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Abstract: By taking a Stewart platform as an example, this paper presents a novel calibration method by 7 

designing a robust joint compensator based on artificial neural networks. In this method, the pose error 8 

arising from various time-independent error sources is treated as that produced only by 9 

configuration-dependent joint motion errors equivalently, thus allowing the static pose error to be 10 

eliminated by directly correcting the nominal joint variables. Hence, the calibration procedure can be 11 

implemented in three successive steps: (1) acquisition of necessary joint corrections with point 12 

measurement at finite configurations considering near singularity problems, (2) approximation of the 13 

function between joint corrections and nominal joint variables using feedforward neural networks with 14 

coupled/decoupled architectures, and (3) design of a joint compensator embedded in the numerical 15 

control system to realize online real-time error compensation. Experimental results show that the 16 

proposed robust compensator based on coupled or decoupled networks can significantly improve the 17 

static pose accuracy in comparison with previous methods. 18 

Keywords: Calibration; Joint compensator; Artificial neural network; Stewart platform 19 

1. Introduction 20 

Stewart platform is a typical parallel manipulator which can perform a 6-DOF (degree of freedom) 21 

movement [1]. In recent years, it has played an essential role in many applications, such as flight 22 

simulators, robotic machining, and underwater research [2]. Static pose accuracy is one of the most 23 
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significant performance specifications for this manipulator. Since the actual robot is inevitably 1 

contaminated by manufacturing tolerances, link offsets, and other error sources, the resulting poses driven 2 

by nominal joint variables are different from the desired ones. Calibration is a highly cost-effective 3 

method to enhance the pose accuracy through software without increasing the manufacturing cost [3-5]. 4 

1.1. literature review 5 

Over the past few decades, there has been a large volume of studies focusing on manipulator 6 

calibration. The available methods can be generally classified into two categories: model-based and 7 

data-driven methods. 8 

The model-based methods aim to find the actual forward kinematics by identifying exact kinematic 9 

parameters. Specifically, the linearized error model between the pose error and kinematic errors is derived 10 

by differentiating the forward kinematics, and then it can be used to estimate actual kinematic parameters 11 

iteratively using nominal kinematic parameters as initial values in the least square sense. To meet the 12 

requirements of completeness, continuity, and minimality, the modified D-H model [6,7] and the product 13 

of exponentials (POE) formula [8,9] are the most popular model-based methods. The former is based on 14 

homogeneous transformation matrices, whereas the latter is based on the classical screw theory. In 15 

addition, the unit dual quaternion is an alternative method based on the transformation and representation 16 

of joint axes, which has a more compact and consistent form [10]. The above methods can be applied to 17 

construct forward kinematics for serial robots conveniently. However, parallel manipulators pose more 18 

challenges in modeling due to a large number of kinematic parameters in all limbs and the complicated 19 

closed-loop structure. Zhuang and Roth [11] proposed a simplified calibration method for the Stewart 20 

platform by differentiating the closed-loop vector equations. The limitation is that some error sources are 21 

neglected due to the assumption that the universal and spherical joints are perfectly machined. To solve 22 

this problem, Chen et al. [12] proposed a complete, minimal, and continuous error modeling method for 23 

parallel robots based on the POE formula. Liu et al. [13] also reported a general approach using 24 

instantaneous screw theory. Although model-based methods have definite physical meanings, the error 25 

modeling process and redundant parameter elimination are complicated. Moreover, it is difficult to 26 

construct and calculate forward/inverse kinematics considering all geometric error sources. Several 27 

unmodeled nongeometric error sources, such as pitch errors and elastic deformation, also restrict the 28 

calibration accuracy [14].29 
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On the other hand, the data-driven methods do not need to model error sources but treat the 1 

relationship between the pose error and the configuration as a “black box”. They retain the nominal 2 

kinematic model and require the “black box” to be approximated using spatial data interpolation (fitting) 3 

techniques. The interpolation methods divide the task space into several cubic cells, measure position 4 

errors on the grid points in each cell, and then store them in memory for interpolation and compensation 5 

of position errors at any possible configurations. These interpolation methods include the inverse distance 6 

weighted (IDW) method [15], the Kriging method [16,17], and the fuzzy method [18,19]. Although they 7 

are feasible for different kinds of parallel robots with complex topology, they would require a huge size 8 

of memory space if high calibration accuracy is needed. Besides, they ignore the influence of the 9 

