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Abstract

Artificial Intelligence (AI) techniques implemented at a large scale in Intelligent Trans-
port Systems (ITS), have considerably enhanced the vehicles’ autonomous behavior in mak-
ing independent decisions about cyber threats, attacks, and faults. While , AI techniques
are based on data sharing among the vehicles, it is important to note that sensitive data can-
not be shared. Thus, Federated Learning (FL) has been implemented to protect privacy in
vehicles. On the other hand, the integrity of data and the safety of aggregation are ensured
by using blockchain technology. This paper applied classification approaches to VANET and
ITS cyber-threats detection at the vehicle. Subsequently, by using blockchain and by apply-
ing an aggregation strategy to different models, models from the previous step were uploaded
in a smart contract. Lastly, we returned the updated models to the vehicles. Furthermore,
we conducted an experimental study to measure the effectiveness of the proposed prototype.
In this paper, the VeReMi data set was distributed in a balanced manner into five parts
in the experimental study. Thus, classification techniques were executed by each vehicle
separately, and models were generated. Upon the aggregation of the models in blockchain,
they were returned to the vehicles. Lastly, the vehicles updated their decision functions and
accessed the precision and accuracy of cyber-threat detection. The results indicated that the
precision and accuracy decreased by 7.1% on average with comparable F1-score and recall.
Our solution ensures the privacy preservation of vehicles whereas blockchain guarantees the
safety of aggregation technique and low gas consumption.
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1. Introduction

It is estimated by Fortune Business Insights (1) that the global smart transportation
market size will significantly increase in size over the 2021-2028 period. More precisely,
the size of this market is anticipated to increase from USD 98.74 billion to USD 206.80
billion worldwide. In particular, the Intelligent Transportation System Application (ITS)
segment is expected to increase particularly. Already in 2020, this segment dominated the
market with a share of more than 30%, and this domination is likely to continue. The
ITS refers to the traffic management solutions aimed at improving traffic flows and mo-
bility. To be more precise, these solutions are based on real-time data that are analyzed
with an aim to promptly respond to emergencies. It is necessary to implement effective
traffic management systems because long travel times and related fuel consumption lead to
traffic congestion, which in turn, results in considerable financial losses. In addition, the
ITS also contributes to better the operational performance and reliability of road networks.
Furthermore, the initially proposed vehicular ad-hoc networks (VANETs) (2) were substan-
tially changed through cutting-edge computation and communication technologies into the
Internet of Vehicles (IoV) (3). The IoV interconnects smart vehicles on the Internet and
consequently enables the functioning of ITS. As reported by the U.S. Department of Trans-
portation (DOT) (4), the IoV has been proven to be especially efficient in reducing crashes
committed by unimpaired drivers. It is estimated that IoV can help avoid approximately
79% of such crashes because it establishes the effective communication and collaboration
among vehicles as well as the interconnection of roadside infrastructure, pedestrians, and
bicycles. The exchange of messages on traffic conditions, accidents, and safety can not only
resolve traffic jams and reduce accident rates but also contribute to a reduction in environ-
mental pollution. Consequently, overall safety, comfort, and convenience are improved.

Nevertheless, the integration of intelligent transportation systems (ITS) and consequent
high connectivity has resulted in considerable challenges such as how to guarantee the se-
curity of all participants in intelligent transportation systems (5; 6) because it is prone to
malicious attacks. Furthermore, the exchange of sensitive data can lead to difficulties in
ensuring privacy. VANETs have experienced numerous attacks such as Man-In-The-Middle
(MITM) which have resulted in compromised safety (7; 8; 9; 10; 11; 12). To illustrate, Troy
Hunt (13), successfully controlled features of Nissan LEAFs against an attack in 2016. Sub-
sequently, in June 2016, a Mitsubishi Outlander PHEV (14), via a smartphone application
with remote control through the hacked the controlling of non-driving essential components
of the vehicle systems (e.g., to lock or unlock doors, to turn on/off air conditioning, and to
change charger settings). In addition, Keen Security Lab, a Chinese cybersecurity company,
managed to hack Tesla (15). The scientists were able to control the components of Model S
Tesla (e.g., mirrors and brakes) from a distance of 20 km away.

