2, see e.g. [25, Remark 4.2.21]. Since the faces of m% give a representation of the

sphere as a CW-complex, we have (by e.g. [25, Theorem 4.2.20]) that

2 = j(S3−1) =

3−1∑
8=0

(−1)8 |C8 |,

Thus, for at least one 8 ∈ {0, ... , 3 − 1}, it holds that A > 3 does not divide |C8 | = |"8 |.

By the �-invariance of "8 , there is no choice of � ∩ "8 such that its translates by

W1, ... , WA partition "8. Thus S3−1 is not (W1, ... , WA )-divisible.

Remark 3.1. Under the assumptions of Proposition 1.5, its proof gives that if there

are 3 linearly independent vectors on S3−1 such that each has a finite orbit under �

(where some of these orbits may coincide) then S3−1 is not γ-divisible. However, this

seemingly weaker assumption is equivalent to the assumption that � is finite (e.g. via

a version of Claim 4.2 below).

4. Actions with a finite orbit

Here we prove Proposition 1.6 that, in the presence of at least one finite orbit,

γ-divisibility is equivalent to measurable γ-divisibility.

Proof of Proposition 1.6. Recall that � is the subgroup of SO(3) generated by W1, ... , WA .

For x ∈ S3−1, let !x be the linear subspace ofR3 spanned by �.x ⊆ R3 .

Claim 4.1. For every x ∈ S3 , both !x ⊆ R3 and its orthogonal complement !⊥x ⊆

R

3 are invariant under the action of � onR3 .

Proof of Claim. Any W ∈ � permutes the set �.x. Since W is a linear map, it preserves

the linear subspace !x spanned by �.x. Thus !x is �-invariant.

Since � consists of orthogonal matrices, its action preserves the scalar product

on R3 . Thus if y ∈ R3 is orthogonal to !x then, for every W ∈ �, we have that W.y

is orthogonal to W.!x = !x. It follows that !⊥x is �-invariant.

Recall that z ∈ S3−1 is a vector such that its orbit �.z is finite. Let I1, ... , I= be

the elements of �.z.
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Claim 4.2. If x ∈ !z ∩ S3−1 then |�.x| 6 =!.

Proof of Claim. Write x ∈ !z as
∑=
8=1
28z8 for some reals 21, ... , 2= . For every U ∈ �,

we have by linearity that U.x =
∑=
8=1
28 (U.z8). Since z1, ... , z= enumerate a whole

orbit of �, the element U ∈ � permutes these vectors. Thus every element of �.x is

of the form
∑=
8=1
28zf (8) for some permutation f of [=]. Thus �.x indeed has at most

=! elements.

Now we are ready to prove the (non-trivial) forward direction of Proposition 1.6.

By rotating the sphere (and moving z and conjugating W8’s accordingly), we can

assume that !z = R< × 0 and !⊥z = 0 × R3−< for some < ∈ [3]. By Claim 4.1,

every matrix W8 , 8 ∈ [A], consists now of two diagonal blocks that correspond to some

U8 ∈ O(<) and V8 ∈ O(3 − <). (Note that these matrices may have determinant −1.)

When we write a vector inR3 as (x, y), we mean that x ∈ R< and y ∈ R3−<; thus

W8 .(x, y) = (U8 .x, V8 .y).

Fix � ⊆ S3−1 such that W1.�, ... , WA .� partition S3−1. By the invariance of !z

and !⊥z , the translates of the set � ∩ (R< × 0) (resp. � ∩ (0 ×R<−3)) by W1, ... , WA

partition S<−1 × 0 (resp. 0 × S3−<−1). By Claim 4.2, every orbit of the action of �

on the invariant subset - := S<−1 × 0 has at most =! elements. Obviously, the same

holds for the action on S<−1 of the subgroup � ′ ⊆ O(<) generated by U1, ... , UA . Fix

a Borel total order onS<−1 (e.g. the restriction of the lexicographic order onR<) and

let �′ ⊆ - be obtained by picking from every orbit � ′.x ⊆ S<−1 the lexicographically

smallest subset such that its translates by U1, ... , UA partition � ′.x. Such a set always

exists since {y ∈ � ′.x | (y, 0) ∈ �} is one possible choice. In the terminology of [21],

the set �′ can be computed by a local rule of radius =! on the coloured Schreier

digraph of � ′
yS

<−1 (where the vertex set is S3−1 and we put a directed colour-8 arc

from y to U8 .y for all y ∈ S<−1 and 8 ∈ [A]). As the action is Borel, this is known to

imply (see e.g. [21, Lemma 5.17]) that the constructed set �′ ⊆ S<−1 is Borel. Define

� :=
⋃
d∈[0,1) (

√
1 − d2 �′ × dS3−<−1)

=
⋃
d∈[0,1) {(

√
1 − d2 x, d y) | x ∈ �′, y ∈ S3−<−1}

and � := � ∩ (0 ×R<−3). Then W1.�, ... , WA .� partition S3−1 \ (0 × S3−<−1) and,

as we observed earlier, W1.�, ... , WA .� partition 0 × S3−<−1. Thus � ∪ � witnesses

the γ-divisibility of S3−1. Note that the set �, which lies inside the intersection of

S

3−1 with the linear subspace !⊥z of dimension less than 3, has measure zero. On

the other hand, the set � can be equivalently defined as the pre-image of the Borel

set �′ ×R3−< under the natural homeomorphism between S3−1 \ (0 × S3−<−1) and

S

<−1 ×R3−< that maps (x, y) to (x/‖x‖2,y/‖x‖2). Thus � is Borel and � ∪ � is

measurable, proving the proposition.
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Remark 4.3. One can show via Claims 4.1 and 4.2 that if 3 = 3 and a subgroup

� ⊆ SO(3) has a finite orbit of size at least 3, then � is finite (and thus Proposition 1.5

applies). However, this implication is not true in general for 3 > 4. For example, we

can take the subgroup of SO(3) generated by a diagonal block matrix " whose first

(resp. second) block is a 2 × 2 special orthogonal matrix of order 3 (resp. of infinite

order), while all remaining blocks are the 1 × 1 identity matrices. Then " has an

infinite order (coming from the second block) but its action on S3−1 has an orbit with

exactly 3 elements (e.g. the orbit of the first standard basis vector (1, 0, ... , 0)).

5. Measurable divisibility of higher-dimensional spheres

As we mentioned in the Introduction, S3−1 is A-divisible with Borel pieces for

every A > 2 and even 3 > 2 ([23, Theorem 6.6(a)]). The proof of [23, Theorem 6.6(b)]

for any A > 3 and odd 3 > 5 gives measurable pieces. Since this conclusion does not

seem to be explicitly stated anywhere in [23], we provide the simple proof from [23].

Lemma 5.1. For any 3 > 5 and A > 3, S3−1 is A-divisible with measurable pieces.

Proof. Informally speaking, we will use the Borel A-divisibility of S1 in the last two

coordinates of S3−1 ⊆ R3 , resorting to the A-divisibility of S3−3 only on the null set

of points where the last two coordinates are zero.

Namely, choose rotations U1, ... , UA ∈ SO(3 − 2) and a (not necessarily meas-

urable) subset � ⊆ S3−3 such that U1.�, ... , UA .� partition S3−3, which is possible

by e.g. [23, Theorem 6.6]. Let V ∈ SO(2) be the rotation of the circle S1 by the

angle 2c/A. (Thus the order of V, as an element of the group SO(2), is A.) For 8 ∈ [A],

let W8 send (x,y) ∈ R3−2 ×R2 to (U8 .x, V
8 .y), where we view SO(<) as also acting

onR<. Clearly, W8 preserves both the scalar product onR3 and the orientation; thus

it is an element of SO(3).

