THE UNIVERSITY OF WARWICK

Manuscript version: Author's Accepted Manuscript

The version presented in WRAP is the author's accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:

http://wrap.warwick.ac.uk/167543

How to cite:

Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher's statement:

Please refer to the repository item page, publisher's statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

Divisibility of Spheres with Measurable Pieces

Clinton T. Conley, Jan Grebík and Oleg Pikhurko

Abstract

For an r-tuple $\left(\gamma_{1}, \ldots, \gamma_{r}\right)$ of special orthogonal $d \times d$ matrices, we say that the Euclidean $(d-1)$-dimensional sphere \mathbb{S}^{d-1} is $\left(\gamma_{1}, \ldots, \gamma_{r}\right)$-divisible if there is a subset $A \subseteq$ \mathbb{S}^{d-1} such that its translations by the rotations $\gamma_{1}, \ldots, \gamma_{r}$ partition the sphere. Motivated by some old open questions of Mycielski and Wagon, we investigate the version of this notion where the set A has to be measurable with respect to the spherical measure. Our main result shows that measurable divisibility is impossible for a "generic" (in various meanings) r-tuple of rotations. This is in stark contrast to the recent result of Conley, Marks and Unger which implies that, for every "generic" r-tuple, divisibility is possible with parts that have the property of Baire.

Mathematics Subject Classification (2020). Primary 03E15, 28A05; Secondary 33C55, 43A90, 57M60.

Keywords. Euclidean sphere, divisibility under a group action, measurable set, special orthogonal group.

1. Introduction

Let $\mathrm{SO}(d)$ denote the group of special orthogonal $d \times d$ matrices, that is, real $d \times d$ matrices M such that the determinant of M is 1 and $M^{T} M=I_{d}$, where I_{d} denotes the identity $d \times d$ matrix. The elements of this group are naturally identified with orientation-preserving isometries of the Euclidean unit sphere

$$
\mathbb{S}^{d-1}:=\left\{\boldsymbol{x} \in \mathbb{R}^{d} \mid\|\boldsymbol{x}\|_{2}=1\right\}
$$

and we will often refer to them as rotations.
For an r-tuple $\gamma=\left(\gamma_{1}, \ldots, \gamma_{r}\right) \in \operatorname{SO}(d)^{r}$, we say that \mathbb{S}^{d-1} is γ-divisible (or admits a γ-division) if there is $A \subseteq \mathbb{S}^{d-1}$ such that its translates $\gamma_{1} . A, \ldots, \gamma_{r} . A$ partition \mathbb{S}^{d-1} (that is, for every $\boldsymbol{x} \in \mathbb{S}^{d-1}$ there are unique $\boldsymbol{y} \in A$ and $i \in[r]$ such that $\boldsymbol{x}=\gamma_{i} . \boldsymbol{y}$, where we denote $[r]:=\{1, \ldots, r\}$). Of course, a set A works for γ if and only if γ_{r}. A works for $\boldsymbol{\beta}:=\left(\gamma_{1} \gamma_{r}^{-1}, \ldots, \gamma_{r-1} \gamma_{r}^{-1}, I_{d}\right)$. However, we do not normally
assume that any particular rotation is the identity, mostly for the notational convenience so that all indices can be treated uniformly.

We say that \mathbb{S}^{d-1} is r-divisible if there is an r-tuple $\gamma \in \mathrm{SO}(d)^{r}$ such that \mathbb{S}^{d-1} is γ-divisible (or, in other words, if we can partition \mathbb{S}^{d-1} into r congruent pieces). The integer pairs $d, r \geqslant 2$ such that \mathbb{S}^{d-1} is r-divisible have been completely classified (see e.g. Theorem 6.6 in the book by Tomkowicz and Wagon [23]). Namely, the only pairs when the answer is in the negative are when $r=2$ and d is odd. In this case, the impossibility of any (γ_{1}, γ_{2})-division follows from considering a fixed point $\boldsymbol{x} \in \mathbb{S}^{d-1}$ of $\gamma_{1}^{-1} \gamma_{2}$ which exists as the dimension $d-1$ of the sphere is even. (Indeed, no set A can work here: the translates $\gamma_{1} . A$ and $\gamma_{2} . A$ intersect if $\boldsymbol{x} \in A$ and do not cover $\gamma_{1} \cdot \boldsymbol{x}$ if $\boldsymbol{x} \notin A$.) On the other hand, the case of $d=2$ is trivial (e.g. one can take the r rotations of the circle \mathbb{S}^{1} by multiples of the angle $2 \pi / r$) while the first published solution for \mathbb{S}^{2} seems to be by Robinson [22, Page 254]. Furthermore, the r-divisibility for \mathbb{S}^{d-1} easily implies the r-divisibility of \mathbb{S}^{d+1}, see e.g. the proof of Theorem 6.6 in [23] or Lemma 5.1 here.

Mycielski [18] showed that there is a subset $A \subseteq \mathbb{S}^{2}$ such that for every integer $r \geqslant 3$ there are $\gamma_{1}, \ldots, \gamma_{r}$ with $\gamma_{1} . A, \ldots, \gamma_{r} . A$ partitioning the sphere. This should be compared with the classical paradox of Hausdorff [13] who produced such a set A that works, apart from a countable subset of \mathbb{S}^{2} of errors, for every $r \geqslant 2$. (Note that we cannot take $r=2$ in Mycielski's result because \mathbb{S}^{2} is not 2-divisible.)

Let μ be the spherical measure on \mathbb{S}^{d-1}, which can be defined as the $(d-1)$ dimensional Hausdorff measure with respect to the standard arc-length distance on the sphere (where the distance between $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{S}^{d-1}$ is the angle between the vectors \boldsymbol{x} and \boldsymbol{y}). We call a subset of \mathbb{S}^{d-1} measurable if it belongs to the μ-completion of the Borel σ-algebra. Note that the paradoxical set A in the results of Hausdorff [13] and Mycielski [18] cannot be measurable with respect to the (rotation-invariant) measure μ on \mathbb{S}^{2}, for otherwise the existence of a partition $\gamma_{1} . A, \ldots, \gamma_{r} . A$ of \mathbb{S}^{d-1} up to a countable (and thus μ-null) set implies that $\mu(A)=1 / r$, a contradiction to r assuming different values. Mycielski $[19,20]$ asked if one can show that \mathbb{S}^{2} is r-divisible without using the Axiom of Choice. Wagon [24, Question 4.15] (or Question 5.15 in [23]) asked if the 3-divisibility of \mathbb{S}^{2} can be shown with measurable sets (thus the Axiom of Choice can be applied on a μ-null set). Measurable divisibility for higher dimensional spheres is easier because of a constructive way of lifting up a division from \mathbb{S}^{d-1} to \mathbb{S}^{d+1}. It is known that \mathbb{S}^{d-1} is r-divisible with measurable pieces for $r \geqslant 3$ and odd $d \geqslant 5$ (which follows from the proof of Theorem 6.6(b) in [23], see Lemma 5.1 here) and with Borel pieces for $r \geqslant 2$ and even $d \geqslant 2$ (see e.g. [23, Theorem 6.6(a)]).

The above questions by Mycielski and Wagon are still open, although some related progress was obtained by Conley, Marks and Unger [4] whose general results imply that, unless $r=2$ and d is odd, the sphere \mathbb{S}^{d-1} is r-divisible so that each piece has
the property of Baire (that is, under one of equivalent definitions, each piece can be represented as the symmetric difference of a Borel set and a meager set; for more details see e.g. the textbook on descriptive set theory by Kechris [15, Section 8.F]). The derivation of this result is given in Proposition 1.2 here.

Here we propose to study the more general question of describing the set of those r-tuples $\gamma \in \mathrm{SO}(d)^{r}$ such that \mathbb{S}^{d-1} is γ-divisible with measurable pieces.

First, we consider the case when the rotations are "generic". More precisely, let us call an r-tuple of matrices $\gamma=\left(\gamma_{1}, \ldots, \gamma_{r}\right) \in \operatorname{SO}(d)^{r}$ generic if, for every polynomial p with rational coefficients in $d^{2} r$ variables, $p(\gamma)=0$ implies that $p(\boldsymbol{\beta})=0$ for every $\boldsymbol{\beta} \in \operatorname{SO}(d)^{r}$, where e.g. $p(\gamma)$ denotes the value of p on the $d^{2} r$ individual entries of the matrices corresponding to $\gamma_{1}, \ldots, \gamma_{r}$ under the standard basis of \mathbb{R}^{d}. In other words, this property states that if a polynomial with rational (equivalently, integer) coefficients vanishes on (the matrix entries of) γ then it necessarily vanishes everywhere on $\mathrm{SO}(d)^{r}$.

Our main result shows that no generic γ works in the measurable setting, even in a rather relaxed fractional version.

Theorem 1.1. Let $d \geqslant 2$ and $r \geqslant 2$ be integers. Let $\left(\gamma_{1}, \ldots, \gamma_{r}\right) \in \operatorname{SO}(d)^{r}$ be generic. Then every $f \in L^{2}\left(\mathbb{S}^{d-1}, \mu\right)$ with $\sum_{i=1}^{r} \gamma_{i} . f=1 \mu$-almost everywhere is the constant function $1 / r \mu$-almost everywhere, where γ_{i}.f denotes the function that maps $\boldsymbol{x} \in$ \mathbb{S}^{d-1} to $f\left(\gamma_{i}^{-1} \cdot \boldsymbol{x}\right)$.

In sharp contrast, we can derive with some extra work from the results in [4] that every generic γ works with pieces that have the property of Baire.

Proposition 1.2. Let $r \geqslant 2$ and $d \geqslant 2$ be arbitrary integers, except if d is odd then we require that $r \geqslant 3$. Let $\left(\gamma_{1}, \ldots, \gamma_{r}\right) \in \mathrm{SO}(d)^{r}$ be generic. Then there is a subset A of \mathbb{S}^{d-1} with the property of Baire such that $\gamma_{1} . A, \ldots, \gamma_{r}$. A partition \mathbb{S}^{d-1}.

Theorem 1.1 and Proposition 1.2 add to a growing body of results in measurable combinatorics (see e.g. the recent survey by Kechris and Marks [16]), where the requirements that the pieces are measurable and have the property of Baire respectively lead to different answers.

The following lemma shows that, in various meanings, "most" elements of $\mathrm{SO}(d)^{r}$ are generic.

Lemma 1.3. Let $r \geqslant 1, d \geqslant 2$ and \mathcal{N} be the set of r-tuples in $\mathrm{SO}(d)^{r}$ that are not generic. Then the following statements hold.
(i) The set \mathcal{N} has measure 0 with respect to the Haar measure on the group $\mathrm{SO}(d)^{r}$.
(ii) The set \mathcal{N} is a meager subset of $\mathrm{SO}(d)^{r}$ with respect to the topology induced by the Euclidean topology on $\mathbb{R}^{d^{2} r} \supseteq \mathrm{SO}(d)^{r}$.

Also, by using some algebraic geometry, we can give a more concrete characterisation of generic r-tuples of rotations. In particular, the following lemma allows us to write an "explicit" generic point: just let the entries above the diagonals be sufficiently small reals that are algebraically independent over \mathbb{Q} and extend this to an element of $\mathrm{SO}(d)^{r}$ by Claim 8.3 here.

Lemma 1.4. Let $r \geqslant 1, d \geqslant 2$, and $\gamma \in \operatorname{SO}(d)^{r}$. Then γ is generic if and only if the $\binom{d}{2}$ r-tuple of the matrix entries of γ strictly above the diagonals is algebraically independent over \mathbb{Q}.

In the extreme opposite case, we show that, for odd $d \geqslant 3, \gamma$-divisibility cannot be attained when γ generates a finite subgroup of $\mathrm{SO}(d)$.

Proposition 1.5. Let $d \geqslant 3$ be odd. Suppose that $\gamma_{1}, \ldots, \gamma_{r} \in \operatorname{SO}(d), r \geqslant 3$, generate a finite subgroup $\Gamma \subseteq \mathrm{SO}(d)$. Then \mathbb{S}^{d-1} is not $\left(\gamma_{1}, \ldots, \gamma_{r}\right)$-divisible.

Some standard general results of Borel combinatorics (e.g. Lemma 5.12 and Theorem 5.23 from [21]) imply that if \mathbb{S}^{d-1} is γ-divisible and every orbit of the subgroup of $\mathrm{SO}(d)$ generated by $\gamma_{1}, \ldots, \gamma_{r}$ is finite, then there is a Borel γ-division. The following result gives that just one finite orbit is enough to convert a γ-division into a measurable one.

Proposition 1.6. Let $d \geqslant 2$ and $\gamma=\left(\gamma_{1}, \ldots, \gamma_{r}\right) \in \operatorname{SO}(d)^{r}$. Let Γ be the subgroup of $\mathrm{SO}(d)$ generated by $\gamma_{1}, \ldots, \gamma_{r}$. Suppose that there is $z \in \mathbb{S}^{d-1}$ such that its Γ orbit $\Gamma . \boldsymbol{z}$ is finite. Then \mathbb{S}^{d-1} is γ-divisible if and only if \mathbb{S}^{d-1} is γ-divisible with measurable pieces.

Of course, this leaves a wide range of unresolved cases. As an initial partial step, we completely characterise those r-tuples of rotations for which the circle \mathbb{S}^{1} is divisible with measurable pieces for $r \leqslant 3$.

This paper is organised as follows. In Section 2 we give a quick overview of basic definitions and facts about spherical harmonics and use these to prove Theorem 1.1, which is the main result of this paper. Proposition 1.5 is proved in Section 3 using Euler's characteristic. Propositions 1.6 and 1.2 are proved in Sections 4 and 7 respectively. In Section 5 we describe the standard construction of how an r-division of \mathbb{S}^{d-1} can be lifted to \mathbb{S}^{d+1} and observe that this gives measurable pieces (Lemma 5.1). In Section 6 we study various versions of measurable divisibility when $d=2$; in particular, we characterise r-tuples $\gamma \in \operatorname{SO}(2)^{r}$ for which the circle \mathbb{S}^{1} is γ-divisible
with measurable pieces for $r \leqslant 3$. The rather technical Section 8 is dedicated to proving Lemmas 1.3 and 1.4. Section 8.1 presents some basics of algebraic geometry. In Section 8.2 we prove some results about $\mathrm{SO}(d)^{r}$ and use them to prove Lemma 1.3. In particular, we show that the variety $\mathrm{SO}(d)^{r} \subseteq \mathbb{R}^{d^{2} r}$ is irreducible and the entries above the diagonals form a transcendence basis for its function field. While these results are fairly standard, we present their proofs since we could not find any published statements that suffice for our purposes. In Section 8.3 we prove an auxiliary lemma from algebraic geometry and use it to derive Lemma 1.4.

2. Spherical harmonics

Let an integer $d \geqslant 2$ be fixed throughout this section.
For an introduction to spherical harmonics on \mathbb{S}^{d-1} we refer to the book by Groemer [10] whose notation we generally follow. Recall that μ denotes the spherical measure on \mathbb{S}^{d-1}. Thus the total measure of the sphere is

$$
\sigma_{d}:=\mu\left(\mathbb{S}^{d-1}\right)=\frac{2 \pi^{d / 2}}{\Gamma(d / 2)}
$$

As d is fixed, the dependence on d is usually not mentioned except for σ_{d} (since σ_{d-1} will also appear in some formulas). Also, the shorthand a.e. stands for μ-almost everywhere.

By [10, Lemma 1.3.1], the density of the push-forward of μ under the projection to any coordinate axis is

$$
\rho(t):= \begin{cases}\sigma_{d-1}\left(1-t^{2}\right)^{(d-3) / 2}, & -1<t<1 \tag{2.1}\\ 0, & \text { otherwise }\end{cases}
$$

A polynomial $p \in \mathbb{R}[\boldsymbol{x}], \boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)$, is called harmonic if $\Delta p=0$, where

$$
\Delta:=\frac{\partial^{2}}{\partial x_{1}^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{d}^{2}}
$$

is the Laplace operator. A spherical harmonic is a function from \mathbb{S}^{d-1} to the reals which is the restriction to \mathbb{S}^{d-1} of a harmonic polynomial on \mathbb{R}^{d}. Let \mathcal{H} be the vector space of all spherical harmonics. For an integer $n \geqslant 0$, let $\mathcal{H}_{n} \subseteq \mathcal{H}$ be the linear subspace consisting of all functions $f: \mathbb{S}^{d-1} \rightarrow \mathbb{R}$ that are the restrictions to \mathbb{S}^{d-1} of some harmonic polynomial p which is homogeneous of degree n, where we regard the zero polynomial as homogeneous of any degree. By [10, Lemma 3.1.3], the polynomial p is uniquely determined by $f \in \mathcal{H}_{n}$, so we may switch between these two
representations without mention. It can be derived from this ([10, Theorem 3.1.4]) that the dimension of \mathcal{H}_{n} is

$$
\begin{equation*}
N_{n}:=\binom{d+n-1}{n}-\binom{d+n-3}{n-2} \tag{2.2}
\end{equation*}
$$

where we agree that $\binom{d+n-3}{n-2}=0$ for $n=0$ or 1 .
Let $\langle\cdot, \cdot\rangle$ denote the scalar product on $L^{2}\left(\mathbb{S}^{d-1}, \mu\right)$ (while $\boldsymbol{x} \cdot \boldsymbol{y}:=\sum_{i=1}^{d} x_{i} y_{i}$ denotes the scalar product of $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{d}$). It is known ([10, Theorem 3.2.1]) that

$$
\begin{equation*}
\langle f, g\rangle=0, \quad \text { for all } f \in \mathcal{H}_{i} \text { and } g \in \mathcal{H}_{j} \text { with } i \neq j \tag{2.3}
\end{equation*}
$$

that is, $\mathcal{H}_{0}, \mathcal{H}_{1}, \ldots$ are pairwise orthogonal subspaces of $\mathcal{H} \subseteq L^{2}\left(\mathbb{S}^{d-1}, \mu\right)$. Note that the group $\mathrm{SO}(d)$ acts naturally on $L^{2}\left(\mathbb{S}^{d-1}, \mu\right)$ via the shift action

$$
\begin{equation*}
(\gamma \cdot f)(\boldsymbol{v}):=f\left(\gamma^{-1} \cdot \boldsymbol{v}\right), \quad \text { for } \gamma \in \mathrm{SO}(d), f \in L^{2}\left(\mathbb{S}^{d-1}, \mu\right), \boldsymbol{v} \in \mathbb{S}^{d-1} \tag{2.4}
\end{equation*}
$$

Each space \mathcal{H}_{n} is invariant under this action ([10, Proposition 3.2.4]) since, on \mathbb{R}^{d}, rotations preserve both the Laplace operator as well as the set of homogeneous degreen polynomials.