These examples demonstrate that it is necessary to propose more complex solutions are
needed to improve data transmission. For instance, the payment systems must be enhanced
to become efficient, secure, and integrated (16). Following the introduction of Bitcoin,
blockchain technology (17) has substantially changed digital currencies (18). Blockchain
represents a distributed ledger keeping an immutable log of transactions taking part in a
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network. Blockchain can be used in our context to ensure the safety of decisions performed
by a machine learning algorithm.

The convergence of machine learning and BIoV is likely to lead to novel services and ap-
plications that have been enabled to learn from training data, reach data-driven conclusions,
assess the improvement of the network performance, and guarantee decision support (19).
However, the application of machine learning in mobile networks (e.g., vehicular networks)
is primarily limited because of data that takes the form of isolated islands. Consequently,
the integration of different data sources in vehicular networks is difficult as it requires in-
creasing the number of vehicles, which in turn increases the data size and requires heavy
computation (20). Google developed “federated learning” (FL) (21; 22) in 2016 to establish
data models distributively and solve this problem. In this type of architecture, data are
kept on participating devices (e.g., smartphones or vehicles). The devices then download
and train the model using their data.

In this way, they are going to to learn from training data and reach data-driven conclu-
sions, ensure decision support, and estimate how to improve the network performance (23).
In this paper, we use Federated Learning (FL) to protect vehicles’ privacy while blockchain
is used to ensure the integrity of data and the safety of aggregation (24). We apply classi-
fication approaches for VANET and ITS cyber-threats detection at the vehicle. Then, we
upload each model, resulting from the previous step, in a smart contract using blockchain
to apply an aggregation strategy between different models. Finally, the updated models are
sent back to the vehicles.

The rest of this paper is organized as follows: Section 2 outlines the related work. Section
3 gives an overview of the problem. Section 4 presents the proposed framework. Section 5
shows and discuss the experimental result of the proposed method. The conclusion is given
in Section 6.

2. Related Work

We subdivide this section into two subsections. First, we discuss first the adaptation of
blockchain technology in ITS and VANET. Next, we outline the use of federated learning
to deal with some issues in VANET and ITS.

