A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:
http://wrap.warwick.ac.uk/167785

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications

VN

WARWICK

THE UNIVERSITY OF WARWICK

MENS| TAT
AGI [MOLEy

B S S N

(YYYVYY
NNNNNS

Exploring the Capabilities of FPGA
DSP Blocks in Neural Network
Accelerators

by

Lenos loannou

Thesis
Submitted to the University of Warwick
in partial fulfilment of the requirements
for admission to the degree of

Doctor of Philosophy

School of Engineering

November 2021

Contents

List of Tables v
List of Figures vii
Acknowledgments ix
Declarations
1 Publications oo X
2 Sponsorships and Grants xi
Abstract xii
Acronyms xiii
Chapter 1 Introduction 1
1.1 Motivation 2
1.2 Aims and Objectives L. 3
1.3 Research Contributions 4
1.4 Thesis Organisation 5
1.5 Publications 7
Chapter 2 Background and Literature Review
2.1 Machine Learning Motivation
2.2 Real Time Signal and Image Processing
Systems
2.2.1 Convolution
2.3 Neural Networks 10
2.3.1 Fully Connected, or dense Layers 12
2.3.2 Convolutional layerss-CNNs 12
2.3.3 Recurrent LayerssRNNs 14
2.3.4 Hyperparameters and Evaluation 16
2.4 Compute Platforms 17
2.4.1 Software Programmable Platforms 17

2.4.2 Application Specific Integrated Circuits (ASICs) 19

2.5

2.6

2.4.3 Field-Programmable Gate Arrays (FPGAs) 20

Compute Optimisations 23
2.5.1 Scheduling - Batch Inference 23
252 Pruningo o 24
2.5.3 Reduced Precision-Quantisation 25
Enabling Faster Deployment on FPGAs 25
2.6.1 High Level Synthesis (HLS) 26
2.6.2 Overlays. 26
2.6.3 Neural Network Toolflows 27
2.6.4 Summary 29

Chapter 3 Accelerating Neural Network Based Network Intru-

sion Detection on FPGA 30
3.1 Introduction. 30
3.2 Background 31
3.3 Related Work 32
3.4 Experimental Methodology 34
3.4.1 NSL-KDD Dataset 35
3.4.2 Software Implementation 35
3.4.3 Hardware Implementation 37
3.5 Results and Evaluation. 41
3.5.1 Network Throughput and Detection Rate 43
3.6 Summary 44

Chapter 4 High Throughput Spatial Convolution Filters using

FPGA DSP Blocks 45
4.1 Introduction. 45
4.2 Related Work 46
4.3 Generic Filter Architecture 48
4.3.1 Boundary Handling 49
4.4 FPGA DSP Block Architecture 50
4.5 Filter Architecture, 51
4.5.1 Filter Function 52
452 Pixel Cache 52
4.5.3 Adder Tree 52
4.6 Border Management Techniques. 55
4.7 Proposed Architecture Results 58
4.7.1 Adder Tree Designs in Direct Filter Structure 58
4.7.2 Direct Versus Transposed Form Architectures 59
4.7.3 Direct Filter Structure With Border Management . . . 62

4.7.4 Comparison With Vivado HLS Filters 64

ii

4.8

4.7.5 Scalability Analysis 65
4.7.6 Comparisons With Previous Work 66

SUMMATY o e e e 68

Chapter 5 Lightweight Streaming Neural Network Overlay us-

ing FPGA DSP Blocks 70
5.1 Imtroduction 70
5.2 Related Worko 72
5.3 Serial and Fully Parallel Multiply Accumulate Operation Com-
Parisons o. .o oo 73
5.4 Implementation L oo 75
54.1 Overlay 75
5.4.2 Stall Mechanism 77
5.4.3 Dataflow and Compute Timing Diagram 78
544 CaseStudyo 78
5.5 Results and Discussion oL 80
5.6 Summaryo 81

Chapter 6 Lightweight Streaming LSTM Neural Network Over-

lay for FPGA 83
6.1 Introduction. 83
6.2 LSTM Background, 84
6.3 Related Work 85
6.4 Proposed LSTM Architecture 88
6.4.1 Proposed Neuron Architecture 88
6.4.2 Neural Network Multiply-Accumulate 89
6.4.3 Activation Function Approximation 91
6.44 LSTM Addon 95
6.4.5 Top Level Layer and Network Architecture 96

6.5 Evaluation. 99
6.5.1 Models for Evaluation 99
6.5.2 Activation Function Impact 99
6.5.3 Compute Overlap 100
6.5.4 Weight Stationary Architecture 101
6.5.5 Performance, Resource Utilisation, and Comparisons . . 104

6.6 Summary 107
Chapter 7 Conclusions and Future Work 108
7.1 Summary of Contributions 109
7.1.1 Intrusion Detection System at Line Rate Detection . . . 109

7.1.2 2D Spatial Convolution Filters 110

iii

7.2

7.3

7.1.3 Streaming Overlay Architecture for NN Computation

Based on FPGA DSP Blocks 110
7.1.4 Streaming LSTM overlay architecture 111
Future Work 111
7.2.1 Overlay Generation Framework 111
7.2.2 Reduced Precision 112
7.2.3 Efficient mapping and scheduling of irregular neural net-

work workloads oL 112
7.2.4 Support more layer types 112
7.2.5 Support deep networks 113
SUMMATY o o e e e e e e 113

iv

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2

4.3

4.4

4.5

4.6

4.7
4.8

5.1
5.2
5.3
5.4
9.5

6.1
6.2

Network configurations in related work. 34
Accuracy results for training parameters. 36
Test set classification results. 36
Accuracy comparisons on the NSL-KDD dataset. 37
Timing results for NN accelerator. 41
Resource utilisation on the Xilinx Zynq Z-7020. 41
Execution time.o o 42
Detection rate in packets. 43
Adder tree layout resource consumption. 53

DSP Block usage for different configurations for a filter size of

Frequency and latency of direct form filter implementations with
different adder tree designs for 1280x 720 frame, 7x7 filter and
no border management. 59
Resource utilisation of direct form filter implementations with
different adder tree designs for 1280x 720 frame, 7x7 filter and
no border management. 60

Direct and transposed form implementation summary with

1280 x 720 frame and 7x7 filter.o L. 61
Direct LOG architecture for 1280 x 720 frame and 7 x 7 filter

with border policy from [107]. 63
Relative resource utilisation and frequency for Vivado HLS filters. 64
Summarised previous work on 2-D spatial filters. 67
Latency and resource utilisation of the two compute methods. . 74
Case study neural networks configurations. 80
Resource utilisation on the Zynq Ultrascale+ ZUTEV. 80
Theoretical timing results for the overlay. 81
Inferences per second on the different architectures. 81
Approximated functions equations. 92
Approximated functions loss-Weather forecast. 93

6.3 Resource utilisation of the activation functions architecture. . .
6.4 Approximated functions loss/accuracy-MNIST.
6.5 Approximated functions loss-Character level LSTM.
6.6 Compute overlap when processing LSTMs.
6.7 Weights to input size ratio.
6.8 Resource utilisation and performance comparisons with same

models.
6.9 Resource utilisation and performance comparisons with different

models. L

6.10 Resource utilization and frequency on Zynq 7000 series.

vi

List of Figures

2.1

2.2

2.3
2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

3.1
3.2

4.1
4.2

4.3

Convolution operation showing the source image, overlapping
kernel window and result image [26]. 10
Neuron Structure, showing the inputs, weights, biases and ac-
tivation function [12]. L oL 11
Artificial neural network structure. 12

A typical CNN structure, showing the distinct feature extraction

and classification parts [44].o L 13
Per layer number of operations in AlexNet [13]. 13
Per layer number of weights in AlexNet [13].. 14
A recurrent unit, its unrolled computation over timesteps [48]. 14
An LSTM unit. 15
Systolic Array dataflow used in Google Edge TPU [64]. 20
A part of an FPGA architecture, showing the various building

blocks. [65]. 21

DSP48E1 compute block architecture, showing the various
datapaths, compute units and configurations [71]. 22
FPGA SoC architecture showing the reconfigurable fabric along
with a microprocessor [65]. 23
Pruned Neural Network example, showing weight (synapse) and
neuron pruning [74]. Lo 24
Coarser grained overlay architecture on top of the finer grained
reconfigurable fabric [79]. o 0oL 27

Overview of the Xilinx Zynq based system architecture. 38
Intrusion Detection System diagram, showing the various memor-

ies, neurons and connectivity.o 39

Filter architecture diagram, showing the various functional blocks. 48
2-D filter operation showing indicative examples for interior and
border pixels. 50
Transposed filter diagram, showing the various compute blocks

and pipeline stages [98]. Lo 51

vii

4.4
4.5
4.6
4.7

4.8

4.9
4.10

5.1

5.2

5.3

5.4

5.5

5.6

6.1

6.2

6.3

6.4

6.5

6.6
6.7

DSP48E1 block diagram for multiplication.
Alternative adder tree layouts: LOG, DSP, and DSPCOMP. . .
DSP48E1 block diagram for addition.
Border management techniques (top left: constant extension, top
right: border extension, bottom left: mirroring with duplication,
bottom right: mirroring without duplication) [99].
Implementation results of the proposed filter architecture on
three image resolutions, each on 11 filter sizes.
Slice utilisation for each filter implementation.

Achievable frame rates for varying filter and frame sizes.

Fully Unrolled Multiply-Accumulate tree Architecture.
Serial Compute Architecture, using DSP blocks.
Diagram that shows configuration, control and compute paths
for each neuron compute unit. L.
Proposed neural network overlay architecture, mimicking the
structure of the network. oL,
Programmable stall mechanism enabling variable sized networks
to be implemented. Lo
Diagram that shows the dataflow and compute allocations over

time-steps.

Neuron Architecture showing the configuration, control and
compute paths. o
Neural Network Multiply-AccumulateArchitecture.
Activation functions and their approximations.
Activation functions architecture, showing the various datapaths,
logic blocks and pipeline stages.
LSTM addon compute architecture, showing the various logic
elements and delay registers.o
Top level layer architecture.

Top level Neural Network architecture.

viii

93
o4
95

89
90
93

Acknowledgments

First and foremost I would like to thank my supervisor, Dr. Suhaib Fahmy, for
giving the opportunity to study for my PhD under his guidance. His feedback
has been invaluable during my studies at Warwick, while our meetings and
discussions helped me grow as a researcher and a person. He always took the
time to help me improve my technical writing and to answer even my most
tedious questions. His enthusiasm and support even in the most hectic periods
will guide me forever.

I would also like to thank all the people I have met at the University of
Warwick, especially the PhD students (Ryan, Alex and Kusuma), post-docs
and other students at the WARC lab. Their company and discussions have
made the daily routine better in so many ways.

I am also very thankful to my friends back home, who have always made
the getaways from my studies more fun and relaxing.

Finally, I am eternally grateful to my family, especially my parents, Ntinos
and Stella, for their unconditional support and understanding, in particular
throughout my studies. I am also very thankful to my grandmother Rita, with

whom I spent a lot of time growing up and helped shape the person I am today.

ix

Declarations

1 Publications

Parts of this thesis have been previously published by the author in the

following:

1]

L. Toannou and S. A. Fahmy. Network Intrusion Detection Using Neural
Networks on FPGA SoCs. In Proceedings of the International Conference
on Field Programmable Logic and Applications (FPL), pages 232-238,
2019.

L. Toannou and S. A. Fahmy. Neural Network Overlay Using FPGA
DSP Blocks. In Proceedings of the International Conference on Field
Programmable Logic and Applications (FPL), pages 252-253, 2019.

L. Ioannou and S. A. Fahmy. Lightweight Programmable DSP Block
Overlay for Streaming Neural Network Acceleration. In Proceedings of the

International Conference on Field-Programmable Technology (ICFPT),
pages 355-358, 2019.

L. Toannou, A. Al-Dujaili, and S. A. Fahmy. High Throughput Spatial
Convolution Filters on FPGAs. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 28(6):1392-1402, 2020.

