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Equivariant analytical mapping of first principles
Hamiltonians to accurate and transferable materials models
Liwei Zhang 1, Berk Onat2, Geneviève Dusson3, Adam McSloy2, G. Anand 4, Reinhard J. Maurer5, Christoph Ortner1 and
James R. Kermode 2✉

We propose a scheme to construct predictive models for Hamiltonian matrices in atomic orbital representation from ab initio data
as a function of atomic and bond environments. The scheme goes beyond conventional tight binding descriptions as it represents
the ab initio model to full order, rather than in two-centre or three-centre approximations. We achieve this by introducing an
extension to the atomic cluster expansion (ACE) descriptor that represents Hamiltonian matrix blocks that transform equivariantly
with respect to the full rotation group. The approach produces analytical linear models for the Hamiltonian and overlap matrices.
Through an application to aluminium, we demonstrate that it is possible to train models from a handful of structures computed
with density functional theory, and apply them to produce accurate predictions for the electronic structure. The model generalises
well and is able to predict defects accurately from only bulk training data.
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INTRODUCTION
The availability of accurate and highly efficient interatomic
potentials is crucial for the atomistic simulation of materials
phenomena with intrinsic length and time scales inaccessible to
first principles electronic structure theory. Examples in materials
science include failure processes such as crack propagation1 and
chemical dynamics at reactive surfaces2. The advent of machine-
learning-based interatomic potentials (MLIPs) has meant that high-
fidelity interatomic potentials based on Kohn–Sham density
functional theory (KS-DFT) and beyond have become much more
widely available3–5. Yet, the effort to generate MLIPs that are both
transferable and accurate is still significant and heavily depends on
the configurational space spanned by the underlying training data
set6. Very few MLIPs have been reported that are able to capture
different materials phases, surface terminations, and the effects of
complex defects on the stability and structure of the material5,7,8.
More importantly, MLIPs and conventional interatomic poten-

tials fundamentally neglect explicit electronic degrees of freedom
of molecules and materials thereby removing access to the
simulation of observables beyond structure and stability, such as
electric conductivity and optical response, which depend on the
electronic subsystem and electron–phonon coupling. While the
ability to predict optical and electronic properties is desirable, the
inclusion of electronic degrees of freedom will likely also benefit
the transferability of MLIPs.
For decades, semi-empirical and tight-binding (TB) models of

electronic structure have sought to combine the efficiency of
interatomic potentials with the explicit description of electrons. A
plethora of approaches based on two-centre and three-centre
integral approximations have led to established method frame-
works such as the AM1 and PM3 methods9,10, the density
functional tight-binding (DFTB) method11,12, the Sankey–Niklewski
approach as implemented in the FIREBALL code13,14, and the xTB
approach15. Unfortunately, the rigid mathematical form of the

integral tabulations in most approaches means that TB parame-
trizations are limited in accuracy and often do not transfer beyond
the materials classes for which they were originally intended.
As ML methods make inroads across a diverse range of molecular

simulation workflows16, approaches beyond MLIPs are being
pursued that incorporate electronic properties. For molecules, Li
et al. have proposed a neural-network-based parametrization
pipeline for DFTB17, while Stoehr et al. have proposed deep tensor
neural networks (DTNNs) to construct beyond-pairwise repulsion
potentials18. Qiao et al. have shown that the use of symmetry-
adapted atomic-orbital features can significantly improve transfer-
ability and prediction accuracy of molecular stability19.
In the realm of condensed phase materials, the automated

construction of tight-binding models from ab initio data has been a
topic of great interest as it can benefit high-throughput materials
screening studies20. Most commonly, electronic structure simulations
of materials are performed in non-atom-centred basis representa-
tions such as the pseudopotential plane wave framework, which is
not easily amenable to the construction of TB models. TB
Hamiltonians are typically constructed via transformation into a
maximally localised Wannier function representation21, which
provides a compact atom-centred basis representation with local
support22. It is also possible to fit Slater–Koster parameters directly to
DFT calculations in a data-driven fashion23,24. Materials simulations in
atom-centred orbital representations as provided by, for example,
the FHI-aims code25 are becoming more common, where Wannier-
ization is not necessary and the basis representation provided by the
code is directly amenable to machine learning approaches based on
local representations of atomic neighbourhoods6. Examples of such
representations include Behler–Parinello symmetry functions3,26, the
SOAP descriptor27 or the atomic cluster expansion28,29. First efforts of
direct machine learning prediction of electronic structure have been
reported in literature. For example, SchNOrb30 is a DTNN representa-
tion of molecular mean-field electronic structure Hamiltonians, which
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has been used to predict Hamiltonians in local atomic orbital and
optimised effective minimal basis representations for organic
molecules including up to 13 heavy atoms30,31. Hedge and Bowen32

employed Kernel ridge regression with a bispectrum representation33

for an analytical representation of a minimal basis DFT Hamiltonian
for bulk copper and diamond. Equivariant parameterisations for
molecular systems along similar lines to what we describe here have
been reported, learning either from the Hamiltonian34 or from
wavefunctions and electronic densities35. These works apply linear or
nonlinear equivariant models, respectively, to the MD17 molecular
dataset, both of which improve on the non-equivariant SchNOrb
approach of ref. 30. However, to our knowledge, the present work is
the first to address the specific challenges of learning Hamiltonians in
solid state systems.
In this work, we present a completely data-driven approach to

analytical model construction based on ab initio electronic
structure theory. The model is able to faithfully represent
electronic structure as a function of atomic configuration and
materials composition in nonorthogonal local atomic orbital
representation via the Hamiltonian and overlap matrices. This
goes beyond conventional TB descriptions as it represents DFT to
full order, rather than in two-centre or three-centre approxima-
tions. We achieve this by introducing an ACE descriptor to
represent intraatomic onsite and interatomic offsite blocks of
Hamiltonian and overlap matrices that transform equivariantly
with respect to the full rotation group in three dimensions. This
equivariant descriptor is integrated in an automated data-driven
workflow that enables rapid parameterisation of environment
dependent TB models directly from DFT data as illustrated in
Fig. 1. We showcase the capabilities of this approach by predicting
the band structure of bulk aluminium in different crystal systems.