2.1. Blockchain Technology for ITS and VANET

It is paramount to guarantee security in vehicular networks and to prevent adverse im-
pacts on the users. To illustrate, it is likely that cyberattacks, hacker threats of hackers,
and failures failures in ensuring security would lead to financial losses, roads accidents,
and vehicle immobilization. Moreover, disclosure of sensitive data may result in endan-
gering the safety of road users. Accordingly, numerous studies have focused on enhancing
credibility, transparency, identification, accessibility, integrity, confidentiality, immutability,
reputation, resilience to attacks, trust, authentication, anonymity, and privacy. Yang et al.
(25) developed a highly credible and trustworthy distributed blockchain-based platform for
vehicular systems that is highly credible and trustworthy. In this solution, vehicles use a
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Bayesian inference model to validate messages from vehicles in the vicinity. Depending on
the validation results, messages from source vehicles are rated. In addition, roadside units
(RSUs) assess the trust value offsets of participating vehicles, which are subsequently stored
in blocks. While this solution is aimed at ensuring privacy and security, and its perfor-
mance is assessed in terms of these properties, cost and execution time are not taken into
account. Furthermore, Li et al. (26) investigated Creditcoin. Its architecture is based on
the privacy-preserving announcement. Accordingly, identities are preserved during the mes-
sage broadcasting. The incentive mechanism based on blockchain and anonymous message
aggregation protocol enables the users to sign and forward messages. It is significant that
Bitcoin, which is typically employed for purchasing and selling commodities in a market-
place that is pseudo-anonymous and secure, was implemented into this solution. Therefore,
Bitcoin cannot be employed to generate smart contracts and programing features that can
be used to resolve computational problems and allow the transferring of sensitive data. In
addition, Zhe Yang et al. (27) used blockchain to create a novel reputation system aimed
at assessing data credibility. This solution enables cars to assess the transmitted data by
observing the system. Subsequently, the shared data receives a value kept in the block.
The reputation of the sender and the credibility of the data are verified by vehicles on the
basis of the score. Malik et al. (28) created a smart car authentication and revocation
framework employing blockchain to update the status of participating vehicles. Accord-
ingly, when compared with solutions based on a trusted-authority central architecture, the
cost of processing and communication is minimized. Furthermore, Labrador, M. and Hou
(29) employed Blockchain technology to ensure and enhance the authentication of vehicle
identity and shared data. This solution includes a mechanism that can identify data and
vehicles by analyzing transmitted data packets. In addition, Reimers et al. (30) created
a prototype based on blockchain. This prototype is aimed at ensuring transparency in a
system based on the IoT. This solution includes a traceability information system that gath-
ers data (e.g., sensor data from IoT devices). Moreover, end-users can use the data. M.
Ahmad (31) developed a trustworthy vehicle platform based on blockchain to identify mali-
cious and misbehaving vehicles. In this way, vehicles decide if other vehicles are trustworthy
by validation of packets, VANET environmental data, and how the participating vehicles
create and share blocks. In (32), this platform was able to identify Sybil attacks. Rathee
et al. (33) also proposed a transparent and secure framework for CAVs using blockchain
for extracting and storing data. This solution minimizes the risk of exchanging information
with fake participants, receiving corrupted data, and compromising vehicles’ smart sensors.
Noh et al. (34) used an authentication mechanism based on blockchain with a message au-
thentication code and asymmetric keys to authenticate messages for VANET and enhance
privacy. PoW and PBWT were employed to ensure a message authentication consensus.
Furthermore, Nadeem et al. (35) developed a fog node-based distributed blockchain cloud
architecture scheme to improve vehicular data privacy and prevent attacks. This solution
allows for the efficient management of enormous amounts of created data owing to the ex-
traordinary computational performance at the edge of the network. Successful vehicular
systems require secure communication among vehicles. Thus, Singh, and Kim (36) used
blockchain to develop a trustworthy, smart communication protocol for a cloud vehicular
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system. An incentive mechanism was applied to improve the trustworthiness of the notes.
Consequently, the system achieved successful exchanges.

Furthermore, Jabbar et al. (37) used blockchain to create a Decentralized IoT Solution
for Vehicles Communication(DISV). More precisely, the DISV (38) is a real-time application
specification created to ensure secure communication among all transportation system users.
Considering the limitations, it is not possible for this solution to be used by many vehicles in
the vicinity, and accordingly, it lacks scalability. The scalability problem was resolved by via
a blockchain-based solution that ensures secure payment and communication (PSEV) (19;
39). Nkenyereye et al. (40) created a hybrid 5G and cloud vehicle network aimed at ensuring
the privacy of users’ sensitive information and establishing a communication protocol for
warning messages. Furthermore, Singh et al. (41) proposed a hybrid architecture to ensure
vehicle-to-infrastructure and vehicle-to-vehicle communications. In addition, Kumar et al.
(42) developed for a blockchain-based vehicular network an access control scheme hash-
based storage for managing traffic data. There is an innovative, emerging market of smart
transport applications for vehicular systems and the IoV. Various APIs have been developed
and tested by researchers which are aimed at providing in-vehicle entertainment, ensuring
traffic safety, and preventing congestion. In addition, different mobility services have been
created to locate, unlock, and read the odometers of cars across brands. Researchers have
significantly contributed to the development of transport applications for vehicle systems.
These solutions primarily comprise the IoV security layer to ensure privacy and security.
Various scientists have developed platforms based on blockchain for establishing trusted
multiparty insurance (43), training and learning autonomous cars (44), car leasing (45), and
smart car parking services (46; 47; 48; 49). Moreover, Masoud et al. (50) developed the
transparent dissemination of the users’ motor history for trading, whereas Zhang et al. (51)
used blockchain to ensure secure purchasing and selling of second-hand vehicles.