An important role is played by the Gegenbauer polynomials $\left(P_{0}, P_{1}, \ldots\right)$ which are obtained from $\left(1, t, t^{2}, \ldots\right)$ by the Gram-Schmidt orthonormalization process on $L^{2}([-1,1], \rho(t) \mathrm{d} t)$, except they are normalised to assume value 1 at $t=1$ (instead of being unit vectors in the L^{2}-norm). In the special case $d=3$ (when ρ is the constant function), we get the Legendre polynomials. Of course, the degree of P_{n} is exactly n. Let us collect some of their standard properties that we will use.

Lemma 2.1. For every integer $n \geqslant 0$ the following holds.
(i) The polynomial P_{n} has rational coefficients.
(ii) For every $\boldsymbol{v} \in \mathbb{S}^{d-1}$, the function $P_{n}^{v}: \mathbb{S}^{n-1} \rightarrow \mathbb{R}$, defined by

$$
\begin{equation*}
P_{n}^{\boldsymbol{v}}(\boldsymbol{x}):=P_{n}(\boldsymbol{v} \cdot \boldsymbol{x}), \quad \text { for } \boldsymbol{x} \in \mathbb{S}^{d-1} \tag{2.5}
\end{equation*}
$$

belongs to \mathcal{H}_{n}.
(iii) There is a choice of $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N_{n}} \in \mathbb{S}^{d-1}$ such that the functions $P_{n}^{\boldsymbol{v}_{i}}, i \in\left[N_{n}\right]$, form a basis of the vector space \mathcal{H}_{n}.
(iv) For every $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{S}^{d-1}$, we have $\left\langle P_{n}^{\boldsymbol{u}}, P_{n}^{\boldsymbol{v}}\right\rangle=\frac{\sigma_{d}}{N_{n}} P_{n}(\boldsymbol{u} \cdot \boldsymbol{v})$.

Proof. Part (i) follows from the formula of Rodrigues ([10, Proposition 3.3.7]) that provides an explicit expression for P_{n}, or from the standard recurrence relation that writes P_{n+1} in terms of P_{n} and P_{n-1} for $n \geqslant 0$ ([10, Proposition 3.3.11]) together with the initial values $P_{-1}(t):=0$ and $P_{0}(t)=1$.

Part (ii), namely the claim that each $P_{n}^{\boldsymbol{v}}$ is in \mathcal{H}_{n}, is one of the statements of [10, Theorem 3.3.3].

Part (iii) is the content of [10, Theorem 3.3.14]. Alternatively, notice that under the action in (2.4) we have for every $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{S}^{d-1}$ and $\gamma \in \operatorname{SO}(d)$ that $\left(\gamma . P_{n}^{\boldsymbol{v}}\right)(\boldsymbol{u})=$ $P_{n}\left(\boldsymbol{v} \cdot\left(\gamma^{-1} \cdot \boldsymbol{u}\right)\right)=P_{n}((\gamma \cdot \boldsymbol{v}) \cdot \boldsymbol{u})$, that is,

$$
\begin{equation*}
\gamma \cdot P_{n}^{v}=P_{n}^{\gamma \cdot v} . \tag{2.6}
\end{equation*}
$$

Thus the linear span of $P_{n}^{\boldsymbol{v}}, \boldsymbol{v} \in \mathbb{S}^{d-1}$, is a non-zero $\mathrm{SO}(d)$-invariant subspace of \mathcal{H}_{n}. By [10, Theorem 3.3.4], the only such subspace is \mathcal{H}_{n} itself, giving the required.

Part (iv) follows from

$$
\left\langle P_{n}^{\boldsymbol{u}}, P_{n}^{\boldsymbol{v}}\right\rangle=\left(\int_{-1}^{1}\left(P_{n}(t)\right)^{2} \rho(t) \mathrm{d} t\right) P_{n}(\boldsymbol{u} \cdot \boldsymbol{v})=\frac{\sigma_{d}}{N_{n}} P_{n}(\boldsymbol{u} \cdot \boldsymbol{v})
$$

where the first equality is a special case of the Funk-Hecke Formula ([10, Theorem 3.4.1]) and the second equality (which by (2.1) amounts to computing the L^{2}-norm of any $P_{n}^{u} \in L^{2}\left(\mathbb{S}^{d-1}, \mu\right)$) is proved in [10, Proposition 3.3.6].

We need the following strengthening of Lemma 2.1.(iii), where we additionally require that the vectors \boldsymbol{v}_{i} are rational.

Lemma 2.2. For every integer $n \geqslant 0$, there is a choice of $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N_{n}} \in \mathbb{S}^{d-1} \cap \mathbb{Q}^{d}$ such that the functions $P_{n}^{\boldsymbol{v}_{i}}, i \in\left[N_{n}\right]$, form a basis of the vector space \mathcal{H}_{n}.

Proof. We pick \boldsymbol{v}_{i} in $\mathbb{S}^{d-1} \cap \mathbb{Q}^{d}$ one by one as long as possible so that the corresponding functions $P_{n}^{v_{i}}$ are linearly independent as elements of \mathcal{H}_{n}. Let this procedure produce $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\ell}$. Suppose that $\ell<N_{n}$ as otherwise we are done. Let $\boldsymbol{v}_{\ell+1}=\boldsymbol{x}$, with $\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{S}^{d-1}$ being viewed as a vector of unknown variables. Consider the $(\ell+1) \times(\ell+1)$ matrix $M=M(\boldsymbol{x})$ with entries

$$
\begin{equation*}
M_{i j}:=\frac{1}{\sigma_{d}}\left\langle P_{n}^{\boldsymbol{v}_{i}}, P_{n}^{\boldsymbol{v}_{j}}\right\rangle, \quad \text { for } i, j \in[\ell+1] \tag{2.7}
\end{equation*}
$$

In other words, $\sigma_{d} M$ is the Gram matrix of the vectors $P_{n}^{\boldsymbol{v}_{1}}, \ldots, P_{n}^{\boldsymbol{v}_{\ell+1}} \in L^{2}\left(\mathbb{S}^{d-1}, \mu\right)$. In particular, the determinant $\operatorname{det}(M)$ of M is 0 if and only if $P_{n}^{\boldsymbol{v}_{\ell+1}}$ is in the span of the (linearly independent) vectors $P_{n}^{\boldsymbol{v}_{1}}, \ldots, P_{n}^{\boldsymbol{v}_{\ell}}$ (by e.g. [14, Theorem 7.2.10]).

By Lemma 2.1.(iv) we have that $M_{i j}=\frac{1}{N_{n}} P_{n}\left(\boldsymbol{v}_{i} \cdot \boldsymbol{v}_{j}\right)$. Thus the determinant of M is a polynomial function of \boldsymbol{x}.

By Lemma 2.1.(iii) and $\ell<N_{d}$ (and the linear independence of $P_{n}^{\boldsymbol{v}_{1}}, \ldots, P_{n}^{\boldsymbol{v}_{\ell}}$), there is some choice of $\boldsymbol{v}_{\ell+1} \in \mathbb{S}^{d-1}$ with $\operatorname{det}(M) \neq 0$. That is, the polynomial $\operatorname{det}(M)$ is not identically zero on \mathbb{S}^{d-1}.

We need the following easy claim that can be proved, for example, by induction on $d \geqslant 2$ with the base case $d=2$ following from \mathbb{S}^{1} containing all points of the form $\frac{1}{m^{2}+n^{2}}\left(m^{2}-n^{2}, 2 m n\right)$ for $(m, n) \in \mathbb{Z}^{2} \backslash\{(0,0)\}$.

Claim 2.3. For every $d \geqslant 1$, the set $\mathbb{S}^{d-1} \cap \mathbb{Q}^{d}$ of the points on the sphere with all coordinates rational is dense in \mathbb{S}^{d-1} with respect to the standard topology on the sphere (i.e. the one inherited from the Euclidean space $\mathbb{R}^{d} \supseteq \mathbb{S}^{d-1}$).

Since $\operatorname{det}(M)$, as a polynomial function of $\boldsymbol{x} \in \mathbb{S}^{d-1}$, is continuous and not identically zero, it has to be non-zero on some point \boldsymbol{x} of the dense subset $\mathbb{S}^{d-1} \cap \mathbb{Q}^{d}$. Thus, if we let $\boldsymbol{v}_{\ell+1}$ to be such a vector \boldsymbol{x}, then the functions $P_{n}^{\boldsymbol{v}_{1}}, \ldots, P_{n}^{\boldsymbol{v}_{\ell+1}} \in L^{2}\left(\mathbb{S}^{d-1}, \mu\right)$ are linearly independent. This contradiction to the maximality of $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\ell}$ proves the lemma.

For an integer $n \geqslant 0$, an r-tuple $\gamma=\left(\gamma_{1}, \ldots, \gamma_{r}\right) \in \operatorname{SO}(d)^{r}$ and a unit vector $\boldsymbol{v} \in \mathbb{S}^{d-1}$ define

$$
\begin{equation*}
G_{n, \gamma}^{\boldsymbol{v}}:=\sum_{i=1}^{r} P_{n}^{\gamma_{i}^{-1}} \cdot \boldsymbol{v} \tag{2.8}
\end{equation*}
$$

By Lemma 2.1.(ii), each function $G_{n, \gamma}^{\boldsymbol{v}}: \mathbb{S}^{d-1} \rightarrow \mathbb{R}$, as a linear combination of some spherical harmonics $P_{n}^{\gamma_{i}^{-1} \cdot \boldsymbol{v}} \in \mathcal{H}_{n}$, is itself in \mathcal{H}_{n}.

Lemma 2.4. If $\gamma \in \operatorname{SO}(d)^{r}$ is generic then, for every integer $n \geqslant 0$, the linear span of $\left\{G_{n, \gamma}^{\boldsymbol{v}} \mid \boldsymbol{v} \in \mathbb{S}^{d-1}\right\}$ is the whole space \mathcal{H}_{n}.

Proof. By Lemma 2.2, we can fix some vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N_{n}} \in \mathbb{S}^{d-1} \cap \mathbb{Q}^{d}$ such that $P_{n}^{\boldsymbol{v}_{1}}, \ldots, P_{n}^{\boldsymbol{v}_{N_{n}}}$ form a basis for \mathcal{H}_{n}. Let $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{r}\right)$ be an arbitrary element of $\mathrm{SO}(d)^{r}$ (not necessarily generic). Consider the $N_{n} \times N_{n}$ matrix $L=L(\boldsymbol{\beta})$ with entries

$$
L_{i j}:=\frac{1}{\sigma_{d}}\left\langle G_{n, \boldsymbol{\beta}}^{\boldsymbol{v}_{i}}, P_{n}^{\boldsymbol{v}_{j}}\right\rangle, \quad \text { for } i, j \in\left[N_{n}\right]
$$

Recall that the vectors $P_{n}^{v_{i}}, i \in\left[N_{n}\right]$, form a (not necessarily orthonormal) basis of the linear space \mathcal{H}_{n}. Write the vectors $G_{n, \boldsymbol{\beta}}^{\boldsymbol{v}_{\boldsymbol{i}}}$ in this basis:

$$
\left(G_{n, \boldsymbol{\beta}}^{\boldsymbol{v}_{1}}, \ldots, G_{n, \boldsymbol{\beta}}^{\boldsymbol{v}_{N n}}\right)^{T}=A\left(P_{n}^{\boldsymbol{v}_{1}}, \ldots, P_{n}^{\boldsymbol{v}_{N n}}\right)^{T}
$$

for some $N_{n} \times N_{n}$ matrix A. Then L is the matrix product $A M$, where M is the Gram matrix of the vectors $P_{n}^{v_{i}}$ multiplied by the constant σ_{d}^{-1} (that is, the entries of M are defined by the formula in (2.7)). The matrix M is non-singular by the linear independence of $P_{n}^{\boldsymbol{v}_{i}}, i \in\left[N_{n}\right]$. Thus $\operatorname{det}(L) \neq 0$ if and only if $G_{n, \boldsymbol{\beta}}^{\boldsymbol{v}_{\boldsymbol{\beta}}}, \ldots, G_{n, \boldsymbol{\beta}}^{\boldsymbol{v}_{N n}}$ are linearly independent as vectors in \mathcal{H}_{n}.

By Lemma 2.1.(iv), we have for every $i, j \in\left[N_{d}\right]$ that
$L_{i j}:=\frac{1}{\sigma_{d}} \sum_{s=1}^{r}\left\langle P_{n}^{\beta_{s}^{-1} \cdot \boldsymbol{v}_{i}}, P_{n}^{\boldsymbol{v}_{j}}\right\rangle=\frac{1}{N_{n}} \sum_{s=1}^{r} P_{n}\left(\left(\beta_{s}^{-1} . \boldsymbol{v}_{i}\right) \cdot \boldsymbol{v}_{j}\right)=\frac{1}{N_{n}} \sum_{s=1}^{r} P_{n}\left(\boldsymbol{v}_{i} \cdot\left(\beta_{s} \cdot \boldsymbol{v}_{j}\right)\right)$.

Since $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N_{n}}$ are fixed, this writes each $L_{i j}$ as a polynomial in the $d^{2} r$ entries of the matrices $\beta_{1}, \ldots, \beta_{r}$. Moreover, all coefficients of this polynomial are rational since each \boldsymbol{v}_{i} belongs to \mathbb{Q}^{d} and all coefficients of P_{n} are rational by Lemma 2.1.(i). Thus the determinant of L is equal to $p(\boldsymbol{\beta})$ for some polynomial p with coefficients in \mathbb{Q}.

Note that if we let each β_{i} be the identity matrix I_{d}, then $G_{n, \beta}^{\boldsymbol{v}}$ becomes $r P_{n}^{\boldsymbol{v}}$ for every $\boldsymbol{v} \in \mathbb{S}^{d-1}$ and we have $L_{i j}=\frac{r}{\sigma_{d}}\left\langle P_{n}^{\boldsymbol{v}_{i}}, P_{n}^{\boldsymbol{v}_{j}}\right\rangle$ for $i, j \in\left[N_{n}\right]$ and $\operatorname{det}(L) \neq 0$ (since $P_{n}^{\boldsymbol{v}_{1}}, \ldots, P_{n}^{\boldsymbol{v}_{N n}}$ are linearly independent). Thus $p\left(I_{d}, \ldots, I_{d}\right) \neq 0$. Since $\gamma \in \operatorname{SO}(d)^{r}$ is generic, we have that $p(\gamma) \neq 0$, that is, the matrix L for $\beta:=\gamma$ is non-singular. This means that the functions $G_{n, \gamma}^{\boldsymbol{v}_{i}}, i \in\left[N_{n}\right]$, are linearly independent. Since they all lie in \mathcal{H}_{n} and their number equals the dimension of this linear space, they span \mathcal{H}_{n}. The lemma is proved.

Given the above auxiliary results, we can derive Theorem 1.1 rather easily.
Proof of Theorem 1.1. Recall that $\gamma=\left(\gamma_{1}, \ldots, \gamma_{r}\right) \in \operatorname{SO}(d)^{r}, r \geqslant 2$, is generic and we have to show that \mathbb{S}^{d-1} is not "fractionally" γ-divisible.

So take any $f \in L^{2}\left(\mathbb{S}^{d-1}, \mu\right)$ such that $\sum_{i=1}^{r} \gamma_{i} . f=1$ a.e. Since spherical harmonics are dense in $L^{2}\left(\mathbb{S}^{d-1}, \mu\right)([10$, Corollary 3.2.7]) and we have the direct sum $\mathcal{H}=$ $\oplus_{n=0}^{\infty} \mathcal{H}_{n}$ whose components are orthogonal to each other by (2.3), we can uniquely write $f=\sum_{n=0}^{\infty} F_{n}$ in $L^{2}\left(\mathbb{S}^{d-1}, \mu\right)$ with $F_{n} \in \mathcal{H}_{n}$ for every $n \geqslant 0$. Since the action of $\mathrm{SO}(d)$ preserves each space \mathcal{H}_{n} as well as the scalar product on $L^{2}\left(\mathbb{S}^{d-1}, \mu\right)$, we have that $\gamma \cdot f=\sum_{n=0}^{\infty} \gamma \cdot F_{n}$ is the harmonic expansion of $\gamma \cdot f \in L^{2}\left(\mathbb{S}^{d-1}, \mu\right)$.