Let � := {(cos\, sin\) | 0 6 \ < 2c/A} ⊆S1. Then the half-open arcs V.�, ... , VA .�

partition S1. Let � := �′ ∪ �′, where �′ := � × { (0, 0) } and

�′ :=
⋃
d∈[0,1) (dS

3−3 ×
√

1 − d2 �).

Clearly, �′ is a `-null subset of S3−1 and �′ is a Borel subset of S3−1. Thus � is

measurable. Also, W1.�, ... , WA .� partition S3−1. Indeed, W8 .�
′ = U8 .� × { (0, 0) },

8 ∈ [A], partition S3−3 × { (0, 0) } while W8 .�
′ = ∪d∈[0,1) (d S

3−3 ×
√

1 − d2 (V8 .�)),

8 ∈ [A], partition the rest of S3−1.



14 C. T. Conley, J. Grebík and O. Pikhurko

6. Measurable divisibility for d = 2 and r 6 4

We parametrise S1 = {(cos C, sin C) | C ∈ [0, 2c)} and use the parameter C instead

of the Cartesian coordinates. Thus we have the interval [0, 2c) with ` being the

Lebesgue measure on it. The space H= for = > 1 becomes the span of cos =C and

sin =C (while, of course, H0 consists of all constant functions). Here, the harmonic

expansion is nothing else as the Fourier series. We identify SO(2) with the additive

groupT := R/2cZ of reals taken modulo 2c. Thus the action of W ∈ T on [0, 2c) is

to send C ∈ [0, 2c) to C + W (mod 2c). We also identity [0, 2c) withT; thus we have

the natural actionTyT.

Let us investigate various possible versions of “measurable” divisibility, stated in

terms of the actionTyT. Let BA (resp. MA ) consist of those A-tuples (C1, ... , CA ) ∈

T

A for which there is a Borel (resp. measurable) subset � ⊆T such that C1 + �, ... , CA +

� partitionT, where we denote C + � := {C + 0 | 0 ∈ �}. Also, let M ′
A consist of those

(C1, ... , CA ) ∈T
A for which there is a measurable (equivalently, Borel) � ⊆T such that

the translates C1 + �, ... , CA + � are pairwise disjoint and the set of elements ofT not

covered by them has measure zero. Finally, let FA consist of those (C1, ... , CA ) ∈ T
A

for which there is 5 ∈ !2 ([0, 2c), `) such that C1. 5 + ... + CA . 5 = 1 a.e. while 5 ≠ 1/A

on a set of positive measure. As it is easy to see, the definition of FA does not change

if we require C1. 5 + ... + CA . 5 = 1 to hold everywhere. Trivially, it holds that

BA ⊆ MA ⊆ M ′
A ⊆ FA .

First, we investigate FA . Suppose that we have some 5 ∈ !2 ([0, 2c), `) such that

C1. 5 + ... + CA . 5 = 1 a.e. Take the Fourier series,

5 (C) = 20 +

∞∑
==1

(2= cos =C + B= sin =C), for a.e. C ∈ [0, 2c).

Clearly, 20 = 1/A. For 8 ∈ [A], by translating everything by C8 we get that

(C8 . 5 ) (C) =
1

A
+

∞∑
==1

(2= cos =(C − C8) + B= sin =(C − C8)), for a.e. C ∈ [0, 2c).

Summing this up for all 8 ∈ [A] and using the formula for the sine and the cosine of a

difference of two angles, we get that for a.e. C ∈ [0, 2c)

1 = 1 +

A∑
8=1

(
∞∑
==1

2= (cos =C cos =C8 + sin =C sin =C8) + B= (sin =C cos =C8 − cos =C sin =C8)

)

= 1 +

∞∑
==1

(
A∑
8=1

(2= cos =C8 − B= sin =C8) cos =C +

A∑
8=1

(2= sin =C8 + B= cos =C8) sin =C

)
.
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(Recall that
∑A
8=1
C8 . 5 = 1 a.e.)

Let = > 1. By the uniqueness of the Fourier coefficients, we have that

A∑
8=1

(2= cos =C8 − B= sin =C8) = 0, and

A∑
8=1

(2= sin =C8 + B= cos =C8) = 0.

Suppose that (2=, B=) ≠ (0, 0). If we multiply the above equations by 2= and B= (resp.

by −B= and 2=) and add up, we get after dividing by 22
= + B

2
= that

(6.1)

A∑
8=1

cos =C8 = 0 and

A∑
8=1

sin =C8 = 0,

that is, the vectors (cos =C8 , sin =C8) ∈ R
2, 8 ∈ [A], sum up to zero.

If 5 differs from 1/A on a set of positive measure then, for at least one integer

= > 1, we have (2=, B=) ≠ (0, 0) and thus (6.1) holds. Conversely, if (6.1) holds for

some = > 1, then we can take, for example, 5 (C) := (1 + cos =C)/A for C ∈ [0, 2c).

This completely describes the set of A-tuples in SO(2) for which the circle S1 is

“fractionally” divisible:

Proposition 6.1. An A-tuple (C1, ... , CA ) ∈ T
A belongs to FA if and only if (6.1) holds

for at least one integer = > 1.

Let us investigate the sets BA and M ′
A for A 6 4. As we will see, it holds for each

A 6 4 that BA = M ′
A (and, in particular, this set is also equal to MA ).

Let (C1, ... , CA ) ∈T
A . By replacing (C1, ... , CA ) by (C1 − CA , ... , CA − CA ), which does

not affect divisibility, we can assume for convenience that CA = 0. Since M ′
A ⊆ FA ,

assume that (6.1) holds for some = > 1. Let = > 1 be the smallest integer with this

property.

Suppose first that A = 2. By (6.1) we have =C1 = (2: + 1)c for some integer : > 0.

Note that = and 2: + 1 are coprime: if an integer @ > 1 divides both = and 2: + 1 then,

for =′ := =/@, we have =′C1 =
2:+1

@
c and thus (6.1) holds for =′ < =, contradicting

the minimality of =. Therefore, the subgroup of T generated by C1 = (2: + 1)c/= is{
c<
=

| < ∈ {0, ... , 2= − 1}
}
, which is the additive cyclic group of order 2= with C1

corresponding to an odd multiple of the generator c/=. Since the addition of C1 swaps

odd and even multiples of c/=, we have that

� :=
{
c<
=

| < ∈ {0, 2, ... , 2= − 2}
}
+

[
0, c

=

)
satisfies C1 + � = [0, 2c) \ � and shows that (A1, 0) ∈ B2, where for �, � ⊆ T we

denote

� + � := {1 + 2 | 1 ∈ �, 2 ∈ �}.
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Thus B2 =M2 =M ′
2
= F2 and this set can be equivalently described as consisting of

precisely those (C1, C2) ∈ T
2 such that C2 − C1 ∈ T generates a finite subgroup of even

order.

Suppose that A = 3. Three vectors on the unit circle sum to 0 if and only if they

form an equilateral triangle. (Indeed, the sum of any two unit vectors has norm 1 if

and only if the angle between the vectors is 2c/3.) Thus, up to swapping C1 and C2, we

can assume that =C1 ≡ 2c/3 and =C2 ≡ 4c/3 modulo 2c. Each of C1, C2 ∈ [0, 2c) is a

(non-zero) integer multiple of 2c/(3=). Let :1, :2 ∈ [3= − 1] satisfy C8 = 2c: 8/(3=).

By the minimality of =, the greatest common divisor gcd(:1, :2, =) = 1. Furthermore,

it is impossible that 3 divides both :1 and :2, for otherwise by e.g. 2c:1/(3=) ≡

2c/3 (mod 2c) we have that 3 also divides =, a contradiction to gcd(:1, :2, =) = 1.