2.2. Blockchain-based Federated Learning for ITS and VANET

The purpose of introducing blockchain to FL is to respond to specific limitations. To il-
lustrate, the problem of the dependency of the resiliency of an aggregator being dependent on
the robustness of the center of charge of the FL network can be overcome. Similarly, vulner-
ability to malicious clients is reduced, especially for those clients that attach to the network
via poisonous models. Lu et al. (52) used FL to create a solution for reducing the transmis-
sion load and ensuring users privacy through a hybrid blockchain architecture. This solution
includes the local directed acyclic graph and allows blockchain to enhance model parame-
ters’ security and reliability. This solution also selected the node using DRL and accordingly
created an asynchronous FL scheme to enhance efficacy. The integration of learned models
into the Blockchain system and the implementation of a two-stage verification can ensure
the reliability of shared data. Furthermore, the numerical results demonstrated that faster
convergence and higher learning accuracy are achieved through this data-sharing scheme.
However, this paper did not address critical performance metrics in machine learning, includ-
ing F1 score, sensitivity, and precision. In addition, Chai et al. (53) created a hierarchical
FL algorithm and a hierarchical blockchain framework allowing knowledge sharing. Machine
learning methods are employed in this process to allow vehicles to learn environmental data
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and share the learned knowledge. Shared data can be reliable if learned models are incor-
porated in blockchain and if a two-stage verification is implemented. Furthermore, it was
data-sharing scheme that can improve learning accuracy and convergence. Privacy require-
ments and the distributed pattern of IoVs can be met using the hierarchical FL algorithm.
Moreover, it is possible to apply this hierarchical blockchain framework to vehicular net-
works at a large scale. The proposed solution was demonstrated to have an approximately
10% higher accuracy than conventional federated learning algorithms. Nevertheless, it is
still necessary to explore the overhead and transaction throughput of the proposed hierar-
chical blockchain framework. In addition, Otoum et al. (54) integrated blockchain and FL
and created an innovative solution that ensures data privacy and network security mainte-
nance. On end devices, this framework decentralizes the mutual machine learning models.
A consensus solution based on Blockchain is employed as a second line of protecting privacy
to make sure that the shared cloud training can be trusted. Centralized coordination and
training of data coordination are not required in this model for enabling in this model be-
cause it is conducted via a consensus method in blockchain. Nevertheless, it is necessary to
perform more tests must be performed which take into account various federated learning
algorithms.

Abdel-Basset et al. (55) developed a federated deep learning-based intrusion detection
framework (FED-IDS). In this framework, the learning process is offloaded from servers
to distributed vehicular edge nodes; and consequently, attacks are detected efficiently. A
context-aware transformer network is incorporated into FED-IDS. This network can classify
various attack categories by learning spatial-temporal representations of vehicular traffic
flows.However, the interpretability of classification decisions in IDS as an essential require-
ment for security communities, needs to be investigated in Smart Transportation Systems

Maaroufi, S. and Pierre, S. introduced the BCOOL (56). This solution includes in-
novative, hybrid, and dynamic blockchain Fog-based Distributed Trust Contract Strategy
(FDTCS). Its purpose is to manage masseges and assess the trustworthiness of vehicles. Ac-
cording to the simulation results, the BCOOL significantly outperforms similar strategies.
More precisely, it is 80% more reliable and 100% more efficient in terms of responding to
data congestion environments.