RESULTS
In most electronic structure calculations the ground state of a
system is obtained by solving an eigenvalue problem

Ĥψi ¼ ϵiψi; i ¼ 1; 2; � � � (1)

where

Ĥ ¼ � 1
2
∇2 þ Veff : (2)

For example, in the widely used Kohn–Sham DFT model,

Veff ¼ Veff ½ρ�; where (3)

ρ ¼
X
i

f i jψij2; (4)

and fi is the occupancy of electronic eigenstate i with wave
function ψi; i.e., (1) becomes a nonlinear eigenvalue problem,
which is extremely computationally demanding and is usually
solved by employing a self-consistent field (SCF) algorithm36,37.
In this paper, we are concerned with finding an analytical

representation of a self-consistent Hamiltonian operator Ĥ ¼
� 1

2∇
2 þ Veff in discrete basis representation.

Hamiltonians for extended materials in atomic orbital basis
representation
To achieve a finite basis representation, we expand the wave
functions ψi in a local nonorthogonal atom-centred basis
representation

χaðxÞ ¼ RnlðrÞYlmðθ;ϕÞ (5)

where a= (n, l,m; I) is a composite index, and the spatial
electron coordinate x and its components r, θ, and ϕ in
centrosymmetric coordinates around the atom I are used. Ylm
are spherical harmonics that define the angular dependence,

and n ¼ 0; ¼ ; nmax, l ¼ 0; ¼ ; lmax, m ¼ �lmax; ¼ ; lmax charac-
terise the radial and angular nodal structure of the atomic
orbital. The choice of Rnl(r) varies between different types of
atomic orbital basis representations and can involve linear
combinations (contractions) of Gaussian functions or numeri-
cally tabulated functions. Here we choose the latter as defined in
the numeric atom-centred orbital (NAO) basis employed in the
FHI-aims code25, with the onsite and offsite block structure as
illustrated in Fig. 2. With this definition, we can express the
overlap between basis functions and the interactions as
mediated by the Hamiltonian as follows:

Hab ¼ χajĤjχb
� �

and (6)

Sab ¼ χajχbh i: (7)

Given a crystal-periodic structure R ¼ fLκ ; rI; ZIgI specified
through a set of lattice vectors Lκ=1,2,3, atom positions rI and
chemical species ZI, we must consider periodic boundary
conditions. As such, a Hamiltonian defined over the whole crystal
volume reduces to a block diagonal Hamiltonian where each block
corresponds to a vector k in reciprocal space, which can be solved
via an independent generalised eigenvalue problem:

HðkÞψik ¼ ϵikSðkÞψik ; i ¼ 1; 2; ¼ ; (8)

where ψik are Bloch wave functions and H(k) and S(k) are
Hamiltonian and overlap matrices defined in terms of a discrete
crystal-periodic basis. In the Methods section IV D, we show how
H(k) and S(k) can be constructed at arbitrary points k in reciprocal
space from real-space representations of Hamiltonian and overlap
matrices that span the full crystal volume (typically considered
within a certain radius around the central unit cell). As the k-
dependent matrices and the solution of the set of generalised
eigenvalues completely follow from the real-space H and S in Eqs.
(6) and (7), we will go on to develop a representation for those
two matrix quantities as a function of the structure R.
Recall that Ĥ ¼ � 1

2∇
2 þ Veff . The effective potential Veff is not

only a function of the spatial electron coordinate x but also of the
entire atomic structure, i.e., one should think of

Veff ¼ Veffðx;RÞ: (9)

For example, in KS-DFT, this dependence arises due to the
dependence of Veff on the self-consistent electron density. Our aim
will be to construct a general regression scheme for the discretised
Hamiltonian exploiting three fundamental, general properties of Ĥ
and in particular Veff: (i) near-sightedness of electronic structure; (ii)
smoothness under changes in the atomic structure; and (iii)
equivariance of the Hamiltonian. We will discuss in the next section
how these properties are to be exploited in the parameterisation.
In preparation, we first make (iii) more precise: let Q∈O(3) denote

an isometry (rotation and reflection) and QR ¼ fLκ ;QrI; ZIgI (where
we also rotate the cell). Further, let HIJ=HIJ(R) denote the
Hamiltonian block corresponding to interactions between orbitals
centred at sites I and J. It is then straightforward to deduce that

HIJðQRÞ ¼ DðQÞ�HIJðRÞDðQÞ; (10)

where D(Q) is a block-Wigner-D matrix,

DðQÞ ¼ DiagðDl1ðQÞ;Dl2ðQÞ; � � � Þ; (11)

and (l1, l2,… ) specify the types of orbitals at each site. More details
can be found in the “Methods” section “Equivariance of HIJ”. Since the
focus of the present work is on elemental metallic systems we ignore
chemical species information entirely in the present work; this will be
addressed in the future either directly as is done for ACE interatomic
potentials38 or using compressed species information39,40.
Crucially, there are only two distinct functional relationships

that must be “learned” in order to represent the entire
Hamiltonian: one for off-site blocks that represent interactions
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Fig. 1 Schematic of the ACEhamiltonians (atomic cluster expansion for Hamiltonians) workflow. The upper panel shows data generation
with the FHI-aims electronic structure theory code, the central panel model fitting with the ACE.jl and ACEhamiltonians.jl packages,
and the lower panel prediction.

Fig. 2 Block structure and atomic orbital subblocks in the Hamiltonian and overlap matrices used in our models. Each block within panel
a is a 14 × 14 matrix with the atomic orbital structure HIJ shown in panel (b). Blocks coloured green in a are onsite blocks, while those shown in
purple are offsite blocks. Note that the onsite HII are self-adjoint and hence, e.g., only one of the ps and sp blocks needs to be fitted.

L. Zhang et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022)   158 



between orbitals centred at two different atoms and one for on-
site blocks representing interactions of orbitals at the same
atom. More precisely, the translation invariance and permuta-
tion equivariance of the Hamiltonian imply that

HII ¼ HonðRIÞ; and

HIJ ¼ HoffðRIJÞ;
(12)

where RI denotes the atomic environment of atom I and RIJ the
bond environment of (multiple) bonds between the two atoms i, j
which also contains the position of bonds. These environments
are defined as follows:

RI :¼ rIK j K ≠ If g; and
RIJ :¼ rIJ; frK � 1

2 ðrI þ rJÞ j K ≠ I; Jg� �
;

(13)

where rIJ= rI − rJ. In the above definitions, the index K runs over
all unit cells N within the crystal volume. According to Eq. (10) the
functions Hon and Hoff are equivariant in the sense that

Hon=offðQRÞ ¼ DðQÞ�Hon=offðRÞDðQÞ: (14)

Translation invariance is now built into the dependence of
Hon/off on relative positions only, while permutation equivariance
of H is built into Eq. (12).
Several simplifications apply for the treatment of the overlap

matrix. For each atom we choose a set of basis functions χ that are
orthogonal, which means that the on-site blocks SII are identity
matrices. The off-site blocks follow the same symmetry as the
Hamiltonian off-site blocks.

