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Abstract 8 

Mathematical modelling has made significant contributions to the optimisation of the use of 9 

antimicrobial treatments. In this review we discuss the key processes that such mathematical 10 

modelling should attempt to capture. In particular, we highlight that the response of the host 11 

immune system requires quantification and illustrate this with a novel model structure. 12 
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Introduction – a brief history of PKPD modelling 19 

There is a long history of the investigation of optimal dosing regimens [1] that form the precursor to 20 

the application of mathematical modelling (or PKPD) to the discovery and development of antibiotic 21 

therapies. An understanding of optimal dose and frequency of dosing is now informed by the 22 

understanding of pharmacokinetic and pharmacodynamic differences between drugs, between host 23 

species and species and strains of pathogens. However, like many therapy areas, antibiotic PKPD 24 

(exposure- response) modelling is often very empirical, the aim being to identify a target drug 25 

concentration to test in patients. This is driven in part by necessity and gaps in our understanding. A 26 

concern with this approach might be that important mechanisms are not addressed which may limit 27 

quantitative translation to the clinic - especially the translation of optimum dose and dosing 28 

schedule. This is because the empirical approach may not fully account for time dependent factors 29 

such drug concentration (PK), bacterial load (disease course) drug resistance and the response of the 30 

immune system.  Below we exemplify that a mathematical model, developed to capture key 31 

antibiotic PKPD mechanisms, need not be complex and yet can provide further insight into the 32 

biology behind the experimental data. Many of these aspects are thoroughly reviewed already in 33 

Nielsen and Friberg 2013 [2]and Rayner et al 2021 [3] so will not be covered in detail here – the aim 34 

in this paper will be to identify the key components or “ingredients” required in a mechanistic model 35 

of antimicrobrial drug actionl, in particular the response of the immune system. 36 

First Model Ingredient: Exposure response  37 

The first requirement is an understanding of the exposure-response relationship and how it 38 

translates from in vitro to in vivo mouse models. This is important for dose setting in the clinic with 39 

the addition of pharmacokinetic knowledge. Demonstrating translation of the exposure-response 40 

relationship fromin vitro to in vivo allows a much wider range of species of bacteria to be considered 41 

than an in vivo resource would afford. Historically the minimum inhibitory concentration (MIC) has 42 

been used as the in vitro potency measure. To determine the aspect of drug exposure most 43 

predictive of antimicrobial activity the in vivo free AUC/MIC, Cmax/MIC and time over MIC are 44 

plotted versus the reduction in bacterial load in vivo for a range of antibiotic dose levels. Potentially 45 

this is carried out in multiple strains of bacteria with MIC being used to normalise drug exposure for 46 

inherent susceptibility.  Dose-fractionation is a necessary study design element because of the 47 

inherent correlation of Cmax, AUC and time over MIC as dose is varied. A more serious consideration 48 

is that MIC is a composite potency measure influenced not only by the pharmacological effect of the 49 

drug (reduced proliferation/ killing) but also the intrinsic proliferation rate of the bacteria and 50 

background death rates [2]. It is also potentially dependent on the duration of the drug incubation 51 

and cell density used in the assessment. Typically, these metrics suggest that maintaining exposure 52 

above MIC is required for a reduction in infection – and this seems rational given that in vitro 53 

concentrations above MIC, by definition, will reduce the population of bacteria. An example of this is 54 

colistin [4], where free AUC/MIC >10 (Average concentration 10-fold that of MIC) are required to 55 

reduce the CFU count.  56 

There are more mechanistic approaches that have been adopted to characterise the course of 57 

infection and concentration-effect relationship as thoroughly reviewed by [Nielsen and Friberg 58 

2013]. These models, applied to time series data from in vitro and in vivo experiments, separate the 59 

intrinsic growth rate and an EC50, that relates drug concentration to effect, that that will not suffer 60 

from the potential oversimplification of MIC. This is very important given that in vivo 61 

pharmacokinetics result in significant fluctuations in the drug concentration that the infection is 62 

exposed to, compared to the constant concentrations typical of an in vitro incubation. However, it is 63 

noted that systems such as hollow fibre injection and other dynamic in vitro models can reproduce 64 



fluctuating drug concentrations and provide a useful link between in vitro and in vivo experiments. 65 