Cui et al. (57) developed an edge-computing concept to enhance message authentication
efficiency. In the proposed solution, the authentication tasks of vehicles are shared by road-
side units (RSU) and edge computing vehicles (ECVs). Accordingly, the burden on the RSU
is reduced. Alfadhi et al. (58) confirmed that CPPA schemes developed by Cui et al. (57)
could not provide enough driving safety for vehicles in critical areas. In addition, vehicles
are vulnerable considering VANET’s management, communication, and computational effi-
ciency. Furthermore, an SD2PA authentication scheme using a hash function was proposed
to prevent non-safe driving and to promote safer driving while also preserving the vehicles’
security and privacy. Blockchain acted as a Trusted Authority (TA) enabling the ledger
management to store information about the vehicle. Furthermore, using the intermediate
node, vehicles must carry out mutual authentication with the TA. Nevertheless, this study
highlighted low computing overhead (59). Minkyung et al. (60) focused on studying com-
mon centralized protocols, including request/reply and publish/subscribe, and decentralized
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P2P computing in constrained IoT environments . First, the authors introduced cost mod-
eling of network protocols aimed at analyzing the basic network performance. Furthermore,
a comparative analysis considering push, pull, and P2P-based IoT data transmission ap-
proaches was conducted. In this experiment, latency and availability created by the request
message and determined factors influencing different IoT networks were evaluated. Zisang
Xu et al. (61) proposed a computationally efficient and safe key agreement scheme and
authentication for the IoV, allowing the RSU to authenticate vehicles. The authors con-
ducted the analysis using the simulation tool ProVerif and the Real-or-Random model and
confirmed that the proposed scheme was secure. In comparison to previous schemes, this
one enhanced authentication efficiency and reduced energy consumption. This scheme, how-
ever, took into account only the key agreement and authentication between the vehicle and
the TA. Therefore, in the future, studies should focus on exploring the key agreement and
mutual authentication between different vehicles. Hasan et al. (62) proposed an AI-based
synchronization scheme aimed at resolving smart grid timing issues. The back propagation
neural network was employed as the AI method using the timing estimations and error cor-
rections to ensure precise performance. Furthermore, the innovative AIFS scheme takes into
account radio communication functionalities to relate to the external timing server. The
simulation results confirmed this scheme’s efficacy and substantial contributions such as no
occurrence of synchronization errors do not occur if the external clock receives increments
daily in the Wide Area Monitoring application (WAM) of the smart grid system. In addi-
tion, Hasan et al. (63) developed an innovative resource-efficient Flow-enabled Distributed
Mobility Anchoring (FDMA) framework. This solution improved the functionalities of mo-
bility entities and centralized network entities. The mathematical analysis revealed that the
packed tunneling cost and the signaling overhead cost of the FDMA are lower than those of
PNEMO (64) and NBSP (65).

3. Problem Overview

In this section, we give an overview of the safety provided by the adaptation of BC in
our context. Next, we outline the goals of FL. Finally, we present the advantages of joining
BC and FL in VANET and ITS for cyberthreats detection.

3.1. Using the Blockchain for Safety

Studies have primarily focused on blockchain in the financial sector; however, the re-
search focus has recently shifted to the Internet of Things (IoT) (18). The IoT is widely
explored and employed because it is able to create a safe, trustworthy, and decentralized
environment. Owing to blockchain, new high technology has emerged in various sensitive
and active sectors. To be more specific, the IoV solutions can ensure reliable information
due to consensus, that the records are immutable along with the transparency of transac-
tions. Most importantly, blockchain considerably improves security and trust. Moreover,
smart contracts have enabled optimizing and automatizing of the managing process of infor-
mation, resulting in substantially lower costs (66). In comparison to traditional centralized
architectures, this technology has many benefits. However, there are significant limits to
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this technology of storage space, inflexibility, and expensiveness. Therefore, the integration
of ITS and blockchain technology brings extraordinary advantages such as efficient manage-
ment of the ITS, big data storage, and improved intelligence and security. Blockchain-based
ITS solutions (BITS) have been investigated by academics and practitioners. Other emerg-
ing technologies, including 5G, big data, and machine learning, contribute to their additional
advancement (67).

3.2. Overview on Federated Learning

The basics of federated learning can be described mathematically as follows (21):
Let:

K: the number of clients participating in FL,
wt: the global model parameters,
wk

t : the client local model,
Dk: the local dataset of the client k (k ∈ K),
nk = |Dk|: the data in the client k,
l: indicates the loss function, and
▽wk

i
: describes the gradient symbol of wk

t

The FL process starts when the server distributes wt to wk
t . Then computes the gradi-

ent is computed by the following equation:

g
k(1)
t = ▽wk

i

∑
(xi,yi)∈Dk

l(wk
i , (xi, yi)) (1)

The next step is to collect all gradient at the server and applying the weighted average in
order to update the parameters. In the next subsection we give more details on FL.