Take any integer $n \geqslant 1$. Recall that the sum $\sum_{i=1}^{r} \gamma_{i} . f$ is a constant function 1 a.e. By (2.3), the invariance of the scalar product under $\mathrm{SO}(d)$ and by (2.6), we have that, for every $\boldsymbol{v} \in \mathbb{S}^{d-1}$,

$$
\begin{aligned}
0 & =\left\langle P_{n}^{v}, 1\right\rangle=\left\langle P_{n}^{v}, \gamma_{1} \cdot f+\ldots+\gamma_{r} \cdot f\right\rangle=\left\langle P_{n}^{v}, \gamma_{1} \cdot F_{n}+\ldots+\gamma_{r} \cdot F_{n}\right\rangle \\
& =\left\langle\gamma_{1}^{-1} \cdot P_{n}^{v}+\ldots+\gamma_{r}^{-1} \cdot P_{n}^{v}, F_{n}\right\rangle=\left\langle G_{n, \gamma}^{v}, F_{n}\right\rangle
\end{aligned}
$$

where $G_{n, \gamma}^{\boldsymbol{v}}$ was defined by (2.8). Since the functions $G_{n, \gamma}^{\boldsymbol{v}}, \boldsymbol{v} \in \mathbb{S}^{d-1}$, span the whole space \mathcal{H}_{n} by Lemma 2.4, we must have that $F_{n}=0$.

As $n \geqslant 1$ was arbitrary, we have that f is a constant function a.e. (whose value must be $1 / r$). This finishes the proof of Theorem 1.1.

Remark 2.5. The statement of Theorem 1.1 remains true also when $\gamma_{r}=I_{d}$ and $\left(\gamma_{1}, \ldots, \gamma_{r-1}\right)$ is a generic point of $\mathrm{SO}(d)^{r-1}$. One way to see this is to run the same proof except the r-th component of each encountered r-tuple of matrices is always set to be the identity matrix I_{d}.

3. Rotations generating a finite subgroup

Proof of Proposition 1.5. We have to show that an even-dimensional sphere \mathbb{S}^{d-1} is not $\left(\gamma_{1}, \ldots, \gamma_{r}\right)$-divisible if the subgroup Γ of $\mathrm{SO}(d)$ generated by the rotations $\gamma_{1}, \ldots, \gamma_{r}$ is finite.

Since d is odd, the 2-divisibility of \mathbb{S}^{d-1} is impossible because of a fixed point of $\gamma_{1}^{-1} \gamma_{2}$. So assume that $r \geqslant 3$. Let

$$
V:=\Gamma .\left\{ \pm e_{1}, \ldots, \pm e_{d}\right\}
$$

that is, we take all possible images of the standard basis vectors and their negations when moved by Γ. Clearly, the set V is a finite. Let P be the convex hull of V. Then P is a full-dimensional polytope containing $\mathbf{0}$ in its interior (as already the convex hull of $\left\{ \pm \boldsymbol{e}_{1}, \ldots, \pm \boldsymbol{e}_{d}\right\} \subseteq V$ has these properties). Its boundary ∂P is homeomorphic to \mathbb{S}^{d-1} by the map that sends $\boldsymbol{x} \in \partial P$ to $\boldsymbol{x} /\|\boldsymbol{x}\|_{2} \in \mathbb{S}^{d-1}$.

Let a hyperplane mean a $(d-1)$-dimensional affine subspace of \mathbb{R}^{d}. Identify each oriented hyperplane $H \subseteq \mathbb{R}^{d}$ with the pair $(\boldsymbol{n}, a) \in \mathbb{S}^{d-1} \times \mathbb{R}$ so that

$$
H=\left\{\boldsymbol{x} \in \mathbb{R}^{d} \mid \boldsymbol{n} \cdot \boldsymbol{x}=a\right\}
$$

Its open half-spaces are $H^{+}:=\left\{\boldsymbol{x} \in \mathbb{R}^{d} \mid \boldsymbol{n} \cdot \boldsymbol{x}>a\right\}$ and $H^{-}:=\left\{\boldsymbol{x} \in \mathbb{R}^{d} \mid \boldsymbol{n} \cdot \boldsymbol{x}<a\right\}$. Call H supporting if $H \cap P \neq \emptyset$ and $H^{-} \cap P=\emptyset$. Call H a facet hyperplane if it is supporting and $\operatorname{dim}_{\text {aff }}(H \cap P)=d-1$, where $\operatorname{dim}_{\text {aff }}(X)$ denotes the dimension of the affine subspace of \mathbb{R}^{d} spanned by X.

The intersections of supporting hyperplanes with ∂P represent the boundary of the polytope P as a CW-complex. Namely, for $i \in\{0, \ldots, d-1\}$, its i-dimensional cells are precisely the i-dimensional faces of P, that is, the convex hulls of the sets in
$C_{i}:=\left\{X \subseteq V \mid \operatorname{dim}_{\text {aff }}(X)=i \& \exists\right.$ supporting hyperplane H with $\left.H \cap V=X\right\}$.
For a finite non-empty set $X \subseteq \mathbb{R}^{d}$, let $\boldsymbol{m}_{X}:=\frac{1}{|X|} \sum_{\boldsymbol{x} \in X} \boldsymbol{x}$ be the centre of mass of X.

Let us show that for every $i \in\{0, \ldots, d-1\}$ and distinct $X, Y \in C_{i}$ we have $\boldsymbol{m}_{X} \neq$ \boldsymbol{m}_{Y}. As it is well-known, see e.g. [11, Theorem 3.1.7], we can pick facet hyperplanes H_{1}, \ldots, H_{k} such that $V \cap\left(\cap_{j=1}^{k} H_{j}\right)=X$. Since $X \neq Y$, the affine subspaces that these two sets span differ. Since these subspaces have the same dimension, there is $\boldsymbol{y} \in Y$ not in the affine span of X. Since $\boldsymbol{y} \in V$ and each H_{j} is supporting, there is $j \in[k]$ such that \boldsymbol{y} belongs to the open half-space H_{j}^{+}. From $Y \subseteq H_{j} \cup H_{j}^{+}$, it follows that \boldsymbol{m}_{Y} belongs to H_{j}^{+}and cannot be equal to $\boldsymbol{m}_{X} \in H_{j}$, as claimed.

Also, it holds that $\boldsymbol{m}_{X} \neq \mathbf{0}$ for any $X \in C_{i}$. Indeed, with H_{1}, \ldots, H_{k} as above we have that $\mathbf{0}$, which is in the interior of P, belongs to, say, the open half-space H_{1}^{+}so cannot be equal to $\boldsymbol{m}_{X} \in H_{1}$.

Thus $\left|M_{i}\right|=\left|C_{i}\right|$, where $M_{i}:=\left\{\boldsymbol{m}_{X} /\left\|\boldsymbol{m}_{X}\right\|_{2} \mid X \in C_{i}\right\} \subseteq \mathbb{S}^{d-1}$ denotes the set of the normalised centres of mass of the vertex sets of i-dimensional faces. Clearly, the set family C_{i} is invariant under the natural action of Γ on finite subsets of \mathbb{S}^{d-1}. Thus the set $M_{i} \subseteq \mathbb{S}^{d-1}$ is also Γ-invariant.

Since d is odd, the Euler characteristic $\chi\left(\mathbb{S}^{d-1}\right)$ of the $(d-1)$-dimensional sphere is 2 , see e.g. [25, Remark 4.2.21]. Since the faces of ∂P give a representation of the sphere as a CW-complex, we have (by e.g. [25, Theorem 4.2.20]) that

$$
2=\chi\left(\mathbb{S}^{d-1}\right)=\sum_{i=0}^{d-1}(-1)^{i}\left|C_{i}\right|
$$

Thus, for at least one $i \in\{0, \ldots, d-1\}$, it holds that $r \geqslant 3$ does not divide $\left|C_{i}\right|=\left|M_{i}\right|$. By the Γ-invariance of M_{i}, there is no choice of $A \cap M_{i}$ such that its translates by $\gamma_{1}, \ldots, \gamma_{r}$ partition M_{i}. Thus \mathbb{S}^{d-1} is not $\left(\gamma_{1}, \ldots, \gamma_{r}\right)$-divisible.

Remark 3.1. Under the assumptions of Proposition 1.5, its proof gives that if there are d linearly independent vectors on \mathbb{S}^{d-1} such that each has a finite orbit under Γ (where some of these orbits may coincide) then \mathbb{S}^{d-1} is not γ-divisible. However, this seemingly weaker assumption is equivalent to the assumption that Γ is finite (e.g. via a version of Claim 4.2 below).

4. Actions with a finite orbit

Here we prove Proposition 1.6 that, in the presence of at least one finite orbit, γ-divisibility is equivalent to measurable γ-divisibility.

Proof of Proposition 1.6. Recall that Γ is the subgroup of $\operatorname{SO}(d)$ generated by $\gamma_{1}, \ldots, \gamma_{r}$. For $\boldsymbol{x} \in \mathbb{S}^{d-1}$, let $L_{\boldsymbol{x}}$ be the linear subspace of \mathbb{R}^{d} spanned by $\Gamma . \boldsymbol{x} \subseteq \mathbb{R}^{d}$.

Claim 4.1. For every $\boldsymbol{x} \in \mathbb{S}^{d}$, both $L_{\boldsymbol{x}} \subseteq \mathbb{R}^{d}$ and its orthogonal complement $L_{\boldsymbol{x}}^{\perp} \subseteq$ \mathbb{R}^{d} are invariant under the action of Γ on \mathbb{R}^{d}.

Proof of Claim. Any $\gamma \in \Gamma$ permutes the set $\Gamma . \boldsymbol{x}$. Since γ is a linear map, it preserves the linear subspace $L_{\boldsymbol{x}}$ spanned by $\Gamma . \boldsymbol{x}$. Thus $L_{\boldsymbol{x}}$ is Γ-invariant.

Since Γ consists of orthogonal matrices, its action preserves the scalar product on \mathbb{R}^{d}. Thus if $\boldsymbol{y} \in \mathbb{R}^{d}$ is orthogonal to $L_{\boldsymbol{x}}$ then, for every $\gamma \in \Gamma$, we have that $\gamma . \boldsymbol{y}$ is orthogonal to $\gamma . L_{\boldsymbol{x}}=L_{\boldsymbol{x}}$. It follows that $L_{\boldsymbol{x}}^{\perp}$ is Γ-invariant. I

Recall that $\boldsymbol{z} \in \mathbb{S}^{d-1}$ is a vector such that its orbit $\Gamma . \boldsymbol{z}$ is finite. Let z_{1}, \ldots, z_{n} be the elements of $Г . \boldsymbol{z}$.

Claim 4.2. If $\boldsymbol{x} \in L_{\boldsymbol{z}} \cap \mathbb{S}^{d-1}$ then $|\Gamma . \boldsymbol{x}| \leqslant n$!.
Proof of Claim. Write $\boldsymbol{x} \in L_{\boldsymbol{z}}$ as $\sum_{i=1}^{n} c_{i} \boldsymbol{z}_{i}$ for some reals c_{1}, \ldots, c_{n}. For every $\alpha \in \Gamma$, we have by linearity that $\alpha \cdot \boldsymbol{x}=\sum_{i=1}^{n} c_{i}\left(\alpha . \boldsymbol{z}_{i}\right)$. Since $\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{n}$ enumerate a whole orbit of Γ, the element $\alpha \in \Gamma$ permutes these vectors. Thus every element of $\Gamma . \boldsymbol{x}$ is of the form $\sum_{i=1}^{n} c_{i} \boldsymbol{z}_{\sigma(i)}$ for some permutation σ of $[n]$. Thus $\Gamma . \boldsymbol{x}$ indeed has at most n ! elements. I

Now we are ready to prove the (non-trivial) forward direction of Proposition 1.6. By rotating the sphere (and moving \boldsymbol{z} and conjugating γ_{i} 's accordingly), we can assume that $L_{\boldsymbol{z}}=\mathbb{R}^{m} \times \mathbf{0}$ and $L_{\boldsymbol{z}}^{\perp}=\mathbf{0} \times \mathbb{R}^{d-m}$ for some $m \in[d]$. By Claim 4.1, every matrix $\gamma_{i}, i \in[r]$, consists now of two diagonal blocks that correspond to some $\alpha_{i} \in \mathrm{O}(m)$ and $\beta_{i} \in \mathrm{O}(d-m)$. (Note that these matrices may have determinant -1.) When we write a vector in \mathbb{R}^{d} as $(\boldsymbol{x}, \boldsymbol{y})$, we mean that $\boldsymbol{x} \in \mathbb{R}^{m}$ and $\boldsymbol{y} \in \mathbb{R}^{d-m}$; thus $\gamma_{i} .(\boldsymbol{x}, \boldsymbol{y})=\left(\alpha_{i} \cdot \boldsymbol{x}, \beta_{i} . \boldsymbol{y}\right)$.

Fix $C \subseteq \mathbb{S}^{d-1}$ such that $\gamma_{1} . C, \ldots, \gamma_{r} . C$ partition \mathbb{S}^{d-1}. By the invariance of L_{z} and $L_{\boldsymbol{z}}^{\perp}$, the translates of the set $C \cap\left(\mathbb{R}^{m} \times \mathbf{0}\right)$ (resp. $C \cap\left(\mathbf{0} \times \mathbb{R}^{m-d}\right)$) by $\gamma_{1}, \ldots, \gamma_{r}$ partition $\mathbb{S}^{m-1} \times \mathbf{0}$ (resp. $\mathbf{0} \times \mathbb{S}^{d-m-1}$). By Claim 4.2, every orbit of the action of Γ on the invariant subset $X:=\mathbb{S}^{m-1} \times \mathbf{0}$ has at most n ! elements. Obviously, the same holds for the action on \mathbb{S}^{m-1} of the subgroup $\Gamma^{\prime} \subseteq \mathrm{O}(m)$ generated by $\alpha_{1}, \ldots, \alpha_{r}$. Fix a Borel total order on \mathbb{S}^{m-1} (e.g. the restriction of the lexicographic order on \mathbb{R}^{m}) and let $A^{\prime} \subseteq X$ be obtained by picking from every orbit $\Gamma^{\prime} \cdot \boldsymbol{x} \subseteq \mathbb{S}^{m-1}$ the lexicographically smallest subset such that its translates by $\alpha_{1}, \ldots, \alpha_{r}$ partition $\Gamma^{\prime} \cdot \boldsymbol{x}$. Such a set always exists since $\left\{\boldsymbol{y} \in \Gamma^{\prime} \cdot \boldsymbol{x} \mid(\boldsymbol{y}, \mathbf{0}) \in C\right\}$ is one possible choice. In the terminology of [21], the set A^{\prime} can be computed by a local rule of radius n ! on the coloured Schreier digraph of $\Gamma^{\prime} \curvearrowright \mathbb{S}^{m-1}$ (where the vertex set is \mathbb{S}^{d-1} and we put a directed colour- i arc from \boldsymbol{y} to $\alpha_{i} . \boldsymbol{y}$ for all $\boldsymbol{y} \in \mathbb{S}^{m-1}$ and $\left.i \in[r]\right)$. As the action is Borel, this is known to imply (see e.g. [21, Lemma 5.17]) that the constructed set $A^{\prime} \subseteq \mathbb{S}^{m-1}$ is Borel. Define

$$
\begin{aligned}
A & :=\bigcup_{\rho \in[0,1)}\left(\sqrt{1-\rho^{2}} A^{\prime} \times \rho \mathbb{S}^{d-m-1}\right) \\
& =\bigcup_{\rho \in[0,1)}\left\{\left(\sqrt{1-\rho^{2}} \boldsymbol{x}, \rho \boldsymbol{y}\right) \mid \boldsymbol{x} \in A^{\prime}, \boldsymbol{y} \in \mathbb{S}^{d-m-1}\right\}
\end{aligned}
$$

and $B:=C \cap\left(\mathbf{0} \times \mathbb{R}^{m-d}\right)$. Then $\gamma_{1} . A, \ldots, \gamma_{r} . A$ partition $\mathbb{S}^{d-1} \backslash\left(\mathbf{0} \times \mathbb{S}^{d-m-1}\right)$ and, as we observed earlier, $\gamma_{1} \cdot B, \ldots, \gamma_{r} . B$ partition $\mathbf{0} \times \mathbb{S}^{d-m-1}$. Thus $A \cup B$ witnesses the γ-divisibility of \mathbb{S}^{d-1}. Note that the set B, which lies inside the intersection of \mathbb{S}^{d-1} with the linear subspace $L_{\boldsymbol{z}}^{\perp}$ of dimension less than d, has measure zero. On the other hand, the set A can be equivalently defined as the pre-image of the Borel set $A^{\prime} \times \mathbb{R}^{d-m}$ under the natural homeomorphism between $\mathbb{S}^{d-1} \backslash\left(\mathbf{0} \times \mathbb{S}^{d-m-1}\right)$ and $\mathbb{S}^{m-1} \times \mathbb{R}^{d-m}$ that maps $(\boldsymbol{x}, \boldsymbol{y})$ to $\left(\boldsymbol{x} /\|\boldsymbol{x}\|_{2}, \boldsymbol{y} /\|\boldsymbol{x}\|_{2}\right)$. Thus A is Borel and $A \cup B$ is measurable, proving the proposition.