Parameterisation
We parameterise the real-space Hamiltonian and overlap matrix
blocks Hon, Hoff and Soff using an equivariant ACE basis28,29,41.
Similar techniques have previously been proposed in other
contexts34,40,42. In this section, we present a general outline of
the ideas, making certain choices of approximation parameters
concrete in the “Methods” section “Parameter estimation”.
We denote the parameterised Hamiltonian and overlap by ~H; ~S.

For the sake of simplicity we focus the presentation on ~H and
remark on the relevant modification for ~S at the end. All
procedures are straightforward to generalise for multiple species
with the only effect being an increased number of ~H and ~S blocks
that have to be considered as element combinations increase. In
the present case, ~Hon is invariant under permutations of RI and
~Hoff is invariant under permutations of RIJ. Both can therefore be
parameterised by the ACE model. Here, we closely follow the
procedures introduced in refs. 29,38,41.

1. Parameterisation of Hon. We start by choosing a one-particle basis,

ϕvðxÞ :¼ ϕon
nlmðxÞ :¼ PnlðrÞYlmðx̂Þf cutðrÞ (15)

where x ¼ rx̂ and we have identified the composite index
v ≡ (nlm). The radial cutoff or envelope function fcut(r) ensures
that only interactions of nearby atoms are taken into account,
exploiting the near-sightedness of electronic structure.
Given the one-particle basis we can form the density

projection and projected ν-correlations (product basis),

AI
v :¼

X
J≠I

ϕvðrIJÞ; (16)

AI
v :¼

Yν
t¼1

AIvt for v ¼ ðv1; ¼ ; vνÞ; ν ¼ 1; 2; ¼ : (17)

The AI
v form a complete basis of permutation-invariant (PI)

polynomials, hence we can approximate

HII ¼ HonðRIÞ � ~H
PI
onðRIÞ ¼

X
v

CvAI
v; (18)

where AI
v are scalar and the parameters Cv ¼ ðCα1α2

v ÞNorb
α1;α2¼1 have

the same dimensionality as HII i.e., Norb × Norb (recall that HII

denotes the onsite Hamiltonian block corresponding to orbitals
centred at atom I). The summation over v will be restricted to a
finite set, the choice of which is a crucial aspect of the model
accuracy; cf. in the section “Parameter estimation”.
The expansion (18) incorporates translation and permutation

invariance but not yet the O(3)-equivariance (10). Following the
general ACE construction29 we can achieve this by simply
averaging the representation over the group O(3), i.e.,

~HonðRIÞ ¼ ��
Z

Oð3Þ
DðQÞ~HPI

onðQRIÞDðQÞ�dQ; (19)

In step 4. we will review how this integration is explicitly resolved.

2. Parameterisation of Hoff. The procedure for parameterising Hoff is
similar to that of Hon, the main difference being that the presence of
a bond rather than a site changes the permutation-invariance.
Specifically, we now need to define one-particle basis functions for
the bond variable and for the environment variables

ϕb
nlmðrIJÞ ¼ PbnlðrIJÞYlmðr̂IJÞf bcutðrIJÞ;

ϕe
nlmðrIJ;KÞ ¼ PenlðrIJ;KÞYlmðr̂IJ;KÞf ecutðrIJ;K ; rIJÞ:

(20)

where rIJ ¼ rIJ r̂IJ and rIJ;K :¼ rK � 1
2 ðrI þ rJÞ. Note in particular

that the cutoff function for the environment, f ecut, no longer
depends only on the radius but may be more general: we
require only that f ecutðrIJ;K ; rIJÞ is invariant under joint rotation of
both arguments which allows, e.g., ellipsoidal or cylindrical
cutoff geometries.
The density projection for the bond environment RIJ is now

given by

AIJ
v :¼

X
K≠I;J

ϕe
vðrIJ;KÞ; (21)

and the product basis becomes

AIJ
v :¼ ϕb

v0ðrIJÞ �
Yν
t¼1

AIJ
vt ; (22)

for v= (v0, v1,…, vν), with ν= 0, 1, 2,… the correlation order of the
bond environment. As in the on-site case, the AIJ

v form a complete
basis of polynomials that are invariant under permutations of RIJ
and we may therefore approximate

HIJ ¼ Hoff � ~H
PI
offðRIJÞ :¼

X
v

CvAIJ
v : (23)

which we finally symmetrise to obtain also the O(3)-equivariance,

~HoffðRIJÞ :¼ ��
Z

Oð3Þ
DðQÞ~HPI

offðQRIJÞDðQÞ�dQ: (24)

3. Parameterisation of Soff. The environment-dependence of Hoff

enters only through the effective potential Veff which is not
present in the overlap matrix definition. Therefore, we simply
parameterise Soff by

~SoffðrIJÞ :¼ ��
Z

Oð3Þ
DðQÞ

X
v

Cvϕ
b
v ðQrIJÞ

" #
DðQÞ� dQ: (25)

This is formally equivalent to a Slater Koster representation of
two-centre integrals43, which is exact in the case of the overlap.
For our ACE parameterisation, this means that we only need to
use correlation order ν= 0, i.e. no environment-dependence of
the bond integral needs to be considered.