3.3. Federated Learning Illustration

As evident in Figure 1, a classical FL system’s operational process is ideally comprised
of four stages:

1. The MEC server that is deployed at the edge cloud selects a computing task in addition
to the task requirements and the learning parameters, such as selection of vehicular
traffic analytics, task classification or prediction, and learning rate, respectively. Sub-
sequently, it designates a subset of devices as learning clients for collaborative learning.
Practically, the MEC server is able to designate various subsets of devices throughout
various rounds of updating through the use of a fitting client scheduling mechanism
for the purpose of ameliorating the quality of its training [50].

2. The server initiates a training model which is then sent to each client to set up a new
training round. At this stage, each client trains the model through the use of its own
dataset and calculates a new update.
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Figure 1: Classical federated learning framework.

3. All clients upload the update they computed to the MEC server to perform a global
computation. A novel global model is constructed by the server by means of aggre-
gating all of the clients’ updates in a way that decreases the loss function (68; 69).

4. The global model that has been previously computed is broadcasted by the server
towards each client for the subsequent training round. The FL process is repeated
until either the global loss function converges or the sought-after accuracy is attained.
Based on the learning procedure, it is apparent that the classical FL is dependent on a
centralized server; namely, an MEC server for model aggregation that has malfunction
as well as scalability problems in common wireless networks.

Furthermore, this type of centralized FL architecture is not able to attract devices which
are far away from the server to be trained, which in turn hinders the overall system’s learning
performance. The primary limitation of applying machine learning in mobile networks (e.g.,
vehicular networks) is the presence of data in the form of isolated islands. More specifically,
it is highly challenging to integrate various data sources in vehicular networks because of
necessary heavy computation, an increasing number of vehicles, and enormous data size
(70). To resolve this issue, “federated learning” (FL) (71) was developed by Google in 2016
for establishing data models distributive. In federated learning architecture, data are stored
on participating devices (e.g., smartphones or vehicles) that download the model and train
the model by their data.
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3.4. Joining Federated Learning to Blockchain

The operational process of blockchain-based federated learning in edge computing, as
shown in Figure 2, is formulated through the following steps: First, the devices send a par-
ticipant request to the server to be integrated into the network. Then, there is the selection
and the review of the appropriate device by the server. After this stage of authentication,
each terminal calculates its appropriate hashes, and then the data, including hashes and
model, is uploaded to the blockchain for providing local model update training with private
data. The offloads of data from the blockchain to servers perform to ensure the training
update task. Finally, the server aggregates and updates parameters to be provided to the
global model.

4. Proposed Framework

The proposed framework is given in Figure 3. The workflow is performed in eight steps
that can be grouped into four phases. Before starting the process, we divide the VeReMi
dataset into five balanced sub-datasets. We suppose that each vehicle is working only with
its dataset without knowing each other. Table 1 summarizes the list of phases and steps.

4.1. Phase 1: Local Training

During the first step of this phase, each vehicle trains locally using four different models:
Support vector machines (SVMs), Random Forest (RF), Näıve Bayesian (NB), and k-nearest
neighbors’ algorithm (KNN) algorithm. The models are trained only on the local dataset
issued from the initial VeReMi dataset. In the second step, each vehicle extracts the decision
parameters belonging to each model and sends them securely to the blockchain.
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Figure 3: In the proposed framework steps 1 to 8 on the right side of the figure describe the list of tasks from
executing ML locally, , followed by the aggregation and the improvement process, and finally, the sharing
of final results.

The decision function for each model, which is based on the entered vector of features,
and the list of parameters for each model and can be described by the following equation:

DFmodel(vi, pi) =

{
1 : Abormal behavior
-1 : Normal behavior

Where:
model = {SVM,KNN,NB or RF}
v i: Thefeaturesoftheenteredvector
p i: Thedecisionparametersofthemodel

4.2. Phase 2: Aggregate Model

This phase is performed at the blockchain level and consists of two steps. In step 3, the
aggregation of decision parameters is done for each model. In step 4, the newly updated
decision parameters are sent back to each vehicle.

4.3. Phase 3: Update Training Models

During this phase, in step 5, each vehicle updates its decision parameters depending
on the received values from the previous step. If the results of the predictions are not
satisfactory (step 6), then the vehicles can go to step 7 by sending a request sent to the
blockchain to improve the aggregation strategies.

