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Self-Fulfilling Prophecies, Quasi-Non-Ergodicity & Wealth
Inequality

By Jean-Philippe Bouchaud and Roger E.A. Farmer∗

We construct a model of an exchange economy in which agents
trade assets contingent on an observable signal, the probability of
which depends on public opinion. The agents in our model are
replaced occasionally and each person updates beliefs in response to
observed outcomes. We show that the distribution of the observed
signal is described by a quasi-non-ergodic process and that people
continue to disagree with each other forever. These disagreements
generate large wealth inequalities that arise from the multiplicative
nature of wealth dynamics which make successful bold bets highly
profitable.

In standard macroeconomic models rational expectations can emerge
in the long run, provided the agents’ environment remains stationary
for a sufficiently long period. [Evans and Honkapohja (2013)].

I. Introduction

Our opening quote from Evans and Honkapohja encapsulates a commonly held
view of macroeconomists: that rational expectations is a justifiable assumption
because, in a stationary environment, smart agents are able to learn, after a
sufficiently long time, about the probability distributions of the economic variables
they care about.
A stochastic process is a sequence of random variables; it is stationary if the

unconditional probability of an element of the sequence is independent of the date
at which it is observed and it is ergodic if averages across possible realizations
in a given period are equal to the time series average of that variable over many
different periods. When ergodicity holds, agents can reliably predict the future
by averaging across events that have occurred in the past. Almost all stochas-
tic macroeconomic models are assumed to be ergodic and, for this reason, the

∗ Bouchaud: Capital Fund Management, Chair of Econophysics & Complex Systems, Ecole polytech-
nique, and Académie des Sciences, Jean-Philippe.Bouchaud@academie-sciences.fr. Farmer: Department
of Economics, University of Warwick and Department of Economics, UCLA, r.farmer.1@warwick.ac.uk.
This paper was written after J. Doyne Farmer suggested that we collaborate as co-leaders of the Instabil-
ity Hub for the ESRC funded Network Plus, Rebuilding Macroeconomics. We thank Angus Armstrong,
Pablo Beker, Michael Benzaquen, Leland E. Farmer, Alan Kirman, Robert McKay, Ian Melbourne, José
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argument summarised in our opening quote has proven persuasive to economists
who have almost universally adopted the rational expectations assumption since
it was introduced into macroeconomics by Robert Lucas fifty years ago (Lucas
Jr., 1972).

In the real world, the random events that influence our lives are neither sta-
tionary nor ergodic. But although this observation is banal, it is not entirely
obvious how to construct a model relevant to economics where ergodicity fails.
In this paper, we propose a model to explain why agents fail to learn by exploit-
ing the concept of quasi-non-ergodicity widely used in the physics literature to
discuss the properties of glasses and “spin glasses” (Anderson, 1989; Debenedetti
and Stillinger, 2001). Quasi-non-ergodicity occurs when a stochastic process is
ergodic at very long time horizons, but where ergodicity breaks down on a time
scale at which realizations from the process might realistically be observed by a
human agent.1 Although the probability distribution of observable variables is
ergodic in the long run; as Keynes famously quipped, “in the long-run we are all
dead”.

To build a quasi-non-ergodic process we assume that agents learn the prob-
ability of a bivariate public signal which we refer to as public opinion. Public
opinion is generated as the average probability over the subjective priors of all
living agents. Public opinion generates an observable binary random variable that
takes one of two values, zero or one. By observing a publicly observable sequence
of zeros and ones, each individual forms a subjective belief of the time-varying
probability that next period’s realization will equal one.

When the agents in our model attempt to forecast public opinion, they are,
in effect, making a forecast of the future beliefs of others. By combining this
assumption with a model where the population of agents changes slowly over
time, we induce a distribution over the probabilities of the binary signal that is
quasi-non ergodic.

To ensure that no agent can exploit ergodicity by being sufficiently patient, we
assume that new-born agents do not use the previous history of the public signal.
Instead, they begin by making naive forecasts that become increasingly more
sophisticated as agents accumulate observations on the signal over time. We show,
in this environment, that it is reasonable for agents to infer the probability of the
public signal using a common constant gain learning rule with gain parameter λ.
We elaborate on this idea in Section III.C and especially in Section IV.A, where
we show that, if all other agents learn with gain parameter λ, using the same
learning rule as all other agents generates a forecast that has a negligible bias
that is difficult or impossible to detect for almost all values of the time varying
probability of the public signal.

We endow our probabilistic world with a market that allows agents to trade two

1For physical processes such as glasses and spin glasses, the ergodic time scale can be astronomically
long at low temperatures. For the model we construct in this paper, it is longer than the life of most
individual human beings.
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securities that are contingent on realizations of the public signal. At each date,
agents solve an inter-temporal optimization program to determine how much of
each security they wish to hold and, because agents have different beliefs, they
are willing to trade with each other.
Even though there is no cost to acquire information, traders in our model do

not coordinate on the true probability. We show that the probability implied
by market prices is a wealth-weighted average of individual subjective beliefs,
and not the unweighted average which corresponds, in our model, to the true
probability. Some people accidentally benefit from the mismatch between these
two probabilities and temporarily earn higher returns from trading in the asset
markets. Interestingly, the resulting distribution of wealth is so unequal that
the probability implied by market prices is influenced by the wealthiest agents
and fails, even asymptotically, to reveal the true probability of the public signal.
Because markets fail to aggregate private information correctly, market prices
cannot be used by individuals to reveal the truth.
The behavior of our model depends on two parameters, δ and λ. δ is the prob-

ability that a person dies and is replaced by a newborn. λ is the weight attached
to the current signal when people update their beliefs. These two parameters are
related to two important concepts, the ergodic time and the memory time.
The ergodic time is the time taken for sample averages to be good approxi-

mations to the moments of the ergodic distribution and it is governed by δ−1.
As δ−1 becomes large the model becomes non-ergodic. The memory time is the
time over which sample averages are a good approximation to future conditional
probabilities and it is governed by λ−1. As λ−1 increases, beliefs become unre-
sponsive to new information. Interesting behavior occurs on time-scales between
these extremes.
The assumption that the stochastic process that generates observable signals

is self-referential makes the evolution of the wealth distribution multiplicative
thereby generating a Pareto tailed wealth distribution which displays large and
empirically plausible wealth inequalities even though all agents receive the same
non-stochastic endowment in every period. Interestingly, we are able to reproduce
the empirical value of both the exponent of the Pareto tail and of the Gini coef-
ficient of real world wealth distributions using model parameters within a wide
interval of reasonable values.2

II. Literature Review

There is an extensive literature on self-fulfilling prophecies in rational expec-
tations models. Early versions of this literature that rely on dynamic indeter-
minacy are discussed in Farmer’s (1999) textbook and more recent models that
display hysteresis and steady-state indeterminacy are reviewed in Farmer (2020)

2A Pareto tail refers to the ability of the Pareto distribution to approximate the density of a non-
negative random variable for values that are two or more standard deviations above the mean.
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and explored further in Farmer (2021). The literature on self-fulfilling prophecies
explains how beliefs drive economic fluctuations, but as with all rational expec-
tations models, eventually everybody agrees with everybody else. Our current
paper, in contrast, explains how a large number of agents interacting in a com-
plete set of financial markets can continue to disagree forever.
Blume and Easley (2006) discuss two reasons why economists have been at-

tracted to the rational expectations assumption. The first is that rational ex-
pectations may be a stable fixed point of an out-of-equilibrium learning mech-
anism. This explanation for rational expectations is the one followed by Evans
and Honkapohja (2001) that we cited in our opening quote and it is dismissed by
Blume and Easley, rightly in our view, because “positive results are delicate” and
“robust results are mostly negative” (Blume and Easley, 2006, page 929).
The second route to rational expectations discussed by Blume and Easley is the

market selection hypothesis introduced by Alchian (1970) and Friedman (1953).
According to this approach, “those who behave irrationally will be driven out of
markets by those who behave as if they were rational”.3 Blume and Easley con-
struct an economy populated by infinitely lived agents with dynamically complete
markets. They show that if there is a Bayesian learner, with the truth contained
in the support of her prior, then all traders who survive will have asymptotically
correct beliefs.
Following Blume and Easley (2006) an extensive literature builds on their main

theme (Sandroni, 2000; Cogley and Sargent, 2008, 2009; Beker and Espino, 2011).
In contrast to this literature, we show that when new agents enter the model, and
when the stochastic process they are learning about is quasi-non-ergodic, the
economy never converges to a rational expectations equilibrium.4 In our setting,
markets do not favor agents with accurate beliefs and prices fail to reveal the true
underlying probabilities.
We are not the first to explore the topic of non-ergodicity for economics. Brock

and Durlauf (2001) have shown that interaction effects can trap the economy in a
path-dependent state. Bouchaud (2013) has shown that the Random Field Ising
model, which has proven useful in physics to understand interactions between
particles, can fruitfully be adapted to understand non-market based interactions
between human beings. And Moran et al. (2020b) have shown that ergodicity
breaking occurs in models of habit formation. Horst (2017) reviews the literature
on ergodicity and non-ergodicity in economic models.5 In contrast to the litera-

3Blume and Easley (2006, page 930).
4In a related paper to ours, Borovička (2000) builds a model with two types of agents with distorted

beliefs but his model does not allow beliefs to adapt to changing information. In Massari (2019), an
interesting scenario is presented where the market selection mechanism fails in the sense that lucky
traders become more wealthy than smart traders (as in our model) but prices still manage to remain
efficient. Our model is also related to the “complex game” model of Galla and Farmer (2013), in which
agents become trapped in chaotic trajectories that never converge.

5Peters (2019) has pointed out that identifying time averages over a single trajectory with ensemble
averages can lead to misleading conclusions, and that special care should be devoted to the choice of an
appropriate, process dependent, utility function. Our model illustrates a different facet of non-ergodicity,
where agents adapt their beliefs based on an observation window much shorter than the time needed to
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ture on non ergodicity, we focus on a case where ergodicity is not strictly broken
but where the time scale over which it applies may be longer than the lifetime of
a human agent.6

Our paper is related to a literature on the equilibria of environments in which
agents have misspecified beliefs. Drawing on work by in the statistics litera-
ture by Robert Berk, (1966), Esponda and Pouzo (2016) define the concept of
a Berk-Nash equilibrium in which each agent follows an optimal strategy given
her beliefs. When beliefs are correctly specified, Berk-Nash equilibrium coincides
with Nash equilibrium. Molavi et al. (2021) construct an asset pricing model
where agents have misspecified beliefs and Molavi (2022) studies the implications
of misspecification of beliefs in three example of common macro models. Both
of these papers prove convergence to a set of beliefs that are closest to the truth
in the sense that they minimize a Kullback-Leibler distance measure. We also
consider the implications of misspecified beliefs but in our model the set of agents
is changing over time. This feature is central to our demonstration that public
opinion is quasi-non-ergodic.

