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Abstract

Neural networks have contributed significantly in applications that had been dif-

ficult to implement with the traditional programming concepts (e.g. computer

vision, natural language processing). In many occasions, they outperform their

hand coded counterparts and are increasingly popular in end user applications.

Neural networks, however, are compute and memory demanding, making their

execution in resource constraint devices more difficult, especially for real time

applications. Custom computing architectures on Field-Programmable Gate

Arrays (FPGAs) have traditionally been used to accelerate such computations

to meet specific requirements. Nonetheless, most approaches in the literature

do not consider in detail the underlying FPGA architecture, resulting in less

efficient implementations. They additionally have focused on complex designs

optimised for high throughput in a datacenter setting with access to large

datasets in memory. Meanwhile real edge applications are often processing

streaming sensor data and require consideration of efficiency. Detailed FPGA

implementations involve time consuming low level design effort, which in turn

result in long turnaround time. FPGAs have evolved over the years to include

hard macro blocks, for example Digital Signal Processing (DSP) blocks, that

map more efficiently widely used operations. In addition, FPGAs are often

tightly coupled with embedded microprocessors in a System-on-Chip (SoC)

arrangement that offers a complete system solution. This thesis explores the

capabilities of FPGA DSP blocks in neural network accelerators. Within this

context, practices and tools that improve turnaround time have been explored,

drawing conclusions on how to exploit DSP blocks in a way that maximises

performance and efficiency. Finally, the work in this thesis shows that design-

ing overlays in an architecture-centric manner can result in high operating

frequency, while scaling to better utilise FPGA resources.
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Chapter 1

Introduction

The emergence of Machine Learning (ML) has enabled a plethora of applications

that would be more difficult to implement with the traditional programming

methods. Although ML concepts have been reported in the literature for many

years, the availability of large volumes of data, through big data, coupled

with faster training turnaround time due to the availability of highly parallel

compute platforms and other algorithmic and mathematical optimisations, have

recently enabled ML models to outperform manually programmed solutions

in more problem domains. Hence, ML has attracted the research interest of

many disciplines, among them computer engineering, in which this thesis lies.

Machine Learning approaches span a wide range of learning techniques,

supervised or unsupervised, and a variety of models, Self Organizing Maps

(SOM), Support Vector Machines (SVM), Neural Networks (NNs), Decision

Trees (DT), and many more [6]. The versatility and more complex structure of

NNs has rendered them more capable to model non-linear tasks more accurately,

compared to the other options. Therefore, NNs have been widely used in a

wide spectrum of applications, from healthcare [7] to computer vision [8].

The operation of ML models comprises two phases, training and inference.

During training, the ML model is formed and refined using a dataset to

determine the best parameters to achieve a required task, iteratively refining

to reduce the prediction error. During inference, the trained model is used

to make predictions, based on the learned parameters, on new, unseen data.

Training comprises the heaviest workload of the two and usually takes place

offline on highly parallel computing platforms. Indicatively, it can take from

a few hours to a few days, depending on model’s topology. Inference can

potentially take place on any compute device, from highly powerful servers

to extremely constrained edge devices. Nonetheless, minor adjustments, i.e.

fine-tuning, of the trained model’s parameters may be made to better suit the

specific use patterns of the device or user, either on device or centrally.

Due to the more central nature of training, inference has been the main

1



target of various optimisations in an effort to meet the needs and capabilities

of different devices across the computing spectrum. Edge devices have been

a key focus since they impose stricter and more challenging attributes, e.g.

latency, throughput, energy, etc. Moreover, due to the variable and often

prohibitive transfer latency to the cloud, real time edge devices must perform

their computations locally [9]. One approach to meet strict constraints has been

with the use of custom computing architectures, either Application Specific

Integrated Circuits (ASICs) [10, 11] or implemented on FPGAs [12–14]. Custom

computing architectures can be tailored to meet a device’s specifications, at the

cost of flexibility compared to more general computing platforms, e.g. CPUs

and GPUs. FPGAs have continued to improve in terms of performance and

efficiency, primarily due to architectural evolutions that incorporate a variety

of hard macro blocks. Moreover, complete System-on-Chip (SoC) solutions,

featuring a low power processor tightly coupled with an FPGA fabric, are ideal

for edge solutions in which a generic processor is supported by an accelerator

on an FPGA.

Although, FPGAs are not superior to ASICs in terms of raw characteristics,

their off-the-shelf availability, which in turn results in smaller turnaround time,

reduced cost as well as their reconfigurable operation render them an excel-

lent solution for acceleration, especially in domains where the computational

algorithms continue to evolve, such as ML. We therefore have the opportunity

to explore new approaches that better take advantage of the capabilities of

modern FPGAs to maximise their effectiveness.

1.1 Motivation

The increasing ubiquity of interconnected devices at the edge has provided

the means to automate various daily tasks through the use of sensors and

actuators integrated with these devices. We therefore, have the ability to collect

unprecedented volumes of data and the means to automate actions through

the use of NNs. However, as the increasing interconnectivity of smart devices

provides a plethora of even more advanced capabilities, it simultaneously

renders efficiency more important. Edge devices are often battery powered,

to enable portability, and of reduced processing power, supporting a subset

of the instruction set of desktop computers. Custom computing architectures

on FPGAs can therefore be used to provide real time performance and high

energy efficiency at the edge.

NNs are extremely demanding in terms of memory requirements, to store the

trained model’s coefficients and intermediate results of computation, in addition

to the significant computational workload they entail. Even a relevantly small

NN may have such memory requirements that on-chip storage does not suffice,
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requiring frequent off-chip memory transfers that are costly in terms of energy

and latency. The significant computational workload mainly consists of matrix-

vector and matrix-matrix multiplications. In addition, edge devices are often

dealing with data that streams from the various sensors or other components,

e.g. camera, microphone etc.. Therefore ML computations should ideally be

optimised around this streaming dataflow, which can add complexity to the

design of custom architectures.

The design of custom computing architectures on FPGAs using Hardware

Description Languages (HDLs), e.g. Verilog or VHDL, at Register-Transfer

Level (RTL) involves time consuming low level design effort. However, machine

learning workloads differ in their parameters and structure, therefore accelerator

architectures should be scalable and easily reconfigured to different model

parameters and configurations. To this end, High Level Synthesis (HLS)

has emerged as an alternative to traditional RTL design, essentially raising

the programming domain to a higher level language, e.g. C, with guided

automated translation into an architecture. Another option is to build an

abstracted overlay architecture that is fundamentally flexible enough to adapt

to varying NN model topologies.

Most compute architectures on FPGAs are designed as static solutions, not

fully taking advantage of the reconfigurable nature of the FPGAs. In addition,

there is often very little consideration of the underlying FPGA architecture,

resulting in implementations that operate at well below the frequencies that

are theoretically achievable, hence not fully exploiting the capabilities of the

device. Maximising device capabilities is key to meeting strict specifications in

a challenging domain.

1.2 Aims and Objectives

This work in this thesis aims to explore the more efficient use of the underlying

FPGA architecture and macro blocks for lightweight NNs on devices at the

edge, while maintaining flexibility within this domain. This in turn is expected

to result in a computing architecture that achieves higher operating frequency

and hence performance, while offering higher energy efficiency through better

resource utilisation. Lastly, since this thesis targets edge devices, all imple-

mentations are aimed to be integrated in an SoC environment, considering a

streaming dataflow model.

Therefore, the aforementioned aims result in the following objectives:

• Use of Digital Signal Processing (DSP) blocks: NNs involve a

significant amount of Multiply-Accumulate (MAC) operations that can

be more efficiently mapped to the DSP macro blocks on modern FPGAs.

This is expected to yield implementations that offer:
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High operating frequency: which is expected to contribute to

achieving higher performance in terms of latency and throughput.

Higher energy efficiency: since functions implemented on the

FPGA’s macro blocks consume less power than their equivalent imple-

mentations in fabric [15]. Moreover, higher operating frequency can

contribute partly to energy efficiency, since leakage currents are clock

independent [16].

• Programmability-Abstractions: Although FPGAs are reconfigur-

able, the lengthy design and compilation times result in less flexible

deployments. Enabling more rapid deployment, through the use of higher

level languages or coarse grained overlays, would improve the flexibility

of FPGA design.

• Streaming dataflow: FPGA SoCs, and edge devices in general, often

collect and distribute data in a streaming fashion, not using highly parallel

bulk transfers that are used with more datacenter oriented interconnect

such as PCI Express. Such dataflow architectures are more difficult to

efficiently scale in terms of performance since data availability is less

abundant. Therefore, an architecture that tailors the operation of its

compute units and dataflow to a streaming arrangement would be better

suited for the edge domain.

• Parallelism: NNs consist of highly parallel workload from which im-

proved performance can be obtained by unrolling these computations.

The unrolling scheme, however, must be tailored to the streaming data-

flow.

1.3 Research Contributions

The research contributions of this thesis comprise computing architectures,

implemented on FPGAs, that accelerate NNs, or part of their computations.

The implemented architectures have been evaluated mainly in terms of per-

formance and resource utilisation. Occasionally, additional features have been

derived in order to normalise the varying capabilities between different FPGA

devices and make more objective comparisons with previous work.

More specifically, the research contributions of the work in this thesis are

as follows:

• An exploration an Intrusion Detection System (IDS) application using

NNs on an FPGA SoC, implemented with HLS. The IDS demonstrated

improved detection times while offering coefficient re-programmability
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along with the use of floating point operations, setting a baseline for the

complexity of a parallel but not highly optimised architecture.

• An exploration of various large scale 2-D spatial convolution filters on

modern image resolutions that is heavily optimised around modern FPGA

DSP blocks. A detailed investigation of scalability for different filter sizes

and image resolutions, along with their impact on operating frequency

and resource utilisation, is performed. Comparisons made with previous

work and equivalent implementations with HLS motivate the work that

follows thereafter in this thesis.

• An FPGA overlay architecture, tailored to the compute patterns of

specific NN layers and built around the concept of DSP block as a

neuron. The overlay processes a streaming flow of data, is implemented

in an FPGA SoC environment, and is runtime programmable. The

overlay achieves high operating frequency and demonstrates improved

performance compared to mobile, desktop CPU, and relevant previous

work on FPGAs.

• An enhanced version of the aforementioned overlay architecture to support

a wider variety of layer types including Long Short-Term Memory (LSTM)

that require complex feedback structures. This overlay is shown to

scale with a small frequency overhead, while extensive comparisons with

previous work demonstrate the benefits of the proposed approach.

1.4 Thesis Organisation

Chapter 2 presents relevant background information on Machine Learning and

Neural Networks in particular, followed by the different compute platforms

and the various algorithmic optimisations, in addition to a literature review.

This includes details on basic NN building blocks, including different layer

types and activation functions. More information follows on various compute

platforms, focusing mainly on modern FPGAs and the different methods and

tools to enable more rapid deployment.

Chapter 3 demonstrates an NN application for network intrusion detection

on an FPGA SoC device. Initially, the NN is trained in software, followed

by architecture generation using HLS. The architecture is flexible, to allow

coefficient modification at runtime, while using 32-bit floating point arithmetic

throughout. The HLS generated design is integrated in an SoC implementa-

tion, alongside an ARM-A9 embedded processor, and has been functionally

tested. The chapter concludes with comparisons with equivalent software

implementations and previous work, showing improved detection time.
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Chapter 4 explores FPGA implementations of spatial convolution filters,

using Verilog HDL, focusing on modern image resolutions and respectively

scaled filter sizes. The different design choices for the selected architecture are

substantiated by comparisons on indicative designs, followed by an exploration

on how the selected architecture scales and, finally, comparisons with HLS

equivalent implementations. The work in this chapter motivates the transition

from HLS to a more architecture-centric design approach that is better suited

to the capabilities of the FPGA architecture, specifically DSP blocks and their

runtime flexibility. Moreover, the extensive range of filter sizes demonstrates

that the proposed architecture scales well in terms of frequency, laying the

groundwork for the chapters that follow.

Chapter 5 presents an overlay implementation of feed forward NNs, using

streaming dataflow with the FPGA DSP blocks acting as individual neurons.

The implemented architecture achieves high operating frequency and better

performance compared to software equivalents and previous work on HLS. The

overlay has been integrated in an SoC implementation, operating at a baseline

frequency, and has been functionally tested. Although the baseline NNs used

in this chapter do not stress the scalability and the functionality of the overlay

significantly, they serve as a stepping stone for the more complex overlay that

follows.

Chapter 6 presents an expanded overlay streaming architecture that sup-

ports an additional set of NN layers, most notably LSTMs that require feedback,

as well as more flexible activation functions. The overlay in this chapter is shown

to scale at a low frequency overhead, while the extensive comparisons between

the implemented overlays in this chapter and previous work demonstrate and

quantify the effectiveness of the proposed approach.

Chapter 7 concludes the work presented in this thesis and discusses future

work based on its findings.
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1.5 Publications

The originality of the research contributions of this thesis is demonstrated

through publications in the following peer-reviewed conference and journal

proceedings:

1. L. Ioannou and S. A. Fahmy. Network Intrusion Detection Using Neural

Networks on FPGA SoCs. In Proceedings of the International Conference

on Field Programmable Logic and Applications (FPL), pages 232–238,

2019 [1].

2. L. Ioannou and S. A. Fahmy. Neural Network Overlay Using FPGA

DSP Blocks. In Proceedings of the International Conference on Field

Programmable Logic and Applications (FPL), pages 252–253, 2019 [2].

3. L. Ioannou and S. A. Fahmy. Lightweight Programmable DSP Block

Overlay for Streaming Neural Network Acceleration. In Proceedings of the

International Conference on Field-Programmable Technology (ICFPT),

pages 355–358, 2019 [3].

4. L. Ioannou, A. Al-Dujaili, and S. A. Fahmy. High Throughput Spatial

Convolution Filters on FPGAs. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 28(6):1392–1402, 2020 [4].

5. L. Ioannou and S. A. Fahmy. Streaming Overlay Architecture for Light-

weight LSTM Computation on FPGA SoCs. Submitted to: ACM Trans.

Reconfigurable Technol. Syst. [5].
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Chapter 2

Background and Literature

Review

Edge devices’ functionalities have evolved over the years, from passive to more

interactive, incorporating sensors and actuators to interact with the physical

world in a smarter way. Meanwhile, the increasing interconnectivity of such

devices has enabled the collection of unprecedented volumes of data, from

which specific patterns can be extracted and used for better informed future

predictions and user tailored operation. Machine Learning has provided the

means to automate this learning process and in many cases has outperformed

hand coded methods of extracting such patterns. Neural Networks are con-

sidered by many the most prominent class of ML models, and are nowadays

increasingly used on wide spectrum of computing devices, from highly parallel

platforms to resource constrained edge devices. As a result, there is great

interest on the workload and size of Neural Networks and how these can be

executed more efficiently on various platforms through various optimisations,

either algorithmic or architectural. This chapter covers all aforementioned

aspects in theoretical background and relevant literature review.

2.1 Machine Learning Motivation

ML algorithms were shown to generalise their learned patterns to new, previ-

ously unseen data. The latter, renders them very useful to simple day to day

tasks, but more importantly, to more complex tasks that have greater impact,

for example network security applications. Specifically, ML algorithms have

the potential to detect new, zero-day, attacks or even modified known attacks

that have been altered adequately to deceive security mechanisms. Both of

which are very difficult to detect with hand coded rules. Therefore, there is

plenty previous work in the literature that explored the use ML in security

applications, in the context of an Intrusion Detection System (IDS). The work
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in [17] explored the use of Non-symmetric Deep Auto-Encoders (NDAE) and

Random Forests (RF) for network intrusion detection, demonstrating great

potential in their detection results and improved turnaround time compared

to a Deep Belief Network (DBN). The use of Neural Networks in the same

domain was explored in [18–23], obtaining high detection rates.

2.2 Real Time Signal and Image Processing

Systems

Signal and image processing are very popular application domains of compute

systems. The real time constraints that these domains usually pose, result

in stringent system specifications. These specifications are often met with

application specific architectures the accelerate parts or even complete digital

signal processing algorithms. As a result, signal and image processing have

sustained interest in real time response implementations by accelerating their

computations. Finite Input Response (FIR) filter acceleration, for example,

has been presented in [24] and [25]. Image processing acceleration, on the

other hand, is becoming increasingly more complex due to the continuously

increasing image resolutions used in vision systems. This results in even more

stringent requirements, in terms of buffer memory and workload, that have to

be met in order to achieve real time operation.

Image, and signal processing algorithms usually include multiplications with

tunable parameters and a signal input (i.e. kernel window and image). These

parameters have been traditionally defined by experts and involve signifiant

human intervention. The emergence of ML has provided the means to define

these parameters empirically, through the availability of datasets and without

the need of expert knowledge. In addition, the automated training frameworks

in the ML domain reduce human interaction to the minimum while yielding

models that are competitive and often surpass algorithms defined by experts.

2.2.1 Convolution

Convolution, or 2-D spatial filtering, is fundamental operation in image pro-

cessing. It comprises a kernel matrix, or filter window, that scans an input

image at a given stride. During the scan, an output image pixel is generated

by calculating the weighted sum of the overlapping kernel area, as depicted in

Figure 2.1. The kernel dimensions and coefficients define the transformation of

the image. For example the transformation can be edge detection, sharpening

or even a specific feature in the image. Convolution has always been popular

among the research community as it constitutes the foundation for many vision

systems. Accelerating convolutions is therefore paramount for real time vision
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Figure 2.1: Convolution operation showing the source image, overlapping kernel
window and result image [26].

systems, as shown in [27–32]. Other previous work have approached this task

alternatively, mainly divided into multiplierless, that make use various theor-

ems, optimisations and transformations to avoid the use of multipliers [33–37],

and others that make use of distinct multiplications [24, 25, 38].

2.3 Neural Networks

Neural Networks are computational models inspired by human cognition, able

to form complex non-linear functions from a given dataset. Their learning,

similarly to any other ML model, can be further categorised in supervised and

unsupervised. In supervised learning, a dataset with a set of inputs and their

corresponding outputs (i.e. labelled data) is provided. The Neural Network is

then trained to match the expected output given that specific set of inputs, or

classify them to a given class. During unsupervised training, a dataset with only

inputs is provided, with the task to extract any patterns from the input data.

For example, an unsupervised model could automatically cluster its input data

to categories with similar features. Supervised learning therefore may include

expert intervention to derive the output labels, rendering the preparation of

the used dataset a more time-consuming process compare to unsupervised

learning. On the other hand, unsupervised training requires more data and

more time to achieve satisfactory accurate predictions, which in turn require

more compute and memory resources during training. Lastly, unsupervised

learning can also be susceptible to dataset artefacts or erroneous spikes that

may have been included due to the automated operation of the process. As a

result, most trained models used for benchmarking in the literature are trained
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with supervised learning.

Figure 2.2: Neuron Structure, showing the inputs, weights, biases and activation
function [12].

Neural Networks consist of compute entities called neurons, as shown in

Figure 2.2. Each neuron calculates the weighted sum of its inputs, adds the

result to an offset value (bias), followed by an activation function for non-

linearity. Most commonly used activations functions are the Rectified Linear

Unit (ReLU), sigmoid and tanh, as shown in equations 2.1 - 2.3.

relu(x ) = max(0, x) (2.1)

sigmoid(x ) =
1

1 + e−x
(2.2)

tanh(x ) =
ex − e−x

ex + e−x
(2.3)

A layer is then formed with the use of multiple neurons, operating in

parallel, and by extension, a Neural Network is built with a sequence of layers

that propagate their results between them. The first layer of a Neural Network

is the input layer, from which new data are fed to the network, whereas the

last layer is the output layer, out of which the results of the network are

generated. Any layers between the input and output layer are called hidden

layers. Conventionally, Neural Networks with one or two hidden layers, in

addition to the input and output layers, are called shallow. Networks with

more than two hidden layers are considered deep networks. Various types

of Neural Network layers exist that are tailored to different types on inputs.

Depending on the layer type, the functionality of each neuron is somewhat

different, however the core operation remains inherent. Neural Networks have
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been successfully applied in a broad range of fields, from automotive [39], to

healthcare [7].

2.3.1 Fully Connected, or dense Layers

Fully connected, or dense, layers are the most commonly used type of layers as

they can be used as an independent solution or be embedded in more complex

Neural Network topologies. An indicative structure of a fully connected layer

is shown in Figure 2.3. Inputs to fully connected layers are represented

numerically and so symbolic (or categorical) inputs must be converted to

suitable formats before being applied. Applications of NNs consisting solely of

fully connected layers have been indicatively used in network security [12, 19,

20, 40, 41], healthcare [7], automotive [39], language processing [42] and gas

classification [14].

Figure 2.3: Artificial neural network structure.

2.3.2 Convolutional layers-CNNs

Convolution gained even more attention in the recent years due to the success

of Convolutional Neural Networks (CNNs) [43]. CNNs mainly consist of

convolutional layers that use convolutions abundantly to extract features from

an input image. Convolutional layer weights (i.e. kernel coefficients) are

defined automatically during training. The correlation between convolution

and CNNs is demonstrated in [37], in which the convolution operation in CNNs

is optimised by using power of two weights.

Convolutional layers incorporate the traditional 2-D convolution operation

in image processing. Convolutions are more efficient at processing images

compared to fully connected layers. For example, although an image could be

flatted and used in a fully connected layer, it would require many more neurons

and connections between them, resulting in higher memory and compute

requirements. Convolutional layers act as feature extraction entities on the
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feature maps (i.e. images) that are propagated through the network. They

are mostly used in tandem with other types of layers that perform the actual

classification task on the extracted features. An example of a complete CNN

is shown in Figure 2.4, which is trained for handwritten digit recognition [44].

The input images initially propagate through the feature extraction layers, that

mainly consist of convolutional layers, followed by the classification part that

consists of fully connected layers. Various CNN topologies have been proposed

over the years, for example AlexNet[8], VGG [45] and GoogLeNet [46]. Each of

these CNNs has pushed the state of the art while demonstrating improvements

or tradeoffs between them. For example, a CNN topology may offer faster

training turnaround, going deeper or reduce the overall workload, among

others.

Figure 2.4: A typical CNN structure, showing the distinct feature extraction
and classification parts [44].

The different layers in a CNN have significantly different workload and

memory requirements. Indicatively, the analysis that takes place in [13] extracts

the number of operations, Figure 2.5, and the number of weights, Figure 2.6, for

each layer. In this case, the convolutional layers comprise the largest workload

while benefiting from weight reuse, whereas fully connected layers have reduced

workload but higher memory requirements.

Figure 2.5: Per layer number of operations in AlexNet [13].
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Figure 2.6: Per layer number of weights in AlexNet [13].

As a result of their popularity, toolflows have been proposed to map these

CNN topologies on custom computing architectures [47]. In addition, although

CNNs are primarily used for image recognition tasks, the work in [23] uses

CNN topologies for a network security application. The authors have converted

the network traffic features into images which have been used to train CNN

networks. The proposed method however did not obtain better detection rate

compared to simpler NNs comprising fully connected layers. Nonetheless, it

demonstrates the versatility of neural networks in a broad range of domains.

2.3.3 Recurrent Layers-RNNs

Figure 2.7: A recurrent unit, its unrolled computation over timesteps [48].

Recurrent layers are tailored for sequential or time series data applications.

To enable this class of networks to extract any correlation between data

sequences, they include feedback connections to previous outputs, which in

turn translate to computing dependencies during their runtime. The feedback

connections embed a memory element to the network, based on the data that

has been previously propagated through the layer. An example of a recurrent

unit unrolled over time is shown in Figure 2.7. The unit receives the first four
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words of a sentence serially and generates the fifth word, based on the previous

ones. The initial structure of recurrent units however has been proven prone

to vanishing and exploding gradients. The former case is when a gradient

is very small, during training, and it continues to become smaller until it

vanishes. The latter case is the exact opposite, referring to a gradient that is

very big, creating an unstable model. As a result, variants have been proposed

to overcome the aforementioned issues.

Long Short-Term Memory (LSTM) layers

Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs) are

RNNs that have been proposed to overcome the vanishing and exploding

gradient problems. Although both perform similarly in many tasks, the more

complex structure of LSTMs theoretically allows them to learn more complex

sequential patterns.

Figure 2.8: An LSTM unit.

