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TOWARDS VAN DER WAERDEN’S CONJECTURE

SAM CHOW AND RAINER DIETMANN

Abstract. How often is a quintic polynomial solvable by radicals? We establish that the
number of such polynomials, monic and irreducible with integer coefficients in [−H,H],
is O(H3.91). More generally, we show that if n > 3 and n /∈ {7, 8, 10} then there are
O(Hn−1.017) monic, irreducible polynomials of degree n with integer coefficients in [−H,H]
and Galois group not containing An. Save for the alternating group and degrees 7, 8, 10,
this establishes a 1936 conjecture of van der Waerden.

1. Introduction

1.1. Counting solvable quintics. By the Abel–Ruffini theorem, there are integer quintic
polynomials that cannot be solved by radicals. But how often is a quintic polynomial solvable
by radicals?

Let H be a large, positive real number. In this article, one objective is to count monic,
irreducible quintic polynomials

f(X) = X5 + aX4 + bX3 + cX2 + dX + e (1.1)

that are solvable by radicals, where a, b, c, d, e ∈ Z ∩ [−H,H], denoting their number by
N(H). It follows from a more general result [23, Theorem 1] that N(H) �ε H

ε+25/6, and
we are able to improve upon this.

Theorem 1.1. We have

N(H)�ε H
ε+7/2+1/

√
6 6 H3.91.

We will see that H4 is a significant threshold.

The Galois group of a separable polynomial is the automorphism group of its splitting
field [21, §6.3]. An irreducible polynomial is solvable by radicals if and only if its Galois
group is a solvable group. In this way, the question posed can be viewed through the lens of
enumerative Galois theory, a topic in arithmetic statistics concerned with the frequency of
Galois groups of polynomials or number fields.

Enumerative Galois theory for polynomials has a long history. It follows from Hilbert’s
irreducibility theorem [31] that the number En(H) of monic, irreducible, non-Sn integer
polynomials with coefficients in [−H,H] is o(Hn) as H → ∞. In 1936, van der Waerden
showed that

En(H)�n H
n−1/(6(n−2) log logH),

and conjectured that En(H) = o(Rn(H)) as H →∞, where Rn(H) counts reducible polyno-
mials [45]. We know that if n > 3 then

Rn(H) = cnH
n−1 +O(Hn−2(logH)2),

where cn is a positive constant, see [13] and [15, Appendix B]. Thus, van der Waerden’s
conjecture can be equivalently stated as follows.
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2 SAM CHOW AND RAINER DIETMANN

Conjecture 1.2 (van der Waerden 1936). For n > 3, we have

En(H) = o(Hn−1) as H →∞.

Remark 1.3. Since the initial release of this manuscript, Bhargava has resolved a weak form
of van der Waerden’s conjecture [5], namely that En(H) �n Hn−1. The present article
concerns a stronger form of the conjecture, that En(H) = o(Hn−1). Van der Waerden [45]
wrote that “Es scheint nämlich, daß die irreduziblen Polynome mit Affekt noch erheblich
seltener sind als die reduziblen Polynome”, speculating that irreducible non-Sn polynomials
are substantially rarer than reducible polynomials.

In [24], the second named author showed that if n > 3 then

En(H)�n,ε H
ε+n−2+

√
2,

breaking a record previously held by van der Waerden [45], Knobloch [33], Gallagher [27]
and Zywina [49]. Recently, we settled the cubic and quartic cases of van der Waerden’s
conjecture.

Theorem 1.4 (From [15]). Van der Waerden’s conjecture holds for n = 3 and n = 4.
Moreover, we have

H � E3(H)�ε H
ε+3/2, H2(logH)2 � E4(H)� Hε+5/2+1/

√
6 � H2.91

S. Xiao [48] was able to prove a stronger bound in the cubic case, namely E3(H)� H(logH)2.

More generally, how often does each group occur as the Galois group of a polynomial of
a fixed degree n > 3? For G 6 Sn, let us write NG,n = NG,n(H) for the number of monic,
irreducible, integer polynomials, with coefficients bounded by H in absolute value, whose
Galois group is conjugate to G. The second named author showed in [23] that

NG,n �n,ε H
ε+n−1+1/[Sn:G]. (1.2)

The Galois group Gf of an irreducible polynomial f acts transitively on its roots [21,
Proposition 6.3.7], that is, it is a transitive subgroup of Sn. This greatly limits the number
of possibilities for the conjugacy class of Gf . For example, in the case n = 5 of quintic
polynomials, the transitive subgroups of S5 are:

• S5, the full symmetric group on five elements, which has order 120 and is insolvable;
• A5, the alternating group, which has order 60 and is insolvable;
• AGL(1,F5), the general affine group, which has order 20 and is solvable;
• D5, the dihedral group of order 10, which is solvable; and
• C5, the cyclic group of order 5, which is solvable.