orientation variation and only improve the position accuracy due to the dimension limitation of spatial 10 

interpolation. To address this problem, some fitting approaches such as Fourier polynomials [20], support 11 

vector machine (SVM) [21], and artificial neural networks (ANNs) [22,23] have become available. In 12 

these approaches, regression models are trained using nominal joint variables as inputs and measured 13 

pose errors as outputs. They can solve the high-dimensional curve-fitting problem well and only need to 14 

store coefficients/weights instead of all measured data. The data-driven approaches are not limited by 15 

imprecise modeling of all error sources but only depend on the fitting capability of the approximation 16 

functions. However, since no prior knowledge of the robot is put to use in the data-driven methods, the 17 

required measuring configurations are usually more than model-based methods to achieve the same level 18 

of calibration accuracy. 19 

Even though high prediction accuracy of pose errors can be guaranteed based on the above methods, 20 

some problems still need to be tackled when it comes to error compensation. For instance, traditional 21 

iterative algorithms based on Jacobian might be unsuitable for online real-time compensation due to high 22 

computational expense, and might even break down near singularity zones [24]. To avoid these issues, 23 

Whitney and Shamma [25] reported an alternative data-driven calibration method by approximating the 24 

joint corrections obtained offline directly rather than pose errors. Nevertheless, the measurement process 25 

is quite time-consuming because the joint corrections need to be acquired by compensating for pose errors 26 

manually. 27 

1.2. The main contribution 28 

Motivated by the practical needs for high calibration accuracy and robust online error compensation, 29 
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this paper presents a novel calibration method for the Stewart platform. Treating the pose error arising 1 

from various error sources as that produced only by configuration-dependent joint motion errors 2 

equivalently, this method can combine the virtues of model-based and data-driven methods.3 

In this method, the simplified linearized error model, which only considers equivalent joint motion 4 

errors, is deduced based on the screw theory. The model is complete and nonredundant since six and only 5 

six parameters need to be determined for a given configuration. The prior knowledge of the robot can be 6 

utilized effectively to guarantee the stability of joint motion errors. However, unlike the traditional 7 

model-based methods, the equivalent joint motion errors rely on the current configuration, and thus they 8 

cannot be assumed to be constant. Instead, they should be seen as complicated nonlinear functions of 9 

configuration expressed by nominal joint variables. Thus, data-driven methods such as ANNs can be 10 

applied to describe the relationship between them due to the high approximation capability. Two 11 

architectures of ANNs are designed, and their performances are compared in the experimental study. 12 

Although configuration-dependent joint motion errors do not have any physical meanings, we can achieve 13 

the online error compensation simply by correcting the nominal joint variables with them instead of 14 

altering the kinematic parameters. 15 

The rest of this paper is organized as follows. After a brief description of the Stewart platform in 16 

Section 2, Section 3 proposes the methodology that can be implemented in three steps: (1) acquisition of 17 

joint corrections with point measurement taking into account near singular configurations, (2) 18 

approximation of the function between joint corrections and nominal joint variables by training coupled 19 

or decoupled ANNs, and (3) design of the embedded joint compensator based on trained ANNs to achieve 20 

online real-time compensation. Section 4 carries on calibration experiments on a prototype to demonstrate 21 

the effectiveness of the proposed method, before conclusions are drawn in Section 5. 22 

2. System description 23 

Fig.1 shows the schematic diagram of the Stewart platform. It is composed of a fixed base, a moving 24 

platform, and six spatial UPS limbs. In order to establish the standardized mathematical model, we 25 

number each UPS limb as limb i ( 1~6i  ). Here, U and S represent universal and spherical joints 26 

respectively, and P denotes actuated prismatic joint. For convenience, universal/spherical joints can be 27 

treated as two/three revolute joints with the joint axes intersecting at a common point. 28 
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Let ,j is  denote the unit vector of the j th joint axis in limb i , which satisfies the following 1 

relationship. 2 

1, 2,i is s , 2, 3,i is s , 3, 4,i is s , 4, 5,i is s , 5, 6,i is s , 1~6i  (1) 3 