Therefore, the subgroup generated by C1, C2 ∈T is
{

2c:
3=

| : ∈ {0, ... , 3= − 1}
}
, which

is the cyclic group of order 3=. For 8 = 1,2, we have : 8= ≡ 8= (mod 3=) and thus : 8 ≡ 8

(mod 3). Thus if we take

� :=
{

2c<
3=

| < ∈ {0, 3, ... , 3= − 3}
}
+

[
0, 2c

3=

)
,

then C1 + �, C2 + � and C3 + � = � partition [0, 2c). We conclude that B3 = M3 =

M ′
3
= F3 and this set can be alternatively described as consisting, up to a permutation

of indices, precisely of the triples
(

2c:1

3=
+ C, 4c:2

3=
+ C, C

)
with = > 1, :1, :2 ∈ [3= − 1]

and C ∈ T such that {:1, :2} ≡ {1, 2} (mod 3) and the greatest common divisor of

:1, :2 and = is 1.

Suppose that A = 4. We need the following geometric claim.

Claim 6.2. Four vectors (G8 , H8) ∈ S
1, 8 ∈ [4], have sum 0 if and only if they can be

split into two pairs of opposite vectors.

Proof of Claim. The non-trivial direction of the claim can be derived by observing

that, up to a permutation of indices, we can assume that v := (G1, H1) + (G2, H2) is a

non-zero vector while, in general, there is at most one way to write −v ∈ R2 \ {0} as

the unordered sum of two unit vectors. Thus the other two vectors must be (−G1,−H1)

and (−G2,−H2), as desired.

Recall that = > 1 is the smallest integer satisfying (6.1). Claim 6.2 applied to

G8 := cos(=C8) and H8 := sin(=C8) for 8 ∈ [4] gives that, up to a permutation of indices,

(G1, H1) = −(G2, H2) and (G3, H3) = −(G4, H4). Thus, by Proposition 6.1, the set F4

consists precisely of those (C1, ... , C4) such that, for some integer = > 1 and up to a

permutation of indices, we have that

(6.2) =(C1 − C2) ≡ =(C3 − C4) ≡ c (mod 2c).
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Again, let us assume that C4 = 0.

First, let us show that if C1/c is irrational then (C1, ... , C4) ∉ M ′
4
. By (6.2), we

can assume that C2 = C1 + :2c/= and C3 = :3c/= for some odd integers :2 and :3.

Suppose for a sake of contradiction that for some measurable subset � ⊆ T we have

that
∑

4

8=1
C8 .1� = 1 a.e. Take the Fourier expansion

1�(C) =
1

4
+

∞∑
<=1

(2< cos<C + B< sin<C).

By the argument leading to (6.1) and Claim 6.2, we see that (2<, B<) can be non-zero

only if we can split (<C1, ... , <C4) ∈ T
4 into two pairs, each pair having differ-

ence c. Since C1/c is irrational, these pairs must be (C1, C2) and (C3, C4) by (6.2). Thus

<: 8c/= ≡ c (mod 2c) for 8 = 2, 3. Clearly, the validity of these two equations is

determined by the residue of < modulo =. Since = is minimal, these equations cannot

both hold for any < ∈ [= − 1]. Thus they can hold only if < is a multiple of =. This

means that all non-zero Fourier terms of 1� have period 2c/= as functionsT→ R.

It follows that � = (2c:/=) + � a.e. for every integer : and 1� =
1

=

∑=−1

:=0
(2c:/=).1�.

Thus

C1.1� + 1� =
1

=

=−1∑
:=0

((C1 + 2c:/=).1� + (2c:/=).1�)

=
1

2=

=−1∑
:=0

(2c:/=). (C1.1� + C2.1� + C3.1� + C4.1�) =
1

2
a.e.,

where we used that C1.1� + C2.1� + C3.1� + C4.1� = 1 a.e. by the choice of �. We

conclude that the function 21� demonstrates that (C1, 0) ∈ F2. By the case A = 2 that

was solved earlier, this contradicts the irrationality of C1/c.

This gives that M ′
4

is strictly smaller than F4: for example, (0, 0 + c, c, 0) belongs

to F4 \M
′
4

if 0/c is irrational.

Now, suppose that C1/c is rational. Let � be the subgroup of T that is generated

by C1, C2 and C3. (There is no need to add C4 as it is 0.) By (6.2) and the rationality

of C1/c, the group � is finite. Of course, if 4 does not divide its order |� | then there

is no t-division even if a null set can be removed. So suppose that |� | = 4< for

some integer <, i.e. that � is the cyclic group of order 4<. For 8 ∈ [4], let : 8 ∈

{0, ... , 4< − 1} satisfy that C8 =
c:8
2<

. Let k := (:1, ... , :4). Let us say that the cyclic

group Z4<, that consists of integer residues modulo 4<, is k-divisible if there is a

subset � ⊆ Z4< such that the sets : 8 + �, 8 ∈ [4], partition Z4<. Of course, such a set

� must have exactly < elements.

The following claim implies in particular that B4 = M4 = M ′
4
.
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Claim 6.3. If Z4< is k-divisible then t ∈ B4; otherwise, t ∉ M ′
4
.

Proof of Claim. Suppose first that a subset � ⊆ Z4< witnesses the (:1, ... , :4)-

divisibility of Z4<. It corresponds to an <-subset � ⊆ [0, 2c) such that its translates

by C1, ... , C4 partition the subgroup � ⊆T. Now the Borel set� := � +
[
0, c

2<

)
exhibits

the t-divisibility ofT.

Conversely, suppose that Z4< is not k-divisible. Take any measurable set � ⊆

[0, 2c) such that its translates by C1, ... , C4 are pairwise disjoint. Take any coset - :=

C + � ⊆ T of �. Define � to consist of those : ∈ Z4< such that C + c:
2<

∈ � (that is, �

encodes the intersection of � with the �-coset -). The translates of � by :1, ... , :4 in

Z4< (which correspond to the intersections (C8 +�) ∩ - , 8 ∈ [4]) are pairwise disjoint

and, by our assumption, omit at least one element of Z4<. Thus every coset of � in

T contains at least one element of � := T \ ({C1, ... , C4} + �). It follows that � has

measure at least 2c/(4<) (as its translates by c:
2<

for : ∈ {0, ... , 4< − 1} cover T).

This implies that t ∉ M ′
4
.

Unfortunately, an explicit characterization of the set B4 = M4 = M ′
4

for general

= seems to be rather messy, although it reduces to a finite case analysis for any given

t ∈T4 by Claim 6.3. So we will restrict ourselves to the special cases = = 1 and = = 2,

just to illustrate that the measurable t-divisibility is not determined by the order 4<

of the group � alone (which happens already for = = 2).

First, assume that = = 1. By (6.2), we have up to a permutation that (C1, C2, C3) ≡

(0, 0 + c, c) (mod 2c) with 0 ∉ {0, c}. Thus, working inside Z4< (that is, modulo

4<), we have that :2 = :1 + 2< and :3 = 2<. Since :1, :1 + 2<, 2< generate Z4<,

we have that :1 and 2< are coprime; in particular :1 is odd. As it is easy to see

� := {28 | 8 ∈ {0, ... , < − 1}} witnesses the k-divisibility of Z4<. Thus t ∈ B4 by

Claim 6.3.

Now, assume that = = 2. By (6.2), we have that each of the differences :1 − :2

and :3 − :4 modulo 4< is either < or 3<. We can assume that :3 = < (by negating

all : 8’s if necessary) and that :2 = :1 +< (by swapping :1 and :2 if necessary). Note

that these operations do not affect the k-divisibility of Z4< and thus the conclusion

of Claim 6.3 is also unaffected. Let : := :1. Thus

k = (:, : + <, <, 0).