As S5 and A5 are the only transitive subgroups of S5 that are insolvable, Theorem 1.1 makes
progress towards the quintic case of van der Waerden’s conjecture. It implies that

NAGL(1,F5),5 +ND5,5 +NC5,5 = N(H)� H3.91 = o(H4) (1.3)

so, for the quintic case of van der Waerden’s conjecture, only A5 remains. This is to say that
we have the following consequence of Theorem 1.1.

Corollary 1.5. If NA5,5 = o(H4) then van der Waerden’s conjecture holds for n = 5.

For s, t ∈ Z, the de Moivre quintic

X5 + 5sX3 + 5s2X + t
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has Galois group AGL(1,F5) whenever it is irreducible, see [21, Example 13.2.10]. It now
follows from Eisenstein’s criterion that

NAGL(1,F5),5 � H3/2.

As AGL(1,F5) is solvable, we thus obtain the following lower bound to complement the
upper bound in Theorem 1.1.

Corollary 1.6. We have
N(H)� H3/2.

1.2. Sextic and higher-degree polynomials. Save for the alternating group, we are able
to prove van der Waerden’s conjecture in any degree except for 7, 8, 10. Here is our main
theorem.

Theorem 1.7 (Main Theorem). If n > 3 and n /∈ {7, 8, 10} then there are O(Hn−1.017)
monic, irreducible polynomials of degree n with integer coefficients in [−H,H] and Galois
group not containing An.

Corollary 1.8. Let n > 3 with n /∈ {7, 8, 10}, and suppose NAn,n = o(Hn−1) as H → ∞.
Then van der Waerden’s conjecture holds in degree n.

When n = 9 or n > 11, we reach Theorem 1.7 via the index of G.

Theorem 1.9. Let n = 9 or n > 11, let G be a transitive subgroup of Sn that does not
contain An, and put d = [Sn : G]. Then d > 240, and

NG,n �n,ε H
n+ε−3/2+3d−1/3

6 Hn−1.017.

In the sextic case, we have the following estimates.

Theorem 1.10. Let G be a transitive subgroup of S6 that does not contain A6. Then

NG,6 �ε H
ε+9/2+1/

√
6 6 H4.91.

Moreover, if G is solvable then

NG,6 �ε H
ε+9/2+1/

√
10 6 H4.82.

Corollary 1.11. There are O(H4.82) monic, irreducible, solvable sextic polynomials with
integer coefficients in [−H,H].

Note that Theorem 1.7 follows from Theorems 1.1, 1.4, 1.9 and 1.10. We can also handle
proper subgroups of the alternating group, exploiting the additional information that the
discriminant is a square.

Theorem 1.12. Let n > 3 with

n /∈ {u2, u2 + 1} (u ∈ N odd). (1.4)

Let G be a proper, transitive subgroup of An, and put d = [Sn : G]. Then d > 6 and

NG,n �n,ε H
ε+n−3/2+1/

√
d 6 Hn−1.09.

In particular, the theorem applies when n ∈ {7, 8}. For each n ∈ {7, 8, 10}, these being the
exceptional degrees in Theorem 1.7, this leaves just one conjugacy class of G not containing
An for which we do not know that NG = o(Hn−1). These are called 7T4, 8T47 and 10T43,
see the tables of Butler and McKay [12]. It is probable that the condition (1.4) can be
removed through further reasoning, see [25, §6].

1.3. Methods. We approach the problem from the perspective of diophantine equations.
Recall that cubic and quartic polynomials were treated in [15].
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1.3.1. Quintic polynomials. We begin by introducing a standard invariant ∆ = ∆f of a
monic quintic polynomial f , the discriminant, and a standard auxiliary polynomial θ = θf ,
the sextic resolvent. If f is solvable, then θ has a rational root [21, Corollary 13.2.11], which
must in fact be an integer as a consequence of f being monic. By introducing this root y as an
additional variable, we obtain a diophantine equation. If f has coefficients in [−H,H], then
we will see that y � H2. With the coefficients as in (1.1) we show that, for generic a, b, c,
the vanishing of θ(a, b, c, d, e, y) defines an absolutely irreducible surface in A3

d,e,y containing
no rational lines. We need to count integer points on this surface, bounded by a rectangle
of dimensions 2H, 2H,O(H2), uniformly in a, b, c. We achieve this using the determinant
method. Pioneered by Bombieri and Pila who studied planar curves [8], this has seen a
number of developments over the years, and enables us to cover the overwhelming majority
of these integer points by a relatively small number of curves, which eventually turns out
to be decisive. Specifically, we use Browning’s version [10, Lemma 1], which relies on deep
work of Salberger, see Theorem 2.5.