L. Toannou and S. A. Fahmy. Streaming Overlay Architecture for Light-
weight LSTM Computation on FPGA SoCs. Submitted to: ACM Trans.

Reconfigurable Technol. Syst..

2 Sponsorships and Grants

This research was funded by the UK Engineering and Physical Sciences Re-
search Council (EPSRC), grant EP/N509796/1, and the School of Engineering,
University of Warwick, UK.

X1

Abstract

Neural networks have contributed significantly in applications that had been dif-
ficult to implement with the traditional programming concepts (e.g. computer
vision, natural language processing). In many occasions, they outperform their
hand coded counterparts and are increasingly popular in end user applications.
Neural networks, however, are compute and memory demanding, making their
execution in resource constraint devices more difficult, especially for real time
applications. Custom computing architectures on Field-Programmable Gate
Arrays (FPGAs) have traditionally been used to accelerate such computations
to meet specific requirements. Nonetheless, most approaches in the literature
do not consider in detail the underlying FPGA architecture, resulting in less
efficient implementations. They additionally have focused on complex designs
optimised for high throughput in a datacenter setting with access to large
datasets in memory. Meanwhile real edge applications are often processing
streaming sensor data and require consideration of efficiency. Detailed FPGA
implementations involve time consuming low level design effort, which in turn
result in long turnaround time. FPGAs have evolved over the years to include
hard macro blocks, for example Digital Signal Processing (DSP) blocks, that
map more efficiently widely used operations. In addition, FPGAs are often
tightly coupled with embedded microprocessors in a System-on-Chip (SoC)
arrangement that offers a complete system solution. This thesis explores the
capabilities of FPGA DSP blocks in neural network accelerators. Within this
context, practices and tools that improve turnaround time have been explored,
drawing conclusions on how to exploit DSP blocks in a way that maximises
performance and efficiency. Finally, the work in this thesis shows that design-
ing overlays in an architecture-centric manner can result in high operating

frequency, while scaling to better utilise FPGA resources.

xii

Acronyms

ALU Arithmetic Logic Unit.

APIT Application Programming Interface.
ASIC Application Specific Integrated Circuits.
AXIT Advanced eXtensible Interface.

BRAM Block Random Access Memory.

CLB Configurable Logic Block.

CNN Convolutional Neural Networks.

CPU Central Processing Unit.

CSD Canonic Signed Digit.

CUDA Compute Unified Device Architecture.
DA Distributed Arithmetic.

DBN Deep Belief Network.

DDoS Distributed Denial of Service.

DMA Direct Memory Access.

DNN Deep Neural Networks.

DNNDK Deep Neural Network Development Kit.
DoS Denial of Service.

DPU Deep-learning Processor Unit.

DRAM Dynamic Random Access Memory.
DSP Digital Signal Processing.

DT Decision Trees.

xiii

FF Flip-Flop.

FIFO First In First Out.

FIR Finite Impulse Response.

FPGA Field-Programmable Gate Array.
FPS Frames Per Second.

Gbps Giga bits per second.

GFLOPs Giga Floating-Point Operations per second.
GOPs Giga Operations Per second.
GPU Graphics Processing Unit.

GRU Gated Recurrent Unit.

HD High Definition.

HDL Hardware Description Languages.
HLS High Level Synthesis.

IDS Intrusion Detection System.

IoT Internet of Things.

IPC Instructions Per Cycle.

IPv4 Internet Protocol version 4.
LSTM Long-Short-Term Memory.

LUT Look-Up-Table.

MAC Multiply-Accumulate.

MAE Mean Absolute Error.

MIO Multiplexed Input Output.

ML Machine Learning.

NDAE Non-symmetric Deep Auto-Encoder.
NN Neural Networks.

PCA Principal Component Analysis.

PL Programmable Logic.

Xiv

PR Partial Reconfiguration.

R2L Remote to Local.

RAM Random Access Memory.

ReLU Rectified Linear Unit.

RF Random Forests.

RISC Reduced Instruction Set Computing.
RNN Recurrent Neural Networks.

ROM Read Only Memory.

RTL Register-Transfer Level.

SAD Sum of Absolute Differences.

SIMD Single Instruction Multiple Data.
SoC System-on-Chip.

SOM Self Organising Maps.

SRL Shift Register Look-up-table.

SVM Support Vector Machine.

TPU Tensor Processing Unit.

U2R User to Root.

VHDL VHSIC Hardware Description Language.
VHSIC Very High Speed Integrated Circuit.

VLIW Very Long Instruction Word.

XV

Chapter 1

Introduction

The emergence of Machine Learning (ML) has enabled a plethora of applications
that would be more difficult to implement with the traditional programming
methods. Although ML concepts have been reported in the literature for many
years, the availability of large volumes of data, through big data, coupled
with faster training turnaround time due to the availability of highly parallel
compute platforms and other algorithmic and mathematical optimisations, have
recently enabled ML models to outperform manually programmed solutions
in more problem domains. Hence, ML has attracted the research interest of
many disciplines, among them computer engineering, in which this thesis lies.
Machine Learning approaches span a wide range of learning techniques,
supervised or unsupervised, and a variety of models, Self Organizing Maps
(SOM), Support Vector Machines (SVM), Neural Networks (NNs), Decision
Trees (DT), and many more [6]. The versatility and more complex structure of
NNs has rendered them more capable to model non-linear tasks more accurately,
compared to the other options. Therefore, NNs have been widely used in a
wide spectrum of applications, from healthcare [7] to computer vision [8].
The operation of ML models comprises two phases, training and inference.
During training, the ML model is formed and refined using a dataset to
determine the best parameters to achieve a required task, iteratively refining
to reduce the prediction error. During inference, the trained model is used
to make predictions, based on the learned parameters, on new, unseen data.
Training comprises the heaviest workload of the two and usually takes place
offline on highly parallel computing platforms. Indicatively, it can take from
a few hours to a few days, depending on model’s topology. Inference can
potentially take place on any compute device, from highly powerful servers
to extremely constrained edge devices. Nonetheless, minor adjustments, i.e.
fine-tuning, of the trained model’s parameters may be made to better suit the
specific use patterns of the device or user, either on device or centrally.

Due to the more central nature of training, inference has been the main

target of various optimisations in an effort to meet the needs and capabilities
of different devices across the computing spectrum. Edge devices have been
a key focus since they impose stricter and more challenging attributes, e.g.
latency, throughput, energy, etc. Moreover, due to the variable and often
prohibitive transfer latency to the cloud, real time edge devices must perform
their computations locally [9]. One approach to meet strict constraints has been
with the use of custom computing architectures, either Application Specific
Integrated Circuits (ASICs) [10, 11] or implemented on FPGAs [12-14]. Custom
computing architectures can be tailored to meet a device’s specifications, at the
cost of flexibility compared to more general computing platforms, e.g. CPUs
and GPUs. FPGAs have continued to improve in terms of performance and
efficiency, primarily due to architectural evolutions that incorporate a variety
of hard macro blocks. Moreover, complete System-on-Chip (SoC) solutions,
featuring a low power processor tightly coupled with an FPGA fabric, are ideal
for edge solutions in which a generic processor is supported by an accelerator
on an FPGA.

Although, FPGAs are not superior to ASICs in terms of raw characteristics,
their off-the-shelf availability, which in turn results in smaller turnaround time,
reduced cost as well as their reconfigurable operation render them an excel-
lent solution for acceleration, especially in domains where the computational
algorithms continue to evolve, such as ML. We therefore have the opportunity
to explore new approaches that better take advantage of the capabilities of

modern FPGAs to maximise their effectiveness.

1.1 Motivation

The increasing ubiquity of interconnected devices at the edge has provided
the means to automate various daily tasks through the use of sensors and
actuators integrated with these devices. We therefore, have the ability to collect
unprecedented volumes of data and the means to automate actions through
the use of NNs. However, as the increasing interconnectivity of smart devices
provides a plethora of even more advanced capabilities, it simultaneously
renders efficiency more important. Edge devices are often battery powered,
to enable portability, and of reduced processing power, supporting a subset
of the instruction set of desktop computers. Custom computing architectures
on FPGAs can therefore be used to provide real time performance and high
energy efficiency at the edge.

NNs are extremely demanding in terms of memory requirements, to store the
trained model’s coeflicients and intermediate results of computation, in addition
to the significant computational workload they entail. Even a relevantly small

NN may have such memory requirements that on-chip storage does not suffice,

requiring frequent off-chip memory transfers that are costly in terms of energy
and latency. The significant computational workload mainly consists of matrix-
vector and matrix-matrix multiplications. In addition, edge devices are often
dealing with data that streams from the various sensors or other components,
e.g. camera, microphone etc.. Therefore ML computations should ideally be
optimised around this streaming dataflow, which can add complexity to the
design of custom architectures.

The design of custom computing architectures on FPGAs using Hardware
Description Languages (HDLs), e.g. Verilog or VHDL, at Register-Transfer
Level (RTL) involves time consuming low level design effort. However, machine
learning workloads differ in their parameters and structure, therefore accelerator
architectures should be scalable and easily reconfigured to different model
parameters and configurations. To this end, High Level Synthesis (HLS)
has emerged as an alternative to traditional RTL design, essentially raising
the programming domain to a higher level language, e.g. C, with guided
automated translation into an architecture. Another option is to build an
abstracted overlay architecture that is fundamentally flexible enough to adapt
to varying NN model topologies.

Most compute architectures on FPGAs are designed as static solutions, not
fully taking advantage of the reconfigurable nature of the FPGAs. In addition,
there is often very little consideration of the underlying FPGA architecture,
resulting in implementations that operate at well below the frequencies that
are theoretically achievable, hence not fully exploiting the capabilities of the
device. Maximising device capabilities is key to meeting strict specifications in

a challenging domain.

1.2 Aims and Objectives

This work in this thesis aims to explore the more efficient use of the underlying
FPGA architecture and macro blocks for lightweight NNs on devices at the
edge, while maintaining flexibility within this domain. This in turn is expected
to result in a computing architecture that achieves higher operating frequency
and hence performance, while offering higher energy efficiency through better
resource utilisation. Lastly, since this thesis targets edge devices, all imple-
mentations are aimed to be integrated in an SoC environment, considering a
streaming dataflow model.

Therefore, the aforementioned aims result in the following objectives:

e Use of Digital Signal Processing (DSP) blocks: NNs involve a
significant amount of Multiply-Accumulate (MAC) operations that can
be more efficiently mapped to the DSP macro blocks on modern FPGAs.

This is expected to yield implementations that offer:

High operating frequency: which is expected to contribute to

achieving higher performance in terms of latency and throughput.

Higher energy efficiency: since functions implemented on the
FPGA’s macro blocks consume less power than their equivalent imple-
mentations in fabric [15]. Moreover, higher operating frequency can
contribute partly to energy efficiency, since leakage currents are clock
independent [16].

e Programmability-Abstractions: Although FPGAs are reconfigur-
able, the lengthy design and compilation times result in less flexible
deployments. Enabling more rapid deployment, through the use of higher
level languages or coarse grained overlays, would improve the flexibility
of FPGA design.

e Streaming dataflow: FPGA SoCs, and edge devices in general, often
collect and distribute data in a streaming fashion, not using highly parallel
bulk transfers that are used with more datacenter oriented interconnect
such as PCI Express. Such dataflow architectures are more difficult to
efficiently scale in terms of performance since data availability is less
abundant. Therefore, an architecture that tailors the operation of its
compute units and dataflow to a streaming arrangement would be better

suited for the edge domain.

e Parallelism: NNs consist of highly parallel workload from which im-
proved performance can be obtained by unrolling these computations.
The unrolling scheme, however, must be tailored to the streaming data-

flow.

1.3 Research Contributions

The research contributions of this thesis comprise computing architectures,
implemented on FPGAs, that accelerate NNs, or part of their computations.
The implemented architectures have been evaluated mainly in terms of per-
formance and resource utilisation. Occasionally, additional features have been
derived in order to normalise the varying capabilities between different FPGA
devices and make more objective comparisons with previous work.