First, let us show that if < = 2B is even then Z4< is k-divisible (and thus t ∈ B4

by Claim 6.3). It is enough to find an B-set ( ⊆ {0, ... , < − 1} such that, modulo <,

the sets ( and : + ( partition Z< (because then � := ( ∪ (2< + () as a subset of Z4<

witnesses the k-divisibility of Z4<). Note that ( := {28: | 8 ∈ {0, ... , B − 1}} works.

(Indeed, by gcd(:, <) = 1 each residue modulo < appears exactly once as 8: with

8 ∈ {0, ... , < − 1} and we have included every second multiple of : into the set (.)
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Finally, suppose that < is odd. Recall that gcd(:, <) = 1. We claim that Z4< is

k-divisible if and only if : ≡ 2 (mod 4).

First, suppose that an <-set � ⊆ Z4< witnesses the k-divisibility. Since < is odd,

some residue 8 modulo < appears an odd number of times in �. This multiplicity

cannot be larger than 2 since otherwise the translates :1 + �, ... , :4 + � would cover

the four points 8, 8 + <, 8 + 2<, 8 + 3< ∈ Z4< at least six times. Thus the multiplicity

of 8 in � modulo < is exactly 1. By the commutativity of Z4<, we can replace � by

any its translate. Thus assume that � contains 0 but none of <, 2< and 3<. Thus,

by (:3, :4) = (<, 0), the set (:3 + �) ∪ (:4 + �) covers 0 and < but not 2< nor 3<.

Since 2< ∉ �, the only way to consistently cover 2< and 3< is that 2< − : ∈ �. Now,

{:1, ... , :4} + {0, 2< − :} contains 2< − : and 3< − : but not −: nor < − : . None of

the last two elements can be covered by :3 + � or :4 + � (as then � modulo < would

contain −: (mod <) at least twice but then the four elements 0, <, 2<, 3< would

be covered at least six times, with the extra multiplicity coming from 0 and < being

covered by 0 ∈ � when translated by :3 and :4). Thus the only way to consistently

cover −: and < − : is that −2: ∈ �. One can continue to argue in this manner,

showing that for each 8 ∈ {0,1, ... } we have −28: ∈ � and −(28 + 1): + 2< ∈ �. As the

first < of these elements of � are pairwise distinct (in fact, they have pairwise distinct

residues modulo <) and < is odd, it must hold that the <-th element, −<: + 2<,

belongs to �. Since � does not contain any of <, 2< and 3<, we necessarily have

that −<: + 2< ≡ 0 (mod 4<). This equation has < solutions, namely, all : ∈ Z4<

with : ≡ 2 (mod 4), giving the claim.

Conversely, if : ≡ 2 (mod 4), then the set � consisting of elements −28: for

8 ∈ {0, ... , (< − 1)/2} and −(28 + 1): + 2< for 8 ∈ {0, ... , (< − 3)/2} shows the k-

divisibility of Z4<. Indeed, note that |�| = < (as its elements have different residues

modulo < by gcd(:, <) = 1) and that if we keep increasing the index 8 beyond the

stated ranges then we just repeat the elements of � since −<: + 2< ≡ 0 (mod 4<).

By “reverse engineering” the proof of the forward implication, we see that the trans-

lates of � by :1, ... , :4 are pairwise disjoint and thus partition Z4<, as required.

In the initial version of the manuscript, we conjectured that if (C1, ... , CA ) ∈ M ′
A

then (C8 − C 9)/c is rational for every 8, 9 ∈ [A]. This conjecture was subsequently

proved by Grebík, Greenfeld, Rozhoň and Tao [9]. This implies that BA = MA = M ′
A

for every A (by an argument similar to that of Proposition 1.6) and reduces the question

if any given t ∈ TA belongs to this set to some finite case analysis.

7. Proof of Proposition 1.2

In order to prove Proposition 1.2, we need some auxiliary results first.
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Lemma 7.1. The kernels of real =8 × = matrices �8 , 8 ∈ [:], contain a common non-

zero vector x ∈ R= \ {0} if and only if the = × = matrix " :=
∑:
8=1

�)
8
�8 has zero

determinant.

Proof. If some non-zero x ∈ R= satisfies �8x = 0 for every 8 ∈ [:], then "x =∑:
8=1

�)8 (�8x) = 0, so the determinant of " is zero.

Conversely, suppose that " is singular. Choose a non-zero vector x ∈ R= with

"x = 0. Then

0 = x · "x =

:∑
8=1

x · (�)8 �8x) =

:∑
8=1

(�8x) · (�8x) =

:∑
8=1

‖�8x‖
2

2

and each �8x must be the zero vector, giving the required.

The results of Dekker [6], Deligne and Sullivan [8], and Borel [3] (see Theorem

6.4 in [23] and the historical discussion preceding it) give the following.

Lemma 7.2. For every 3 > 2 and A > 2 there is a choice of rotations V1, ... , VA ∈

SO(3) that generate the free rank-A group �A such that its action on S3−1 is free for

even 3 and locally commutative for odd 3 (meaning that every two elements of �A

that have a common fixed element on S3−1 commute).

Note that the above result is usually stated in the special case A = 2 as the general

case easily follows by taking any subgroup of �2 isomorphic to �A .

Lemma 7.3. If γ = (W1, ... , WA ) ∈ SO(3)A is generic, then the rotations W1, ... , WA

generate the free rank-A group �A and the corresponding action of �A on S3−1 is free

for even 3 and locally commutative for odd 3.

Proof. For a non-trivial reduced word | in �A and β = (V1, ... , VA ) ∈ SO(3)A , the

relation |(β) = �3 amounts to 32 polynomial equations, with ?8 9 (β) = 0 stating that

the (8, 9 )-th entry of the corresponding product of the matrices of V8’s and their

transposes (which are equal to their inverses) is 18= 9 , where 18= 9 is 1 if 8 = 9 and

0 otherwise. Each of these polynomials ?8 9 has rational coefficients. Moreover, the

A-tuple of matrices β returned by Lemma 7.2 (which, in particular, generates the

free subgroup) gives a point where at least one of these polynomials is non-zero,

say ?8 9 (β) ≠ 0. The polynomial ?8 9 has to be non-zero also at the generic point

γ ∈ SO(3)A and so |(γ) ≠ �3. Since | was an arbitrary non-trivial word, the rota-

tions W1, ... , WA indeed generate the free group.

Let us show the second part in the case of odd 3 (with the case of even 3 being

similar). Suppose on the contrary that we have two reduced non-commuting words
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|1 and |2 in �A such that the corresponding elements |1(γ) and |2(γ) have a com-

mon fixed point x ∈ S3−1. Thus the matrices �1 := |1(γ) − �3 and �2 := |2(γ) − �3

have x ≠ 0 as a common zero eigenvector. By Lemma 7.1, this property is equivalent

to det(�)
1
�1 + �

)
2
�2) = 0, which is a polynomial equation in γ with rational coef-

ficients. For the special A-tuple of matrices β returned by Lemma 7.2, the matrices

�1 := |1(β) − �3 and �2 := |2(β) − �3 cannot have a common zero eigenvector as it

would give a common fixed point for the non-commuting elements |1(β) and |2(β).

Thus, we have by Lemma 7.1 that det(�)
1
�1 + �

)
2
�2) ≠ 0. We have found a polyno-

mial equality with rational coefficients that holds for γ but not for β ∈ SO(3)A . This

contradicts our assumptions that γ ∈ SO(3)A is generic.

Also, we will need the following result of Conley, Marks and Unger that directly

follows (as a rather special case) from Lemmas 3.4 and 3.6 in [4].

Theorem 7.4 (Conley, Marks and Unger [4]). Let �A be the free group of rank A with

generators W1, ... , WA and let 0 : �Ay- be a free Borel action on a Polish space - .

Then there is a Borel subset � ⊆ - such that W1.�, ... , WA .� are disjoint and - \

∪A
8=1
W8 .� is meager.