Remark 4.3. One can show via Claims 4.1 and 4.2 that if $d=3$ and a subgroup $\Gamma \subseteq \mathrm{SO}(d)$ has a finite orbit of size at least 3 , then Γ is finite (and thus Proposition 1.5 applies). However, this implication is not true in general for $d \geqslant 4$. For example, we can take the subgroup of $\mathrm{SO}(d)$ generated by a diagonal block matrix M whose first (resp. second) block is a 2×2 special orthogonal matrix of order 3 (resp. of infinite order), while all remaining blocks are the 1×1 identity matrices. Then M has an infinite order (coming from the second block) but its action on \mathbb{S}^{d-1} has an orbit with exactly 3 elements (e.g. the orbit of the first standard basis vector $(1,0, \ldots, 0)$).

5. Measurable divisibility of higher-dimensional spheres

As we mentioned in the Introduction, \mathbb{S}^{d-1} is r-divisible with Borel pieces for every $r \geqslant 2$ and even $d \geqslant 2$ ([23, Theorem 6.6(a)]). The proof of [23, Theorem 6.6(b)] for any $r \geqslant 3$ and odd $d \geqslant 5$ gives measurable pieces. Since this conclusion does not seem to be explicitly stated anywhere in [23], we provide the simple proof from [23].

Lemma 5.1. For any $d \geqslant 5$ and $r \geqslant 3, \mathbb{S}^{d-1}$ is r-divisible with measurable pieces.
Proof. Informally speaking, we will use the Borel r-divisibility of \mathbb{S}^{1} in the last two coordinates of $\mathbb{S}^{d-1} \subseteq \mathbb{R}^{d}$, resorting to the r-divisibility of \mathbb{S}^{d-3} only on the null set of points where the last two coordinates are zero.

Namely, choose rotations $\alpha_{1}, \ldots, \alpha_{r} \in \mathrm{SO}(d-2)$ and a (not necessarily measurable) subset $A \subseteq \mathbb{S}^{d-3}$ such that $\alpha_{1} . A, \ldots, \alpha_{r} . A$ partition \mathbb{S}^{d-3}, which is possible by e.g. [23, Theorem 6.6]. Let $\beta \in \mathrm{SO}(2)$ be the rotation of the circle \mathbb{S}^{1} by the angle $2 \pi / r$. (Thus the order of β, as an element of the group $\mathrm{SO}(2)$, is r.) For $i \in[r]$, let γ_{i} send $(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}^{d-2} \times \mathbb{R}^{2}$ to $\left(\alpha_{i} \cdot \boldsymbol{x}, \beta^{i} . \boldsymbol{y}\right)$, where we view $\operatorname{SO}(m)$ as also acting on \mathbb{R}^{m}. Clearly, γ_{i} preserves both the scalar product on \mathbb{R}^{d} and the orientation; thus it is an element of $\operatorname{SO}(d)$.

Let $B:=\{(\cos \theta, \sin \theta) \mid 0 \leqslant \theta<2 \pi / r\} \subseteq \mathbb{S}^{1}$. Then the half-open $\operatorname{arcs} \beta . B, \ldots, \beta^{r} . B$ partition \mathbb{S}^{1}. Let $C:=A^{\prime} \cup B^{\prime}$, where $A^{\prime}:=A \times\{(0,0)\}$ and

$$
B^{\prime}:=\bigcup_{\rho \in[0,1)}\left(\rho \mathbb{S}^{d-3} \times \sqrt{1-\rho^{2}} B\right)
$$

Clearly, A^{\prime} is a μ-null subset of \mathbb{S}^{d-1} and B^{\prime} is a Borel subset of \mathbb{S}^{d-1}. Thus C is measurable. Also, $\gamma_{1} . C, \ldots, \gamma_{r} . C$ partition \mathbb{S}^{d-1}. Indeed, $\gamma_{i} . A^{\prime}=\alpha_{i} . A \times\{(0,0)\}$, $i \in[r]$, partition $\mathbb{S}^{d-3} \times\{(0,0)\}$ while $\gamma_{i} \cdot B^{\prime}=\cup_{\rho \in[0,1)}\left(\rho \mathbb{S}^{d-3} \times \sqrt{1-\rho^{2}}\left(\beta^{i} . B\right)\right)$, $i \in[r]$, partition the rest of \mathbb{S}^{d-1}.

6. Measurable divisibility for $\boldsymbol{d}=\mathbf{2}$ and $\boldsymbol{r} \leqslant 4$

We parametrise $\mathbb{S}^{1}=\{(\cos t, \sin t) \mid t \in[0,2 \pi)\}$ and use the parameter t instead of the Cartesian coordinates. Thus we have the interval $[0,2 \pi)$ with μ being the Lebesgue measure on it. The space \mathcal{H}_{n} for $n \geqslant 1$ becomes the span of $\cos n t$ and $\sin n t$ (while, of course, \mathcal{H}_{0} consists of all constant functions). Here, the harmonic expansion is nothing else as the Fourier series. We identify $\mathrm{SO}(2)$ with the additive group $\mathbb{T}:=\mathbb{R} / 2 \pi \mathbb{Z}$ of reals taken modulo 2π. Thus the action of $\gamma \in \mathbb{T}$ on $[0,2 \pi)$ is to send $t \in[0,2 \pi)$ to $t+\gamma(\bmod 2 \pi)$. We also identity $[0,2 \pi)$ with \mathbb{T}; thus we have the natural action $\mathbb{T} \curvearrowright \mathbb{T}$.

Let us investigate various possible versions of "measurable" divisibility, stated in terms of the action $\mathbb{T} \curvearrowright \mathbb{T}$. Let $\mathcal{B}_{r}\left(\right.$ resp. $\left.\mathcal{M}_{r}\right)$ consist of those r-tuples $\left(t_{1}, \ldots, t_{r}\right) \in$ \mathbb{T}^{r} for which there is a Borel (resp. measurable) subset $A \subseteq \mathbb{T}$ such that $t_{1}+A, \ldots, t_{r}+$ A partition \mathbb{T}, where we denote $t+A:=\{t+a \mid a \in A\}$. Also, let \mathcal{M}_{r}^{\prime} consist of those $\left(t_{1}, \ldots, t_{r}\right) \in \mathbb{T}^{r}$ for which there is a measurable (equivalently, Borel) $A \subseteq \mathbb{T}$ such that the translates $t_{1}+A, \ldots, t_{r}+A$ are pairwise disjoint and the set of elements of \mathbb{T} not covered by them has measure zero. Finally, let \mathcal{F}_{r} consist of those $\left(t_{1}, \ldots, t_{r}\right) \in \mathbb{T}^{r}$ for which there is $f \in L^{2}([0,2 \pi), \mu)$ such that $t_{1} . f+\ldots+t_{r} . f=1$ a.e. while $f \neq 1 / r$ on a set of positive measure. As it is easy to see, the definition of \mathcal{F}_{r} does not change if we require $t_{1} \cdot f+\ldots+t_{r} . f=1$ to hold everywhere. Trivially, it holds that

$$
\mathcal{B}_{r} \subseteq \mathcal{M}_{r} \subseteq \mathcal{M}_{r}^{\prime} \subseteq \mathcal{F}_{r}
$$

First, we investigate \mathcal{F}_{r}. Suppose that we have some $f \in L^{2}([0,2 \pi), \mu)$ such that $t_{1} \cdot f+\ldots+t_{r} . f=1$ a.e. Take the Fourier series,

$$
f(t)=c_{0}+\sum_{n=1}^{\infty}\left(c_{n} \cos n t+s_{n} \sin n t\right), \quad \text { for a.e. } t \in[0,2 \pi)
$$

Clearly, $c_{0}=1 / r$. For $i \in[r]$, by translating everything by t_{i} we get that

$$
\left(t_{i} . f\right)(t)=\frac{1}{r}+\sum_{n=1}^{\infty}\left(c_{n} \cos n\left(t-t_{i}\right)+s_{n} \sin n\left(t-t_{i}\right)\right), \quad \text { for a.e. } t \in[0,2 \pi)
$$

Summing this up for all $i \in[r]$ and using the formula for the sine and the cosine of a difference of two angles, we get that for a.e. $t \in[0,2 \pi)$

$$
\begin{aligned}
1 & =1+\sum_{i=1}^{r}\left(\sum_{n=1}^{\infty} c_{n}\left(\cos n t \cos n t_{i}+\sin n t \sin n t_{i}\right)+s_{n}\left(\sin n t \cos n t_{i}-\cos n t \sin n t_{i}\right)\right) \\
& =1+\sum_{n=1}^{\infty}\left(\sum_{i=1}^{r}\left(c_{n} \cos n t_{i}-s_{n} \sin n t_{i}\right) \cos n t+\sum_{i=1}^{r}\left(c_{n} \sin n t_{i}+s_{n} \cos n t_{i}\right) \sin n t\right)
\end{aligned}
$$

(Recall that $\sum_{i=1}^{r} t_{i} . f=1$ a.e.)
Let $n \geqslant 1$. By the uniqueness of the Fourier coefficients, we have that

$$
\begin{aligned}
& \sum_{i=1}^{r}\left(c_{n} \cos n t_{i}-s_{n} \sin n t_{i}\right)=0, \text { and } \\
& \sum_{i=1}^{r}\left(c_{n} \sin n t_{i}+s_{n} \cos n t_{i}\right)=0
\end{aligned}
$$

Suppose that $\left(c_{n}, s_{n}\right) \neq(0,0)$. If we multiply the above equations by c_{n} and s_{n} (resp. by $-s_{n}$ and c_{n}) and add up, we get after dividing by $c_{n}^{2}+s_{n}^{2}$ that

$$
\begin{equation*}
\sum_{i=1}^{r} \cos n t_{i}=0 \quad \text { and } \quad \sum_{i=1}^{r} \sin n t_{i}=0 \tag{6.1}
\end{equation*}
$$

that is, the vectors $\left(\cos n t_{i}, \sin n t_{i}\right) \in \mathbb{R}^{2}, i \in[r]$, sum up to zero.
If f differs from $1 / r$ on a set of positive measure then, for at least one integer $n \geqslant 1$, we have $\left(c_{n}, s_{n}\right) \neq(0,0)$ and thus (6.1) holds. Conversely, if (6.1) holds for some $n \geqslant 1$, then we can take, for example, $f(t):=(1+\cos n t) / r$ for $t \in[0,2 \pi)$. This completely describes the set of r-tuples in $\mathrm{SO}(2)$ for which the circle \mathbb{S}^{1} is "fractionally" divisible:

Proposition 6.1. An r-tuple $\left(t_{1}, \ldots, t_{r}\right) \in \mathbb{T}^{r}$ belongs to \mathcal{F}_{r} if and only if (6.1) holds for at least one integer $n \geqslant 1$.

Let us investigate the sets \mathcal{B}_{r} and \mathcal{M}_{r}^{\prime} for $r \leqslant 4$. As we will see, it holds for each $r \leqslant 4$ that $\mathcal{B}_{r}=\mathcal{M}_{r}^{\prime}$ (and, in particular, this set is also equal to \mathcal{M}_{r}).

Let $\left(t_{1}, \ldots, t_{r}\right) \in \mathbb{T}^{r}$. By replacing $\left(t_{1}, \ldots, t_{r}\right)$ by $\left(t_{1}-t_{r}, \ldots, t_{r}-t_{r}\right)$, which does not affect divisibility, we can assume for convenience that $t_{r}=0$. Since $\mathcal{M}_{r}^{\prime} \subseteq \mathcal{F}_{r}$, assume that (6.1) holds for some $n \geqslant 1$. Let $n \geqslant 1$ be the smallest integer with this property.

Suppose first that $r=2$. By (6.1) we have $n t_{1}=(2 k+1) \pi$ for some integer $k \geqslant 0$. Note that n and $2 k+1$ are coprime: if an integer $q>1$ divides both n and $2 k+1$ then, for $n^{\prime}:=n / q$, we have $n^{\prime} t_{1}=\frac{2 k+1}{q} \pi$ and thus (6.1) holds for $n^{\prime}<n$, contradicting the minimality of n. Therefore, the subgroup of \mathbb{T} generated by $t_{1}=(2 k+1) \pi / n$ is $\left\{\left.\frac{\pi m}{n} \right\rvert\, m \in\{0, \ldots, 2 n-1\}\right\}$, which is the additive cyclic group of order $2 n$ with t_{1} corresponding to an odd multiple of the generator π / n. Since the addition of t_{1} swaps odd and even multiples of π / n, we have that

$$
A:=\left\{\left.\frac{\pi m}{n} \right\rvert\, m \in\{0,2, \ldots, 2 n-2\}\right\}+\left[0, \frac{\pi}{n}\right)
$$

satisfies $t_{1}+A=[0,2 \pi) \backslash A$ and shows that $\left(r_{1}, 0\right) \in \mathcal{B}_{2}$, where for $B, C \subseteq \mathbb{T}$ we denote

$$
B+C:=\{b+c \mid b \in B, c \in C\}
$$

Thus $\mathcal{B}_{2}=\mathcal{M}_{2}=\mathcal{M}_{2}^{\prime}=\mathcal{F}_{2}$ and this set can be equivalently described as consisting of precisely those $\left(t_{1}, t_{2}\right) \in \mathbb{T}^{2}$ such that $t_{2}-t_{1} \in \mathbb{T}$ generates a finite subgroup of even order.

Suppose that $r=3$. Three vectors on the unit circle sum to $\mathbf{0}$ if and only if they form an equilateral triangle. (Indeed, the sum of any two unit vectors has norm 1 if and only if the angle between the vectors is $2 \pi / 3$.) Thus, up to swapping t_{1} and t_{2}, we can assume that $n t_{1} \equiv 2 \pi / 3$ and $n t_{2} \equiv 4 \pi / 3$ modulo 2π. Each of $t_{1}, t_{2} \in[0,2 \pi)$ is a (non-zero) integer multiple of $2 \pi /(3 n)$. Let $k_{1}, k_{2} \in[3 n-1]$ satisfy $t_{i}=2 \pi k_{i} /(3 n)$. By the minimality of n, the greatest common divisor $\operatorname{gcd}\left(k_{1}, k_{2}, n\right)=1$. Furthermore, it is impossible that 3 divides both k_{1} and k_{2}, for otherwise by e.g. $2 \pi k_{1} /(3 n) \equiv$ $2 \pi / 3(\bmod 2 \pi)$ we have that 3 also divides n, a contradiction to $\operatorname{gcd}\left(k_{1}, k_{2}, n\right)=1$. Therefore, the subgroup generated by $t_{1}, t_{2} \in \mathbb{T}$ is $\left\{\left.\frac{2 \pi k}{3 n} \right\rvert\, k \in\{0, \ldots, 3 n-1\}\right\}$, which is the cyclic group of order $3 n$. For $i=1,2$, we have $k_{i} n \equiv i n(\bmod 3 n)$ and thus $k_{i} \equiv i$ $(\bmod 3)$. Thus if we take

$$
A:=\left\{\left.\frac{2 \pi m}{3 n} \right\rvert\, m \in\{0,3, \ldots, 3 n-3\}\right\}+\left[0, \frac{2 \pi}{3 n}\right)
$$

then $t_{1}+A, t_{2}+A$ and $t_{3}+A=A$ partition $[0,2 \pi)$. We conclude that $\mathcal{B}_{3}=\mathcal{M}_{3}=$ $\mathcal{M}_{3}^{\prime}=\mathcal{F}_{3}$ and this set can be alternatively described as consisting, up to a permutation of indices, precisely of the triples $\left(\frac{2 \pi k_{1}}{3 n}+t, \frac{4 \pi k_{2}}{3 n}+t, t\right)$ with $n \geqslant 1, k_{1}, k_{2} \in[3 n-1]$ and $t \in \mathbb{T}$ such that $\left\{k_{1}, k_{2}\right\} \equiv\{1,2\}(\bmod 3)$ and the greatest common divisor of k_{1}, k_{2} and n is 1 .

Suppose that $r=4$. We need the following geometric claim.
Claim 6.2. Four vectors $\left(x_{i}, y_{i}\right) \in \mathbb{S}^{1}, i \in[4]$, have sum $\mathbf{0}$ if and only if they can be split into two pairs of opposite vectors.