1.3.2. Sextic polynomials. We approach sextic polynomials in much the same way as we
approach quintic polynomials. The resolvents are much more complicated, to the extent
that they are inconvenient to print in expanded form. We computed and manipulated them
using the software Mathematica [46]. The case of insolvable sextics is more demanding both
technically and computationally; one of the steps is to show that our surfaces generically
lack certain low-degree curves.

1.3.3. Higher-degree polynomials. In this case we have general resolvents ΦG from [23] and
[14]. If the Galois group is G, then ΦG has an integer root, which we introduce as an
extra variable to obtain a diophantine equation in y and the coefficients of f . Fixing all
but three of the coefficients of f generically furnishes an absolutely irreducible threefold.
We can cover its integer points up to height H by a relatively small number of surfaces,
using a determinant method result of Heath-Brown’s [30, Theorem 15]. A result of Pila’s
[38] enables us to efficiently count integer points on an irreducible component of such a
surface, unless it happens to be linear. The latter scenario concerns a two-parameter family
of polynomials, whose Galois theory can be understood over the two-parameter function field
using the framework developed by Uchida [44], J. H. Smith [42] and S. D. Cohen [17, 18].
Refining the separable resolvent theory of [14], we are led to the problem of counting integer
points on an irreducible, high-degree surface in a lopsided box. We complete the proof by
establishing a lopsided version of Pila’s theorem [38] in a special case. To achieve the latter
we first establish an almost-uniform, quantitative version of Hilbert’s irreducibility theorem,
refining a case of [19, Theorem 2.1].

For the lopsided version version of Pila’s theorem and for the almost-uniform, quantitative
version of Hilbert’s irreducibility theorem, see §6. For Galois theory over two-parameter
function fields, we find that the Galois group of

f(X) = G0(X) + aG1(X) + bG2(X)

over C(a, b) is Sn in the following two new cases, assuming that f is irreducible over Q(a, b),
for any n > 6, any α, β, γ ∈ Q and any a1, . . . , an−3 ∈ Z for which we have (7.3):

(i)

G0(X) = Xn + a1X
n−1 + · · ·+ an−3X

3 − α, G1(X) = X2 − β, G2(X) = X − γ

(ii)

G0(X) = Xn + a1X
n−1 + · · ·+ an−3X

3 − α, G1(X) = X2 − β, G2(X) = 1.
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1.4. Variants. Enumerative Galois theory for number fields is another thriving area of
research, and one that is closely related to enumerative Galois theory for polynomials
[34, 36, 47]. There are some subtle differences between the two types of problem, for in-
stance Bhargava [4] famously showed that a positive proportion of quartic fields fail to have
full Galois group S4. One can also try to relax the condition of the polynomial being monic,
equivalently counting binary forms. Different heights can be considered, for example heights
that respect linear transformations, or that are more compatible with other arithmetic sta-
tistics such as number fields, class groups, and ranks of elliptic curves [6, 7, 47, 48]. More
general probability distributions for the coefficients have been considered in [37]. Recently
there have been substantial developments in the problem with small coefficients and large
degree [1, 2, 9]. There have also been some nice results on the distribution of Galois groups
of characteristic polynomials of matrices [26, 32, 39].

1.5. Organisation. We discuss finer aspects of the methods in §2. We prove Theorem 1.1
in §3. In §4, we discuss the role of separable resolvents, and extend the existing work [14, 23]
on this topic. Theorem 1.10 is proved in §5. In §6, we establish an almost-uniform version of
Hilbert’s irreducibility theorem and a lopsided version of Pila’s theorem, as well as making
preparations for Galois theory over two-parameter function fields. Then, in §7, we establish
Theorem 1.9. Finally, in §8, we prove Theorem 1.12.

1.6. Notation. We adopt the convention that ε denotes an arbitrarily small positive con-
stant, whose value is allowed to change between occurrences. We use the Vinogradov and
Bachmann–Landau notations throughout, the implicit constants being allowed to depend on
ε. Throughout H denotes a positive real number, sufficiently large in terms of ε. If F is a
polynomial with complex coefficients then |F | is the greatest absolute value of its coefficients.

1.7. Funding and acknowledgements. SC was supported by EPSRC Fellowship Grant
EP/S00226X/2, and by the Swedish Research Council under grant no. 2016-06596. We thank
an anonymous referee for detailed feedback, and Bijay Bhatta for drawing our attention to
a significant typo.

2. Further discussion of the methods

2.1. Resolvents. Let

f(X) = Xn + a1X
n−1 + · · ·+ an ∈ Z[X].

A resolvent is an auxiliary polynomial Φ(Y ) whose factorisation type provides information
about the Galois group of f . The resolvents that we use in this manuscript have a specific
property; to a transitive subgroup G of Sn, we associate Φ = ΦG such that if Gf 6 G then Φ
has a root y ∈ Z. To show that the condition Gf 6 G is unlikely, we count integer solutions
to

Φ(y; a1, . . . , an) = 0, (2.1)

subject to size constraints. For us, these constraints always have the shape

|a1|, . . . , |an| 6 H, y � HO(1).