Recursive symmetrisation. In all three cases ~Hon; ~Hoff ; ~Soff we have
reduced the parameterisation to an integral over the symmetry
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group O(3), i.e.,

~KðR�Þ ¼ ��
Z

Oð3Þ
DðQÞ

X
v

CvA�vðQR�Þ
" #

DðQÞ�; (26)

where ~K denotes one of the three model components
~Hon; ~Hoff ; ~Soff and R• denotes an atom environment RI or bond
environment RIJ. In particular, for off-site overlap Soff,

AIJ
v ðRIJÞ ¼ ϕb

v ðrIJÞ: (27)

In order to make our description clearer, we denote v≡ nlm with
n, l, m being the lists of corresponding indices in AIJ

v . Thus, we can
deduce that

A�nlmðQR�Þ ¼
X
μ

Dl
μmðQÞA�nlμðR�Þ; (28)

where Dl
μmðQÞ ¼

Q
tD

lt
μtmt
ðQÞ since the angular dependence of the

one-particle basis functions in all cases is in terms of spherical
harmonics Ylm. Furthermore, we write

Cv ¼
XNorb

α;β¼1
cαβv Eαβ; (29)

where Eαβ 2 RNorb ´Norb with Eαβ
α0β0 ¼ δαα0δββ0 . Inserting these two

identities into Eq. (26) yields

~KðR�Þ ¼
P

n;l;m;α;β

cαβv
P
μ
Uαβ
lμmA

�
nlμðR�Þ

¼: P
n;l;m;α;β

cαβnlmBαβnlmðR�Þ;
(30)

where the “generalised coupling coefficients” are given by

Uαβ
lμm ¼ ��

Z
Oð3Þ

Dl
μmðQÞDðQÞEαβDðQÞ�dQ: (31)

Their definition involves an integral over products of Wigner-D
matrices which can be precomputed explicitly (i.e., without the
need for quadrature which would incur a discretisation error)
using the recursion proposed by Dusson et al. 29 and indepen-
dently by Nigam et al. 34.
Note that Eq. (30) parameterises ~K in terms of the scalar

parameters cαβv , while the basis functions are now matrix-valued

BαβnlmðR�Þ ¼
X
μ

Uαβ
lμmA

�
nlμðR�Þ: (32)

Since the coupling coefficients U are extremely sparse, the
operation to obtain B from A• is relatively cheap.
Due to the coupling, the basis Bαβnlm is normally overcomplete.

This linear dependence arises exactly within fixed nl blocks. In a
straightforward adaption of the general procedures outlined by
Dusson et al. 29 we use elementary linear algebra techniques to
reduce the basis in a block-by-block fashion by constructing
reduced coupling coefficients Unl

kμ and defining

BnlkðR�Þ :¼
X
μ

Unl
kμA
�
nlμðR�Þ: (33)

In summary, after dropping the detailed multi-index notation
and replacing it with a simple enumeration of the basis, we obtain
linear models for

~Hon :¼ con � Bon; (34)

~Hoff :¼ coff � ~Boff ; (35)

~Soff :¼ cS � ~BS; (36)

all of which inherit exactly the translation and permutation
invariance as well as O(3)-equivariance of Hon, Hoff, Soff. In the limit
of infinite basis size and infinite cutoff radius these models can (in

principle) be converged to within arbitrary accuracy. In this sense,
they are universal. After imposing the symmetries outlined above
we still need to ensure self-adjointness of the assembled
Hamiltonian and overlap operators which we achieve by simply
substituting ~H  1

2 ð~H þ ~H
�Þ, and analogously for the overlap.

Validation
We generated DFT data for FCC and BCC aluminium, and followed
the procedure outlined above to construct ACE models for the
Hamiltonian and overlap using several choices of basis sets. Full
details of data generation, parameter estimation and prediction
procedures are given in the “Methods” section.
The ACE basis sets need to be carefully chosen for a particular

application. The larger the basis, the higher the achievable
accuracy, but larger basis sets also carry a risk of loss of
transferability through overfitting.
Each basis set is defined by three parameters: the correlation

order ν and the maximum polynomial degrees nmax; lmax used in
both the radial basis functions Pnl(r) and the angular basis function
Ylmðx̂Þ of Eqs. (15) and (20). In all our tests, the polynomial degrees
are truncated in the manner of total degree, i.e., we let nþ l �
dmax for a given dmax.
For the onsite models, the body order is one more than the

correlation order, i.e. ν= 1 corresponds to two body and ν= 2 to
three body, while for the offsite models the body order is two
more than the correlation order (since each term in the body
order expansion depends on the bond in addition to ν particles
from the environment). The offsite model has further flexibility in
that one can choose different dmax for bond and environment, say,
dbmax and demax. To avoid overemphasising the impact of
environment, we set demax ¼ ddbmax=2e in our implementation.
We tested the accuracy of the fitted Hamiltonian and overlap

matrices using different choices of these basis set parameters. The
results are illustrated in Fig. 3. For the onsite blocks HII, we can
obtain accurate and transferable results for all sub-blocks with
correlation order ν= 2 (body order 3), with no significant
overfitting as can be seen from the close agreement of prediction
accuracies on the training and test datasets in Fig. 3a. The largest
errors are on the dd subblock, which also has the largest matrix
entries; the RMSE of ~10meV on this sub-block corresponds to a
~2% relative error.
For offsite blocks HIJ we considered models with correlation

orders of both ν= 1 (body order 3), Fig. 3b, and ν= 2 (body order
4), Fig. 3c. Both approaches show good convergence in the
accuracy of the training set as the maximum degree is increased.
However, for sub-blocks that include interaction with s orbitals, we
observe that overfitting occurs at lower degrees for the order 2
models than for the order 1 case. We speculate that this might
result from the higher order basis sets providing too much
flexibility for functions that have relatively simple functional
behaviour. Since s orbitals have no intrinsic rotational depen-
dence, all rotational equivariance behaviour in sp and sd sub-
blocks comes from how the p or d orbitals are positioned with
respect to the environment.
We find the correlation order 1 models provide sufficient

accuracy, in fact closely comparable to that of the order 2 models
on the training set, so to avoid issues of overfitting we use order 1
only for HIJ, and also limit the maximum polynomial degree for
individual sub-blocks as discussed in more detail in the section
“Cross-validation and model selection”.
As expected from the lack of environment dependence, the

offsite overlap SIJ is very well reproduced at correlation order 0
(body order 2), with a RMSE of 10−4. We do not observe any over-
fitting for the offsite overlap so we fixed the maximum polynomial
degree for SIJ at 16, the highest value we tried.
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Cross-validation and model selection
To eliminate overfitting we used the cross-validation results
illustrated in Fig. 3 to select a customised basis set for each sub-
block, as set out in Table 1. Note that the maximum polynomial
degree can be chosen for each individual sub-block model shown
in the schematic in Fig. 1, i.e. there are 9 ss models, 3 × 2= 6sp
models, and 2 × 2= 4pp models. For the 3 × 3= 9ss sub-blocks of
the offsite Hamiltonian we found it necessary to reduce the degree
only for the 3s−3s entry, which arises from the fact that the FHI-
aims basis set features two s orbitals in the valence shell of Al.
We used our optimised model to predict the Hamiltonian and

