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The lifetime of sodium-ion batteries is strongly affected by degradation species and
contaminants such as H2O and HF, which are produced during formation and cycling.
In this work, the use of low levels of N, N-diethyltrimethylsilylamine (DETMSA), as an
electrolyte additive, shows an improvement in the stability and cycle life of a hard carbon vs.
layered oxide sodium-ion battery. Approximately 80% of the capacity is retained after 500
cycles, which is almost double the performance of the standard electrolyte. The additive
works by reducing the surface ageing constituents, as observed through XPS of the
surfaces and the change in resistance after cycling. DETMSA is slowly consumed over
time; however, the extensive improvement in cycle life shows that low level of impurities
and degradation species have a big impact upon cycle life.
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INTRODUCTION

A holistic approach to the sustainability of sodium-ion batteries (NIB) considers the material
components, cost/energy for manufacturing, cell life-time, in-use conditions, and economic viability
for material recovery at the end of life. In most cases, the lower cost of material components in NIB
means that the ‘sustainability’ of the battery relies upon the cells being in use for a long time, as the
value of the material components from recycling is very low, meaning recycling is economically
unviable. Therefore, understanding and reducing the ageing mechanisms and degradation in NIB is
paramount to producing long-lived cells.

Although NIB is a drop-in technology to lithium-ion batteries (LIB), there are notable differences
around the stability of carbonate-based electrolytes in the cell and the associated solid electrolyte
interface (SEI) (Single et al., 2016; Nayak et al., 2018; Xu et al., 2018; Fondard et al., 2020). As has
been shown previously, in both cases, water is known to be detrimental to the performance and life-
time of the cell, although possibly to a greater degree in NIB (Herriot; Yamane et al., 2001; Li et al.,
2009; Wotango et al., 2017; Han et al., 2015; Chen et al., 2017). In the Li/NaPF6 salt-based carbonate
electrolytes and as a consequence of the H2O in the battery, hydrofluoric acid (HF) is inevitably
produced during cycling resulting in 1) the hydrolysis of the Li/NaPF6 salt (Eq. 1) and 2) the
decomposition of Li/NaPF6 (Eqs. 2, 3) (Herriot; Han et al., 2020; Zhang et al., 2022; Liao et al., 2021).
The presence of HF, in particular, leads to a decrease in battery life, and this has been attributed to
several mechanisms; transitionmetal (TM) loss from the cathode, current collector corrosion, and an
increase in SEI on the anode.

Li/NaPF6 +H2O ↔ Li/NaF + 2HF + POF3, (1)
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Li/NaPF6 ↔ Li/NaF + PF5, (2)
H2O + PF5 ↔ 2HF + POF3. (3)

Both H2O and HF have been identified as harmful species in
batteries and their effects have been discussed extensively in the
literature (Yamane et al., 2001; Li et al., 2009; Han et al., 2015;
Single et al., 2016; Chen et al., 2017; Peebles et al., 2017; Wotango
et al., 2017; Nayak et al., 2018; Han et al., 2019; Chen et al., 2020a;
Fondard et al., 2020; Herriot, 2012; Han et al., 2020; Cheng et al.,
2021; Haridas et al., 2021; Liao et al., 2021; Zhang et al., 2022).

Electrolyte filling in NIB cells is usually done in the glovebox
(H2O < 0.1 ppm) or dry room, which still contains low levels of
water. H2O can also be introduced via the low levels present in the
electrolyte, from insufficiently dried components or from the
electrolyte’s decomposition. The moisture content in commercial
electrolyte is typically controlled to less than 10 ppm, which
means the main source of water in NIB cells is likely
introduced during the manufacturing processes or generated
in the battery itself, particularly during charging and especially
during occasional overcharging (Zhang, 2006; Chang et al., 2020).