Similarly time-kill experiments give insight into the onset of antibacterial effect. 66 

Combination therapy is one way that antimicrobial resistance might be circumvented. Typically two 67 

or more antimicrobials are investigated in a concentration dependent manner, similar to the 68 

determination of MIC, and the data tested for evidence of greater  or less than additive effect using 69 

the concepts of Bliss independence and Loewe additivity[5]. An more general approach to modelling 70 

combination effects has been proposed [6]. Doern [7] has argued that in vitro combination assays 71 

are so diverse that assessing synergy and guiding dosing of patients with these assays is a non-72 

starter until a gold standard is agreed upon. As argued against MIC, these static approaches may not 73 

pull apart the contributing factors that contribute to combination pharmacology and the 74 

dependence on the test system such as the population growth rate. More mechanistic approaches 75 

have been taken, usually borrowing assumptions of combination effects familiar in other therapy 76 

areas such as an additive effect of the total bacterial kill. A review  of these models [8] concluded 77 

that there was a benefit to mechanistic approaches in being able to not only disentangle the 78 

contribution of components but also to incorporate host associated effects, e.g., the immune 79 

response. 80 

Second Model Ingredient: The development of drug resistance 81 

A second requirement is an understanding of the kinetics of drug resistance – especially important 82 

given the growing issues of AMR. Key resistance mechanisms  include: (i) changes to the structure of 83 

the drug target; and (ii) increased expression of proteins that alter the intracellular PK of the 84 

antibiotic (drug transporters and drug metabolising enzymes).  The former tends to be irreversible, 85 

requiring an alteration at the gene level, however the latter can be reversible if an environmental 86 

adaption occurs.  MIC, taken after a particular time, may well have these aspects folded in. However, 87 

resistance, and its impact on the time course of an infection will be time dependent. Models based 88 

on time series data can incorporate these mechanisms and to some extent again separate them out 89 

from inherent potency and population growth rate. Key phenotypes to incorporate are [9] : 90 

resistance from the start, tolerance - whereby cells adapt to a reversibly resistant phentotype, and 91 

persisters - which have a lower rate of proliferation and so are less vulnerable to typical mechanisms 92 

of antimicrobial treatments[10]. These can all be incorporated [2] and permit the prediction of 93 

unique time-kill curves so that the underlying phenotypes might be inferred. Distinguishing between 94 

mechanisms from a numerical point of view suggests that this might be possible based upon 95 

bacterial counts only however challenging if attempting to  distinguish between resistance 96 

phenotypes simultaneously [11]. Experimental approaches to aid in this identification have been 97 

suggested including measuring the MIC and MDK (minimum duration for killing) in the resulting 98 

resistant populations[9]. 99 

An issue for ongoing research in this area is the lack of diverse data sets considered. Niewiadomska 100 

et al [12] reviewed the literature and found a lack of diversity in pathogenic organisms in which AMR 101 

had been mathematically modelled and calibrated on experimental data, so clearly further work is 102 

required to fully validate the above mathematical mechanisms. It is also noted that these 103 

mathematical modelling exercises have not considered the combination of multiple treatments. 104 

Third Model Ingredient: The contribution of the immune system to cure 105 

The impact of the immune system has previously been considered in other therapy areas, for 106 

example in oncology. Here models have attempted to capture the immune system’s recognition of 107 

malignant cells, the onset of response and, in some cases, the attempts of the tumour to escape or 108 

adapt to this immune response [13-15]. It is evident that the immune response’s contribution to the 109 



clearance of an infectious agent is important. Studies in animal infection models [16, 17] have, to 110 

some extent, quantified the immune component of clearance. Clearly then, there is an analogy with 111 

oncology, suggesting the extension of antibiotic PKPD to this approach could be of use in the 112 

development and optimisation of therapies.  113 

Developing a model of within-host antibiotic resistance which accounts for the role of the immune 114 