overlap for the FCC and BCC equilibrium crystal geometries. These
were not included in the training set, which comprises only
perturbed structures from molecular dynamics, so can be viewed
as a test of its transferability. The magnitudes and associated
errors in the onsite and one of the nearest-neighbour offsite
blocks of the Hamiltonian matrix are illustrated in Fig. 4 for the
FCC case; BCC results are of comparable accuracy. These results
demonstrate the correct equivariance of the predictions with
matrix entries, i.e. entries which should be zero by symmetry
being correctly captured. Comparing the upper and lower panels
also illustrates that the errors are always orders of magnitude
smaller than the corresponding magnitudes, ensuring that the
relative error is well controlled (typically ~ 1% or less).

Prediction of band structures and DoS
So far we have assessed only errors made on the quantities used
in fitting the models, i.e. the Hamiltonian and overlap matrix
elements. While it is reassuring that these are accurately captured,
a stronger test of the predictive power of our formulation is to use
it to predict electronic observables such as the band structure and
DoS. Figure 5 compares predictions of these quantities for FCC
and BCC aluminium with those computed from the reference FHI-
aims Hamiltonian and overlap matrices. There is excellent
agreement for all occupied bands, and also bands within 10 eV
of the Fermi level (which is itself in close agreement between the
reference and predicted systems). The DoS was integrated on a
dense 9 × 9 × 9k-point mesh and also shows excellent agreement

Table 1. ACE basis set parameters for our optimised models for HII, HIJ

and SIJ.

Onsite Hamiltonian HII

Correlation order ν 2

Cutoff radius rcut 10 Å

Maximum polynomial degree dmax 9

Regularisation λ 10−7

Offsite Hamiltonian HIJ

Correlation order ν 1

Bond cutoff radius rbcut 10 Å

Env. cutoff radius recut 5 Å

Env. cutoff radius zecut 5 Å

Maximum polynomial degree dbmax 14 14 14

ss 14 14 14

14 14 9

sp 14 14 12

14 14 10

sd 14 14 11

pp 13 13

13 13

pd 14 14

dd 14

Regularisation λ 10−7

Offsite overlap SIJ
Correlation order ν 0

Cutoff radius rcut 10 Å

Maximum polynomial degree dmax 16

Regularisation λ 10−7

Maximum polynomial degree can be specified independently for each
component model shown in Fig. 2. The maximum polynomial degrees for
the adjoint blocks ps, ds and dp of HIJ are the transposes of those shown for
sp, sd and pd, respectively.

Fig. 3 Convergence of Hamiltonian and overlap blocks with respect to the order and maximum degree of the ACE basis set. a Onsite
Hamiltonian blocks HII fitted with order 2 models of varying maximum degree. b Offsite Hamiltonian blocks with order 1 ACE models. c Offsite
Hamiltonian blocks with order 2 ACE models. In all plots solid lines show errors on training data and dashed lines errors on test data. Colours
match the block structure of Fig. 2. Note the distinct markers that distinguish the non-adjoint entries in the offsite Hamiltonian and overlap blocks.
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for the occupied states for both FCC and BCC, with significant
errors only arising well above the Fermi level, giving confidence in
the ability of our model to predict electronic observables.
The figure also shows confidence intervals for the predicted

band structures. These have been estimated to leading order
using a simple a priori error analysis to propagate errors in the
Hamiltonian ΔH ¼ ~H � H and overlap ΔS ¼ ~S� S to expected
errors in the bands using the result44

~ϵ� ϵ 	 hϕjΔH � ϵΔSjϕi (37)

in the limit as ΔH, ΔS→ 0, where ϕ, ϵ and ~ϕ, ~ϵ are eigenfunctions
and eigenvalues of the reference and approximated systems,
respectively. Repeating this for each k-point leads to the error
bounds shown. The error estimates prove reliable: the DFT bands,
shown in red, are almost always contained within the blue shaded
region.
Figure 6 shows the convergence of band structures and DoS

with respect to the maximum polynomial degree used in the ACE
basis set, and for two choices of correlation order ν= 1 and ν= 2.
The error in the DoS is computed using the first Wasserstein (or

‘earthmover’) distance between the reference and predicted DoS,
which is a natural metric for comparing densities of states since it
is a distance between probability distributions (see, e.g., ref. 45).
The error in band structures is defined as the RMSE in the k-
dependent band energies

EbandðkÞ ¼
XNorb

i¼1
f
ϵi � εF

σ

� �
ϵiðkÞ (38)

along the high-symmetry k-paths shown in Fig. 5, where f(•) is the
Fermi function, εF is the Fermi level of the system and the
smearing width is taken to be σ= 0.086 eV, corresponding to an
electronic temperature of 1000 K.
The models with untuned parameters shown with the solid

lines and dashed lines in Fig. 6 are already sufficiently accurate to
produce good band structures and densities of states. However,
when increasing the maximum degree used for all subblocks
simultaneously, some overfitting can be seen, similar to that
observed in the direct validation results of Fig. 3, and once again
this arises at lower degrees of 9–12 with ν= 2 than with ν= 1,
where maximum degrees of up to 13–14 are possible without
overfitting. Errors in the DoS and the band structure for both FCC
and BCC are further reduced when using the optimised model of
the section “Cross-validation and model selection”, shown with
the horizontal dotted lines in the figure to produce band
structures with a RMSE of <0.4 eV for both phases.

BCC to FCC transition
As a challenging test, we used our optimised model to predict the
Hamiltonian and overlap matrices along the Bain transformation
path from BCC to FCC. We then diagonalised the predicted
matrices to obtain the eigenvalues and hence the DoS at each
point along the path and compared them to reference values
computed with FHI-aims for the same systems. As can be seen in
Fig. 7, the predicted electronic structure agrees well at all points
along the path, suggesting good extrapolative behaviour beyond

Fig. 4 Accuracy of predicted Hamiltonian blocks for the FCC crystal. Magnitudes (above) and errors (below) for onsite (left) and offsite
(right) ~H for prediction on the FCC ground state unit cell (not included in the training set).
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the training set, which includes only environments accessible from
the two minima at moderate temperatures during MD.
Notably, nowhere along the path is the accuracy of the ACE

model worse than it is for FCC or BCC, although accuracy drops off
outside the BCC–FCC range 1=

ffiffiffi
2
p

<c=a<1. We interpret this as
meaning that along the Bain path we see different global
structures, but similar local environments, whereas to the left of
BCC and to the right of FCC we go outside the range of local
environments included in the training set.