The closest precursor to our paper is Beker and Espino (2011). We modify
their environment in two ways. First, the process that generates the states is
self-referential and leads to a quasi-non-ergodic process. Second, we modify the
environment to allow replacement of agents and we endow new agents with a
random prior. Our work is similar to the discrete time stochastic extensions by
Farmer et al. (2011) and Farmer (2018) of Blanchard’s (1985) perpetual youth
model and the stochastic continuous time version of that model in Gârleanu and
Panageas (2015). The replacement of agents with new people with random priors
is central to our demonstration that beliefs never converge.

Although we use the term ‘beauty contest’, our meaning is distinct from the
work of Morris and Shin (2002) in which a beauty contest is modeled as coordi-
nation game in which payoffs are interdependent. A related literature, following
Angeletos and La’O (2011) and Benhabib et al. (2015) refers to ‘sentiment’ to
reflect a similar idea. In contrast to both of these papers, in our work individuals
alive today try to guess what individuals who will be born in the future will think
an asset will be worth in an environment where there is a no fundamental uncer-
tainty of any kind. Furthermore, in our model, in contrast to these alternative
approaches, there exists a set of dynamically complete futures markets.

An important assumption that drives our results is that agents use constant gain
learning to update their beliefs as in the work of Benhabib and Chetan (2014),
Adam et al. (2016) and Adam et al. (2017). Unlike those papers, we study a
multi-agent economy and we link the true stochastic process to subjective beliefs
through the observation of a public signal which depends on average beliefs. In

reach ergodicity.
6Our model is a close cousin of Kirman’s ant model (Kirman, 1993), also known as the Moran model

(Moran, 1958) in the theory of population dynamics, for which results concerning the time taken to
converge to the ergodic distribution were recently obtained by Moran et al. (2020a). Similar situations
are encountered in business cycle models with self-reflexive confidence effects (Morelli et al., 2020).
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our model the event probability is time dependent, agents continue to disagree
with one another forever and the asymptotic wealth distribution is non-trivial
and displays a Pareto Tail. The random multiplicative growth mechanism that
gives rise to this highly skewed wealth distribution is in the same family of models
as those considered in Bouchaud and Mézard (2000); Benhabib et al. (2011) and
Benhabib and Bisin (2018).

III. A Two-Outcome, Self-Referential Model

We will build up our argument in three stages. In stage one (this section and
section IV), we describe a game in which agents form beliefs about a binary
outcome and we show that our game leads to a quasi-non-ergodic process for the
true belief. In stage two (sections V, VI and VII), we embed our agents in an
endowment economy and we allow them to trade Arrow securities contingent on
the realization of the binary random variable. In stage three (section VI.C), we
show that the contingent securities market can be replaced by debt and equity
and that the equilibria of this more realistic version of our model is the same
as the model in which agents trade Arrow securities. Section VIII derives the
implications of our model for the wealth distribution.

A. The Beauty Contest Game

We assume that N agents play a game in which each person must forecast
the average belief of the other agents about the outcome of a sequence of binary
random events {st ∈ S ≡ {0, 1}}∞t=1. This is a simple version of a game that
Keynes introduced in The General Theory (Keynes, 1936) to motivate his view
that the stock market is driven by what he called ‘animal spirits’.
We represent the belief held at date t − 1 by agent i of the probability that

st = {1} as Pi,t(s = {1}) and we model the self-referential nature of beliefs by
assuming that the true probability of the event, Pt(s = {1}), is equal to the average
belief,7

(1) Pt ≡
N∑
i=1

Pi,t

N
,

where throughout the paper, we will drop the argument s = {1} after P, unless
we explicitly need to distinguish the two outcomes.
One interpretation of our model is that people communicate with others on

social networks and each person forms an opinion of what other people think
by sampling those within her private network. In the limit, when everyone is
connected to everyone else, there is a single value for the beliefs of others which

7More generally, one can consider a model where the true probability is a non-linear, sigmoidal
function of the average belief: see Appendix A.A2. Many of the results discussed in the bulk of the paper
are actually valid in a more general context, though with interesting twists.
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equals the average belief over everyone in the population. We refer to Pt as public
opinion and we refer to the event st ∈ {0, 1} as confidence. In the terminology of
Cass and Shell (1983) confidence is a sunspot.

One possible interpretation of the public signal is the action of an influential
journalist who writes an opinion piece in a widely read financial newspaper. That
opinion piece can be optimistic – we interpret optimism as the event st = 1 –
or pessimistic, we interpret pessimism as the event st = 0. The probability that
the journalist will write an optimistic article is equal to the average degree of
optimism in the population as measured by public opinion.

In Section VI.C we provide an interpretation of our model in which the public
signal triggers a common decision on the part of firms to pay dividends in period
t. In the absence of self-referential effects, the payment or non-payment of a
dividend would be irrelevant to the value of the firm. In contrast, in our model
the decision to pay a dividend triggers trades between agents in the asset markets.

B. A Model Where Beliefs are Non-Ergodic

In this section we construct a model where people are infinitely lived least-
squares learners and we show that in this version of our model public opinion is
described by a non-ergodic stochastic process.

We assume that people live forever and although they initially disagree they
are exposed to a common sequence of the realizations of a binary signal. Each
person’s prior is an independent random draw from a uniform measure on [0, 1].
The following equation describes how an individual’s belief would evolve if he
were to assume that P is time invariant.

Pi,t+1 = Pi,t

(
1− 1

t

)
+

st
t
,(2)

Pi,1 = zi,0,(3)

where zi,0 is an independent draw from a uniform measure on [0, 1]. Using the
definition of Pt from Eq. (1), it follows that for large N , the evolution of Pt is
given by the equation

Pt+1 = Pt

(
1− 1

t

)
+

st
t
,(4)

where st = 1 with probability Pt and 0 otherwise. In this case Pt converges to a
number in [0, 1], but that number is different for every realization of {Pt}∞t=1. This
representation of our model is an economic analogue of the Pólya urn model, a
stochastic process that is well known to be non-ergodic (Pemantle, 2007).

Before providing examples of data generated by equations (2)–(4), we first
provide some definitions and we state a result from stochastic process theory: the
mean ergodic theorem.
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DEFINITION 1: A stochastic process is a sequence of random variables {xt}t∈N.
A stochastic process is stationary if the joint probability distribution of

(xt1 , xt2 , . . . , xtk),

is the same as the probability distribution of

(xt1+T , xt2+T , . . . , xtk+T ),

for all t1, t2, . . . , tk, T ∈ Z.

Let F be the forward shift operator, let ω ∈ Ω be a draw from a stochastic
sequence with σ-field F , let Lp(P) be the space of F−measurable functions on Ω
and let P be a probability measure on (Ω,F).8

Given these definitions we have the following mean ergodic theorem.

THEOREM 1 (Mean Ergodic Theorem): Let p ∈ [1,∞). Then for any f ∈
Lp(P), the limit

lim
T→∞

f(ω) + f(Fω) + . . .+ f(F T−1ω)

T
= g(ω)

exists in Lp(P). Further, the limit g(ω) is given by the conditional expectation

g(ω) = EP(f |I),

where I is the invariant σ-field defined as

I = {A ⊆ Ω : FA = A}.

A stochastic process that satisfies the assumption of the mean ergodic theorem
is said to be ergodic for the mean and when the conditions of the theorem apply to
a stochastic process {xt}t∈N, Theorem 1 implies that sufficiently long time series
averages of xt will converge to the mean of the marginal stationary distribution of
P at a point in time. Similar concepts can be used to define ergodicity of higher
moments and ergodicity of measures.
To illustrate the practical implications of non-ergodicity, Figure 1 plots three

different realizations of the process modeled by equations (2) and (3) for an econ-
omy with half a million people. The solid black lines are the values of Pt at each

8Ω is the space of sequences which take values in a measurable space Ξ, with σ-algebra B, and F is
the product σ-field. Define a measure P on (Ω,F) which describes the evolution of a process {xt}t∈N
over time. Let p ∈ [1,∞) and define Lp(Ω,F ,P) as the space of equivalence classes

[X] := {Y : X = Y P-almost everywhere}

of F-measurable functions X such that
E(|Xp|) < ∞.
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Figure 1. The Evolution of Average Beliefs When Agents are Least-Squares Learners with

Infinite Lives

date and the gray shaded areas enclose the 20’th and 80’th percentiles of the dis-
tribution of beliefs. Each run is initialized with 500,000 independent draws from
a uniform distribution.

A remarkable feature of these plots is the rapid convergence of opinion; almost
all disagreement vanishes after 75 rounds. But although people converge on a
given belief quite rapidly, they converge to a different value of Pt for every se-
quence of draws {st}. When people live forever and are least-squares learners,
the stochastic process that governs the evolution of Pt is non ergodic. Although
this example is instructive, it is not very interesting as a theory of why trades
take place in asset markets. Everyone’s belief eventually converges to the truth
and although the truth is itself a function of history, eventually people all agree
with one another.
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C. A Model Where People Disagree Forever

To generate a theory of permanent disagreement we modify the model in two
ways. First, we allow the set of decision makers to change over time by recognizing
that people have finite lives. Second, we replace the assumption of least-squares
learning with an alternative constant gain learning algorithm in which people
discount the far-away past.

Although one could potentially introduce one of these assumptions without the
other, it is natural to make both assumptions together. Suppose, for example,
we were to assume that people die but that everyone continues to forecast the
future conditional probability using observations beginning from the date they
were born. In this case, more recent observations will have more weight in the
construction of public opinion because the age distribution of the population will
decline exponentially. This observation suggests that a more accurate conditional
forecast can be obtained by placing higher weight on more recent observations and
that the additional weight placed on more recent observations should be related to
the probability of death. In other words, because agents are aware that the world
changes, they adapt their learning rule accordingly. This intuition is confirmed
by numerical simulations. We conducted a series of simulation experiments in
which a fraction of the population was assumed to be constant gain learners
and the remaining fraction was assumed to consist of least-squares learners. We
found that for all fractions between 0 and 1, the average mean-square error of
the constant-gain learners was substantially lower than that of the least-squares
learners. We conclude that agents who place more weight on the recent past will
attain a competitive advantage over least-squares learners and, appealing to that
logic, we will assume for the remainder of this paper that agents are constant gain
learners with the same constant-gain learning parameter.9

To make these ideas precise, we assume that people die with a probability δ
that is independent of age and that when a person dies, she is replaced by a new
person with belief Pi = zi where zi is a random variable drawn from a uniform
measure on [0, 1]. We keep track of who lives and who dies by introducing a
random vector xt ∈ X ≡ {0, 1}N , where xi,t = 1 with probability 1 − δ and 0
with probability δ. If a person who was alive in period t− 1 survives into period
t then xi,t = 1. If she dies then xi,t = 0. Under these assumptions, the evolution
of the beliefs of the person with index i is given by the expression

(5) Pi,t+1 = xi,t[(1− λ)Pi,t + λst] + (1− xi,t)zi,t,

where λ ∈ (0, 1), zt ∈ Z ≡ [0, 1]N and each element of zt is an independent
draw from a uniform distribution. The exact form of the distribution of zt is not
important for any of our results. One could also assume that zi,t is a weighted
sum of the average belief Pt and a uniform random variable. Provided the weight

9See section IV.A for a further discussion of this point.
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of the latter is non zero, this would not change the structure of the model at all,
only the meaning of the parameters. A slightly different specification is to assume
that people never die but make occasional observation errors, i.e. mistake st for
1 − st with a small rate δ. Our results turn out to be robust against changes in
the precise specification of the model.