More specifically, the research contributions of the work in this thesis are

as follows:

e An exploration an Intrusion Detection System (IDS) application using
NNs on an FPGA SoC, implemented with HLS. The IDS demonstrated

improved detection times while offering coefficient re-programmability

along with the use of floating point operations, setting a baseline for the

complexity of a parallel but not highly optimised architecture.

e An exploration of various large scale 2-D spatial convolution filters on
modern image resolutions that is heavily optimised around modern FPGA
DSP blocks. A detailed investigation of scalability for different filter sizes
and image resolutions, along with their impact on operating frequency
and resource utilisation, is performed. Comparisons made with previous
work and equivalent implementations with HLS motivate the work that

follows thereafter in this thesis.

e An FPGA overlay architecture, tailored to the compute patterns of
specific NN layers and built around the concept of DSP block as a
neuron. The overlay processes a streaming flow of data, is implemented
in an FPGA SoC environment, and is runtime programmable. The
overlay achieves high operating frequency and demonstrates improved
performance compared to mobile, desktop CPU, and relevant previous
work on FPGAs.

e An enhanced version of the aforementioned overlay architecture to support
a wider variety of layer types including Long Short-Term Memory (LSTM)
that require complex feedback structures. This overlay is shown to
scale with a small frequency overhead, while extensive comparisons with

previous work demonstrate the benefits of the proposed approach.

1.4 Thesis Organisation

Chapter 2 presents relevant background information on Machine Learning and
Neural Networks in particular, followed by the different compute platforms
and the various algorithmic optimisations, in addition to a literature review.
This includes details on basic NN building blocks, including different layer
types and activation functions. More information follows on various compute
platforms, focusing mainly on modern FPGAs and the different methods and
tools to enable more rapid deployment.

Chapter 3 demonstrates an NN application for network intrusion detection
on an FPGA SoC device. Initially, the NN is trained in software, followed
by architecture generation using HLS. The architecture is flexible, to allow
coefficient modification at runtime, while using 32-bit floating point arithmetic
throughout. The HLS generated design is integrated in an SoC implementa-
tion, alongside an ARM-A9 embedded processor, and has been functionally
tested. The chapter concludes with comparisons with equivalent software

implementations and previous work, showing improved detection time.

Chapter 4 explores FPGA implementations of spatial convolution filters,
using Verilog HDL, focusing on modern image resolutions and respectively
scaled filter sizes. The different design choices for the selected architecture are
substantiated by comparisons on indicative designs, followed by an exploration
on how the selected architecture scales and, finally, comparisons with HLS
equivalent implementations. The work in this chapter motivates the transition
from HLS to a more architecture-centric design approach that is better suited
to the capabilities of the FPGA architecture, specifically DSP blocks and their
runtime flexibility. Moreover, the extensive range of filter sizes demonstrates
that the proposed architecture scales well in terms of frequency, laying the
groundwork for the chapters that follow.

Chapter 5 presents an overlay implementation of feed forward NNs, using
streaming dataflow with the FPGA DSP blocks acting as individual neurons.
The implemented architecture achieves high operating frequency and better
performance compared to software equivalents and previous work on HLS. The
overlay has been integrated in an SoC implementation, operating at a baseline
frequency, and has been functionally tested. Although the baseline NNs used
in this chapter do not stress the scalability and the functionality of the overlay
significantly, they serve as a stepping stone for the more complex overlay that
follows.

Chapter 6 presents an expanded overlay streaming architecture that sup-
ports an additional set of NN layers, most notably LSTMs that require feedback,
as well as more flexible activation functions. The overlay in this chapter is shown
to scale at a low frequency overhead, while the extensive comparisons between
the implemented overlays in this chapter and previous work demonstrate and
quantify the effectiveness of the proposed approach.

Chapter 7 concludes the work presented in this thesis and discusses future

work based on its findings.

1.5 Publications

The originality of the research contributions of this thesis is demonstrated
through publications in the following peer-reviewed conference and journal

proceedings:

1. L. Ioannou and S. A. Fahmy. Network Intrusion Detection Using Neural
Networks on FPGA SoCs. In Proceedings of the International Conference
on Field Programmable Logic and Applications (FPL), pages 232-238,
2019 [1].

2. L. Ioannou and S. A. Fahmy. Neural Network Overlay Using FPGA
DSP Blocks. In Proceedings of the International Conference on Field
Programmable Logic and Applications (FPL), pages 252-253, 2019 [2].

3. L. Toannou and S. A. Fahmy. Lightweight Programmable DSP Block
Overlay for Streaming Neural Network Acceleration. In Proceedings of the

International Conference on Field-Programmable Technology (ICFPT),
pages 355-358, 2019 [3].

4. L. Toannou, A. Al-Dujaili, and S. A. Fahmy. High Throughput Spatial
Convolution Filters on FPGAs. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 28(6):1392-1402, 2020 [4].

5. L. Toannou and S. A. Fahmy. Streaming Overlay Architecture for Light-
weight LSTM Computation on FPGA SoCs. Submitted to: ACM Trans.
Reconfigurable Technol. Syst. [5].

Chapter 2

Background and Literature

Review

Edge devices’ functionalities have evolved over the years, from passive to more
interactive, incorporating sensors and actuators to interact with the physical
world in a smarter way. Meanwhile, the increasing interconnectivity of such
devices has enabled the collection of unprecedented volumes of data, from
which specific patterns can be extracted and used for better informed future
predictions and user tailored operation. Machine Learning has provided the
means to automate this learning process and in many cases has outperformed
hand coded methods of extracting such patterns. Neural Networks are con-
sidered by many the most prominent class of ML models, and are nowadays
increasingly used on wide spectrum of computing devices, from highly parallel
platforms to resource constrained edge devices. As a result, there is great
interest on the workload and size of Neural Networks and how these can be
executed more efficiently on various platforms through various optimisations,
either algorithmic or architectural. This chapter covers all aforementioned

aspects in theoretical background and relevant literature review.

2.1 Machine Learning Motivation

ML algorithms were shown to generalise their learned patterns to new, previ-
ously unseen data. The latter, renders them very useful to simple day to day
tasks, but more importantly, to more complex tasks that have greater impact,
for example network security applications. Specifically, ML algorithms have
the potential to detect new, zero-day, attacks or even modified known attacks
that have been altered adequately to deceive security mechanisms. Both of
which are very difficult to detect with hand coded rules. Therefore, there is
plenty previous work in the literature that explored the use ML in security

applications, in the context of an Intrusion Detection System (IDS). The work

in [17] explored the use of Non-symmetric Deep Auto-Encoders (NDAE) and
Random Forests (RF) for network intrusion detection, demonstrating great
potential in their detection results and improved turnaround time compared
to a Deep Belief Network (DBN). The use of Neural Networks in the same

domain was explored in [18-23], obtaining high detection rates.

2.2 Real Time Signal and Image Processing

Systems

Signal and image processing are very popular application domains of compute
systems. The real time constraints that these domains usually pose, result
in stringent system specifications. These specifications are often met with
application specific architectures the accelerate parts or even complete digital
signal processing algorithms. As a result, signal and image processing have
sustained interest in real time response implementations by accelerating their
computations. Finite Input Response (FIR) filter acceleration, for example,
has been presented in [24] and [25]. Image processing acceleration, on the
other hand, is becoming increasingly more complex due to the continuously
increasing image resolutions used in vision systems. This results in even more
stringent requirements, in terms of buffer memory and workload, that have to
be met in order to achieve real time operation.

Image, and signal processing algorithms usually include multiplications with
tunable parameters and a signal input (i.e. kernel window and image). These
parameters have been traditionally defined by experts and involve signifiant
human intervention. The emergence of ML has provided the means to define
these parameters empirically, through the availability of datasets and without
the need of expert knowledge. In addition, the automated training frameworks
in the ML domain reduce human interaction to the minimum while yielding

models that are competitive and often surpass algorithms defined by experts.

2.2.1 Convolution

Convolution, or 2-D spatial filtering, is fundamental operation in image pro-
cessing. It comprises a kernel matrix, or filter window, that scans an input
image at a given stride. During the scan, an output image pixel is generated
by calculating the weighted sum of the overlapping kernel area, as depicted in
Figure 2.1. The kernel dimensions and coefficients define the transformation of
the image. For example the transformation can be edge detection, sharpening
or even a specific feature in the image. Convolution has always been popular
among the research community as it constitutes the foundation for many vision

systems. Accelerating convolutions is therefore paramount for real time vision

NN

AAVARENEN

Figure 2.1: Convolution operation showing the source image, overlapping kernel
window and result image [26].

systems, as shown in [27-32]. Other previous work have approached this task
alternatively, mainly divided into multiplierless, that make use various theor-
ems, optimisations and transformations to avoid the use of multipliers [33-37],

and others that make use of distinct multiplications [24, 25, 38].

2.3 Neural Networks

Neural Networks are computational models inspired by human cognition, able
to form complex non-linear functions from a given dataset. Their learning,
similarly to any other ML model, can be further categorised in supervised and
unsupervised. In supervised learning, a dataset with a set of inputs and their
corresponding outputs (i.e. labelled data) is provided. The Neural Network is
then trained to match the expected output given that specific set of inputs, or
classify them to a given class. During unsupervised training, a dataset with only
inputs is provided, with the task to extract any patterns from the input data.
For example, an unsupervised model could automatically cluster its input data
to categories with similar features. Supervised learning therefore may include
expert intervention to derive the output labels, rendering the preparation of
the used dataset a more time-consuming process compare to unsupervised
learning. On the other hand, unsupervised training requires more data and
more time to achieve satisfactory accurate predictions, which in turn require
more compute and memory resources during training. Lastly, unsupervised
learning can also be susceptible to dataset artefacts or erroneous spikes that
may have been included due to the automated operation of the process. As a

result, most trained models used for benchmarking in the literature are trained

10

with supervised learning.

[(x)

Figure 2.2: Neuron Structure, showing the inputs, weights, biases and activation
function [12].

Neural Networks consist of compute entities called neurons, as shown in
Figure 2.2. Each neuron calculates the weighted sum of its inputs, adds the
result to an offset value (bias), followed by an activation function for non-
linearity. Most commonly used activations functions are the Rectified Linear

Unit (ReLU), sigmoid and tanh, as shown in equations 2.1 - 2.3.

relu(z) = max (0, x) (2.1)
gmoid(s) = T—— 22
sigmoid(z) = .
et —e”
tanh = — 2.3
onh(z) = & (2.3

A layer is then formed with the use of multiple neurons, operating in
parallel, and by extension, a Neural Network is built with a sequence of layers
that propagate their results between them. The first layer of a Neural Network
is the input layer, from which new data are fed to the network, whereas the
last layer is the output layer, out of which the results of the network are
generated. Any layers between the input and output layer are called hidden
layers. Conventionally, Neural Networks with one or two hidden layers, in
addition to the input and output layers, are called shallow. Networks with
more than two hidden layers are considered deep networks. Various types
of Neural Network layers exist that are tailored to different types on inputs.
Depending on the layer type, the functionality of each neuron is somewhat

different, however the core operation remains inherent. Neural Networks have

11

been successfully applied in a broad range of fields, from automotive [39], to
healthcare [7].

2.3.1 Fully Connected, or dense Layers

Fully connected, or dense, layers are the most commonly used type of layers as
they can be used as an independent solution or be embedded in more complex
Neural Network topologies. An indicative structure of a fully connected layer
is shown in Figure 2.3. Inputs to fully connected layers are represented
numerically and so symbolic (or categorical) inputs must be converted to
suitable formats before being applied. Applications of NNs consisting solely of
fully connected layers have been indicatively used in network security [12, 19,
20, 40, 41], healthcare [7], automotive [39], language processing [42] and gas

classification [14].

Figure 2.3: Artificial neural network structure.