Several reference points are defined as follows without regard to error sources. iB  and iA  denote 4 

the center of U and S joint in limb i , respectively. B  and A  represent the center of the base and the 5 

platform, respectively. A base frame BK  is established at point B  with its z-axis normal to the base 6 

plane, and a body-fixed frame AK  is located at point A  with its z-axis perpendicular to the platform 7 

plane. To evaluate the error twist about point A  conveniently, an instantaneous frame AK  is placed at 8 

point A  with its coordinate axes parallel with those of BK . It should be noted that AK  and AK  are 9 

coincident at the reference configuration. 10 

11 

3. Methodology 12 

In this section, the proposed calibration methodology is described by taking the Stewart platform as 13 

an example. It generally includes three steps: acquisition of joint corrections, approximation of the joint 14 

correction function, and design of the joint compensator. 15 

Fig. 1. The schematic diagram of the Stewart platform. 
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3.1. Acquisition of the joint corrections with point measurement 1 

This subsection describes how to acquire the necessary joint corrections robustly through point 2 

measurement. Firstly, the linear relationship between the position errors of target points and the joint 3 

motion errors is established based on the screw theory. Then, the latter are solved iteratively using the 4 

L-M algorithm with the measured information of the former. Lastly, the joint corrections are determined 5 

by the opposite of the cumulative joint motion errors. 6 

Drawing upon the screw theory-based error modeling method [13], the pose error twist of the end 7 

effector can be described as a linear combination of six actuated joint basis vectors at a given 8 

configuration. The corresponding configuration-dependent coordinates are termed as joint motion errors 9 

herein. At a deeper level, the pose error arising from various error sources is treated as that produced only 10 

by configuration-dependent joint motion errors equivalently. Therefore, the relationship between the pose 11 

error twist and joint motion errors for the Stewart platform is derived as follows. 12 

Because all limbs share the same moving platform, the pose error twist tξ  about point A  can be 13 

expressed as 14 

6
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where 3
A δ   and 3ε   represent the position error of point A  and the orientation error of the 19 

platform, respectively; , ,
ˆ
ta j iξ  and ,j i  represent the unit twist of jth ( 1 ~ 6j  ) joint in limb 20 

i ( 1 ~ 6i  ) and its corresponding joint motion error. Because only actuated joints can be corrected via 21 

compensation, only actuated joint motion errors 3,i  need to be retained by utilizing dual properties of 22 

the twist space and the wrench space. Considering that a wrench of actuation only does virtual work on 23 

the permitted twist caused by itself, we take inner products on both sides of Eq. (2) with ,3,
ˆ
wa iξ  and 24 
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rewrite them into a matrix form. 1 

T
t W ξ ρ , 

t ξ Tρ (3) 2 

with 3 

,3,1 ,3,2 ,3,6
ˆ ˆ ˆ
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where 6 6T R  and 6 6W R  denote the motion Jacobian and the force Jacobian, respectively; 6 

,3,
ˆ
wa iξ  denotes the unit wrench of actuation provided by limb i , and 6ρ R  represents the vector of 7 

actuated joint motion errors. It is obvious that tξ  should be measured in order to acquire ρ  at a given 8 

configuration, but there are few measuring devices that can obtain the orientation error ε  directly. 9 

Therefore, position errors of at least three noncolinear points are measured to replace tξ . The 10 

relationship between them can be expressed as 11 

tζ Pξ (4) 12 

with 13 

,1 ,1 ,1
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where 3
,P j δ   represents the position error of target point jP ; 3

,Pm j r   and 3
,Pc j r   represent 15 

the measured and computed position vectors of jBP


, respectively; 3 3
3

I   denotes a third order 16 

identity matrix; 3 3
j

   p   denotes a skew matrix of jp . Substituting Eq. (3) into Eq. (4) leads to  17 

ζ PTρ (5) 18 

Suppose Pmr  has been measured by the external point measuring equipment and Pcr  has been 19 

computed through the nominal forward kinematics, ρ  can be obtained directly by solving Eq. (5), 20 

which is an overdetermined equation due to inevitable measurement noise. Considering that target points 21 

jP ( 1 ~ 3j  ) are not collinear, 9 6P   is certain to be column full rank. However, the motion/force 22 
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Jacobian T /W  may be ill-conditioned or rank deficient in the vicinity of singular configurations. 1 