2.2. The determinant method. The next step is to fix all but two or three of the variables
a1, . . . , an in some generic way, so that the resulting surface or threefold is absolutely irre-
ducible. This simplifies our problem substantially, but on the other hand its coefficients are
now of size HO(1) instead of being constant. The determinant method is a versatile approach
to counting integer points on varieties, with good uniformity in the coefficients. This makes
it an ideal weapon for our approach.

The archetypal application of the determinant method is the following theorem [8].
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Theorem 2.1 (Bombieri–Pila 1989). Let C be an absolutely irreducible algebraic curve of
degree d > 2 in R2. Then the number of integer points in C ∩ [−H,H]2 is Od,ε(H

ε+1/d).

We use this and its lopsided generalisation, as stated in [23, Lemma 8]. This was essentially
given by Browning and Heath-Brown [11], however a short argument has been incorporated
in order to relax the absolute irreducibility requirement to irreducibility over Q.

Theorem 2.2 (Lopsided Bombieri–Pila). Let F ∈ Z[x1, x2] be irreducible over Q and have
degree d ∈ N. Further, let B1, B2 > 1, and define

N(F ;B1, B2) = #{x ∈ Z2 : F (x) = 0, |xi| 6 Bi (1 6 i 6 2)}.
Put

T = max {Be1
1 B

e2
2 } ,

where the maximum is taken over all (e1, e2) ∈ Z2
>0 for which xe11 x

e2
2 occurs in F (x) with

non-zero coefficient. Then

N(F ;B1, B2)�d,ε T
ε exp

(
logB1 · logB2

log T

)
.

Pila [38] subsequently generalised Theorem 2.1.

Theorem 2.3 (Pila 1995, special case). Let N > 2 be an integer, and let V be an irreducible
affine hypersurface in RN of degree d > 2. Then the number of integer points in V ∩[−H,H]N

is ON,d,ε(H
N−2+ε+1/d).

We establish a lopsided variant of this, see Theorem 6.3, which we use in our proof of
Theorem 1.9.

A key idea in the determinant method is to cover the integer points on a variety by lower-
dimensional varieties. A famous result of this type is Heath-Brown’s [30, Theorem 15], which
is also lopsided.

Theorem 2.4 (Heath-Brown 2006). Let N > 2 be an integer. Suppose F (x1, . . . , xN) ∈ Z[x]
defines an absolutely irreducible hypersurface of degree d ∈ N. Let B1, . . . , BN > 1. Put

T = max

{∏
i6N

Bei
i

}
,

where the maximum is taken over all (e1, ..., eN) ∈ ZN>0 for which xe11 · · ·x
eN
N occurs in F (x)

with non-zero coefficient. Then there exist g1, . . . , gJ ∈ Z[x], each coprime to F and of degree
ON,d,ε(1), where

J �N,d,ε T
ε exp

{
(N − 1)

(∏
logBi

log T

)1/(N−1)
}

(log |F |)2N−3,

such that if x ∈ ([−B1, B1] ∩ Z) × · · · × [−BN , BN ] ∩ Z) and F (x) = 0 then gj(x) = 0 for
some j.

Note that T will be larger, and the bound on J stronger, if d is large. This is the case for
our resolvents when n is large, and so we apply Theorem 2.4 with N = 4 in our proof of
Theorem 1.9. We will find that |F | � HO(1) in our applications, and it is essential that we
have a bound of this flavour.

In the case N = 3 of surfaces, the factor of N − 1 can be removed at the expense of
introducing a small exceptional set, using Salberger’s rather sophisticated adelic machinery.
The mild dependence on |F | can also be removed in this case. Such a result was formulated
by Browning in [10, Lemma 1].
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Theorem 2.5 (Browning 2011). Suppose F (x1, x2, x3) ∈ Z[x] defines an absolutely irre-
ducible surface of degree d ∈ N, and let B1, B2, B3 > 1. Put

T = max {Be1
1 B

e2
2 B

e3
3 } ,

where the maximum is taken over all (e1, e2, e3) ∈ Z3
>0 for which xe11 x

e2
2 x

e3
3 occurs in F (x)

with non-zero coefficient, and also put

V3 = exp

{(
logB1 · logB2 · logB3

log T

)1/2
}
.

Then there exist g1, . . . , gJ ∈ Z[x] and Z ⊂ Z3, with

J �d,ε T
εV3, |Z| �d,ε T

εV 2
3 ,

such that the following hold:

(i) Each gj is coprime to F and has degree Od,ε(1);
(ii) If x ∈ ([−B1, B1] ∩ Z) × ([−B2, B2] ∩ Z) × ([−B3, B3] ∩ Z) \ Z and F (x) = 0 then

gj(x) = 0 for some j.