2.3.2 Convolutional layers-CNNs

Convolution gained even more attention in the recent years due to the success
of Convolutional Neural Networks (CNNs) [43]. CNNs mainly consist of
convolutional layers that use convolutions abundantly to extract features from
an input image. Convolutional layer weights (i.e. kernel coefficients) are
defined automatically during training. The correlation between convolution
and CNNs is demonstrated in [37], in which the convolution operation in CNNs
is optimised by using power of two weights.

Convolutional layers incorporate the traditional 2-D convolution operation
in image processing. Convolutions are more efficient at processing images
compared to fully connected layers. For example, although an image could be
flatted and used in a fully connected layer, it would require many more neurons
and connections between them, resulting in higher memory and compute

requirements. Convolutional layers act as feature extraction entities on the

12

feature maps (i.e. images) that are propagated through the network. They
are mostly used in tandem with other types of layers that perform the actual
classification task on the extracted features. An example of a complete CNN
is shown in Figure 2.4, which is trained for handwritten digit recognition [44].
The input images initially propagate through the feature extraction layers, that
mainly consist of convolutional layers, followed by the classification part that
consists of fully connected layers. Various CNN topologies have been proposed
over the years, for example AlexNet[8], VGG [45] and GoogLeNet [46]. Each of
these CNNs has pushed the state of the art while demonstrating improvements
or tradeoffs between them. For example, a CNN topology may offer faster
training turnaround, going deeper or reduce the overall workload, among

others.

\ e

il &l
N

5x5 2x2 -
convolution \ subsampling convolution

N\ subsampling \\ connected \
feature extraction classification

Figure 2.4: A typical CNN structure, showing the distinct feature extraction
and classification parts [44].

The different layers in a CNN have significantly different workload and
memory requirements. Indicatively, the analysis that takes place in [13] extracts
the number of operations, Figure 2.5, and the number of weights, Figure 2.6, for
each layer. In this case, the convolutional layers comprise the largest workload
while benefiting from weight reuse, whereas fully connected layers have reduced

workload but higher memory requirements.

s Number of Operations
5 T T T T T T T T

CONV1 CONVZ CONV3 CONV4 CONVS FC6 FCT FCB

Figure 2.5: Per layer number of operations in AlexNet [13].

13

X107 Number of Weights

T T

CONV1 CONVZ CONV3 CONV4 CONVS FCE FCT FC8

Figure 2.6: Per layer number of weights in AlexNet [13].

As a result of their popularity, toolflows have been proposed to map these
CNN topologies on custom computing architectures [47]. In addition, although
CNNs are primarily used for image recognition tasks, the work in [23] uses
CNN topologies for a network security application. The authors have converted
the network traffic features into images which have been used to train CNN
networks. The proposed method however did not obtain better detection rate
compared to simpler NNs comprising fully connected layers. Nonetheless, it

demonstrates the versatility of neural networks in a broad range of domains.

2.3.3 Recurrent Layers-RNNs

Days
B {prediction)
. - -
kOy 0,: output vector 0 3
Recurrent
connectio 1
(; Neural NN NN
. NEt A A A A\ A

B R R R

' 7| '\,I E | TN TN N TN
L S Y AP Y

l; : input vector A Week Has Seven
(word0) (word1) (word2) (word3)

Figure 2.7: A recurrent unit, its unrolled computation over timesteps [48].

Recurrent layers are tailored for sequential or time series data applications.
To enable this class of networks to extract any correlation between data
sequences, they include feedback connections to previous outputs, which in
turn translate to computing dependencies during their runtime. The feedback
connections embed a memory element to the network, based on the data that
has been previously propagated through the layer. An example of a recurrent

unit unrolled over time is shown in Figure 2.7. The unit receives the first four

14

words of a sentence serially and generates the fifth word, based on the previous
ones. The initial structure of recurrent units however has been proven prone
to vanishing and exploding gradients. The former case is when a gradient
is very small, during training, and it continues to become smaller until it
vanishes. The latter case is the exact opposite, referring to a gradient that is
very big, creating an unstable model. As a result, variants have been proposed

to overcome the aforementioned issues.

Long Short-Term Memory (LSTM) layers

Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs) are
RNNs that have been proposed to overcome the vanishing and exploding
gradient problems. Although both perform similarly in many tasks, the more
complex structure of LSTMs theoretically allows them to learn more complex

sequential patterns.

He
A
Cea > ' f \ »C,
|—> tanh
, é
0 ‘fL+
WeUeE (WU {We U {WoUo}
|
H,. H
SV, t

Figure 2.8: An LSTM unit.

Equations 2.4 to 2.9 describe the operation of an LSTM unit, which is
also illustrated in Figure 2.8, where ® denotes element-wise multiplication,
and W and U are the weights of current input features and the previous cell
outputs respectively. More specifically, an LSTM unit consists of the forget
gate (fi), input gate (i;), and output gate (o;), along with the cell state(Cy),
its partial result(Cy), and the LSTM cell output (Hy). The forget gate controls
the amount of information to discard from the previous cell state, the input
and partial cell state define the new information to add to the cell state and
the output gate defines the LSTM cell’s output based on the current cell state.
The main difference between LSTMs, and RNNs in general, and feedforward
NN, is the feedback connections from previous outputs (C;—1 and Hy_1).

An LSTM network can process a sequence of inputs, each of which can
be a scalar or a vector. The sigmoid (o) and tanh activation functions are
most commonly used in this configuration. However, some flexibility in the

application of activation functions is required to support different networks.

15

fi=ocWjay +UsH;—1 + by)
it = o(Wizy + UiHi—1 + b;)
Cy = tanh(Wexy + U.Hy 1 + b,)
or = o(Woxy + UsHy—1 + by)
Ci=f0C1+i0C
H; = tanh(c) © oy

LSTMs have been successfully applied to weather forecast [49], network

security [21, 22], optical character recognition [50, 51|, speech recognition [52],

character level text prediction [53-55], among others.

2.3.4 Hyperparameters and Evaluation

Hyperparameters are a set of parameters used during the training of a Neural

Network that have an impact on how effectively the model learns from the input

data. These parameters are usually defined experimentally as their impact

differentiates according to the task at hand.

Neurons per layer and number of layers: the number of neurons
in a layer and the number of layers affect the learning capacity of the
network. Therefore, depending on the complexity of the task at hand,

different network topologies are explored to find the better suited one.

Batch size: is the number of input samples after which the model

coefficients (i.e. weights and biases) are updated during training.

Epochs: an epoch is called after all samples in the training set have been
propagated through the network once. Usually this process is repeated

multiple times for the network to learn.

Learning Rate: is the rate at which the coefficients are updated after

the pass of a batch.

Loss function: is the function with which the prediction error of a
Neural Network is evaluated, which in turn affects the coefficient update

during training.

Optimiser: is the function, or algorithm, used to update the network’s
coefficients and reduce the prediction error of the model to ideally reach

to the global minimum.

16

A Neural Network is frequently evaluated during training, e.g. after the pass
of an epoch, showing the prediction error and, where possible, the percentage of
correct classifications made. Although other metrics exist as well, accuracy is
the most widely used one since it encapsulates the overall prediction capability
of the model, while others focus on a specific attribute. For example, given a
network that classifies its input data to two classes, e.g. class 1 and class 2,

classification accuracy is calculated as follows:

TP+TN
TP+TN+ FP+ FN

accuracy = 100 (2.10)

where:

e TP: True Positive, corresponds to a class 1 dataset entry has been

correctly classified as such.

e TN: True Negative, corresponds to a class 2 dataset entry that has been

correctly classified as such.

o FP: False Positive, corresponds to a class 1 dataset entry that has been

incorrectly classified as class 2.

e F'N: False Negative, corresponds to a class 2 dataset entry that has been

incorrectly classified as class 1.

2.4 Compute Platforms

Compute platforms are the means by which Neural Networks are processed.
These may be generic software programmable architectures, e.g. a Central

Processing Unit (CPU) or a custom computing architecture implemented on
an ASIC or FPGA.

2.4.1 Software Programmable Platforms

Software programmable platforms, CPUs and GPUs, have been the most
popular for Neural Network computations. The ease of compiling an algorithm
in software, coupled with the highly parallel operation of GPUs have rendered
these platforms very user friendly. In addition, the availability Neural Network
frameworks (e.g. Tensorflow [56], Keras [57], Caffe [58], Theano [59]), which
have abstracted the low level details of NN implementations in software, acted

as a catalyst for the wider use of these platforms.

17

Central Processing Units (CPUs)

The ubiquity of generic CPU compute architectures coupled with their low
cost have rendered this class of units very appealing for NN execution. CPU
capabilities may vary significantly in respect to the compute platform they are
used in. For example, server CPUs are more capable compared to personal
computer CPUs, both of which are more powerful compared to an embedded
microprocessor that implements a Reduced Instruction Set Computing (RISC)
architecture. Nonetheless, since embedded processors comprise the majority
of edge devices’ CPUs, there have been particular efforts in enabling a more
efficient deployment to these devices through the use of compute optimisations.
For example, Tensorflow [56] provides a Lite version that offers a range of op-
timisations for embedded processors, like the ARM Cortex-A72 on a Raspberry
Pi 4.

Although the spectrum of CPU capabilities varies significantly depending
on the targetted device, CPUs in general are not able exploit parallelism in
NNs at significant extend due to their relevantly low core count and inefficiency
in memory intensive computations. The work in [60] has shown that fully
connected layer processing can become less efficient on CPUs due to their
memory intensive patterns. This was demonstrated in an analysis conducted
on AlexNet [8], a specific CNN topology. Two Intel Xeon E5-2650 CPUs
running at 2.4GHz were used to measure AlexNet’s Instructions Per Cycle
rate (IPC). Fully connected layers achieved the lowest, compared to the other
layer types, obtaining an IPC rate of less than 1, due to cache misses in all
cache levels, causing a high number of stall cycles to fetch data from memory.
Hence, we see that data flow optimisations are also important to fully reach
the processing potential of the computing unit.

Therefore, despite the wide availability and ease of Neural Network deploy-
ment, CPUs are less likely to offer real time execution while also being less
energy efficient for such tasks. As a result, latest CPU models include special
NN processing units [61, 62], to offer more efficient processing for this class of

algorithms.

Graphic Processing Units (GPUs)

GPUs attracted significant interest in the NN domain on both, training and
inference ends. Their highly parallel compute architecture coupled with the
availability of an abstracted Application Programming Interface (API), for
example Nvidia’s Compute Unified Device Architecture (CUDA), have greatly
reduced execution times on both training and inference while maintaining the
ease of software programmability. GPUs form factor has diversified over the

years, providing solutions that range from powerful GPUs for central computing

18

to GPUs in the embedded domain. Although Neural Networks’ training is
dominated, at the moment, by the use of powerful GPUs in workstations,
the use of GPUs for inference, especially in the embedded domain, has not
been very beneficial in terms of performance and efficiency, compared to
custom computing architectures on ASICs and FPGAs. The latter is mainly
due to the fact that custom computing architectures are more tailored to
a specific application domain compared to the more generic architecture of
GPUs. For example, GPUs offer limited parallelism in LSTMs due to their
sequential components and dependencies to previous outputs. Therefore being
underutilised when processing in streaming mode, requiring batch processing
to achieve high throughput. Previous work in [52] showed that an LSTM
implementation for speech recognition, that operates at 100MHz on a Xilinx
Zynq XC77045 FPGA, is more energy efficient compared to a high-end NVIDIA
GeForce Titan X GPU. The authors in [63] explored the partitioning and
execution of large LSTM layers on FPGAs. Their proposed approach on a
Xilinx Virtex 7 and a Zynq FPGAs demonstrated improved performance and
energy efficiency compared to an Nvidia TITAN X Pascal GPU, in addition to
a Intel Xeon E5-2665 CPU and previous work on FPGAs. The work in [55]
proposed LSTM co-processors on Xilinx Zynq ZC7020, obtaining improved
runtime and energy efficiency compare to an Nvidia Tegra TK1 GPU.