Equations 2.4 to 2.9 describe the operation of an LSTM unit, which is

also illustrated in Figure 2.8, where � denotes element-wise multiplication,

and W and U are the weights of current input features and the previous cell

outputs respectively. More specifically, an LSTM unit consists of the forget

gate (ft), input gate (it), and output gate (ot), along with the cell state(Ct),

its partial result(C̃t), and the LSTM cell output (Ht). The forget gate controls

the amount of information to discard from the previous cell state, the input

and partial cell state define the new information to add to the cell state and

the output gate defines the LSTM cell’s output based on the current cell state.

The main difference between LSTMs, and RNNs in general, and feedforward

NNs, is the feedback connections from previous outputs (Ct−1 and Ht−1).

An LSTM network can process a sequence of inputs, each of which can

be a scalar or a vector. The sigmoid (σ) and tanh activation functions are

most commonly used in this configuration. However, some flexibility in the

application of activation functions is required to support different networks.

15



ft = σ(Wfxt + UfHt−1 + bf ) (2.4)

it = σ(Wixt + UiHt−1 + bi) (2.5)

C̃t = tanh(Wcxt + UcHt−1 + bc) (2.6)

ot = σ(Woxt + UoHt−1 + bo) (2.7)

Ct = ft � Ct−1 + it � C̃t (2.8)

Ht = tanh(ct)� ot (2.9)

LSTMs have been successfully applied to weather forecast [49], network

security [21, 22], optical character recognition [50, 51], speech recognition [52],

character level text prediction [53–55], among others.

2.3.4 Hyperparameters and Evaluation

Hyperparameters are a set of parameters used during the training of a Neural

Network that have an impact on how effectively the model learns from the input

data. These parameters are usually defined experimentally as their impact

differentiates according to the task at hand.

• Neurons per layer and number of layers: the number of neurons

in a layer and the number of layers affect the learning capacity of the

network. Therefore, depending on the complexity of the task at hand,

different network topologies are explored to find the better suited one.

• Batch size: is the number of input samples after which the model

coefficients (i.e. weights and biases) are updated during training.

• Epochs: an epoch is called after all samples in the training set have been

propagated through the network once. Usually this process is repeated

multiple times for the network to learn.

• Learning Rate: is the rate at which the coefficients are updated after

the pass of a batch.

• Loss function: is the function with which the prediction error of a

Neural Network is evaluated, which in turn affects the coefficient update

during training.

• Optimiser: is the function, or algorithm, used to update the network’s

coefficients and reduce the prediction error of the model to ideally reach

to the global minimum.
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A Neural Network is frequently evaluated during training, e.g. after the pass

of an epoch, showing the prediction error and, where possible, the percentage of

correct classifications made. Although other metrics exist as well, accuracy is

the most widely used one since it encapsulates the overall prediction capability

of the model, while others focus on a specific attribute. For example, given a

network that classifies its input data to two classes, e.g. class 1 and class 2,

classification accuracy is calculated as follows:

accuracy = 100 ∗ TP + TN

TP + TN + FP + FN
(2.10)

where:

• TP: True Positive, corresponds to a class 1 dataset entry has been

correctly classified as such.

• TN: True Negative, corresponds to a class 2 dataset entry that has been

correctly classified as such.

• FP: False Positive, corresponds to a class 1 dataset entry that has been

incorrectly classified as class 2.

• FN: False Negative, corresponds to a class 2 dataset entry that has been

incorrectly classified as class 1.

2.4 Compute Platforms

Compute platforms are the means by which Neural Networks are processed.

These may be generic software programmable architectures, e.g. a Central

Processing Unit (CPU) or a custom computing architecture implemented on

an ASIC or FPGA.

2.4.1 Software Programmable Platforms

Software programmable platforms, CPUs and GPUs, have been the most

popular for Neural Network computations. The ease of compiling an algorithm

in software, coupled with the highly parallel operation of GPUs have rendered

these platforms very user friendly. In addition, the availability Neural Network

frameworks (e.g. Tensorflow [56], Keras [57], Caffe [58], Theano [59]), which

have abstracted the low level details of NN implementations in software, acted

as a catalyst for the wider use of these platforms.
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Central Processing Units (CPUs)

The ubiquity of generic CPU compute architectures coupled with their low

cost have rendered this class of units very appealing for NN execution. CPU

capabilities may vary significantly in respect to the compute platform they are

used in. For example, server CPUs are more capable compared to personal

computer CPUs, both of which are more powerful compared to an embedded

microprocessor that implements a Reduced Instruction Set Computing (RISC)

architecture. Nonetheless, since embedded processors comprise the majority

of edge devices’ CPUs, there have been particular efforts in enabling a more

efficient deployment to these devices through the use of compute optimisations.

For example, Tensorflow [56] provides a Lite version that offers a range of op-

timisations for embedded processors, like the ARM Cortex-A72 on a Raspberry

Pi 4.

Although the spectrum of CPU capabilities varies significantly depending

on the targetted device, CPUs in general are not able exploit parallelism in

NNs at significant extend due to their relevantly low core count and inefficiency

in memory intensive computations. The work in [60] has shown that fully

connected layer processing can become less efficient on CPUs due to their

memory intensive patterns. This was demonstrated in an analysis conducted

on AlexNet [8], a specific CNN topology. Two Intel Xeon E5-2650 CPUs

running at 2.4GHz were used to measure AlexNet’s Instructions Per Cycle

rate (IPC). Fully connected layers achieved the lowest, compared to the other

layer types, obtaining an IPC rate of less than 1, due to cache misses in all

cache levels, causing a high number of stall cycles to fetch data from memory.

Hence, we see that data flow optimisations are also important to fully reach

the processing potential of the computing unit.

Therefore, despite the wide availability and ease of Neural Network deploy-

ment, CPUs are less likely to offer real time execution while also being less

energy efficient for such tasks. As a result, latest CPU models include special

NN processing units [61, 62], to offer more efficient processing for this class of

algorithms.

Graphic Processing Units (GPUs)

GPUs attracted significant interest in the NN domain on both, training and

inference ends. Their highly parallel compute architecture coupled with the

availability of an abstracted Application Programming Interface (API), for

example Nvidia’s Compute Unified Device Architecture (CUDA), have greatly

reduced execution times on both training and inference while maintaining the

ease of software programmability. GPUs form factor has diversified over the

years, providing solutions that range from powerful GPUs for central computing

18



to GPUs in the embedded domain. Although Neural Networks’ training is

dominated, at the moment, by the use of powerful GPUs in workstations,

the use of GPUs for inference, especially in the embedded domain, has not

been very beneficial in terms of performance and efficiency, compared to

custom computing architectures on ASICs and FPGAs. The latter is mainly

due to the fact that custom computing architectures are more tailored to

a specific application domain compared to the more generic architecture of

GPUs. For example, GPUs offer limited parallelism in LSTMs due to their

sequential components and dependencies to previous outputs. Therefore being

underutilised when processing in streaming mode, requiring batch processing

to achieve high throughput. Previous work in [52] showed that an LSTM

implementation for speech recognition, that operates at 100MHz on a Xilinx

Zynq XC7Z045 FPGA, is more energy efficient compared to a high-end NVIDIA

GeForce Titan X GPU. The authors in [63] explored the partitioning and

execution of large LSTM layers on FPGAs. Their proposed approach on a

Xilinx Virtex 7 and a Zynq FPGAs demonstrated improved performance and

energy efficiency compared to an Nvidia TITAN X Pascal GPU, in addition to

a Intel Xeon E5-2665 CPU and previous work on FPGAs. The work in [55]

proposed LSTM co-processors on Xilinx Zynq ZC7020, obtaining improved

runtime and energy efficiency compare to an Nvidia Tegra TK1 GPU.

2.4.2 Application Specific Integrated Circuits (ASICs)

Application Specific Integrated Circuits (ASICs) have demonstrated superior

performance and energy efficiency at the cost of flexibility. As reported in

Chapter 1, FPGAs tradeoff between performance, flexibility and off-the-shelf

availability have been the main advantages over ASICs. In addition, as Machine

Learning is an actively explored domain, constantly pushing the state of the

art, means that long fabrication times are likely to render ASICs outdated

by the time they are produced. As a result, ASICs implementations in this

domain are shown to maintain some flexibility with more generic architectures,

for example, the systolic array architecture found in the Google TPU devices.

As shown in Figure 2.9, the input data in a TPU systolic array flow from the

left hand side, while the weights are loaded from the top. Compute units in

between calculate partial sums which are accumulated at the lower end of the

array.
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Figure 2.9: Systolic Array dataflow used in Google Edge TPU [64].

A systolic array implementation would therefore require a number of ex-

ternal memory channels to provide the required input and weights bandwidth.

Its compute unit arrangement makes it efficient for matrix-matrix multiplica-

tions, which is ideal for CNNs that are inherently tailored for batch inference,

but not very efficient in operations of other network types, e.g. matrix-vector

or vector-vector. Therefore, in streaming processing, systolic arrays would

be less efficiently utilised due to the lack of batching and shared weights.

Moreover, the fixed architecture of an ASIC systolic array means that their

efficiency is heavily based on the Neural Network’s dimensions, with small

networks to underutilise its compute resources. Additionally, the dependencies

in LSTMs make it very difficult to utilise the pipeline parallelism in this class

of architectures due to their more regular dataflow.

2.4.3 Field-Programmable Gate Arrays (FPGAs)

FPGAs are reconfigurable integrated circuits that can be found on various form

factors that range from the embedded domain to high performance central

computing. Their inner structure, depicted in Figure 2.10, comprises of a finite

number of flexible routing resources and Configurable Logic Blocks (CLBs), or

slices. Each CLB consists of small number of Look-Up-Table (LUT) memories,

that can be used to implement any logic function, and synchronous memory

elements, Flip-Flops (FFs). Each CLB is interfaced with a routing channel,

which can be configured to I/Os of the CLB to the programmable interconnect.

Routing channels are in turn interfaced with switchboxes which are able to

make a connection between the available routing channels. FPGAs have

evolved over the years to not only provide more configurable elements, but to

also include hard macro blocks and interconnect for widely used operations,

implemented directly in silicon. These macro blocks have enabled more efficient

implementations, in terms of both performance and energy, while their dynamic
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Figure 2.10: A part of an FPGA architecture, showing the various building
blocks. [65].

programmability provides a degree of flexibility. Moreover, the reconfigurable

fabric has also been integrated alongside an embedded processor, offering a

complete system solution on an FPGA SoC. Depending on the family, the

capabilities of FPGAs may vary, providing different interconnect capabilities,

different number of macro blocks or more advanced LUT functionality, among

others.

FPGAs have traditionally been used to accommodate custom computing

architectures to accelerate workloads and achieve real time performance. Crit-

ical applications that require real time performance, among others, are network

security algorithms. The faster the response in this class of algorithms means

that less malicious packets enter the network, which results in a more effective

defence mechanism. Accelerating traditional intrusion detection workloads on

FPGAs has been explored in [66] and [67], while more modern ML approaches

on FPGAs have been explored in [68–70]. In a similar way, FPGAs have also

been used to accelerate vision computations for real time performance [28–32].
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FPGA Macro blocks

Figure 2.11: DSP48E1 compute block architecture, showing the various
datapaths, compute units and configurations [71].

Hard macro blocks are distributed on the FPGA IC and can offer, for example,

improved distributed memory storage, in the form Block RAM or most recently

Ultra RAM, or advanced compute capabilities, with Digital Signal Processing

(DSP) blocks. An average BRAM memory block has about 32 Kbit of memory

which can be configured as 32K × 1 bit, 16K × 2 bit, etc. DSP blocks are able to

perform more complex computations, that are widely used in signal processing

applications. An indicative DSP block architecture is shown in Figure 2.11.

It consists of three main compute blocks, a pre-adder, a multiplier and an

Arithmetic Logic Unit (ALU). The operation of DSP blocks can be dynamically

configured at runtime, for example, to execute various ALU operations or

select the different input registers to the ALU. Thus providing some degree of

flexibility through programmability.

FPGA SoCs

FPGA SoCs provide a complete system solution, featuring an embedded mi-

croprocessor tightly coupled with an FPGA on the same IC, as shown in

Figure 2.12. These devices are therefore ideal for edge computing, combining

the high-level management functionality of embedded processors with the

compute acceleration of a custom architecture on an FPGA. The embedded

microprocessor can not only be used for light computing but to also configure

and control the FPGA dynamically after deployment. Many previous work

implementing co-processors for Neural Networks on FPGAs have targetted

SoC platforms in a manner that the microprocessor manages the data trans-

fer, control and runtime coordination [53–55, 72]. Others have implemented
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Figure 2.12: FPGA SoC architecture showing the reconfigurable fabric along
with a microprocessor [65].

complete compute architectures on the FPGA fabric, benefiting from all the

advantages of custom compute architecture, while leaving the microprocessor

free and potentially deal with other tasks [73].

2.5 Compute Optimisations

Neural Networks’ ubiquity has led to a significant interest in optimising this

class of algorithms for more efficient processing. Previous work in the literature

has analysed NN models and shown that they are typically over-parametrised,

thus incorporating significant redundancy. Various compute optimisations

have been explored, described in the following subsections, as a result of this

observation, that aim for a more efficient use of compute and memory resources.

2.5.1 Scheduling - Batch Inference

NNs are typically demanding in terms of workload and memory bandwidth.

Even lightweight networks are typically too large to be fully unrolled on the

compute units of embedded custom compute architectures or fit in their on-chip

memories. Generic and custom compute architectures may therefore employ

more complex scheduling techniques in order to make these computations more

efficient in terms of compute resources utilisation and memory transfers [50, 63].

The most popular technique to process these networks is in batches, i.e. on a

group of inputs rather than one input at a time. Similarly to the batch size

hyperparameter during training. Specifically, a large NN is usually partitioned

according to the capabilities of the targetted compute unit. Each partition

weights are cached to the compute unit and computations take place for a
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number of inputs, generating partial results of the NN. Consequently, the

following partition is loaded and cached to the compute unit, calculating its

own partial results based on the previously generated ones. This process is

repeated until the whole Neural Network is processed. Batch processing in

essence alleviates the overheads of loading weights for each input inference and

is ideal when there are huge volumes of stored data. This method is very useful

to accelerators with high speed PCIe interconnect (i.e. GPUs), in which the

high transfer bandwidth is constantly filled with the available stored data. The

availability of data in GPUs is paramount since these devices need to cache

adequate data in their local memories to keep their compute cores occupied,

and maintain high throughput. Otherwise, the available compute cores will be

underutilised, resulting in poor performance and efficiency. Batch processing,

however, is not always suitable for real time processing with streaming flow

of data, e.g. data collected from a sensor on an edge device. The latter calls

for custom compute architectures that are tailored to a streaming dataflow,

making arrangements accordingly to be more efficient.

2.5.2 Pruning

Figure 2.13: Pruned Neural Network example, showing weight (synapse) and
neuron pruning [74].

Pruning involves the detection of weights, also known as synapses, or neurons

whose impact to the Neural Network is minor and essentially remove them, as

shown in Figure 2.13. Weight pruning can be implemented by setting these

weights to zero, resulting in a sparse network, whose topology remains the same.

Weight pruning can be very effective when a compute architecture can take

advantage of its sparse nature and skip computations with zero values, which

will in turn reduce runtime, in addition to its smaller size. The effectiveness of

the compute architecture however, also depends on the degree of sparsity in the

network. Neuron pruning, on the other hand, would result in a smaller network
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topology which will remain dense. Although the regularity of dense models

has a better support in compute platforms, neuron pruning has typically a

more negative impact on the networks’ accuracy. Pruning in general can be

more effective on serial and low core edge computing devices (i.e. embedded

CPUs) in which computations can be skipped at their core. GPUs on the other

hand may not be very effective due to their highly parallel nature. Specifically,

previous work in [75] achieved 1.5× inference time acceleration with 90% of

pruning rate. Alternatively, custom parallel compute architectures need to

implement supporting logic, tailored datapath and compute units to effectively

take advantage of pruned networks and reduce inference time [76].

2.5.3 Reduced Precision-Quantisation

The over parametrisation of NNs can also be exploited by reducing the pre-

cision of the computations. Instead of using floating point 32 bit types, the

computations may use fixed point representation on reduced wordlength (e.g.

8 bit) that can be more efficient. More specifically, although most modern

CPUs have bridged the execution time gap between floating and fixed point

computations, fixed point arithmetic is simpler and will always be accessible

on severely constrained devices at the edge, where a floating point unit may

not to be implemented. The more complex floating point unit is also expected

to consume more energy compared to its fixed point equivalent. In addition,

the wordlength reduction results in less memory requirements in terms of

storage and bandwidth, resulting in reduced external memory accesses which

are slower and energy consuming. A form of quantisation is shown in [37], in

which the authors quantised the weights and biases to power of two values

in order to avoid the use of multipliers. On more advanced generic compute

architectures, multiple reduced precision computations can be fused instead

of one full precision by incorporating the Single Instruction Multiple Data

(SIMD) paradigm. Nonetheless, this optimisation is more beneficial on custom

compute architectures that can shrink their datapath, compute and memory

resources to the specific reduced precision wordlength.

2.6 Enabling Faster Deployment on FPGAs

Although FPGAs are reconfigurable, detailed hardware implementations in

RTL involve time consuming low level design effort. Moreover, the lengthy

back-end tool compilation times, add to a less rapid and dynamic deployment

of custom computing architectures on FPGAs. To this end, various techniques

and paradigms have been proposed over the years, which are described in the

following subsections. In addition, the emergence of new domains, like Neural
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Networks, have also created a gap between training a network and mapping it

to a compute architecture on an FPGA. As a result, automated toolflows have

also been proposed that mainly take advantage of rapid deployment techniques

to provide an end-to-end framework that maps a Neural Network on an FPGA.

2.6.1 High Level Synthesis (HLS)

High Level Synthesis (HLS) has enabled the generation of custom compute

architectures from a higher level language, for example C/C++. Moreover,

behavioural verification through a high level written testbench is also faster,

compared to an HDL written one. HLS also features architectural optimisa-

tions that enhance the performance of the architecture in terms of latency,

throughput, area and resource utilisation. Parallelism, for example, can be ex-

ploited by unrolling compute loops while memory resources can be formatted in

different ways using various partition factors. All these optimisations can take

place by using simple instructions in the high level code. HLS has effectively

reduced the overall design time, by automatically translating the high level

code to low level HDL architecture. The use of higher level language, however,

translates to less low level design optimisations. As a result, HLS generated

compute architectures may be less efficient in terms of power, performance and

resource utilisation [77, 78]. Nonetheless, the lengthy backend compilation time

is still required in order for the FPGA bitstream to be generated. In addition,

although HLS is written in a high level language, functional knowledge of

digital design is still required, since high level programming concepts in generic

compute architectures do not exist in digital system design. For example, the

concept of dynamic memory allocation in software programming does not exist

in digital design, i.e. the memories are fixed in the architecture and cannot be

dynamically allocated [65]. HLS is increasingly used in many published pieces

of work, for example in [14] to implement an NN accelerator in an SoC design

and in [50, 51] to implement an LSTM variant, among others.

2.6.2 Overlays

Overlays have been proposed as a way of enabling high level programming with

rapid compilation and predictable performance on FPGAs. When designed

in an architecture-centric manner, overlays can achieve near the theoretical

maximum frequency supported by underlying FPGA architecture, while scaling

to large overlay sizes [80]. Meanwhile, compilation does not involve the FPGA

backend flow and so can be very fast, lightweight and vendor independent.

Overlays enhance flexibility in custom computing architectures by forming

a coarser grained abstraction on top of the FPGA fabric, as shown in Fig-

ure 2.14. As a result, overlays do not need to repeatedly go through the lengthy
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Figure 2.14: Coarser grained overlay architecture on top of the finer grained
reconfigurable fabric [79].

compilation time required by the backend toolflow. Performance can be more

predictable as it is closely tied to the fixed performance of functional units,

and routing overhead can be reduced by taking into account the regularity

of the required data movement [80]. The authors in [81] present a family of

overlay architectures and associated design methodology. By using datapath

merging, they minimise the added overhead to support various computations

while also providing optional adjustable flexibility through a secondary inter-

connect network. Their experiments demonstrate faster runtime compilation

and reduced area utilisation, though resulting in reduced operating frequency

due to the slower operators occurring in the same context as faster ones. Fur-

ther performance improvement in overlays can be obtained when tailoring the

architecture to heavily take advantage of the high performance DSP blocks,

that are abundant in modern FPGAs [80].

2.6.3 Neural Network Toolflows

The emergence of Neural Networks has created the need to automate their

mapping to the various compute platforms in order to shorten their design time,

by abstracting their low level computations to higher level building blocks. In

order to bridge the ease of deployment gap between software programmable

platforms and FPGAs, automated toolflows have been proposed that provide

an end-to-end mapping of neural networks to custom architectures.

The various toolflows that have been proposed in the literature have ap-

proached this task in different ways. The work in [82] has explored the use of

roofline model to perform a design space exploration in HLS, based on an input

CNN topology. The proposed toolflow outputs a custom compute architecture
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based on the design space exploration and specified user constraints. Thus a

separate compute architecture is generated for every CNN, using the lengthy

backend toolflow each time. The latter, in turn, results in the reconfiguration

of the FPGA with a different bitstream for each CNN. In a similar context,

hls4ml provides a tool for end-to-end FPGA implementations of ML models [83].

Specifically, the tool automates the generation of HLS based accelerators from

high level Python programming language. User specific optimisations can be

applied to tailor the generated architecture for a specific use case. However,

this method also generates a separate compute architecture for each model,

requiring a lengthy backend toolflow run for each model.

An accelerator implemented in an SoC architecture that consists of a

tunable number of compute clusters is proposed in [84]. The compute clusters

use 16 bit wordlength, are flatten in one dimension and are time-multiplexed

to process a neural network. The compute acceleration is supplemented by a

compiler that translates a neural network to a series of instructions, executed

by the custom architecture. This work therefore favours programmability, over

a more custom architecture, while providing a degree of performance and area

customisation by offering a tunable number of compute units.

The work in [85] takes advantage of the redundancy in neural networks to

initially generate a binarised network equivalent for given CNN topology. Binary

neural networks are networks in which part or all computations are converted

to single-bit values. This extreme quantisation has led to significant efficiency

improvement in all aspects, performance, resource utilisation and energy, at

the cost of flexibility. The proposed solution also comprises a framework that

automates the process and focuses on generating a custom compute unit for

each layer, which are then pipelined to form the complete network. Each

processing unit’s performance is tailored to match the throughput of preceding

and following units, providing a balanced performance throughout the network.

The latter avoids inefficiencies that may occur as a result of different throughput

or latency between the layers in a network due to their different workload.

Binarising a model results in reducing its compute and memory requirements

significantly, enabling them to fit on-chip. The proposed framework generates a

compute architecture for each unit, which in turn results in the reconfiguration

of the FPGA for each network. Based on FINN, FINN-L is introduced in [51],

which is a library extension of the former that supports a variant of LSTM

networks.

The Xilinx Deep Neural Network Development Kit (DNNDK) is an example

of a vendor flow for accelerating NN inference on an accelerator architecture

on FPGAs. It comprises a more generic NN computing architectures, like the

Deep-learning Processor Unit (DPU), to offer a more balanced performance

acceleration to flexibility and area ratio. DNNDK includes model compression,
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by using data quantization and pruning, to more efficiently process NN inference.

The various optimisation techniques have contributed to more efficient FPGA

implementations of NNs [86].

2.6.4 Summary

Neural Networks, and Machine Learning in general, are constantly driving a

growth of new applications that are shown to be more accurate than their

hand coded equivalent ones. As a concept, they are ideal in a data driven

processing era from which huge volumes of knowledge can be extracted in an

automated manner. The various NN layers and learning techniques provide

a wide spectrum of learning abilities for different data patterns. As a result,

there is great interest in accommodating this class of algorithms in a wide

range of devices, from powerful servers to edge computing. The latter domain

presents the most challenges and calls for a more systematic approach. FPGAs

have demonstrated their suitability in accommodating custom computing

architectures, compared to other approaches. Tightly coupled microprocessors

on FPGA SoCs offer a complete system solution which renders them ideal

for computing at the edge, combining the generic CPU architecture with

a custom one on the FPGA. In addition, the abundance of DSP blocks in

modern FPGAs provide the means to unroll highly parallel computations.