Coming back to Eq. (5), the term in square brackets on the right side represents
the way that a person who is alive in two consecutive periods updates her belief.
She uses constant gain learning with gain parameter λ where a value of λ closer
to 1 means that the person puts more weight on recent outcomes. This term
is multiplied by xi,t to reflect the fact that it applies only if person i survives
into the period. The second term on the right side of Eq. (5) is multiplied by
1− xi,t. This reflects the assumption that if agent i dies, her position is filled by
a new-born person who starts life with a random subjective belief, zi,t.

In the limit, as N → ∞ we can combine equations (1) and (5) to obtain the
following expression for the public opinion,

(6) Pt+1 = (1− δ) [(1− λ)Pt + λst] +
δ

2
.

Figure 2 plots three different realizations of the process modeled by equation
(6) for a value of δ = 0.02 and λ = 0.14. The solid black line, the dashed line
and the line marked by circles are the values of Pt for three different draws from
the stochastic process and the gray shaded areas enclose the 20’th and 80’th
percentiles of the distributions of beliefs. Our economy contains 500,000 people
and we initialized all three sequences with the same value, P0 = 0.5.

These simulations demonstrate that knowledge of public opinion today provides
very little information about the state of public opinion in the near future. All
three trajectories begin at the same point, but they quickly diverge from each
other.

D. Quasi-Non-Ergodicity

In this section we introduce the concept of quasi-non-ergodicity and we explain
how this concept helps us to understand the behavior of the stochastic sequences
depicted in Figure 2. Our goal is find a way to express the idea that a stochastic
process may be ergodic over very long time horizons, but ergodicity may be
irrelevant for all practical purposes if the time scale over which convergence is
achieved is longer than the lifespan of a human observer, given by δ−1.

To approach this idea we first rewrite the stochastic process defined by equation
(6) as a sequence of probability measures, {P}∞t=1, generated by the transition
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Figure 2. The Evolution of Average Beliefs When Agents are Constant-Gain Learners with

Finite Lives

operator T ,

(7) T [P](P′) ≡
∫ 1

0
dPP(P)

[
Pd

(
P′ − (1− δ)[(1− λ)P+ λ]− δ

2

)
+ (1− P)d

(
P′ − (1− δ)(1− λ)P− δ

2

)]
.

Here d(·) is the Dirac delta function and the symbols P and P′ refer to probabilities
in consecutive periods.10

10A more usual notation is δ(·) for the Dirac delta function. We use d(·) to avoid confusion with δ,
which we reserve for the age-invariant probability of death.
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The measure P(P) is the probability that P ∈ A for any set A ⊂ [0, 1]. For given
P, s = 1 with probability P and s = 0 with probability 1 − P. The Dirac delta
function assigns a value to P′ for each of these two outcomes and the measure
P assigns a probability to each of the possible values of P. Integrating over all
of these possible values, weighted by P, generates the next period’s probability
measure P ′ = T [P].

For this definition of P the probability densities at dates t and t+1 are related
by the equation

Pt+1 = T Pt,

and the density at t is related to the initial measure P0 by the expression,

Pt = T t P0,

where T t is the t’th iterate of the operator T . Notice that P defines a probability
density over probabilities. Complex systems are often defined as probabilistic
systems for which probabilities are themselves unknown and must be described
with probabilities, as argued by Parisi (2007) and, in an economic context, in
Bouchaud (2019).

Armed with this representation of the system, we are ready to introduce two
preliminary concepts, distance from equilibrium and ergodic time that we will use
to define our central concept: quasi-non-ergodicity.

DEFINITION 2 (Distance from Equilibrium): Let the initial value of a random
variable be x0 = xt=0 ∈ Ξ, corresponding to an initial distribution P0(x) with
unit mass localized on x0. The distribution of xt at time t is obtained from P0

as Pt = T tP0. The similarity between the conditional distribution Pt and the
stationary distribution P∞ can be characterized by a distance D ∈ [0, 1] defined
as (Boyd et al., 2004)

D(Pt, P∞|x0) = sup
S

∣∣∣∣∫
S
dPt −

∫
S
dP∞

∣∣∣∣ ,
where S ∈ B is any subset of Ξ.

The argument of the sup operator measures the difference in mass that Pt and
P∞ attribute to any subset of the space Ξ and the distance between the two
measures, represented by D, is small when Pt and P∞ assign similar probabilities
to all possible subsets of Ξ.

Next, we need a way to measure how long it takes for a sequence of probability
distributions to converge to an invariant measure. That requirement leads us to
define the concept of ergodic time.

DEFINITION 3 (Ergodic Time): An ergodic stationary stochastic process {xt}t∈N
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has ergodic time Te(ϵ) if∫
dP∞(x0)D(Pt>T , P∞|x0)) ≤ ϵ.

In words, for a given confidence level ϵ, the ergodic time Te(ϵ) is the time beyond
which the difference between the conditional distribution and the stationary dis-
tribution of the random variable x is no greater than ϵ. Finally, we are ready to
introduce our central concept.

DEFINITION 4 (Quasi-non-ergodicity): If Te(ϵ) is larger than some large time
K we say that the stochastic process {xt}t∈N is K − ϵ−quasi-non-ergodic.

In the rest of the paper we drop the terms K and ϵ and refer simply to quasi-
non-ergodicity. Informally ϵ is a small number and K is greater than the lifespan
of a typical observer.

IV. Characterizing the Invariant Measure

In this section we characterize the properties of the invariant measure asN → ∞
and the period length ∆t → 0. We refer to this as the large N continuous time
limit.
Introducing the change of variable u = P− 1

2 , we show in Appendix A that in the
large N continuous time limit, Pt(u) converges to a symmetric beta-distribution
with parameter α = δ/λ2,

(8) P∞(u) =
Γ(2α)

Γ2(α)

(
1

4
− u2

)α−1

.

This distribution is hump-shaped for α > 1 – this is the case where δ > λ2 – and
U-shaped when α < 1 – this is the case where δ < λ2. In our baseline calibration
we choose α = 1, which coincides with δ = λ2, but all of our results are robust
to variations in α in a wide range of values between α = 0.5, for which P∞(u) is
U-shaped and α = 2, for which it is hump-shaped.11

The properties of this invariant measure depend on two parameters, δ and λ.
The parameter δ is closely related to the ergodic time. Indeed, Moran et al.
(2020a) have shown that if we fix α and take δ → 0 that Te(ϵ) is of order δ−1.
The parameter λ has a similar interpretation in terms of the memory time.

DEFINITION 5 (Memory Time): Let person i use the rule

(9) Pi,t+1 = (1− λ)Pi,t + λst

11When δ → 0, the distribution of P becomes highly peaked around 0 and 1. In fact, such long
polarisation periods was Kirman’s motivation for introducing his ant recruitment model for opinion
dynamics (Kirman, 1993). See also Young (2002).



VOL. NO. SELF-FULFILLING PROPHECIES 15

to forecast future value of PT for T > t. The memory time, Tm(ϵ) is the number
of periods after which the observation st has weight less than or equal to ϵ. It is
defined by the expression

(1− λ)Tm = ϵ.

It follows from this definition that, holding ϵ fixed, Tm(ϵ) is of order λ
−1.

Define the i’th person’s degree of disagreement, Di,t as the difference between
the belief of agent i and the average belief across all members of the population.
In symbols,

(10) Di,t ≡ Pi,t − Pt.

When we fix α and take λ → 0 we are able to obtain an exact expression for the
stochastic evolution of Di,t, in the continuous time limit,

Di,t+1 = xi,t

[
(1− λ)Di,t + δ

(
(1− λ)Pt + λ(st −

1

2
)

)]
(11)

+ (1− xi,t)

[
zi − (1− δ)

(
(1− λ)Pt + λst +

δ

2

)]
.

We show in Appendix B, that the unconditional expectation of Di, converges to
zero almost surely and that, in the large-N – small-λ limit, its variance is given
by the expression,

(12) V[Di] =

[
λ

2 + (α− 1)λ

]
α(α+ 2)

6(2α+ 1)
+O(λ3), α =

δ

λ2
.

The variance of Di is a measure of disagreement between agents in the uncondi-
tional limiting distribution. For fixed λ, the disagreement tends to zero as δ → 0.
In this case, people never die and are never replaced by agents holding fresh opin-
ions. Correspondingly, P∞(u) has mass points at zero and 1: everybody agrees
in the limiting distribution that either P = 0 or P = 1. If α = δ/λ2 is small, but
not equal to zero, public opinion switches between these two mass points with a
frequency that vanishes asymptotically as α → 0.
In the opposite case as α → ∞, P∞(u) has a single mass point at u = 1/2

and V[Di] converges to the variance of the distribution of initial beliefs. When
this distribution is uniform, as we assumed to derive Eq. (12), V[Di] → 1

12 . In
this case agents never agree because they die much faster than they forget their
initial beliefs. Indeed, λ2 → 0 means that the memory time Tm, defined above, is
infinite.
In our simulations we chose a time interval of one week and we set δ = 3.9×10−4.

These choices imply that life expectancy, averaged over people of all ages, is
approximately 50 years which accords well with crude estimates from US actuarial
tables. For this fixed value of δ, the standard deviation of disagreements is plotted
as a function of α in Figure 3, for α ∈ (0.2, 2). When α = 1, the standard deviation
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Figure 3. How Disagreement Varies with α

of Di is approximately 4%, corresponding to a memory time λ−1 of 50 weeks.
Figure 3 demonstrates that although the standard deviation of D varies with α,

it remains within a very small range of approximately 3.5% to 4.5%. This level of
disagreement is the same order of magnitude as that reported by Daniel Kahne-
man (2021) for the dispersion of the estimates of experts using common informa-
tion. As we will show in our simulations, it is large enough to generate substantial
discrepancies between the market price and the true price, and a “fat” power-law
right tail of the wealth distribution when people make bets based on their sub-
jective beliefs.

A. Can Some Agents Learn Better Than Others?

In this section we explore the question: Is it reasonable to use constant gain
learning with gain parameter λ, given that everyone else in the economy is using
the same forecast mechanism? We use the word reasonable because the use of con-
stant gain learning in this environment is clearly not optimal since the individual
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learning rule, given by Equation (5),

(5) Pi,t+1 = (1− λ)Pi,t + λst,

is different from the evolution of the true probability, given by Equation (6),

(6) Pt+1 = (1− δ) [(1− λ)Pt + λst] +
δ

2
.