system is cursed by the overall complexity of the biological system and the inherent multiscale 115 

nature of the systems (molecular to whole-body scale). However, it is possible to create a generic 116 

description of each aspect of the system – bacterial loading and the immune system response to it 117 

whilst accounting for the administration of an antibiotic. We describe here a within-host population 118 

mathematical model which accounts for bacterial loading and clearance via the immune system and 119 

an antibiotic. Here we take a generalised view of the immune system accounting for the speed and 120 

magnitude of the immune response, which we assume responds to the bacterial infection, both in 121 

terms of increasing the response and its magnitude. Our model formulation accounts for the local 122 

and global effects of antibiotic dosing as summarised in Figure 1. Mathematically our model is 123 

represented by the three nonlinear ordinary differential equations given by 124 

𝑑𝐴

𝑑𝑡
= 𝛼(𝑡)̅̅ ̅̅ ̅̅⏞
𝐴𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐 𝑑𝑜𝑠𝑖𝑛𝑔

− 𝜆𝐴𝐴𝐵   
𝐴𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑏𝑦 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎

− 𝛿𝐴𝐴⏞
𝐴𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

, 125 

𝑑𝐵

𝑑𝑡
= 𝜌𝐵𝐵 (1 −

𝐵

𝐾𝐵
)

         
𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 𝑔𝑟𝑜𝑤𝑡ℎ

−
𝜆𝐵𝐴𝐵

𝐾𝑅 + 𝐴

     
𝐴𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐 𝑟𝑒𝑚𝑜𝑣𝑎𝑙

− 𝑟𝐼𝐵,⏞
𝐼𝑚𝑚𝑢𝑛𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑟𝑒𝑚𝑜𝑣𝑎𝑙

 126 

𝑑𝐼

𝑑𝑡
= 𝜌𝐼(1 + 𝑠𝑔𝐵) (1 −

𝐼

𝐾𝐼(1+𝑠𝐼𝐵)
)

                   
𝐼𝑚𝑚𝑢𝑛𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

− 𝛿𝐼𝐼⏞
𝐼𝑚𝑚𝑢𝑛𝑒 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒

  127 

where the initial conditions of the system are given by 128 

𝐴(0) = 0,    𝐵(0) = 𝐵0    and    I(0) = 𝐼0. 129 

Here 𝐴 = 𝐴(𝑡) denotes the concentration of the antibiotic, 𝐵 = 𝐵(𝑡) the within host bacterial cell 130 

density and 𝐼 = 𝐼(𝑡) the magnitude of the immune response. It is assumed that both the bacteria 131 

and immune system response grow logistically, the latter with growth rate 𝜌𝐼(𝐵) = 𝜌𝐼(1 + 𝑠𝑔𝐵) and 132 

carrying-capacity 𝐾𝐼(𝐵) = 𝐾𝐼(1 + 𝑠𝐼𝐵), where 𝑠𝑔 and 𝑠𝐼 describe how the speed and magnitude of 133 

the immune system response respond to the bacterial infection. Here the effect of antibiotic 134 

resistance is accounted for by modelling the antibiotic concentration effect on bacteria via a 135 

sigmoidal function with half-maximal value 𝐾𝑅 (a large 𝐾𝑅 means the antibiotic has reduced potency 136 

and so the bacteria will be relatively resistant).  137 

To simplify the three-dimensional nature of equations (1) to (3) we consider the global effect of the 138 

antibiotic by ignoring the localised dependency described via the term 𝜆𝐴𝐴𝐵, so henceforth, for this 139 

work, we set 𝜆𝐴 = 0. This decouples equation (1) from equations (2) and (3) thus allowing us to 140 

analyse equations (2) and (3) as a system of two coupled nonlinear ODEs, which we do so using the 141 

non-dimensionalised form of the equations as detailed in Annexe 1. Under the assumption of a 142 

constant antibiotic infusion (𝛼(𝑡) = 𝛼), the system exhibits four steady-states: 143 