DSP blocks can offer high performance while consuming less power than their

equivalent ones in fabric. Architecture centric approaches were shown to

more efficiently utilise all aforementioned FPGA resources to provide solutions

that offer improved performance and energy efficiency. Nonetheless, detailed

hardware implementations in RTL involve time consuming low level design

effort. Although various automation tools have been proposed by research

groups and vendors, these still require lengthy hardware recompilation for

each NN topology. This calls for using new methods that reduce design

turnaround time or reuse the low level design in a flexible, parametrised and

scalable manner. The overlay approach enables mapping to an independent

intermediate architecture that does not require low level hardware compilation

for different networks and does not rely on vendor tools for application mapping.
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Chapter 3

Accelerating Neural Network

Based Network Intrusion

Detection on FPGA

3.1 Introduction

The Internet of Things (IoT) is driving an exponential growth in connectivity

between lightweight embedded systems. These devices are often severely

computationally constrained, being designed to fulfil a single task well. This

increased networking presents a challenge, however, in terms of network security,

since these devices can expose a wider attack surface on account of not being as

rigorously engineered as more complex systems. Indeed, the use of IoT devices

as a tool in cyberattacks was exemplified by the Mirai malware in 2016, among

other cases.

Traditional network security has aimed to provide confidentiality, integrity,

and availability of resources to authorized users. This has often occurred

in more controlled network environments such as corporate networks, where

firewalls serve as a secure point of interface with open networks. Even in

such cases, the possibility of an internal system being compromised requires

monitoring for attacks of all traffic, even from within the network.

Intrusion Detection Systems (IDSs) collect and analyse information from

the systems within a network for malicious attack detection. Detection can be

logged as an event of interest or trigger a defense mechanism to deal with the

event in real time. Mainstream IDSs use pattern matching, string matching,

multi-match packet classification and regular expressions for operation [87].

These computationally complex approaches are often implemented using hard-

ware accelerators on FPGAs or ASICs, or run on highly parallel computing

platforms such as multi-core processors or GPUs to enable them to process

network traffic at the high rates required. Hence, such complex systems are
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usually integrated within the network infrastructure of large organisations.

The limited computing power of embedded systems means IoT devices will

often not incorporate significant security capabilities at the nodes, making

them an ideal target for malicious attacks. With such devices being deployed

in less controlled environments, and without access to significant infrastructure,

more lightweight approaches to such security mechanisms are required.

In this chapter, a Network Intrusion Detection approach based on Machine

Learning is explored, specifically Neural Networks (NNs), that provides flexib-

ility to evolve to emerging attacks. This chapter demonstrates how this can

be implemented on a lightweight Xilinx Zynq FPGA SoC to process packets

at line rate while enabling model parameter updates to adapt to changing

requirements.

3.2 Background

Intrusion Detection Systems (IDSs) can be divided into two categories, accord-

ing to the detection method used:

• Signature (or misuse) based: Captured data is compared against a

database containing signatures of known attacks.

• Anomaly based: Captured data is compared against a model of the

expected normal behaviour of the system. If a deviation is observed then

an attack has been detected.

Signature based IDSs are widely used in commercial systems because of

their accurate detection of known attacks, while anomaly based systems are

prone to generating false classifications. Signature based IDSs, however, fail to

detect unknown (zero-day) attacks. There can also be a significant delay for a

new attack to be detected and its signature generated and distributed in an

update [41]. Moreover, signature based systems must consider a large database

of signatures, requiring substantial memory and computational power. Hybrid

implementations of signature and anomaly based IDSs present a more robust

approach since one method complements the other, though these still require

significant computing power.

Intrusion Detection has been an appealing domain for Machine Learning

(ML) algorithms in general. The strongest incentive lies in the ability of ML

algorithms to generalize their learned pattern to new, unknown data. Thus,

ML algorithms have the potential to detect new, zero-day, attacks and modified

known attacks. It is also worth considering that IoT, as a developing domain

will entail evolving (normal) traffic patterns as it finds more uses, so the safe

patterns of communication are themselves evolving, and hence an adaptable

approach to intrusion detection is needed.
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Many ML approaches can be computationally intensive, as described in

Chapter 2, hindering their adoption in embedded systems and compromising

real time detection [41]. Neural Networks, and specifically Deep Neural Net-

works (DNNs) suffer from high computational complexity and complex training.

Hence the work in this chapter focuses on (shallow) NNs to limit the computa-

tional complexity of the proposed system in order to achieve real time detection.

Shallow NNs have successfully been applied in a broad range of fields, from the

automotive domain [39], to healthcare [7], and are a very good fit for simple

event classification or detection. Furthermore, their flexible topology enables

tradeoffs between detection accuracy, performance and area, resulting in a

highly customizable architecture for hardware implementation.

As the functionality of Machine Learning models is defined during training,

the dataset used becomes very important. A flawed dataset means that the ML

model will extract flawed patterns, that may not be applicable or representative

of the intended application. This will in turn result in very poor accuracy

when the trained model is deployed to classify new data. Datasets used for

intrusion detection fall into two broad categories, private (or custom) and

public datasets. Privately generated datasets may contain more realistic data

for training and testing as in most of the cases they are created from the

specific scenario that are to be applied to. Moreover, they can be tailored to a

specific attack detection by manipulating the number of records in each class

accordingly, while public datasets may lack a sufficient number records for a

specific attack type. Proprietary and commercially sensitive datasets, however,

are not available to researchers. Publicly available datasets, on the other hand,

are widely used and, as a result, thoroughly tested [88]. They constitute a

safer choice to avoid potential flaws and, more importantly, they provide a

means to compare with previous work using the same datasets.

3.3 Related Work

Network security has sustained interest in the research community and IDSs

using a variety of approaches have been proposed. Acceleration of pattern

matching on FPGAs has been explored in [66, 67]. The work in [89] proposed an

approach using Principal Component Analysis (PCA) with features extracted

from network traffic, which was tested on the publicly available KDD Cup

1999 dataset. The IDS was implemented on a Xilinx Virtex II Pro FPGA and

achieved a 23.76 Gb/s throughput with an attack detection rate of over 99%.

In [68], the authors present an energy efficient implementation of Decision

Trees (DTs) on an Altera Cyclone IV. Their work covers two test cases: the

first classifies the NSL-KDD dataset using 9 manually selected features out

of 41, achieving a 96.5% accuracy on the train set and 77.8% on the test set.
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The second detects probe attacks on a custom dataset, misclassifying only 3

out of the 37548 instances in the test set. The hardware implementation of

the probe attack detection DT is 15.4× better in throughput while consuming

only 0.03% the energy of its software equivalent on an Intel Atom CPU. The

authors further expanded their work using their custom dataset to evaluate

3 machine learning classifiers in a similar manner in [69]. In this case, their

fastest classifier in hardware was 926× faster while consuming 0.05% the energy

of its equivalent in software. The work in [70] showed how security primitives

could be built into network controllers to enable enhanced security.

In broader work in neural network implementations, the work in [17]

combines deep and shallow learning for Network Intrusion Detection based on

Non-symmetric Deep Auto-Encoders (NDAE) and Random Forests (RF), tested

on the KDD Cup 1999 and NSL-KDD datasets. This approach demonstrates

promising detection results with less training time compared to a Deep Belief

Network (DBN) implementation. The NN in [18] detects Distributed Denial of

Service (DDoS) and DoS attacks offline. The authors use a custom dataset to

train a three-layer (shallow) NN for binary classification (normal-DoS/DDoS)

and test it in a simulated IoT network, demonstrating a 99.4% accuracy. In [19],

two NNs are trained on the UNSW-NB15 and NSL-KDD datasets to detect

DoS attacks using only input features relevant to such attacks. The authors

determined the number of neurons in the hidden layer experimentally, and

demonstrated a DoS detection accuracy of 99% on NSL-KDD and 97% on

UNSW-NB15.

The work in [40] presents two NNs trained on the NSL-KDD dataset

to detect all 4 types of attack in the dataset (DoS, Probe, R2L and U2R).

The first NN categorizes records between normal and malicious, while the

second classifies the malicious records into types (5-categories). The authors

experimentally determined the number of neurons in the hidden layer as well

as whether to use all features or a reduced set. On the test set, for binary

classification, the best accuracy of 81.2% was obtained using a subset of the

input features, while for attack classification the best accuracy of 79.9% was

obtained using all features. The authors in [41], similarly use two shallow NNs

trained on the KDD Cup 1999 dataset for binary and attack type classification.

The NNs use 36 of the 41 features demonstrating an average precision of 98.86%

for binary classification and 95.05% for the attack type classification.

A detailed review on IDSs that employ deep learning is presented in [90],

the most relevant of them to this chapter found in [20, 22, 23]. In [22], the

authors used a Recurrent Neural Network (RNN) on the NSL-KDD dataset

using all provided input features for binary and attack type classification. They

determined the optimal number of hidden nodes and learning rate in each

case experimentally. For binary classification, the authors obtained 99.81%
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and 83.28% accuracy on the train and test set respectively using 80 hidden

nodes and a learning rate of 0.1. Their proposed 5-category classification model

obtains 99.53% and 81.29% accuracy on the train and test set respectively

using 80 hidden nodes and learning rate of 0.5.

Although CNNs are primarily used for image recognition tasks, the work

in [23] proposes an approach that uses CNNs to classify the NSL-KDD dataset.

The authors apply an image conversion technique that maps all the input

features of each record in the dataset to an image. The input features are

initially transformed to a binary vector space and then to an 8×8 grayscale

image. The authors used Tensorflow to implement 2 popular CNN models,

ResNet 50 and GoogleNet, obtaining 79.14% and 77.04% on the test set for

binary classification respectively.

Lastly, the authors in [20] present a Deep Neural Network (DNN) approach

using 6 raw features out of the 41 in the NSL-KDD dataset, achieving 91.62%

and 75.5% accuracy on the training and test set respectively. Using the same

number of raw features, the authors applied their methodology to Deep RNNs

in [21] obtaining 89% accuracy on the test set.

The topology configurations of the NNs described above are summarised in

Table 3.1, where available.

Citation Configuration

Tang et al. [20] 6-12-6-3-2
Hodo et al. [18] 6-3-1
Idhammad et al. [19]: UNSW 6-7-1
Idhammad et al. [19]: NSL-KDD 5-6-1
Ingre and Yadav [40] 29-21-2
Ingre and Yadav [40] 41-23-5

Table 3.1: Network configurations in related work.

3.4 Experimental Methodology

In the context of intrusion detection, Neural Networks have the potential,

ideally, to be updated after deployment or tailored (fine-tuned) to a specific

device’s network traffic. These updates can be applied through new coefficients

for the same model topology, assuming that the model has the capacity to

support this.

Section 3.3 shows that tailoring an NN to detect only a single type of attack

or all the attacks in one category can result in better accuracy. Moreover,

selecting the most relevant features from the dataset decreases the dimension-

ality and this in turn enables NNs to perform better. Hence, the proposed NN

is trained to detect all types of attacks in one category, binary classification
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(Normal-Anomaly), using a selected subset of the available features.

3.4.1 NSL-KDD Dataset

The publicly available NSL-KDD dataset is used, a labelled dataset for su-

pervised learning. It is an updated version of the KDD Cup 1999 dataset,

addressing its shortcomings [91]. While the dataset is not directly related

to IoT applications, it is widely used, enabling comparisons with previous

work. The approach presented here can be applied to any future public dataset

which can be used to retrain the network for IoT specific traffic patterns. The

dataset is divided into the train and test sets which contain data for normal

and malicious traffic. Each entry comprises 41 features categorized into 3

groups [91]:

• Basic features: features that are extracted from a TCP/IP connection.

• Traffic features: features that are generated within a window of the

last 100 connections, to enable detection of longer probe attacks. These

features provide an element of time-domain memory. Traffic features are

further categorized into service and host based.

• Content features: features that are extracted from the packet’s data

and provide the means to detect attacks with infrequent sequential

patterns.

The train set contains 22 attack types, divided into 4 main categories: DoS

(Denial of Service), Probe, R2L (Remote to Local), and U2R (User to Root). In

the test set, there are 17 additional attacks that fall into the same 4 categories.

In this way, the ability of the NN to generalize its learned pattern to unknown

data is put under test.

In order to fairly train the model, categorical features are mapped to a

one-hot encoded representation for the training phase, mitigating the possible

bias introduced by ad-hoc numerical mapping.

3.4.2 Software Implementation

TensorFlow [56] was used to train an NN with 29 input features, 21 hidden

neurons and 2 output neurons, similar to that by Ingre and Yadav [40]. Of the

41 input features, Bajaj and Arora [92] concluded that 8 of them have little or no

impact in attack detection, while Ingre and Yadav [40] noticed that the values

of 4 other features are close to 0. The selected features span all types of features

in the dataset. This enables the NN to extract patterns in the time domain

using Traffic Features, thus avoiding the use of more computationally complex

machine learning models that do so with raw features, such as Recurrent Neural
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Networks (RNNs). Out of the 29 selected features, 3 are categorical, and hence

the number of input layers increases to 110 after one-hot encoding.

The relatively simple and inexpensive Rectified Linear Unit (ReLU) ac-

tivation function is used, that can be easily implemented with a comparator

as shown in equation 2.1, instead of more complex functions that include

divisions and exponents, such as the sigmoid and tanh functions, as shown in

equations 2.2 and 2.3.

The proposed NN was trained with the Adam optimizer, using the cross

entropy loss function (that also includes softmax) with weights and biases

randomly initialized. Training hyperparameters, such as the learning rate

and batch size, were determined experimentally. For fair comparison, the

same randomly initialized weights and biases are used for all the experiments.

Subsequently, experimental runs were made using 3 learning rates (0.01, 0.001,

0.0001) on four different batch sizes (32, 64, 128, 256) for a total of 5 epochs.

The classification performance of each run is evaluated using accuracy, as

described in Section 2.3. The highest accuracies obtained after one epoch are

summarised in Table 3.2. While the proposed NN is trained on the train set

and tested on the test set, the results in Table 3.2 are selected by prioritizing

the accuracy obtained from the test set across runs.

Batch
Size

Learning Rate

0.01 0.001 0.0001

Test Train Test Train Test Train

32 77.61 89.15 80.52 96.02 80.37 89.09
64 73.16 94.71 80.64 94.05 80.29 93.62

128 76.65 93.09 79.01 96.62 79.80 91.99
256 77.56 94.49 80.84 94.22 77.47 94.06

Table 3.2: Accuracy results for training parameters.

From the results in Table 3.2, the learning rate of 0.001 and batch size of

32 provides the optimal combined accuracy across the test and train sets. This

results in the confusion matrix of the test set in Table 3.3.

Predicted Class Actual Class

Normal Malicious
Normal 9257 3937
Malicious 454 8896

Table 3.3: Test set classification results.

Compared to other work in the literature that use the NSL-KDD dataset,

with which a direct comparison can be made, the proposed model accuracy
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is close to that by Ingre and Yadav [40], where the authors report 99.3% and

81.2% accuracy on the train and test sets respectively. It is worth noting that

the authors in this case normalized the dataset prior to its use. While data

normalization has been proven to enhance the accuracy of NNs, it also entails

additional workload during inference. Tang et al. [20] use a DNN with 6 input

features, reporting 91.62% and 75.75% accuracy on the train and test sets

respectively. This shows that deep models that use a small subset of the input

features do not necessarily outperform shallow models that use more features.

All the referenced systems in this chapter that use the NSL-KDD dataset are

summarised in Table 3.4, along with their configurations.

Citation ML Model Classification # Features
Accuracy %

(out of 41) Train Set Test Set

[68] DT N/A 9 96.5 77.8
[40] NN Binary 29 99.3 81.2
[40] NN 5-Cat. 41 98.9 79.9
[20] DNN Binary 6 91.62 75.75
[21] D-RNN Binary 6 N/A 89
[22] RNN Binary 41 99.81 83.28
[22] RNN 5-Cat. 41 99.53 81.29
[23] CNN-ResNet50 Binary 41 N/A 79.14
[23] CNN-GoogleNet Binary 41 N/A 77.04

Proposed NN Binary 29 96.02 80.52

Table 3.4: Accuracy comparisons on the NSL-KDD dataset.

3.4.3 Hardware Implementation

Unlike previous work, the aim of this chapter is to build a fully functional

embedded IDS to perform these classifications in real time on network data.

Hence, the trained NN was used to build a working hardware system for this

purpose. Vivado HLS (version 2016.4) was used, targeting the Xilinx Zynq

Z-7020 FPGA as found on the Xilinx Zedboard, to implement the intrusion

detection hardware. This is a modest FPGA SoC device including a flexible

FPGA fabric tightly coupled with an ARM Cortex-A9 processor subsystem, as

shown in Figure 3.1. This system is designed to act as an IoT gateway, securing

the network for a group of less capable devices. The peripherals, e.g. Ethernet

Phy and SD card, are connected through Multiplexed I/O (MIO) interconnect

to the ARM core and 512 MB of DDR3 memory is attached through the DRAM

controller. This flexible connectivity enables runtime processing of network

data by forwarding packets to the accelerator, or processing them in software.

For testing and verification, it allows the test set and model coefficients to be

stored on an SD card, to be transferred to memory and then to the accelerator

over DMA.

Most work on optimising FPGA implementations of neural networks con-
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Figure 3.1: Overview of the Xilinx Zynq based system architecture.

siders fixed network parameters. Network pruning, data quantization, and

reduced arithmetic precision can be exploited to trade off performance, power

consumption, and detection accuracy [47, 93, 94]. However, this comes at

the cost of flexibility as any change in network parameters requires a new

design exploration and hardware implementation process. The architecture

presented in this chapter is designed to be flexible, by allowing the coefficients

to be modified at runtime, thereby enabling the same hardware to be used

to detect different or evolving attacks without the need for additional design

space exploration or hardware optimisation.

Vivado HLS allows us to exploit the inherent parallelism in the NN structure

using pragmas to unroll loops for maximum parallelism and performance,

without the need for low level Hardware Description Language (HDL) design.

The inputs and intermediate results are represented in single precision floating

point (IEEE-754), as the architecture is designed to retain flexibility to accept

newly trained model parameters. The accelerator operates in one of three

modes: IDLE, LOAD, or COMP. It starts in the IDLE mode where it can

make a transition to LOAD or COMP. Transitions between states are triggered

from the ARM core over AXI-Lite since these are not time critical operations.

In LOAD mode, the coefficients (weights and biases) of the model are

modified to update the NN at runtime, which is done over AXI-Lite using the

4 accelerator inputs:

• mem sel: selects the memory bank to configure. (i.e. first layer weights,

first layer biases, etc.)
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• dimA: indexes the first dimension of a 2D array, or the only dimension

in a one-dimensional array.

• dimB: indexes the second dimension of a 2D array.

• coeff in: value of the coefficient to be stored.

The digram of the proposed IDS is shown in Figure 3.2.

Figure 3.2: Intrusion Detection System diagram, showing the various memories,
neurons and connectivity.

FPGAs support flexibility through reconfiguration by loading alternative

bitstreams that modify the hardware on the FPGA [95]. One method for using

different NN models would be to generate multiple bitstreams and load them

as needed. However, this would entail the separate design and compilation of

these optimised hardware models and would not allow for easy modification of

model parameters to deal with emerging attacks. The Xilinx Zynq allows the

programmable logic (PL) configuration to be changed by the processor system

in software, taking around 30 milliseconds. One way to reduce this time is

to partition a section of the PL for this accelerator and reconfigure only that,

through Partial Reconfiguration (PR), and using an optimised reconfiguration

controller to reduce the time to below 10 milliseconds [96]. Hence, the work

in this chapter retains full flexibility by implementing a general datapath

with reprogrammable coefficients, rather than tightly optimising the datapath

around a fixed set of coefficients.

The time needed for the configuration of all 2375 coefficients was measured

to be 2.273 ms. This includes the time needed for the ARM core to iterate
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through the data, increment its indexing variables, configure the accelerator

accordingly and make the appropriate checks as indicatively shown in Listing

3.1. Updating the coefficients is not considered a time-critical operation as one

configuration of the IDS is expected to be active for a large volume of network

data. Nonetheless, the proposed approach offers competitive reconfiguration

time compared to reconfiguring the hardware, while offering a much more

flexible implementation that allows coefficients to be updated directly, from

software without the need for vendor tools and a full hardware compilation.

1 // Sets the a c c e l to the LOAD s t a t e

2 Se t wr i t e en V (&ids nn , 0 x1 ) ;

3

4 // Indexes the memory o f the 1 s t l a y e r weights

5 Set mem sel V(&ids nn , 0 x0 ) ;

6

7 //Loads the weights o f the f i r s t l a y e r

8 f o r ( i =0; i <(num inputs−3) ; i++) {
9 // Indexes the weights memory

10 Set dimA V(&ids nn , ( u32 ) i ) ;

11 f o r ( j =0; j<n e u r o n s 1 s t l a y e r ; j++) {
12 // Indexes the neuron ’ s memory

13 Set dimB V(&ids nn , ( u32 ) j ) ;

14

15 // Sets the weight

16 S e t c o e f f i n (&ids nn , f l o a t t o u 3 2 ( w e i g h t s l a y e r 1 [ i ] [ j ] ) ) ;

17

18 //Reads the value from the a c c e l .

19 t emp f l oa t=u 3 2 t o f l o a t ( G e t c o e f f i n (& ids nn ) ) ;

20

21 // Checks that the value has been s e t

22 whi l e ( t emp f l oa t != w e i g h t s l a y e r 1 [ i ] [ j ] ) {
23 temp f l oa t=u 3 2 t o f l o a t ( G e t c o e f f i n (& ids nn ) ) ;

24 }
25 }
26 }

Listing 3.1: Setting weights using the ARM processor.

The Intrusion Detection process takes place in the COMP state. To mitigate

the increased complexity due to the one-hot encoding, the fact that only one of

each one-hot encoded features is used at a time is exploited. During inference,

integer representation is used for each attribute and in each case only the index

of the active attribute is needed. The index of the active attribute is used as

an address to a Look-Up-Table, that outputs the corresponding weight. This

restores the number of input features needed for inference from 110 to 29, while

also avoiding redundant multiplications by 0 caused by the inactive attributes

in each one-hot encoded feature. Meanwhile, any multiplication by 1 of each

active attribute is replaced with a low latency table look-up. The 29 input

features along with the 2 output results (corresponding to the normal/malicious

score), are interfaced with the ARM core through 2 separate AXI-Stream ports
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with the data transferred sequentially in consecutive clock cycles.

The timing results of the implemented design from HLS are shown in

Table 3.5 while the resource utilisation on the Xilinx Zynq device is shown in

Table 3.6.

Frequency Latency Initiation Interval
(MHz) (Clock Cycles) (Clock Cycles)

76 237 29

Table 3.5: Timing results for NN accelerator.

The initiation interval of 29 clock cycles is bounded by the number of input

features that need to be read through the AXI-STREAM port.

LUTs FFs DSPs BRAM

Utilised 26463 56478 111 88

Available 53200 106400 220 280
% Utilisation 50 53 50 31

Table 3.6: Resource utilisation on the Xilinx Zynq Z-7020.

The proposed system, shown in Figure 3.1, uses 2 FIFOs on each AXI-

Stream port of the accelerator to act as buffers. Data is transferred to and

from the AXI-Stream ports through the AXI-DMA that is interfaced with the

PS using the HP0 (High Performance 0) port. The HP0 port, in turn, using

the DRAM controller, transfers data to and from DRAM. The configuration of

the accelerator coefficients as well as the configuration of the AXI-DMA take

place using AXI-Lite ports, which are interfaced with the PS through the GP0

(General Purpose 0) port. In order to test the full system, the test dataset

along with the weights and biases obtained from the trained model were stored

on an SD card and made available to the ARM core using the FAT filesystem

library.

3.5 Results and Evaluation

To evaluate the performance of the proposed IDS in practice, Vivado (version

2016.4) has been used to implement the system as shown in Figure 3.1. The

AXI-TIMER IP, operating at 100 MHz, was used to measure the execution

time. To evaluate the accuracy of IDS in practice, the coefficients and test

dataset in the SD card were read from the ARM core, transferred to DRAM

and then fed to the accelerator. Consequently, in COMP mode, the dataset was

read and fed to the accelerator. In order to provide a reference for comparison,
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the execution time of the proposed IDS on a single core of the ARM-A9 (bare-

metal) was recorded. To demonstrate and evaluate the benefits of utilising the

Look-Up-Table mechanism, the execution time of the unoptimized software

implementation on the ARM core is also provided. This version of the NN

uses 110 inputs at the input layer and goes through a number of redundant

multiplications as described in the Section 3.4.3. This work is also compared

with the test time of the NN used for DoS detection by Idhammad et al.

[19], as there is adequate information for an objective comparison to be made.