Restricted training databases
To further test how well the model generalises across crystal
systems, we carried out two further fits using the same optimal
parameters as for the final model presented above, but with the
training database restricted to either FCC only or BCC only
configurations (using subsets of the same MD-generated struc-
tures as above). We then checked the ability of the resulting ACE
Hamiltonian models to predict the DFT electronic structure of
both crystals. The results, illustrated in Fig. 8 and summarised in
Table 2 convincingly demonstrate the approach has excellent
transferability, since the FCC DoS (and also the associated full
band structure) can be accurately predicted using only BCC
training data, and vice versa.

Defected structures
As a final test of our models’ ability to predict outside of the
domain of the training sets, we predicted the electronic structure
of a 728 atom 9 × 9 × 9 FCC Aluminium supercell containing a
single vacancy. The structure was obtained by deleting an atom
from the supercell and performing a geometry optimisation with

FHI-aims until the maximum force was <5 × 10−3 eV/Å. We then
compared the projected DoS (PDoS) for the atomic orbitals
neighbouring the vacancy as obtained with DFT with the
predictions of our optimal ACE Hamiltonian model, without
refitting. The DFT and ACE PDoS are shown in Fig. 9 and
demonstrate convincingly that our model is able to capture the
changes in the local electronic structure associated with the
introduction of a defect, indicating that it correctly predicts the
self-consistent field (SCF) relaxations of the Hamiltonian without a
need for an explicit SCF loop in the approximate scheme.

DISCUSSION
We have reported a data-driven scheme to construct predictive
models of Hamiltonian and overlap matrices from ab initio data.
Our scheme incorporates all relevant symmetry operations, giving
an equivariant analytical map from first principles data to linear
models for the Hamiltonian and overlap matrices as a function of
the atomic and bond environments. We have shown that it is
possible to apply our methodology to produce accurate predic-
tions for the band structure in aluminium in both FCC and BCC
phases from limited training data. The approach has huge
potential for delivering comparable accuracy to DFT while at the
same time reaching time and length scales far beyond its
capabilities. For example, it opens the door to the high-
throughput computation of quantities which depend on electro-
nic properties, such as photoemission spectra, transport coeffi-
cients, and electron–phonon coupling constants, all of which can
currently only be accurately computed with first principles
methods46.

Fig. 5 FCC and BCC band structures obtained with DFT (red) and predicted by an ACE model with onsite H order 2, and offsite H and S
order 1 (blue). Confidence intervals shown with blue ribbons are from a priori analysis of the errors in band spectrum expected to result from
known errors in ~H and ~S (see text). Energies are shown relative to the DFT Fermi level.
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Our results are extremely encouraging, and there are a
number of avenues open for further exploration. From a
computational performance perspective, we note the evalua-
tion of Hamiltonian and overlap blocks is trivially parallelisable
with perfect scaling. Performance enhancements would also
come from further optimisation of the ACE basis used to
represent the Hamiltonian and overlap matrices, e.g. by
sparsifying to reduce the basis set size, or by incorporating
non-linearity to reduce the maximum degree required38.
Moreover, Bayesian approaches to model selection could be
used instead of cross-validation. This would lead to more
efficient model construction, as well as the possibility of a priori
error estimates on the accuracy of model predictions through
uncertainty propagation.
Further comprehensive studies of the dependence of accuracy

and transferability of models on quantity and type of training data,
as well as an extension to materials and systems with more
complex bonding environments are also necessary. In future, we
will expand this approach to explore multi-component systems. A
further extension will be to fit a potential ~E to allow total energy
and forces to be predicted by adding a correction to the band
energy. For example, ~E could be represented by an ACE potential
determined from the local atomic environments.

METHODS
Data generation
The datasets used in this work are constructed for face-centred cubic
(FCC) and body-centred cubic (BCC) phases of Al. Our data was
generated through electronic structure calculations with the all-
electron numeric atomic orbital code FHI-aims (version 190530)25. We
used the Perdew–Burke–Enzerhof (PBE) generalised gradient approx-
imation47 to the exchange-correlation energy within the KS-DFT
formulation, and neglected spin in our treatment. The convergence
criteria for charge density, sum of eigenvalues, and total energy of the
self-consistent cycles were set to 10−5 e/a30, 5 × 10−5, and 10−6 eV,
respectively. The default tight FHI-aims basis set and integration grid
definitions were used, which uses a basis set confinement with a
maximum radial basis function extent of 6 Å. We modify the set of
atomic basis functions that we employ to achieve optimal computational
efficiency. Systematic convergence tests showed that band energies
converged up to 10 eV above the Fermi level when using a minimal basis
plus a single d orbital from Tier 1. Therefore, we used a basis set
comprising s and p orbitals of the minimal basis set plus one d orbital
from the Tier 1 setting, yielding the 14 atomic basis functions for Al
illustrated in Fig. 9b.
The optimal equilibrium lattice constants for FCC and BCC Al were

determined in primitive cells with a 9 × 9 × 9 Monkhorst–Pack k-point
mesh48 to be 4.05 and 3.29 Å, respectively. To sample a variety of
distorted atomic configurations for Al, we carried out molecular
dynamics (MD) simulations at a temperature of 500 K using

Fig. 6 Convergence of FCC and BCC band structures and DoS with respect to the correlation order ν and maximum polynomial degree
dmax used in the ACE basis set. Dotted lines show the optimised model of the section “Cross-validation and model selection”. a Error in the full
DoS. b Error in the occupied states, i.e. those below the Fermi level. c Band error computed with Eq. (38).
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9 × 9 × 9= 729 atom supercells of the primitive FCC and BCC unit cells.
MD simuations for each phase were performed in the NPT ensemble
using a 5 fs timestep and the embedded atom method (EAM) potential
proposed by Zhou et al. 49. Single point DFT total energy calculations
were carried out on the final configurations of each of these 500 MD
simulations using FHI-aims with the parameters described above and a
single k-point at Γ. We stored the resulting H and S matrices giving a
dataset

ðHII;RIÞf g; (39)

ðHIJ ; rIJ;RIJÞf g; (40)

ðSIJ; rIJ ;RIJÞf g: (41)

where II, IJ indicate on- and off-site blocks of the Hamiltonian and
overlap matrices while r• and R• are the corresponding atomic structure
data as defined in the section “Hamiltonians for extended materials in
atomic orbital basis representation”. For the optimised model reported
in the section “Cross-validation and model selection”, we used 1000
training and 1000 test blocks for the onsite part of the Hamiltonian and
2000 training and 2000 test blocks for the offsite Hamiltonian and
overlap matrices (with more offsite than onsite data to reflect the far
greater number of offsite blocks in the target matrices). Equal numbers
of samples were taken from the FCC and BCC MD data.