(i) State 1 (𝑎1
∗ , 𝑏1

∗, 𝑖1
∗) = (𝑎∗, 0,0): the case in which the host has died, all bacteria have been 144 

eradicated from the body and only antibiotic remains; 145 



(ii) State 2 (𝑎2
∗ , 𝑏2

∗, 𝑖2
∗) = (𝑎∗, 0, (1 −

𝛿𝑖

𝜌𝑖
)): All bacteria have been eradicated from the body, 146 

the immune system has returned to its normal functional levels and antibiotic remains in the 147 

system so long as the immune system response is greater than its clearance; 148 

 (iv) State 3:(𝑎3
∗ , 𝑏3

∗, 𝑖3
∗) = (𝑎∗, (1 −

(𝜆𝑏
∗+𝑖∗)

𝜌𝑏
) , 𝑖∗): A co-existence steady-state in which both 149 

the antibiotic and immune system work together to eradicate the bacterial loading, but the 150 

infection persists (𝑖∗being given by the solution of equation (A.2)); and 151 

(iii) State 4 (𝑎4
∗ , 𝑏4

∗, 𝑖4
∗) = (𝑎∗, (1 −

𝜆𝑏
∗

𝜌𝑏
) , 0): Here a persistent bacterial infection remains in 152 

the body along with the antibiotic, the immune system effectively having become non-153 

functional, 154 

where 𝑎∗ = 𝛼/𝛿𝑎 is the steady-state antibiotic concentration and 𝜆𝑏
∗ = 𝜆𝑏𝑎

∗/(𝐾𝑟 + 𝑎
∗). State 1 is 155 

possible (stable) if the immune system clearance is more rapid than its response rate (𝛿𝑖 > 𝜌𝑖), 156 

whilst the reverse holds for State 2 with the additional condition that 𝜌𝑏 +
𝛿𝑖

𝜌𝑖
< 1. State 3 is 157 

monotonically or damped oscillatory stable and State 4 is stable so long as bacterial growth 158 

dominates over the ability of the antibiotic to remove the bacteria (𝜌𝑏>𝜆𝑏
∗ ). 159 

States 1 and 2 represent the worst and best health outcomes, whilst State 3 is a common scenario 160 

which is representative of antibiotic resistance. State 4 is the case of a severely immune-suppressed 161 

individual. In what follows we focus primarily on scenarios considering Cases 2 and 3 given these 162 

represent more likely health outcomes. 163 

To demonstrate the dynamical behaviour of the system we consider numerical solutions, generated 164 

in Matlab, of equations (1) to (3) utilising the set of non-dimensional parameters stated in Table 1. 165 

We have chosen parameterisations here which allow us to reflect on different scenarios informed by 166 

real-world known outcomes. Our objective here is to demonstrate the conceptual qualitative nature 167 

of the system, and how a simplified description of the respective biological mechanisms can be used 168 

to capture the gross behaviour of the system, without needing to describe all aspects of the 169 

underlying biology. Such models allow for the overall system dynamics to be explored before 170 

understanding aspects of the lower-level detail. A non-dimensionalisation allows us to inform 171 

parameter relationships in order to reproduce known qualitative behaviour. Experimental and 172 

clinical parameterisation of the system will be the focus of future work.  173 

Case studies of simulations are shown in Figure 2. We first consider the ability of the immune system 174 

to clear the bacterial infection in the absence of antibiotic. This allows us to parameterise the system 175 

for an individual whose immune system is strong enough to clear the infection, as detailed in Figure 176 

2a, for the parameterisation given in Table 1. This is akin to State 2 above, albeit that no antibiotic is 177 

present.  178 

We next consider the case of an immune system which is slower in responding to the presence of 179 

bacteria (𝜌𝑖 = 0.07). Here the individual is not able to effectively clear the infection and, after an 180 

initial period of oscillations between the immune system and bacterial loading, the system settles to 181 

a non-zero steady-state. This is akin to the co-existence steady-state (State 3), albeit in the absence 182 

of any antibiotic. We now consider how we can utilise an antibiotic to support the removal of the 183 

bacteria from the system and thus move it from State 3 to State 2. We do so by first introducing an 184 

antibiotic with a perceived level of effectiveness (as indicated by 𝜆𝑏) in Figure 2(c) with 𝛼 = 1, 𝜌𝑖 =185 