Although the authors use a different dataset and focus only on DoS attacks, the

focus is only with the execution time and corresponding workload.Idhammad

et al. [19] use the Keras and Theano frameworks in Python, running on an Intel

Core i3 2.4GHz CPU under Debian Linux 8. The authors used 43748 records

to test their NN. For a fair comparison, the authors obtained test time of 0.466

seconds is normalised according to the number of test records in the NSL-KDD

(22544). The execution time of the three methods for the classification of the

test set is shown in Table 3.7.

ARM-A9 a ARM-A9 b Accelerator b Idhammad
et al. [19]@667MHz @667MHz @76MHz

4751.440ms 1458.1ms 9.018ms 240.136ms

a Unoptimised, 110 inputs. b Optimised, Look-Up-Table.

Table 3.7: Execution time.

The execution time of the proposed accelerator includes the time needed

for the input data to be transferred to the accelerator from the DDR memory

and the results to be written back to DDR memory. The use of a Look-Up-

Table mechanism yields 69% reduction in the software execution time. A

straightforward comparison between the proposed accelerator, which operates

as a streaming engine in this case, and the optimised execution on the ARM

Cortex-A9 shows a 161.7× improvement in the execution time. Compared to

the unoptimized software version, the HW implementation operates 526.9×
faster.

Comparing only the execution time of the proposed NN, considering the

proposed optimised implementation with a 29-21-2 configuration, and the work

by Idhammad et al. [19], the proposed accelerator performs about 26.6× faster.

Meanwhile, the proposed optimised model on the ARM core is about 6× slower.

In this case, however, the workload of the NN in [19] with a 6-7-1 configuration

is significantly smaller compared to the proposed 29-21-2 configuration. Taking

into account the number of multiplications and additions in each layer, as

those are the most computationally intensive operations, it is estimated the

NN in [19] requires 49 multiplications and 57 additions. Whereas this work

42



includes a total of 651 multiplications and 674 additions. This amounts to

13.3× the multiplications and 11.8× the additions of the NN used in [19], while

delivering 26.6× its performance. Overall, the proposed approach is able to

detect more types of attack: DoS, Probe, R2L and U2R, at a faster detection

rate compared to the work by Idhammad et al. [19] which focuses on detecting

only DoS attacks.

3.5.1 Network Throughput and Detection Rate

A considerable aspect of an IDS is whether it can make decisions on packets at a

suitable rate to ensure detection does not lag the start of an attack significantly.

Ideally, such a system should be able to flag malicious packets before many of

them have entered the network, so that evasive action can be taken. The time

required to classify a single data record (interpacket interval), calculated by

normalizing their execution time, on both the ARM core and the accelerator is

shown in Table 3.7. In addition, the required minimum transmission size for

IPv4, which is 576 bytes according to the Internet Protocol [97], is taken into

consideration to generate the results in Table 3.8.

Transfer Rate Platform Interpacket Detection Rate
(Packets/Second) Interval(µs) (Packets/Classification)

1Gbps ARM-A9 64.678 14.036
(217,014) Accel 0.4 0.0868

10Gbps ARM-A9 64.678 140.360
(2,170,139) Accel 0.4 0.8680

Table 3.8: Detection rate in packets.

At 1Gbps, 217,014 packets per second of the minimum packet size can be

transferred when the network is saturated. The accelerator offers a detection

rate within a small fraction of a packet (0.0868 packets). On the other hand,

the ARM core can only process one in 14 packets. While the Zedboard does not

offer a 10G Ethernet interface, the performance for such a setup that might be

deployed in an edge datacenter, interacting with IoT devices, is also evaluated.

Newer Zynq UltraScale+ development boards do offer 10G Ethernet, meaning

that the proposed design could be ported to such boards for more complex

networks. At 10Gbps, a maximum of 2,170,139 packets per second can be

transferred. The detection rate in this case is still within a single packet (0.8680

packets), which is 16.2× faster than the ARM core at 1Gbps and 161.7× faster

at 10Gbps. The ARM core at 10Gbps only processes one in 140 packets.

These results demonstrate the benefit of the proposed hardware accelerated

NN detection mechanism in terms of scaling to faster networks, while still

offering the flexibility needed to accept updated model parameters for emerging
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threats. Porting to newer FPGA SoC devices such as the Zynq UltraScale+

would also likely offer significant runtime improvements.

3.6 Summary

This chapter presented an approach for network intrusion detection using NNs

on FPGA SoCs. The topology of the NN maintained moderate computational

complexity for a hardware implementation that can be deployed on a modest

Xilinx Zynq device. It also allowed runtime configuration of neural network

parameters to enable updates and address emerging attacks. The hardware

implementation has been generated with HLS. Meanwhile, a low level optim-

isation on one-hot encoded features coupled with unrolling parallel operations

have lead to a real time response implementation. The NN topology was

trained with TensorFlow [56] using the NSL-KDD dataset, and obtained at

best 80.52% accuracy on the test set. The proposed hardware accelerator

performed 161.7× faster than software execution on the Zynq ARM core which

has allowed it to detect malicious packets within a single packet window for

1Gbps and 10Gbps.
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Chapter 4

High Throughput Spatial

Convolution Filters using

FPGA DSP Blocks

4.1 Introduction

Image and, by extension, video processing entail intensive computations on

a large stream of input pixels. A full HD color video streaming at 60 frames

per second (FPS) requires a processing throughput of over 124 million pixels

per second for each channel. This rate, coupled with the numerous operations

required per pixel in a typical vision flow, result in many GOPS for real

time processing. Exploiting parallelism is therefore paramount to achieve real

time system implementation [98]. Spatial filtering, or 2-D convolution, is a

fundamental operation used in the initial stages of many vision applications, and

as a result, its efficiency significantly impacts higher layers in these applications.

Meanwhile, the resolution of images and videos is increasing, with 4K video

now commonplace, quadrupling the computational requirements compared to

full HD. In addition, the increasing popularity and wider use of Convolutional

Neural Networks (CNNs) in a plethora of applications [43] makes spatial

convolution even more important. As deeper CNNs with more neurons per

layer are developed, the memory required to store weights and biases grows

significantly. Hence, most CNN acceleration architectures buffer pixel and

weight data in off-chip memory, which breaks the streaming model that is more

relevant for real time streaming video applications. Moreover, some CNNs

make use of varying convolution window strides, which reduces computational

complexity compared to a streaming filter that processes overlapping windows.

Therefore, most optimisations applied in CNN implementation do not typically

apply to streaming video processing, and yet the performance requirements

continue to scale. In contrast, optimisations applied to real time vision systems
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can be applied to CNN architectures that operate in streaming manner.

The work in this chapter shows how the use of high performance DSP blocks

in generalized filter architectures can achieve high throughput that meets real

time constraints. Specifically, the flexible filter designs use the DSP blocks

for the pixelwise multiplication, alongside various different adder tree designs.

In order to achieve high throughput, all filter architectures are extensively

pipelined. Compared to previous work, the proposed filter implementations

focus on maximising their throughput on FPGAs while maintaining dynamic

coefficient adaptability through external register access. Specifically, the pro-

posed architecture is built to fully exploit the DSP block resources on modern

FPGAs while managing the required data buffering and architectural pipeline

for 2-D filtering, and being scalable to large filter and frame sizes. Optim-

isation around the FPGA architecture enables the proposed filters to achieve

higher operating frequency and, as a result, higher throughput compared to

published previous work. The proposed architectures achieve high throughput

by operating at near the DSP block theoretical maximum frequency, while also

maintaining an adaptable convolution architecture with coefficients that can

be updated at runtime. Moreover, this chapter demonstrates how the baseline

architecture scales to three widely used video resolutions: HD (1280× 720),

full HD (1920× 1080) and 4K (3840× 2160), on a range of filter sizes that span

from 5× 5 to 25× 25. Lastly, the proposed design is compared with equivalent

filters generated using High Level Synthesis (HLS) and with previous work

found in the literature.

The work in this chapter extends some initial exploration of these concepts on

small filters that was discussed in [99] and has been published in:

• L. Ioannou, A. Al-Dujaili, and S. A. Fahmy. High Throughput Spatial

Convolution Filters on FPGAs. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 28(6):1392–1402, 2020 [4].

4.2 Related Work

High performance image-processing on FPGAs has been an active field of

research, mainly due to the ability of FPGAs to exploit fine and coarse grained

parallelism, allowing for tradeoffs between performance and area [27]. The

reconfigurability of FPGAs also means that they can provide the flexibility often

desired in vision systems. Their high throughput processing, ability to exploit

parallelism, and flexibility have led to the wide use of FPGAs in real time

vision systems [28–30] and to implement a variety of filter structures [31, 32].

A typical vision processing flow moves from pixel-level operations to more

abstracted algorithms on less dense and structured data, where software im-
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plementations can be a better fit due to ease of programming and irregular

data access patterns. Ideally a real time vision system would therefore couple

the high performance of a hardware accelerator, to take advantage of massive

parallelism in low level operations, with the programmability of a processor for

higher level operations. FPGA SoCs, like the Xilinx Zynq, couple an embedded

processor with flexible reconfigurable fabric on the same silicon, with high

throughput connectivity between them. FPGA platforms with PCIe connectiv-

ity can also be used within a workstation environment alongside a more capable

CPU. The reconfigurability of FPGAs, including partial reconfiguration, also

allows them to support dynamic vision systems where the hardware can adapt

at runtime to changing conditions [95]. Hence, FPGAs are ideal for implement-

ing the full computer vision stack including higher level software and low-level

hardware in a broad range of domains, from distributed embedded computing

to high performance servers. Within this context, generalised convolution

architectures are explored to maximise the throughput of low-level operations

within a typical vision flow for high bandwidth video streams.

Convolution, or 2-D spatial filtering, is computed by initially performing a

pixelwise multiplication of each pixel within a window with a corresponding

coefficient, followed by a function that aggregates these products to produce

a single output [100]. Both of these functions may vary for different filter

applications. The coefficients used in the pixelwise multiplication define the

filter’s operation, which can be, for example, noise removal, image sharpening,

blurring/smoothing, or feature extraction. With real time vision systems

typically deployed on streaming images, input data flow becomes simpler,

not requiring storage of complete frames. It is, however, important that the

computations within the convolution meet the real time constraints to avoid

becoming a bottleneck.

Increasing image resolution in mainstream use means that the dimensions

of convolution windows must also scale in order to maintain their effectiveness.

For example, a 3×3 filter applied to a 1280 × 720 image is equivalent to a 9 ×
9 filter for a 3840 × 2160 image, assuming that spatial equivalence is required.

This, consequently, results in increased workload on more input pixels that in

turn requires more demanding processing in order to maintain the same frame

rate.

Most previous work on FPGA-based spatial filters has focused on optimisa-

tions based on the use of fixed coefficients or coefficients constrained to a specific

range [35]. Such optimisations are most effective for filters in which the coeffi-

cients consist of zeros or ones, or other powers of two, since each multiplication

can be replaced with a shift, resulting in no use of multipliers [37], and much

improved hardware area efficiency. This comes at the cost of flexibility as those

systems are fixed to a single purpose. Fixed filter implementations, however,
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Figure 4.1: Filter architecture diagram, showing the various functional blocks.

are not ideal for smart vision systems, in which filters at the lower layers should

be flexible enough to dynamically adapt to different requirements. Flexible

convolution architectures use generic multipliers while providing external access

to the coefficient registers to support dynamic adaptability.

4.3 Generic Filter Architecture

A typical filter architecture and its functional blocks are depicted in Figure 4.1.

It operates in streaming mode, receiving a new pixel from the source image in

each clock cycle, in raster scan order. To compute an output pixel, all pixels

within the corresponding input window must be available. For w×w filter sizes,

where w is an odd number, pixels from w rows are required to compute each

output pixel. This requires a row buffer with the ability to store w − 1 rows

plus w pixels (since only w pixels are needed from the last row). Full frame

buffering is, therefore, not needed for streaming images, something that would

consume significant area for large frame sizes, and possibly require frequent

off-chip memory accesses, which can have a significant performance and power
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consumption overhead.

The pixels in the w×w filter window from the input image, formed around

the calculated pixel, are stored in the pixel cache block as shown in Figure 4.1.

The pixel values are then fed to the pixelwise multiplications block within which

they are multiplied in parallel with the corresponding coefficients, which are

stored in registers and can be configured at runtime. This enables modification

from the higher layers of a complete vision stack as described previously. The

filter’s operating mode is controlled by a state machine that cycles between

idle, coefficient update, priming, processing, and flushing modes. Output data

are streamed at the same rate as the input pixels, maintaining simple data

movement with no need for storing complete frames.

Numerous approaches toward more efficient filter designs have been pro-

posed in the literature. These mainly target the core underlying multiply-

accumulate (MAC) operations and are generally divided into two categories,

multiplier-based and multiplierless filters. Multiplier-based filters directly map

the multiplication to hardware multipliers. Park et al. [25] proposed a sharing

scheme targeting vector–scalar multiplications through decomposing FIR filters.

Bougas et al. [24] use internal pipelining in multiplier arrays to fold FIR filters.

Ma et al. [38] reduce the computational complexity of 2-D convolutions by

splitting large filter windows to a sequence of convolutions with smaller window

sizes.

Multiplierless filters avoid the use of multipliers through various arithmetic

transformations and representations. These include programmable canonic

signed-digit (CSD) representation in [101], and distributed arithmetic (DA)

in [33] and [34] that replaces multiplications with lookup table memories and

adders. The Bachet weight decomposition theorem is used in [35] to similarly

replace multipliers with ROMs and adders. Other multiplierless methods tailor

their architecture to the filter function with hardwired shifts [36] or make use

of powers-of-two weights for multiplierless CNN inference [37].

4.3.1 Boundary Handling

While the convolution window scans the input image, its computation becomes

more complex when it targets pixels at the edges. This calls for particular

handling or padding as the convolution window requires pixels that do not

exist, as shown in Figure 4.2. An alternative is to restrict the sliding window

within the valid region of the input frame, which results in an output frame

of reduced size compared to the input frame. A scalable architecture should

be able to support the addition of border management schemes without a

significant impact on performance.
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Figure 4.2: 2-D filter operation showing indicative examples for interior and
border pixels.

4.4 FPGA DSP Block Architecture

FPGA DSP blocks have evolved significantly since their introduction into

FPGA architectures, from simple multiplier blocks to fixed MAC capability, to

programmable multiplication and arithmetic/logic in modern devices. While

DSP block availability was limited in older FPGA platforms, even low end

FPGAs today include sufficient DSP blocks to implement large filters. DSP

blocks have also evolved to support wider input lengths, additional input

ports, incorporation of a pre-adder, pattern detection capability and SIMD

support. For instance, the DSP48E1 block on Xilinx 7 Series FPGAs supports

multiplication, MAC, multiply-add, add-MAC, and three-input-add functions,

among others. Interconnect between DSP blocks has also been improved,

with modern FPGAs now offering dedicated cascade interconnect between

DSP blocks that allows wider computations and chaining of DSP blocks to

form 1-D FIR filters without using the logic fabric, hence achieving higher

performance. Although connectivity enhancements benefit 1-D FIR filter

implementations, 2-D structures cannot fully exploit these features, so data

movement and buffering must be done manually in the logic fabric. Dynamic

programmability is another feature of the DSP48E1, where it is possible to

adjust ALU function (ALUMODE ), operation mode (OPMODE ) and input

selection (INMODE ) dynamically at runtime. This has led to their use in

lightweight soft processors [102] and flexible overlay architectures [80, 103]

where their functionality can be modified on a cycle-by-cycle basis or to

reconfigure functional units, all while achieving high throughput.

However, to exploit these features and achieve high performance, designs

must be optimized at a low level as synthesis tools are often unable to infer

the best structures for complex designs [104]. Indeed, since DSP blocks can be

clocked significantly higher than the typically achievable frequency in complex
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designs, it is possible to share them in a time-multiplexed manner through

multipumping, where they are clocked at a multiple of the surrounding logic

and multiple operations are mapped to a single DSP block per cycle with

suitable buffering [105].

4.5 Filter Architecture

Figure 4.3: Transposed filter diagram, showing the various compute blocks and
pipeline stages [98].

The proposed filter architectures reflect the general architecture described

in Section 4.3, with a variety of architectural optimizations to achieve high

throughput. The details of the filter design are discussed in this section.

The general structure of a filter, comprising pixel cache, coefficient multiplic-

ation, and adder tree was shown in Figure 4.1. Filters can also be implemented

in transposed form, shown in Figure 4.3, in which the incoming sample is

multiplied by all coefficients and products are summed serially through the

delay line. Transposed form architectures have the advantage of being pipelined

by default [100] compared to the manual pipelining required in direct form.

FPGA DSP blocks have the required functionality and connectivity to enable

1-D transposed form filters to be implemented using only DSP blocks with no

external logic. And hence, these designs have reduced resource utilisation and

improved performance. For 2-D filters, however, data is buffered across multiple

rows and as a result buffering is more complex and cannot be implemented

directly using DSP blocks. Direct form architectures require a separate adder

tree, which consumes additional resources and power. The adder tree depth

depends on the filter size and scales by log2 of the filter size w. Although

the proposed architecture is in direct form, a comparison is made against a

transposed form implementation for completeness.
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4.5.1 Filter Function

The utilisation of DSP blocks in the proposed architecture has been made

through direct instantiation. Although FPGA vendor tools are able to infer the

use of DSP blocks from RTL code, their efficiency decreases for more complex

structures as this automated inference does not fully exploit all DSP block

features or always suitably pipeline them [105]. Through direct instantiation,

the low-level DSP block mapping is controlled to ensure high throughput.

4.5.2 Pixel Cache

The filter cache consists of row buffers and individual registers for the pixels

in the active window, which are connected to the coefficient multipliers. The

number of row buffer units and individual registers depends on the filter size

while the length of the row buffers depends on frame width. Hence, higher frame

resolution is more demanding in terms of buffering, utilising more memory

elements. Shift register look-up-tables (SRLs) are one way of more efficiently

implementing line buffers on FPGAs, since pixels in the line buffers do not

need to be accessed until they reach the filter window. By utilising a suitable

coding style, it is possible to ensure the line buffers are implemented using

SRLs [106]. To demonstrate the impact of this optimization, a six-row buffer

(for a 7 × 7 filter size and 1280 wide frame) utilises over 61 000 flip-flops or

only 110 flip-flops and 1920 LUTs when implemented using SRLs. The savings

introduced through use of SRLs contributes to the scalability of the proposed

architecture. SRLs do impact achievable frequency, lowering it from 700 to 600

MHz for this isolated experiment, but this is in line with the capabilities of

the DSP block and so not a limiting factor in the proposed architecture, while

offering a significant area saving. Moreover, the higher resource utilisation of

the register based implementation can have an adverse impact on the placement

and routing process in a larger design, resulting in longer routing delays for

other parts of a design [106].

4.5.3 Adder Tree

In a direct form filter implementation, DSP blocks configured as multipliers,

as shown in Figure 4.4, are used to calculate the pixelwise products while a

separate adder tree follows to sum these products up and generate an output

pixel value. Three different types of adder trees are explored, as shown in

Figure 4.5. More specifically, the three layouts are as follows.

1. DSP Layout: The adder tree comprises directly instantiated DSP blocks

configured as wide adders. Since this operation is mapped directly to
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Figure 4.4: DSP48E1 block diagram for multiplication.

Architecture

DSP LOG DSPCOMP

Number of Inputs 2 2 6

Basic Units 1 DSP48E1 LUTs
2 DSP48E1s

LUTs

Latency 3 1 10

Number of adders for w = 7 48/36* 48 10

Number of stages for w = 7 5 5 3

*without/with SIMD mode

Table 4.1: Adder tree layout resource consumption.

silicon, it is used as a baseline for maximum performance. In this case

only the post-adder in each DSP block is used.

2. LOG Layout: The adder tree is mapped to the FPGA logic fabric. This

results in a more balanced utilisation of the device resources. Each adder

in this layout is followed by a register, resulting in a pipelined architecture

that is mapped to LUTs and registers.

3. DSPCOMP Layout: A compression component, mapped to the FPGA

logic fabric, is used to reduce the depth of the adder tree while also

using fewer DSP blocks. More specifically, the logic-based compressor

(6:3) takes six operands and generates three partial sums, which are then

summed using two DSP blocks.

Using hardened DSP blocks for the multiplier means that wordlength

can be chosen to use the maximum available within the structure without

impacting area significantly. The filter architecture uses 14 fractional bits for

the coefficients. For the pixelwise multiplications, the input pixels are mapped

to the 25-bit inputs of the DSP48E1 blocks while the coefficients are mapped to
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Figure 4.5: Alternative adder tree layouts: LOG, DSP, and DSPCOMP.

their 18-bit inputs. Since each pixel wordlength is fixed to 8 bits, the remaining

bits in each 25-bit input are set to zero. Since these must be multiplied by the

correct matching coefficients, it is not possible to reuse these additional input

bits, but the loss in terms of hardware is minimal since the DSP block is not

fracturable. In every case, the output of each multiplication is reduced from

48 to 24 bits and then fed to the adder tree. In the first stage of LOG and

DSP-based adder trees, 24-bit additions are performed, while in the following

stages, 48-bit additions are performed. The reduced input wordlength at the

first stage is taken advantage of by adjusting the adders’ wordlength in the

LOG filter, and by mapping two 24-bit additions to a single DSP block in the

DSP filter, reducing the number of DSP blocks utilised. In the DSPCOMP,

45-bit additions are performed throughout the adder tree due to the fixed

wordlengths. The 24-bit inputs are sign extended accordingly before being fed

to the DSPCOMP adder tree.

Information about the DSP block utilisation and latency for each adder

tree layout is summarised in Table 4.1, and dataflow is shown in Figure 4.5. To

achieve high throughput, each adder tree is extensively pipelined. The adders

implemented in DSP48E1 blocks have a latency of three clock cycles, as shown

in Figure 4.6, the compression logic requires two additional clock cycles to

generate its partial sums while adders mapped on the FPGA fabric have a

latency of a single clock cycle.
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Figure 4.6: DSP48E1 block diagram for addition.

Transposed form filters are formed by reversing the signal flow while re-

arranging the building blocks of direct form filters accordingly. This results

in an inherently pipelined adder tree [100]. Transposed form filters in 1-D are

fully supported by the DSP blocks, since an MAC operation can be mapped

to a single block, and therefore requires no external logic. Although in 2-

D structures some logic is required, this does not fully nullify the savings

introduced.

The estimates of DSP block utilisation in a transposed form filter function

for a w × w convolution window are outlined in Table4.2. The DSP block

utilisation shows those used in the individual pixel multiplications and the

adder tree separately. In the direct form design with DSP adder tree, the dual

24-bit SIMD mode (two two-input adders) is used at the first stage of the adder

tree to pack two additions in a single DSP block, as described earlier. Although

the 25-bit pre-adders in DSP blocks usually offer a more efficient utilisation of

the DSP resources, they can be used only in the first stage of the adder tree

where 24-bit additions take place, so mapping two 24-bit additions to the 48-bit

post-adder was preferred. This leads to the same DSP block utilisation, while

maintaining a more straightforward interconnect with no need for delay buffers.

In the direct form design with LOG adder tree, the adder tree is mapped to

the FPGA fabric, using no DSP blocks. The compressor (6:3) in the direct

form design with DSPCOMP adder tree generates three partial results that

are summed up using two DSP blocks, at the expense of some logic utilisation,

compared to the five DSP blocks required in the direct DSP. The proposed

architecture does not include any mechanism to handle overflow and as a result

inaccuracies may occur in cases where the intermediate results overflow.

4.6 Border Management Techniques

Border management techniques handle the undefined regions of an input

pixel stream to produce an output of the same size. Spatial filters can be
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DSP Block Usage DSP blocks for
Mult. Block Adder Tree w = 7

Direct

DSP w2 w2−1
4 + w2−1

2
85

LOG w2 - 49

DSPCOMP w2 d 2× w2−1
5 e 69

Transposed w2 49

Table 4.2: DSP Block usage for different configurations for a filter size of w×w.

implemented without border management, generating output images with

reduced size. In 1-D filters, this affects only the very beginning of the input

signal, and the first outputs can be ignored. In two dimensions, however, this

affects every output frame, reducing frame size. Although this may not be an

issue for all applications, there are occasions where this can be problematic,

such as when a sequence of filters is used to process an image. In CNNs for

machine learning, border management is not usually required, since as data

propagate through the neural network, the convolutions are applied to more

abstracted features and these edge pixels have little or no impact. Filters with

no border management have simpler control logic and data flow, allowing a

straightforward implementation of a transposed form filter.