Therefore, solving Eq. (5) through the ordinary least square method could lead to extremely sensitive 2 

computed joint motion errors ρ . In order to guarantee ρ  as small as possible, the problem is then to 3 

determine ρ  such that the following loss function is minimized. 4 

  2 2
   ρ ζ PTρ ρ (6) 5 

where the first term is the sum of squared residuals of position errors, and the second term is the 6 

regularization term to avoid large changes of ρ . The regularization parameter   can be adjusted to 7 

strike a balance between these two terms. Since both terms in the loss function have quite the same units 8 

of length, it is unnecessary to use the weighted least squares technique to modify the loss function. ρ9 

can then be solved by 10 

      
1T T

6


 ρ PT PT I PT ζ (7) 11 

where 6 6
6

I   denotes a sixth order identity matrix. The choice of   depends on how 12 

well-conditioned the matrix 9 6PT   is. The condition number of the rectangular matrix is defined as 13 

the ratio between the maximum and minimum singular values. Specifically, if  cond PT  is larger than 14 

c ,   is set to 0 , otherwise   is set to zero. Here, c  and 0  are the specified condition number 15 

and regularization parameter, respectively. It is worth pointing out that PT  with large condition number 16 

is only attributed to configuration singularity since it is a dimensionless matrix that avoids the 17 

nonessential ill-conditioned problem caused by dimensional inconsistency. 18 

Note that the linearized error model expressed by Eq. (5) is valid only when deviations between the 19 

actual pose and the nominal pose are small enough. While in most cases, this assumption is slightly 20 

unreasonable. Therefore, the regularization solution expressed by Eq. (7) can be further improved in an 21 

iterative manner (see Fig. 2), where  f i  represents the nominal forward kinematics. The iterative 22 

version is also known as Levenberg-Marquardt (L-M) algorithm [26]. Let  lq  denote the joint variables 23 

containing joint motion errors in the l th iteration, and initialize  0
q  using the nominal value q24 

calculated by nominal inverse kinematics. After  lρ  is determined by Eq. (7), the joint variables can 25 
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then be updated as 1 

     1l l l
 q q ρ , 0,1,2,l   (8) 2 

In each iteration, P , T  and ζ  in Eq. (7) are updated by substituting  lq  with  1l
q . The 3 

iteration process will not terminate until the norm of  lρ  is below the specified threshold  . If L  is 4 

the last iteration, the necessary joint corrections, which are also the opposite of the cumulative joint 5 

motion errors, can be calculated as 6 

        0 0L L
     q q q q q (9) 7 

Although the algorithm may need complicated numerical calculations due to the forward kinematics, 8 

it can be implemented offline, fortunately. The robustness lies in that it guarantees the stability and 9 

smoothness of the joint corrections at all configurations, especially at near singular configurations. 10 

11 

3.2. Approximation of the joint correction function based on ANNs 12 

In this subsection, we investigate how to describe the complicated nonlinear function between the 13 

nominal joint variables (inputs) and the joint corrections (outputs) with ANNs, for the purpose of 14 

Input: point measurement information Pmr , nominal joint variables q

Output: joint corrections q

Initialization: : 0l  ,  lq := q

Do 

  l
Pc r f q , Pm Pc ζ r r ,   l

P q ,   l
T q

If (  cond cPT ) 

0: 

Else 

: 0 

End if 

      
1T T( )

6
l 



 ρ PT PT I PT ζ ,      1
:

l l l
 q q ρ , : 1l l 

Loop until (  l ρ ) 

:L l ,    0 L
  q q q

Fig. 2. Acquisition of joint corrections based on the L-M algorithm. 
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predicting joint corrections in any possible configurations.  1 

It is widely known that multilayered feedforward ANNs are regarded as universal approximators that 2 

can approximate any arbitrary function to any degree of accuracy, and only one hidden layer is sufficient 3 

to approximate continuous functions [27]. Moreover, they are easy to be implemented and programmed in 4 

the numerical control (NC) system [28], which benefits the design of the embedded joint compensator. It 5 

is reasonable to adopt simple three-layered feedforward ANNs herein since the joint corrections do not 6 

have sharp fluctuations. 7 

The principle of the feedforward ANN is briefly introduced here. It is comprised of densely 8 

interconnected nodes that are able to perform massive nonlinear computations. Generally, a three-layered 9 

network involves an input layer, a hidden layer, and an output layer. The nodes in the hidden layer are 10 

connected with those in the input/output layer through adjustable connection weights. For a given set of 11 

inputs, the network can compute the corresponding outputs via a feedforward solution with initial weights. 12 