0.07 and 𝜆𝑏 = 0.1. Here we see that the antibiotic is able to decrease the bacterial loading, but is 186 



not fully effective. Increasing the effectiveness of the anti-biotic (akin to adding additional 187 

antibiotics; 𝜆𝑏 = 0.25) leads to effective removal of the bacteria thus moving the system to the ideal 188 

outcome of State 2.  189 

 190 

Conclusions 191 

In this article, we have reviewed the three main ingredients required of a mechanistic PKPD model: 192 

exposure-response, drug sensitivity/ resistance phenotypes and the contribution of the immune 193 

system. In particular, we have highlighted how quantifying the immune system response can aid in 194 

the interpretation of in vitro to in vivo translation of disease pharmacology. Indeed, we should 195 

perhaps consider it as modelling the drug’s contribution on top of the immune system: By increasing 196 

the clearance of pathogen the immune system is able to fully respond. Further work is needed in this 197 

area including informative measurement of the host immune system. 198 

By having these three aspects it is possible that the mathematical models can account for and 199 

explain between-host variations in the time course of infection as well as the potential to be more 200 

translatable from nonclinical systems to patients. The relationship between regimen and efficacy can 201 

vary in terms of the pharmacokinetics, bacterial strain (MIC), adaption/resistance (variation of MIC 202 

with time) and the immune response. By factoring these in, the intrinsic factors determining the 203 

success of treatment can be identified by building patient baseline covariates into the model. This 204 

can aid in the optimisation of antimicrobial treatment. Key to this is the application of mechanistic 205 

models that can be applied in a nonlinear mixed effects framework to characterise between-subject 206 

variability in response – and it is possible the above model is applicable here. Most promising is the 207 

ability of the model to quantify the immune system response and perhaps here there is some 208 

overlap in the work quantifying the efficacy of vaccines. Clearly, however, full mathematical 209 

evaluation and experimental data that allow determination of model parameters to support model 210 

validation are needed for future work. 211 

  212 



Annexe 1 – Non-dimensional governing equations 213 

Equations (1) to (3) are non-dimensionalised according to 214 

𝐴(𝑡) = 𝐾𝐵𝑎(𝜏),     𝐵(𝑡) = 𝐾𝐵𝑏(𝜏), 𝐼(𝑡) = 𝐾𝐼𝑖(𝜏)     and      𝑡 =
𝜏

𝑟𝐾𝐼
. 215 

Substituting these scalings leads to the non-dimensional system of equations 216 

𝑑𝑎

𝑑𝜏
= 𝛼(𝜏)⏞
𝐴𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐 𝑑𝑜𝑠𝑖𝑛𝑔

− 𝜆𝑎𝑎𝑏   
𝐴𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑏𝑦 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎

− 𝛿𝑎𝑎,⏞
𝐴𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

 217 

𝑑𝑏

𝑑𝜏
= 𝜌𝑏𝑏(1 − 𝑏)       
𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 𝑔𝑟𝑜𝑤𝑡ℎ

−
𝜆𝑏𝑎𝑏

𝐾𝑟 + 𝑎

     
𝐴𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐 𝑟𝑒𝑚𝑜𝑣𝑎𝑙

− 𝑖𝑏,⏞
𝐼𝑚𝑚𝑢𝑛𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑟𝑒𝑚𝑜𝑣𝑎𝑙

 218 

𝑑𝑖

𝑑𝜏
= 𝜌𝑖(1 + 𝜀𝑔𝑏) (1 −

𝑖

1+𝜀𝑖𝑏
)