The complexity introduced by border management has resulted in a body

of work on mitigating its effects. A review of 2-D border handling methods on

FPGAs is presented in [107], where the authors also introduce a novel border

handling management scheme with overlapped priming and flushing. In this

method, registers acting as temporary pixel buffers and multiplexers are used

to reduce the time overhead in handling border pixels. Bailey and Ambiku-

mar [100] proposed two novel border handling mechanisms, transformation

coalescing, and combination chain modification, that reduce the complexity

of border handling in transposed form filters while taking advantage of the

inherent pipelining of the transposed form structure. Another approach in [108]

considers symmetric extension for 1-D signal border management by exploiting

the SRL16 shift register primitives in Xilinx FPGAs to skew data. This tech-

nique, however, is not ideal for DSP block based filters as it introduces shift

registers between the multiplication and addition, preventing efficient mapping

to DSP blocks.

The most widely used techniques for handling border pixels are border

neglecting, wrapping, function change, constant extension, border duplication,

and mirroring with and without duplication. Mirroring, for instance, is used
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in [107–109], while detailed description of all these methods can be found

in [98]. Border neglecting requires no additional logic but results in a reduced

output frame which can be troublesome in small resolutions or cascading filters.

All other methods generate an output an image of the same resolution as

the input one, however the wrapping method benefits from its small control

logic at the cost of possible discontinuities and artefacts. Function change

method is difficult to generalise to all filters while requires complex control logic.

Constant extension and border duplication suffer from discontinuities, artefacts

and additional control logic. Lastly, the mirroring technique’s only drawback

is the additional control logic. Figure 4.7 shows how constant extension, border

duplication and mirroring techniques behave on an image.
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Figure 4.7: Border management techniques (top left: constant extension, top
right: border extension, bottom left: mirroring with duplication, bottom right:
mirroring without duplication) [99].

These techniques can be implemented in hardware in a number of ways, as

described in detail in [107]. Direct window input and cached priming add extra

stalling cycles when processing border pixels, reducing their efficiency. This
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complicates the streaming data flow and, as a result, the datapath control logic

in real time systems. In addition, direct window input uses a complex address

generation logic which adds to its control logic complexity. In contrast, cached

priming uses a less complex address generation logic, however, this method

requires extra multipliers for its operation.

The overlapped priming and flushing scheme on the other hand, both naive

and the scheme proposed in [107], preserve the regular streaming flow at the

cost of additional logic. More specifically, additional multiplexers are required

to make the replacement values immediately available. The naive scheme

uses extra row buffers along with the additional temporary registers within

the window pixel cache, requiring additional memory components. All these

techniques are modifications to the pixel cache block in the filter architecture.

Although border handling techniques and their optimisation are out of the

scope of this thesis, this section concludes that the proposed architecture can

be extended to include these functionalities without significant overhead on

performance or efficiency. This is demonstrated by an indicative implementation

that includes overlapped priming and flushing scheme, proposed in [107], in

Section 4.7.3.

4.7 Proposed Architecture Results

This section presents the implementation results of the proposed filter architec-

ture, showing operating frequency and throughput as well as area and latency

(which represents the number of clock cycles required for the first output pixel

to be generated), for different design parameters. The proposed architecture is

initially investigated in detail using an indicative filter with a 7× 7 window

for 1280× 720 frames, which is used to make comparisons between the adder

tree types in direct form, the direct and transposed forms, against an HLS

equivalent, and the impact of border management on area and performance.

Subsequently, the architecture is shown how it scales on three frame sizes,

1280× 720, 1920× 1080 and 3840× 2160, for 11 different filter sizes, ranging

from 5× 5 to 25× 25. Finally, the proposed architecture is compared against

published work in the literature. All the proposed designs were implemented in

Verilog HDL, using Vivado 2018.2, targeting the Xilinx Virtex 7 XC7VX690 on

the VC709 development board and the results presented in Sections 4.7.1– 4.7.6

are post place and route.

4.7.1 Adder Tree Designs in Direct Filter Structure

The effect of three different adder trees is explored, DSP, LOG, and DSP-

COMP, as described in Section 4.5 without considering border management.
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Adder Tree
Design

Freq.
(MHz)

Latency
(Cycles)

DSP 535 7713
LOG 525 7700
DSPCOMP 530 7725

Table 4.3: Frequency and latency of direct form filter implementations with
different adder tree designs for 1280×720 frame, 7×7 filter and no border
management.

Table 4.3 summarises the operating frequency and latency for the three designs,

all offering high throughput at similar frequencies. The LOG filter is slightly

slower with marginally improved latency.

Table 4.4 shows the resource utilisation for all designs. All filters use 49

DSPs for the pixelwise multiplication, as shown earlier in Figure 4.1. The

LOG design does not use any DSPs in the adder tree, while the DSP design

uses 36 and the DSPCOMP design 20 DSP blocks when w = 7. These results

correspond with the estimates in Table 4.2. When comparing the total resource

utilisation, the DSPCOMP utilises the most registers while ranking second

for LUT and DSP utilisation. Since all filters operate at almost the same

frequency, DSPCOMP can be considered the least efficient when considering

utilised area. The LOG filter utilises about 73% more LUTs compared to DSP

while using 42% fewer DSP blocks and approximately the same number of

registers. Considering the availability of such resources in modern FPGAs,

DSP blocks are the least abundant, while the register-to-LUT ratio is 2 to

1. Therefore, the resource mix of the LOG filter better mirrors the FPGA

architecture and utilises the fewest DSP blocks. Trading 1456 LUTs and

23 registers for 36 DSP blocks is a net positive in area terms based on the

approximate 120:1 ratio of resources on the device. This configuration allows

better replication of parallel filters for different streams while not utilising more

DSP blocks than are necessary, and achieving almost identical performance.

4.7.2 Direct Versus Transposed Form Architectures

Table 4.5 summarises the resource utilisation, maximum operating frequency,

and latency of the direct form (with LOG adder tree) and transposed form

architectures. The transposed form filter structure combines the pixel cache

and filter function into a single module so separate results are not shown. In

terms of performance, both filters have similar latency while the direct form

operates at a slightly higher frequency. Direct form uses significantly more

registers than the transposed form while using about half as many LUTs. The

majority of LUTs in the transposed form filter are utilised by the combined
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Modules Adder Tree
Resource

Regs LUTs DSPs

DSP 735 0 –

Coeff. File LOG 735 0 –

DSPCOMP 735 0 –

DSP 49 59 –

Control Unit LOG 49 63 –

DSPCOMP 49 59 –

DSP 440 1920 –

Pixel Cache LOG 440 1920 –

DSPCOMP 104 1920 –

DSP 4516 12 85

Filter Func. LOG 4539 1464 49

DSPCOMP 8954 1120 69

DSP 5768 1991 85

Total LOG 5791 3447 49

DSPCOMP 9870 3099 69

Table 4.4: Resource utilisation of direct form filter implementations with
different adder tree designs for 1280×720 frame, 7×7 filter and no border
management.
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Module
Direct LOG Transposed

Regs LUTs DSPs Regs LUTs DSPs

Coef. File 735 0 - 735 0 -

Control Unit 49 63 - 83 42 -

Pixel Cache 440 1920 - }
918 7200 49

Filter Func. 4539 1464 49

Total 5791 3447 49 1763 7242 49

Freq. (MHz) 525 505

Latency (Cyc) 7700 7691

Table 4.5: Direct and transposed form implementation summary with 1280×720
frame and 7×7 filter.

filter function and pixel cache modules. The LUTs in this case are solely used

as shift registers (SRLs) for buffering, affected primarily by image width. The

transposed form architecture does not require an adder tree, instead using an

adder chain that can be packed into the same DSP blocks that implement

the individual multipliers. As a result, the DSP utilisation of both filters is

the same. Additional logic is still required, however, for the 2-D transposed

form filter as the dedicated cascade wires offered by the DSP blocks are only

suitable for 1-D structures. The direct form LOG design implements the adder

tree in the FPGA logic fabric.

While both filters have similar performance, with the direct form operating

at slightly higher frequency, their resource utilisation varies significantly. The

resource utilisation of LOG has a better register to LUT ratio as discussed

previously. The transposed form filter architecture is also less extensible

to support border handling as pixel values within the window are already

accumulated with other pixels. This issue has been discussed in [108], where

the use of shift registers is proposed as a solution. This approach however

separates the multiplication and addition, making the resource utilisation

similar to the direct form. Two novel border handling techniques are proposed

in [100] to reduce the border handling complexity in transposed form filters.

These methods result in designs of similar complexity to the direct form ones.

Hence, transposed form filters must sacrifice their efficiency to offer scalability

and support for border handling. The work in this subsection shows that

direct form filters can be suitably pipelined to achieve equivalent performance.

Finally, as discussed earlier, the resource utilisation mix of the direct form

filter better mirrors the resource availability on modern FPGAs.
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Figure 4.8: Implementation results of the proposed filter architecture on three
image resolutions, each on 11 filter sizes.

4.7.3 Direct Filter Structure With Border Management

Although border management is not the focus of this chapter, the use of the

overlapped priming and flushing scheme is explored, as presented in [107]. As

some applications may require the use of border management, this section

demonstrates the extensibility of the proposed architecture to support this
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Modules
Direct LOG

Regs LUTs DSPs

Coef. File 735 0 –

Control Unit 63 65 –

Pixel Cache 652 1657 –

Filter Func.-LOG 4542 1464 49

Total 6020 3186 49

Freq. (MHz) 515

Latency (Cycles) 3860

Table 4.6: Direct LOG architecture for 1280× 720 frame and 7× 7 filter with
border policy from [107].

feature. Moreover, the overhead introduced, as a result of the increased design

complexity, is quantified. Table 4.6 summarises the implementation results

of the direct form LOG filter with border management on a 7× 7 filter for a

1280× 720 frame size.

Compared to the direct form LOG design without border management, the

border extension architecture uses fewer LUTs and more registers, while DSP

block utilisation remains the same. Of particular interest is the LUT reduction

in the Pixel Cache module within the border management architecture. Its

LUT utilisation amounts to 376 LUTs for logic and 1281 LUTs for SRLs,

meanwhile the same module without border extension uses all 1920 LUTs as

SRLs. The straightforward flow of data without border management enables

the synthesis tool to map the Pixel Cache into SRLs. In contrast, border

management requires additional logic for its implementation and its more

complex data flow is mapped to both SRLs and registers, contributing to

higher utilisation of slice registers. Border management reduces frequency

marginally due to the increased complexity of the design and increased routing

congestion. The latency of the first output pixel is decreased, as expected,

since required pixels are present in about half as many clock cycles as in the

baseline design. For example, when a 7×7 filter is used, only four of the first

seven lines need to be buffered for the computation to start, since the out of

frame pixels in the window are replicated from those pixels. Without border

management, no output pixel is produced until seven lines are buffered.
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4.7.4 Comparison With Vivado HLS Filters

HLS is increasingly gaining popularity due to its higher level design abstraction

compared to HDL, enabling faster design time and functional verification of

hardware accelerators. Ease of implementation in HLS, however, can come

at the cost of reduced performance and possibly poorer resource efficiency,

especially when considering processing patterns that map well to low-level

architectural features like the DSP blocks. Vivado HLS 2018.2 was used, with

the image processing libraries provided by Xilinx, to explore how resource

utilisation and throughput scales for filters generated from high level code,

assuming a 1280×720 frame size. Pragmas were also used to unroll and pipeline

the computation of the HLS filters in order to enable streaming processing,

reading, and outputting a pixel in each clock cycle. The achieved frequency for

these designs is plotted with a dotted line in Figure 4.8a. All filter coefficients

are configurable, resulting in the same functionality and DSP block utilisation

as the proposed filter architecture. Coefficient wordlength was set to 18 bits,

and inputs and outputs were set to 8 bits with 16-bit intermediate results.

The reduced wordlength compared to the proposed architecture as described

in Section 4.5, reduces area somewhat, but allows the tool to generate high

throughput filters for more competitive comparison. Table 4.7 summarises

the relative change in resource utilisation and frequency for the HLS filters

compared to the proposed architecture, for the same parameters, compared to

the proposed filter architecture as the baseline. The reduced wordlengths result

in reduced resource utilisation compared to the proposed filter architectures.

This becomes more apparent as the filter size increases, resulting in deeper

and wider adder trees, which in turn increases the difference in overall resource

utilisation. The purpose of this comparison, however, is primarily throughput

and HLS filters have at best 25% lower throughput and up to 40% less for

larger filters. This demonstrates the effectiveness of the proposed architecture

for high throughput applications, where some area overhead can be tolerated.

Filter Size (w × w)

5 7 11 15 19 23 25

Regs −36.83 −41.29 −59.71 −65.07 −66.04 −67.54 −68.20

LUTs −15.79 −22.74 −22.72 −28.71 −34.19 −39.91 −42.86

DSPs 0 0 0 0 0 0 0

Freq. (MHz) −25.84 −29.97 −31.68 −31.34 −38.86 −40.96 −33.42

Table 4.7: Relative resource utilisation and frequency for Vivado HLS filters.
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4.7.5 Scalability Analysis

Spatial filters are widely used in configurations with different filter and frame

sizes as required for a variety of vision applications. Therefore, performance

and resource utilisation are explored while scaling the proposed architecture to

three frame sizes, 1280× 720, 1920× 1080 and 3840× 2160, with 11 filter sizes

ranging from 5 × 5 to 25 × 25. Results are illustrated in Figure 4.8a– 4.8f.

Operating frequency varies from 525 to 400 MHz, decreasing as the filter

size increases, due to the critical path resulting from a wider adder tree and

routing of more coefficient products. The frequency fluctuations are a result

of the critical path moving through various parts of the adder tree as the

architecture grows, leading to routing congestion. Meanwhile, frame size has

minimal impact on operating frequency as it primarily affects the size of the

line buffers, which are not in the critical path. These results compare favorably

with the DSP theoretical maximum frequency of 650 MHz on this Xilinx Virtex

7 device [110].

DSP block and flip-flop utilisation are dependent on filter size rather than

frame size. DSP blocks are explicitly instantiated for the multiplication of

window pixels with the filter coefficients, and hence are filter size dependent.

Flip-flops are mainly used for pipelining the computational datapath, which in

turn depends on the filter size. LUT utilisation is more complex, depending on

both the filter and frame size. To further analyse the scaling pattern, LUTs

utilised as logic are shown in Figure 4.8e while the LUTs utilised as SRLs

are shown in Figure 4.8f. LUTs as logic are primarily in the adder tree and

additionally in the control logic. LUTs as shift registers are used primarily

in the line buffers and as a result their utilisation depends primarily on the

number of lines that need to be buffered and also on the width of those lines.
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Figure 4.9: Slice utilisation for each filter implementation.

65



In order to investigate whether the individual resources in Figures 4.8b to

4.8f are efficiently used within each FPGA slice, the overall slice utilisation for

each filter is graphically depicted in Figure 4.9. We observe that the overall slice

utilisation patterns are similar to those of the individual resources. Therefore,

it is expected that the overall slice utilisation does not hinder scaling of the

proposed filter architecture due to inefficient individual resource utilisation.

5 7 9 11 13 15 17 19 21 23 25
0

60

120

180

240

300

360

420

480

540

600

660

FILTER SIZE

T
hr

ou
gh

pu
t

(F
PS

)
1280× 720
1920× 1080
3840× 2160

Figure 4.10: Achievable frame rates for varying filter and frame sizes.

Finally, Figure 4.10 shows how the operating frequency translates to

throughput in FPS. All designs perform well over the 30 FPS required for

real-time processing, even on 4K videos. 60 FPS is achieved by the majority of

designs, except 9×9 and larger filters on 4K frames, achieving 58 FPS for the

9×9 filter, and as low as 48 FPS for the 25×25 filter. To determine whether

newer FPGAs would allow processing at 60 FPS, the 25×25 filter for 4K frames

was implemented on a Zynq Ultrascale+ ZCU102, successfully satisfying the

500-MHz constraint for 60 FPS. This suggests that the performance of this

architecture scales well with newer FPGA devices.

4.7.6 Comparisons With Previous Work

Table 4.8 summarises previous relevant work in the literature. The FPS

column in the same table has been extrapolated under the assumption that

these architectures generate one pixel per cycle, in streaming processing flow,

in cases where this attribute was not reported.

Licciardo et al. [35] implement a multiplierless design that emulates the

IEEE-754 floating point standard through the use of fixed point adders and

additional logic to manage exponent alignment. Their proposed filter architec-

ture is tailored to a fixed set of coefficients and a fixed range of input values

using the Bachet weight decomposition theorem. Ortega-Cisneros et al. [111]

present a 3×3 filter with fixed coefficients obtaining at best 318-MHz frequency.

The work in [34] presents a multiplierless, coefficient independent filter that
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Kernel

Size

FPGA

Platform

Freq.

(MHz)
Resolution FPS

Fixed

Kernel
Notes

[100] 5×5 Cyclone V 175 1024×768 223 Transposed form, DSP-
based, No border ext.

[100] 5×5 Cyclone V 152 1024×768 193 Direct form, Overlap
prime and flush [107],
Two-stage pipeline

[100] 5×5 Cyclone V 174 1024×768 221 Transposed form, Zero
ext. using Transform
Coalescing

[100] 5×5 Cyclone V 185 1024×768 235 Transposed form, Zero
ext. using Combina-
tion Chain

[100] 5×5 Cyclone V 173 1024×768 219 Transposed form, Con-
stant ext.

[100] 5×5 Cyclone V 159 1024×768 202 Transposed form, Du-
plication

[100] 5×5 Cyclone V 188 1024×768 239 Transposed form, Two-
Phase duplication

[100] 5×5 Cyclone V 180 1024×768 229 Transposed form, Mir-
roring

[100] 5×5 Cyclone V 178 1024×768 226 Transposed form, Mir-
roring with duplication

[35] 3×3 XC7V 213

640×480

1920×1080

3840×2160

692

102

25

×
×
×

Multiplierless, Emu-
lates IEEE-754, Op-
timized for fixed set of
coeffs. with fixed input
range

[34]

7×7 V4LX160 175 1920×1080

1920×1080

1920×1080

1920×1080

84

87

85

82

Multiplierless, Zero-
padding, Flexible
Coefficients

11×11 V4LX160 181

22×22 V4LX160 177

30×30 V4LX160 171

[34]

7×7 V4LX160 183 1920×1080

1920×1080

1920×1080

88

68

72

Use of Multipliers11×11 V4LX160 142

22×22 V4LX160 149

[111] 3×3 Stratix V 318 1024×720 410 × Fixed Kernel

[112] 5×5 V5LX330 115 - - - Neural Network related

[113] 7×7 V4SX35 200 - - - Neural Network related

[114] 13×13 V4LX25 50 - - - -

[115]
4×4–

Stratix III ≤115 1920×1080 ≤55 Fixed point
25×25

[115]
4×4–

Stratix III ≤114 1920×1080 ≤55 Floating point
13×13

Table 4.8: Summarised previous work on 2-D spatial filters.
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also utilises a mechanism for zero padding at the borders. They also compare

against a baseline architecture that uses embedded multipliers and other work

in the literature, with the most relevant to the work in this chapter in [112–114].

Bailey and Ambikumar [100] explored border handling in transposed form fil-

ters. More specifically, they explored the additional cost of border management,

the cost of different border extension methods in transposed form filters and

the scaling of their proposed optimal border extension mechanism. The scaling

exploration takes place on a morphological filter at seven filter sizes, ranging

from 3×3 to 15×15, for a frame size of 1024×768. They also provide imple-

mentation results for the overlapped priming and flushing method presented

in [107] on a direct form filter, a method used in this chapter for comparison

in Section 4.7.3. In this particular case, the authors use a two-stage pipeline

on the combination tree and further improvements can be obtained with a

more heavily pipelined architecture. Meanwhile, the proposed designs, fully

pipeline the adder tree. The work in [115] explores the performance and energy

consumption of FPGAs, GPUs, and multicore processors for sliding window

applications. The authors in this case implement three applications, sum of

absolute differences (SAD), 2-D convolution, and correntropy, on all platforms.

They explore how their architectures scale on a range of filter sizes, each for

three frame sizes: 640 × 480, 1280 × 720, and 1920 × 1080. For the FPGA

analysis, an Altera Stratix III E260 on a GiDEL ProcStar III board was used.

Their 2-D convolution architectures use 16-bit fixed point or 32-bit floating

point representations, obtaining operating frequencies of 104–115 and 103–114

MHz respectively. That work concludes that FPGAs are more power efficient,

compared to GPUs and multicores, while providing significant performance

improvement for large input sizes.

The implementation results of the filter architectures in this chapter demon-

strate significant throughput improvement compared to previous work in the

literature, while being flexible to adapt to varying coefficients dynamically. It is

also worth noting that the filter architectures used as references for comparisons

in this chapter, including the transposed form filter and border management en-

abled design, also demonstrate substantial improvements compared to previous

work.

4.8 Summary

This chapter presented a detailed discussion on 2-D spatial convolution filter

design for FPGAs. It proposed a scalable direct form architecture that was

shown to be extended to support border management, while it offered high

throughput. The latter was achieved by the architectural optimisations driven

by the underlying FPGA architecture, specifically the DSP blocks. Various
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adder tree designs have been compared, alongside a comparison against trans-

posed form implementations and an extended design with border management,

that used the overlapped priming and flushing scheme. The proposed architec-

ture was scaled to a wide range of filter sizes, and frame sizes up to 4K. It was

shown to offer throughput of over 60 FPS in most of these cases while it was

also shown to achieve improved performance on more recent FPGA devices.

The proposed designs were optimised around the features of modern FPGA

DSP blocks, used through explicit instantiation, to achieve high throughput.

Comparisons with HLS filter equivalents showed that the proposed architecture

centric design was able to use the underlying FPGA resources more efficiently

and obtained better performance compared to more generic methodologies.

This has been achieved through the direct instantiation of primitive blocks

which was enabled by the use of low level HDL language. In addition, extensive

comparisons with previous work showed that all proposed filter designs offered

significant throughput improvement while being flexible to adapt to different

coefficients dynamically.
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Chapter 5

Lightweight Streaming Neural

Network Overlay using FPGA

DSP Blocks

5.1 Introduction

Various NN topologies have demonstrated good performance in specific domains,

for example, Convolutional Neural Networks are widely used in computer vision

while Recurrent Neural Networks work well for time-series data. Hybrid NN

structures are also used for more complex tasks, for example, an LSTM

network, can be used after a CNN to generate captions for images [116]. Fully

Connected, or dense layers, are often embedded in the last parts of these

networks to implement the classification or regression task. Alternatively, NNs

comprising only dense layers can be used for less complex tasks such as specific

event detection [1]. As a result of the increasing efficacy of NNs, there is a

growing interest not only in improving their accuracy, but to also accelerate

this class of workloads for real time performance.

The inherent parallelism and computational regularity in NNs have been

taken advantage of in highly parallel computing platforms, such as multicore

CPUs and GPUs, and in custom computing architectures on FPGAs and

ASICs. The ease of accelerating NNs in highly parallel computing platforms,

through the availability of a number of frameworks, coupled with their fast

compilation, have driven wider use of such platforms. Custom computing

architectures offer additional advantages in terms of datapath and numerical

representation optimisations, offering improved energy efficiency, which in turn

makes them ideal for power-constrained platforms at the edge, where multicore

CPUs and GPUs are unlikely to be suitable.

Most previous work on FPGAs has focused on accelerating the generic

matrix-vector operations used for NN inference. Weight pruning and quantiza-
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tion have also been widely used to effectively reduce the memory requirements

of models. High Level Synthesis (HLS) has contributed significantly in reducing

accelerator design time, but still requires a lengthy backend toolflow. Other

work has focused on bridging the gap between software programmable platforms

and FPGAs by proposing automated toolflows [47]. The majority of these

take advantage of the higher abstraction layer offered by HLS to also provide

design space exploration, resulting in hardware implementations tailored to user

requirements and platform capabilities. An example of NN acceleration vendor

flow on FPGAs is Xilinx Deep Neural Network Development Kit (DNNDK). In

the same context, Xilinx Vitis enables compilation of accelerators from higher

level standard frameworks. Much of the published work targets more capable

FPGAs on servers, with high bandwidth PCIe interconnect [16, 48, 117, 118].