Proof of Proposition 1.2. We have to show that if an A-tuple γ = (W1, ... , WA ) ∈ SO(3)A

is generic then there is a γ-division of S3−1 with pieces that have the property of

Baire.

By Lemma 7.3, the elements W1, ... , WA ∈ SO(3) generate a free (resp. locally

commutative) action 0 of the free group �A on the sphere S3−1 when 3 is even (resp.

odd). The more general Corollary 5.12 in [23] (which is attributed in [23] to Dek-

ker [6, 7]) directly gives that S3−1 is γ-divisible, that is, there is a subset � ⊆ S3−1

with W1.�, ... , WA .� partitioning the sphere.

For every W ∈ SO(3) \ {�3}, the set of its fixed points on S3−1 is closed (as the

preimage of 0 under the continuous map that sends x ∈ S3−1 to W.x − x ∈ R3)

and has empty relative interior (for otherwise one can choose 3 linearly independent

vectors fixed by W, contradicting W ≠ �3). In particular, this set is meager. Since the

group �A is countable, the free part - of the action 0 (which consists of x ∈ S3−1

such that |.x ≠ x for each non-trivial | ∈ �A ) is co-meager. Also, it is easy to show

that the free part - is a Borel subset of the sphere (see e.g. [21, Lemma 4.4]).

Theorem 7.4, when applied to the free action of �A on - , gives a Borel set � ⊆ -

with its translates W1.�, ... , WA .� being disjoint and / := S3−1 \ ∪A
8=1
W8 .� being mea-

ger. We can additionally assume that / is 0-invariant: its saturation [/] := ∪|∈�A|./

is still meager (since the countable group �A acts by homeomorphisms) so we can

replace � by � \ [/] without violating the conclusion of Theorem 7.4.
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Now, we can combine the Borel γ-division of S3−1 \ / given by Conley, Marks

and Unger [4] with the γ-division of Dekker [6, 7] restricted to /. Formally, take

� := � ∪ (� ∩ /). The set �, as the union of a Borel set and a meager set, has the

property of Baire while its translates W1.�, ... , WA .� partition S3−1 by the invariance

of /.

8. Proof of Lemmas 1.3 and 1.4

This section is dedicated to proving Lemmas 1.3 and 1.4. Their proofs are rather

technical; this is why we postponed them until the very end.

8.1. Some definitions and results from algebraic geometry. In this section we

present some definitions and results from algebraic geometry that we need. We will

follow the notation from the book by Hassett [12] to which we refer for missing details

(and for a nice concrete introduction to most results needed here).

A field extension  ↩→ ! is called algebraic if every G ∈ ! is algebraic over  ,

that is, satisfies a non-trivial polynomial equation with coefficients in  . Some easy

but very useful facts ([12, Proposition A.16]) are that, for an arbitrary field extension

 ↩→ !,

(8.1) the elements of ! that are algebraic over  form a field

and, for another field extension ! ↩→ " ,

(8.2) if  ↩→ ! and ! ↩→ " are both algebraic then  ↩→ " is algebraic.

Let us fix a field  .

By a variety we mean a subset - of some affine space  = which is closed in the

Zariski topology, that is, - is equal to

+ (F ) := {x ∈  = | ∀ 5 ∈ F 5 (x) = 0}

for some family F ⊆  [x] of polynomials wherex := (G1, ... , G=). Then the coordin-

ate ring of - is  [-] :=  [x]/� (-), where

� (-) := { 5 ∈  [x] | ∀x ∈ - 5 (x) = 0}

denotes the ideal of the variety - ⊆  = .

We call a variety - ⊆  = irreducible if we cannot write - = -1 ∪ -2 for some

varieties -1, -2 ( - . This is equivalent to the statement that the ideal � (-) ⊆  [x]

is prime ([12, Theorem 6.5]). Then  [-] is a domain so we can define its fraction
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field, which is called the function field of - and is denoted by  (-). Elements of

 [-] (resp.  (-)) can be viewed as the restrictions of polynomial (resp. rational)

functions to - modulo identifying functions that coincide on - .

The dimension dim - of an irreducible variety - is the cardinality of a transcend-

ence basis for the field extension  ↩→  (-), which is a collection of algebraically

independent (over  ) elements I1, ... , I: ∈  (-) such that  (-) is algebraic over

 (I1, ... , I: ), the smallest subfield of  (-) containing  ∪ {I1, ... , I: }. By [12, Pro-

position 7.15], a transcendence basis exists and every two transcendence bases have

the same cardinality.

Every variety - can be written as a finite union -1 ∪ ... ∪ -< of irreducible

varieties ([12, Theorem 6.4]). (In fact, this decomposition, if irredundant, is unique

up to a permutation of indices.) Then the dimension of - is defined as dim - :=

max{dim -8 | 8 ∈ [<]}. By [5, Corollary 2.68], one can equivalently define

(8.3)

dim - := max{: | ∃ irreducible varieties .1, ....: with ∅ ( .1 ( ... ( .: ⊆ -}.

We will also need the following easy result.

Lemma 8.1. If -1, ... , -= are infinite subsets of a field  and a polynomial 5 ∈

 [G1, ... , G=] vanishes on each element of -1 × ... × -=, then 5 is the zero polyno-

mial.

Proof. We use induction on =. The base case = = 1 can be proved by induction on

the degree of the univariate polynomial 5 (G1) by factoring out a linear factor corres-

ponding to a root of 5 .

Let = > 2. Expand 5 (G1, ... , G=) =
∑<
8=0
28G

8
=, with 28 ∈  [G1, ... , G=−1] and 2< ≠ 0.

By induction, there is (01, ... , 0=−1) in -1 × ... × -=−1 with 2<(01, ... , 0=−1) ≠ 0.

Thus 5 (01, ... , 0=−1, G=) is a non-zero polynomial of G= so it cannot vanish on -= by

the base case = = 1.

8.2. Variety SO(d; Q)r . In this section we show in particular that SO(3)A , as a

variety in R32A , is irreducible and that the set of entries above the diagonals forms a

transcendence basis; in particular, the dimension of SO(3)A is
(3
2

)
A. In fact, we will

need an extension of this result, where the underlying field can be different from R,

for the proof of Lemma 1.4 (even though the statement of Lemma 1.4 deals only with

the real case).

Let 3 > 1 be an integer and  be a field. Consider the affine space  3×3 of all

3 × 3 matrices with entries in  , writing its elements as W = (W8, 9 )8, 9∈[3] . Let the

special orthogonal variety over be the variety SO(3; ) :=+ (�SO) ⊆  
3×3 defined
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by the ideal

(8.4) �SO :=
〈
(D8)8∈[3] , ( 58 9 )168< 963 , det(W) − 1

〉
⊆  [W],

where D8 := W2

8,1
+ ... + W2

8,3
− 1 encodes the fact that each row is a unit vector (when

 ⊆ R), 58, 9 := W8,1W 9,1 + ... + W8,3W 9,3 encodes the orthogonality of the 8-th and 9 -

th rows while the last constraint states that the determinant of W is 1. Note that the

“orthonormality” constraints force W to have determinant −1 or 1, which follows from

(8.5) (det(W))2
= det(W) W) ≡ det(�3) = 1 (mod 〈 (D8)8∈[3] , ( 58 9 )168< 963 〉).

The matrix multiplication makes SO(3; ) a group. If  =R then we get the familiar

group SO(3) of special orthogonal real 3 × 3 matrices (and the shorthand SO(3) will

always be reserved for the real variety SO(3;R)).

Take any integer A > 1. The A-th power SO(3; )A = SO(3; ) × ... × SO(3; )

is a variety in  3
2A since a product of Zariski closed sets is Zariski closed (or since

one can write the explicit equations defining SO(3; )A ).