Then, these weights can be modified through the backward propagation of the errors to make the 13 

computed outputs as close as possible to the observed outputs. In other words, network training aims to 14 

minimize the error surface, which is a nonlinear function of connection weights. Interestingly, the training 15 

process shows a similar pattern to the solution of nonlinear least squares, and thus many practical 16 

nonlinear regression methods could also be used for training.  17 

18 
Fig. 3. The architecture of the coupled network.
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1 

As shown in Fig.3 and Fig.4, we propose two architectures of coupled and decoupled networks. In 2 

the coupled network, all six joint corrections are assigned to be outputs, and thus only one network needs 3 

to be trained. As to the decoupled network, each joint correction is selected to be the output individually, 4 

and thus six decoupled networks need to be constructed for training independently. For convenience, the 5 

training procedures will be described by taking the coupled network as an example in the following. The 6 

training efficiency, optimal architecture, and fitting capability of the two networks will be compared in 7 

Section 4. 8 

For a general node in the network, the output of it can be calculated as 9 

  1

1

n
t t t t t
i i ij j i

j

y z w x b  



 
   

 
 
 , 2,3t  (10) 10 

where 1t
jx   denotes the output of j th node in the 1t   layer, and also one of the inputs of i th node in 11 

the t  layer; t
iy  denotes the output of i th node in the t  layer; t

ijw  denotes the connection weight 12 

between the j th node in the 1t   layer and i th node in the t  layer; t
ib  denotes the bias of the i th 13 

node in the t  layer;   i  denotes the activation function which transforms the weighted sum of all 14 

inputs to the output. As a rule of thumb, tan-sigmoid and linear function can be selected as the activation 15 

function of the hidden layer and output layer respectively, that is 16 

1q

2q

6q

iq

Fig. 4. The architecture of the decoupled network.
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To prevent the training process impeded due to extremely large input data, it is essential to normalize 3 

the nominal actuated joint variables as 4 

,mean

,max ,min

:
i i

i
i i

q q
q

q q





, 1 ~ 6i  (13) 5 

where ,meaniq , ,maxiq  and ,miniq  are the mean, maximum and minimum values of the i th actuated 6 

joint motion range, respectively. For the sake of brevity, the function of the network can be expressed in 7 

an implicit form as  8 

 , q N q w (14) 9 

where 6q   and 6 q   denote the input and the output of the network respectively; Nw 10 

denotes the combined weight vector containing all weights and biases. Suppose that we have taken point 11 

measurements and calculated corresponding joint corrections q  in K  configurations, we can acquire 12 

K  training samples of input/output pairs. Then, the loss function can be defined as the mean square error 13 

between observed joint corrections mq  from point measurement and the computed joint corrections 14 

cq  from the network for all training samples. 15 

   
2 2

, , ,
1 1

1 1
,

K K

m k c k m k k
k k

E
K K 

      w q q q N q w (15) 16 

In order to minimize the loss function, the L-M algorithm can be used to search for the optimum 17 

weight vector iteratively [26]. The L-M algorithm incorporates the merits of both the fast training speed 18 

of the Gauss-Newton algorithm and the guaranteed convergence of the gradient descent method, in which 19 

the regularization parameter can be adjusted to make the trade-off [28]. In each iteration step, the weight 20 

correction vector w  can be calculated by 21 

 
1T T
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  w J J I J e (16) 22 
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where 6K NJ   is the Jacobian matrix of the network that can be calculated using the chain rule at the 2 

current weight vector;   is the adjustable regularization parameter; N N
N

I   is a N th order 3 

identity matrix; 6Ke   is the residual vector. Initializing  0
w  using a random vector in which all the 4 

components conform to a standard normal distribution, we can update it as  5 

     1l l l
  w w w , 0,1,2,l   (17) 6 

The training process will proceed until the relative change of the loss functions between two 7 

successive iterations reduces to the desired threshold. The weight vector in the last iteration will then be 8 

determined as the training result ŵ . The commonly used evaluation index of the neural network is the 9 

root mean square error (RMSE) as 10 

 
2

,
1

1
ˆRMSE ,

K

m k k
kK 

   q N q w (18) 11 

The above training process is described assuming that the architecture of the network has been given. 12 