2.4.2 Application Specific Integrated Circuits (ASICs)

Application Specific Integrated Circuits (ASICs) have demonstrated superior
performance and energy efficiency at the cost of flexibility. As reported in
Chapter 1, FPGAs tradeoff between performance, flexibility and off-the-shelf
availability have been the main advantages over ASICs. In addition, as Machine
Learning is an actively explored domain, constantly pushing the state of the
art, means that long fabrication times are likely to render ASICs outdated
by the time they are produced. As a result, ASICs implementations in this
domain are shown to maintain some flexibility with more generic architectures,
for example, the systolic array architecture found in the Google TPU devices.
As shown in Figure 2.9, the input data in a TPU systolic array flow from the
left hand side, while the weights are loaded from the top. Compute units in
between calculate partial sums which are accumulated at the lower end of the

array.

19

Systolic array

—>» —> —> Data

!

Input l
buffers — —

Output
accumulators

Done

Figure 2.9: Systolic Array dataflow used in Google Edge TPU [64].

A systolic array implementation would therefore require a number of ex-
ternal memory channels to provide the required input and weights bandwidth.
Its compute unit arrangement makes it efficient for matrix-matrix multiplica-
tions, which is ideal for CNNs that are inherently tailored for batch inference,
but not very efficient in operations of other network types, e.g. matrix-vector
or vector-vector. Therefore, in streaming processing, systolic arrays would
be less efficiently utilised due to the lack of batching and shared weights.
Moreover, the fixed architecture of an ASIC systolic array means that their
efficiency is heavily based on the Neural Network’s dimensions, with small
networks to underutilise its compute resources. Additionally, the dependencies
in LSTMs make it very difficult to utilise the pipeline parallelism in this class

of architectures due to their more regular dataflow.

2.4.3 Field-Programmable Gate Arrays (FPGAs)

FPGAs are reconfigurable integrated circuits that can be found on various form
factors that range from the embedded domain to high performance central
computing. Their inner structure, depicted in Figure 2.10, comprises of a finite
number of flexible routing resources and Configurable Logic Blocks (CLBs), or
slices. Each CLB consists of small number of Look-Up-Table (LUT) memories,
that can be used to implement any logic function, and synchronous memory
elements, Flip-Flops (FFs). Each CLB is interfaced with a routing channel,
which can be configured to I/Os of the CLB to the programmable interconnect.
Routing channels are in turn interfaced with switchboxes which are able to
make a connection between the available routing channels. FPGAs have
evolved over the years to not only provide more configurable elements, but to
also include hard macro blocks and interconnect for widely used operations,
implemented directly in silicon. These macro blocks have enabled more efficient

implementations, in terms of both performance and energy, while their dynamic

20

Switchbox

=

Q
15

(X}
(X

034938
]
]

Figure 2.10: A part of an FPGA architecture, showing the various building
blocks. [65].

programmability provides a degree of flexibility. Moreover, the reconfigurable
fabric has also been integrated alongside an embedded processor, offering a
complete system solution on an FPGA SoC. Depending on the family, the
capabilities of FPGAs may vary, providing different interconnect capabilities,
different number of macro blocks or more advanced LUT functionality, among
others.

FPGAs have traditionally been used to accommodate custom computing
architectures to accelerate workloads and achieve real time performance. Crit-
ical applications that require real time performance, among others, are network
security algorithms. The faster the response in this class of algorithms means
that less malicious packets enter the network, which results in a more effective
defence mechanism. Accelerating traditional intrusion detection workloads on
FPGAs has been explored in [66] and [67], while more modern ML approaches
on FPGAs have been explored in [68-70]. In a similar way, FPGAs have also

been used to accelerate vision computations for real time performance [28-32].

21

FPGA Macro blocks

PATTERNDETECT

17-Bit Shift

CARRYCASCOUT*

! - AcOUT' T s o MULTSIGNOUT" f'f PCOUT" |
I 18 30 : !
| ALUMODE —J |
| 18 4 P 48 |
B = 18 ™ b | I
| Dual B Register X |
| 18] 4 |
I 1 P -
A 30 b | cARRYOUT I
i 30 |

— = — |
: Dual A, D, 48 |
| 30),| @nd Pre-adder P iy
D 25 — |
|
1 P
| S

PATTERNBDETEC

CREG/C Bypass{Mask

' iINnMODE 5 Dﬁ 17-Bit Shift .
ICARRYIN L MULTSIGNIN*

i
{OPMODE 7 =E CARRYCASCIN®
| CARRYINSEL

| I, A S

Figure 2.11: DSP48E1 compute block architecture, showing the various
datapaths, compute units and configurations [71].

Hard macro blocks are distributed on the FPGA IC and can offer, for example,
improved distributed memory storage, in the form Block RAM or most recently
Ultra RAM, or advanced compute capabilities, with Digital Signal Processing
(DSP) blocks. An average BRAM memory block has about 32 Kbit of memory
which can be configured as 32K x 1 bit, 16K x 2 bit, etc. DSP blocks are able to
perform more complex computations, that are widely used in signal processing
applications. An indicative DSP block architecture is shown in Figure 2.11.
It consists of three main compute blocks, a pre-adder, a multiplier and an
Arithmetic Logic Unit (ALU). The operation of DSP blocks can be dynamically
configured at runtime, for example, to execute various ALU operations or
select the different input registers to the ALU. Thus providing some degree of
flexibility through programmability.

FPGA SoCs

FPGA SoCs provide a complete system solution, featuring an embedded mi-
croprocessor tightly coupled with an FPGA on the same IC, as shown in
Figure 2.12. These devices are therefore ideal for edge computing, combining
the high-level management functionality of embedded processors with the
compute acceleration of a custom architecture on an FPGA. The embedded
microprocessor can not only be used for light computing but to also configure
and control the FPGA dynamically after deployment. Many previous work
implementing co-processors for Neural Networks on FPGAs have targetted
SoC platforms in a manner that the microprocessor manages the data trans-

fer, control and runtime coordination [53-55, 72]. Others have implemented

22

High
Speed
Interfaces

<X : Microprocessor
\BRAM/ \ Dsp /

Figure 2.12: FPGA SoC architecture showing the reconfigurable fabric along
with a microprocessor [65].

complete compute architectures on the FPGA fabric, benefiting from all the
advantages of custom compute architecture, while leaving the microprocessor

free and potentially deal with other tasks [73].

2.5 Compute Optimisations

Neural Networks’ ubiquity has led to a significant interest in optimising this
class of algorithms for more efficient processing. Previous work in the literature
has analysed NN models and shown that they are typically over-parametrised,
thus incorporating significant redundancy. Various compute optimisations
have been explored, described in the following subsections, as a result of this

observation, that aim for a more efficient use of compute and memory resources.

2.5.1 Scheduling - Batch Inference

NNs are typically demanding in terms of workload and memory bandwidth.
Even lightweight networks are typically too large to be fully unrolled on the
compute units of embedded custom compute architectures or fit in their on-chip
memories. Generic and custom compute architectures may therefore employ
more complex scheduling techniques in order to make these computations more
efficient in terms of compute resources utilisation and memory transfers [50, 63].
The most popular technique to process these networks is in batches, i.e. on a
group of inputs rather than one input at a time. Similarly to the batch size
hyperparameter during training. Specifically, a large NN is usually partitioned
according to the capabilities of the targetted compute unit. Each partition

weights are cached to the compute unit and computations take place for a

23

number of inputs, generating partial results of the NN. Consequently, the
following partition is loaded and cached to the compute unit, calculating its
own partial results based on the previously generated ones. This process is
repeated until the whole Neural Network is processed. Batch processing in
essence alleviates the overheads of loading weights for each input inference and
is ideal when there are huge volumes of stored data. This method is very useful
to accelerators with high speed PCle interconnect (i.e. GPUs), in which the
high transfer bandwidth is constantly filled with the available stored data. The
availability of data in GPUs is paramount since these devices need to cache
adequate data in their local memories to keep their compute cores occupied,
and maintain high throughput. Otherwise, the available compute cores will be
underutilised, resulting in poor performance and efficiency. Batch processing,
however, is not always suitable for real time processing with streaming flow
of data, e.g. data collected from a sensor on an edge device. The latter calls
for custom compute architectures that are tailored to a streaming dataflow,

making arrangements accordingly to be more efficient.

2.5.2 Pruning

before pruning after pruning

pruning
synapses

pruning N
neurons

Figure 2.13: Pruned Neural Network example, showing weight (synapse) and
neuron pruning [74].

Pruning involves the detection of weights, also known as synapses, or neurons
whose impact to the Neural Network is minor and essentially remove them, as
shown in Figure 2.13. Weight pruning can be implemented by setting these
weights to zero, resulting in a sparse network, whose topology remains the same.
Weight pruning can be very effective when a compute architecture can take
advantage of its sparse nature and skip computations with zero values, which
will in turn reduce runtime, in addition to its smaller size. The effectiveness of
the compute architecture however, also depends on the degree of sparsity in the

network. Neuron pruning, on the other hand, would result in a smaller network

24

topology which will remain dense. Although the regularity of dense models
has a better support in compute platforms, neuron pruning has typically a
more negative impact on the networks’ accuracy. Pruning in general can be
more effective on serial and low core edge computing devices (i.e. embedded
CPUs) in which computations can be skipped at their core. GPUs on the other
hand may not be very effective due to their highly parallel nature. Specifically,
previous work in [75] achieved 1.5x inference time acceleration with 90% of
pruning rate. Alternatively, custom parallel compute architectures need to
implement supporting logic, tailored datapath and compute units to effectively

take advantage of pruned networks and reduce inference time [76].

2.5.3 Reduced Precision-Quantisation

The over parametrisation of NNs can also be exploited by reducing the pre-
cision of the computations. Instead of using floating point 32 bit types, the
computations may use fixed point representation on reduced wordlength (e.g.
8 bit) that can be more efficient. More specifically, although most modern
CPUs have bridged the execution time gap between floating and fixed point
computations, fixed point arithmetic is simpler and will always be accessible
on severely constrained devices at the edge, where a floating point unit may
not to be implemented. The more complex floating point unit is also expected
to consume more energy compared to its fixed point equivalent. In addition,
the wordlength reduction results in less memory requirements in terms of
storage and bandwidth, resulting in reduced external memory accesses which
are slower and energy consuming. A form of quantisation is shown in [37], in
which the authors quantised the weights and biases to power of two values
in order to avoid the use of multipliers. On more advanced generic compute
architectures, multiple reduced precision computations can be fused instead
of one full precision by incorporating the Single Instruction Multiple Data
(SIMD) paradigm. Nonetheless, this optimisation is more beneficial on custom
compute architectures that can shrink their datapath, compute and memory

resources to the specific reduced precision wordlength.

2.6 Enabling Faster Deployment on FPGAs

Although FPGAs are reconfigurable, detailed hardware implementations in
RTL involve time consuming low level design effort. Moreover, the lengthy
back-end tool compilation times, add to a less rapid and dynamic deployment
of custom computing architectures on FPGAs. To this end, various techniques
and paradigms have been proposed over the years, which are described in the

following subsections. In addition, the emergence of new domains, like Neural

25

Networks, have also created a gap between training a network and mapping it
to a compute architecture on an FPGA. As a result, automated toolflows have
also been proposed that mainly take advantage of rapid deployment techniques

to provide an end-to-end framework that maps a Neural Network on an FPGA.

2.6.1 High Level Synthesis (HLS)

High Level Synthesis (HLS) has enabled the generation of custom compute
architectures from a higher level language, for example C/C++. Moreover,
behavioural verification through a high level written testbench is also faster,
compared to an HDL written one. HLS also features architectural optimisa-
tions that enhance the performance of the architecture in terms of latency,
throughput, area and resource utilisation. Parallelism, for example, can be ex-
ploited by unrolling compute loops while memory resources can be formatted in
different ways using various partition factors. All these optimisations can take
place by using simple instructions in the high level code. HLS has effectively
reduced the overall design time, by automatically translating the high level
code to low level HDL architecture. The use of higher level language, however,
translates to less low level design optimisations. As a result, HLS generated
compute architectures may be less efficient in terms of power, performance and
resource utilisation [77, 78]. Nonetheless, the lengthy backend compilation time
is still required in order for the FPGA bitstream to be generated. In addition,
although HLS is written in a high level language, functional knowledge of
digital design is still required, since high level programming concepts in generic
compute architectures do not exist in digital system design. For example, the
concept of dynamic memory allocation in software programming does not exist
in digital design, i.e. the memories are fixed in the architecture and cannot be
dynamically allocated [65]. HLS is increasingly used in many published pieces
of work, for example in [14] to implement an NN accelerator in an SoC design

and in [50, 51] to implement an LSTM variant, among others.