Proof of Claim. The non-trivial direction of the claim can be derived by observing that, up to a permutation of indices, we can assume that $\boldsymbol{v}:=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)$ is a non-zero vector while, in general, there is at most one way to write $-\boldsymbol{v} \in \mathbb{R}^{2} \backslash\{\boldsymbol{0}\}$ as the unordered sum of two unit vectors. Thus the other two vectors must be $\left(-x_{1},-y_{1}\right)$ and $\left(-x_{2},-y_{2}\right)$, as desired. I

Recall that $n \geqslant 1$ is the smallest integer satisfying (6.1). Claim 6.2 applied to $x_{i}:=\cos \left(n t_{i}\right)$ and $y_{i}:=\sin \left(n t_{i}\right)$ for $i \in[4]$ gives that, up to a permutation of indices, $\left(x_{1}, y_{1}\right)=-\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)=-\left(x_{4}, y_{4}\right)$. Thus, by Proposition 6.1, the set \mathcal{F}_{4} consists precisely of those $\left(t_{1}, \ldots, t_{4}\right)$ such that, for some integer $n \geqslant 1$ and up to a permutation of indices, we have that

$$
\begin{equation*}
n\left(t_{1}-t_{2}\right) \equiv n\left(t_{3}-t_{4}\right) \equiv \pi \quad(\bmod 2 \pi) \tag{6.2}
\end{equation*}
$$

Again, let us assume that $t_{4}=0$.
First, let us show that if t_{1} / π is irrational then $\left(t_{1}, \ldots, t_{4}\right) \notin \mathcal{M}_{4}^{\prime}$. By (6.2), we can assume that $t_{2}=t_{1}+k_{2} \pi / n$ and $t_{3}=k_{3} \pi / n$ for some odd integers k_{2} and k_{3}. Suppose for a sake of contradiction that for some measurable subset $A \subseteq \mathbb{T}$ we have that $\sum_{i=1}^{4} t_{i} \cdot \mathbb{1}_{A}=1$ a.e. Take the Fourier expansion

$$
\mathbb{1}_{A}(t)=\frac{1}{4}+\sum_{m=1}^{\infty}\left(c_{m} \cos m t+s_{m} \sin m t\right) .
$$

By the argument leading to (6.1) and Claim 6.2, we see that $\left(c_{m}, s_{m}\right)$ can be non-zero only if we can split $\left(m t_{1}, \ldots, m t_{4}\right) \in \mathbb{T}^{4}$ into two pairs, each pair having difference π. Since t_{1} / π is irrational, these pairs must be $\left(t_{1}, t_{2}\right)$ and $\left(t_{3}, t_{4}\right)$ by (6.2). Thus $m k_{i} \pi / n \equiv \pi(\bmod 2 \pi)$ for $i=2,3$. Clearly, the validity of these two equations is determined by the residue of m modulo n. Since n is minimal, these equations cannot both hold for any $m \in[n-1]$. Thus they can hold only if m is a multiple of n. This means that all non-zero Fourier terms of $\mathbb{1}_{A}$ have period $2 \pi / n$ as functions $\mathbb{T} \rightarrow \mathbb{R}$. It follows that $A=(2 \pi k / n)+A$ a.e. for every integer k and $\mathbb{1}_{A}=\frac{1}{n} \sum_{k=0}^{n-1}(2 \pi k / n) \cdot \mathbb{1}_{A}$. Thus

$$
\begin{aligned}
t_{1} \cdot \mathbb{1}_{A}+\mathbb{1}_{A} & =\frac{1}{n} \sum_{k=0}^{n-1}\left(\left(t_{1}+2 \pi k / n\right) \cdot \mathbb{1}_{A}+(2 \pi k / n) \cdot \mathbb{1}_{A}\right) \\
& =\frac{1}{2 n} \sum_{k=0}^{n-1}(2 \pi k / n) \cdot\left(t_{1} \cdot \mathbb{1}_{A}+t_{2} \cdot \mathbb{1}_{A}+t_{3} \cdot \mathbb{1}_{A}+t_{4} \cdot \mathbb{1}_{A}\right)=\frac{1}{2} \quad \text { a.e., }
\end{aligned}
$$

where we used that $t_{1} \cdot \mathbb{1}_{A}+t_{2} \cdot \mathbb{1}_{A}+t_{3} \cdot \mathbb{1}_{A}+t_{4} \cdot \mathbb{1}_{A}=1$ a.e. by the choice of A. We conclude that the function $2 \mathbb{1}_{A}$ demonstrates that $\left(t_{1}, 0\right) \in \mathcal{F}_{2}$. By the case $r=2$ that was solved earlier, this contradicts the irrationality of t_{1} / π.

This gives that \mathcal{M}_{4}^{\prime} is strictly smaller than \mathcal{F}_{4} : for example, $(a, a+\pi, \pi, 0)$ belongs to $\mathcal{F}_{4} \backslash \mathcal{M}_{4}^{\prime}$ if a / π is irrational.

Now, suppose that t_{1} / π is rational. Let Γ be the subgroup of \mathbb{T} that is generated by t_{1}, t_{2} and t_{3}. (There is no need to add t_{4} as it is 0 .) By (6.2) and the rationality of t_{1} / π, the group Γ is finite. Of course, if 4 does not divide its order $|\Gamma|$ then there is no \boldsymbol{t}-division even if a null set can be removed. So suppose that $|\Gamma|=4 \mathrm{~m}$ for some integer m, i.e. that Γ is the cyclic group of order $4 m$. For $i \in$ [4], let $k_{i} \in$ $\{0, \ldots, 4 m-1\}$ satisfy that $t_{i}=\frac{\pi k_{i}}{2 m}$. Let $\boldsymbol{k}:=\left(k_{1}, \ldots, k_{4}\right)$. Let us say that the cyclic group $\mathbb{Z}_{4 m}$, that consists of integer residues modulo $4 m$, is \boldsymbol{k}-divisible if there is a subset $A \subseteq \mathbb{Z}_{4 m}$ such that the sets $k_{i}+A, i \in[4]$, partition $\mathbb{Z}_{4 m}$. Of course, such a set A must have exactly m elements.

The following claim implies in particular that $\mathcal{B}_{4}=\mathcal{M}_{4}=\mathcal{M}_{4}^{\prime}$.

Claim 6.3. If $\mathbb{Z}_{4 m}$ is \boldsymbol{k}-divisible then $\boldsymbol{t} \in \mathcal{B}_{4}$; otherwise, $\boldsymbol{t} \notin \mathcal{M}_{4}^{\prime}$.
Proof of Claim. Suppose first that a subset $A \subseteq \mathbb{Z}_{4 m}$ witnesses the $\left(k_{1}, \ldots, k_{4}\right)$ divisibility of $\mathbb{Z}_{4 m}$. It corresponds to an m-subset $B \subseteq[0,2 \pi)$ such that its translates by t_{1}, \ldots, t_{4} partition the subgroup $\Gamma \subseteq \mathbb{T}$. Now the Borel set $C:=B+\left[0, \frac{\pi}{2 m}\right)$ exhibits the t-divisibility of \mathbb{T}.

Conversely, suppose that $\mathbb{Z}_{4 m}$ is not \boldsymbol{k}-divisible. Take any measurable set $C \subseteq$ $[0,2 \pi)$ such that its translates by t_{1}, \ldots, t_{4} are pairwise disjoint. Take any $\operatorname{coset} X:=$ $t+\Gamma \subseteq \mathbb{T}$ of Γ. Define A to consist of those $k \in \mathbb{Z}_{4 m}$ such that $t+\frac{\pi k}{2 m} \in C$ (that is, A encodes the intersection of C with the Γ-coset X). The translates of A by k_{1}, \ldots, k_{4} in $\mathbb{Z}_{4 m}$ (which correspond to the intersections $\left(t_{i}+C\right) \cap X, i \in[4]$) are pairwise disjoint and, by our assumption, omit at least one element of $\mathbb{Z}_{4 m}$. Thus every coset of Γ in \mathbb{T} contains at least one element of $B:=\mathbb{T} \backslash\left(\left\{t_{1}, \ldots, t_{4}\right\}+C\right)$. It follows that B has measure at least $2 \pi /(4 m)$ (as its translates by $\frac{\pi k}{2 m}$ for $k \in\{0, \ldots, 4 m-1\}$ cover \mathbb{T}). This implies that $\boldsymbol{t} \notin \mathcal{M}_{4}^{\prime}$. I

Unfortunately, an explicit characterization of the set $\mathcal{B}_{4}=\mathcal{M}_{4}=\mathcal{M}_{4}^{\prime}$ for general n seems to be rather messy, although it reduces to a finite case analysis for any given $\boldsymbol{t} \in \mathbb{T}^{4}$ by Claim 6.3. So we will restrict ourselves to the special cases $n=1$ and $n=2$, just to illustrate that the measurable \boldsymbol{t}-divisibility is not determined by the order 4 m of the group Γ alone (which happens already for $n=2$).

First, assume that $n=1$. By (6.2), we have up to a permutation that $\left(t_{1}, t_{2}, t_{3}\right) \equiv$ $(a, a+\pi, \pi)(\bmod 2 \pi)$ with $a \notin\{0, \pi\}$. Thus, working inside $\mathbb{Z}_{4 m}$ (that is, modulo $4 m$), we have that $k_{2}=k_{1}+2 m$ and $k_{3}=2 m$. Since $k_{1}, k_{1}+2 m, 2 m$ generate $\mathbb{Z}_{4 m}$, we have that k_{1} and $2 m$ are coprime; in particular k_{1} is odd. As it is easy to see $A:=\{2 i \mid i \in\{0, \ldots, m-1\}\}$ witnesses the \boldsymbol{k}-divisibility of $\mathbb{Z}_{4 m}$. Thus $\boldsymbol{t} \in \mathcal{B}_{4}$ by Claim 6.3.

Now, assume that $n=2$. By (6.2), we have that each of the differences $k_{1}-k_{2}$ and $k_{3}-k_{4}$ modulo $4 m$ is either m or $3 m$. We can assume that $k_{3}=m$ (by negating all k_{i} 's if necessary) and that $k_{2}=k_{1}+m$ (by swapping k_{1} and k_{2} if necessary). Note that these operations do not affect the \boldsymbol{k}-divisibility of $\mathbb{Z}_{4 m}$ and thus the conclusion of Claim 6.3 is also unaffected. Let $k:=k_{1}$. Thus

$$
\boldsymbol{k}=(k, k+m, m, 0) .
$$

First, let us show that if $m=2 s$ is even then $\mathbb{Z}_{4 m}$ is \boldsymbol{k}-divisible (and thus $\boldsymbol{t} \in \mathcal{B}_{4}$ by Claim 6.3). It is enough to find an s-set $S \subseteq\{0, \ldots, m-1\}$ such that, modulo m, the sets S and $k+S$ partition \mathbb{Z}_{m} (because then $A:=S \cup(2 m+S)$ as a subset of $\mathbb{Z}_{4 m}$ witnesses the \boldsymbol{k}-divisibility of $\mathbb{Z}_{4 m}$). Note that $S:=\{2 i k \mid i \in\{0, \ldots, s-1\}\}$ works. (Indeed, by $\operatorname{gcd}(k, m)=1$ each residue modulo m appears exactly once as $i k$ with $i \in\{0, \ldots, m-1\}$ and we have included every second multiple of k into the set S.)

Finally, suppose that m is odd. Recall that $\operatorname{gcd}(k, m)=1$. We claim that $\mathbb{Z}_{4 m}$ is \boldsymbol{k}-divisible if and only if $k \equiv 2(\bmod 4)$.

First, suppose that an m-set $A \subseteq \mathbb{Z}_{4 m}$ witnesses the \boldsymbol{k}-divisibility. Since m is odd, some residue i modulo m appears an odd number of times in A. This multiplicity cannot be larger than 2 since otherwise the translates $k_{1}+A, \ldots, k_{4}+A$ would cover the four points $i, i+m, i+2 m, i+3 m \in \mathbb{Z}_{4 m}$ at least six times. Thus the multiplicity of i in A modulo m is exactly 1 . By the commutativity of $\mathbb{Z}_{4 m}$, we can replace A by any its translate. Thus assume that A contains 0 but none of $m, 2 m$ and $3 m$. Thus, by $\left(k_{3}, k_{4}\right)=(m, 0)$, the set $\left(k_{3}+A\right) \cup\left(k_{4}+A\right)$ covers 0 and m but not $2 m$ nor $3 m$. Since $2 m \notin A$, the only way to consistently cover $2 m$ and $3 m$ is that $2 m-k \in A$. Now, $\left\{k_{1}, \ldots, k_{4}\right\}+\{0,2 m-k\}$ contains $2 m-k$ and $3 m-k$ but not $-k$ nor $m-k$. None of the last two elements can be covered by $k_{3}+A$ or $k_{4}+A$ (as then A modulo m would contain $-k(\bmod m)$ at least twice but then the four elements $0, m, 2 m, 3 m$ would be covered at least six times, with the extra multiplicity coming from 0 and m being covered by $0 \in A$ when translated by k_{3} and k_{4}). Thus the only way to consistently cover $-k$ and $m-k$ is that $-2 k \in A$. One can continue to argue in this manner, showing that for each $i \in\{0,1, \ldots\}$ we have $-2 i k \in A$ and $-(2 i+1) k+2 m \in A$. As the first m of these elements of A are pairwise distinct (in fact, they have pairwise distinct residues modulo m) and m is odd, it must hold that the m-th element, $-m k+2 m$, belongs to A. Since A does not contain any of $m, 2 m$ and $3 m$, we necessarily have that $-m k+2 m \equiv 0(\bmod 4 m)$. This equation has m solutions, namely, all $k \in \mathbb{Z}_{4 m}$ with $k \equiv 2(\bmod 4)$, giving the claim.

Conversely, if $k \equiv 2(\bmod 4)$, then the set A consisting of elements $-2 i k$ for $i \in\{0, \ldots,(m-1) / 2\}$ and $-(2 i+1) k+2 m$ for $i \in\{0, \ldots,(m-3) / 2\}$ shows the \boldsymbol{k} divisibility of $\mathbb{Z}_{4 m}$. Indeed, note that $|A|=m$ (as its elements have different residues modulo m by $\operatorname{gcd}(k, m)=1$) and that if we keep increasing the index i beyond the stated ranges then we just repeat the elements of A since $-m k+2 m \equiv 0(\bmod 4 m)$. By "reverse engineering" the proof of the forward implication, we see that the translates of A by k_{1}, \ldots, k_{4} are pairwise disjoint and thus partition $\mathbb{Z}_{4 m}$, as required.

In the initial version of the manuscript, we conjectured that if $\left(t_{1}, \ldots, t_{r}\right) \in \mathcal{M}_{r}^{\prime}$ then $\left(t_{i}-t_{j}\right) / \pi$ is rational for every $i, j \in[r]$. This conjecture was subsequently proved by Grebík, Greenfeld, Rozhoň and Tao [9]. This implies that $\mathcal{B}_{r}=\mathcal{M}_{r}=\mathcal{M}_{r}^{\prime}$ for every r (by an argument similar to that of Proposition 1.6) and reduces the question if any given $t \in \mathbb{T}^{r}$ belongs to this set to some finite case analysis.

7. Proof of Proposition 1.2

In order to prove Proposition 1.2, we need some auxiliary results first.

Lemma 7.1. The kernels of real $n_{i} \times n$ matrices $A_{i}, i \in[k]$, contain a common nonzero vector $\boldsymbol{x} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ if and only if the $n \times n$ matrix $M:=\sum_{i=1}^{k} A_{i}^{T} A_{i}$ has zero determinant.

Proof. If some non-zero $\boldsymbol{x} \in \mathbb{R}^{n}$ satisfies $A_{i} \boldsymbol{x}=\mathbf{0}$ for every $i \in[k]$, then $M \boldsymbol{x}=$ $\sum_{i=1}^{k} A_{i}^{T}\left(A_{i} \boldsymbol{x}\right)=\mathbf{0}$, so the determinant of M is zero.

Conversely, suppose that M is singular. Choose a non-zero vector $\boldsymbol{x} \in \mathbb{R}^{n}$ with $M \boldsymbol{x}=\mathbf{0}$. Then

$$
0=\boldsymbol{x} \cdot M \boldsymbol{x}=\sum_{i=1}^{k} \boldsymbol{x} \cdot\left(A_{i}^{T} A_{i} \boldsymbol{x}\right)=\sum_{i=1}^{k}\left(A_{i} \boldsymbol{x}\right) \cdot\left(A_{i} \boldsymbol{x}\right)=\sum_{i=1}^{k}\left\|A_{i} \boldsymbol{x}\right\|_{2}^{2}
$$

and each $A_{i} \boldsymbol{x}$ must be the zero vector, giving the required.
The results of Dekker [6], Deligne and Sullivan [8], and Borel [3] (see Theorem 6.4 in [23] and the historical discussion preceding it) give the following.

Lemma 7.2. For every $d \geqslant 2$ and $r \geqslant 2$ there is a choice of rotations $\beta_{1}, \ldots, \beta_{r} \in$ $\mathrm{SO}(d)$ that generate the free rank-r group F_{r} such that its action on \mathbb{S}^{d-1} is free for even d and locally commutative for odd d (meaning that every two elements of F_{r} that have a common fixed element on \mathbb{S}^{d-1} commute).

Note that the above result is usually stated in the special case $r=2$ as the general case easily follows by taking any subgroup of F_{2} isomorphic to F_{r}.

Lemma 7.3. If $\gamma=\left(\gamma_{1}, \ldots, \gamma_{r}\right) \in \operatorname{SO}(d)^{r}$ is generic, then the rotations $\gamma_{1}, \ldots, \gamma_{r}$ generate the free rank-r group F_{r} and the corresponding action of F_{r} on \mathbb{S}^{d-1} is free for even d and locally commutative for odd d.