Previously, nanozeolite ZSM-5 was successfully introduced as
an additive into the electrolyte to absorb small but harmful
species like water, CO2, and HF during cycling (Chen et al.,
2020b). In this work, different from the physical absorption that
nanozeolite can provide, a solution to extend the lifetime of NIBs
by chemically scavenging the H2O and subsequent HF is
introduced, using a Lewis-base N, N-diethyltrimethylsilylamine
(DETMSA) as an electrolyte additive. The Si–N bond contained
within DETMSA is easily cleaved through reaction with Lewis
acids such as HF or H2O, as shown in Figure 1 (Zhang, 2006; Han
et al., 2020). Similar chemicals that contain Si–N bonds such as
hexamethyldisilazane (HMDS) (Yamane et al., 2001),
heptamethyldisila-zane (HTMDS) (Li et al., 2009), N,

N-diethylamino trimethylsilane (DEATMS) (Chen et al., 2017;
Zhou et al., 2018), (trimethylsilyl)isothiocyanate (TMSNCS)
(Han et al., 2020), and 1-(trimethylsilyl)imidazole (1-TMSI)
(Wotango et al., 2017) have been introduced into LIBs to
enhance the cycling stability. DETMSA, the additive we
selected in this work, is functionalized with a diethylaminol
group, Si–N bond, and trimethlsilyl. The diethylamino group
can increase the HOMO energy of the molecules and be
preferentially oxidized, while the trimethylsilyl group does not
have any negative effect (Figure 1) (Zhang, 2006; Zhou et al.,
2018). Here, the cell cycling is improved when using DETMSA as
an electrolyte additive. The changes in the interface layers on the
hard carbon (HC) anode in an NIB full-cell configuration
(transition metal oxide NaMO2 as cathode) are investigated.

EXPERIMENT

Electrolyte Preparation
The standard electrolyte, 1 M NaPF6 in EC: DEC (1/1, V/V) was
purchased from Flurochem. To compare with the previous work
(Chen et al., 2020b), we chose the same additive content. 1 wt%
DETMSA additive (98%, Sigma-Aldrich) was directly added to
the standard electrolyte by stirring manually. All the electrolyte
preparation processes were completed in the glovebox (H2O <
0.1 ppm, O2 < 0.1 ppm).

Electrochemical Measurements of NaMO2/
HC Full Cells
Naa [NiwMnxMgyTiz]O2 (NaMO2), a mixed P2-O3 type oxide
material (Bauer et al., 2018; Sayers et al., 2018), was made into an
electrode with 92 wt% active material, 5 wt% conductive additive,

FIGURE 1 | The molecule structure of DETMSA and the reactions (1) with HF and (2) with H2O by breaking the Si–N bond.
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and 3 wt% PVDF binder using a slurry cast process. A hard
carbon (Kuranode, Kurary) negative electrode was made (88 wt%
active material: 9 wt% PVDF binder: 3 wt% carbon black). All the
electrodes were dried in a vacuum oven at 120°C overnight prior
to being transferred into a glovebox.

For the full cell assembly process, the mass balancing of
positive and negative electrodes was calculated based on the
(N/P)Q capacity ratio of 1.1:1. The electrochemical
performance of the full cells was evaluated in a 2032-type coin
cell, with NaMO2 cathode (12 mg/cm2), hard-carbon anode
(5 mg/cm2), separated by Celgard polymer 2325 containing
enough electrolyte to wet the components (~75 μl or ~43.6 μl/
cm2). Each electrochemical test was performed using three
independently produced cells to show standard deviations.

Surface Characterisation
After completion of cycling, the cell was disassembled in a
glovebox under an argon atmosphere. Scanning electron
microscopy with a field-emission SEM microscope (Sigma,
Carl Zeiss, Germany) equipped with an energy-dispersive
spectrometer (EDS) (Xmax 50, Oxford Instruments) was used
to characterise the surface of the electrodes after cycling. SEM
images were captured at 10 kV (1.6 nA) when a high-
performance ion conversion and electron detector was used, or
at 20 kV (8.0 nA) when a secondary electron detector was used.

X-ray photoelectron spectroscopy (XPS) measurements
were carried out using a Kratos Axis Ultra DLD
spectrometer (Kratos Analytical, Manchester,
United Kingdom). Samples were prepared in an argon
glovebox, mounted on a copper stub and transferred to the
spectrometer using an inert transfer unit under an argon
atmosphere with no exposure to air. Once an acceptable
vacuum level had been reached, the samples were transferred
to the main analysis chamber. The samples were illuminated by
a monochromated Al Kα X-ray source (hν = 1486.7 eV) and
flooded with low-energy electrons from a charge neutraliser to
prevent the surface from becoming positively charged during
the experiment. Data were collected in a hemispherical analyser
using a pass energy of 160 eV for survey spectra and 20 eV for
high-resolution core-level spectra (resolution approximately
0.4 eV). Data were analysed using the CasaXPS software
package, using mixed Gaussian–Lorentzian (Voigt)
lineshapes, asymmetry parameters where appropriate, and
Shirley backgrounds. The spectrometer was calibrated using
the Ag 3d5/2 peak and Fermi edge of clean polycrystalline Ag
prior to the start of the experiment, with the transmission
function determined using various clean metallic foils. The
binding energies of the data were adjusted during the
analysis, using the C-C/C-H component in the C 1s region
at 285.0 eV as the reference point.