Parameter estimation
We have defined three linear models for equivariant components of
Hamiltonian and overlap matrices (up to the choice of approximation
parameters). It remains to specify a parameter estimation procedure to
determine the model parameters which typically number in the thousands
to tens of thousands. There are essentially two choices we can make: (i) fit
the models to observed properties such as band structure, energies, forces;
or (ii) fit the models directly to match a reference Hamiltonian. Both
approaches have advantages and disadvantages. We have chosen to
follow route (ii) which is particularly attractive from both theoretical and
numerical perspectives as it results in a linear least-squares problem.
Let ~K ¼ c � B be one of the three linear models, and fðK ðτÞ� ;RðτÞ� gτ the

corresponding training set, then we set up the loss function

L0ðcÞ ¼
X
τ

jK ðτÞ� � ~KðRðτÞ� Þj2: (42)

Since ~K is linear in c it follows that L can be rewritten as

L0ðcÞ ¼ Ψc � yk k2; (43)

where Ψ is the design matrix and y contains the reference model values. To
prevent overfitting, we regularise the least-squares system with a
generalised Tychonov term,

LλðcÞ :¼ Ψc � yk k2 þ λ Γck k2; (44)

Fig. 7 Electronic structure along the transition from BCC c=a ¼ 1=
ffiffiffi
2

p
� 0:71 to FCC c/a= 1. a Error in the density of states made by our

ACE model with respect to the DFT reference (measured with the Wasserstein distance) as a function of c/a along the Bain path. The solid line
shows the full error in the DoS (right vertical axis), while the dashed line shows the error in the occupied states (left vertical axis; note the
change of scale). b RMSE error in the electronic band structure (along high-symmetry k-path for the BCC structure) as a function of c/a along
the Bain path. Insets illustrate the structure of the cubic cell at points along the path. c Comparisons of densities of state for the ACE model
(blue) and DFT (red) at four points along the path, including the BCC (left) and FCC (right) structures.

L. Zhang et al.

10

npj Computational Materials (2022)   158 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



where Γ= diag(Γkk) with Γkk an estimate for the curvature of the kth basis
function which enforces smoothness of the model29,38 and λ is a
regularisation parameter. Throughout this work, we define Γkk by

Γkk ¼
X
ν

ðn2ν þ l2ν þm2
νÞ; (45)

and λ is always set to be 10−7. We then solve the regularised least squares
system (44) using an iterative LSQR algorithm with termination tolerance
10−6.
For the radial basis set Pnl we used

ξðrÞ ¼ 1þ r0
1þ r

	 
2

(46)

PnlðrÞ ¼ QnðξðrÞÞ (47)

where Qn is a polynomial of degree n such that
R ξ1
ξ0

QnðξÞQn0 ðξÞdξ ¼ δnn0
and [ξ0, ξ1]= ξ([0, rcut]); see ref. 29 for full details.
The envelope function for both on-site term and off-site environment

basis function is defined as

f cutðr; rcutÞ ¼ f bcutðr; rcutÞ ¼
ðr2=r2cut � 1Þ2; r � rcut;

0; r > rcut;

(
(48)

and that for the offsite environment is given by a bond-related cylindrical
cutoff function

f ecutðz; r; zcut; rcutÞ

¼
r2

r2cut
� 1

� �2
z2

ðzcutþlbond=2Þ2 � 1
� �2

;

r � rcut; jzj � zcut þ lbond=2;

0; otherwise;

8>><
>>:

where (z, r, θ) are the cylindrical coordinates of an environment atom
(though θ is not used in this definition) and lbond is the length of the
corresponding bond. Note that both fcut and f bcut are rotation invariant,
they will not influence the equivariance of the basis at all. Meanwhile,
though the cylindrical curoff function f ecut is bond-dependent, it can be
easily checked that it does no harm to rotation symmetry as well.

Fig. 8 Comparison of FCC and BCC DoS predicted with ACE models for full and restricted training databases. The reference DFT DoS is
shown in red. A vertical shift has been applied to separate the DoS for each ACE model.

Table 2. Errors in the FCC and BCC DoS predicted with ACE models
for full and restricted training databases.

Crystal Training database DoS error (all) DoS error (occ.)

FCC FCC+BCC 0.424 0.015

FCC BCC 0.930 0.081

FCC FCC 0.732 0.044

BCC FCC+BCC 0.308 0.023

BCC BCC 0.550 0.041

BCC FCC 0.311 0.025

The error in the full DoS and in the occupied states below the Fermi level
are reported.

Fig. 9 Comparison of PDoS for a 728-atom Al vacancy supercell
between the reference DFT results (red) and those predicted by
our ACE Hamiltonian model (blue), which was not trained on
vacancy data. PDoS includes orbitals associated with the nearest
neighbours of the vacancy. The PDoS for the perfect FCC structure is
shown in green to allow the changes in the electronic structure due
to the defect to be assessed.
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In our implementation, the on-site cutoff rcut is chosen to be 9.0 Å for
Hon and the off-site bond cutoff is set to be 10.0 Å. We set
recut ¼ zecut ¼ 5:0 Å for the off-site environment.
As noted above, we used correlation order ν= 0 for the offsite overlap SII

since these blocks are not environment-dependent. For HII we used
correlation order ν= 2 throughout, while for HIJ we tested correlation
orders of both ν= 1 and ν= 2. The maximum polynomial degree was
chosen on a case-by-case basis to control the balance between accuracy
and transferability through a cross-validation procedure as discussed in
more detail in the section “Methods” in the main text.