Proof. For a non-trivial reduced word w in F_{r} and $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{r}\right) \in \operatorname{SO}(d)^{r}$, the relation $w(\boldsymbol{\beta})=I_{d}$ amounts to d^{2} polynomial equations, with $p_{i j}(\boldsymbol{\beta})=0$ stating that the (i, j)-th entry of the corresponding product of the matrices of β_{i} 's and their transposes (which are equal to their inverses) is $\mathbb{1}_{i=j}$, where $\mathbb{1}_{i=j}$ is 1 if $i=j$ and 0 otherwise. Each of these polynomials $p_{i j}$ has rational coefficients. Moreover, the r-tuple of matrices $\boldsymbol{\beta}$ returned by Lemma 7.2 (which, in particular, generates the free subgroup) gives a point where at least one of these polynomials is non-zero, say $p_{i j}(\boldsymbol{\beta}) \neq 0$. The polynomial $p_{i j}$ has to be non-zero also at the generic point $\gamma \in \operatorname{SO}(d)^{r}$ and so $w(\gamma) \neq I_{d}$. Since w was an arbitrary non-trivial word, the rotations $\gamma_{1}, \ldots, \gamma_{r}$ indeed generate the free group.

Let us show the second part in the case of odd d (with the case of even d being similar). Suppose on the contrary that we have two reduced non-commuting words
w_{1} and w_{2} in F_{r} such that the corresponding elements $w_{1}(\gamma)$ and $w_{2}(\gamma)$ have a common fixed point $\boldsymbol{x} \in \mathbb{S}^{d-1}$. Thus the matrices $A_{1}:=w_{1}(\gamma)-I_{d}$ and $A_{2}:=w_{2}(\gamma)-I_{d}$ have $\boldsymbol{x} \neq \mathbf{0}$ as a common zero eigenvector. By Lemma 7.1, this property is equivalent to $\operatorname{det}\left(A_{1}^{T} A_{1}+A_{2}^{T} A_{2}\right)=0$, which is a polynomial equation in γ with rational coefficients. For the special r-tuple of matrices $\boldsymbol{\beta}$ returned by Lemma 7.2, the matrices $B_{1}:=w_{1}(\boldsymbol{\beta})-I_{d}$ and $B_{2}:=w_{2}(\boldsymbol{\beta})-I_{d}$ cannot have a common zero eigenvector as it would give a common fixed point for the non-commuting elements $w_{1}(\boldsymbol{\beta})$ and $w_{2}(\boldsymbol{\beta})$. Thus, we have by Lemma 7.1 that $\operatorname{det}\left(B_{1}^{T} B_{1}+B_{2}^{T} B_{2}\right) \neq 0$. We have found a polynomial equality with rational coefficients that holds for γ but not for $\boldsymbol{\beta} \in \mathrm{SO}(d)^{r}$. This contradicts our assumptions that $\gamma \in \mathrm{SO}(d)^{r}$ is generic.

Also, we will need the following result of Conley, Marks and Unger that directly follows (as a rather special case) from Lemmas 3.4 and 3.6 in [4].

Theorem 7.4 (Conley, Marks and Unger [4]). Let F_{r} be the free group of rank r with generators $\gamma_{1}, \ldots, \gamma_{r}$ and let $a: F_{r} \curvearrowright X$ be a free Borel action on a Polish space X. Then there is a Borel subset $A \subseteq X$ such that $\gamma_{1} . A, \ldots, \gamma_{r} . A$ are disjoint and $X \backslash$ $\cup_{i=1}^{r} \gamma_{i} . A$ is meager.

Proof of Proposition 1.2. We have to show that if an r-tuple $\gamma=\left(\gamma_{1}, \ldots, \gamma_{r}\right) \in \mathrm{SO}(d)^{r}$ is generic then there is a γ-division of \mathbb{S}^{d-1} with pieces that have the property of Baire.

By Lemma 7.3, the elements $\gamma_{1}, \ldots, \gamma_{r} \in \mathrm{SO}(d)$ generate a free (resp. locally commutative) action a of the free group F_{r} on the sphere \mathbb{S}^{d-1} when d is even (resp. odd). The more general Corollary 5.12 in [23] (which is attributed in [23] to Dekker $[6,7]$) directly gives that \mathbb{S}^{d-1} is γ-divisible, that is, there is a subset $B \subseteq \mathbb{S}^{d-1}$ with $\gamma_{1} . B, \ldots, \gamma_{r} . B$ partitioning the sphere.

For every $\gamma \in \mathrm{SO}(d) \backslash\left\{I_{d}\right\}$, the set of its fixed points on \mathbb{S}^{d-1} is closed (as the preimage of $\mathbf{0}$ under the continuous map that sends $\boldsymbol{x} \in \mathbb{S}^{d-1}$ to $\gamma \cdot \boldsymbol{x}-\boldsymbol{x} \in \mathbb{R}^{d}$) and has empty relative interior (for otherwise one can choose d linearly independent vectors fixed by γ, contradicting $\gamma \neq I_{d}$). In particular, this set is meager. Since the group F_{r} is countable, the free part X of the action a (which consists of $\boldsymbol{x} \in \mathbb{S}^{d-1}$ such that $w \cdot \boldsymbol{x} \neq \boldsymbol{x}$ for each non-trivial $w \in F_{r}$) is co-meager. Also, it is easy to show that the free part X is a Borel subset of the sphere (see e.g. [21, Lemma 4.4]).

Theorem 7.4, when applied to the free action of F_{r} on X, gives a Borel set $A \subseteq X$ with its translates $\gamma_{1} . A, \ldots, \gamma_{r} . A$ being disjoint and $Z:=\mathbb{S}^{d-1} \backslash \cup_{i=1}^{r} \gamma_{i} . A$ being meager. We can additionally assume that Z is a-invariant: its saturation [Z]:= $\cup_{w \in F_{r}} w . Z$ is still meager (since the countable group F_{r} acts by homeomorphisms) so we can replace A by $A \backslash[Z]$ without violating the conclusion of Theorem 7.4.

Now, we can combine the Borel γ-division of $\mathbb{S}^{d-1} \backslash Z$ given by Conley, Marks and Unger [4] with the γ-division of Dekker [6, 7] restricted to Z. Formally, take $C:=A \cup(B \cap Z)$. The set C, as the union of a Borel set and a meager set, has the property of Baire while its translates $\gamma_{1} . C, \ldots, \gamma_{r} . C$ partition \mathbb{S}^{d-1} by the invariance of Z.

8. Proof of Lemmas 1.3 and 1.4

This section is dedicated to proving Lemmas 1.3 and 1.4. Their proofs are rather technical; this is why we postponed them until the very end.
8.1. Some definitions and results from algebraic geometry. In this section we present some definitions and results from algebraic geometry that we need. We will follow the notation from the book by Hassett [12] to which we refer for missing details (and for a nice concrete introduction to most results needed here).

A field extension $K \hookrightarrow L$ is called algebraic if every $x \in L$ is algebraic over K, that is, satisfies a non-trivial polynomial equation with coefficients in K. Some easy but very useful facts ([12, Proposition A.16]) are that, for an arbitrary field extension $K \hookrightarrow L$,

$$
\begin{equation*}
\text { the elements of } L \text { that are algebraic over } K \text { form a field } \tag{8.1}
\end{equation*}
$$

and, for another field extension $L \hookrightarrow M$,
(8.2) \quad if $K \hookrightarrow L$ and $L \hookrightarrow M$ are both algebraic then $K \hookrightarrow M$ is algebraic.

Let us fix a field K.
By a variety we mean a subset X of some affine space K^{n} which is closed in the Zariski topology, that is, X is equal to

$$
V_{K}(\mathcal{F}):=\left\{\boldsymbol{x} \in K^{n} \mid \forall f \in \mathcal{F} f(\boldsymbol{x})=0\right\}
$$

for some family $\mathcal{F} \subseteq K[\boldsymbol{x}]$ of polynomials where $\boldsymbol{x}:=\left(x_{1}, \ldots, x_{n}\right)$. Then the coordinate ring of X is $K[X]:=K[x] / I(X)$, where

$$
I(X):=\{f \in K[\boldsymbol{x}] \mid \forall \boldsymbol{x} \in X f(\boldsymbol{x})=0\}
$$

denotes the ideal of the variety $X \subseteq K^{n}$.
We call a variety $X \subseteq K^{n}$ irreducible if we cannot write $X=X_{1} \cup X_{2}$ for some varieties $X_{1}, X_{2} \subsetneq X$. This is equivalent to the statement that the ideal $I(X) \subseteq K[\boldsymbol{x}]$ is prime ([12, Theorem 6.5]). Then $K[X]$ is a domain so we can define its fraction
field, which is called the function field of X and is denoted by $K(X)$. Elements of $K[X]$ (resp. $K(X)$) can be viewed as the restrictions of polynomial (resp. rational) functions to X modulo identifying functions that coincide on X.

The dimension $\operatorname{dim} X$ of an irreducible variety X is the cardinality of a transcendence basis for the field extension $K \hookrightarrow K(X)$, which is a collection of algebraically independent (over K) elements $z_{1}, \ldots, z_{k} \in K(X)$ such that $K(X)$ is algebraic over $K\left(z_{1}, \ldots, z_{k}\right)$, the smallest subfield of $K(X)$ containing $K \cup\left\{z_{1}, \ldots, z_{k}\right\}$. By [12, Proposition 7.15], a transcendence basis exists and every two transcendence bases have the same cardinality.

Every variety X can be written as a finite union $X_{1} \cup \ldots \cup X_{m}$ of irreducible varieties ([12, Theorem 6.4]). (In fact, this decomposition, if irredundant, is unique up to a permutation of indices.) Then the dimension of X is defined as $\operatorname{dim} X:=$ $\max \left\{\operatorname{dim} X_{i} \mid i \in[m]\right\}$. By [5, Corollary 2.68], one can equivalently define
$\operatorname{dim} X:=\max \left\{k \mid \exists\right.$ irreducible varieties $Y_{1}, \ldots Y_{k}$ with $\left.\emptyset \subsetneq Y_{1} \subsetneq \ldots \subsetneq Y_{k} \subseteq X\right\}$.
We will also need the following easy result.
Lemma 8.1. If X_{1}, \ldots, X_{n} are infinite subsets of a field K and a polynomial $f \in$ $K\left[x_{1}, \ldots, x_{n}\right]$ vanishes on each element of $X_{1} \times \ldots \times X_{n}$, then f is the zero polynomial.

Proof. We use induction on n. The base case $n=1$ can be proved by induction on the degree of the univariate polynomial $f\left(x_{1}\right)$ by factoring out a linear factor corresponding to a root of f.

Let $n \geqslant 2$. Expand $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{m} c_{i} x_{n}^{i}$, with $c_{i} \in K\left[x_{1}, \ldots, x_{n-1}\right]$ and $c_{m} \neq 0$. By induction, there is $\left(a_{1}, \ldots, a_{n-1}\right)$ in $X_{1} \times \ldots \times X_{n-1}$ with $c_{m}\left(a_{1}, \ldots, a_{n-1}\right) \neq 0$. Thus $f\left(a_{1}, \ldots, a_{n-1}, x_{n}\right)$ is a non-zero polynomial of x_{n} so it cannot vanish on X_{n} by the base case $n=1$.
8.2. Variety $\mathbf{S O}(\boldsymbol{d} ; \boldsymbol{K})^{r}$. In this section we show in particular that $\operatorname{SO}(d)^{r}$, as a variety in $\mathbb{R}^{d^{2} r}$, is irreducible and that the set of entries above the diagonals forms a transcendence basis; in particular, the dimension of $\operatorname{SO}(d)^{r}$ is $\binom{d}{2} r$. In fact, we will need an extension of this result, where the underlying field can be different from \mathbb{R}, for the proof of Lemma 1.4 (even though the statement of Lemma 1.4 deals only with the real case).

Let $d \geqslant 1$ be an integer and K be a field. Consider the affine space $K^{d \times d}$ of all $d \times d$ matrices with entries in K, writing its elements as $\gamma=\left(\gamma_{i, j}\right)_{i, j \in[d]}$. Let the special orthogonal variety over K be the variety $\mathrm{SO}(d ; K):=V_{K}\left(I_{\mathrm{SO}}\right) \subseteq K^{d \times d}$ defined
by the ideal

$$
\begin{equation*}
I_{\mathrm{SO}}:=\left\langle\left(u_{i}\right)_{i \in[d]},\left(f_{i j}\right)_{1 \leqslant i<j \leqslant d}, \operatorname{det}(\gamma)-1\right\rangle \subseteq K[\gamma], \tag{8.4}
\end{equation*}
$$

where $u_{i}:=\gamma_{i, 1}^{2}+\ldots+\gamma_{i, d}^{2}-1$ encodes the fact that each row is a unit vector (when $K \subseteq \mathbb{R}), f_{i, j}:=\gamma_{i, 1} \gamma_{j, 1}+\ldots+\gamma_{i, d} \gamma_{j, d}$ encodes the orthogonality of the i-th and j th rows while the last constraint states that the determinant of γ is 1 . Note that the "orthonormality" constraints force γ to have determinant -1 or 1 , which follows from

$$
\begin{equation*}
(\operatorname{det}(\gamma))^{2}=\operatorname{det}\left(\gamma^{T} \gamma\right) \equiv \operatorname{det}\left(I_{d}\right)=1 \quad\left(\bmod \left\langle\left(u_{i}\right)_{i \in[d]},\left(f_{i j}\right)_{1 \leqslant i<j \leqslant d}\right\rangle\right) \tag{8.5}
\end{equation*}
$$

The matrix multiplication makes $\mathrm{SO}(d ; K)$ a group. If $K=\mathbb{R}$ then we get the familiar group $\mathrm{SO}(d)$ of special orthogonal real $d \times d$ matrices (and the shorthand $\mathrm{SO}(d)$ will always be reserved for the real variety $\mathrm{SO}(d ; \mathbb{R})$).

Take any integer $r \geqslant 1$. The r-th power $\mathrm{SO}(d ; K)^{r}=\mathrm{SO}(d ; K) \times \ldots \times \mathrm{SO}(d ; K)$ is a variety in $K^{d^{2} r}$ since a product of Zariski closed sets is Zariski closed (or since one can write the explicit equations defining $\left.\mathrm{SO}(d ; K)^{r}\right)$.

For $\left(\gamma_{1}, \ldots, \gamma_{r}\right) \in \operatorname{SO}(d ; K)^{r}$, let

$$
\gamma_{U}:=\left(\left(\gamma_{s}\right)_{i, j} \mid s \in[r], 1 \leqslant i<j \leqslant d\right)
$$

be the sequence of the $\binom{d}{2} r$ entries strictly above the diagonals. We call these entries upper. For notational convenience, we fix an ordering of the coordinates of $K^{d^{2} r}$ so that all non-upper entries (that is, those on or below the diagonals) come before all upper ones; thus when we write a vector of length $d^{2} r$ as $(\boldsymbol{x}, \boldsymbol{y})$ then we mean that \boldsymbol{y} is the upper part.

Lemma 8.2. For every subfield $K \subseteq \mathbb{C}$, the variety $X:=(\mathrm{SO}(d ; K))^{r} \subseteq K^{r d^{2}}$ is irreducible, has dimension $\binom{d}{2} r$ and the set of upper coordinates forms a transcendence basis of the function field $K(X)$ over K.

Proof. First, let us show that X is irreducible The proof of this in the case $r=1$ (for an arbitrary field with $2 \neq 0$) can be found in [2, Proposition 5-2.3]. We adopt the argument from [2] to work for any $r \geqslant 1$. (Note that products need not preserve the irreducibility when the underlying field is not algebraically closed.)

For $\boldsymbol{x} \in K^{d}$ with $\boldsymbol{x} \cdot \boldsymbol{x}:=\sum_{i=1}^{d} x_{i}^{2}$ non-zero, the map $\rho_{\boldsymbol{x}}: K^{d} \rightarrow K^{d}$ that is defined by

$$
\rho_{\boldsymbol{x}}(\boldsymbol{y}):=\boldsymbol{y}-2 \frac{\boldsymbol{y} \cdot \boldsymbol{x}}{\boldsymbol{x} \cdot \boldsymbol{x}} \boldsymbol{x}, \quad \text { for } \boldsymbol{y} \in K^{d}
$$

can be thought of as the reflection of K^{d} around the hyperplane orthogonal to \boldsymbol{x}, so we call $\rho_{\boldsymbol{x}}$ a reflection. Each $\gamma \in \mathrm{SO}(d ; K)$ can be written as a product of an even number of reflections, see [2, Proposition 1-9.4] (and, conversely, every such product
is in $\mathrm{SO}(d ; K)$). In fact, the proof in [2], which proceeds by induction on d, shows that at most $m:=2 d$ reflections are needed. By inserting the trivial composition $\rho_{\boldsymbol{x}} \rho_{\boldsymbol{x}}=I_{d}$ for some $\boldsymbol{x} \in K^{d}$ with $\boldsymbol{x} \cdot \boldsymbol{x} \neq 0$ we can write each $\gamma \in \operatorname{SO}(d ; K)$ as the product of exactly m reflections.