The difference between the individual learning rule and the true evolution of
public opinion arises because agents using naive constant gain learning neglect to
account for the arrival of new agents at rate δ.

Consider the problem of a single individual, born at date j, who observes the
sequence {st}Tt=j . The optimal Bayesian forecast of Pt is the solution to a non-
linear filtering problem where st provides a noisy signal of the hidden state variable
Pt.

12 It follows that constant gain learning is not the best that an arbitrary
observer with limitless computational power could achieve. But in the real world
people do not have limitless computational power and it may be sufficient to use
a simpler rule that has a low predictive error.

So how bad is the constant gain learning rule? Consider the following repre-
sentation of this rule which we refer to as the R-estimator,

Rt+1 =
t∑

j=0

(1− λ)t−jλsj + (1− λ)t+1R0.

The following discussion is based on an approximation that is valid for time
periods in the interval λ−1 ≪ t ≪ δ−1 which, for the case α = 1, is between one
year and fifty years. On time scales, where λ−1 ≪ t there is enough data to form
estimates of Pt and for time scales where t ≪ δ−1, Pt is approximately constant.

On these time scales the R-estimator is conditionally biased, with a bias given
by the expression,

E[Rt − Pt|P0] ≈
δ

λ

(
P0 −

1

2

)
, P0 := Pt=0,

where the expectation is taken with respect to the true conditional time-varying
probability that st = 1. This bias term reflects the fact that an agent who uses
constant gain learning neglects the mean-reverting force towards P = 1/2 which
is induced by the birth of new agents with priors centered on Pi,t = 1/2.13

12Although this problem is superficially similar to the problem of forecasting the state in linear state
space model, it is complicated by the facts that the variance of {Pt} is time varying and that the shocks
to the state equation and the measurement equation are correlated. The optimal Bayesian forecast could
be found using non-linear methods such as the particle filter, but applying methods of this kind are
costly.

13Note that the unconditional mean of P0 is equal to 1/2, which implies that E[RT − PT |P0 → 0 as
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Could this bias be detected by the agent over time periods of order λ−1; that
is, over lengths of time consistent with the learning window? For that to happen,
the agent would need to observe a series of binary outcomes that were statistically
implausible given her current belief about the value of Pt. But for most of the
range of Pt, the variance of the R-estimator is large relative to its bias. The
standard deviation of the R-estimator is approximated by the expression,

SD[Rt] ≈
√

λ

2
P0 (1− P0).

To detect the bias, the standard deviation of the estimator must be small relative
to the bias. This condition is represented by the inequality,√

λ

2
P0 (1− P0) ≪ λ

∣∣∣∣P0 −
1

2

∣∣∣∣ ,
where we have used the fact that δ = αλ2, and the special case α = 1. These
two terms have a component that depends on Pt and a component that depends
on λ. In Figure 4 we set δ = 3.9 × 10−4 and we plot the absolute bias of the
R-estimator as the solid line and its standard deviation as the dashed line. Both
plots are functions of Pt. This figure makes clear that, except for a sliver of values
close to either of the extreme possible values of Pt, the bias of Rt is swamped by
its standard deviation.14

This result holds because, most of the time, the assumption that Pt is a ran-
dom walk is a good approximation to the truth. But when Pt gets close to the
boundaries, an observer will begin to observe more mean reverting values than
she would consider to be statistically plausible. This anomalous behavior occurs
when P0 < ∆ or P0 > 1 − ∆, where ∆ is a thin sliver of width δ2/2λ3 = O(λ).
Apart from these rare situations, an observer, using the R-estimator, would not
be able to distinguish the small bias in her estimate from measurement noise.15

In conclusion, using a simple constant gain learning estimator leads to a negli-
gible bias which is difficult or impossible to detect most of the time. Of course,
some smart agents could be aware that the death probability is non zero and ac-
count for it in their update rule. However, this would not necessarily make them
more successful in the securities market that we will set up in the next section.16

T → ∞. In words, the T -step ahead R-estimator is asymptotically unbiased.
14We have also constructed this figure for values of α = 0.5 and α = 2. The results are qualitatively

identical to those we report in Figure 4, reflecting the fact that our results are not sensitive to the value
of α for a large range of values that includes our chosen parameterization of α = 1.

15In principle, this bias could be reduced by choosing a slightly larger value of λ, i.e. a slightly faster
rule. But this increases the mean-square error of the estimator. The trade-off between the two would
again lead to a negligible improvement of the bias of order O(λ).

16See the detailed discussion of this important point in section VIII.B below.
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Figure 4. A Comparison of the absolute bias of the R-estimator with its standard error

V. Heterogeneous Beliefs in a Market Economy

We have built a model to describe the evolution of public opinion. But what
happens if people trade with other people with different beliefs? To answer that
question we construct an endowment economy where each person is endowed with
ε units of a non-storable commodity in every period in which she is alive. We
further assume that people trade a complete set of Arrow securities, indexed to
the exogenous state, which we represent by σ. We use the adjective exogenous, to
distinguish the vector σ from a vector of endogenous states that we introduce in
Section V.C.

We locate our agents in a market economy and we allow them to make trades
on all publicly observable events. These events include, not only the binary signal
that we refer to as public opinion, but also the realization of who lives and who dies
in every period. This complication introduces 2N new markets since every agent
must, in a complete markets economy, trade life insurance contracts contingent
on the survival of everyone alive.

Much of Section V involves the introduction of notation to deal with these
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additional life-insurance markets. Our main results refer to the large N limit
and, in this case, there is no aggregate risk from the mortality of individual
agents. Although this means that the large N results are much cleaner, we need
the finite N machinery to compute the difference between true probabilities and
market-implied wealth weighted probabilities. It is this distinction, which does
not disappear in the large-N limit, that drives our main results.

A. The Definition of the Exogenous State

The exogenous state has three elements. The first element, s ∈ S ≡ {0, 1},
is the realization of a public signal. The second element, x ∈ X ≡ {0, 1}N ,
is a vector that differentiates newborns from survivors and the third element,
z ∈ Z ≡ [0, 1]N , encodes the conditional probabilities of newborns.17 Putting
these pieces together we have that σ ≡ {s,x, z} ∈ Σ ≡ S × X × Z. We use a
prime to denote the state in period t+ 1.
At each date, people trade a complete set of Arrow securities which depend not

just on s′, but also on the realizations of x′ which encodes who lives and who dies.
There are 2N possible realizations of x′ where the i’th element of x′ equals {1}
if person i survives and {0} if she dies. The σ′ = (s′,x′) security costs Q(σ′|σ)
commodities at date t and pays 1 commodity at date t + 1 if and only if state
σ′ occurs. We assume that everybody has different beliefs, represented by Pi(σ

′)
that the state at period t+ 1 is σ′ = (s′,x′).
This completes our definition of the exogenous state. In the subsequent subsec-

tion we define the objectives and constraints of individual agents and we derive
a set of rules that represents their behavior in an exchange economy.

B. A Model of Rational Choice

We assume that agents maximize the discounted expected utility of the loga-
rithm of consumption. This assumption implies that our agents choose to spend
a fixed fraction of wealth in each period on the consumption good. The novel
aspect of our approach is the decision rule we derive which shows how agents
allocate their wealth to the two Arrow securities. This decision rule depends on
their subjective beliefs, which evolve in the manner described in Section III.C.
First, we break wealth into two components; human wealth and financial wealth.

The human wealth of person i is defined by the recursion,

(13) Hi(σ) = ε+
∑
σ′

Q(σ′|σ)x′iHi(σ
′).

Next, we define financial wealth of person i, ai(σ), to be the value of Arrow
securities brought into period t. The total wealth of person i is the sum of human

17We generate this vector for all i, including survivors from the previous period. Notice, however, that
zi only enters the model when multiplied by 1− xi which is zero for survivors.
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wealth and financial wealth

(14) Wi(σ) = Hi(σ) + ai(σ).

Each period, the agent faces the following budget equation,

(15)
∑
σ′

x′i(σ
′)Q(σ′|σ)a′i(σ′) + ci(σ) = ai(σ) + ε.

The right side of Eq. (15) represents a person’s available resources at date t. The
left side represents the ways those resource can be allocated; to consumption or
to the accumulation of a bundle of Arrow securities that will be available for
consumption or saving in the subsequent period.

We model the consumption and asset allocations of each person as the unique
solution to the following maximization problem:

PROBLEM 1:

(16) Vi[Wi(σ)] = max
W ′

i (σ
′)

[
log ci(σ) + β

∑
σ′

Pi(σ
′)x′i(σ

′)V ′
i [W

′
i (σ

′)]

]

such that

(17) Pi(σ
′) = x′i[(1− λ)Pi(σ) + λs] + (1− x′i)z

′
i,

and

(18)
∑
σ′

xi(σ
′)Q(σ′|σ)Wi(σ

′) + ci(σ) ≤ Wi(σ).

In Section III.C we derived an expression for the evolution of person i’s beliefs.
Eq. (17) reproduces that equation using the definition of σ and replacing time
subscripts with prime notation.

Eq. (18) is derived by combining equations (13) and (15) with the assumption
that agents must remain solvent. Vi[Wi(σ)] is the maximum attainable utility
given wealth Wi(σ), ci(σ) is date t consumption and β is the common discount
rate. Following common usage we refer to the consumption decision that solves
Problem 1 as the policy function and to the maximum attainable utility as a
function of wealth as the value function.

PROPOSITION 1: The policy function and the value function for Problem 1 are
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given by Equations (19) and (20),

ci(σ) = [1− β(1− δ)]Wi(σ),(19)

Vi[Wi(σ)] =
1

1− β(1− δ)
log[Wi(σ)] +B,(20)

where B is a constant that can be computed but its value is irrelevant for our
purpose.
The wealth of the person with label i evolves according to Eq. (21)

(21) Wi(σ
′) = x′i

[
βPi(σ

′)

Q(σ′|σ)
Wi(σ)

]
+ (1− x′i)Hi(σ

′),

where Hi(σ) is defined by the recursion Eq. (13).

The first term on the right side of Eq. (21) is the wealth evolution equation for
person i if she survives into period t + 1. The second term on the right side of
the equation resets person i’s wealth to Hi(σ

′) if she dies and is replaced by a
newborn. For a proof of Proposition 1, see Appendix C.