However, the selection of the optimal number of hidden nodes is an important issue that needs to be 13 

considered carefully. Although many empirical formulas have been proposed, the holdout 14 

cross-validation method based on the experiment is still one of the most efficient approaches to address 15 

this problem. Specifically, the overall K  samples are assigned to the training and validation subset. 1K16 

samples of the training subset are used for training the networks with different numbers of hidden nodes, 17 

while 2K  samples of the validation subset are used for evaluating their performances to select the 18 

optimal number of hidden nodes. 19 

3.3. Design of the joint compensator for online compensation 20 

On the basis of the trained network, online error compensation can be achieved by designing a 21 

compensator embedded in the NC system (see Fig. 5). Firstly, all weights are stored in the memory in 22 

advance for calling. For a given continuous path of the moving platform, a sequence of discrete command 23 
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pose datasets are generated via rough interpolation. Given the command pose y  in the data buffer, the 1 

nominal joint variables q  are calculated with nominal inverse kinematics. Then, the joint corrections 2 

can be predicted as 3 

 ˆ, q N q w (19) 4 

The nominal joint variables can then be corrected as 5 

m   q q q (20) 6 

The datasets of the corrected joint variables are further produced via fine interpolation and then sent 7 

to each actuated prismatic joint to drive the moving platform to complete the desired path. 8 

9 

4. Verification 10 

In this section, the experiment is carried out on a Stewart platform prototype to verify the 11 

effectiveness of the proposed calibration method. The performances and calibration accuracy of coupled 12 

and decoupled networks are evaluated. Comparisons between the proposed method and previous methods 13 

are also discussed. 14 

4.1. Experimental setup 15 

As shown in Fig. 6, the radii of the fixed base and the moving platform are 370 mm and 250 mm, 16 

respectively. The motion range of each actuated prismatic joint is from 280 mm to 430 mm. The task 17 

workspace is a 150mm 100mm   cylinder with 30   horizontal tilting angle. According to ISO 9283 18 

[29], the position repeatability and orientation repeatability have been tested as 0.026 mm and 0.008 deg, 19 

Fig. 5. Work flowchart of the joint compensator embedded in the NC system. 
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respectively. 1 

2 

As shown in Fig. 7, the position data measuring equipment is a FARO measuring arm with the 3 

uncertainty of 0.020 mm. Three measuring cones representing target points jP ( 1 ~ 3j  ) are located at 4 

the upper surface of the moving platform and connected to the moving platform through the thread. 5 

Although the nominal locations of measuring cones are known, positional deviations of them should still 6 

be determined by the measuring arm aforehand in order to reduce the influences of manufacturing and 7 

assembly errors. Besides, three measuring cones are installed on the fixed base to establish the base frame 8 

BK . It should be noted that all subsequent measurement information will be evaluated in BK . 9 

10 

Fig. 6. Dimensions of the Stewart platform. (a) The base. (b) The platform. 
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1 

One hundred and fifty configurations are randomly selected on the premise that they are located in 2 

the concerned cylinder task workspace (see Fig. 8). They are divided into two subsets, where one hundred 3 

configurations are assigned to be the training subset, and the other fifty configurations are assigned to be 4 

the validation subset. Corresponding nominal joint variables are calculated by nominal inverse kinematics 5 

(see Fig. 9). After normalization, they are used as input signals for the designed ANNs. 6 

7 

Fig. 8. Distributions of measuring points in the task workspace. 
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4.2. Experimental results 1 

This subsection describes the main procedures and calibration results of the experiment. At a given 2 

measuring configuration, the actual position of jP ( 1 ~ 3j  ) is detected by the measuring arm three 3 

times, and the mean value is retained to inhibit the influence of measurement noise. Moreover, in order to 4 

eliminate the influence of tracking errors, we will not obtain the measurement information until the robot 5 

is stable for at least three seconds. Joint corrections can then be acquired based on the proposed method. 6 

The regularization parameter 0  is set to 0.05. The convergence threshold   is set to 6  times the 7 

encoder resolution, which is 0.002mm. Examining the condition number of the matrix PT  in all 8 

measuring configurations indicates that eighteen of them exceed the specified condition number 310c  , 9 

and these configurations occur either at the boundary of the workspace or at large tilting angles. Coupled 10 

and decoupled networks can be trained after obtaining all pairs of nominal joint variables and 11 

corresponding joint corrections. The optimal number of hidden nodes is selected starting from a relatively 12 

small one. 13 

14 
Fig. 10. Selection of the optimal number of hidden nodes for the coupled network. 
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1 