Although research in the embedded domain has also flourished, many of

these efforts either rely heavily on batch processing to generate high through-

put, thus underperforming on single network inference and streaming data

applications, or time multiplex complex compute units, thus not fully exploiting

parallelism. Other optimisation methods include extreme quantization, even

down to single bit data, and pruning. Although neural networks have been

shown to tolerate such optimisations, these come at the cost of flexibility in

the compute architecture while requiring additional design space and accuracy

exploration, in addition to quantisation aware training. Finally, the majority

of published work does not consider the FPGA architecture in detail, so fails

to maximise achievable frequency [104]. This results in lower performance than

what should be achievable and poorer energy efficiency since leakage power is

clock independent [16]. In contrast, FPGA implementations that achieve high

operating frequencies do so at the expense of flexibility and thus modifications

to network topology or coefficients require a new compilation. Some work on

large scale matrix multiplication on datacenter FPGAs has demonstrated near

theoretical maximum performance, but relies on large FPGA fabrics to enable

full unrolling of NN computations [16, 117].

Many end user applications rely on processing in both embedded and

datacenter domains. For example, the widely used voice assistants, such as

Amazon Alexa and Apple Siri [42, 119], process natural language both at the

edge device and in the datacenter. The edge device is responsible for wakeword

detection, e.g. “Hey Siri”, through the use of lightweight NNs, while the words

that follow are processed in the cloud. At the edge, hybrid processing is usually

employed to maximise efficiency which includes the use of a low-power, always-

on processor along with the device’s main processor. A lighter network runs on

the low-power processor and once this network generates a value that exceeds a

threshold, the main microprocessor is woken up to run a more complex network.

Depending on the device’s capabilities, these networks can indicatively be 5
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layers deep, using fully connected layers with either 32, 128 or 192 neurons [42].

Hence, we envisage a growing need for edge devices to accommodate lightweight

or moderate sized NNs, to support offloading of further processing to the cloud.

This can be a result of the constrained resources of the edge device, or to protect

the Intellectual Property of an organisation by adding a layer between the

edge device and their trained Neural Network. Architectures for this purpose

should be self-contained and flexible enough to support different NN structures

dynamically. Most previous work has proposed co-processors that rely on a

host processor to coordinate their operation and manage data transfers or only

considered one layer type, offloading others to general purpose architectures.

As described in Section 2.6.2, overlays can enable high level programmabil-

ity with rapid compilation and predictable performance. Architecture-centric

overlays on FPGAs were shown to achieve high frequency while scaling to

large overlay sizes [80]. In addition, compilation to the overlay does not in-

volve the backend flow and is therefore fast, lightweight and vendor independent.

The work in this chapter has been published in:

• L. Ioannou and S. A. Fahmy. Neural Network Overlay Using FPGA

DSP Blocks. In Proceedings of the International Conference on Field

Programmable Logic and Applications (FPL), pages 252–253, 2019 [2].

• L. Ioannou and S. A. Fahmy. Lightweight Programmable DSP Block

Overlay for Streaming Neural Network Acceleration. In Proceedings of the

International Conference on Field-Programmable Technology (ICFPT),

pages 355–358, 2019 [3].

5.2 Related Work

Previous work on overlays, as described in Section 2.6.2, has shown that a

coarser grained architecture on top of the finer FPGA fabric can reduce the

long toolflow compilation time, enabling a more dynamic flexibility. Overlays’

performance can be more predictable, as it is closely tied to the fixed per-

formance of its functional units, while routing complexity can be reduced by

tailoring them to the required data movement [80]. The work in [81] has shown

that, through various optimisations, faster compilation runtime and reduced

area utilisation can be obtained at the cost of lower frequency. Performance

improvement has been obtained in [80], by using the high performance DSP

blocks, that are abundant in modern FPGAs. More generic compute archi-

tectures on FPGAs, for example the Xilinx DPU supported by the DNNDK,

provide a more balanced acceleration [86]. DPU can take advantage of various

NN optimisations to provide better efficiency, that have generally shown many
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benefits at the cost of model accuracy [120]. Meanwhile, the analysis presented

in [60] has shown that fully connected layer processing on a CPU is not very

efficient due to cache misses that result in frequent off-chip memory transfers.

5.3 Serial and Fully Parallel Multiply Accumulate

Operation Comparisons

Figure 5.1: Fully Unrolled Multiply-Accumulate tree Architecture.

While fully unrolling the individual multiplications followed by an adder tree,

as shown in Figure 5.1, has been widely used to take advantage of parallelism

in multiply-accumulate operations in FIR filters and convolutions [4], it is

not always ideal when considering streaming applications with a high degree

of parallelism, for example in neural networks. FIR filters and convolutions

are usually of smaller dimensions, compared to neural networks, having less

coefficient storage requirements and workload to accelerate. The former does

not hinder on-chip storage while the latter calls for more parallelism. MAC tree

architectures are less flexible and adaptable to varying filter dimensions, being

underutilised when computing a smaller filter or requiring complex partitioning

of larger filters in order to fit. Meanwhile, latency for each pass remains the

same. The computation at each layer of a neural network can be decomposed

into a large vector-matrix multiplication that enables the sum of products

for each neuron in the current layer with each in the previous layer and the

corresponding weights. But this full unrolling is costly in terms of hardware,

and the scale of these matrix multiplication units can hamper achievable

frequency. Furthermore, this typically results in a layer-wise operation that

necessitates significant transfers on/off chip between layers. These overheads

are amortised by batch processing. Neural Networks, however, typically contain

sufficient numbers of neurons to offer a coarser grained level of parallelism to

exploit, where each neuron is mapped to a computational element, and its own

results are calculated serially. This offers less dense signal connectivity and
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enables the compute units to operate at high frequency, while also affording

flexibility to different network parameters, and avoiding memory transfers.

Figure 5.2: Serial Compute Architecture, using DSP blocks.

The serial multiply-accumulate operation, inherently abundant in neural

networks, can be more efficiently mapped to a single DSP block, fully utilising

the multiplier and adder, while also requiring less memory for the intermediate

results since they are consumed in a single register throughout the flow of

inputs. This method is shown in Figure 5.2. In contrast, adders in direct MAC

trees are usually implemented either in fabric or in DSP blocks. In the first case,

the adders consume FPGA resources that could otherwise be used to support

the neuron operation (e.g. Control logic, memories in LUTRAMs, registers)

while also consuming more power since functions implemented in a DSP block

use less power compared their equivalent implementations in logic [15]. In

the second case, using only the adder in a DSP block, underutilises the DSP

block capabilities, leaving the multiplier unused, which may have significant

impact to neurons and networks with large number of inputs. Systolic array

implementations can efficiently utilise both components of the DSP block, but

require considered data scheduling at the inputs to the array.

k=100 k=128 k=256
Latency DSP Blocks Latency DSP Blocks Latency DSP Blocks

Serial Compute 101 1 (100) 129 1 (128) 257 1 (256)
MAC tree 14 149 14 191 16 383

Table 5.1: Latency and resource utilisation of the two compute methods.

Table 5.1 shows the DSP utilisation and latency for each of the two MAC

architectures for a neuron with k inputs, as depicted in Figures 5.2 and 5.1.

For simplicity, the input data from the previous layer are assumed to be

already loaded in the registers while routing complexity is not considered,

both of which favour the MAC tree architecture. Each multiplier along with

each adder that follows in the first row of the MAC tree is considered to be
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mapped to a single DSP block, using their cascade interconnect. To enable

direct comparisons between the two compute methods, each of the adders that

follow is assumed to be mapped to a DSP block instead of FPGA fabric. This

would enable the MAC tree to achieve higher operating frequency, as close

as possible to the serial compute frequency, at the cost of underutilising the

DSP block capabilities by not using the multiplication while requiring two

clock cycles latency for each addition. Starting with the MAC tree, its latency

scales according to the next greatest power of two of k. The MAC tree offers

latency improvements that range from 6.2× to 15.1× while consuming 148× to

382× more DSP blocks. The benefits of the MAC tree in terms of latency are

disproportional compared to the resources used, thus less efficient. Although it

might be argued, under ideal circumstances, that the the MAC tree is able to

generate a new output every clock cycle whereas the serial compute every k

cycles, this can be compensated with the coarser, per neuron, parallelism. For

example, for k inputs, exploiting parallelism for at least k neurons (numbers

reported in brackets in Table 5.1) in a layer results in having exact same

throughput while consuming 27% to 33% fewer DSP blocks. Assuming, that

there is sufficient parallelism within a layer to do so.

5.4 Implementation

5.4.1 Overlay

Figure 5.3: Diagram that shows configuration, control and compute paths for
each neuron compute unit.
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Figure 5.4: Proposed neural network overlay architecture, mimicking the
structure of the network.

The overall proposed overlay aims to take advantage of DSP blocks’ capab-

ilities, while also being flexible, allowing the configuration of coefficients for

rapid neural network iteration. The overlay is also able to adjust its processing

latency to the required topology. It is tailored for deployment at the edge

by maintaining low resource utilisation while operating at near the theoret-

ical maximum frequency of the platform. The latter minimises the impact

of clock independent leakage current, resulting in improved energy efficiency.

More specifically, the overlay takes advantage of the efficient mapping of the

multiply-accumulate operation, the main computation in neural networks, on

DSP blocks. Instead of targetting peak performance however, by fully taking

advantage of the parallelism, in this overlay, each neuron’s operation is mapped

to a single DSP block. As a result, each DSP block calculates its output sequen-

tially, thus enabling a flexible and programmable architecture. Moreover, by

being able to operate at a relevantly high frequency, the performance overhead

is somewhat mitigated. The overall proposed overlay diagram is shown in

Figure 5.4, while a more detailed compute unit architecture and its datapath

are presented in Figure 5.3.

The input data along with a valid signal stream into the overlay serially.

Each neuron receives a new input which is subsequently passed to the next

neuron in the same layer. In the overlay architecture, one neuron in each layer

generates an output in any given timestep. When there are more neurons

in a layer than in the previous layer, this requires stall cycles to ensure that

only a single neuron from the previous layer outputs to the shared bus. A

programmable stall mechanism introduces these stall cycles automatically where

necessary to maintain the regular dataflow. Before receiving any inputs, the
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overlay is configured by setting the number of neurons used at each layer (the

reset address for each layer), when to stall and for how many clock cycles, along

with the network weights and biases. The weights are stored in LUTRAMs

while the rest of the configurations in registers.

After the overlay is configured, the input data flows into the first layer,

from neuron to neuron, as shown in Figure 5.3, along with a valid signal

that is used to enable the address counter. The address counter increments

accordingly and addresses the LUTRAM where the weights are stored, feeding

the corresponding weight of each input to the DSP block. The counter resets

when it reaches its configured reset address, enabling the proposed overlay

to adjust its latency, and as a result its performance, to the topology of the

configured network. The address counter is also used to alternate between two

DSP opmodes. Instead of resetting the accumulation register at the beginning

each iteration, the DSP block OPMODE changes to add the multiplication’s

product to the bias (C input of the DSP block). Avoiding, as a result, redundant

additions with zero, replacing them instead with the bias additions that would

normally take place after all the weighted inputs have been accumulated.

For the rest of the computation, a different DSP block OPMODE is used to

accumulate the product. When the address counter of a neuron reaches its reset

address, meaning that the computation of the neuron has completed, a pulse

is generated. The pulse is delayed by three clock cycles for synchronization,

and fed to a state machine that generates the enable signal for the first neuron

in following layer. The enable signal subsequently propagates from neuron to

neuron similarly to the first layer.

Meanwhile, a multiplexer between two layers, addressed by the counter of

the first neuron in the following layer, selects the appropriate input from the

previous layer. Each input to the multiplexer is reduced from 48 bit, the output

of the DSP block, to 27, the input of the following DSP block, by selecting

the appropriate bit range according to the fixed point representation used.

The selected output is then passed to another multiplexer that implements

the ReLU activation function, by checking whether the MSB is set to 1, and

passing the input to the next layer accordingly.

5.4.2 Stall Mechanism

To make the processing and data flow stall for a number of clock cycles, the

valid input signal is manipulated accordingly. The stall mechanism, shown in

Figure 5.5, is configured externally before processing takes place. The valid

signal is connected to the en in port, while the rest of the ports, are connected

to the external component, i.e. the ARM core. The stall mechanism takes two

5 bit inputs along with their active high configuration signals and stores their
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Figure 5.5: Programmable stall mechanism enabling variable sized networks to
be implemented.

values to registers. The total stall cycles input takes the total number of clock

cycles (processing cycles + stall cycles), while the when to stop input takes

the number of processing cycles.

The counter increments as long as en in is active, which means that input

data flows to the accelerator. It resets to zero when it is synchronously reset

or when it reaches the total stall cycles. The counter output is used to detect

whether it has reached the point where it has to stall (count==when to stop)

or whether it has reached the point to stop stalling (count==total stall cycles).

The output flip-flop inverses its output accordingly, and combined with en in,

controls when to stall the overlay. Where not needed, the stall component can

be disabled by setting both, when to stop and total stall cycles, to the same

value. This causes the XOR gate not to generate an active pulse to trigger the

T flip-flop.

5.4.3 Dataflow and Compute Timing Diagram

As described in Section 5.4.1, input data flow in the overlay serially, triggering

the neuron compute units the one after the other. Due to the weight depth

of each neuron within a layer being equal, neurons are expected to fire one

after the other, propagating the serial dataflow to the following layers. This

means however that if the number of inputs to a layer is less than the number

of neurons in that layer, stall cycles are required to maintain this serial firing.

The aforementioned data flow and stall operation are graphically depicted over

time in Figure 5.6.

5.4.4 Case Study

Table 5.2 summarises the datasets and networks used in this case study. The

networks were trained with Tensorflow [56] to obtain the accuracies shown in

the same table. These were chosen to represent a range of application domains

and to match or exceed the complexity of NNs that have been more widely

targetted for acceleration, for instance in [73] and [39]. The proposed overlay,
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Figure 5.6: Diagram that shows the dataflow and compute allocations over
time-steps.

designed for inference, does not implement an activation function at the output

layer, since the required comparisons can be more flexibly made in software

and raw outputs can used as feedback for fine-tuning.

The proposed overlay is tailored to the features of the DSP48E2 block

on the Zynq Ultrascale+ ZU7EV. This DSP block comprises a 27×18 bit

multiplier with a 48 bit accumulator/adder. After exploring the networks and

datasets in Python, a representation with 12 fractional bits has been decided as

it results in no accuracy reduction. Although quantisation has been shown to

reduce coefficient wordlength at the cost of tolerable loss overhead, it has not

been used in order to avoid additional complexity in the training steps. The

overlay uses 18 bit weights, 48 bit biases, which can be configured externally,

and 27 bit inputs. By analysing the topologies of the NNs included in this

case study, an overlay with a 11-12-10-3 configuration has been implemented

along with the stall mechanism using Verilog. The proposed architecture has

been behaviourally simulated and verified against the expected output in each

dataset. The design has then been synthesised and implemented using Vivado

2018.2 and all the results are post place and route.

The proposed architecture can perform computations at maximum fre-
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Dataset NN Topology Train Entries Acc. Train Test Entries Acc. Test

Customer Churn 11-6-6-1 8000 84.26% 2000 82.95%
Diabetes 8-12-8-1 768 78.39% - -
Iris 4-10-10-3 120 98.33% 30 96.67%

Overlay 11-12-10-3 - - - -

Table 5.2: Case study neural networks configurations.

quency of 770MHz, which is close to theoretical maximum, 775MHz, of the

device’s DSP blocks [121]. The resource utilisation of each module is summar-

ised in Table 5.3. It is important to note that the design of the stall mechanism

results in an insignificant area overhead, while the total utilisation is very small,

meaning this architecture could be scaled up significantly on this device.

Module LUTs LUTRAM FFs DSPs

Overlay 796 225 2552 25
Stall Mechanism 24 0 16 0

Total 819 225 2568 25

Available 230400 101760 460800 1728

Table 5.3: Resource utilisation on the Zynq Ultrascale+ ZU7EV.

5.5 Results and Discussion

From the simulations, the number of clock cycles for each network to process

the first dataset entry has been extracted, labelled latency, along with the clock

cycles required to process a following entry when the pipeline is saturated,

labelled interval. The number of stall cycles is also provided to quantify the

stalling overhead. In each case the maximum operating frequency of 770MHz

is taken into consideration, showing how that translates to actual runtime

in Table 5.4. Compared to other FPGA implementations in the literature,

the authors in [73] implement a neural network for gas classification on a

Xilinx Zynq XC7Z010T using Vivado HLS v2016.1. The architecture uses fixed

point arithmetic and operates at 100MHz, as well as using the more expensive

Sigmoid activation function. Parallelism is exploited with pragmas for loop

unrolling and pipelining, and they report a latency of 540ns for their simpler

12-3-1 network topology, which is about 10× slower compared to the proposed

overlay for a 8-12-8-1 network that results in a 48.026ns latency.
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Clock Cycles Time (ns)

Dataset Latency Interval Stall Latency Interval Stall

Customer Churn 32 11 0 41.536 14.278 0
Diabetes 37 12 4 48.026 15.576 5.192
Iris 35 10 6 45.43 12.98 7.788

Table 5.4: Theoretical timing results for the overlay.

To provide a reference for comparison, all three neural networks were

processed in software on the ARM Cortex-A53, operating at 1.2GHz bare-

metal, as found in the same Ultrascale+ device. The neural networks were

also processed on a desktop PC running Ubuntu Linux 18.04 on an Intel

Core i7-6700 CPU, at 3.40GHz. Fixed point representation was also used for

the software, implemented in C. From the execution time measured and the

theoretical timings of the overlay, the inference throughput has been calculated

for each network in Table 5.5.

Neural
Network

Inferences/sec.

ARM-A53
@1.2 GHz

Core i7-6700
@3.40GHz

Overlay
@770MHz

Customer Churn 0.151× 106 3.618× 106 70.04× 106

Diabetes 0.089× 106 2.201× 106 64.20× 106

Iris 0.099× 106 1.29× 106 77.04× 106

Table 5.5: Inferences per second on the different architectures.

The proposed overlay offers a significant performance improvement, com-

pared to the embedded ARM core, able to process the networks in this chapter’s

case study at a significantly greater rate. The proposed overlay is at least 19×
faster than the desktop class Intel Core i7-6700.

5.6 Summary

A lightweight streaming neural network overlay, has been presented in this

chapter. The overlay was optimised for the high performance DSP blocks in

modern FPGAs and exploited their programmability. Moreover, it reduced de-

pendency to the backend toolflow and enhanced flexibility and programmability

of FPGAs in the neural network domain. The implemented overlay architec-

ture maintained low resource utilisation and operated at near the theoretical

maximum of the platform. It also offered significant performance improvement

compared embedded and desktop CPUs, offering 19× the performance of an

Intel Core i7-6700, while being about 10× faster compared to previous work on

FPGAs that used HLS. The high operating frequency, that also contributed in
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minimising the impact of leakage current, coupled with the minimal resource

utilisation and significant performance improvements, rendered the proposed

overlay ideal for processing at the edge.
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Chapter 6

Lightweight Streaming LSTM

Neural Network Overlay for

FPGA

6.1 Introduction

The increasing popularity of Neural Networks has driven significant efforts

to accelerate computation of different network topologies on a heterogeneous

spectrum of computing platforms, from powerful servers to less capable devices

at the edge. NNs are typically trained on highly parallel GPU platforms due to

the high computational workloads that suit offline centralised implementation.

Inference scales well on more constrained devices since various optimisations

can be applied [51, 74, 120, 122]. Hence, there has been ample research

on architectures for NN inference acceleration on a variety of platforms. A

number of silicon vendors have also augmented processors with specialised

neural processing units that offer the required parallelism, enabling significant

acceleration of these workloads [61, 62].

LSTMs combined with fully connected layers are an ideal combination

for processing time-series data in such lightweight applications, especially in

wakeword or event detection, and hence the focus of this chapter is on these.

Lightweight LSTM NNs have found applications in healthcare [123], weather

prediction [49], and network security [124], among other applications. While

fully connected layers are the most regular form of NNs, LSTMs include data

feedback from previous timestep results and disrupt the regular flow of data,

which in turn breaks up back to back matrix multiplications. Although this can

be somewhat alleviated with batch processing or by executing multiple NNs

simultaneously, both methods increase the volume of intermediate results to

be cached, and may not fit all application data rate requirements. In addition,

LSTMs use a wider variety of activation functions compared to traditional
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fully connected layers, requiring a mix of them in a single layer, including the

more complex tanh and sigmoid functions.

In this chapter, an overlay architecture that is able process fully connected

and LSTM layers flexibly is proposed, while operating at high frequency. Low

level computations are abstracted to building blocks that can easily be replic-

ated to reflect the structure of a model, while tailoring the datapath to their

complex dataflow pattern. The proposed architecture is self contained and flex-

ibly reconfigurable to implement different models and adapt to weight updates.

The proposed approach is tailored to operate within edge SoC environments

and can be used to accommodate lightweight to moderate NN workloads. It

operates in streaming mode, with computations carefully mapped to DSP

blocks, each mimicking the operation of a neuron, leaving LUTs for weight

storage and other functionality. This architecture caches very few intermediate

results as they are consumed by subsequent processing units in a stream-

ing manner. Finally, the overlay can be tailored to a specific set of models

or support models that fit the size constraints without hardware reconfiguration.

The work in this chapter has been submitted for publication to:

• L. Ioannou and S. A. Fahmy. Streaming Overlay Architecture for Light-

weight LSTM Computation on FPGA SoCs. Submitted to: ACM Trans.

Reconfigurable Technol. Syst. [5].

6.2 LSTM Background

LSTM operation, along with supporting equations, are discussed in more

detail in Section 2.3.3. Compared to feedforward NNs, LSTMs have feedback

connections from previous outputs (Ct−1 and Ht−1). These dependencies

restrict their performance while making routing, and dataflow in general, in

custom architectures more complex. Nonetheless, common computing patterns

in LSTMs and fully connected layers exist in equations 2.4 to 2.7. A challenge in

LSTMs however is the fact that the dimensions of W and U are not necessarily

the same. The former depends on the number of input features and the number

of units while the latter depends solely on the number of units of the LSTM.

This translates to unbalanced latencies, when the two are computed separately.

These two matrices can be concatenated into one, creating a single larger

matrix with the same dimensions across all gates. This not only balances

the compute latency within each gate but also makes the compute pattern

of each gate the same as the the multiply accumulate operations in the fully

connected layers. Equations 2.4 to 2.7 can be mapped to a single neuron in a

fully connected layer, thus an LSTM unit occupies the equivalent of 4 neurons

in a fully connected layer.
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6.3 Related Work

Previous related work that targets LSTMs in the embedded domain is presented

in [50–52, 63, 76], demonstrating the benefits of custom computing architec-

tures in energy efficiency and performance, compared to software programmable

computing platforms. Specifically, the work in [52] uses quantised (6–16 bit)

LSTM models for speech recognition enabling their design to keep weights

and intermediate results on chip and avoid energy consuming external memory

accesses. The authors implement a matrix-vector multiplication unit that

partially unrolls parallelism within an LSTM layer and is time-multiplexed

for a complete layer computation. Their proposed implementation operates at

100MHz on a Xilinx Zynq XC7Z045 FPGA and shows a distinct advantage in

terms of energy efficiency compared to a high-end NVIDIA GeForce Titan X

GPU.

The work in [50] presents a bi-directional LSTM for optical character

recognition that uses 5-bit weights and fits in the on-chip memory of a Xilinx

Zynq XC7Z045 device. The authors implement a single LSTM cell and unroll

the computations of each gate in it, time multiplexing the instance according

to the dimensions of each LSTM layer. In addition, the authors take advantage

of the fact that in bi-directional LSTMs, two inputs are processed at a time

and overlap their computations in order to alleviate the idle cycles between

dependent LSTM iterations. The effectiveness of this approach is evaluated

by implementing various designs, starting with a design that uses a single

instance of their proposed architecture, exploring its scalability by instantiating

6 such computing blocks. For single input inference, the single instantiation

design offers 152 GOPs throughput at 166 MHz or 130 GOPs at 142 MHz.

The design that incorporates 6 instances, operates at 142MHz and obtains 308

GOPs for single input inference whereas for offline processing, in which batch

processing with 6 images is used, 693 GOPs is achieved. The results show that

the proposed approach does not scale well for single image inference, offering

only a 2.4× scaling when instantiating 6 instances of the design. The proposed

architecture scales better with batch processing, offering 5.3× the baseline

throughput, however this is still not linear. The authors further expanded

their work in [51] exploring extreme quantization methods using 1–8 bits.