For (W1, ... , WA ) ∈ SO(3; )A , let

W* := ((WB )8, 9 | B ∈ [A], 1 6 8 < 9 6 3),

be the sequence of the
(3
2

)
A entries strictly above the diagonals. We call these entries

upper. For notational convenience, we fix an ordering of the coordinates of  3
2A so

that all non-upper entries (that is, those on or below the diagonals) come before all

upper ones; thus when we write a vector of length 32A as (x, y) then we mean that y

is the upper part.

Lemma 8.2. For every subfield  ⊆ C, the variety - := (SO(3; ))A ⊆  A3
2

is irre-

ducible, has dimension
(3
2

)
A and the set of upper coordinates forms a transcendence

basis of the function field  (-) over  .

Proof. First, let us show that - is irreducible The proof of this in the case A = 1 (for

an arbitrary field with 2 ≠ 0) can be found in [2, Proposition 5-2.3]. We adopt the

argument from [2] to work for any A > 1. (Note that products need not preserve the

irreducibility when the underlying field is not algebraically closed.)

For x ∈  3 with x ·x :=
∑3
8=1
G2

8 non-zero, the map dx :  3 →  3 that is defined

by

dx(y) := y − 2
y · x

x · x
x, for y ∈  3 ,

can be thought of as the reflection of  3 around the hyperplane orthogonal to x, so

we call dx a reflection. Each W ∈ SO(3;  ) can be written as a product of an even

number of reflections, see [2, Proposition 1-9.4] (and, conversely, every such product
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is in SO(3; )). In fact, the proof in [2], which proceeds by induction on 3, shows that

at most< := 23 reflections are needed. By inserting the trivial composition dxdx = �3

for some x ∈  3 with x · x ≠ 0 we can write each W ∈ SO(3;  ) as the product of

exactly < reflections.

Let* := {z ∈  3 | z · z ≠ 0} and define 5 : *< → SO(3; ) by

5 (z1, ... , z<) := dz1
... dz<

∈ SO(3; ), for (z1, ... , z<) ∈ *
<.

Consider the product map 5 A : (*<)A → SO(3;  )A that applies 5 in each of the A

coordinates. As the complement+ :=  3< \*< is Zariski closed (as the finite union

over 8 ∈ [<] of the sets of (z1, ... , z<) ∈  
3< satisfying the polynomial equation

z8 · z8 = 0), the complement, := 3<A \*<A is also Zariski closed as the finite union

over 8 ∈ [A] of the closed sets  3<(8−1) × + ×  3<(A−8) . Clearly, 5 A is a rational map

defined everywhere on *<A and thus continuous in the Zariski topology on *<A ⊆

 3<A . Also, the image of 5 A is exactly - = SO(3; )A with the surjectivity following

from the choice of <. It follows from [2, Lemma 5-2.1] that - is irreducible. (In brief,

if - can be written as a union of two proper closed subsets -1 ∪ -2, then  3<A is

a union of two proper closed sets 5 −1 (-1) ∪, and 5 −1 (-2) ∪, , contradicting the

irreducibility of  3<A since its ideal � ( 3<A ), which is {0} by e.g. Lemma 8.1, is

trivially prime.) Thus - is indeed irreducible.

It remains to show that the set of upper coordinates W* (that is, all entries above

the diagonals) is a transcendence basis for the function field  (-) over  . This claim

is made of the following two parts.

First, let us show that the field extension  (W* ) ↩→  (-) is algebraic. By (8.1)

and (8.2), it is enough to represent this field extension as a composition of field exten-

sions where, at each step, every added non-upper coordinate is algebraic over the

previously added coordinates and the upper coordinates in the same matrix. Thus we

consider just one matrix in SO(3;  ), which we denote as W = (W8, 9 )8, 9∈[3] . We add

the non-upper coordinates by whole rows in the natural order (with Row 1 added

first, then Row 2, and so on). Take any Row < and a non-upper pair (<, 9 ) (i.e. with

9 6 <). The following argument works for every index 9 ∈ [<] so we pick 9 = < for

notational convenience. Thus we have to show that I := W<,<, as an element of  (-),

is algebraic over

 ({W8, 9 : 8 ∈ [< − 1], 9 ∈ [3]} ∪ {W<, 9 | 9 ∈ {< + 1, ... , 3} }).

Let the vectorx := (W<,1 , ... , W<,<−1 ) consist of the other non-upper entries of Row<

and let " := (W8, 9 )8, 9∈[<−1] be the square submatrix of W which lies above x. The

orthogonality of Row < to the previous rows gives a system of < − 1 linear equations,

namely,

"x) = f) ,
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where f := ( 51, ... , 5<−1) with 58 := −W8,<I −
∑3
9=<+1

W8, 9W<, 9 for 8 ∈ [< − 1]. By

Cramer’s rule, we have det(")x) = Ad(")f) , where Ad(") denotes the adjoint

matrix of " (whose (8, 9 )-th entry is (−1)8+ 9 times the determinant of " with Row

9 and Column 8 removed). Take the unit “norm” relation
∑3
8=1
W2

<,8 = 1 for Row <,

multiply it by (det("))2 and replace each (det("))2G2

8 by its value from Cramer’s

rule. We get a polynomial equation having no x, namely,

(8.6) (det("))2I2 +

<−1∑
8=1

©­«
<−1∑
9=1

Ad(")8 9 5 9
ª®
¬

2

+ (det("))2

3∑
8=<+1

W2

<,8 = (det("))2.

Let us show that the coefficient at I2 in this equation is non-zero. This coefficient is

some polynomial in the upper entries and the previous entries. If we take the identity

matrix �3 for W, then the column above I is all zero and the matrix " is invertible

(namely, it is the (< − 1) × (< − 1) identity matrix �<−1). Then f does not depend on

I at all and the coefficient at I2 is (det("))2 = 1, which is non-zero. So the coefficient

at I2 in (8.6) is a non-zero polynomial, that is, I is algebraic over all previous entries,

as desired. We conclude (by (8.1) and (8.2)) that all entries on or below the diagonals

are algebraic over  (W* ) and thus the field extension  (W* ) ↩→  (-) is indeed

algebraic.

Thus in order to show that the coordinates W* form a transcendence basis, it

remains to prove that these
(3
2

)
A coordinates, as elements of the function field  (-),

are algebraically independent over  . It is enough to prove this for  = C. Indeed,

we assumed that  ⊆ C. A non-trivial algebraic relation over  between the upper

coordinates means that the ideal that defines SO(3;  )A (which, in the case A = 1, is

the ideal �SO in (8.4)) contains a non-zero polynomial 6 that does not depend on non-

upper coordinates. The same polynomial 6, when viewed as a polynomial in C[γ],

then witnesses that the upper coordinates are algebraically dependent overC.

Thus let us assume that  = C. We need an easy auxiliary claim first from which

we will derive that every choice of sufficiently small in absolute value upper entries

can be extended to a matrix in SO(3;C). For < ∈ [3] and an < × 3 matrix W = (W8, 9 ),

let the property P< state that for all 8 ∈ [<] we have
∑3
9=1
W8, 9W<, 9 = 18=<. (Recall

that 18=< is 1 if 8 = < and 0 otherwise.) In other words, P< states that Row < has

unit “norm” and is orthogonal to all previous rows.

Claim 8.3. For every< ∈ [3] and X > 0 there is Y = Y<(X) > 0 such that the following

holds. Take any complex numbers (W8, 9 ) (8, 9) ∈( , where

( := ([< − 1] × [3]) ∪ {(<, 9 ) | < < 9 6 3},

such that P1, ... , P<−1 hold and |W8, 9 − 18= 9 | 6 Y for any (8, 9 ) ∈ (. Then there is a

choice of W<,1, ... , W<,< ∈ C such that |W<, 9 − 1<= 9 | 6 X for each 9 ∈ [<] and P<
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holds. Moreover, if W8, 9 for each (8, 9 ) ∈ ( is real then W<,1, ... , W<,< can additionally

be chosen to be real.