FIGURE 2 | (A).First charge/discharge profile. (B)Differential capacity (dQ/dV) plots and (C) cycling performances of the full cell with blank electrolyte and DETMSA
electrolyte. (D) Images of freshly prepared electrolytes with and without DETMSA.
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RESULTS AND DISCUSSIONS

The effect of DETMSA additive on the cycling performance is
shown in Figure 2. Following coin cell assembly, all cells were
subjected to formation cycles where a small current of 0.12 mA/
cm2 (10 mA/g) was applied to generate an SEI layer between
1.0–4.2 V. The first charge–discharge curves are shown in
Figure 2A, similar initial charge capacities 1.77 and
1.84 mA h/cm2 (150 mA h/g), and first discharge capacities of
~1.49 mA h/cm2 were observed for both cells, as expected for
these cathode materials. The cell assembled with DETMSA
electrolyte shows slightly more irreversible capacity.
Differential capacity (dQ/dV) plots for the first and second
cycle of the NaMO2/HC cells were obtained to study
electrolyte oxidation/reduction behaviour with the standard
and DETMSA electrolytes as shown in Figure 2B. The plots
were similar regardless of the presence of DETMSA, and no
additional peaks were observed. The peak around 4.2 V shifted to
a slightly lower potential in the cells assembled with DETMSA, as
shown in Figure 2B. Considering the diethylamino group can
increase the HOMO energy of the molecules and be preferentially
oxidized, this shift may correspond to the decomposition of
DETMSA (Chen et al., 2017). With increasing DETMSA
concentrations, this shift increases, as shown, when comparing
0.5wt%, 1wt%, and 3wt% of DETMSA (Supplementary Figure
S0). The electrochemical performances of NaMO2/HC cells at
higher rates (0.8 C) for ageing, after 5 cycles of formation
processes, are displayed in Figure 2C. The cells start with
similar initial areal capacities, being 1.36 and 1.35 mA h/cm2,
respectively, when they were cycled from 1.0 to 4.2 V at 0.8 C
(1.2 mA/cm2). The presence of DETMSA helped to reduce the
capacity fading from 0.26% (for blank electrolyte) to 0.15% per
cycle. In addition, the standard deviation of the results is
significantly reduced with the DETMSA addition compared to
the blank electrolyte, as shown in Figure 2C. As shown in
Supplementary Figure S0, for increasing electrolyte additive
concentrations, the first cycle loss increases as expected from
the additive decomposition. In terms of cycling behaviour,
0.5wt% additive exhibits results very similar to the 1wt%,

whereas the 3wt% fades faster. This indicates that small
quantities of additive are beneficial, whereas larger levels are
not. The images of the freshly prepared electrolyte with and
without DETMSA are shown in Figure 2D. Both the
electrolytes are very clear. Tests were performed on the
electrolytes by heating them to 40°C and adding 4000 ppm of
water. The electrolyte without DETMSA becomes hazier in both
the experiments, as seen in Supplementary Figure S1, indicating
an instability of the electrolyte which contains water. Previouswork
with lithium-ion electrolyte stability also shows etching of the glass
vials over time, indicating HF presence (Gorman et al., 2019).

The long-term effect of DETMSA additive in the NIB full-cell
system compared with a blank electrolyte are presented in
Figure 3. After 5 cycles of standard formation process at
0.12 mA/cm2 (0.08 C), the cells were cycled at 1.2 mA/cm2

(0.8 C) for ~500 cycles between 1.0–4.2 V. As expected, a
similar capacity fading phenomenon as presented in the 50-
cycle data (in Figure 2C) is observed with all electrolytes.
DETMSA aids cycle stability, and the capacity retention after
100, 200, 300, 400, and 500 cycles is compared and visually
presented in Figure 3. The DETMSA additive yielded remarkably
improved capacity retention of 73% compared to 39% in the
blank electrolyte case.

The cells were de-crimped inside the glovebox after 500 cycles.
The images of the hard-carbon negative electrodes are presented
in Supplementary Figure S2. The shiny decomposition product
on the anode edges is metallic sodium plating, which is much less
visible with the presence of DETMSA, as presented in
Supplementary Figures S2a and S2d. This demonstrates that
the additive helps prevent Na plating.