Their exploration yields a design that operates at 266MHz,on a Xilinx Zynq

UltraScale+ XCZU7EV, and offers throughput that ranges from 661 to 4201

GOPs for the different precisions used.

A unified LSTM accelerator flow is presented in [76], that takes as input

a trained model and the target FPGA device specification and generates an

accelerator design accordingly. The proposed flow generates an accelerator for

each model and the accelerator is time multiplexed for each LSTM layer within
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a network. The generated accelerator does not support the activation function

computations, which are offloaded to software on the ARM core. The LSTM

gate results are therefore transferred to the off-chip memory, processed by the

ARM core and then transferred back to the accelerator, resulting in frequent

external memory transfers that are energy demanding and add a performance

overhead. The overall SoC design uses the ARM core for coordinating the

accelerator throughout LSTM computation, in addition to the activation

function computation, thus not offering a self-contained accelerator solution.

The authors implemented various versions of their accelerator, using 16 bit

fixed point, 32 bit floating point and their equivalent pruned versions, on a

Xilinx Zynq XC7Z020 FPGA operating at 150MHz. The pruned equivalents

reduced the inference time by 32% and 42% for the fixed and floating point

implementations respectively. Compared to the work in [54], the authors

obtained about 10× improved inference time for the fixed point implementation

whereas the floating point implementation offers negligible acceleration. Both

implementations however demonstrate better power efficiency, being 11.7% and

0.32× more power efficient. The authors extend their evaluation by exploring

the scalability of their floating point architecture by implementing a larger

LSTM layer on a Xilinx Virtex VX485T, FPGA, obtaining 10.7 GFLOPs.

The mapping of large LSTM layers on Xilinx Virtex VX690T and Zynq

7Z045 FPGAs is explored in [63]. The authors aimed at optimising the matrix-

vector multiplications and their dependencies in LSTMs with weight matrix

partitioning and an optimised batch processing strategy. Their proposed ap-

proach is tailored for batch processing and uses 16-bit fixed point representation

while operating at 125 MHz and 142 MHz on the Virtex 7 and Zynq devices

respectively. The authors obtained 356 GOPs on the Virtex 7 and 221 GOPs

on the Zynq, demonstrating improved performance and energy efficiency com-

pared to an Intel Xeon E5-2665 CPU, Nvidia TITAN X Pascal GPU, and other

related previous work on FPGAs.

Other related work that targets the same LSTM models as the ones used

in this chapter, therefore better suited for direct comparisons, is described

in [53–55, 72]. The work in [54, 55] presents three different LSTM co-processors

on an FPGA that balance memory bandwidth and internal storage utilisation

to optimize performance per unit power. The first streams all the necessary

data from off-chip memory, the second stores all data on chip and the third is

a more balanced design. The authors test their co-processors on a character

level network comprising 2 LSTM layers, each with 128 units. The NN model

used, includes a fully connected layer at the end that uses 65 neurons for

the final classification, which has not been included in the architecture. All

co-processors use Q8.8 fixed point representation and operate at 142MHz on

a Xilinx Zynq-7000 FPGA. The three architectures are compared in terms
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of resource utilisation and memory bandwidth, and shown to provide orders

of magnitude better performance per unit power compared to embedded

processors, with the design that stores all data on-chip being the most efficient

in terms of performance per unit power.

A stochastic computing based LSTM implementation is presented in [72],

focusing on reducing the hardware cost and power consumption of fundamental

arithmetic components within an LSTM. The authors evaluate their approach

on an LSTM layer with 16 hidden units, trained on the MNIST dataset. As

with other previous work, the fully connected layer comprising 10 neurons was

not included in the architecture. The authors implement their designs on a

Xilinx Zynq-7000 FPGA, operating at 100MHz, and make comparisons between

the baseline and their two proposed designs in terms of power consumption,

classification accuracy, and runtime. They show a tradeoff between runtime

and resource utilisation and power, demonstrating their ability to scale to a

suitable specification.

The authors in [53] propose a high throughput and energy efficient LSTM

architecture utilising an approximate multiplier. This results in a multiplier-

less implementation and effectively reduces power consumption and resource

utilisation, at the cost of multiple and variable clock cycles due to its data

dependent nature. As a result, performance is less predictable. Hierarchical

pipelining is used to improve performance by overlapping these computations.

The proposed approach applies range-based linear quantization to a language

model LSTM, with the same configurations as the model in [54, 55], on a

Xilinx Zynq XC7Z030 FPGA. The implemented design uses 8-bit fixed point

precision and operates at 100MHz.

Additional related work can also be found in [16, 48, 117, 118], in which

the authors have focused on accelerating LSTM computation on more capable

FPGAs with PCIe interconnect in servers. The approaches used in these works

are not suitable for constrained edge devices, where fully unrolling computations

cannot be achieved.

The majority of previous related work focus solely on the LSTM computa-

tion, not including the implementation of fully connected layers and thus do not

provide a complete edge solution. Moreover, all reported operating frequencies

are well below the devices’ theoretical maximum, which results not only in lower

performance but also in lower energy efficiency due to leakage currents [16].

Meanwhile, generic NN accelerator architectures cannot implement LSTMs

without modification, or suffer a significant performance and energy overhead

due to the dependencies on previous outputs necessitating transfers to off-chip

memory. This calls for more programmable custom computing architectures

for LSTMs. The work in [3] described a streaming overlay for fully connected

layers utilising the DSP blocks of a Zynq Ultrascale+ ZU7EV FPGA. That
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design was shown to achieve close to the theoretical maximum frequency while

using minimal resources, but supported only feed-forward networks with the

ReLU activation function, and was not shown to scale. A streaming overlay

architecture is proposed, that supports the computation of LSTM and Fully

Connected layers, offering a complete edge solution, while supporting the more

complex Sigmoid and Tanh activation functions through approximations. The

overlay heavily exploits programmable DSP block capabilities and is carefully

designed to maintain short critical paths and relatively moderate routing com-

plexity in order to achieve high operating frequency. At the same time, the

overlay concept offers a more programmable solution, compared to fixed accel-

erators, allowing model parameters to be updated. The proposed architecture

also operates in streaming mode, which is more responsive compared to batch

processing and is therefore more suitable for devices at the edge.

6.4 Proposed LSTM Architecture

This section outlines the various design choices and operation of the main

building blocks of the proposed streaming architecture that can be configured

to implement LSTM or fully connected layers. The architecture uses DSP

blocks for the neural network computations while also supporting other widely

used settings in these layers (e.g. the option to return sequences in LSTM

layers). Systolic arrays are widely used for NN inference, as they very efficient

for matrix-matrix multiplications, however this is not a requirement for their

operation. This helps reduce the overheads of loading weights. In streaming

processing, as targeted by this work, systolic arrays would be less efficiently

utilised due to the lack of batching and shared weights. Additionally pipeline

parallelism would be harder to achieve due to the dependencies inherent in

LSTMs. Hence, an alternative approach is adopted, to implement the multiply-

accumulate operations as outlined in the following sections.

6.4.1 Proposed Neuron Architecture

The proposed architecture takes the neural network computation and does away

with the matrix representation, instead opting for neuron-based parallelism

where each neuron is implemented as a computational unit that processes

its output in a serial manner. Each neuron is mapped to a single DSP

block, supported by the required control logic and memory to enable it to

fully implement the neuron’s function. It operates in one of three modes:

configuration, control, and compute. Initially, configuration takes place, in

which all weights, biases and activation functions are set for each neuron. Once

configuration is complete, compute and control operations run concurrently
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Figure 6.1: Neuron Architecture showing the configuration, control and com-
pute paths.

and input data starts to flow in. Outputs from the previous layer stream

serially, one for each neuron from that layer at a time, and are multiplied in

each neuron in the current layer by the corresponding weight stored in the

weight memory. An address counter manages weight memory addressing and

DSP block opmode selection. Each DSP block operates in one of two different

opmodes, the first input-weight product is added to the configured bias, while

subsequent products are accumulated with this sum. This is enabled by the

dynamic DSP block control in modern Xilinx FPGAs [104]. This results in not

having to reset the accumulation register before a new neuron computation

and saves a clock cycle compared to adding the bias after the completion of

multiply-accumulate. The serial dataflow of the overlay, coupled with the more

minimal use of resources and fanouts, allows for a more scalable architecture

in which each self-contained neuron can be replicated as many times as needed

to form a layer, and each layer in turn to form a lightweight neural network on

chip.

6.4.2 Neural Network Multiply-Accumulate

The Neural Network Multiply-Accumulate architecture, shown in Figure 6.2,

consists of a series of DSP blocks, each calculating the multiply and accu-

mulate operation. The inputs flow in each layer serially, multiplied by their

corresponding weights and accumulated in each DSP block.
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Figure 6.2: Neural Network Multiply-AccumulateArchitecture.

The wordlength of inputs, weights, and biases are defined to fit the DSP48E2

primitive in Xilinx UltraScale+ devices. Inputs are 27 bits, weights 18 bits, and

biases are 16 bits. All wordlengths are signed and use 11 fractional bits. The

accumulation register within the DSP block is 48 bits and uses 22 fractional bits.

Unrolling parallel operations at each neuron results in a naturally balanced

workload between DSP blocks, while being more resource efficient by using

both multipliers and adders within the DSP blocks. This unrolling scheme

enables the overlay to map all the neurons of lightweight to moderate NNs on

chip, and by accumulating all the intermediate results of each neuron within a

single register, it reduces on chip memory requirements.

Moreover, this arrangement enables the serial flow of input data from neuron

to neuron, which results in relatively low fanout, while also passing all input

data to each neuron just once, avoiding additional storage and operational

overhead to cache and re-flow previous input data. The use of DSP blocks

coupled with the more compact dataflow result in a short critical path and

more manageable routing which in turn enables a high frequency of operation.

The Neural Network MAC ’s operation deviates from the more mainstream

acceleration methods on larger devices used for the matrix-vector operations

(e.g. systolic arrays) to better suit the constraints of edge devices.

When the Neural Network MAC architecture is configured as a fully connec-

ted layer, the data flows serially to it from the input source. If it is configured

as an LSTM layer, however, the new input data flows in at first, while the

previous output, Ht−1, stored in a FIFO, follows. Each of equations 2.4 to 2.7

is mapped to a DSP block, with 1 LSTM unit occupying 4 DSP blocks. The

input selection has been implemented with multiplexers and corresponding

control logic. A 2-bit register sets the desired activation function for each

neuron. The top level architecture supports the ReLU, approximated versions

of Sigmoid and Tanh, and a passthrough datapath in case none is selected.
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6.4.3 Activation Function Approximation

Various activations functions are used in neural networks for non-linearities,

with ReLU, Sigmoid, and Tanh being the most widely used. Although activation

functions may not be the most computationally complex part of neural network

architectures, the use of exponents in Sigmoid and Tanh functions make them

difficult to implement in embedded architectures.

Although ReLU is suitable for hardware implementation, various NN ap-

plications call for the use of Sigmoid or Tanh functions. For example, the

forget gate in an LSTM layer uses the Sigmoid function, the output of which

determines the percentage of information to be kept from the previous layer.

This has led to the exploration of alternative ways to implement these functions

more efficiently, especially in fault-tolerant, approximate computing applic-

ations. The majority of previous neural network implementations map the

activation functions in look-up-table memories, one for each function. With

this approach, accuracy depends on the granularity of the look-up-table, with

error being inversely proportional to the size of the table. This approach

can use significant area in lightweight unrolled implementations, in which

multiple tables are required. Furthermore, in architectures where multiple

activation functions need to be supported, separate look-up-tables are required,

of which only a subset are used at any one time. Other previous work has

focused on piece-wise approximations of these functions [125], while others

have approximated the active region of these functions linearly with cut-off

regions [53]. Another example of the latter is the hard sigmoid activation

function in Tensorflow [56]. More complex activation function architectures

have also been presented in [126], where implementations in half and full

precision floating point have been explored.

An activation function approximation using piecewise linear approximation

is proposed, while also considering how some coefficients can be modified

to be more efficiently implemented in hardware. Moreover, since only one

activation function is used at a time in each unit, common expressions are

merged between the different activation functions in hardware. As a result,

the logic required is minimized, contributing not only to reduced area but also

improved performance. The proposed activation function architecture can be

configured to any one of the most popular activation functions at runtime,

without re-implementation or re-loading of a lookup table, while maintaining

low area utilisation and high performance.
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1 de f custom sigmoid hw ( x ) :

2 p o i n t t w e n t y f i v e = c o n s t a n t t o t e n s o r ( 0 . 2 5 , x . dtype . base dtype )

3 p o i n t f i v e = c o n s t a n t t o t e n s o r ( 0 . 5 , x . dtype . base dtype )

4 x = math ops . mul (x , p o i n t t w e n t y f i v e )

5 x = math ops . add (x , p o i n t f i v e )

6 x = c l i p o p s . c l i p b y v a l u e (x , 0 . , 1 . )

7 re turn x

8

9 de f custom tanh hw ( x ) :

10 p o i n t s e v e n t y f i v e = c o n s t a n t t o t e n s o r ( 0 . 7 5 , x . dtype . base dtype )

11 x = math ops . mul (x , p o i n t s e v e n t y f i v e )

12 x = c l i p o p s . c l i p b y v a l u e (x , −1. , 1 . )

13 re turn x

Listing 6.1: Approximation functions for Tensorflow.

Approximations Applied in Software

The most relevant previous work to ours in approximating the activation

functions is summarised in Table 6.1, where Sigmoid and Tanh functions are

bounded to 0,1 and -1,1 respectively. The approximated coefficients used in

this work are modified slightly from those referenced to more efficiently suit the

fixed point representation and hardware. Although the Tanh approximation

used in [53] is simpler to implement, especially in hardware, it deviates more

from the true function. All aforementioned approximations are presented

graphically against the Sigmoid and Tanh in Figs. 6.3a and 6.3b.

Act. Func. Equation Work MAE

Hard sigmoid y=0.2x+0.5 [56] 0.019
Approx. Sigmoid y=0.25x+0.5 [53], This work 0.033
Approx. Tanh y=x [53] 0.088
Approx. Tanh y=0.75x This work 0.063

Table 6.1: Approximated functions equations.

The main difference in the proposed approach is that the approximations

can be applied during training, in addition to post-training. Similarly to

how the hard sigmoid is defined in Tensorflow, by changing the coefficients

accordingly, the approximations can be defined as shown in Listing 6.1 and

be used to train a model in floating point. The error introduced by the

approximations is therefore taken into consideration during training and is

alleviated, leaving more margin for error in fixed point representation.

To demonstrate the effectiveness of this approach, comparisons with previ-

ous work on approximated activation functions are made in Table 6.1. The

table also shows the Mean Absolute Error (MAE) between the baseline func-

tions and their approximations, as calculated on 40 data points between -2
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Figure 6.3: Activation functions and their approximations.

and 2 with a step of 0.1. As expected, the Hard Sigmoid approximation in

Tensorflow generates less error compared to the approximation used in the

proposed design, however the 0.25x has a far more straight forward fixed point

representation and multiplication. Meanwhile, the Tanh approximation used

in [53], although simpler to implement, generates more error compared to

that used in this work. Moreover, since common computations exist between

the two approximations, the additional complexity introduced in the Tanh

approximation is mitigated.

Trained with Sigmoid/tanh Approx.

Inf. using Sig./Tanh Approx. Approx.

Train 0.3141 0.4358 0.3182
Validation 0.3370 0.4283 0.3302
Test 0.3575 0.5569 0.3751

Table 6.2: Approximated functions loss-Weather forecast.

The benefits of using the approximations are further explored during

training, by training a three layer LSTM for temperature forecasting, similar to

that in [127]. The weather time series dataset was used from the Max Planck

Institute for Biogeochemistry to train a network with two LSTM layers, with

64 and 32 units respectively, and a fully connected layer for the output layer

comprising 1 neuron. The RMSprop optimiser was used while measuring the

loss with mean absolute error. The model is trained to receive the last 720

measurements that span over the last 5 days, and predict the temperature in 12

hours. Initially, a baseline model is trained for 10 epochs with Tensorflow v2.2

using the default activation functions while a variation of this model is trained

using the approximated activation functions. Subsequently, inference on the

two models is ran while also changing the activation functions of the baseline

model to the approximations. The losses obtained from these three models are
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Figure 6.4: Activation functions architecture, showing the various datapaths,
logic blocks and pipeline stages.

summarised in Table 6.2, showing that by using the approximated functions

during training, loss is comparable to the original function implementations.

Activation Functions in Hardware

A hardware architecture is shown in Figure 6.4 that supports the most widely

used activation functions, ReLU, approximated Sigmoid, and Tanh, while also

providing a passthrough path in case none is needed. A key feature is that

common computations between Tanh and Sigmoid approximations are merged

while all the multiplications are replaced by shifts and adds, avoiding the use

of computationally expensive multiplications since the coefficients are fixed.

A parametrized architecture has been created in Verilog HDL, and imple-

mented using Xilinx Vivado 2018.2 on a XCZU7EV Ultrascale+ device. The

parametrised architecture was used implement designs with various wordlengths

in order to make comparisons in terms of resource utilisation. The results in

Table 6.3 show that the proposed activation function architecture uses very few
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resources and these are able to operate at the device’s maximum frequency.

Bits Fraction Bits LUTs Registers

16 8 36 86
27 12 74 141
32 16 90 166
48 24 132 246

Table 6.3: Resource utilisation of the activation functions architecture.

6.4.4 LSTM Addon

Figure 6.5: LSTM addon compute architecture, showing the various logic
elements and delay registers.

The LSTM Addon computes equations 2.8 and 2.9 of an LSTM layer.

The results of it, C̃t, ft and ot flow in serially, in this particular order. This

data flow pattern repeats for each LSTM unit in the Neural Network MAC.

The it, C̃t and ft are used by the datapath on the right in Figure 6.5, while
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Figure 6.6: Top level layer architecture.

ot passes through delay registers and is used only by the DSP block at the

output. Initially it is multiplied by C̃t, stored in the accumulation register of

the DSP block, then the product of ft and Ct−1 that is read from the FIFO, is

calculated and added to accumulation register. This completes computation of

equation 2.8 and the result then fans-out to the Ct−1 FIFO, where it is stored

for the following timestep, and to the Act. Func. Comp., where the activation

function used in equation 2.9 is applied. The DSP block at the output uses

only the multiplier and completes the computation in equation 2.9. An internal

counter is used to synchronize all the operations and to reset the accumulation

register of the DSP block between runs.

6.4.5 Top Level Layer and Network Architecture

Figure 6.6 shows the top level layer architecture that includes all these functional

blocks, along with control logic to synchronise and configure the dataflow for a

single layer. A complete NN is formed by stacking multiple of these according

to the network structure as shown in Figure 6.7, which shows the arrangement,

interconnect, and interaction of the FIFOs with various building blocks. Each

FIFO stores only the data required from the previous LSTM iteration, since the

stored data is consumed by various compute blocks in the subsequent iteration,

alleviating the need to store redundant data from more than 1 iteration as
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happens in many architectures that time multiplex their compute units. The

largest network the proposed approach can fully support is roughly estimated

based on the number of layers, multiplied by the neurons in fully connected or

number of units ×4 in LSTM layers, plus 2. This yields the number of required

DSP blocks which should be less than what is available on the target device.

Although, the proposed approach ideally targets lightweight LSTM networks

that can be fully unrolled at the neuron level, where its efficiency is maximised,

it is also versatile enough to be implemented as a single layer-time multiplexed

implementation or even folding parallel compute units, trading off performance

and resource utilisation to potentially adapt to larger networks.

The main control blocks in the top level layer architecture are the Stall

Component and the Control State Machine. The Stall Component is configured

with the number of weights, stall cycles needed, the type of layers, the number

of iterations and whether to return the sequences in LSTMs. It generates the

control signals required in the Neural Network MAC, for example, to enable the

address counters or which input source to choose from. Meanwhile, the Control

State Machine synchronizes the flow between the Neural Network MAC and

the other blocks. The control unit used in this overlay is much more complex

compared to the one in the previous chapter, thus implemented as a state

machine, rather than in dedicated control logic.

A multiplexer after the Neural Network MAC selects which DSP block fires

at each time step. Another at the output selects the appropriate datapath

depending on whether it is an LSTM or fully connected layer. The Neural

Network MAC ’s serial operation, coupled with the ability to select the datapath

according to the layer’s configuration, through the use of multiplexers, forms an

architecture that is able to adjust its latency and throughput for different neural

network configurations. Although large scale multiplexers and decoders within

the proposed architecture may cause delay, they can be pipelined according

to the device’s LUTs capabilities for high throughput at the cost of latency.

Moreover, a FIFO is placed after each output multiplexer to gather the data

required for the following layer.

The top level design that implements the whole NN is parametrised with

the neural network configuration, i.e. number of layers, number of neurons in

each layer, wordlengths, etc. This allows for a more flexible overlay that can

also be ported to other devices that employ different DSP blocks. A specific

overlay configuration can be used alongside a processor in an FPGA SoC. The

processor can then configure the overlay at runtime with a specific network

configuration. More importantly, weights and biases can also be set at runtime,

enabling the overlay not only to adapt to weight updates and finetuning after

deployment, but also to compute other LSTMs that fit within the bounds of

the specified architecture. Underutilising the overlay does however incur a
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Figure 6.7: Top level Neural Network architecture.
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performance overhead since data must still flow through unused layers.

6.5 Evaluation

6.5.1 Models for Evaluation

Two LSTM models are used to evaluate the proposed architecture. These

models have been used previously in [53–55, 72], with which comparisons are

made. While the exact code and framework were unable to be used, the

models have been recreated to the best extent possible in Tensorflow v2.2 [56],

according to the information provided in these references. The first model

consists of a single LSTM layer with 16 units and a fully connected layer of

10 neurons. This network is trained as a classifier on the MNIST handwritten

digit dataset, with the 10 output neurons corresponding to digits 0 to 9. The

inputs to the LSTM model are 28×28 images with all pixel values normalised

to a range from 0 to 1, this translates to 28 pixels being sent at a time for 28

iterations.

The second model is a character level LSTM trained on a part of Shakespeare’s

writing and comprises two LSTM layers, each with 128 units, and a fully con-

nected layer with 65 neurons. The input to the LSTM is a vector with 65 one

hot encoded values, each one representing a unique character that has been

found in the text. A sequence of 50 of these vectors is passed to the LSTM

model which generates the scores of the predicted 51st character at the output.

An overlay architecture for each model has been created for direct comparison

with previous work, although the MNIST model could be run on the larger

character overlay.

6.5.2 Activation Function Impact

The proposed approximated activation functions are initially evaluated on how

they impact the accuracy of these two models, as discussed for a different

model in Section 6.4.3.

Trained with Sigmoid/tanh Approx.

Inf. using Sig./Tanh Approx. Approx.

Train 0.0762/98.0% 0.984/80.7% 0.067/98.1%
Validation 0.108/97.3% 0.944/81.7% 0.109/97.4%
Test 0.106/97.5% 0.955/80.7% 0.117/97.4%

Table 6.4: Approximated functions loss/accuracy-MNIST.

The results are presented in Table 6.4 and 6.5. While there is an increase

in loss, along with a decrease in accuracy for the MNIST network, when
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Trained with Sigmoid/tanh Approx.

Inf. using Sig./Tanh Approx. Approx.

Train 0.8733 2.9 1.29

Table 6.5: Approximated functions loss-Character level LSTM.

the activation functions are simply switched after training, it is shown to be

alleviated by using the proposed activation functions during training. Although

the loss in the character level LSTM can be considered high, this is believed to

be due to its learning complexity. More specifically, even though a low loss

would mean that a model can work more accurately in inference, in this case

it would mean that the model has memorised the textbook, which is a very

difficult task. Instead, the model is expected to learn the coarser text patterns,

rather than the finer details, and generate similar text.

6.5.3 Compute Overlap

The dependence of LSTM layers on previous outputs usually means the next

iteration in a layer cannot start until the previous iteration has completed, re-

ducing the parallel processing efficiency and effective throughput. The dataflow

used in the proposed LSTM architecture coupled with unrolling parallelism at

each neuron, enables the overlay to overlap part of the computations between

iterations. In addition, the serial computing in the LSTM architecture enables

the propagation of any compute configurations at the initial layer to the follow-

ing layers, e.g. stall cycles applied in the first layer affect when the next layer

will initiate its computation and so on. The total latency of an LSTM layer in

the proposed architecture is modelled in equation 6.1. Meanwhile, the Neural

Network MAC can start the computation of the next iteration with part of

the previously generated data. This is based on the principle that by the time

that data is needed, it will have been generated. Thus the next iteration in an

LSTM layer can be initiated as per equation 6.2, with the lowest margin in

this equation being the #Units× 4.