It remains an open problem to achieve such a refinement for larger N . In particular, our
methods would be more effective if we had it in the case N = 4 of threefolds.

As mentioned, uniformity in the coefficients is a key strength of the determinant method.
We close this subsection with a brief discussion of the level of uniformity required for our
arguments to succeed. Observe that a factor of (log |F |)2N−3 appears in Theorem 2.4. Con-
sequently, we require that

log |F | � Hε.

As discussed, we will see that we have |F | � HO(1) in practice, which is even stronger.

2.3. Covering integer points on surfaces by curves. We use an assortment of resolvents
in the cases n = 5 and n = 6. Importantly, these are computationally tractable, in that
we can manipulate the coefficients using mathematical software. To fix ideas, we focus our
discussion on the case n = 5 of solvable quintics. We write our polynomial as

f(X) = X5 + aX4 + bX3 + cX2 + dX + e,

and we recall the sextic resolvent θ from §1.3.1. We need to count integer solutions to

θ(y; a, b, c, d, e) = 0

with a, b, c, d, e� H and y � H2. The idea is to fix a, b, c such that the vanishing of

g(d, e, y) = θ(y; a, b, c, d, e)

defines an absolutely irreducible affine surface Ya,b,c. We can show that this condition is
generic, in a strong quantitative sense.

Theorem 2.5 enables us to cover the integer points of controlled height on Ya,b,c by a small
number of curves, up to a small set of exceptional points. Such a curve has the form

g(d, e, y) = h(d, e, y) = 0,

for some polynomial h that is coprime to g. By elimination theory, we can work with an
irreducible planar curve C1 given by F (d, e) = 0.
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2.3.1. Rational lines. At this stage there is a marked dichotomy. If C1 is a line, then it can
contain roughly H integer points up to height H, and the basic strategy of counting points
on C1 is inadequate. If, however, the curve C1 is non-linear, then Theorem 2.2 would assure
us that it contains O(Hε+1/2) integer points up to height H.

If C1 is a line, then we can use its equation to obtain a planar curve C2 in y and one
of the other variables, and we may assume that C2 is irreducible. If C2 is non-linear, then
Theorem 2.2 delivers a satisfactory count. If C2 is linear, then the linear equations defining
C1 and C2 entail that Ya,b,c contains a rational line. For generic a, b, c, we can show that the
surface Ya,b,c does not contain a rational line, by comparing coefficients. However, this step is
computer-assisted, so we are unable to carry it out if n is large. Thus, Theorem 1.9 requires
an alternate strategy.

2.4. Covering integer points on threefolds by surfaces. For larger values of n, we use
a more general resolvent Φ, and we need to count integer solutions to

Φ(y; a1, . . . , an) = 0

with a1, . . . , an � H and y � HC , where C = On(1). The idea is to fix a1, . . . , an−3 such
that the equation

Φ(y; a1, . . . , an−3, a, b, c) = 0

defines an absolutely irreducible affine threefold Y = Ya1,...,an−3 . We can show that the latter
condition is generic. Theorem 2.4 enables us to cover the integer points of controlled height
on Y by a small number of surfaces.

We initially follow the approach of §2.3, giving F(a, b, c) = 0 for some irreducible polyno-
mial F of bounded degree. Theorem 2.3 yields

#{(a, b, c) ∈ (Z ∩ [−H,H])3} � Hε+3/2,

unless F is linear. If F is linear then this count can be as large as H2, so a further idea is
needed.

2.4.1. Two-parameter function fields. Using the linear equation F = 0, we can write our
original polynomial in the form

f(X) = G0(X) + aG1(X) + bG2(X),

for some a, b ∈ Z and some polynomials G0, G1, G2. Using the aforementioned framework of
Uchida, Smith, and Cohen, we can show that

Gal(f,C(a, b)) = Sn.

This requires a two-parameter linear family of polynomials, which is why we initially fixed
all but three of the variables a1, . . . , an, instead of all but two. We then have

Gal(f,Q(a, b)) = Sn.

Using resolvents, we can finally deduce that a generic polynomial in this two-parameter
linear family has Galois group Sn.