Supplementary Figures S2b, c, e, and f show the
morphologies of the non-plating and plating areas on the hard
carbon after cycling 500 times at 1.2 mA/cm2 charge/discharge
rate. As a result of long-term cycling, the particles appeared to
have more frayed edges with blank electrolyte (Supplementary
Figure S2b) compared to the one with DETMSA
(Supplementary Figure S2e). Surface cracking was even
observed in the plating area in the sample without DETMSA,
as shown in Supplementary Figure S2c. The microstructural

FIGURE 3 | The capacity performance of the full cell using different additives. Capacity retention after 100, 200, 300, 400, and 500 cycles at 1.2 mA/cm2 after 5
cycles of formation process at 0.12 mA/cm2.
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observations reveal that the electrolyte with additive DETMSA is
more beneficial in forming a more stable surface on the anode
compared to the blank electrolyte without additive.

XPS was performed to give greater insight into the
combination of compounds which comprise the SEI layer
formed on the anode after formation, 50 cycles, and 100
cycles. Results are presented in Figures 4A–D, and all peaks
are normalised to a standard. As discussed in our previous article
(Chen et al., 2020b), different bonding environments arising from
the different electrolyte decomposition products were present in
the cycled anodes. The C 1s spectra show the peaks
corresponding to the sp3 C–C bonds of hard carbon
(285.0 eV), the C–O bond in sodium alkyl carbonate (Na-O-
(C=O)-O-CH2-R, 286.2 eV, pale orange peak), and the C atom in
the carbonate coordination in sodium alkyl carbonate (Na-O-
(C=O)-O-CH2-R, 289.2 eV, magenta peak) in pristine hard-
carbon electrodes (Jiang et al., 2018; Wotango et al., 2018;
Eshetu et al., 2019; Kim et al., 2019; Yan et al., 2019). These
findings are also reflected in the O 1s spectra in which the peaks
observed at ~532 and ~534 eV are believed to correspond to O
atoms in sodium alkyl carbonate 26. The C 1s core spectra reveal,
upon cycling, the appearance of a new peak located at 290.4 eV
(light green in Figure 4A), which is assigned to Na2CO3. This

peak was not detected in the DETMSA-containing electrolyte,
which indicates a lower degree of electrolyte decomposition had
occurred with the addition of DETMSA. This is also confirmed
from the lower density of the pale orange peak (Na-O-(C=O)-O-
CH2-R, 286.2 eV) in DETMSA-containing electrolyte, which
corresponds to sodium alkyl carbonate. These indicate
DETMSA aids in providing a thinner inorganic inner SEI
layer on the hard-carbon surface than blank electrolyte. The
same trend of the –O-(C=O)-O peak in blank and DETMSA
electrodes in C 1s spectra (Figure 4A, light green) also applied to
the Na Auger peak in O 1s spectra in Figure 4C (light green) since
the Na Auger emission arising from both Na2CO3 and sodium
alkyl carbonate. The peak observed at ~536 eV (grey peak) is
believed to correspond to the O atoms in organic species arising
from the decomposition of the electrolytes. The low intensities of
the grey peak in DETMSA electrolyte indicate a lower
concentration of organic species is present within the SEI.

The peaks at ~685 eV (orange peak) in F 1s spectra which
appeared in the cycled electrodes with blank electrolyte are
attributed to NaF, derived from NaPF6 decomposition (Chen
et al., 2020b; Gorman et al., 2019; Kim et al., 2019; Jiang et al.,
2018). This decomposition is suppressed with the addition of an
additive, as there are no NaF peaks detected in the DETMSA-

FIGURE 4 | The XPS spectra of pristine hard-carbon electrodes and those electrodes after formation, after 50 cycles, and after 100 cycles by using blank and
DETMSA electrolytes. (A) the C 1s, (B) O 1s, (C) F 1s, and (D) N 1s spectra of the hard-carbon electrodes.
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containing electrolyte, as shown in Figure 4B, which is consistent
with the previous discussions.

The N 1s peak (Figure 4D) intensity in the XPS spectra of the
anode was detected only after 50 cycles in the DETMSA-
containing electrolyte. The additive may preferentially deposit
on the cathode and, with time, the oxidized products migrate
toward the hard-carbon anode and get deposited on the anode
surface, which changes the composition and structure of the SEI.
The intensity of this peak is increased in the electrode after 100

cycles. The modified SEI provides a stable guard to prolong the
life of the batteries.