Prediction
The software implementation of our method follows the workflow
illustrated in Fig. 1. The Julia packages ACE.jl50 and ACEhamilto-
nians.jl implement the general Atomic Cluster Expansion basis sets
and the specialisation to fitting and predicting Hamiltonians, respectively.
Given an input configuration R we use the scheme described above to
predict ~HonðRÞ; ~HoffðRÞ and ~SoffðRÞ. We then assemble complete approx-
imate Cartesian Hamiltonian and overlap matrices ~H and ~S from the
predicted blocks. We can construct k-dependent variants and associated
bandstructures via a standalone Julia implementation contained within the
ACEhamiltonians.jl package.
Using either the reference or the predicted matrices we can solve the

generalised eigenproblems of the form

HðkÞϕi ¼ ϵiSðkÞϕi (49)

~HðkÞ~ϕi ¼ ~ϵi~SðkÞ~ϕi (50)

to obtain k-dependent band energies ϵi ; ~ϵi and orbitals (eigenfunctions)
ϕi ; ~ϕi for the reference and predicted systems, respectively, where
i= 1,…, Norb and in this work Norb= 14. Band structures, the density of
states (DoS) and other derived quantities can be computed by post-
processing the band energies following standard practices.

Transformation of H and S from real to reciprocal space
representation
According to Bloch’s theorem, in crystal-periodic structures, the Hamilto-
nian and overlap matrices defined in terms of real-space atomic orbitals
can be transformed into a block-diagonal form and solved via a set of Nk

independent generalised eigenvalue problems where each block corre-
sponds to a vector k within the reciprocal unit cell:

HðkÞψik ¼ ϵikSðkÞψik i ¼ 1; 2; � � � (51)

where ψνk are Bloch wave functions and H(k) and S(k) are Hamiltonian and
overlap matrices defined in terms of a discrete crystal-periodic basis.
For this, we define crystal-periodic generalised basis functions χa,k from

real-space basis functions as follows:

χakðxÞ ¼
X
N

expfik � NLgχaðx þ NLÞ: (52)

In Eq. (52), L refers to the column matrix of lattice vectors and
N= (N1, N2, N3) is an index vector that specifies the position of the unit
cell (in multiples of the lattice vectors) in which orbital χa is located.
The matrix elements of H(k) and S(k), respectively, are constructed via

HabðkÞ ¼ χak jĤjχbk
� � ¼ (53)X

N;N0
exp ik � N0 � Nð Þ � Lf g χa;N0

� ��Ĥ χb;N
�� �|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼HabðN;N0Þ
(54)

and

SabðkÞ ¼ χak jχbkh i ¼ (55)X
N;N0

exp ik � ðN0 � NÞ � Lf g χa;N0 jχb;N
� �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼Sab N;N0ð Þ

(56)

where HabðN;N0Þ and SabðN;N0Þ are as defined in Eqs. (6) and (7) for atomic
orbitals defined in different unit cells N and N0 .
In this work, we use this transformation to map the real-space matrices

to arbitrarily dense k-grids as is common practice for localised basis sets
such as atomic orbitals or maximally localised Wannier functions. We then
calculate eigenvalues ϵνk at arbitrary points in reciprocal space to calculate
converged electronic densities-of-state and band structures.

Equivariance of HIJ

For the real space Hamiltonian H(R), we decompose it as HðRÞ ¼ HIJð ÞNatom
I;J¼1

(cf. Fig. 2). Denote a ¼ ðn; l;m; IÞ :¼ ðα; IÞ; b ¼ ðn0; l0;m0; JÞ :¼ ðβ; JÞ, we
may then write

Hαβ
IJ ðRÞ ¼ hχajĤjχbi:
In the definition of χa, the radial basis Rnl(r) is invariant under rotation

and Ylm(Q(θ, ϕ)) can be expressed as linear combination of Ylμ(θ, ϕ), i.e.,

χðn;l;m;IÞðQx;QRÞ ¼
X
μ

Dl
μmχðn;l;μ;IÞðx;RÞ: (57)

Here, χ• is R-dependent since it is atom-centred. Besides,

Hαβ
IJ ðQRÞ
¼ R

R3 χaðx;QRÞ�Veffðx;QRÞχbðx;QRÞdx
¼ R

R3χaðQx;QRÞ�VeffðQx;QRÞχbðQx;QRÞdx
¼ R

R3χaðQx;QRÞ�Veffðx;RÞχbðQx;QRÞdx:

(58)

Combining Eqs. (57) and (58), we see immediately that

HIJðQRÞ ¼ DðQÞ�HIJðRÞDðQÞ; (59)

where

DðQÞ ¼ DiagðDl1 ðQÞ;Dl2 ðQÞ; � � � Þ; (60)

and Dli indicate the Wigner-D matrices.
Sometimes, the angular term in Eq. (5) is chosen to use real spherical

harmonics rather than complex ones, i.e.,

χaðxÞ ¼ RnlðrÞSlmðθ;ϕÞ; and (61)

Slm ¼
X
m0

Cmm0Ylm; (62)

where fCmm0 g are the corresponding transforming coefficients. Equiva-
lently, we may go through all possible indicesm with respect to a fixedland
obtain the following matrix form:

SlðRÞ ¼ ClYlðRÞ: (63)

In this case, the equivariance of HIJ simply follows, just with the varied
equivariant matrix

~DðQÞ ¼ Diagð~Dl1 ðQÞ; ~Dl2 ðQÞ; � � � Þ; (64)

and ~D
li ðQÞ ¼ Cli D

li ðQÞ.
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Supporting data for this manuscript comprising the electronic structure training data,
ACE Hamiltonian and overlap models, prediction results and an archived copy of the
source code is available from https://doi.org/10.5281/zenodo.6561452.

CODE AVAILABILITY
The ACE.jl package which implements the Atomic Cluster Expansion basis sets
used here is available from https://github.com/acesuit/ACE.jl. The ACEhamilto-
nians.jl package which extends its capabilities to learning Hamiltonian and
overlap matrices is available from https://github.com/ACEsuit/ACEhamiltonians.jl/
tree/arXiv.2111.13736; with examples provided at https://github.com/ACEsuit/
ACEhamiltoniansExamples.
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