2.5. Comparing the two approaches. As discussed, the method of §2.3 fails for higher
degrees because of its machine dependence. To see why the strategy of §2.4 fails for lower de-
grees, we return to the points made in §2.2. Heath-Brown’s Theorem 2.4 incurs an additional
factor of N − 1 = 3 in the exponent, and will only prevail for us if the index d = [Sn : G] is
large. If G does not contain An and n > 12, for instance, then we know from [23, Lemma 3]
that d > 462. This is why the method of §2.4 is more effective when the degree is large.
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3. Counting solvable quintics

3.1. The sextic resolvent. In this subsection, we introduce the basic objects and defini-
tions needed for Theorem 1.1. The discriminant of f given by (1.1) is an octic polynomial
in a, b, c, d, e, explicitly given by

∆ = 256a5e3 − 192a4bde2 − 128a4c2e2 + 144a4cd2e− 27a4d4 + 144a3b2ce2 − 6a3b2d2e− 80a3bc2de + 18a3bcd3

− 1600a3be3 + 16a3c4e− 4a3c3d2 + 160a3cde2 − 36a3d3e− 27a2b4e2 + 18a2b3cde− 4a2b3d3 − 4a2b2c3e

+ a2b2c2d2 + 1020a2b2de2 + 560a2bc2e2 − 746a2bcd2e + 144a2bd4 + 24a2c3de− 6a2c2d3 + 2000a2ce3 − 50a2d2e2

− 630ab3ce2 + 24ab3d2e + 356ab2c2de− 80ab2cd3 + 2250ab2e3 − 72abc4e + 18abc3d2 − 2050abcde2 + 160abd3e

− 900ac3e2 + 1020ac2d2e− 192acd4 − 2500ade3 + 108b5e2 − 72b4cde + 16b4d3 + 16b3c3e− 4b3c2d2 − 900b3de2

+ 825b2c2e2 + 560b2cd2e− 128b2d4 − 630bc3de + 144bc2d3 − 3750bce3 + 2000bd2e2 + 108c5e− 27c4d2

+ 2250c2de2 − 1600cd3e + 256d5 + 3125e4.

Denote by θ the sextic resolvent [21, Chapter 13], explicitly given by

θ(y) = θ(a, b, c, d, e, y) = (y3 +B2y
2 +B4y +B6)

2 − 210∆y,

where

B2 = 8ac− 3b2 − 20d,

B4 = 3b4 − 16ab2c+ 16a2c2 + 16bc2 + 16a2bd− 8b2d

− 112acd+ 240d2 − 64a3e+ 240abe− 400ce,

and

B6 = 8ab4c− b6 − 16a2b2c2 − 16b3c2 + 64abc3 − 64c4 − 16a2b3d+ 28b4d+ 64a3bcd

− 112ab2cd− 128a2c2d+ 224bc2d− 64a4d2 + 224a2bd2 − 176b2d2 − 64acd2 + 320d3

+ 48ab3e− 192a2bce− 80b2ce+ 640ac2e+ 384a3de− 640abde− 1600cde

− 1600a2e2 + 4000be2.

This is an integer polynomial that is sextic in y. If

a, b, c, d, e ∈ Z, |a|, |b|, |c|, |d|, |e| 6 H,

and Gf is solvable, then θ has an integer root y. Then y � H2, for if |y| > CH2 for a large
constant C then

y6 � ∆|y| � H8|y|,

contradicting that |y| > CH2.
To estimate the number of integers solutions to θ(a, b, c, d, e, y) = 0 with a, b, c, d, e � H

and y � H2, we begin by choosing a, b, c � H. The vanishing of θ(a, b, c, d, e, y) then cuts
out an affine surface Ya,b,c. A heuristic application of the determinant method, cf. [15, §5],

suggests that we should eventually conclude that there are O(Hε+7/2+1/
√
6) solutions. In

order to formalise this, there are two types of triples (a, b, c) to consider. The first is the
degenerate type, where Ya,b,c either contains a rational line or is not absolutely irreducible.
The second is the non-degenerate type, where Ya,b,c is absolutely irreducible and contains no
rational lines.

3.2. Non-degenerate triples. In this subsection, we show that there are O(Hε+7/2+1/
√
6)

integer quintuples (a, b, c, d, e) ∈ [−H,H]5 such that (a, b, c) is non-degenerate and f as given
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by (1.1) is irreducible and solvable. First choose a non-degenerate triple (a, b, c) in one of
O(H3) possible ways. Let

g(d, e, y) = y6 +
5∑
i=0

ci(d, e)y
i

be θ(a, b, c, d, e, y) specialised to values of a, b, c, so that Ya,b,c is defined by the vanishing of g.
With C a large, positive constant, invoking the determinant method enables us to essentially
cover

Ya,b,c ∩ ([−H,H] ∩ Z)2 × ([−CH2, CH2] ∩ Z)

by a controlled number of curves, with estimates that are uniform in a, b, c. By Theorem 2.5,

there exist g1, . . . , gJ ∈ Z[d, e, y], and Z = Za,b,c ⊂ Z3, with J � Hε+1/
√
6 and |Z| � Hε+2/

√
6,

such that the following hold:

(i) Each gj is coprime to g and has degree O(1);
(ii) If (d, e, y) ∈ Ya,b,c ∩ ([−H,H] ∩ Z)2 × ([−CH2, CH2] ∩ Z) \ Z then

g(d, e, y) = gj(d, e, y) = 0 (3.1)

for some j.