Impedance spectra of the NaMO2/HC full cell were carried out
at different states of charge during the first and the fourth
charging processes (Supplementary Figure S3) to monitor the
resistance during cycling with different electrolytes as presented
in Figure 5A and Figure 5A’. The Nyquist plot is composed of
three overlapping semicircles and a straight sloping line at the
low-frequency end. The full cell with the DETMSA-contained

FIGURE 5 | Impedance spectra (1–10 mHz) of NaMO2/HC at different states of charge (SOC = 100–0%) during the first and fourth charging processes and the
resistance parameters at different x values in NaxMO2 with different electrolytes: (A), (B), and (C) with blank electrolyte; (A’), (B’), and (C’) with DETMSA electrolyte.
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electrolyte showed slightly reduced interfacial resistance at any
SOC compared to the full cell with the baseline electrolyte. The
reduced interfacial resistance enables the cells with the DETMSA-
added electrolyte to offer higher capacity and capacity retention,
as discussed in Figure 3A.

The EIS spectra sets were fitted with the equivalent circuit
model as shown in Figure 5A. It is composed of R1, in series with
3 parallel R/Q. The values of each component at different SOC of
the first and fourth cycles were obtained as presented in
Figure 5B, b’ c, and c’ for NaMO2/HC cells with blank and
DETMSA-containing electrolytes. Resistance R1 (orange)
considered mainly arises from the electrolyte, and the value is
below 15Ω. The first semicircle (corresponding to the R2/Q2 in
the equivalent circle) at the highest frequency yields nearly
constant and low R2 resistance values (green) over all the first
de-sodiation processes with the presence of DETMSA
(Figure 5B’), lower than those obtained in the additive free
cells (Figure 5B). This R2 value is almost doubled in the
fourth de-sodiation process in the cells with blank electrolytes,
while remaining low with the presence of DETMSA as plotted in
Figure 5C and Figure 5C’. The second semicircle at high
frequency displays resistance R3 (purple) values that remain
lower than 20Ω during the whole first de-sodiation process,
whereas when it reached the fourth de-sodiation step, R3 started
with high value in blank and DETMSA electrolytes, ~90 and
~120Ω, respectively. This number dramatically decreased to
below 20Ω and remained almost constant in the following de-
sodiation processes. Considering the differences between the first
and fourth de-sodiation processes, the first and second semicircle
were likely attributed to the passivation surface layer, R2 and R3
surface resistance between electrolyte, passivation layer, and
electrode. The resistance R4 corresponding to the semicircle at
high-medium frequency showed a similar trend; it decreased
initially with the de-sodiation process and the value later
remained almost stable during both the first and fourth cycles.
This semicircle likely corresponds to the charge transfer reaction.
The presence of DETMSA reduced the total resistance value of
the NaMO2/HC full cell.

Compared to the cells assembled with blank electrolyte, the
DETMSA-containing electrolyte offered more stable resistance
with R1, R2, R3, and R4 values during the first and fourth de-
sodiation processes as well as a lower total resistance. It is likely
that in the presence of DETMSA, a more robust and less resistive
SEI is formed, which is consistent with the XPS discussions. The
work highlights the potential benefits for other similar electrolyte
additives that contain Si–N bonds such as hexamethyldisilazane
(HMDS), heptamethyldisila-zane (HTMDS), N, N-diethylamino

trimethylsilane (DEATMS), (trimethylsilyl)isothiocyanate
(TMSNCS), and 1-(trimethylsilyl)imidazole (1-TMSI).

CONCLUSION

We provide the initial results of the effect of the addition of
DETMSA to the electrolyte in a full-cell sodium-ion battery with
a P2-O3 type cathode and a hard-carbon anode; the
demonstration is compared with the blank electrolyte (1M
NaPF6 in EC: DEC) for the first time. The long-term effect of
the electrolyte additives on the SEI components and
electrochemical performance are discussed.

The presence of DETMSA is beneficial for the SEI
formation by offering more robust and less
resistive passivation surface layers, which was validated
by XPS and impedance spectra studies. The use of
DETMSA as an electrolyte additive maximizes the
cycle life to 80% in comparison to the blank electrolyte
(40%) by in situ scavenging of the harmful H2O and HF
evolved in the battery system during cycling.
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