Let $U:=\left\{\boldsymbol{z} \in K^{d} \mid \boldsymbol{z} \cdot \boldsymbol{z} \neq 0\right\}$ and define $f: U^{m} \rightarrow \mathrm{SO}(d ; K)$ by

$$
f\left(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{m}\right):=\rho_{\boldsymbol{z}_{1}} \ldots \rho_{\boldsymbol{z}_{m}} \in \operatorname{SO}(d ; K), \quad \text { for }\left(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{m}\right) \in U^{m}
$$

Consider the product map $f^{r}:\left(U^{m}\right)^{r} \rightarrow \mathrm{SO}(d ; K)^{r}$ that applies f in each of the r coordinates. As the complement $V:=K^{d m} \backslash U^{m}$ is Zariski closed (as the finite union over $i \in[m]$ of the sets of $\left(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{m}\right) \in K^{d m}$ satisfying the polynomial equation $z_{i} \cdot z_{i}=0$), the complement $W:=K^{d m r} \backslash U^{m r}$ is also Zariski closed as the finite union over $i \in[r]$ of the closed sets $K^{d m(i-1)} \times V \times K^{d m(r-i)}$. Clearly, f^{r} is a rational map defined everywhere on $U^{m r}$ and thus continuous in the Zariski topology on $U^{m r} \subseteq$ $K^{d m r}$. Also, the image of f^{r} is exactly $X=\mathrm{SO}(d ; K)^{r}$ with the surjectivity following from the choice of m. It follows from [2, Lemma 5-2.1] that X is irreducible. (In brief, if X can be written as a union of two proper closed subsets $X_{1} \cup X_{2}$, then $K^{d m r}$ is a union of two proper closed sets $f^{-1}\left(X_{1}\right) \cup W$ and $f^{-1}\left(X_{2}\right) \cup W$, contradicting the irreducibility of $K^{d m r}$ since its ideal $I\left(K^{d m r}\right)$, which is $\{0\}$ by e.g. Lemma 8.1, is trivially prime.) Thus X is indeed irreducible.

It remains to show that the set of upper coordinates γ_{U} (that is, all entries above the diagonals) is a transcendence basis for the function field $K(X)$ over K. This claim is made of the following two parts.

First, let us show that the field extension $K\left(\gamma_{U}\right) \hookrightarrow K(X)$ is algebraic. By (8.1) and (8.2), it is enough to represent this field extension as a composition of field extensions where, at each step, every added non-upper coordinate is algebraic over the previously added coordinates and the upper coordinates in the same matrix. Thus we consider just one matrix in $\operatorname{SO}(d ; K)$, which we denote as $\gamma=\left(\gamma_{i, j}\right)_{i, j \in[d]}$. We add the non-upper coordinates by whole rows in the natural order (with Row 1 added first, then Row 2, and so on). Take any Row m and a non-upper pair (m, j) (i.e. with $j \leqslant m)$. The following argument works for every index $j \in[m]$ so we pick $j=m$ for notational convenience. Thus we have to show that $z:=\gamma_{m, m}$, as an element of $K(X)$, is algebraic over

$$
K\left(\left\{\gamma_{i, j}: i \in[m-1], j \in[d]\right\} \cup\left\{\gamma_{m, j} \mid j \in\{m+1, \ldots, d\}\right\}\right)
$$

Let the vector $\boldsymbol{x}:=\left(\gamma_{m, 1}, \ldots, \gamma_{m, m-1}\right)$ consist of the other non-upper entries of Row m and let $M:=\left(\gamma_{i, j}\right)_{i, j \in[m-1]}$ be the square submatrix of γ which lies above \boldsymbol{x}. The orthogonality of Row m to the previous rows gives a system of $m-1$ linear equations, namely,

$$
M \boldsymbol{x}^{T}=\boldsymbol{f}^{T}
$$

where $\boldsymbol{f}:=\left(f_{1}, \ldots, f_{m-1}\right)$ with $f_{i}:=-\gamma_{i, m} z-\sum_{j=m+1}^{d} \gamma_{i, j} \gamma_{m, j}$ for $i \in[m-1]$. By Cramer's rule, we have $\operatorname{det}(M) \boldsymbol{x}^{T}=\operatorname{Ad}(M) \boldsymbol{f}^{T}$, where $\operatorname{Ad}(M)$ denotes the adjoint matrix of M (whose (i, j)-th entry is $(-1)^{i+j}$ times the determinant of M with Row j and Column i removed). Take the unit "norm" relation $\sum_{i=1}^{d} \gamma_{m, i}^{2}=1$ for Row m, multiply it by $(\operatorname{det}(M))^{2}$ and replace each $(\operatorname{det}(M))^{2} x_{i}^{2}$ by its value from Cramer's rule. We get a polynomial equation having no \boldsymbol{x}, namely,

$$
\begin{equation*}
(\operatorname{det}(M))^{2} z^{2}+\sum_{i=1}^{m-1}\left(\sum_{j=1}^{m-1} \operatorname{Ad}(M)_{i j} f_{j}\right)^{2}+(\operatorname{det}(M))^{2} \sum_{i=m+1}^{d} \gamma_{m, i}^{2}=(\operatorname{det}(M))^{2} \tag{8.6}
\end{equation*}
$$

Let us show that the coefficient at z^{2} in this equation is non-zero. This coefficient is some polynomial in the upper entries and the previous entries. If we take the identity matrix I_{d} for γ, then the column above z is all zero and the matrix M is invertible (namely, it is the $(m-1) \times(m-1)$ identity matrix $\left.I_{m-1}\right)$. Then f does not depend on z at all and the coefficient at z^{2} is $(\operatorname{det}(M))^{2}=1$, which is non-zero. So the coefficient at z^{2} in (8.6) is a non-zero polynomial, that is, z is algebraic over all previous entries, as desired. We conclude (by (8.1) and (8.2)) that all entries on or below the diagonals are algebraic over $K\left(\gamma_{U}\right)$ and thus the field extension $K\left(\gamma_{U}\right) \hookrightarrow K(X)$ is indeed algebraic.

Thus in order to show that the coordinates γ_{U} form a transcendence basis, it remains to prove that these $\binom{d}{2} r$ coordinates, as elements of the function field $K(X)$, are algebraically independent over K. It is enough to prove this for $K=\mathbb{C}$. Indeed, we assumed that $K \subseteq \mathbb{C}$. A non-trivial algebraic relation over K between the upper coordinates means that the ideal that defines $\mathrm{SO}(d ; K)^{r}$ (which, in the case $r=1$, is the ideal $I_{\text {SO }}$ in (8.4)) contains a non-zero polynomial g that does not depend on nonupper coordinates. The same polynomial g, when viewed as a polynomial in $\mathbb{C}[\gamma]$, then witnesses that the upper coordinates are algebraically dependent over \mathbb{C}.

Thus let us assume that $K=\mathbb{C}$. We need an easy auxiliary claim first from which we will derive that every choice of sufficiently small in absolute value upper entries can be extended to a matrix in $\operatorname{SO}(d ; \mathbb{C})$. For $m \in[d]$ and an $m \times d$ matrix $\gamma=\left(\gamma_{i, j}\right)$, let the property \mathcal{P}_{m} state that for all $i \in[m]$ we have $\sum_{j=1}^{d} \gamma_{i, j} \gamma_{m, j}=\mathbb{1}_{i=m}$. (Recall that $\mathbb{1}_{i=m}$ is 1 if $i=m$ and 0 otherwise.) In other words, \mathcal{P}_{m} states that Row m has unit "norm" and is orthogonal to all previous rows.

Claim 8.3. For every $m \in[d]$ and $\delta>0$ there is $\varepsilon=\varepsilon_{m}(\delta)>0$ such that the following holds. Take any complex numbers $\left(\gamma_{i, j}\right)_{(i, j) \in S}$, where

$$
S:=([m-1] \times[d]) \cup\{(m, j) \mid m<j \leqslant d\}
$$

such that $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m-1}$ hold and $\left|\gamma_{i, j}-\mathbb{1}_{i=j}\right| \leqslant \varepsilon$ for any $(i, j) \in S$. Then there is a choice of $\gamma_{m, 1}, \ldots, \gamma_{m, m} \in \mathbb{C}$ such that $\left|\gamma_{m, j}-\mathbb{1}_{m=j}\right| \leqslant \delta$ for each $j \in[m]$ and \mathcal{P}_{m}
holds. Moreover, if $\gamma_{i, j}$ for each $(i, j) \in S$ is real then $\gamma_{m, 1}, \ldots, \gamma_{m, m}$ can additionally be chosen to be real.

Proof of Claim. Suppose that the claim fails for for some $m \in[d]$ and $\delta>0$. Let real ε tend to 0 from above and let $\gamma \in \mathbb{C}^{S}$ be a partial assignment violating the claim. Let us use the notation that was introduced around (8.6). By our choice of γ, we have that each entry of M is within additive $\varepsilon=o(1)$ from the corresponding entry of the identity matrix and thus $\operatorname{det}(M)=1+o(1)$ is non-zero. Of the two roots of the quadratic equation (8.6), which now reads $z^{2}-1=o\left(1+|z|^{2}\right)$, choose $z=1+o(1)$. In fact, (8.6) gives not only the entry $z=\gamma_{m, m}$ but the consistent remainder of Row m by $\boldsymbol{x}^{T}:=(\operatorname{det}(M))^{-1} \operatorname{Ad}(M) \boldsymbol{f}^{T}$, satisfying \mathcal{P}_{m}. By the continuity of the all involved functions (and $\operatorname{det}(M)=1+o(1))$, we have $\|\boldsymbol{x}\|_{\infty}=o(1)$, a contradiction to $\delta>0$ being fixed.

Let us show how to adapt this argument to establish the second part of the claim. Suppose additionally that the given $\gamma_{i, j}$'s are reals. In the above notation, the quadratic equation (8.6) has all real coefficients and, as before, states that $z^{2}-1=o(1+$ $\left.\left|z^{2}\right|\right)$. Its left-hand side as a function of $z \in \mathbb{R}$ changes sign at $z=1$ with its derivative $2 z$ being bounded away from 0 around $z=1$. Hence we can choose a real root $z=1+o(1)$. Then M is a real matrix and the rest of Row m, namely $\boldsymbol{x}^{T}:=$ $(\operatorname{det}(M))^{-1} \operatorname{Ad}(M) \boldsymbol{f}^{T}$ is also real. I

Consider the projection $\pi: \mathrm{SO}(d ; \mathbb{C})^{r} \rightarrow \mathbb{C}^{m}$ on the $m:=\binom{d}{2} r$ upper coordinates, which maps $(\boldsymbol{x}, \boldsymbol{y})$ to \boldsymbol{y}. In particular, the r-tuple of the identity matrices projects to the zero vector $\mathbf{0} \in \mathbb{C}^{m}$. The image of π contains some Euclidean open ball

$$
\operatorname{Ball}_{\varepsilon}(\mathbf{0}):=\left\{\boldsymbol{z} \in \mathbb{C}^{m} \mid\|\boldsymbol{z}\|_{1}<\boldsymbol{\varepsilon}\right\}
$$

of radius $\varepsilon>0$ around the origin. Namely, we can take its radius to be

$$
\begin{equation*}
\varepsilon:=\varepsilon_{d}\left(\varepsilon_{d-1}\left(\ldots \varepsilon_{1}\left(1 /\left(2^{d} d!\right)\right) \ldots\right)\right)>0 \tag{8.7}
\end{equation*}
$$

where $\varepsilon_{1}, \ldots, \varepsilon_{d}$ are the functions returned by Claim 8.3. Indeed, by the choice of the constants we know that for every $\boldsymbol{y} \in \operatorname{Ball}_{\varepsilon}(\mathbf{0})$, we can construct a $d \times d$ matrix γ row by row so that γ projects to \boldsymbol{y} and satisfies all properties $\mathcal{P}_{1}, \ldots, \mathcal{P}_{d}$ while it also holds that $\left\|\gamma-I_{d}\right\|_{\infty}<1 /\left(2^{d} d!\right)$. The last inequality gives, rather roughly, that $|\operatorname{det}(\gamma)-1|<1$. Thus $\operatorname{det}(\gamma)=1$ because $\operatorname{det}(\gamma)$ is either -1 or 1 by (8.5). So indeed $\pi(\mathrm{SO}(d ; \mathbb{C}))$ contains $\pi(\gamma)=\boldsymbol{y}$.

Now, suppose on the contrary that there is a non-trivial polynomial relation between the upper coordinates. Thus there is a non-zero polynomial g which does not depend on the non-upper coordinates and belongs to the ideal generated by the polynomials that define $\mathrm{SO}(d ; \mathbb{C})^{r}$ (with those for $r=1$ being listed in (8.4)). The polynomial g, as a function of the m upper coordinates, vanishes on $\pi(X) \subseteq \mathbb{C}^{m}$. This
contradicts Lemma 8.1 as $\pi(X)$ contains a non-empty open set, namely the open ball of radius ε around the origin, and thus $\pi(X)$ contains a product of m infinite sets.

Now we are ready to show that the set \mathcal{N} of non-generic points in $\mathrm{SO}(d)^{r}$ is "small".

Proof of Lemma 1.3. As before, when we identify an r-tuple of $d \times d$ matrices over a field K with an element of $K^{d^{2} r}$, let us order the $d^{2} r$ coordinates so that the $m:=\binom{d}{2} r$ upper entries (i.e. those above the diagonals) come at the end. Thus if we write an element of $K^{d^{2} r}$ as $(\boldsymbol{x}, \boldsymbol{y})$ then \boldsymbol{y} corresponds to the m upper entries. Also, we use the standard topology on \mathbb{S}^{d-1} (the one which is inherited from the Euclidean space \mathbb{R}^{d}).

There are countably many polynomials in $\mathbb{Q}[\boldsymbol{x}, \boldsymbol{y}]$ so enumerate those that are non-zero on at least one element of $\mathrm{SO}(d)^{r}$ as f_{1}, f_{2}, \ldots. By definition, if a point $(\boldsymbol{a}, \boldsymbol{b}) \in \mathrm{SO}(d ; \mathbb{R})^{r}$ is not generic then some f_{i} vanishes on $(\boldsymbol{a}, \boldsymbol{b})$. Thus \mathcal{N} is a subset of the countable union $\cup_{i=1}^{\infty} Z_{i}$, where

$$
\begin{equation*}
Z_{i}:=\left\{(\boldsymbol{a}, \boldsymbol{b}) \in \mathrm{SO}(d)^{r} \mid f_{i}(\boldsymbol{a}, \boldsymbol{b})=0\right\} \tag{8.8}
\end{equation*}
$$

Since each polynomial f_{i} is continuous as a function $\mathbb{R}^{d^{2} r} \rightarrow \mathbb{R}$, each set Z_{i} is closed.
Let us turn to Part (i) where we have to show that the Haar measure v assigns measure 0 to \mathcal{N}. By the countable additivity, it is enough to show that each set Z_{i}, defined by (8.8), has v-measure zero.

First, let us recall how the Haar measure can be constructed for the group $\Gamma:=$ $\mathrm{SO}(n)^{r}$ (and, in fact, for any real Lie group), following the presentation in [17, Sections VIII.1-2]. Namely, choose some linear basis for the Lie algebra $(50(d))^{r}$ viewed as the tangent space $T_{\left(I_{d}, \ldots, I_{d}\right)}$ at the identity $\left(I_{d}, \ldots, I_{d}\right) \in \mathrm{SO}(d)^{r}$ and, using the translations of these vectors, turn them into left-invariant vector fields X_{1}, \ldots, X_{m}. (Note the the Lie algebra $(\mathfrak{s v}(d))^{r}$, that consists of all r-tuples of skew-symmetric matrices, has dimension $m=\binom{d}{2} r$ as a vector space.) For each $\gamma \in \Gamma$, let $e_{1}(\gamma), \ldots, e_{m}(\gamma) \in$ T_{γ}^{*} be the dual basis to $\left(X_{1}(\gamma), \ldots, X_{m}(\gamma)\right)$. Then $\omega=e_{1} \wedge \ldots \wedge e_{m}$ (the skewsymmetric product) is a smooth m form on Γ, which is positive and left-invariant and thus defines a Borel left-invariant non-zero measure on Γ ([17, Theorem 8.21]). By the uniqueness, this has to be a multiple of the Haar measure v. In particular, any smooth submanifold of Γ of dimension (as a manifold) less than m has zero Haar measure ([17, Equation (8.25)]).

The set $Z_{i} \subsetneq \mathrm{SO}(d)^{r}$, as an algebraic variety, has dimension smaller than m which follows from the definition of the dimension via nested chains of irreducible varieties (that is, by (8.3)) and from the irreducibility of the variety $\mathrm{SO}(d)^{r}$ (that is, by Lemma 8.2). Some standard results in the theory of (semi-)algebraic sets give that every bounded variety in some \mathbb{R}^{n} admits a triangulation into simplices each of
which is a smooth submanifold of \mathbb{R}^{n}, see e.g. [1, Theorem 5.43]. Apply this result to every irreducible component $Z \subseteq Z_{i}$. The dimension k of each obtained simplex S (as a manifold) is at most $\operatorname{dim} Z$. Indeed, pick a point $s \in S$ and the projection from S on some k coordinates which is a homeomorphism around s. Observe that these k coordinates are algebraically independent in the function field $\mathbb{R}(Z)$ because no non-zero polynomial on \mathbb{R}^{k} can vanish on a non-empty open set by Lemma 8.1.

Thus we covered Z_{i} by finitely many manifolds of dimension less than m, each having zero Haar measure as it was observed earlier (by [17, Equation (8.25)]). We conclude that the Haar measure of Z_{i} is indeed zero.