The total contribution from (a, b, c) non-degenerate and (d, e, y) ∈ Za,b,c is

O(H3+ε+2/
√
6)� Hε+7/2+1/

√
6,

so it remains to count solutions to (3.1), given j.
If degy(gj) = 0 then let F (d, e) = gj(d, e, y). Otherwise, let F (d, e) be the resultant of g

and gj in the variable y. By [22, Chapter 3, §6, Proposition 3], applied with k as the fraction
field of Z[d, e], this is a non-zero element of Z[d, e]. By [22, Chapter 3, §6, Proposition 5],
we have F (d, e) = 0 for any solution (d, e, y) to (3.1).

Observe that F (d, e) = 0 if and only if we have F(d, e) = 0 for some irreducible divisor
F(d, e) ∈ Q[d, e] of F (d, e). If F(d, e) is non-linear, then Theorem 2.2 gives

#{(d, e) ∈ (Z ∩ [−H,H])2 : F(d, e) = 0} � Hε+1/2.

Then y is determined by g(d, e, y) = 0 in at most six ways, so the number of solutions (d, e, y)

is O(Hε+1/2), and the contribution from this case is O(Hε+7/2+1/
√
6).

Suppose instead that F(d, e) is linear. Then

αd+ βe+ γ = 0,

for some (α, β, γ) ∈ (Q2 \ {(0, 0)}) × Q. If β 6= 0 then substitute e = −β−1(αd + γ) into
g(d, e, y) = 0, giving

y6 +
5∑
i=0

Pi(d)yi = 0, (3.2)

where
Pi(d) = ci(d,−β−1(αd+ γ)) ∈ Q[d] (0 6 i 6 5).

Factorise the left hand side of (3.2) over Q, and let P(d, y) ∈ Q[d, y] be an irreducible factor.
Note that P(d, y) is non-linear, for if it were linear then

P(d, y) = F(d, e) = 0

would define a rational linear subvariety of Ya,b,c, of dimension greater than or equal to 1,
contradicting the non-degeneracy of (a, b, c). Now Theorem 2.2 yields

#{(d, y) ∈ Z2 ∩ [−H,H]× [−CH2, CH2] : P(d, y) = 0} � Hε+2/D,

where C is a large, positive constant and D = max{degd(P), 2degy(P)} > 2.
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If D > 4 then the bound is adequate, so we may suppose that D ∈ {2, 3}, and in particular
degy(P) 6 1. As P(d, y) divides

y6 +
5∑
i=0

Pi(d)yi,

we infer that P(d, y) is a rational multiple of y − F (d), where F (d) ∈ Q[d] has degree 2 or
3. Thus, we may assume that

P(d, y) = y − F (d).

Next, write

(y − F (d))

(
y5 +

4∑
i=0

fi(d)yi

)
= y6 +

5∑
i=0

Pi(d)yi.

For i = 2, 4, 6, let
bi(d) = Bi(a, b, c, d,−β−1(αd+ γ)),

and also write
D(d) = 210∆(a, b, c, d,−β−1(αd+ γ)).

Now

(y − F (d))

(
y5 +

4∑
i=0

fi(d)yi

)
= (y3 + b2(d)y2 + b4(d)y + b6(d))2 −D(d)y.

Equating coefficients in y yields

f4(d)− F (d) = 2b2(d)

f3(d)− f4(d)F (d) = b2(d)2 + 2b4(d)

f2(d)− f3(d)F (d) = 2b2(d)b4(d) + 2b6(d)

f1(d)− f2(d)F (d) = b4(d)2 + 2b2(d)b6(d)

f0(d)− f1(d)F (d) = 2b4(d)b6(d)−D(d)

−f0(d)F (d) = b6(d)2.

As deg(F ) = D > 2 and deg(b2) = 1, we must have deg(f4) = D. As deg(b4) = 2, we must
then have deg(f3) = 2D. As deg(b6) = 3, we must then have deg(f2) = 3D, whereupon
deg(f1) = 4D. Finally, as deg(D) = 5, we obtain deg(f0) = 5D, contradicting the final
equation.

If instead β = 0, then we substitute d = −γ/α into g(d, e, y) = 0 and apply similar
reasoning. This time

bi(e) = Bi(a, b, c,−γ/α, e) (i = 2, 4, 6),

D(e) = 210∆(a, b, c,−γ/α, e),
and

deg(b2) 6 0, deg(b4) 6 1, deg(b6) 6 2, deg(D) = 4.

Then the argument of the β 6= 0 case carries through.

The upshot is that the contribution from (a, b, c) non-degenerate and (d, e, y) ∈ Ya,b,c\Za,b,c
is O(H3JHε+1/2) � H2ε+7/2+1/

√
6. Having also considered the case (d, e, y) ∈ Za,b,c, we

conclude that the total contribution from non-degenerate triples (a, b, c) is O(Hε+7/2+1/
√
6).