Proof of Claim. Suppose that the claim fails for for some < ∈ [3] and X > 0. Let real

Y tend to 0 from above and let W ∈ C( be a partial assignment violating the claim.

Let us use the notation that was introduced around (8.6). By our choice of W, we have

that each entry of " is within additive Y = >(1) from the corresponding entry of

the identity matrix and thus det(") = 1 + >(1) is non-zero. Of the two roots of the

quadratic equation (8.6), which now reads I2 − 1 = >(1 + |I |2), choose I = 1 + >(1).

In fact, (8.6) gives not only the entry I = W<,< but the consistent remainder of Row <

by x) := (det("))−1 Ad(")f) , satisfying P<. By the continuity of the all involved

functions (and det(") = 1 + >(1)), we have ‖x‖∞ = >(1), a contradiction to X > 0

being fixed.

Let us show how to adapt this argument to establish the second part of the claim.

Suppose additionally that the given W8, 9 ’s are reals. In the above notation, the quad-

ratic equation (8.6) has all real coefficients and, as before, states that I2 − 1 = >(1 +

|I2 |). Its left-hand side as a function of I ∈ R changes sign at I = 1 with its deriv-

ative 2I being bounded away from 0 around I = 1. Hence we can choose a real

root I = 1 + >(1). Then " is a real matrix and the rest of Row <, namely x) :=

(det("))−1 Ad(")f) is also real.

Consider the projection c : SO(3;C)A →C

< on the < :=
(3
2

)
A upper coordinates,

which maps (x, y) to y. In particular, the A-tuple of the identity matrices projects to

the zero vector 0 ∈ C<. The image of c contains some Euclidean open ball

BallY (0) := {z ∈ C< | ‖z‖1 < Y}

of radius Y > 0 around the origin. Namely, we can take its radius to be

(8.7) Y := Y3 (Y3−1 ( ... Y1 (1/(2
3 3!)) ... )) > 0,

where Y1, ... , Y3 are the functions returned by Claim 8.3. Indeed, by the choice of

the constants we know that for every y ∈ BallY (0), we can construct a 3 × 3 matrix

W row by row so that W projects to y and satisfies all properties P1, ... , P3 while it

also holds that ‖W − �3 ‖∞ < 1/(23 3!). The last inequality gives, rather roughly, that

| det(W) − 1| < 1. Thus det(W) = 1 because det(W) is either −1 or 1 by (8.5). So indeed

c(SO(3;C)) contains c(W) = y.

Now, suppose on the contrary that there is a non-trivial polynomial relation bet-

ween the upper coordinates. Thus there is a non-zero polynomial 6 which does not

depend on the non-upper coordinates and belongs to the ideal generated by the poly-

nomials that define SO(3;C)A (with those for A = 1 being listed in (8.4)). The poly-

nomial 6, as a function of the < upper coordinates, vanishes on c(-) ⊆ C<. This
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contradicts Lemma 8.1 as c(-) contains a non-empty open set, namely the open ball

of radius Y around the origin, and thus c(-) contains a product of < infinite sets.

Now we are ready to show that the set N of non-generic points in SO(3)A is

“small”.

Proof of Lemma 1.3. As before, when we identify an A-tuple of 3 × 3 matrices over a

field  with an element of  3
2A , let us order the 32A coordinates so that the < :=

(3
2

)
A

upper entries (i.e. those above the diagonals) come at the end. Thus if we write an

element of  3
2A as (x,y) then y corresponds to the < upper entries. Also, we use the

standard topology on S3−1 (the one which is inherited from the Euclidean spaceR3).

There are countably many polynomials in Q[x, y] so enumerate those that are

non-zero on at least one element of SO(3)A as 51, 52, ... . By definition, if a point

(a, b) ∈ SO(3;R)A is not generic then some 58 vanishes on (a, b). Thus N is a

subset of the countable union ∪∞
8=1
/8 , where

(8.8) /8 := {(a, b) ∈ SO(3)A | 58 (a, b) = 0}.

Since each polynomial 58 is continuous as a functionR32A →R, each set /8 is closed.

Let us turn to Part (i) where we have to show that the Haar measure a assigns

measure 0 to N . By the countable additivity, it is enough to show that each set /8 ,

defined by (8.8), has a-measure zero.

First, let us recall how the Haar measure can be constructed for the group � :=

SO(=)A (and, in fact, for any real Lie group), following the presentation in [17, Sec-

tions VIII.1–2]. Namely, choose some linear basis for the Lie algebra (so(3))A viewed

as the tangent space )(�3 , ... ,�3) at the identity (�3 , ... , �3) ∈ SO(3)A and, using the

translations of these vectors, turn them into left-invariant vector fields -1, ... , -<.

(Note the the Lie algebra (so(3))A , that consists of all A-tuples of skew-symmetric

matrices, has dimension< =
(3
2

)
A as a vector space.) For eachγ ∈ �, let 41(γ), ... , 4< (γ) ∈

)∗
γ be the dual basis to (-1 (γ), ... , -<(γ)). Then l = 41 ∧ ... ∧ 4< (the skew-

symmetric product) is a smooth < form on �, which is positive and left-invariant

and thus defines a Borel left-invariant non-zero measure on � ([17, Theorem 8.21]).

By the uniqueness, this has to be a multiple of the Haar measure a. In particular, any

smooth submanifold of � of dimension (as a manifold) less than < has zero Haar

measure ([17, Equation (8.25)]).

The set /8 ( SO(3)A , as an algebraic variety, has dimension smaller than < which

follows from the definition of the dimension via nested chains of irreducible vari-

eties (that is, by (8.3)) and from the irreducibility of the variety SO(3)A (that is,

by Lemma 8.2). Some standard results in the theory of (semi-)algebraic sets give

that every bounded variety in someR= admits a triangulation into simplices each of
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which is a smooth submanifold of R=, see e.g. [1, Theorem 5.43]. Apply this result

to every irreducible component / ⊆ /8 . The dimension : of each obtained simplex (

(as a manifold) is at most dim /. Indeed, pick a point s ∈ ( and the projection from

( on some : coordinates which is a homeomorphism around s. Observe that these

: coordinates are algebraically independent in the function field R(/) because no

non-zero polynomial onR: can vanish on a non-empty open set by Lemma 8.1.

Thus we covered /8 by finitely many manifolds of dimension less than <, each

having zero Haar measure as it was observed earlier (by [17, Equation (8.25)]). We

conclude that the Haar measure of /8 is indeed zero.

Let us show Part (ii). Recall that the sets /1, /2, ... were defined in (8.8). Clearly,

each set /8 is closed. Thus it is enough to show that the relative interior of each

/8 ⊆ SO(3)A is empty. Suppose on the contrary that the relative interior* of some /8

is non-empty. Since the compact group SO(3)A acts transitively on itself by homeo-

morphisms, finitely many translates of* cover the whole group. As the Haar measure

is a is invariant under this action, we have that a(*) > 0. However, this contradicts

Part (i) that we have already proved.

This finishes the proof of Lemma 1.3.

8.3. Proof of Lemma 1.4. Our proof of the reverse (harder) implication of Lemma 1.4

needs Lemma 8.4 below. Since we could not find this rather natural statement any-

where in the literature we present a proof whose main idea (to use dimension) was

suggested to us by Miles Reid. In fact, Miles Reid came up with a full proof of some

initial version of the lemma. Since his proof relies on the so-called universal domain

of  while we would like to have this paper as elementary as possible, we present a

proof that avoids universal domains.