2.6.2 Overlays

Overlays have been proposed as a way of enabling high level programming with
rapid compilation and predictable performance on FPGAs. When designed
in an architecture-centric manner, overlays can achieve near the theoretical
maximum frequency supported by underlying FPGA architecture, while scaling
to large overlay sizes [80]. Meanwhile, compilation does not involve the FPGA
backend flow and so can be very fast, lightweight and vendor independent.
Overlays enhance flexibility in custom computing architectures by forming
a coarser grained abstraction on top of the FPGA fabric, as shown in Fig-

ure 2.14. As a result, overlays do not need to repeatedly go through the lengthy

26

Overlay

Coarse Grained Array of Tiles

Fine Grained FPGA fabric

Figure 2.14: Coarser grained overlay architecture on top of the finer grained
reconfigurable fabric [79].

compilation time required by the backend toolflow. Performance can be more
predictable as it is closely tied to the fixed performance of functional units,
and routing overhead can be reduced by taking into account the regularity
of the required data movement [80]. The authors in [81] present a family of
overlay architectures and associated design methodology. By using datapath
merging, they minimise the added overhead to support various computations
while also providing optional adjustable flexibility through a secondary inter-
connect network. Their experiments demonstrate faster runtime compilation
and reduced area utilisation, though resulting in reduced operating frequency
due to the slower operators occurring in the same context as faster ones. Fur-
ther performance improvement in overlays can be obtained when tailoring the
architecture to heavily take advantage of the high performance DSP blocks,
that are abundant in modern FPGAs [80].

2.6.3 Neural Network Toolflows

The emergence of Neural Networks has created the need to automate their
mapping to the various compute platforms in order to shorten their design time,
by abstracting their low level computations to higher level building blocks. In
order to bridge the ease of deployment gap between software programmable
platforms and FPGAs, automated toolflows have been proposed that provide
an end-to-end mapping of neural networks to custom architectures.

The various toolflows that have been proposed in the literature have ap-
proached this task in different ways. The work in [82] has explored the use of
roofline model to perform a design space exploration in HLS, based on an input

CNN topology. The proposed toolflow outputs a custom compute architecture

27

based on the design space exploration and specified user constraints. Thus a
separate compute architecture is generated for every CNN, using the lengthy
backend toolflow each time. The latter, in turn, results in the reconfiguration
of the FPGA with a different bitstream for each CNN. In a similar context,
hls4ml provides a tool for end-to-end FPGA implementations of ML models [83].
Specifically, the tool automates the generation of HLS based accelerators from
high level Python programming language. User specific optimisations can be
applied to tailor the generated architecture for a specific use case. However,
this method also generates a separate compute architecture for each model,
requiring a lengthy backend toolflow run for each model.

An accelerator implemented in an SoC architecture that consists of a
tunable number of compute clusters is proposed in [84]. The compute clusters
use 16 bit wordlength, are flatten in one dimension and are time-multiplexed
to process a neural network. The compute acceleration is supplemented by a
compiler that translates a neural network to a series of instructions, executed
by the custom architecture. This work therefore favours programmability, over
a more custom architecture, while providing a degree of performance and area
customisation by offering a tunable number of compute units.

The work in [85] takes advantage of the redundancy in neural networks to
initially generate a binarised network equivalent for given CNN topology. Binary
neural networks are networks in which part or all computations are converted
to single-bit values. This extreme quantisation has led to significant efficiency
improvement in all aspects, performance, resource utilisation and energy, at
the cost of flexibility. The proposed solution also comprises a framework that
automates the process and focuses on generating a custom compute unit for
each layer, which are then pipelined to form the complete network. Each
processing unit’s performance is tailored to match the throughput of preceding
and following units, providing a balanced performance throughout the network.
The latter avoids inefficiencies that may occur as a result of different throughput
or latency between the layers in a network due to their different workload.
Binarising a model results in reducing its compute and memory requirements
significantly, enabling them to fit on-chip. The proposed framework generates a
compute architecture for each unit, which in turn results in the reconfiguration
of the FPGA for each network. Based on FINN, FINN-L is introduced in [51],
which is a library extension of the former that supports a variant of LSTM
networks.

The Xilinx Deep Neural Network Development Kit (DNNDK) is an example
of a vendor flow for accelerating NN inference on an accelerator architecture
on FPGAs. It comprises a more generic NN computing architectures, like the
Deep-learning Processor Unit (DPU), to offer a more balanced performance

acceleration to flexibility and area ratio. DNNDK includes model compression,

28

by using data quantization and pruning, to more efficiently process NN inference.
The various optimisation techniques have contributed to more efficient FPGA

implementations of NNs [86].

2.6.4 Summary

Neural Networks, and Machine Learning in general, are constantly driving a
growth of new applications that are shown to be more accurate than their
hand coded equivalent ones. As a concept, they are ideal in a data driven
processing era from which huge volumes of knowledge can be extracted in an
automated manner. The various NN layers and learning techniques provide
a wide spectrum of learning abilities for different data patterns. As a result,
there is great interest in accommodating this class of algorithms in a wide
range of devices, from powerful servers to edge computing. The latter domain
presents the most challenges and calls for a more systematic approach. FPGAs
have demonstrated their suitability in accommodating custom computing
architectures, compared to other approaches. Tightly coupled microprocessors
on FPGA SoCs offer a complete system solution which renders them ideal
for computing at the edge, combining the generic CPU architecture with
a custom one on the FPGA. In addition, the abundance of DSP blocks in
modern FPGAs provide the means to unroll highly parallel computations.
DSP blocks can offer high performance while consuming less power than their
equivalent ones in fabric. Architecture centric approaches were shown to
more efficiently utilise all aforementioned FPGA resources to provide solutions
that offer improved performance and energy efficiency. Nonetheless, detailed
hardware implementations in RTL involve time consuming low level design
effort. Although various automation tools have been proposed by research
groups and vendors, these still require lengthy hardware recompilation for
each NN topology. This calls for using new methods that reduce design
turnaround time or reuse the low level design in a flexible, parametrised and
scalable manner. The overlay approach enables mapping to an independent
intermediate architecture that does not require low level hardware compilation

for different networks and does not rely on vendor tools for application mapping.

29

Chapter 3

Accelerating Neural Network

Based Network Intrusion
Detection on FPGA

3.1 Introduction

The Internet of Things (IoT) is driving an exponential growth in connectivity
between lightweight embedded systems. These devices are often severely
computationally constrained, being designed to fulfil a single task well. This
increased networking presents a challenge, however, in terms of network security,
since these devices can expose a wider attack surface on account of not being as
rigorously engineered as more complex systems. Indeed, the use of IoT devices
as a tool in cyberattacks was exemplified by the Mirai malware in 2016, among
other cases.

Traditional network security has aimed to provide confidentiality, integrity,
and availability of resources to authorized users. This has often occurred
in more controlled network environments such as corporate networks, where
firewalls serve as a secure point of interface with open networks. Even in
such cases, the possibility of an internal system being compromised requires
monitoring for attacks of all traffic, even from within the network.

Intrusion Detection Systems (IDSs) collect and analyse information from
the systems within a network for malicious attack detection. Detection can be
logged as an event of interest or trigger a defense mechanism to deal with the
event in real time. Mainstream IDSs use pattern matching, string matching,
multi-match packet classification and regular expressions for operation [87].
These computationally complex approaches are often implemented using hard-
ware accelerators on FPGAs or ASICs, or run on highly parallel computing
platforms such as multi-core processors or GPUs to enable them to process

network traffic at the high rates required. Hence, such complex systems are

30

usually integrated within the network infrastructure of large organisations.

The limited computing power of embedded systems means IoT devices will
often not incorporate significant security capabilities at the nodes, making
them an ideal target for malicious attacks. With such devices being deployed
in less controlled environments, and without access to significant infrastructure,
more lightweight approaches to such security mechanisms are required.

In this chapter, a Network Intrusion Detection approach based on Machine
Learning is explored, specifically Neural Networks (NNs), that provides flexib-
ility to evolve to emerging attacks. This chapter demonstrates how this can
be implemented on a lightweight Xilinx Zynq FPGA SoC to process packets
at line rate while enabling model parameter updates to adapt to changing

requirements.

3.2 Background

Intrusion Detection Systems (IDSs) can be divided into two categories, accord-

ing to the detection method used:

e Signature (or misuse) based: Captured data is compared against a

database containing signatures of known attacks.

e Anomaly based: Captured data is compared against a model of the
expected normal behaviour of the system. If a deviation is observed then

an attack has been detected.

Signature based IDSs are widely used in commercial systems because of
their accurate detection of known attacks, while anomaly based systems are
prone to generating false classifications. Signature based IDSs, however, fail to
detect unknown (zero-day) attacks. There can also be a significant delay for a
new attack to be detected and its signature generated and distributed in an
update [41]. Moreover, signature based systems must consider a large database
of signatures, requiring substantial memory and computational power. Hybrid
implementations of signature and anomaly based IDSs present a more robust
approach since one method complements the other, though these still require
significant computing power.

Intrusion Detection has been an appealing domain for Machine Learning
(ML) algorithms in general. The strongest incentive lies in the ability of ML
algorithms to generalize their learned pattern to new, unknown data. Thus,
ML algorithms have the potential to detect new, zero-day, attacks and modified
known attacks. It is also worth considering that IoT, as a developing domain
will entail evolving (normal) traffic patterns as it finds more uses, so the safe
patterns of communication are themselves evolving, and hence an adaptable

approach to intrusion detection is needed.

31

Many ML approaches can be computationally intensive, as described in
Chapter 2, hindering their adoption in embedded systems and compromising
real time detection [41]. Neural Networks, and specifically Deep Neural Net-
works (DNNs) suffer from high computational complexity and complex training.
Hence the work in this chapter focuses on (shallow) NNs to limit the computa-
tional complexity of the proposed system in order to achieve real time detection.
Shallow NNs have successfully been applied in a broad range of fields, from the
automotive domain [39], to healthcare [7], and are a very good fit for simple
event classification or detection. Furthermore, their flexible topology enables
tradeoffs between detection accuracy, performance and area, resulting in a
highly customizable architecture for hardware implementation.

As the functionality of Machine Learning models is defined during training,
the dataset used becomes very important. A flawed dataset means that the ML
model will extract flawed patterns, that may not be applicable or representative
of the intended application. This will in turn result in very poor accuracy
when the trained model is deployed to classify new data. Datasets used for
intrusion detection fall into two broad categories, private (or custom) and
public datasets. Privately generated datasets may contain more realistic data
for training and testing as in most of the cases they are created from the
specific scenario that are to be applied to. Moreover, they can be tailored to a
specific attack detection by manipulating the number of records in each class
accordingly, while public datasets may lack a sufficient number records for a
specific attack type. Proprietary and commercially sensitive datasets, however,
are not available to researchers. Publicly available datasets, on the other hand,
are widely used and, as a result, thoroughly tested [88]. They constitute a
safer choice to avoid potential flaws and, more importantly, they provide a

means to compare with previous work using the same datasets.

3.3 Related Work

Network security has sustained interest in the research community and IDSs
using a variety of approaches have been proposed. Acceleration of pattern
matching on FPGAs has been explored in [66, 67]. The work in [89] proposed an
approach using Principal Component Analysis (PCA) with features extracted
from network traffic, which was tested on the publicly available KDD Cup
1999 dataset. The IDS was implemented on a Xilinx Virtex II Pro FPGA and
achieved a 23.76 Gb/s throughput with an attack detection rate of over 99%.
In [68], the authors present an energy efficient implementation of Decision
Trees (DTs) on an Altera Cyclone IV. Their work covers two test cases: the
first classifies the NSL-KDD dataset using 9 manually selected features out
of 41, achieving a 96.5% accuracy on the train set and 77.8% on the test set.