Let us show Part (ii). Recall that the sets Z_{1}, Z_{2}, \ldots were defined in (8.8). Clearly, each set Z_{i} is closed. Thus it is enough to show that the relative interior of each $Z_{i} \subseteq \mathrm{SO}(d)^{r}$ is empty. Suppose on the contrary that the relative interior U of some Z_{i} is non-empty. Since the compact group $\mathrm{SO}(d)^{r}$ acts transitively on itself by homeomorphisms, finitely many translates of U cover the whole group. As the Haar measure is v is invariant under this action, we have that $v(U)>0$. However, this contradicts Part (i) that we have already proved.

This finishes the proof of Lemma 1.3.
8.3. Proof of Lemma 1.4. Our proof of the reverse (harder) implication of Lemma 1.4 needs Lemma 8.4 below. Since we could not find this rather natural statement anywhere in the literature we present a proof whose main idea (to use dimension) was suggested to us by Miles Reid. In fact, Miles Reid came up with a full proof of some initial version of the lemma. Since his proof relies on the so-called universal domain of K while we would like to have this paper as elementary as possible, we present a proof that avoids universal domains.

Given a field extension $K \hookrightarrow L$ and a variety $X \subseteq L^{n}$ (over the field L), we say that an element $\boldsymbol{a} \in X$ is K-generic for X if every polynomial $p \in K\left[x_{1}, \ldots, x_{n}\right]$ with $p(\boldsymbol{a})=0$ vanishes on every element of X. (Here as well as in the rest of this paper, each evaluation mixing elements of some two fields $K \hookrightarrow L$ is done in the larger field L.) In the special case when $K:=\mathbb{Q}, L:=\mathbb{R}, X:=\mathrm{SO}(d)^{r}$ we get exactly the definition of a generic r-tuple of rotations from the Introduction.

Lemma 8.4. Let $K \hookrightarrow L$ be a field extension, with L being algebraically closed. Let $\mathcal{P} \subseteq K[\boldsymbol{x}, \boldsymbol{y}]$ be some family of polynomials over K, where we abbreviate $\boldsymbol{x}:=$ $\left(x_{1}, \ldots, x_{m}\right)$ and $\boldsymbol{y}:=\left(y_{1}, \ldots, y_{n}\right)$. Suppose that

$$
\begin{equation*}
X:=\left\{(\boldsymbol{x}, \boldsymbol{y}) \in L^{m+n} \mid \forall f \in \mathcal{P} f(\boldsymbol{x}, \boldsymbol{y})=0\right\} \tag{8.9}
\end{equation*}
$$

as a variety over L, is irreducible and has dimension n with y_{1}, \ldots, y_{n} forming a transcendence basis for the function field $L(X)$ over L.

Then every $p=(\boldsymbol{a}, \boldsymbol{b}) \in X$ with the n-tuple $\boldsymbol{b} \in L^{n}$ being algebraically independent over K is a K-generic point of X.

Proof. Let the ideal $I_{p} \subseteq K[\boldsymbol{x}, \boldsymbol{y}]$ consist of those polynomials over K that vanish on p. Let

$$
Z:=V_{L}\left(I_{p}\right)=\left\{(\boldsymbol{x}, \boldsymbol{y}) \in L^{m+n} \mid \forall f \in I_{p} f(\boldsymbol{x}, \boldsymbol{y})=0\right\}
$$

As $\mathcal{P} \subseteq I_{p}$, we trivially have that $Z \subseteq X$. We have to show that $Z=X$, which by the definition of $Z=V_{L}\left(I_{p}\right)$ will give the required result (namely, that every $f \in I_{p}$ vanishes on X).

Let $Z=Z_{1} \cup \ldots \cup Z_{t}$ be a decomposition of Z into irreducible varieties ([12, Theorem 6.4]).

Suppose first that there is $i \in[t]$ such that the n-tuple \boldsymbol{y}, with each y_{j} viewed as an element of the function field $L\left(Z_{i}\right)$, is algebraically independent over L. This means that the dimension of the irreducible variety $Z_{i} \subseteq L^{m+n}$ is at least n. Recall that $Z_{i} \subseteq Z \subseteq X$. By the definition of the dimension via nested chains of irreducible subvarieties (that is, by (8.3)), we cannot have $Z_{i} \subsetneq X$ for otherwise any chain for Z_{i} extends to a strictly larger chain for X which gives that $\operatorname{dim} X-1 \geqslant \operatorname{dim} Z_{i} \geqslant n$, contradicting our assumption. Thus $Z_{i}=Z=X$, as desired.

Thus we can assume that for every $i \in[t]$ there is a non-zero $g_{i} \in L[\boldsymbol{y}] \cap I\left(Z_{i}\right)$. Since $Z=\cup_{i=1}^{t} Z_{i}$, we have by [12, Proposition 3.12] that $I(Z)=\cap_{i=1}^{t} I\left(Z_{i}\right)$. (Recall that, for example, the ideal $I(Z)$ of $Z \subseteq L^{m+n}$ consists of those $p \in L[\boldsymbol{x}, \boldsymbol{y}]$ that vanish on Z.) Thus the product $g_{1} \ldots g_{t} \in L[\boldsymbol{y}]$, which trivially belongs to each $I\left(Z_{i}\right)$, also belongs to $I(Z)$.

Let I_{p}^{L} be the ideal in $L[\boldsymbol{x}, \boldsymbol{y}]$ generated by $I_{p} \subseteq K[\boldsymbol{x}, \boldsymbol{y}] \subseteq L[\boldsymbol{x}, \boldsymbol{y}]$. In other words,

$$
I_{p}^{L}:=\left\{\sum_{i=1}^{m} h_{i}(\boldsymbol{x}, \boldsymbol{y}) f_{i}(\boldsymbol{x}, \boldsymbol{y}) \mid m \geqslant 0, h_{1}, \ldots, h_{m} \in L[\boldsymbol{x}, \boldsymbol{y}], f_{1}, \ldots, f_{m} \in I_{p}\right\}
$$

from which it easily follows that $V_{L}\left(I_{p}^{L}\right)=V_{L}\left(I_{p}\right)=Z$. Since L is algebraically closed, we have by Hilbert's Nullstellensatz ([12, Theorem 7.3]) that $I(Z)$ is equal to

$$
\sqrt{I_{p}^{L}}:=\left\{f \in L[\boldsymbol{x}, \boldsymbol{y}] \mid \exists N f^{N} \in I_{p}^{L}\right\}
$$

the radical of I_{p}^{L}. Thus there is some integer $N \geqslant 1$ such that $g:=\left(g_{1} \ldots g_{t}\right)^{N}$ belongs to I_{p}^{L}.

In other words, we have shown that I_{p}^{L} contains a non-zero polynomial g that does not depend on \boldsymbol{x}, that is,

$$
\begin{equation*}
I_{p}^{L} \cap L[\boldsymbol{y}] \neq\{0\} \tag{8.10}
\end{equation*}
$$

We claim that, in fact, $I_{p} \cap K[\boldsymbol{y}] \neq\{0\}$. In order to show this, we analyse how a known algorithm for eliminating variables works, arguing that we can run two instances of the algorithm, one for $I_{p}^{L} \cap L[\boldsymbol{y}]$ and the other for $I_{p} \cap K[\boldsymbol{y}]$, to produce the same generating set of polynomials in each case.

Since all following steps are fairly standard, we will be rather brief, referring the reader to [12] for a detailed exposition. First, by the Hilbert Basis Theorem ([12, Corollary 2.22]), there is a finite set $\mathcal{F} \subseteq K[\boldsymbol{x}, \boldsymbol{y}]$ that generates I_{p}. Of course, the same set \mathcal{F}, as a subset of $L[\boldsymbol{x}, \boldsymbol{y}]$, generates I_{p}^{L}. We fix any monomial order $<$ for $(\boldsymbol{x}, \boldsymbol{y})$ which is an elimination order for \boldsymbol{x} ([12, Definition 4.6]) and apply Buchberger's algorithm ([12, Corollary 2.29]) to find a <-Gröbner basis \mathcal{G} for I_{p}^{L} using \mathcal{F} as its input. At a very low level, each step of the algorithm is to pick some two previous non-zero polynomials h_{1} and h_{2}, take the coefficients c_{1} and c_{2} at their <highest monomials and add $h_{1}-\left(c_{1} / c_{2}\right) h h_{2}$ for some monomial h to the current pool of polynomials. Thus all encountered polynomials have coefficients in K; in particular, the obtained Gröbner basis \mathcal{G} is a subset of $K[\boldsymbol{x}, \boldsymbol{y}]$. By the Elimination Theorem ([12, Theorem 4.8]) and our choice of the monomial order $<$, the ideal $I_{p}^{L} \cap L[\boldsymbol{y}]$ is generated by $\mathcal{G} \cap L[\boldsymbol{y}]$, that is, by those polynomials in \mathcal{G} that do not depend on \boldsymbol{x}. Moreover, if we apply Buchberger's algorithm to find the intersection of $I_{p}=\langle\mathcal{F}\rangle \subseteq K[\boldsymbol{x}, \boldsymbol{y}]$ and $K[\boldsymbol{y}]$, we obtain the very same generating set $\mathcal{G} \cap K[\boldsymbol{y}]$ (because the choice of h_{1}, h_{2} and h at each low-level step of the algorithm depends only on the <-highest monomials of the previous polynomials).

However, we know that $I_{p} \cap K[\boldsymbol{y}]=\{0\}$ because no non-zero polynomial in $K[\boldsymbol{y}]$ can vanish on p by our assumption that \boldsymbol{y} is algebraically independent over K. Thus $\mathcal{G} \cap L[\boldsymbol{y}]=\mathcal{G} \cap K[\boldsymbol{y}]$ can contain only the zero polynomial. This means that $I_{p}^{L} \cap$ $L[\boldsymbol{y}]=\{0\}$, contradicting (8.10) and proving the lemma.

Now we are ready to prove Lemma 1.4 that gives an alternative characterisation of \mathbb{Q}-generic points of $\mathrm{SO}(d)^{r}$.

Proof of Lemma 1.4. As before, the $m:=\binom{d}{2} r$ upper entries of $\mathrm{SO}(d)^{r} \subseteq \mathbb{R}^{d^{2} r}$ come at the end and if we write an element of $K^{d^{2} r}$ as $(\boldsymbol{x}, \boldsymbol{y})$ then \boldsymbol{y} corresponds to the m upper entries.

The forward implication of the lemma is easy. Take any $(\boldsymbol{a}, \boldsymbol{b}) \in S O(d ; \mathbb{R})^{r}$ such that $f(\boldsymbol{b})=0$ for some non-zero polynomial f with rational coefficients. Take any vector $\boldsymbol{b}^{\prime} \in \mathbb{R}^{m}$ whose L^{∞}-norm is at most the expression in (8.7) with entries algebraically independent over \mathbb{Q}. By Claim 8.3, there is a choice of a real vector \boldsymbol{a}^{\prime} with $\left(\boldsymbol{a}^{\prime}, \boldsymbol{b}^{\prime}\right) \in \mathrm{SO}(d)^{r}$, that is, we can extent the vector \boldsymbol{b}^{\prime} of upper entries to an r-tuple of real special orthogonal matrices. Since the polynomial f with rational coefficients
cannot vanish on \boldsymbol{b}^{\prime}, the polynomial map $(\boldsymbol{x}, \boldsymbol{y}) \mapsto f(\boldsymbol{y})$ shows that $(\boldsymbol{a}, \boldsymbol{b})$ is not a generic point.

Let us show the converse implication. Let $(\boldsymbol{a}, \boldsymbol{b}) \in S O(d ; \mathbb{R})^{r}$ be any point with the m-tuple $\boldsymbol{b} \in \mathbb{R}^{m}$ of reals being algebraically independent over \mathbb{Q}.

By Lemma 8.2 , the complex variety $X:=\mathrm{SO}(d ; \mathbb{C})^{r} \subseteq \mathbb{C}^{d^{2} r}$ is irreducible and the upper coordinates \boldsymbol{y} form a transcendence basis for the function field $\mathbb{C}(X)$. Now, Lemma 8.4 (which requires that the field L is algebraically closed) applies with $K:=\mathbb{Q}, L:=\mathbb{C}$ and $\mathcal{P} \subseteq \mathbb{Q}[\boldsymbol{x}, \boldsymbol{y}]$ consisting of the polynomials that define the variety $\mathrm{SO}(d ; \mathbb{R})^{r}$ (with the ones in (8.4) corresponding to the case $r=1$). The lemma gives that $(\boldsymbol{a}, \boldsymbol{b}) \in \mathrm{SO}(d ; \mathbb{R})^{r} \subseteq \mathrm{SO}(d ; \mathbb{C})^{r}$ is a \mathbb{Q}-generic point of $\mathrm{SO}(d ; \mathbb{C})^{r}$. Of course, this trivially implies that $(\boldsymbol{a}, \boldsymbol{b})$ is a \mathbb{Q}-generic point also of $\operatorname{SO}(d ; \mathbb{R})^{r}$ (as every polynomial $p \in \mathbb{Q}[\boldsymbol{x}, \boldsymbol{y}]$ that vanishes on $(\boldsymbol{a}, \boldsymbol{b})$ has to vanish on $\operatorname{SO}(d ; \mathbb{C})^{r} \supseteq$ $\left.\mathrm{SO}(d ; \mathbb{R})^{r}\right)$, as desired.

This finishes the proof of Lemma 1.4.

Acknowledgements. The authors would like to thank Miles Reid for the very useful discussions and for sharing his proof of some initial version of Lemma 8.4. Also, the authors thank the anonymous referee for helpful comments.

Funding. Clinton T. Conley was supported by NSF Grant DMS-1855579. Jan Grebík was supported by Leverhulme Research Project Grant RPG-2018-424. Oleg Pikhurko was supported by ERC Advanced Grant 101020255 and Leverhulme Research Project Grant RPG-2018-424.

References

[1] S. Basu, R. Pollack and M.-F. Roy, Algorithms in real algebraic geometry. Second edn., Algorithms and Computation in Mathematics 10, Springer-Verlag, Berlin, 2006.
[2] M. Bois and D. Laksov, An introduction to algebra and geometry via matrix groups. 2008, lecture notes, KTH, 146pp.
[3] A. Borel, On free subgroups of semisimple groups. Enseign. Math. (2) 29 (1983), 151164.
[4] C. T. Conley, A. S. Marks and S. T. Unger, Measurable realizations of abstract systems of congruences. Forum of Math., Sigma 8 (2020), e10, 24pp.
[5] S. D. Cutkosky, Introduction to algebraic geometry. Graduate Studies in Mathematics 188, American Mathematical Society, Providence, RI, 2018.
[6] T. J. Dekker, Decompositions of sets and spaces. I, II. Indag. Math. 18 (1956), 581-589, 590-595.
[7] T. J. Dekker, Paradoxical decompositions of sets and spaces. 1958, academisch Proefschrift, Amsterdam: van Soest.
[8] P. Deligne and D. Sullivan, Division algebras and the Hausdorff-Banach-Tarski paradox. Enseign. Math. (2) 29 (1983), 145-150.
[9] J. Grebík, R. Greenfeld, V. Rozhoň and T. Tao, Measurable tilings by abelian group actions. 2022, e-print arxiv:2203.01511.
[10] H. Groemer, Geometric applications of Fourier series and spherical harmonics. Encyclopedia of Mathematics and its Applications 61, Cambridge Univ. Press, 1996.
[11] B. Grünbaum, Convex polytopes. Second edn., Graduate Texts in Mathematics 221, Springer-Verlag, New York, 2003.
[12] B. Hassett, Introduction to algebraic geometry. Cambridge University Press, Cambridge, 2007.
[13] F. Hausdorff, Bemerkung über den Inhalt von Punktmengen. Math. Ann. 75 (1914), 428-433.
[14] R. A. Horn and C. R. Johnson, Matrix analysis. Second edn., Cambridge Univ. Press, 2013.
[15] A. S. Kechris, Classical descriptive set theory. Graduate Texts in Mathematics 156, Springer-Verlag, New York, 1995.
[16] A. S. Kechris and A. S. Marks, Descriptive graph combinatorics. 2020, manuscript, 139 pp , available at http://www.math.caltech.edu/~kechris/papers/combinatorics20book.pdf.
[17] A. W. Knapp, Lie groups beyond an introduction. Second edn., Progress in Mathematics 140, Birkhäuser Boston, Inc., Boston, MA, 2002.
[18] J. Mycielski, On the paradox of the sphere. Fund. Math. 42 (1955), 348-355.
[19] J. Mycielski, On the decomposition of a segment into congruent sets and related problems. Colloq. Math. 5 (1957), 24-27.
[20] J. Mycielski, Problem 166. Colloq. Math. 5 (1957), 240.
[21] O. Pikhurko, Borel combinatorics of locally finite graphs. In Surveys in combinatorics, edited by K. K. Dabrowski et al., pp. 267-319, London Math. Soc. Lecture Notes Ser. 470, Cambridge Univ. Press, 2021.
[22] R. M. Robinson, On the decomposition of spheres. Fund. Math. 34 (1947), 246-260.
[23] G. Tomкowicz and S. Wagon, The Banach-Tarski paradox. 2d edn., Cambridge University Press, 2016.
[24] S. Wagon, The Banach-Tarski paradox. Cambridge University Press, Cambridge, 1993.
[25] S. H. Weintraub, Fundamentals of algebraic topology. Graduate Texts in Mathematics 270, Springer, New York, 2014.

Clinton T. Conley, Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Jan Grebík, Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK Oleg Pikhurko, Mathematics Institute and DIMAP, University of Warwick, Coventry CV4 7AL, UK