It can be seen from Fig. 10 and Fig. 11 that the coupled and decoupled networks show a similar 2 

pattern. For instance, the RMSE on the validation set is always larger than that on the training set, which 3 

is expected because the validation set is not involved in the training process. Moreover, the RMSEs on 4 

both the training set and the validation set show a sharp drop with the initial increase of hidden nodes, 5 

which means more hidden nodes can improve the fitting capability in the initial stage. However, with the 6 

hidden nodes increase subsequently, the RMSE on the training set continues to decrease slowly, while 7 

that on the validation set increases due to overfitting. This indicates that the network has started to 8 

memorize the data of the training subset rather than learn the pattern of the function. Obviously, this is 9 

undesirable because the generalization capability has deteriorated. At a deeper level, a neural network 10 

with too many hidden nodes will unknowingly extract some of the residual variation (e.g., measurement 11 

noise and robot repeatability) as if that variation represents the intrinsic structure of the joint correction 12 

function. Therefore, the optimal number of hidden nodes can be determined at the inflection point of the 13 

performance in the validation set. According to this criterion, the optimal number of hidden nodes for the 14 

Fig. 11. Selection of the optimal number of hidden nodes for the decoupled networks. 
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coupled network is 13, whereas that for the decoupled network is about 6. To further compare these two 1 

architectures of networks, the average values of hidden nodes and training time for six decoupled 2 

networks are calculated, and a composite performance index of six decoupled networks is defined as 3 

6
2

1

Perf RMSEi
i

  (21) 4 

where RMSEi  denotes the RMSE on the validation subset of the i th decoupled network. Note that 5 

performances on the validation subset are evaluated for comparison. As illustrated in Table 1, the 6 

performance of the decoupled networks is slightly better than that of the coupled network. However, the 7 

design efforts and total training time of the decoupled networks are more than those of the coupled 8 

network because we have to design and train six of the former independently.  9 

It should be noted that we come to the opposite conclusion with [30], in which the coupled neural 10 

network fits better than the decoupled ones. However, this is explainable. The main reason is that the joint 11 

corrections do not have the coupling effect, and each joint can be controlled independently. For instance, 12 

joint motion error (joint correction) of joint 1 will not have any effects on that of joint 2. Another reason 13 

is that the coupled network may need more measuring configurations for training to achieve the same 14 

accuracy level as the decoupled networks. Calibration with different number of measuring configurations 15 

will be carried out to demonstrate this conjecture in the next subsection. 16 

Table 1 Comparison between the coupled and decoupled networks. 17 

Architecture Average hidden nodes Average training time (s) Performance (mm) 

Coupled network 13 29 0.027 

Decoupled networks 6 8 0.022 
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1 

In order to demonstrate the calibration accuracy in the task workspace, error compensation is 2 

implemented using joint compensators based on two architectures of networks. Position error Aδ  and 3 

orientation error ε  can be acquired by solving Eq. (4) with the measured position data in each 4 

configuration, and norms of them are calculated for evaluation. Fig. 12 shows pose errors before and after 5 

compensation in all measuring configurations, and Table 2 shows their statistical data. Mean values of the 6 

position/orientation errors are reduced by 88.16%/86.96% using the coupled network compared to those 7 

before compensation, whereas the use of the decoupled networks delivers 91.90%/90.22%. Maximum 8 

values of the position/orientation errors based on the coupled network can reach 0.175mm/0.060deg, 9 

whereas those based on the decoupled networks can reach 0.112mm/0.042deg. Both of them have 10 
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Fig. 12. Pose errors before and after compensation. (a) Position errors. (b) Orientation errors. 
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satisfactory pose error compensation results, which is expected since their capabilities have been 1 

confirmed in the joint space.  2 

Table 2 Statistical data of pose errors before and after compensation. 3 

Pose error Before compensation Coupled network Decoupled networks 

Aδ

MAX (mm) 1.225 0.175 0.112 

MEAN (mm) 0.642 0.076 0.052 

STD (mm) 0.163 0.041 0.024 

ε

MAX (deg) 0.290 0.060 0.042 

MEAN (deg) 0.184 0.024 0.018 

STD (deg) 0.041 0.013 0.009 

4 

4.3. Comparisons and discussions 5 

For comparison, calibration experiments using the POE-based method [12] and the ordinary 6 

ANN-based joint compensator [22] are also carried out on the studied Stewart platform. The relationship 7 

between the calibration accuracy and the number of measuring configurations is also investigated. 8 