C. Definition of Equilibrium

We have constructed a theory of individual choice. According to this theory,
peoples’ decisions are a function of the exogenous state and of the stochastic
process for prices. In this section we construct an equilibrium theory where prices
are determined by setting the excess demands for goods and the excess demands
for Arrow securities, in every period, to zero. First, we define a new object; the
endogenous state.
The endogenous state has two elements. The first element, P ∈ P ≡ [0, 1]N

is a vector of subjective conditional probabilities with generic element Pi. The
second element, W ∈ W ≡ RN

+ is a vector of wealth positions with generic
element Wi. Putting these pieces together, the endogenous state is represented
by y ≡ {P,W} ∈ Y ≡ P×W.
Next, we derive a function G(·) to explain how the endogenous state evolves

through time. Our approach is a relatively standard application of recursive equi-
librium theory (Stokey et al., 1989). Our innovation, over conventional dynamic
stochastic general equilibrium models, is to provide a self-referential theory of
learning in which the economy does not converge to a rational expectations equi-
librium.
We begin with a definition of recursive equilibrium:

DEFINITION 6 (Recursive Equilibrium): A recursive equilibrium is a price func-
tion Q : Σ2 → Q ≡ [0, 1]2N and a state evolution function G : Y ×Σ ×Q → Y
with the following properties:



VOL. NO. SELF-FULFILLING PROPHECIES 23

1) The state evolution function, G, is given by equations (17) and (21). This
function determines the evolution of the vector of beliefs, P , and the vector
of wealth positions, W .

2) When the Arrow security prices are given by Q(σ′|σ) and when y′ = G(y; ·)
the implied consumption plan solves Problem 1.

3) The goods market clears for all σ′ where ci(σ
′) solves Problem 1:

(22)
N∑
i=1

ci(σ
′) = Nε.

4) The Arrow securities markets clear for all σ′ where ai(σ
′) = Wi(σ

′)−Hi(σ
′):

(23)
N∑
i=1

ai(σ
′) = 0.

In Proposition 2, we show that, in equilibrium, human wealth is a number that
does not depend on the state and we derive an expression for the equilibrium
price function Q(σ′|σ).

PROPOSITION 2: In a recursive equilibrium:

1) Individual human wealth Hi is independent of σ and is the same for all
agents. It is given by the expression,

(24) H =
ε

1− β(1− δ)
.

2) The price of an Arrow security is given by Eq. (25),

(25) Q(σ′|σ) = β

∑N
i=1 Pi(σ

′)x′iWi(σ)

N(σ′)H
,

where N(σ′) =
∑

i x
′
i is the number of surviving agents at time t + 1 and

N(σ′)H is aggregate human wealth.

For a proof of Proposition 2 see Appendix D. In the next section, we will show how
the pricing function, Q(σ′|σ), depends on the assumptions about the information
structure and the number of agents.

VI. Equilibrium Behavior Under Two Different Assumptions

Next, we study the evolution of asset prices and the wealth distribution under
two different assumptions. First, in Section VI.A, we assume that Pi(σ

′) = P(σ′)
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for all i We call this the common knowledge economy and we refer to the outcome
of this version of our model as a rational expectations equilibrium. In Section
VI.B we allow beliefs to differ and we ask and answer the question: Do markets
reveal enough information for the economy to converge to a rational expectations
equilibrium? We call this the heterogeneous beliefs economy.

A. The Common Knowledge Economy

When beliefs about the probability of s′ are common, and s′ and x′ are inde-
pendent, we can write Eq. (25) for Q(σ′|σ) as follows,

Q(σ′|σ) = βP(s′)p(x′)θ(x′),(26)

where, p(x′) is the commonly held probability for the vector of survival outcomes
x′ and P(s′) is the commonly held probability for the next state being s′ = 1 or

s′ = 0. Furthermore we have used the equality
∑N

i=1 x
′
i = N(σ′) to define the

variable θ(x′) as follows,

θ(x′) = 1 +

∑N
i=1 ai(σ)x

′
i

N(σ′)H
.

The term θ(x′) corrects Arrow security prices for mortality risk and we need to
keep track of this term in our simulations to ensure that asset markets clear. This
term disappears in the large N limit because each cohort is perfectly insured. As
N → ∞, θ(x′) → 1 and we obtain the limiting expression18

(27) Q(σ′|σ) = βP(s′)p(x′).

Consider next the following expression for the evolution of wealth over time
which follows from from Eq. (21), Eq. (26) and the fact thatH is state independent
and common to all individuals,

(28) Wi(σ
′) = x′i

[
Wi(σ)

θ(x′)

]
+ (1− x′i)H.

In the large N limit, there is no aggregate mortality risk and, in this case, we
obtain the following expression for Wi(s)

(29) Wi(s
′) = x′iWi(s) + (1− x′i)H.

Eq. (29) implies that in the large N economy, the wealth of the person with index
i, contingent on her survival, is time invariant.

18Notice that plimN→∞ N−1
∑

i ai(σ)x
′
i = 0, using market clearing and assuming that

plimN→∞ N−2
∑

i a
2
i = 0, which turns out to be true provided δ remains fixed as N → ∞. Hence

plimN→∞ θ(x′) = 1.
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In a finite population, the variable θ(x′) plays a non-trivial role. Suppose, for
example, that in period 1 there are two people. One person has positive financial
assets equal to a and the other has negative financial assets equal to −a. In
that economy, the rich person consumes more than the poor person for as long
as they are both alive. But if one person dies and is replaced by a new person
with wealth H, all debts are canceled and the economy enters an absorbing state
with an egalitarian wealth distribution. The wealth reallocation that occurs as a
consequence of mortality risk is encoded into the random variable θ(x′).

B. The Heterogeneous Belief Economy

Next, we turn to the case where people have different beliefs. In this case,
Pi(σ

′) can no longer be factored out of the summation in Eq. (25) and instead of
Eq. (26) we obtain the following expression for the price of an Arrow security,

(30) Q(σ′|σ) = βp(x′)

(∑N
i=1 Pi(s

′)Wi(σ)x
′
i

N(σ′)H

)
≡ βPimp(σ

′)p(x′),

where Pimp(σ
′) is defined as the probability of state σ′ that would be inferred from

market prices if market participants believed that they were living in a common
knowledge economy. We henceforth refer to Pimp(σ

′) as the implied probability.

Since who dies and who survives is independent from both wealth and beliefs
one has, in the large N limit,19

(31) plim
N→∞

(∑N
i=1 Pi(s

′)Wi(σ)x
′
i

N(σ′)H

)
= plim

N→∞

(∑N
i=1 Pi(s

′)Wi(s)

NH

)
,

where we distinguish N , which refers to the number of people in state σ at date
t, from N(σ′), which is the number of survivors in state σ′ at date t+ 1.

In the large N limit, Pimp(σ
′) depends on the future realisation of s but not on

the mortality state. It is given by the expression,

(32) Pimp(s
′) ≡

∑N
i=1 Pi(s

′)Wi(s)

NH
.

Pimp(s
′) is the wealth weighted average probability and it differs from the true

probability, P(s′), which is the unweighted average of individual subjective prob-
abilities.

19We use here the fact that if ηi and ξi are independent random variables, then

plim
N→∞

N−1
N∑
i=1

ηiξi = plim
N→∞

(
N−1

N∑
i=1

ηi

)(
N−1

N∑
i=1

ξi

)
,

and choose ηi = PiWi and ξi = x′
i.
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Using the definition of Pimp(s
′), the analogue of Eq. (29) for the heterogeneous

belief case is given by Eq. (33),

(33) W ′
i (s

′) = x′i
Pi(s

′)

Pimp(s′)
Wi(s) + (1− x′i)H.

Pi andWi are strongly coupled by the dynamics of individual wealth accumulation,
Eq. (33), and because of this strong coupling we cannot split Pimp(s

′) into the
product of P(s′) and plimN→∞

∑
i(Wi(σ)/N), even asymptotically, as we did in

the common knowledge economy. This failure of independence generates fat-tails
in the wealth distribution and it implies that the implied probability, Pimp(s

′),
and the true probability, P(s′), can differ even in the large N limit.20

C. Debt and Equity in the Heterogeneous Belief Economy

We have derived explicit trading rules for agents who buy and sell Arrow secu-
rities. But there is no reason to restrict ourselves to securities of this kind and the
same equilibrium we described above can be supported by any set of securities
with independent payoffs that span the space of possible outcomes. In this sub-
section we show that, in the large N limit, an equilibrium can be supported by a
security that pays one commodity in both states; we call this security debt, and
a security that pays d units if s = {1} and zero otherwise; We call this security
equity.
The assumption that N is large allows us to ignore fluctuations in the annu-

ities markets and to concentrate on trades contingent on disagreement over the
realization of s′. This signal could be any mechanism for the revelation of public
opinion. What is important for our interpretation is that firms choose to pay
dividends only if s′ = 1.

PROPOSITION 3: For the large N economy, equilibrium can be supported by
trades in debt and equity. Debt is a security that costs Qt units of commodities
at date t and pays 1 commodity at date t+ 1 in both states. Equity is a security
that costs pE,t units of commodities at date t and pays d in state s′t+1 = {1} and
0 in state s′t+1 = {0}, where

(34) pE,t =
dβ

2

[
2Pimp,t − 1

1− β(1− δ)
+

1

1− β

]
,

(35) Qt = β.

For a proof of Proposition 3 see Appendix E.

20We explore the implications for the wealth distribution in Section VIII.
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D. What Drives Our Results?

In the work of Beker and Espino (2011), agents all eventually agree. We make
two deviations from the Beker-Espino environment. First, we assume that agents
die and are replaced by new agents and second, we assume that the process that
agents learn about is both self-referential and non-fundamental.
The assumption that people die is essential to our result that the economy

fails to converge to a rational expectations equilibrium. The assumption that
the stochastic process for st is self-referential is secondary but important. The
defining property of this process is that of quasi-non-ergodicity.
If agents never die, there is no advantage to the use of constant-gain learning.

If, as would be optimal in the infinite-lives environment, everyone were to use
least-squares learning, agents would converge asymptotically to the truth and
they would all agree, as in Beker and Espino, although convergence would be
slow, and the final belief would be history dependent.
One could assume that the process for st is exogenous but quasi-non-ergodic.

It might, for example, be generated by the equation,

(36) Pt+1 = (1− δ1) [(1− λ1)Pt + λ1st] +
δ1
2
,

where λ1 and δ1 are not necessarily equal to λ and δ. If agents were to learn
about this process using constant gain learning with gain parameter λ = λ1, and
if the parameter δ1 were by chance, equal to the death probability δ, the model in
which the stochastic process for P is exogenous would be indistinguishable from
the model we have presented here.
It is plausible that a three-parameter model in which δ and δ1 were different

but where everybody had correctly learned the parameter λ1, would display sim-
ilar behavior to the model we have described here. We have not explored that
variant of our main theme. The importance of our interpretation of Eq. (36),
as a self-referential process driven by social interactions, is that it provides a
micro-founded theory for the assumption that agents must learn about a quasi-
non-ergodic process. In the absence of our interpretation of this equation one
would need to find some alternative economic explanation for what we think is
an attractive feature of our work: the idea that the value of stocks today de-
pend on guessing what others think that stocks will be worth in the future. In
our model, the interaction of market and non-market forces generates a micro-
founded model of why people disagree that has implications for both the wealth
distribution and excess volatility in the asset markets. Both of those implications
are pursued further below.