11



Table 1: The proposed framework’s phases and steps.

Level Phase Step Step description

Vehicle level Phase1
Step 1 Each vehicle executes ML locally
Step 2 Send decision parameters to BC.

Blockchain level Phase 2
Step 3 Aggregate models.
Step 4 Send updated models to vehicles.

Vehicle level
Phase 3

Step 5 Update decision parameters

Step 6
Compare (1) and (5). If the results

are not satisfactory, go to (7).

Phase 4
Step 7 Request improvement of aggregation strategies.

Blockchain level Step 8
If the request is accepted, then

update the aggregation strategy and go to (3).

4.4. Phase 4: Improve Models

This optional phase is optional and is executed only in the case of non-satisfactory
classification results in the previous phase. Many possible actions can be taken to improve
the aggregation strategy, such as excluding some vehicles that appear to be fraudsters. This
can be decided if the decision parameters are not close to other vehicles’ parameters. The
degree of closeness can be defined depending on the deviation compared to mean values.

5. Experiment and results

In this section, we present the experimental study and the evaluation of the results.
Finally, we discuss the obtained results.

5.1. Dataset Description

The VeReMi dataset is available in (72). In Table 2, we outline the different types of
attacks and faults in this dataset.

5.2. Evaluation Parameters and Environment Setup

In this subsection, we describe the environment of simulation and different versions of
the used systems. Next, we outline the parameters of evaluation.

5.2.1. Environment Setup

The environment setup and different system version are given in Table 3.

5.3. Evaluation Parameters

Accuracy: describes a ratio of correctly predicted attacks among all attacks. Accuracy
is defined by the following equation:

Accuracy =
TP + TN

TP + FP + FN + TN
(2)
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Table 2: Cyberthreats in VeReMi dataset.
ID Cyberthreats Type Description

1 Constant position
Fault

The vehicle broadcasts a defective constant position (X,Y ).
Every time a new faulty node is introduced, the fixed
values are discarded.

2 Constant position offset Fault The vehicle broadcasts its true position with coordinates (X, Y )

15 Constant speed Fault The vehicle broadcasts a defective constant speed controller.

16 Constant speed offset Fault
The vehicle broadcasts a defective restricted number
of random positions.

3 Random position Fault
The vehicle broadcasts a defective restricted number of
random positions.

4 Random position offset Fault With a small random offset, the vehicle diffuses its true position.

18 Random speed Fault The vehicle broadcasts a malfunctioning limited random speed.

19 Random speed offset Fault The vehicle broadcast its real speed with a limited random offset.

17 Delayed messages Attack
The vehicle sends out the right messages; however, they are
sent out following a delay (t).

13 Eventual Stop Attack
The malicious node disseminates a fixed position and a null speed,
simulating an abrupt stop.

5 DoS Attack
The car sends messages at a higher rate than what is specified in
IEEE or ETSI standards. As a result of the overhead on the
transmission channel, other cars may be unable to use it.

6 Dos Random Attack
The vehicle launches a DoS attack while also generating random
data for all V2X messages.

7 DoS random Sybil Attack
To avoid detection, the attacker does a DoS Random by changing
her identity in any forward message.

10 Disruptive Attack
The malicious vehicle replicates previously received communications
that were sent by a random neighbor. This may prevent real messages
from being broadcast and cause the network to become overburdened.

12 DoS disruptive Attack At the same time, the attacker launches DoS and disruptive attacks.

11 DoS disruptive Sybil Attack
The malicious vehicle launches a Dos Disruptive assault while also
changing its identity in all forwarding data.

8 Data Replay Attack
The attacker delivers the previously received data to a distinct
destination neighbor. The attacker’s certificate is used to
sign this message.

9 Data Replay Sybil Attack
The attacker uses a Data Replay attack, changing their pseudonym on
each new destination.

Precision: shows the ratio of correctly predicted positive attacks among the total pre-
dicted positive attacks. A high precision relates to the low false-positive rate. It is defined
by the following equation:

Precision =
TP

TP + FP
(3)

Recall, also called sensitivity: describes the ratio of correctly predicted positive
attacks to all attacks in the actual class. It is defined by the following equation:
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Table 3: Environment setup.