Given a field extension  ↩→ ! and a variety - ⊆ != (over the field !), we say

that an element a ∈ - is  -generic for - if every polynomial ? ∈  [G1, ... , G=] with

?(a) = 0 vanishes on every element of - . (Here as well as in the rest of this paper,

each evaluation mixing elements of some two fields  ↩→ ! is done in the larger

field !.) In the special case when  := Q, ! := R, - := SO(3)A we get exactly the

definition of a generic A-tuple of rotations from the Introduction.

Lemma 8.4. Let  ↩→ ! be a field extension, with ! being algebraically closed.

Let P ⊆  [x, y] be some family of polynomials over  , where we abbreviate x :=

(G1, ... , G<) and y := (H1, ... , H=). Suppose that

(8.9) - := {(x, y) ∈ !<+= | ∀ 5 ∈ P 5 (x, y) = 0},

as a variety over !, is irreducible and has dimension = with H1, ... , H= forming a

transcendence basis for the function field !(-) over !.
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Then every ? = (a,b) ∈ - with the =-tuple b ∈ != being algebraically independent

over  is a  -generic point of - .

Proof. Let the ideal �? ⊆  [x, y] consist of those polynomials over  that vanish

on ?. Let

/ := +! (�?) = {(x, y) ∈ !<+= | ∀ 5 ∈ �? 5 (x, y) = 0}.

As P ⊆ �?, we trivially have that / ⊆ - . We have to show that / = - , which by

the definition of / = +! (�?) will give the required result (namely, that every 5 ∈ �?

vanishes on -).

Let / = /1 ∪ ... ∪ /C be a decomposition of / into irreducible varieties ([12,

Theorem 6.4]).

Suppose first that there is 8 ∈ [C] such that the =-tuple y, with each H 9 viewed

as an element of the function field !(/8 ), is algebraically independent over !. This

means that the dimension of the irreducible variety /8 ⊆ !<+= is at least =. Recall

that /8 ⊆ / ⊆ - . By the definition of the dimension via nested chains of irreducible

subvarieties (that is, by (8.3)), we cannot have /8 ( - for otherwise any chain for

/8 extends to a strictly larger chain for - which gives that dim - − 1 > dim /8 > =,

contradicting our assumption. Thus /8 = / = - , as desired.

Thus we can assume that for every 8 ∈ [C] there is a non-zero 68 ∈ ![y] ∩ � (/8).

Since / = ∪C
8=1
/8 , we have by [12, Proposition 3.12] that � (/) = ∩C

8=1
� (/8). (Recall

that, for example, the ideal � (/) of / ⊆ !<+= consists of those ? ∈ ![x,y] that vanish

on /.) Thus the product 61 ... 6C ∈ ![y], which trivially belongs to each � (/8), also

belongs to � (/).

Let �!? be the ideal in ![x, y] generated by �? ⊆  [x, y] ⊆ ![x, y]. In other

words,

�!? :=

{
<∑
8=1

ℎ8 (x, y) 58 (x, y) | < > 0, ℎ1, ... , ℎ< ∈ ![x, y], 51, ... , 5< ∈ �?

}
,

from which it easily follows that+! (�
!
? ) =+! (�?) = /. Since ! is algebraically closed,

we have by Hilbert’s Nullstellensatz ([12, Theorem 7.3]) that � (/) is equal to√
�!? := { 5 ∈ ![x, y] | ∃ # 5 # ∈ �!? },

the radical of �!? . Thus there is some integer # > 1 such that 6 := (61 ... 6C )
# belongs

to �!? .

In other words, we have shown that �!? contains a non-zero polynomial 6 that does

not depend on x, that is,

(8.10) �!? ∩ ![y] ≠ {0}.
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We claim that, in fact, �? ∩ [y] ≠ {0}. In order to show this, we analyse how a known

algorithm for eliminating variables works, arguing that we can run two instances of

the algorithm, one for �!? ∩ ![y] and the other for �? ∩  [y], to produce the same

generating set of polynomials in each case.

Since all following steps are fairly standard, we will be rather brief, referring the

reader to [12] for a detailed exposition. First, by the Hilbert Basis Theorem ([12,

Corollary 2.22]), there is a finite set F ⊆  [x, y] that generates �?. Of course, the

same set F , as a subset of ![x, y], generates �!? . We fix any monomial order ≺ for

(x, y) which is an elimination order for x ([12, Definition 4.6]) and apply Buch-

berger’s algorithm ([12, Corollary 2.29]) to find a ≺-Gröbner basis G for �!? using

F as its input. At a very low level, each step of the algorithm is to pick some two

previous non-zero polynomials ℎ1 and ℎ2, take the coefficients 21 and 22 at their ≺-

highest monomials and add ℎ1 − (21/22)ℎℎ2 for some monomial ℎ to the current

pool of polynomials. Thus all encountered polynomials have coefficients in  ; in

particular, the obtained Gröbner basis G is a subset of  [x, y]. By the Elimination

Theorem ([12, Theorem 4.8]) and our choice of the monomial order ≺, the ideal

�!? ∩ ![y] is generated by G ∩ ![y], that is, by those polynomials in G that do not

depend on x. Moreover, if we apply Buchberger’s algorithm to find the intersection

of �? = 〈F 〉 ⊆  [x, y] and  [y], we obtain the very same generating set G ∩  [y]

(because the choice of ℎ1, ℎ2 and ℎ at each low-level step of the algorithm depends

only on the ≺-highest monomials of the previous polynomials).

However, we know that �? ∩ [y] = {0} because no non-zero polynomial in  [y]

can vanish on ? by our assumption that y is algebraically independent over  . Thus

G ∩ ![y] = G ∩  [y] can contain only the zero polynomial. This means that �!? ∩

![y] = {0}, contradicting (8.10) and proving the lemma.

Now we are ready to prove Lemma 1.4 that gives an alternative characterisation

ofQ-generic points of SO(3)A .

Proof of Lemma 1.4. As before, the < :=
(3
2

)
A upper entries of SO(3)A ⊆ R32A come

at the end and if we write an element of  3
2A as (x, y) then y corresponds to the <

upper entries.

The forward implication of the lemma is easy. Take any (a, b) ∈ ($ (3;R)A such

that 5 (b) = 0 for some non-zero polynomial 5 with rational coefficients. Take any

vector b′ ∈ R< whose !∞-norm is at most the expression in (8.7) with entries algeb-

raically independent overQ. By Claim 8.3, there is a choice of a real vector a′ with

(a′, b′) ∈ SO(3)A , that is, we can extent the vector b′ of upper entries to an A-tuple

of real special orthogonal matrices. Since the polynomial 5 with rational coefficients
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cannot vanish on b′, the polynomial map (x, y) ↦→ 5 (y) shows that (a, b) is not a

generic point.

Let us show the converse implication. Let (a, b) ∈ ($ (3;R)A be any point with

the <-tuple b ∈ R< of reals being algebraically independent overQ.

By Lemma 8.2, the complex variety - := SO(3;C)A ⊆ C3
2A is irreducible and

the upper coordinates y form a transcendence basis for the function field C(-).

Now, Lemma 8.4 (which requires that the field ! is algebraically closed) applies with

 :=Q, ! :=C and P ⊆ Q[x,y] consisting of the polynomials that define the vari-

ety SO(3;R)A (with the ones in (8.4) corresponding to the case A = 1). The lemma

gives that (a, b) ∈ SO(3;R)A ⊆ SO(3;C)A is a Q-generic point of SO(3;C)A . Of

course, this trivially implies that (a, b) is a Q-generic point also of SO(3;R)A (as

every polynomial ? ∈Q[x,y] that vanishes on (a, b) has to vanish on SO(3;C)A ⊇

SO(3;R)A ), as desired.

This finishes the proof of Lemma 1.4.
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