VII. Results from Simulated Data

In this Section we illustrate the implications of our results by reporting some
statistics for simulated data in a calibrated version of our model.
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A. A numerical simulation

We simulated an economy with one million agents for 300 years and we chose
the period length to be one week. We normalized the weekly endowment to 1 and
we chose the annual discount rate to be 0.97 which corresponds to an equilibrium
annual real interest rate, in an endowment economy, of 3%. These are relatively
uncontroversial choices.

In Figure 5 we graph some data from a single simulation of this calibrated
version of our model when agents have a life-expectancy of 50 years and for
a memory time of one year. Importantly, for our calibration, α = 1 and the
invariant measure is uniform. We checked that our reported results, especially
those concerning the wealth distribution, are robust to values of α ∈ [0.5, 2], see
e.g. Fig. 3 for the level of disagreement generated by the model. We suspect that
our main results are relatively insensitive to the choice of α even outside of this
range.21

The top left panel of Figure 5 graphs the invariant measure P∞(P). The other
three panels present some key data for a single simulation of 300 years of weekly
data. The top right panel is the percentage difference between P(s′) and Pimp(s

′).
This difference is a measure of how wrong the market can be as a measure of the
true probability. For much of the sample this difference is less that 1% but there
are times when this deviation exceeds ±15%. Such large discrepancies are quite
remarkable in view of the size of the market (one million participants) and are
the consequence of the emergent wealth inequalities in our model.

The bottom right panel shows the time series behavior of the price-earnings ratio
using the formula derived in Section VI.C. To compute this series we normalized
the dividend payment to 1/52 to make the units comparable to an expected weekly
dividend payment. This series has many characteristics in common with the price
dividend ratio in US data for realized values of the S&P. It wanders randomly
over a bounded interval and sometimes it moves substantially in a short period
of time. The bottom left panel is the distribution of the log of wealth. In Section
VIII, we explore the properties of this distribution further and we show that
it shares many characteristics in common with empirical wealth distributions in
Western economies.

VIII. Exploring the Empirical Wealth Distribution

While our model is constructed in such a way that no agent is better informed
than any other, some agents are temporarily, purely by chance, much more suc-
cessful than others. This allows these agents to accumulate wealth through the

21Only by taking α to 10, were we able to break one of our key results; that the wealth distribution
has fat tails.
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Figure 5. 300 Years of Simulated Weekly Data in an Economy with One Million People

multiplicative process described in Eq. (33), reproduced below

(33) W ′
i (s

′) = x′i
Pi(s

′)

Pimp(s′)
Wi(s) + (1− x′i)H.

Multiplicative wealth processes of this form are well-known to generate important
wealth inequalities.22

In Figure 6 we graph the Lorenz curve for the time average of 250 equally spaced
samples of the wealth distribution in our simulated data.23 The Lorenz curve is

22 Examples of papers in the literature that study multiplicative wealth dynamics include Kesten
(1973); Bouchaud and Mézard (2000); Benhabib and Bisin (2018); Gabaix (2009); Benhabib et al. (2011)
and Gabaix et al. (2016).

23For large T , our sample histogram will converge to the ergodic wealth distribution. There will still
be some variability in a sample of 300 years but our experiments with different random draws suggest
that this variability not too large.
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Figure 6. The Lorenz Curve for a Single Simulation

a graphical representation of inequality which plots the cumulative percentage of
wealth on the y-axis against the percentile of the population on the x-axis. One
popular index of inequality is the Gini coefficient which is equal to twice the area
between the 45 degree line and the Lorenz curve.

For our numerical data, the Gini coefficient is equal to 0.7. A value of 0 would
represent a completely equal distribution and a value of 1 would represent a
distribution where one person owns everything. Table 1 reports data from a
selection of countries. This table shows that a Gini coefficient of 0.7 is well
within the bounds of empirical data which varies between a low of 0.55 for China
in 2008 and a high of 0.85 for the United States in 2019.

To explore the nature of the wealth distribution further we define F (W ) to be

24Wikipedia https://en.wikipedia.org/wiki/List of countries by wealth equality Retrieved December
6’th 2020.
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Country 2008 2019

China 0.55 0.7
United Kingdom 0.7 0.75
Italy 0.7 0.77
France 0.73 0.7
Switzerland 0.74 0.87
United States 0.8 0.85

Table 1—Wealth Ginis’ For a Selection of Countries in 2008 and 201924

the cumulative distribution function (cdf) of wealth and define G(W ) ≡ 1−F (W )
to be the complementary cdf. In Figure 7, we plot logG(W ) against log(W ) for
values of log(W ) greater than zero. This figure reveals a power-law tail of the form
G(W ) ∼ W−µ, and a regression of log(G(W )) on log(W ) for the linear portion of
the plot provides an estimate of the tail index of µ = 1.4. Note that G(W ) ∼ W−µ

corresponds to a probability distribution function (pdf) ϱ(W ) ∼ W−1−µ. A
person who is neither a borrower nor a lender has zero financial assets and her
net worth would be equal to the discounted present value of her labour income.
For our calibration, this number, which we refer to as human wealth, is equal
to 1,032 weeks of income.25 In the common knowledge economy, the wealth
distribution would be egalitarian, the Gini coefficient would be 0 and everyone
would have wealth equal to H. Instead, in our economy, there is considerable
inequality.
A person at the 50’th percentile of the wealth distribution is a net borrower

who has total wealth equal to 39% of human wealth. In contrast, a person at
the 99′th percentile in the wealth distribution has total wealth equal to 892% of
human wealth and the person at 99.9′th percentile has total wealth of 4, 999%.
Wealth becomes highly concentrated because market prices do not reflect average
beliefs. Instead they reflect wealth weighted beliefs. In equilibrium, wealth and
market prices are correlated in a way that leads to a self-reinforcing mechanism
whereby a few people, by chance, get lucky and become very rich.
To explore the dependence of our results on α we recomputed the data reported

in Figure 5 for two alternative values of α. For both simulations we held δ
constant and selected values of λ that set α to 0.5 and 2. For α = 2, we find a
Gini coefficient of 0.69 and a tail slope coefficient of 1.4. This calibration has a
hump-shaped invariant measure and a memory time of 72 weeks. For α = 0.5
we find a Gini coefficient of 0.72 and once again, a tail slope coefficient, to one
significant digit, of µ = 1.4. This calibration has a U-shaped invariant measure
and a memory time of 36 weeks. We infer from these robustness checks that
our results are insensitive to variations in α for a substantial range of plausible

25Human wealth is defined by the expression H = 1/(1 − β(1 − δ)). For our calibration the weekly

discount rate is 0.971/52 and the survival probability, (1−δ), is equal to 3.9×10−4. This leads to a value
of H = 1, 031 measured in weeks of income.
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Figure 7. Estimate of the Tail Parameter in 1,000 Years of Simulated Monthly Data

parameters. In fact, as we explain below, µ converges to a non-degenerate value
> 1 when δ → 0.

A. The Behavior of Wealth in the Large N Limit

We can learn quite a bit about the dynamics of wealth by analyzing the proper-
ties of Eq. (33). Using this equation, one may derive the following expression for
the average return for agent i between dates t and t+1, conditional on surviving:26

26Eq. (37) follows since

Ri ≡ E
[
W ′

i

Wi
− 1

]
=

[
P×

Pi

Pimp
+ (1− P)×

1− Pi

1− Pimp
− 1

]
=

(P− Pimp)(Pi − Pimp)

Pimp(1− Pimp)
.
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Ri ≡ E
[
W ′

i

Wi
− 1

]
=

(P− Pimp)(Pi − Pimp)

Pimp(1− Pimp)
.(37)

Several interesting conclusions can be drawn from Eq. (37). First, in the common
knowledge economy where P ≡ Pimp, agents cannot expect to make money on
average, even temporarily.

Second, when an agent’s belief Pi is larger than the market probability Pimp,
her expected gain is positive if the actual probability P is also greater than Pimp,
and negative otherwise. In fact, provided the sign of Pi − Pimp is the same as
that of P−Pimp, the instantaneous expected gain is larger when the bet is bolder,
albeit with a larger variance (see Eq. (38) below).

Finally, since agents are assumed to act on the assumption that their estimate
of the probability is an unbiased estimate of the true probability, they also believe
that their trades will be profitable on average and proportional to (Pi−Pimp)

2. In
other words, they expect to make a larger profit, the further is their belief from the
probability implied by the market price. This implies that there is no incentive
for agents to align their beliefs with the observable implied probability, since
this would reduce their subjective expected profit. Everybody in this economy,
believes that they know more than the market – indeed, a most common feature
of the real world!

In Eq. (38) we derive an expression for the average of the square of the relative
change of wealth for surviving agents:27

(38) E

[(
W ′

i

Wi
− 1

)2
]
=

(
P(1− Pimp)

2 + (1− P)P2
imp

)
(Pi − Pimp)

2

P2
imp(1− Pimp)2

.

One sees from this equation that “bold beliefs”, corresponding to a large dif-
ference between Pi and the market probability Pimp, leads to a larger variance
of gains. Eq. (38) explains why our model generates large wealth inequalities.
For surviving agents, the wealth dynamic is a multiplicative random process with
a time dependent and agent dependent variance. This multiplicative process is
reset to 1 at a Poisson rate δ, i.e. when an agent dies.

Multiplicative random process with reset have been widely studied in the liter-
ature28 and it is known that such processes lead to a stationary distribution with

27Eq. (38) follows from

E

[(
W ′

i

Wi
− 1

)2
]
=

[
P
(

Pi

Pimp
− 1

)2

+ (1− P)
(

1− Pi

1− Pimp
− 1

)2
]
.

.
28See the citations in footnote 22.
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a power-law tail with a pdf ϱ(W ) and a complementary cdf G(W ) of the form,

ϱ(W ) ∼W→∞ W−1−µ, G(W ) ∼W→∞ W−µ,(39)

where the exponent µ depends on the parameters of the problem.29 We discuss
in Appendix F how µ can be approximately computed and we find, in particular,
that µ > 1 whenever δ > 0.30

In conclusion, wealth inequalities in our model arise from the multiplicative
nature of wealth dynamics which makes successful bold bets highly profitable.
Unsuccessful bold bets, however, are ruinous and lead the person who makes
such bets into poverty. People who agree with the market belief have a low
expected subjective gain from trading. People who disagree may either become
spectacularly rich, or spectacularly poor.

B. The Kelly Criterion

In Section II, we discussed the market selection hypothesis which is the claim
that the agents who survive will be those who hold beliefs that are closest to the
truth. It is equivalent to the assertion that those agents who dominate the asset
markets will be those who maximize the growth of their wealth and the Blume and
Easley (2006) formulation of this hypothesis implies that all surviving agents will
hold common beliefs that converge asymptotically to the rational expectation.