In the comparative study, fifty, one hundred, one hundred and fifty measuring configurations are 9 

randomly selected to be the training subset, whereas the validation subset containing fifty configurations 10 

remains unchanged. Calibration results on the same validation subset using different methods are 11 

illustrated in Fig. 13. The mean values of position (orientation) errors are evaluated, and the standard 12 

deviations of them are included in the form of error bars. It can be seen from Fig. 13 that: 13 

(1) The data from fifty configurations would be enough for the POE-based method since the 14 

calibration accuracy stays basically static with the increase of configurations. Although this model-based 15 

method requires a small number of configurations, the calibration accuracy is limited due to the 16 

unmodeled error sources. 17 

(2) Ordinary compensator using the coupled network can improve the calibration accuracy 18 

continuously with more configurations. It outperforms the POE-based method when using more than one 19 

hundred and fifty configurations. However, since it does not consider near singularity problems, the 20 
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calculated joint corrections in some configurations are unstable, resulting in the data provided for network 1 

training with low confidence. Consequently, it is not as good as robust compensators. 2 

(3) Similar to the ordinary compensator, the calibration accuracy of the proposed robust 3 

compensators is also closely related to the number of configurations, especially for the coupled network. 4 

Although the decoupled networks behave slightly better than the coupled network with a relatively small 5 

number of configurations (less than one hundred), they can have nearly the same calibration accuracy as 6 

long as we have enough configurations (more than one hundred and fifty). This result also proves the 7 

conjecture proposed in the last subsection. 8 

(4) Both robust compensators outperform the others with more than one hundred configurations. 9 

When using one hundred and fifty configurations, the residual mean pose (position and orientation) errors 10 

of the proposed robust compensators are increased by about 50% compared with the POE-based method 11 

and about 40% compared with the ordinary compensator. 12 

(5) The residual mean pose errors cannot reach zero but a relatively low bound. The final calibration 13 

accuracy is determined by three factors: the accuracy of the FARO measuring arm, the repeatability of the 14 

Stewart platform, and the residual errors of the trained neural network. The final calibration accuracy 15 

cannot be better than any of them. 16 
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1 

5. Conclusions 2 

This paper has proposed a novel calibration method by designing a robust joint compensator with 3 

ANNs to improve the static pose accuracy of a Stewart platform. The conclusions are drawn as follows: 4 

(1) The pose error is treated as produced only by configuration-dependent joint motion errors 5 

equivalently, thus allowing the pose error to be eliminated by correcting the nominal joint variables 6 

directly. Based on this idea, joint corrections are acquired with point measurement considering near 7 

singular configurations, and the function between joint corrections and nominal joint variables is further 8 

approximated by the coupled/decoupled networks. Online real-time error compensation is implemented 9 

by designing a joint compensator embedded in the NC system. 10 

Fig. 13. Comparison of calibration methods with different number of measuring configurations. 

(a) Position errors. (b) Orientation errors. 

O
ri

en
ta

ti
o

n
 e

rr
or

(d
eg

)

Number of measuring configurations

(a) 

(b) 

Number of measuring configurations

50 100 150
0

0.05

0.1

0.15 POE-based calibration method [12]
Oridinary compensator with the coupled network [22]
Robust compensator with the coupled network
Robust compensator with the decoupled networks

50 100 150
0

0.1

0.2

0.3

0.4 POE-based calibration method [12]
Oridinary compensator with the coupled network [22]
Robust compensator with the coupled network
Robust compensator with the decoupled networks

P
o

si
ti

o
n

 e
rr

o
r

(m
m

)



24 

(2) Experimental results on the Stewart platform prototype demonstrate the effectiveness of the 1 

proposed method. Robust compensators based on both coupled and decoupled networks have satisfactory 2 

calibration results. Although the decoupled networks behave slightly better than the coupled network 3 

when using a relatively small number of configurations, the former requires more design efforts and 4 

training time than the latter. They can achieve the same pose accuracy with about 0.05mm/0.02deg 5 

average position/orientation error as long as we have enough configurations. 6 

(3) This method is general and systematic enough to be applied to calibrate other 6-DOF industrial 7 

robots, including both serial and parallel robots. However, it is worth investigating how to solve joint 8 

corrections for lower mobility robots and how to approximate the joint correction function better with 9 

other machine learning methods in further study. 10 
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