LSTM latency = 17 + #Inputs + #Units + (#Units× 4) (6.1)

Initiation Interval = LSTM Lat.−#Inputs−#Units + 1 (6.2)

For the LSTM networks used, these values are shown in the first row in

Table 6.6. The second row shows the compute overlap impact on the latency of

a datapoint, which is a whole image for the MNIST LSTM and 50 iterations of

characters for the character level LSTM. This is the clock cycle count for the

input data to pass through all the iterations in all the layers of the network,
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including the fully connected layers, and to generate all the output results in

simulation. Meanwhile, the third row shows the clock cycle count averaged for

successive datapoints.

Normal Overlapped
MNIST Char. LSTM MNIST Char. LSTM

II-1st layer 123 722 80 530
Clock Cycles 3503 37131 2342 27723

Table 6.6: Compute overlap when processing LSTMs.

The ability of the proposed architecture to overlap part of the computation

within consecutive LSTM layer iterations, leads to a latency reduction of 33%

for the MNIST-LSTM and 25% for the character level LSTM.

6.5.4 Weight Stationary Architecture

Previous work in neural networks has explored a wide spectrum of optimisations

in an effort to reduce off-chip memory bandwidth, from computing parts of

the neural network in batches and transferring weights accordingly, to extreme

quantization of weights. In this architecture, the compute units, that typically

consume most FPGA resources, are mapped to DSP blocks. This, coupled

with the minimalistic approach in the design of other building blocks, results

in releasing FPGA resources that can be used to store more weights on chip,

maximising the device’s storage capabilities. Table 6.7, shows the total weight

and data sizes for a single classification for the two networks. The weights and

biases in the MNIST LSTM amount to about 73% of total data and about

98% for the character level LSTM. Architectures that store these parameters

in off-chip memory require high bandwidth to achieve high throughput, while

the proposed approach reduces bandwidth requirements and potentially energy

consumption.

Number of coeff. Size in bits
MNIST Char. LSTM MNIST Char. LSTM

Weights (18 bits) 2976 238208 53568 4287744
Biases (16 bits) 74 1089 1184 17424
Inputs (27 bits) 784 3250 21168 87750

Coefficients to total data - - 72.12% 98.00%

Table 6.7: Weights to input size ratio.
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6.5.5 Performance, Resource Utilisation, and Comparisons

Two versions of the proposed overlay architecture have been implemented, one

for each NN, on a ZU7EV FPGA as found on the Xilinx Zynq Ultrascale+

ZCU104 board. Both overlays have been implemented in Verilog HDL using

Xilinx Vivado 2018.2. Moreover, both have been integrated in an SoC imple-

mentation with the ARM Cortex A53 on the device and functionally verified,

baremetal, on part of the datasets using Xilinx SDK. To enable the integration

of the high operating frequency overlay in the SoC and overcome the lower

operating frequency of required IPs, the proposed overlay employs a dual clock

configuration. A high frequency clock is used for the overlay’s compute mode,

whereas a slower clock that operates at a quarter of the fast clock frequency

is used to configure the overlay and to transfer the input and output data.

To match the rate of the slow clock input data with the fast clock compute,

4 inputs are transferred at a time at the slow clock rate to a dual clock fifo,

subsequently each input slot is extracted at the fast clock rate.

All results presented in this section are post-place and route for the overlay

module only, extracted from the hierarchical results of the implemented SoC.

Tables 6.8 and 6.9 compare the attributes of the proposed approach to previous

work. To enable more objective comparisons with work targeting different

FPGA devices, additional attributes are derived to encapsulate the overall

efficiency. In addition, the theoretical maximum frequency of the DSP blocks

is reported, for each of those devices, as found in the devices’ datasheets [110,

121, 128, 129], and the frequencies achieved. In cases where the device’s speed

grade is not reported by the authors, a range of highest and lowest speed grades

is used. Although the MNIST model can be computed within the larger overlay,

an overly for each LSTM model is provided to enable objective comparisons

with previous work, and to have a benchmark on how the proposed overlay

scales. The MNIST overlay would consume 6.8% of the DSP blocks and about

1.24% of the implemented memories of the character level LSTM overlay.

In addition to the MNIST overlay reported in Table 6.8, which uses LUT-

RAMs for the neuron memories, the use of BRAMs in an identical architecture

is also explored. Naturally this resulted in varying utilisation of memory ele-

ments on the FPGA, but importantly, this also resulted in a reduced frequency

and higher power estimation for the BRAM based overlay. The BRAM based

overlay is able to compute at 520MHz and configured at 130MHz, whereas the

LUTRAM based overlay is able to compute at 640MHz and configured at 160

MHz. Meanwhile, the power estimation for the BRAM is higher, amounting

to 0.845W compared to 0.679W the LUTRAM based overlay, which in turn

results in poorer efficiency.

This suggests that the weight memories in lightweight and shallow neural
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networks are more performance and energy efficient when mapped to LUT-

RAMs, which can be partly due to the fact that only a small percentage of

each BRAM bank is utilised. Meanwhile the simple routing of small FPGA

fabric based memory offers better operating frequency. The configuration of

the weights and biases takes place in streaming mode, using the slower clock,

and is estimated to be around 0.02ms with negligible difference between the

two overlays.

The proposed overlay for the character level LSTM model is implemented

using a hybrid memory arrangement in the first two LSTM layers, e.g. one

neuron uses LUTRAM memory, the other BRAM memory etc, while the

output layer uses LUTRAM memories. A uniform memory overlay with either

resources does not fit in the device when integrated with the SoC. Similarly to

the MNIST overlay, the weights and biases are configured in streaming mode,

using the slower clock, and this is estimated to take 2.29ms. Considering the

BRAM based MNIST overlay as benchmark, we notice that the character level

overlay scales well as the frequency is reduced by 19.2% while utilising 14× to

37× more resources.

Table 6.8 summarises other relevant previous work that implement the

exact same LSTM models as in this work. The proposed MNIST overlay is

competitive in terms of resource utilisation with the work in [72] which focuses

on approximate computing to yield multiplierless-low power implementations,

while significantly outperforming in terms of latency, throughput, and efficiency.

In addition, the proposed architecture achieves 82.6% the theoretical DSP block

maximum frequency, compared to 21.6% achieved in [72]. Regarding the more

complex character level LSTM overlay, although it utilises more resources due

to the higher neuron and layer parallelism and higher precision, the proposed

implementation is significantly better in terms of latency, throughput, and

efficiency. Specifically, it is 22.6× more efficient compared to the average

performance of the most competitive previous work in [53]. Meanwhile, the

proposed architecture operates at 54.1% the DSP block theoretical maximum

frequency of the target FPGA, compared to 30.6% of the most competitive

previous work in [55].

The comparisons with previous work are extended in the embedded domain

in Table 6.9. Although these implementations do not target the same models,

they use various other approaches of interest on more modern FPGA devices.

The implementations in [50, 51] target a Bidirectional-LSTM model for optical

character recognition. The complete network consists of a single Bidirectional

LSTM layer with a total of 200 nodes followed by a fully connected layer,

both of which have been implemented in the compute architecture. Compared

to the proposed character level LSTM, this model is less complex in terms

of LSTM cells used, number of layers, and precision, using 68.8% to 81.5%
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reduced precision. Nonetheless, the proposed overlay architecture obtains

better throughout compared to the single instance and 6 instances that operate

in streaming mode. Although the single instance in [50] is more efficient,

its performance does not scale well when 6 instances are implemented on

the device, resulting in reduced efficiency which is slightly better than the

proposed overlay. Its corresponding batch processing implementation with 6

instances yields improved throughput, compared to the streaming operation,

while increasing its efficiency. This shows that streaming processing is more

challenging to optimise, since it doesn’t scale linearly with the increase of

compute resources, whereas batch processing scales better with the availability

of more input data. The authors further expanded their work in [51] for a more

systematic exploration of the tradeoffs of reduced precision, improving their

obtained throughput significantly. The work in [63] aims at partitioning large

LSTM layers and achieves the obtained throughput efficiency with a batch

size of 64, which the proposed overlay outperforms. Lastly, the authors in [76]

target a single LSTM layer only, with a similar configuration to the first layer

of the character level LSTM, while some of the computations are offloaded to

the ARM core, obtaining lower performance and efficiency with, however, a

less capable device. Regarding the operating frequencies of previous work in

Table 6.8, the most competitive one operates at 32.3% of the device’s DSP

block theoretical maximum, while the least competitive overlay in this chapter

operates at 54.1%. This demonstrates the frequency gains of the proposed

approach, irrespective of the different FPGAs used in previous work.

Porting to Zynq 7000 series

MNIST LSTM Character LSTM

FPGA XC7Z020 XC7Z100
Precision 16-27 fixed 16-27 fixed
LUTs 4120 (7.74%) 93920 (33.86%)
Flip-Flops 8972 (8.43%) 113838 (20.52%)
BRAM 0 (0%) 259 (34.30%)
DSP 78 (35.45%) 1095 (54.21%)
Freq. (MHz) 208 312
DSP Max (MHz) 464 650
DSP Freq.% 44.83% 48%

Table 6.10: Resource utilization and frequency on Zynq 7000 series.

The evaluation methodology is supplemented by porting the proposed over-

lays to Zynq 7000 devices for direct comparisons with previous work in Table 6.8.

The supplementary implementation results are shown in Table 6.10,where it is

demonstrated that the proposed overlays are effective on these devices as well.

Specifically we see that the MNIST overlay achieves 208 MHz, which amounts

to 44.83% of the device’s theoretical maximum. Compared to previous work
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using MNIST in Table 6.8, the proposed overlay operates twice as fast on the

same device. Furthermore, the character level overlay achieves 312 MHz out

of the device’s 650 MHz. This translates to 48% of the theoretical maximum

of the XC7Z100 device and is approximately 2.2× to 3× faster compared to

relevant previous pieces of work in Table 6.8.

6.6 Summary

This chapter presented a streaming overlay architecture based on DSP blocks

that was able to compute lightweight to moderate sized LSTM and fully

connected layers, with all required weights stored on chip. The proposed

approach was aimed at enhancing programmability and flexibility with the

overlay concept. The implemented overlay has been designed in architecture-

centric manner and has therefore obtained high performance by virtue of

high operating frequency, while it consumed its input data serially for better

resource efficiency. Its serial data flow, parallel neuron computation, and

pipelined operation, coupled with optimisations in compute overlap and on

chip weight storage resulted in high throughput operation. The low level

operation of the architecture was abstracted to form an overlay which can be

configured at the top level with the model configurations. Specifically, the

overlay Verilog code has been heavily parametrised at the top level to effortlessly

form the configuration of the overlay, e.g. number of layers, neurons per layer.

Underlying repetition loops instantiated and connected the smaller building

blocks accordingly to construct the final overlay architecture. Moreover, the

implemented overlay, was able to be configured after deployment, at runtime,

with the different model configurations, weights, and biases. The extracted

results have shown that the standalone overlay architecture operated at much

higher frequencies in an SoC design, alongside the ARM core, within which it has

been implemented and functionally verified. The proposed overlay architecture

was also shown to be competitive in terms of efficiency and outperformed other

generic previous work in streaming processing, while using higher precision.
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Chapter 7

Conclusions and Future Work

The increasing ubiquity of Neural Network applications on edge devices has

created the need to more efficiently execute this class of algorithms and reduce

runtime within the limits of more constrained hardware. FPGAs’ ability to

accommodate custom computing architectures tailored to their available re-

sources, coupled with their evolution over the years to provide more advanced

functionality (e.g. DSP blocks, Arm cores), have rendered them ideal for edge

computing applications. With neural networks still evolving in their application

for different computing domains, there is a need to consider flexibility and

generality in the implementation of architectures to accelerate them. The bulk

of existing work on mapping neural networks to FPGAs can be split into two

classes. The first implements general matrix computing hardware that can sup-

port acceleration of a variety of neural network workloads. These architectures

require the streaming of input data and weights, and in some cases, multiple

transfer to and from off-chip memory in intermediate stages of the neural

network. Since they implement a generic computational architecture, they

offer flexibility, but are not as efficient as more recent ASIC implementations

of similar “tensor” processor cores. The second approach involves applying a

series of optimisations to network structure and numerical representation to

significantly reduce the cost of computation for a particular network at the

cost of losing flexibility and requiring recompilation of the hardware for any

parameter change. Various toolflows have been proposed that automate the

generation of hardware for the first approach, by optimising the mix of matrix

computation sizes to optimise off-chip memory access, or for the second by

applying the required optimisations. Optimising an architecture for a specific

model is problematic in an evolving application setting, or where there is a

need to adapt a model to data after initial training, e.g. through federated

learning. Furthermore, much of the existing work has not considered the FPGA

architecture in detail and thus results in sub-optimal mappings that do not

offer the throughput that should be achievable. This thesis has attempted to
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address this important area of flexible yet architecture-oriented neural network

implementation on modern FPGAs.

This thesis has applied the concept of overlay architectures in the neural

network domain to effectively enable an abstracted level of programmability

on an FPGA. The implemented overlay offers a more rapid deployment and

adaptation of NNs on FPGAs, while the long backend toolflow compilation is

only required initially and is amortised over the long term use of the overlay.

Therefore, compilation of NN models to the implemented overlay is vendor

free and lightweight, and can potentially take place on the edge devices them-

selves. The work in this thesis demonstrated that careful consideration of

the underlying FPGA architecture can yield overlays that operate at high

operating frequencies, while retaining flexibility. Specifically, the careful use

of DSP blocks, that are abundant in modern FPGA architectures, coupled

with the more targetted use of FPGA resources to construct the datapath,

have generated architectures that operate nearer to the theoretical maximum

frequency of the FPGA compared to previous designs, even with complex

networks. Dataflow in this overlay has been tailored towards a streaming flow

as suited to sensor processing at the edge, while parallelism has been exploited

at the neuron level, without the complete unrolling typical of matrix based

computation approaches. This also enables the network parameters to be

retained within the overlay, reducing significantly the required off-chip memory

accesses. Rapid deployment with predictable performance are offered as a

result, while maintaining generality in the supported NN computations, instead

of optimising around a specific set of network parameters. Finally, the proposed

approach is extensible to other layer types, which has been demonstrated in

Chapter 6 by extending to LSTM networks.

7.1 Summary of Contributions

The original contributions of this thesis are summarised as follows:

7.1.1 Intrusion Detection System at Line Rate Detection

Chapter 3 demonstrated the use of NNs for network intrusion detection, in

which a custom compute architecture has enabled line rate detection. During

the training of the NN, categorical features were mapped to a one-hot encoded

representation, mitigating the possible bias introduced by ad-hoc numerical

mapping. The obtained accuracy of the proposed model has been extensively

evaluated against previous work, showing the benefits of this approach. An

accelerator design has been implemented using HLS which exploits parallelism

in the proposed NN to offer high performance. Moreover, the accelerator
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offered some degree of flexibility by enabling weight updates dynamically, by

an external source (e.g. Arm core). The accelerator has been integrated in

an SoC implementation and functionally verified in practice. Comparisons

with software equivalents and previous work showed that the approach in this

chapter has contributed to achieving high performance and detection rate,

providing line rate detection (1Gbps and 10Gbps).

7.1.2 2D Spatial Convolution Filters

A systematic exploration on the various design choices for implementing 2-D

spatial convolution filters, based around FPGA DSP blocks, was explored in

Chapter 4. The selected architecture was extensively scaled on a wide range

of filter sizes and to modern image resolutions, thus explored how its under-

lying compute units utilised the FPGA resources. All explored architectures

implement coefficient memories, that can be configured at runtime to different

filter values, instead of considering fixed kernel coefficients and optimising the

architecture around them. HLS equivalents were also implemented to draw

comparisons, quantifying the performance and resource utilisation benefits of

the proposed approach. In addition, thorough comparisons with previous work

has shown that building such designs around modern FPGA DSP blocks, in

an architecture-centric manner, offers significant improvements compared to

more generic methods and tools.

7.1.3 Streaming Overlay Architecture for NN Computation

Based on FPGA DSP Blocks

An overlay architecture for NNs was presented in Chapter 5, built around the

capabilities of FPGA DSP blocks. The overlay architecture abstracted the

FPGA fabric to a coarser grained architecture that mimicked the structure

of NNs. The proposed overlay was tailored for streaming NN dataflow and

serial processing, which rendered it ideal for edge computing. Various com-

parisons were made that motivate the design choices and unrolling factors in

the overlay building blocks. Each neuron was considered as a serial execution

unit, and neuron-level-parallelism has been exploited while full unrolling of the

computations was not required. The overlay architecture achieved near the

theoretical maximum frequency of the FPGA DSP blocks, although it has been

tested in an SoC design in practice at a baseline frequency due to limitations

from various interfacing IP blocks. Comparisons with software equivalents

and previous work in HLS showed that the proposed overlay performed better,

while maintaining domain specific flexibility.
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7.1.4 Streaming LSTM overlay architecture

While the proposed overlay in Chapter 5 achieved high frequency, and as a

result, improved performance compared to previous work, it was not shown to

scale. The work in Chapter 6 expanded the initial overlay to support a more

complex class of NNs, specifically LSTMs, in addition to fully connected layers.

LSTMs include dependencies on previous outputs along with more complex

activation functions which made the datapath, control, and compute units more

complex. The overlay in this chapter was shown to scale at a low frequency

overhead, while the various obstacles hindering the SoC integration at a high

operating frequency have been overcome.The proposed overlay is evaluated

on various metrics throughout Chapter 6, while thorough comparisons with

previous work highlight the advantages of the underlying architecture-centric

architecture. This chapter showed that the neuron-centric parallelism of this

overlay made extensions to complex layer types possible and that these do not

heavily compromise performance.

7.2 Future Work

The results presented throughout this thesis demonstrate the potential of the

proposed overlay for further future work. The future work can optimise the

proposed work in various aspects, as described in the following subsections.

7.2.1 Overlay Generation Framework

Although the configuration of the overlay architecture is at a high level, e.g. set-

ting the parameters at the top level module, it still requires human intervention

to do so. Although, this seems a relevantly a straightforward task, the human

interaction can be problematic to users that are not familiar with the backend

interface and toolflow. Moreover, there’s still a gap between the training of

the models, or analysing trained ones, and extract their weights and overlay

configuration to the FPGA tool for the bitstream generation. Adding to the

overall narrow accessibility to only a certain group of familiar users. Thus, an

automatic overlay generation framework, that would bridge the two operations,

would make the process of creating an overlay more abstracted, faster and

accessible to more users. Additionally, the functionality of the framework itself

could be further expanded to generate overlay configurations according to high

level user constraints, e.g. specific throughput, latency or resource utilisation.

The latter, however, would require to accurately model the capabilities of the

overlay architecture in order to generate the corresponding low level configura-

tions. Lastly, a lighter version of the framework that would only operate on

trained models would also be useful on devices at the edge. This will enable
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for rapid deployment of accelerated neural networks on FPGAs at the edge,

in a context where compilation can take place on the resource constrained

platforms themselves, independently of the vendor backend toolflow.

7.2.2 Reduced Precision

The work in this thesis maintains relatively high precision for the task at hand.

In Chapter 2, 32-bit floating point arithmetic was used, the 2-D spatial filters

in Chapter 3 used 8 bit, while the overlays in Chapters 4 and 5 were tailored to

the DSP blocks’ wordlength, that span over 16 to 48 bit arithmetic. Previous

work on neural networks has shown that even extreme reduced precision to

1 bit can generate a network with tolerable accuracy overhead. Therefore,

there is potential in exploring reduced precision overlays, at a wordlength

that would maintain satisfactory accuracy in a wide range of neural networks.

Consequently, the computations within the overlay could be more efficiently

mapped to the available DSP blocks through Single Instruction Multiple Data

(SIMD) or Very Long Instruction Word (VLIW) configurations.

7.2.3 Efficient mapping and scheduling of irregular neural net-

work workloads

Although pruning is an effective optimisation, as described in Chapter 2, it is

not straightforward to exploit its computational benefits due to its irregular

structure. Therefore, compute architectures that operate in a more regular

manner either do not skip these computations at all, or may require a certain

degree of sparsity in the network to amortise any overheads that may occur. A

worthwhile expansion to the work in this thesis would therefore be additional

logic and datapath that would efficiently map these irregular patterns to take

advantage of both, memory and workload reduction. The proposed overlay

would be a very interesting approach in this context since its computations

haven’t been fully unrolled. Therefore, it maintains some degree of flexibility

through its serial element, the programmability of which can form the basis of

a mechanism that would skip the pruned computations.

7.2.4 Support more layer types

Based on Chapters 3, 5 and 6, another worthwhile direction to explore is the

support of more layers and emerging topologies. To start with, CNN layer

support would expand the application domain of the work in this thesis to

computer vision. The used streaming dataflow would therefore be evaluated

in domains like robotics, in which real time response is required, instead of

throughput and batch processing. Moreover, efficient support for emerging

NN topologies, for example transformer networks or the idea of skipping layers
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with residual connections, would also extend this work to emerging concepts

in this domain. As a result, further exploration can be carried out on how the

proposed overlay can implement these functionalities and what would be the

overhead to the performance and resource utilisation.

7.2.5 Support deep networks

Although the main target of this thesis are rather small networks that act

as an event detection, with further action to be taken in the cloud or on

device, supporting very deep networks would make the work in this thesis more

comprehensive. Although it would be very difficult to maintain all the benefits

of the approach described in this thesis, due to overheads introduced, simple

support without significant requirements would also add to the functionality

of the overlay. Potentially, the support can be software based, to explore the

partitioning of the deep network to an overlay configuration. The tool would

then define how these partitions would be scheduled and execute them. In

addition, an efficiency exploration could also take place in order to derive

an efficient scheduling scheme with very small batch size, as a compromise

between latency and configuration overhead.

7.3 Summary

This thesis has explored the careful consideration of the underlying FPGA

architecture in order to yield neural network implementations that operate at

high operating frequencies. It has shown that an architecture centric approach,

coupled with domain specific optimisations, can generate high performance

implementations while maintaining a degree of flexibility. Specifically, DSP

block based implementations were demonstrated to achieve high operating

frequency in complex and demanding workloads, in addition to their dynamic

programmability which offers a degree of flexibility for reconfiguring network

parameters. The latter has been achieved by tailoring the implemented designs

for SoC integration, therefore using the software programmable ARM core to

reconfigure the overlay. This thesis has also shown that the optimal use of

DSP blocks does not require detailed low-level HDL design for each individual

workload, but that an architecture centric overlay can scale and provide

this high performance in a flexible architecture that can be adapted and

tuned without loss of performance. The contributions of this thesis have been

extensively evaluated and compared, across a variety of attributes, against

software and HLS equivalents, in addition to previous work in the literature.

These comparisons have helped shape the final conclusions of this thesis along

with future work described in this chapter.

113



Bibliography

[1] L. Ioannou and S. A. Fahmy. Network Intrusion Detection Using Neural

Networks on FPGA SoCs. In Proceedings of the International Conference

on Field Programmable Logic and Applications (FPL), pages 232–238,

2019.

[2] L. Ioannou and S. A. Fahmy. Neural Network Overlay Using FPGA

DSP Blocks. In Proceedings of the International Conference on Field

Programmable Logic and Applications (FPL), pages 252–253, 2019.

[3] L. Ioannou and S. A. Fahmy. Lightweight Programmable DSP Block

Overlay for Streaming Neural Network Acceleration. In Proceedings of the

International Conference on Field-Programmable Technology (ICFPT),

pages 355–358, 2019.

[4] L. Ioannou, A. Al-Dujaili, and S. A. Fahmy. High Throughput Spatial

Convolution Filters on FPGAs. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 28(6):1392–1402, 2020.

[5] L. Ioannou and S. A. Fahmy. Streaming Overlay Architecture for Light-

weight LSTM Computation on FPGA SoCs. Submitted to: ACM Trans.

Reconfigurable Technol. Syst.

[6] Elike Hodo, Xavier J. A. Bellekens, Andrew Hamilton, Christos

Tachtatzis, and Robert C. Atkinson. Shallow and deep networks in-

trusion detection system: A taxonomy and survey. CoRR, 2017.
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