The investment strategy that maximizes the growth rate of wealth was studied
by Kelly Jr. (1956) and it is widely referred to as the Kelly criterion. In the
context of our model, the Kelly criterion amounts to maximizing the quantity
E[logW ′

i/Wi]. We seek an approximation to this quantity that is valid when the
degree of disagreement, υ ≡ V[Di,t], is small. This term is defined by Eq. (12),

(12) υ ≡ V[Di] =

[
λ

2 + (α− 1)λ

]
α(α+ 2)

6(2α+ 1)
+O(λ3),

and for υ much smaller than unity, we have the following expansion for the log of

29Random variables with a Pareto tail can be sorted into three classes depending on the value of the
tail parameter µ. A Pareto-tailed distribution is well defined for all positive µ but when 0 < µ ≤ 1, the
mean and all higher moments do not exist. When 1 < µ ≤ 2, the mean exists but the variance and higher
moments do not exist and for µ > 2, the distribution has a finite mean and a finite variance. In our
example, as in the data, we find a value of µ between 1 and 2 which implies that the wealth distribution
has a finite first moment but all higher order moments are not well defined.

30The limit δ → 0 is interesting since the wealth distribution has a Pareto Tail even as δ → 0.
Using Eq. (F5) in Appendix F, and taking δ to 0 for fixed λ, the Pareto exponent µ converges to
1
2

(
1 +

√
1 + 8λ

)
which equals 1.23 when λ = 0.14. In the limit, two effects cancel each other out as the

limit of δ
σ2 converges to 1. Disagreements tend to disappear (see Eq. (12)) and thus mispricings vanish

(i.e. (Pimp − P)2 ∼ δ), but at the same time lucky agents can benefit from these mispricings for a longer

time and T ∼ δ−1.
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the growth rate of agent i’s wealth,

(40) log

(
W ′

i

Wi

)
≈
(
W ′

i

Wi
− 1

)
− 1

2

(
W ′

i

Wi
− 1

)2

+ . . . .

Taking expectations of Eq. (40), using equations (37), and (38), one finds the
following approximation to the first order in υ,

(41) E
[
log

W ′
i

Wi

]
≈
[
(P− Pimp)(Pi − Pimp)− 1

2(Pi − Pimp)
2
]

Pimp(1− Pimp)
+ o(υ).

Eq. (40) implies that when the market implied probability Pimp is equal to the
true probability P, any belief Pi ̸= P leads to a negative growth rate for Wi. Any
agent i who continues to hold an inaccurate belief of this kind will be wiped out
in the long run. This is the content of the market selection hypothesis.

In our model the entry of new agents causes the market selection hypothesis to
fail. It is the wealthy agents who determine the market price and, even though
these agents would be wiped out if everyone lived forever, in the finite lived
environment the smart agents die before they have had time to benefit from their
more accurate subjective beliefs. The richest agents in any given period are not
the smartest ones but rather those who have made bold successful bets. The
market price is determined by rich people who were right in the past whereas
those people with beliefs that are closer to the current truth will only become
rich in the future.

IX. Conclusion

We have constructed a theory of beliefs in which people exchange information
through both market and non-market interactions. Non-market interaction gen-
erates an aggregate signal which reflects average public opinion. Market exchange
through the purchase and sale of financial assets allows people to bet on their be-
liefs. Importantly, market prices reveal information about wealth-weighted beliefs
Pimp but it is unweighted beliefs, P, which generate the public signal.

One is led to the question: Why do people continue to bet with each other
when these bets are highly risky? The answer we propose is that everyone in our
economy thinks that the market is wrong and that by betting, they will be able
to make money on average. They do not use the implied probability revealed by
the markets to improve their estimate of P, since this trading strategy would be
(subjectively) sub-optimal. Quite remarkably, the coupled dynamics of individual
wealth and beliefs leads to a fat-tailed distribution of wealth. The richest agents
at a given instant in time are not necessarily the smartest ones but rather those
who have made bold, successful bets in the past. Since those agents tend to
dominate the market, the implied probability Pimp cannot be used to learn the
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true probability P.31
Why are there no Warren Buffets who invest for the very long run by guessing

that the probability of a successful outcome will be equal to the mean P = 1/2 of
the invariant distribution? Our answer is that this would only be the case if we
lived forever and could afford to be strict Bayesian learners, but the world that we
live in is far better approximated by observing recent realizations than by relying
on an unconditional long-run ergodic measure. We believe that our quasi-non-
ergodic model aptly illustrates what Keynes had in mind when he wrote that “In
the long run we are all dead”.
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Appendix A: The continuous time limit

A1. Derivation of Eq. (8)

Introducing a change of variable u such that P = 1
2 + u, one can convert Eq.

(7) into:

(A1) (1− δ̂)2Pt+1(u) =
1− δ̂ − λ̂

2

[
Pt

(
u− λ̂/2

1− δ̂

)
+ Pt

(
u+ λ̂/2

1− δ̂

)]

+ u

[
Pt

(
u− λ̂/2

1− δ̂

)
− Pt

(
u+ λ̂/2

1− δ̂

)]

where λ̂ := λ(1 − δ) and δ̂ := δ + λ̂. Note that this equation preserves the
symmetry Pt(−u) = Pt(u) (i.e. P → 1− P) valid for all times.

In the following analysis we assume long memory (λ ≪ 1) and long lifetimes
(δ ≪ 1) by focusing on the limit where λ, δ → 0 with δ = αλ2 for fixed α = O(1).
Expanding Eq. (A1) to order λ3 yields:

(A2) ∆t = δ [uQ]′ +
λ2

2

[
(
1

4
− u2)Q

]′′
− 2λδ

[
u2Q

]′′
− λ3

2

[
(
u

12
− u3

3
)Q′′ − u2Q′ +

5

12
Q′
]′

+O(λ4),

where primes denote derivatives with respect to u, P(u) ≡ (1 − δ̂)Q(u(1 − δ̂)),
and ∆t ≡ Qt+1(u)−Qt(u). Note that the last two terms of Eq. (A2) are of order
λ3, and we will neglect them in the following approximation.

In the small δ, λ limit, Eq. (A2) converges to the following continuous time
Fokker-Planck equation for P:

(A3)
1

λ2

∂P
∂t

= α [uP]′ +
1

2

[
(
1

4
− u2)P

]′′
.

This equation coincides with the continuous time description of Kirman’s ant
recruitment model (Kirman, 1993), for which a lot is known (see Moran et al.
(2020a) for recent results and references).

In particular the stationary distribution P∗ is is described by the following
second order differential equation.

(A4) α [uP∗]′ +
1

2

[
(
1

4
− u2)P∗

]′′
= 0.
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The solution to this equation is given by

(A5) P∞(u) =
Γ(2α)

Γ2(α)

(
1

4
− u2

)α−1

,

which corresponds to Eq. (8) in the text.

A2. Generalization: non-linear feedback

The Fokker-Planck equation Eq. (A3) corresponds to the following stochastic
differential equation:

(A6) dP = −δ(P− 1

2
)dt+ λ

√
P(1− P)dWt,

whereWt is a Wiener noise. More generally, one can consider a sigmoidal feedback
term F(P) mapping the average belief onto the true probability,

(A7) Pt+1 = F(Pt)

with F(P) = P throughout the main part of the paper and in section above. In
this case, one obtains as a stochastic differential equation

(A8) dP = −∂PV(P)dt+ λ
√
P(1− P)dWt,

where we have introduced a “potential function” V(x) such that

(A9) ∂xV(x) := δ(x− 1

2
) + λ(x−F(x)).

For definiteness, consider a sigmoidal function F(x) defined as:

(A10) F(x) =
1

2

(
1 + tan[ζ(x− 1

2
)]

)
The corresponding potential V(x) is then given by

(A11) V(x) = 1

2
(δ + λ)u2 − λ

2ζ
log cosh ζu; u := x− 1

2

For small ζ, V(x) has a unique minimum corresponding to x = 1/2. For ζ > ζc =
2(1 + δ/λ), V(x) has two minima x∗ < 1/2 and 1− x∗ > 1/2 and one maximum
at x = 1/2.
In the absence of the Wiener noise term, the dynamics of x would just be “rolling

down” the potential slopes, selecting one of the minima of V(x) (corresponding
to the stable solutions of F(x) = x).
In the presence of noise and for ζ > ζc, the dynamics becomes a succession of
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long phases where Pt remains close to either x∗ or 1 − x∗, separated by rapid
switches from one minimum to the other. The time τ× needed to “climb up the
hill” separating the two minima can be however very long when λ → 0.

In fact, this time can be rather accurately computed by changing variables
from P to ϕ where P = (1 + sinϕ)/2, which allows one to get rid of the factor√
P(1− P) in front of the Wiener noise, see e.g. Moran et al. (2020a). Using a

standard approach (e.g. Hánggi et al. (1990)), one can then show that

τ× ∼ λ−1eΓ/λ, (λ → 0),

where Γ can be fully computed (at least numerically) for any potential V(x). The
exponential dependence of τ× in λ implies that (a) there is a strong separation
of timescales in such models and (b) the precise value of τ× is unknowable in
practice, as it is highly sensitive on the detailed value of the parameters of the
model. Hence agents cannot be assumed to use the same learning rule. Since
these switches can be interpreted as “crashes”, the probability of such crashes is,
in our simple model, unknowable much as the trajectories of a chaotic system are
unknowable (for a related discussion, see Morelli et al. (2020)).

Appendix B: Dispersion of opinions

Taking the expectation of Eq. (11) over the realization of st one gets:

(B1) E[Di,t+1] = (1− δ)

[
(1− λ)E[Di,t] + δ(Pt −

1

2
)

]
+ δ(1− δ)

[
1

2
− Pt

]
,

or

(B2) E[Di,t+1] = (1− δ)(1− λ)E[Di,t]

which shows that E[Di,t] tends to zero when t → ∞.

Now let us square Eq. (11) before taking the average over st. One now gets:

E[D2
i,t+1] = (1− δ)

[
(1− λ)2E[D2

i,t] + δ2E[(Pt −
1

2
)2]

]
(B3)

+ δ

[
E[z2] +

δ2

4
− δ

2
+ (1− δ)2(1− λ2)(P2

t − Pt)

]
.

Now taking further the expectation over the distribution P of the probability P,
and using

(B4) EP [P2] =
1 + α

2(1 + 2α)
, α =

δ

λ2
,



44 A BOUCHAUD-FARMER WORKING PAPER

we obtain, in the limit δ, λ → 0, with α fixed,

(B5) E⋆[D2
i,t+1] = (1− δ)(1− λ)2E⋆[D2

i,t] +
δ

6

2 + α

1 + 2α
+O(δ2),

where E⋆ means an expectation both over s and P.
Hence in the stationary state where E⋆[D2

i,t] is independent of t one finds:

(B6) E⋆[D2
i ] ≈

δ

6(1− (1− δ)(1− λ)2)

2 + α

1 + 2α
,

and hence the result Eq. (12).