OS Windows 10
CPU i7-7500U CPU @ 2.70GHz
RAM 8 GB

Language Python and Solidity
Compiler of Solidity Solc 0.5.16
Test Framework Truffle 5.0.5
Local Ethereum Ganache v 5.4

Recall =
TP

TP + FN
(4)

F1-score describes the weighted average of Precision and Recall. It is defined by the
following equation:

F1Score =
2 ∗ (Recall ∗ Precision)

(Recall + Precision)
(5)

6. Results Discussion

The machine learning (ML) results that were executed on the whole VeReMi dataset are
taken directly from (73). The results of our contribution are called Federated Learning (FL)
results. The levels of accuracy are shown in Figure 4. The best accuracy for FL is provided
by SVM with (82.45%). This accuracy level was (88.38%) with an ML approach. The use of
the FL approach is very beneficial in terms of privacy preservation; however, it can decrease
the level of accuracy due to the distrusted behavior of FL. In this case, the rate of accuracy
reduction is (5.93%). The decrease in levels of accuracy is (7.68%) for KNN, (6.85%) for
NB, and (10.83%) for RF.

Figures 5 outlines the precisions results of ML approach compared to our FL approach.
The precision shows the rate of detected true attack. The best level of precision in our
approach is provided again by SVM at (91.02%). However, this precision level is (5.4%)
less than that of ML approach. This decrease is due to the choice of favoring the privacy
preservation. The decrease in level of precision is 8.22% for KNN, 8.36% for NB, and 6.72%
for RF.

Figure 6 shows the recall result of ML approach compared to our FL approach.
Figure 7 outlines the F1-score results. According to these results, we can see that there

are no big differences between FL and ML. Recall and F1-score are almost for SVM in both
approaches. for other models, the maximum difference is (1.57%) for RF. These results show
that the loss in recall and f1-score are very acceptable compared to the advantage of our
method with is essentially the privacy preservation.

The curve shown in Figure 8 outlines amount of gas to execute aggregation methods
for each model. The amount of gas is linked to the number of instructions executed for
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Figure 4: Comparison of Accuracy between ML approach anf the developed FL approach.

Figure 5: Precisions results of ML approach compared to our FL approach.

each model. This final result is needed in case of similarity in the previous performance of
accuracy. The consumed gas can be used to select the best model to apply when the level of
accuracy or precision is almost the same. In this case, it is preferable to apply a model that
minimizes gas consumption. We can see that SVM is the lowest model in terms of consumed
gas with only (5.2 gwei) while KNN is the highest model in terms of gas consumed reaching
10.1 gwei.

Figure 9 describes the elapsed time for aggregation according to the model. We can see
that times results are confirm consumed energy results. Elapsed time can vary depending
on the processing capacity of the machine where the simulation is one. The best time is
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Figure 6: Recall results of ML approach compared to our FL approach.

Figure 7: F1-score results of ML approach compared to our FL approach.
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Figure 8: Consumed gas in (gwei) for aggregations according to models.

achieved by SVM with less than 0.2 seconds while KNN takes the longest time.

Figure 9: Elapsed time in (seconds) for aggregations according to models.
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7. Conclusion

This paper developed a framework based on Federated Learning (FL) used to preserve
vehicles’ privacy and blockchain that ensured the safety of the aggregation strategy and data
integrity. The classification models (SVM, KNN, NB, RF) were applied to VANET and
ITS cyber-threats detection and executed locally on vehicles. Subsequently, we aggregated
the models on the blockchain and returned them to vehicles. In comparison to previous
studies that applied centralized ML on the same dataset, our approach was demonstrated
to decrease precision and accuracy by 7.1% on average while maintaining the F1 score and
the recall. The developed solution ensures the privacy preservation of vehicles whereas
blockchain guarantees the safety of aggregation technique and a low consumption of gas.
Future research should improve the definition of the most appropriate aggregation strategies
and the selection of vehicles for participating in the federated learning process while removing
malicious ones. It is critical to assess the behavior of the vehicle in a prepossessing phase
by classifying the vehicles before including them in the FL process.
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