32

The second detects probe attacks on a custom dataset, misclassifying only 3
out of the 37548 instances in the test set. The hardware implementation of
the probe attack detection DT is 15.4x better in throughput while consuming
only 0.03% the energy of its software equivalent on an Intel Atom CPU. The
authors further expanded their work using their custom dataset to evaluate
3 machine learning classifiers in a similar manner in [69]. In this case, their
fastest classifier in hardware was 926 x faster while consuming 0.05% the energy
of its equivalent in software. The work in [70] showed how security primitives
could be built into network controllers to enable enhanced security.

In broader work in neural network implementations, the work in [17]
combines deep and shallow learning for Network Intrusion Detection based on
Non-symmetric Deep Auto-Encoders (NDAE) and Random Forests (RF), tested
on the KDD Cup 1999 and NSL-KDD datasets. This approach demonstrates
promising detection results with less training time compared to a Deep Belief
Network (DBN) implementation. The NN in [18] detects Distributed Denial of
Service (DDoS) and DoS attacks offline. The authors use a custom dataset to
train a three-layer (shallow) NN for binary classification (normal-DoS/DDoS)
and test it in a simulated IoT network, demonstrating a 99.4% accuracy. In [19],
two NNs are trained on the UNSW-NB15 and NSL-KDD datasets to detect
DoS attacks using only input features relevant to such attacks. The authors
determined the number of neurons in the hidden layer experimentally, and
demonstrated a DoS detection accuracy of 99% on NSL-KDD and 97% on
UNSW-NB15.

The work in [40] presents two NNs trained on the NSL-KDD dataset
to detect all 4 types of attack in the dataset (DoS, Probe, R2L and U2R).
The first NN categorizes records between normal and malicious, while the
second classifies the malicious records into types (5-categories). The authors
experimentally determined the number of neurons in the hidden layer as well
as whether to use all features or a reduced set. On the test set, for binary
classification, the best accuracy of 81.2% was obtained using a subset of the
input features, while for attack classification the best accuracy of 79.9% was
obtained using all features. The authors in [41], similarly use two shallow NNs
trained on the KDD Cup 1999 dataset for binary and attack type classification.
The NNs use 36 of the 41 features demonstrating an average precision of 98.86%
for binary classification and 95.05% for the attack type classification.

A detailed review on IDSs that employ deep learning is presented in [90],
the most relevant of them to this chapter found in [20, 22, 23]. In [22], the
authors used a Recurrent Neural Network (RNN) on the NSL-KDD dataset
using all provided input features for binary and attack type classification. They
determined the optimal number of hidden nodes and learning rate in each

case experimentally. For binary classification, the authors obtained 99.81%

33

and 83.28% accuracy on the train and test set respectively using 80 hidden
nodes and a learning rate of 0.1. Their proposed 5-category classification model
obtains 99.53% and 81.29% accuracy on the train and test set respectively
using 80 hidden nodes and learning rate of 0.5.

Although CNNs are primarily used for image recognition tasks, the work
in [23] proposes an approach that uses CNNs to classify the NSL-KDD dataset.
The authors apply an image conversion technique that maps all the input
features of each record in the dataset to an image. The input features are
initially transformed to a binary vector space and then to an 8x8 grayscale
image. The authors used Tensorflow to implement 2 popular CNN models,
ResNet 50 and GoogleNet, obtaining 79.14% and 77.04% on the test set for
binary classification respectively.

Lastly, the authors in [20] present a Deep Neural Network (DNN) approach
using 6 raw features out of the 41 in the NSL-KDD dataset, achieving 91.62%
and 75.5% accuracy on the training and test set respectively. Using the same
number of raw features, the authors applied their methodology to Deep RNNs
in [21] obtaining 89% accuracy on the test set.

The topology configurations of the NNs described above are summarised in
Table 3.1, where available.

Citation Configuration
Tang et al. [20] 6-12-6-3-2
Hodo et al. [18] 6-3-1
Idhammad et al. [19]: UNSW 6-7-1
Idhammad et al. [19]: NSL-KDD 5-6-1
Ingre and Yadav [40] 29-21-2
Ingre and Yadav [40] 41-23-5

Table 3.1: Network configurations in related work.

3.4 Experimental Methodology

In the context of intrusion detection, Neural Networks have the potential,
ideally, to be updated after deployment or tailored (fine-tuned) to a specific
device’s network traffic. These updates can be applied through new coefficients
for the same model topology, assuming that the model has the capacity to
support this.

Section 3.3 shows that tailoring an NN to detect only a single type of attack
or all the attacks in one category can result in better accuracy. Moreover,
selecting the most relevant features from the dataset decreases the dimension-
ality and this in turn enables NNs to perform better. Hence, the proposed NN

is trained to detect all types of attacks in one category, binary classification

34

(Normal-Anomaly), using a selected subset of the available features.

3.4.1 NSL-KDD Dataset

The publicly available NSL-KDD dataset is used, a labelled dataset for su-
pervised learning. It is an updated version of the KDD Cup 1999 dataset,
addressing its shortcomings [91]. While the dataset is not directly related
to IoT applications, it is widely used, enabling comparisons with previous
work. The approach presented here can be applied to any future public dataset
which can be used to retrain the network for IoT specific traffic patterns. The
dataset is divided into the train and test sets which contain data for normal
and malicious traffic. Each entry comprises 41 features categorized into 3

groups [91]:
e Basic features: features that are extracted from a TCP/IP connection.

e Traffic features: features that are generated within a window of the
last 100 connections, to enable detection of longer probe attacks. These
features provide an element of time-domain memory. Traffic features are

further categorized into service and host based.

e Content features: features that are extracted from the packet’s data
and provide the means to detect attacks with infrequent sequential

patterns.

The train set contains 22 attack types, divided into 4 main categories: DoS
(Denial of Service), Probe, R2L (Remote to Local), and U2R (User to Root). In
the test set, there are 17 additional attacks that fall into the same 4 categories.
In this way, the ability of the NN to generalize its learned pattern to unknown
data is put under test.

In order to fairly train the model, categorical features are mapped to a
one-hot encoded representation for the training phase, mitigating the possible

bias introduced by ad-hoc numerical mapping.

3.4.2 Software Implementation

TensorFlow [56] was used to train an NN with 29 input features, 21 hidden
neurons and 2 output neurons, similar to that by Ingre and Yadav [40]. Of the
41 input features, Bajaj and Arora [92] concluded that 8 of them have little or no
impact in attack detection, while Ingre and Yadav [40] noticed that the values
of 4 other features are close to 0. The selected features span all types of features
in the dataset. This enables the NN to extract patterns in the time domain
using Traffic Features, thus avoiding the use of more computationally complex

machine learning models that do so with raw features, such as Recurrent Neural

35

Networks (RNNs). Out of the 29 selected features, 3 are categorical, and hence
the number of input layers increases to 110 after one-hot encoding.

The relatively simple and inexpensive Rectified Linear Unit (ReLU) ac-
tivation function is used, that can be easily implemented with a comparator
as shown in equation 2.1, instead of more complex functions that include
divisions and exponents, such as the sigmoid and tanh functions, as shown in
equations 2.2 and 2.3.

The proposed NN was trained with the Adam optimizer, using the cross
entropy loss function (that also includes softmax) with weights and biases
randomly initialized. Training hyperparameters, such as the learning rate
and batch size, were determined experimentally. For fair comparison, the
same randomly initialized weights and biases are used for all the experiments.
Subsequently, experimental runs were made using 3 learning rates (0.01, 0.001,
0.0001) on four different batch sizes (32, 64, 128, 256) for a total of 5 epochs.
The classification performance of each run is evaluated using accuracy, as
described in Section 2.3. The highest accuracies obtained after one epoch are
summarised in Table 3.2. While the proposed NN is trained on the train set
and tested on the test set, the results in Table 3.2 are selected by prioritizing

the accuracy obtained from the test set across runs.

Learning Rate

Batch
Size 0.01 0.001 0.0001
Test Train Test Train Test Train
32 77.61 89.15 80.52 96.02 80.37 89.09
64 73.16 94.71 80.64 94.05 80.29 93.62
128 76.65 93.09 79.01 96.62 79.80 91.99
256 77.56 94.49 80.84 94.22 77.47 94.06

Table 3.2: Accuracy results for training parameters.

From the results in Table 3.2, the learning rate of 0.001 and batch size of
32 provides the optimal combined accuracy across the test and train sets. This

results in the confusion matrix of the test set in Table 3.3.

Predicted Class Actual Class
Normal Malicious

Normal 9257 3937

Malicious 454 8896

Table 3.3: Test set classification results.

Compared to other work in the literature that use the NSL-KDD dataset,

with which a direct comparison can be made, the proposed model accuracy

36

is close to that by Ingre and Yadav [40], where the authors report 99.3% and
81.2% accuracy on the train and test sets respectively. It is worth noting that
the authors in this case normalized the dataset prior to its use. While data
normalization has been proven to enhance the accuracy of NNs, it also entails
additional workload during inference. Tang et al. [20] use a DNN with 6 input
features, reporting 91.62% and 75.75% accuracy on the train and test sets
respectively. This shows that deep models that use a small subset of the input
features do not necessarily outperform shallow models that use more features.
All the referenced systems in this chapter that use the NSL-KDD dataset are

summarised in Table 3.4, along with their configurations.

Accuracy %

Citation ML Model Classification # Features

(out of 41) Train Set Test Set
[68] DT N/A 9 96.5 77.8
[40] NN Binary 29 99.3 81.2
[40] NN 5-Cat. 41 98.9 79.9
[20] DNN Binary 6 91.62 75.75
[21] D-RNN Binary 6 N/A 89
[22] RNN Binary 41 99.81 83.28
[22] RNN 5-Cat. 41 99.53 81.29
(23] CNN-ResNet50 Binary 41 N/A 79.14
(23] CNN-GoogleNet Binary 41 N/A 77.04
Proposed NN Binary 29 96.02 80.52

Table 3.4: Accuracy comparisons on the NSL-KDD dataset.

3.4.3 Hardware Implementation

Unlike previous work, the aim of this chapter is to build a fully functional
embedded IDS to perform these classifications in real time on network data.
Hence, the trained NN was used to build a working hardware system for this
purpose. Vivado HLS (version 2016.4) was used, targeting the Xilinx Zynq
Z-7020 FPGA as found on the Xilinx Zedboard, to implement the intrusion
detection hardware. This is a modest FPGA SoC device including a flexible
FPGA fabric tightly coupled with an ARM Cortex-A9 processor subsystem, as
shown in Figure 3.1. This system is designed to act as an IoT gateway, securing
the network for a group of less capable devices. The peripherals, e.g. Ethernet
Phy and SD card, are connected through Multiplexed I/O (MIO) interconnect
to the ARM core and 512 MB of DDR3 memory is attached through the DRAM
controller. This flexible connectivity enables runtime processing of network
data by forwarding packets to the accelerator, or processing them in software.
For testing and verification, it allows the test set and model coefficients to be
stored on an SD card, to be transferred to memory and then to the accelerator
over DMA.