Appendix C: Solving the individual optimization problem

We conjecture that the value function has the form

(C1) A logWi(σ) +B,

for unknown constants A and B. Substituting from Eq. (18) for ci(σ) in Eq.
(16) and taking derivatives with respect to Wi(σ

′) leads to the following Euler
equation,

(C2)
xi(σ

′)Q(σ′|σ)
ci(σ)

=
AβPi(σ

′)xi(σ
′)

Wi(σ′)
,

which holds state by state. Using the envelope condition Aci(σ) = Wi(σ), which
holds at every date and in every state, we can write Eq. (C2) as

(C3) xi(σ
′)Q(σ′|σ)Wi(σ

′) = βPi(σ
′)xi(σ

′)Wi(σ).

Combining the budget equation, Eq. (18), which holds with equality with Eq.
(C3) leads to the expression,

(C4)
∑
σ′

βPi(σ
′)xi(σ

′)Wi(σ) +
Wi(σ)

A
= Wi(σ).

Because s′ is independent of x′

(C5)
∑
σ′

Pi(σ
′)xi(x

′) =
∑
x′

p(x′)xi(x
′)
∑
s′

Pi(s
′) = 1− δ

and thus by canceling terms and rearranging Eq. (C3) we arrive at the following
value for A.

(C6) A =
1

1− β(1− δ)
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The constant B does not affect the solution and can be solved for by plugging
the value of A into the expression

(C7) A log(Wi) +B = log

(
Wi

A

)
+ β(1− δ) [A log(Wi) +B]

and equating the coefficients on the constant terms.

It follows from Eq. (C3) that for all xi(x
′) = 1, that is, those who survive,

(C8) Wi(σ
′) = β

Pi(σ
′)

Q(σ′|σ)
Wi(σ).

This establishes the first term on the right side of Eq. (21). If xi(x
′) = 0 the

newborn with index i has wealth H by assumption. This establishes the second
term on the right side of Eq. (21).

Appendix D: Establishing the Properties of Equilibrium

From Eq. (13), we have the following equation for human wealth,

(D1) Hi(σ) = ε+
∑
σ′

Q(σ′|σ)x′iHi(σ
′).

From the definition of total wealth we have that Wi(σ
′)−Hi(σ

′) = ai(σ
′) where

ai(σ
′) is the amount of Arrow security held by agent i that pays one unit if σ′ is

realized. Assuming market clearing means that for each σ′,

(D2)
N∑
i=1

ai(σ
′) = 0, ∀σ′,

and hence, using Eq. (C8), we have that

(D3)
N∑
i=1

Wi(σ
′) = N(σ′)Hi(σ

′) = β
1

Q(σ′|σ)

N∑
i=1

Pi(σ
′)Wi(σ).

Rearranging this equation and factoring Pi(σ
′) as p(x′)Pi(s

′) gives the following
expression for the pricing kernel

(D4) Q(σ′|σ) = βp(x′)

∑N
i=1 Pi(s

′)x′iWi(σ)

N(σ′)Hi(σ′)
,

which establishes Eq. (25) from Proposition 2.
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Replacing Eq. (D4) in Eq. (D1) and reversing the order of summation gives

(D5) H(σ) = ε+

N∑
i=1

Wi(σ)
∑
σ′

{
β

N(σ′)H(σ′)
Pi(s

′)p(x′)x′iH(σ′)

}
.

Next, cancel H(σ′) from top and bottom,

(D6) H(σ) = ε+ β

N∑
i=1

Wi(σ)
∑
x′

{
βp(x′)x′i
N(x′)

}∑
s′

Pi(s
′).

Using the facts that Pi(s
′) = 1,

∑
x′

{
p(x′)x′

i
N(x′)

}
= 1− δ and

∑N
i=1Wi(σ) = H(σ)

this expression simplifies to,

(D7) H(σ) = ε+ βH(σ)(1− δ),

or

(D8) H(σ) =
ε

1− β(1− δ)

which established Eq. (24) in Proposition 2.

Appendix E: Proof of Proposition 3

We now seek an expression for the price of a security that pays a dividend d
every time st = {1}. This is given by the expression,

(E1) pE(σ) =
∑
σ′

Q(σ′|σ)
[
d δs′,1 + p′E(σ

′)
]

where σ′ = (x′, s′) is tomorrow’s state, with x′ encoding who survives and who
dies and δs′,1 is the index function which equals 1 when s′ = 1 and 0 otherwise.
Iterating Eq. (E1) gives the following infinite series:

(E2) pE(σ) = d
∑
σ′

Q(σ′|σ)δs′,1 + d
∑
σ′,σ′′

Q(σ′|σ)Q(σ′′|σ′)δs′′,1 + · · · ,

where, from Eq. (30),

(E3) Q(σ′|σ) = βp(x′)

(∑N
i=1 Pi(s

′)Wi(σ)x
′
i

N(σ′)H

)
.
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As we have shown in the main text, this object converges, for large N , to

(E4) Q(σ′|σ) = βp(x′)Pimp(s
′),

where

Pimp(s
′) :=

1

NH

N∑
i=1

Pi(s
′)Wi(s).

Hence,

(E5)
∑
σ′

Q(σ′|σ)δs′,1 ≡ βPimp

where recall that dropping the argument s implicitly means s = {1}. The first
contribution to pE is thus simply

dβPimp.

Now let us turn to the second term, which takes the form

(E6)
∑
σ′

Q(σ′′|σ′)Q(σ′|σ)

=
βp(x′′)

N(σ′′)H

∑
σ′

∑
j

xj(x
′′)P′

j(s
′′|s′)W ′

j(s
′)Q(σ′|σ).

Expressing W ′
j(s

′) thanks to Eq. (33), the right-hand side reads:

(E7)
β

N(σ′′)H

∑
j,σ′

βxj(x
′′)p(x′′)P′

j(s
′′|s′)xj(x′)Pj(s

′)Wj(s)

+
∑
j,s′

xj(x
′′)p(x′′)P′

j(s
′′|s′)(1− xj(x

′))HQ(σ′|σ)

 ,

where the first term corresponds to surviving agents in the next time step, and
the second term to dying agents that are replaced with new born agents with
wealth H.

Consider the two terms of Eq. (E7) in turn. The first term contains a factor
xj(x

′′)xj(x
′) which equals 1 if an agent j survives for both of the next two periods

and zero otherwise. We now use the update rule of agents’ beliefs to compute
P′
j(σ

′′|σ′). One finds, for s′′ = {1},

P′
j(1|1) = (1− λ)Pj + λ; P′

j(1|0) = (1− λ)Pj ,
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where we recall that Pj := Pj(1). Hence∑
s′

P′
j(1|s′)Pj(s

′) = [(1− λ)Pj + λ]Pj + [(1− λ)Pj ] (1− Pj) = Pj .

In words, conditional on survival, the agent’s belief is a martingale. Conditioning
on s′′ = {1}, one has:∑
x′′,s′′={1}

βp(x′′)
∑
j,σ′

xj(x
′′)P′

j(s
′′|s′)xj(x′)p(x′)Pj(s

′)Wj(σ) = NHβ(1− δ)2Pimp.

In the large N limit, N(σ′′) = N(1 − δ) and this term gives a contribution to
pE(σ) equal to

dβ2(1− δ)Pimp.

Let us now look at the second term. Because of the 1 − xj(x
′) term, we are

looking at states of the world where agent j has died and is replaced by a new
agent with an idiosyncratic probability of the next state P′

j(s
′′ = {1}) equal to

z, which is uniformly distributed between 0 and 1, with no memory of the past.
Therefore, the sum over σ′ can be taken independently of the future and gives:∑

x′′,s′′={1}

p(x′)xj(x
′′)P′

j(s
′′ = {1})

∑
x′,s′

(1− xj(x
′))Q(σ′|σ) = βδ(1− δ)E[z].

Hence, we find that dying agents give a contribution to pE(σ) equal to

dβ2δ
1

2
,

where we have replaced E[z] by 1/2, and again used the fact thatN(σ′′) ≈ N(1−δ)
when N ≫ 1.

Generalizing to all ℓ ≥ 1 time steps in the future, each agent j can either survive
ℓ times, with probability (1−δ)ℓ or die at least once, with probability 1−(1−δ)ℓ.
In the first case, his/her belief is a martingale. In the second case, the last death
cuts all dependence from the past. The calculation above can thus be generalised
to give a contribution to pE(σ) equal to:

d βℓ

[
(1− δ)ℓ−1Pimp + (1− (1− δ)ℓ−1)

1

2

]
.

Summing over ℓ yields our final result for the price of equity in our economy:

(E8) pE =
dβ

2

[
2Pimp − 1

1− β(1− δ)
+

1

1− β

]
.
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If agents never die, we recover

pE = d
βPimp

1− β
,

as expected. If agent die at every time step, then Pimp ≡ 1
2 and one also recovers

the expected result.

Appendix F: Multiplicative Random Process with Reset

Consider the simplest case where, conditioned on survival, returns are IID ran-
dom variables, i.e.:

(F1) W ′
i =

{
Wi(1 + η) w.p. 1− δ,

1 w.p. δ

where η is the date t element of a sequence of IID random variables with zero
mean and variance equal to σ2. For this simple case the sequence of conditional
probability measures ϱ(W ) obeys the operator equation,

(F2) ϱ(W ′) = (1− δ)

∫
dWϱ(W )

∫
dηp(η)d

(
W ′ −W (1 + η)

)
+ δd(W ′ − 1),

where d is Dirac’s delta function. For large W ′ this equation delivers a power-
law tail, with an exponent µ which is implicitly defined by the self-consistency
condition

(F3) 1 = (1− δ)

∫
dη p(η) (1 + η)µ.

In the limit when δ and σ2 are small, the solution for µ is approximated by the
expression,

(F4) µ =
1

2

[
1 +

√
1 +

8δ

σ2

]
.

For the wealth process considered in the paper, however, the η are correlated
in time (since agent i will consistently make/lose money as long as the sign of
Pi(t) − P(t) is constant, i.e. during a time ∼ λ−1), and its variance is time
dependent (see Eqs. (37) and (38)).

A simplified analysis assumes that η is constant during a time λ−1. This pro-
vides the following approximation for µ in this case:

(F5) µ ≈ 1

2

[
1 +

√
1 +

8δλ

σ̄2

]
, σ̄2 := E[σ2(t)].
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Note that µ ≥ 1 from this formula, meaning that the wealth distribution always
has a finite mean when δ > 0.
A way to decrease wealth inequalities is to introduce a wealth tax. If at each

time step a small fraction φ of the wealth of each individual is levied and redis-
tributed across the economy, the value of µ in the simple IID model above changes
to:

µ =
φ+

√
φ2 + 2δσ2

σ2
.

Hence, as expected, increasing φ increases µ and decreases both the Gini coef-
ficient, thereby making markets more efficient in the sense that the difference
between P and Pimp is reduced.