               
𝐼𝑚𝑚𝑢𝑛𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

− 𝛿𝑖𝑖⏞ ,

𝐼𝑚𝑚𝑢𝑛𝑒 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒

  219 

where the initial conditions of the system are given by 220 

𝑎(0) = 𝑎0, 𝑏(0) = 𝑏0    and   𝑖(0) = 𝑖0, 221 

and the non-dimensional parameters by 222 

𝛼(𝜏) =
𝛼(𝑡)̅̅ ̅̅ ̅̅

𝐾𝐵𝐾𝐼𝑟
,    𝜆𝑎 =

𝜆𝐴𝐾𝐵
𝑟𝐾𝐼

,    𝛿𝑎 =
𝛿𝐴
𝑟𝐾𝐼

,     𝜌𝑏 =
𝜌𝐵
𝑟𝐾𝐼

,   𝜆𝑏 =
𝜆𝐵
𝑟𝐾𝐼

,    𝐾𝑟 =
𝐾𝑅
𝐾𝐵
,      𝜌𝑖 =

𝜌𝐼
𝑟𝐾𝐼

,     223 

𝛿𝑖 =
𝛿𝐼
𝑟𝐾𝐼

,     𝜀𝑔 = 𝑠𝑔𝐾𝐵   and    𝜀𝑖 = 𝑠𝐼𝐾𝐵 .  224 

Annexe 2 – Co-existence steady-state solution 225 

The third co-existence steady state (𝑎3
∗ , 𝑏3

∗, 𝑖3
∗) is determined by solving 226 

𝜀𝑔

𝜌𝑏
(1 +

𝜀𝑖

𝜌𝑏
) 𝑖∗2 − [

𝜀𝑖

𝜌𝑏
(2𝜀𝑔 −

𝛿𝑖

𝜌𝑖
) + 𝜀𝑔 (1 +

1

𝜌𝑏
) + 1 +

𝜖𝑖

𝜌𝑏
] 𝑖∗ + (1 + 𝜀𝑖) (𝜀𝑔 + 1 −

𝛿𝑖

𝜌𝑖
) = 0,     … (A2) 227 

for 𝑖∗. We observe that positive solutions are only possible here for 𝑖∗ < 𝜌𝑏 − 𝜆𝑏
∗ , i.e. the immune 228 

system levels are determined by the difference in the bacterial growth rate and its rate of 229 
eradication by the antibiotic. 230 

Figure Legends 231 

Figure 1. A schematic of the three-state model of within host antimicrobial resistance. Here an 232 

antibiotic 𝐴(𝑡) is administered at rate 𝛼(t) and cleared with rate constant 𝛿𝐴. Bacteria 𝐵(𝑡) grow 233 

logistically with growth rate constant 𝜌𝐵 and are removed by the antibiotic (with rate constant 𝜆𝐴) 234 

and the immune system 𝐼(𝑡) (with rate constant 𝜆𝐵), respectively. Bacteria seek to inhibit the 235 

immune system, which seeks to respond with growth rate 𝜌𝐼(𝐵) by increasing its capacity 𝐾𝐼(𝐵), to 236 

clear bacteria with rate constant 𝑟, whilst being removed with rate constant 𝛿𝐼. 237 

Figure 2. Case studies of the antimicrobial resistance model. Solid lines indicate the within host 238 

bacterial cell density, whilst dotted lines the immune system response. Antibiotic concentration not 239 

shown. (a) The case of a strong immune system, in the absence of any bacteria, being able to clear a 240 

bacterial infection (𝛼 = 0, 𝜌𝑖 = 0.1). (b) An immune system which responds less rapidly than (a), 241 

which leads to oscillatory damped behaviour and the bacteria not being effectively removed from the 242 

host (𝛼 = 0, 𝜌𝑖 = 0.07). (c) The effect of including an antibiotic for (b) to help remove the bacterial 243 



infection. Here the infection still persists after antibiotic has been included (𝛼 = 1, 𝜌𝑖 = 0.07, 𝜆𝑏 =244 

0.1). (d) In contrast to (c) a more effective antibiotic is able to remove the bacterial infection, leaving 245 

the immune system to return to its pre-infection levels (𝛼 = 1, 𝜌𝑖 = 0.07, 𝜆𝑏 = 0.25).  246 

 247 
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