Most work on optimising FPGA implementations of neural networks con-

37

PS

DRAM [+, | DRAM

Controller
A -
>
SD Card +— ® Arm-A9
—— 8 —
S
@
Ethernet PHY <—1—T afs!
HPO GPO
i Data f 1
1 h Configuration AC(:/(—;-_l_(—;-_r‘_;_a_'g_(_)_r:___\
/[Weights and biases |}
AX| DMA Weights and Biases o | tite i gmemory i
L QOO |
] Iﬁp FIFO D3t _ | sxistream | @ @ ® i
Data Data i @@@ i

FIFO e [\X|-Stream

Figure 3.1: Overview of the Xilinx Zynq based system architecture.

siders fixed network parameters. Network pruning, data quantization, and
reduced arithmetic precision can be exploited to trade off performance, power
consumption, and detection accuracy [47, 93, 94]. However, this comes at
the cost of flexibility as any change in network parameters requires a new
design exploration and hardware implementation process. The architecture
presented in this chapter is designed to be flexible, by allowing the coefficients
to be modified at runtime, thereby enabling the same hardware to be used
to detect different or evolving attacks without the need for additional design
space exploration or hardware optimisation.

Vivado HLS allows us to exploit the inherent parallelism in the NN structure
using pragmas to unroll loops for maximum parallelism and performance,
without the need for low level Hardware Description Language (HDL) design.
The inputs and intermediate results are represented in single precision floating
point (IEEE-754), as the architecture is designed to retain flexibility to accept
newly trained model parameters. The accelerator operates in one of three
modes: IDLE, LOAD, or COMP. It starts in the IDLE mode where it can
make a transition to LOAD or COMP. Transitions between states are triggered
from the ARM core over AXI-Lite since these are not time critical operations.

In LOAD mode, the coefficients (weights and biases) of the model are
modified to update the NN at runtime, which is done over AXI-Lite using the

4 accelerator inputs:

e mem sel: selects the memory bank to configure. (i.e. first layer weights,

first layer biases, etc.)

38

e dimA: indexes the first dimension of a 2D array, or the only dimension

in a one-dimensional array.
e dimB: indexes the second dimension of a 2D array.

e coeff_in: value of the coefficient to be stored.

The digram of the proposed IDS is shown in Figure 3.2.

Coeffs.

AALTE | Weights and biases memory

Input
Features| ©
4=
AXI_STREAM I LEL 50

= e
> S5
o @)
£

N1,

Classification Outputs
AXI_STREAM I«

Figure 3.2: Intrusion Detection System diagram, showing the various memories,
neurons and connectivity.

FPGAs support flexibility through reconfiguration by loading alternative
bitstreams that modify the hardware on the FPGA [95]. One method for using
different NN models would be to generate multiple bitstreams and load them
as needed. However, this would entail the separate design and compilation of
these optimised hardware models and would not allow for easy modification of
model parameters to deal with emerging attacks. The Xilinx Zynq allows the
programmable logic (PL) configuration to be changed by the processor system
in software, taking around 30 milliseconds. One way to reduce this time is
to partition a section of the PL for this accelerator and reconfigure only that,
through Partial Reconfiguration (PR), and using an optimised reconfiguration
controller to reduce the time to below 10 milliseconds [96]. Hence, the work
in this chapter retains full flexibility by implementing a general datapath
with reprogrammable coefficients, rather than tightly optimising the datapath
around a fixed set of coefficients.

The time needed for the configuration of all 2375 coefficients was measured

to be 2.273ms. This includes the time needed for the ARM core to iterate

39

through the data, increment its indexing variables, configure the accelerator
accordingly and make the appropriate checks as indicatively shown in Listing
3.1. Updating the coeflicients is not considered a time-critical operation as one
configuration of the IDS is expected to be active for a large volume of network
data. Nonetheless, the proposed approach offers competitive reconfiguration
time compared to reconfiguring the hardware, while offering a much more
flexible implementation that allows coefficients to be updated directly, from
software without the need for vendor tools and a full hardware compilation.

//Sets the accel to the LOAD state
Set_-write_en_V (&ids_nn ,0x1);

//Indexes the memory of the 1st layer weights
Set_mem_sel_V(&ids_nn ,0x0);

//Loads the weights of the first layer
for (i=0;i<(num_inputs—3);i++) {
//Indexes the weights memory
Set_dimA_V(&ids_nn ,(u32)i);
for (j=0;j<neurons_lst_layer;j++) {
//Indexes the neuron’s memory

Set-dimB_V (&ids_nn ,(u32)j);

//Sets the weight
Set_coeff_in(&ids_nn , float_-to_u32 (weights_layerl[i][]j]));

//Reads the value from the accel.
temp_float=u32_to_float (Get_coeff_in(&ids_nn));

//Checks that the value has been set
while (temp_float!=weights_layerl1[i][]j]) {
temp_float=u32_to_float (Get_coeff_in(&ids_nn));

}

Listing 3.1: Setting weights using the ARM processor.

The Intrusion Detection process takes place in the COMP state. To mitigate
the increased complexity due to the one-hot encoding, the fact that only one of
each one-hot encoded features is used at a time is exploited. During inference,
integer representation is used for each attribute and in each case only the index
of the active attribute is needed. The index of the active attribute is used as
an address to a Look-Up-Table, that outputs the corresponding weight. This
restores the number of input features needed for inference from 110 to 29, while
also avoiding redundant multiplications by 0 caused by the inactive attributes
in each one-hot encoded feature. Meanwhile, any multiplication by 1 of each
active attribute is replaced with a low latency table look-up. The 29 input
features along with the 2 output results (corresponding to the normal/malicious

score), are interfaced with the ARM core through 2 separate AXI-Stream ports

40

with the data transferred sequentially in consecutive clock cycles.

The timing results of the implemented design from HLS are shown in
Table 3.5 while the resource utilisation on the Xilinx Zynq device is shown in
Table 3.6.

Frequency Latency Initiation Interval
(MHz) (Clock Cycles) (Clock Cycles)
76 237 29

Table 3.5: Timing results for NN accelerator.

The initiation interval of 29 clock cycles is bounded by the number of input
features that need to be read through the AXI-STREAM port.

LUTs FFs DSPs BRAM

Utilised 26463 56478 111 88
Available 53200 106400 220 280
% Utilisation 50 93 50 31

Table 3.6: Resource utilisation on the Xilinx Zynq Z-7020.

The proposed system, shown in Figure 3.1, uses 2 FIFOs on each AXI-
Stream port of the accelerator to act as buffers. Data is transferred to and
from the AXI-Stream ports through the AXI-DMA that is interfaced with the
PS using the HPO (High Performance 0) port. The HPO port, in turn, using
the DRAM controller, transfers data to and from DRAM. The configuration of
the accelerator coefficients as well as the configuration of the AXI-DMA take
place using AXI-Lite ports, which are interfaced with the PS through the GP0
(General Purpose 0) port. In order to test the full system, the test dataset
along with the weights and biases obtained from the trained model were stored
on an SD card and made available to the ARM core using the FAT filesystem
library.

3.5 Results and Evaluation

To evaluate the performance of the proposed IDS in practice, Vivado (version
2016.4) has been used to implement the system as shown in Figure 3.1. The
AXI-TIMER IP, operating at 100 MHz, was used to measure the execution
time. To evaluate the accuracy of IDS in practice, the coefficients and test
dataset in the SD card were read from the ARM core, transferred to DRAM
and then fed to the accelerator. Consequently, in COMP mode, the dataset was

read and fed to the accelerator. In order to provide a reference for comparison,

41

the execution time of the proposed IDS on a single core of the ARM-A9 (bare-
metal) was recorded. To demonstrate and evaluate the benefits of utilising the
Look-Up-Table mechanism, the execution time of the unoptimized software
implementation on the ARM core is also provided. This version of the NN
uses 110 inputs at the input layer and goes through a number of redundant
multiplications as described in the Section 3.4.3. This work is also compared
with the test time of the NN used for DoS detection by Idhammad et al.
[19], as there is adequate information for an objective comparison to be made.
Although the authors use a different dataset and focus only on DoS attacks, the
focus is only with the execution time and corresponding workload.Idhammad
et al. [19] use the Keras and Theano frameworks in Python, running on an Intel
Core i3 2.4GHz CPU under Debian Linux 8. The authors used 43748 records
to test their NN. For a fair comparison, the authors obtained test time of 0.466
seconds is normalised according to the number of test records in the NSL-KDD
(22544). The execution time of the three methods for the classification of the

test set is shown in Table 3.7.

ARM-A9 2 ARM-A9 P Accelerator P Tdhammad
@667TMHz @667TMHz @76MHz et al. [19]

4751.440ms 1458.1ms 9.018ms 240.136ms

2 Unoptimised, 110 inputs. P Optimised, Look-Up-Table.

Table 3.7: Execution time.

The execution time of the proposed accelerator includes the time needed
for the input data to be transferred to the accelerator from the DDR memory
and the results to be written back to DDR memory. The use of a Look-Up-
Table mechanism yields 69% reduction in the software execution time. A
straightforward comparison between the proposed accelerator, which operates
as a streaming engine in this case, and the optimised execution on the ARM
Cortex-A9 shows a 161.7x improvement in the execution time. Compared to
the unoptimized software version, the HW implementation operates 526.9x
faster.

Comparing only the execution time of the proposed NN, considering the
proposed optimised implementation with a 29-21-2 configuration, and the work
by Idhammad et al. [19], the proposed accelerator performs about 26.6x faster.
Meanwhile, the proposed optimised model on the ARM core is about 6x slower.
In this case, however, the workload of the NN in [19] with a 6-7-1 configuration
is significantly smaller compared to the proposed 29-21-2 configuration. Taking
into account the number of multiplications and additions in each layer, as
those are the most computationally intensive operations, it is estimated the

NN in [19] requires 49 multiplications and 57 additions. Whereas this work

42

includes a total of 651 multiplications and 674 additions. This amounts to
13.3x the multiplications and 11.8x the additions of the NN used in [19], while
delivering 26.6x its performance. Overall, the proposed approach is able to
detect more types of attack: DoS, Probe, R2L and U2R, at a faster detection
rate compared to the work by Idhammad et al. [19] which focuses on detecting

only DoS attacks.

3.5.1 Network Throughput and Detection Rate

A considerable aspect of an IDS is whether it can make decisions on packets at a
suitable rate to ensure detection does not lag the start of an attack significantly.
Ideally, such a system should be able to flag malicious packets before many of
them have entered the network, so that evasive action can be taken. The time
required to classify a single data record (interpacket interval), calculated by
normalizing their execution time, on both the ARM core and the accelerator is
shown in Table 3.7. In addition, the required minimum transmission size for
IPv4, which is 576 bytes according to the Internet Protocol [97], is taken into

consideration to generate the results in Table 3.8.

Transfer Rate Platform Interpacket Detection Rate
(Packets/Second) Interval(ps) (Packets/Classification)
1Gbps ARM-A9 64.678 14.036
(217,014) Accel 0.4 0.0868
10Gbps ARM-A9 64.678 140.360
(2,170,139) Accel 0.4 0.8680

Table 3.8: Detection rate in packets.

At 1Gbps, 217,014 packets per second of the minimum packet size can be
transferred when the network is saturated. The accelerator offers a detection
rate within a small fraction of a packet (0.0868 packets). On the other hand,
the ARM core can only process one in 14 packets. While the Zedboard does not
offer a 10G Ethernet interface, the performance for such a setup that might be
deployed in an edge datacenter, interacting with IoT devices, is also evaluated.
Newer Zynq UltraScale+ development boards do offer 10G Ethernet, meaning
that the proposed design could be ported to such boards for more complex
networks. At 10Gbps, a maximum of 2,170,139 packets per second can be
transferred. The detection rate in this case is still within a single packet (0.8680
packets), which is 16.2x faster than the ARM core at 1Gbps and 161.7x faster
at 10Gbps. The ARM core at 10Gbps only processes one in 140 packets.

These results demonstrate the benefit of the proposed hardware accelerated
NN detection mechanism in terms of scaling to faster networks, while still

offering the flexibility needed to accept updated model parameters for emerging

43

threats. Porting to newer FPGA SoC devices such as the Zynq UltraScale+

would also likely offer significant runtime improvements.

3.6 Summary

This chapter presented an approach for network intrusion detection using NNs
on FPGA SoCs. The topology of the NN maintained moderate computational
complexity for a hardware implementation that can be deployed on a modest
Xilinx Zynq device. It also allowed runtime configuration of neural network
parameters to enable updates and address emerging attacks. The har