3.3. Degenerate triples. We now complete the proof of Theorem 1.1 by considering de-
generate triples.
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3.3.1. Lines on the surface. The idea is to show that, for generic a, b, c, the surface Ya,b,c
contains no rational lines. A rational line on Ya,b,c has one of the following parametrisations:

I. L = {(0, E ,Y) + t(1, E, Y ) : t ∈ Q}, for some E ,Y , E, Y ∈ Q;
II. L = {(D, 0,Y) + t(0, 1, Y ) : t ∈ Q}, for some D,Y , Y ∈ Q;

III. L = {(D, E , 0) + t(0, 0, 1) : t ∈ Q}, for some D, E ∈ Q.

Let g(d, e, y) be θ(a, b, c, d, e, y) specialised to the chosen values of a, b, c, so that Ya,b,c is
defined by the vanishing of g. In each case, we substitute the parametrisation of the line into
g(d, e, y) = 0 and expand it as a polynomial in t, and this has to be the zero polynomial.

In Case I, the polynomial has degree at most 6 in t, with sextic coefficient

(Y − 4)4(Y 2 − 24Y + 400),

so Y = 4. After substituting this, the polynomial has degree at most 5 in t, with quintic
coefficient

−20480(a− 5E)4,

so E = a/5. After substituting this, the polynomial has degree at most 4 in t, with quartic
coefficient

262144a8

125
− 524288a6b

25
+

393216a4b2

5
− 131072a2b3 + 81920b4.

Hence, there are O(H2) integer triples (a, b, c) ∈ [−H,H]3 such that Ya,b,c contains a rational
line of Type I.

In Case II, the polynomial has degree at most 6 in t, with sextic coefficient Y 6, so we must
have Y = 0. Substituting this, and using the ‘Eliminate’ command in Mathematica, we see
that the vanishing of the quartic, cubic, and quadratic coefficients determines an equation
P (a, b, c) = 0, where P ∈ Z[a, b, c] is non-trivial of degree O(1). Consequently, there are
O(H2) integer triples (a, b, c) ∈ [−H,H]3 such that Ya,b,c contains a rational line of Type II.

In Case III, the polynomial is monic and sextic, so Case III cannot occur. Having con-
sidered all cases, we conclude that there are O(H2) integer triples (a, b, c) ∈ [−H,H]3 such
that Ya,b,c contains a rational line.

3.3.2. Absolute irreducibility. The idea is to show that Ya,b,c is absolutely irreducible for
generic a, b, c. It is easy to verify that g(d, e, y) = θ(a, b, c, d, e, y) is sextic in d, e, y, irre-
spective of a, b, c. It then follows from classical theory [40, Chapter V, Theorem 2A] that
there exist integer polynomials p1(a, b, c), . . . , ps(a, b, c) ∈ Q[a, b, c] of degree O(1) such that
if a, b, c ∈ Q then

Ya,b,c is reducible over Q⇔ pi(a, b, c) = 0 (1 6 i 6 s).

The next lemma shows that pi is non-zero for some i.

Lemma 3.1. Y0,0,0 is absolutely irreducible.

Proof. The surface Y0,0,0 ⊂ A3
d,e,y is cut out by the vanishing of

g(d, e, y) = (y3 − 20dy2 + 240d2y + 320d3)2 − 1024(256d5 + 3125e4)y,

which is monic in y, so it suffices to show that g(1, e, y) is absolutely irreducible. Mathematica
assures us that

g(1, e, y) = 102400− 108544y − 3200000e4y + 44800y2 − 8960y3 + 880y4 − 40y5 + y6

is irreducible over Q. Moreover, its Newton polygon is the convex hull of (0, 0), (0, 1), (4, 1),
(0, 2), (0, 3),(0, 4),(0, 5),(0, 6), which has vertices (0, 0), (0, 6), (4, 1). The greatest common
divisor of 0, 0, 0, 6, 4, 1 is 1, so by [3, Proposition 3] we conclude that g(1, e, y) is absolutely
irreducible, as required. �
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Consequently, the triples (a, b, c) such that Ya,b,c is not absolutely irreducible are all zeros
of a fixed non-zero polynomial of bounded degree. In particular, there are O(H2) such integer
triples (a, b, c) ∈ [−H,H].

3.3.3. The sextic resolvent (reprise). In the previous two subsubsections, we showed that
there are O(H2) degenerate triples (a, b, c) ∈ [−H,H]. Let us now fix such a triple. Let
F (d, e;X) be f(a, b, c, d, e;X) specialised to our fixed values of the coefficients a, b, c. By [23,
Lemma 2], there are O(1) values of d ∈ Z for which F (d, e;X) ∈ Q(e)[X] has non-S5 Galois
group over Q(e), uniformly in a, b, c. The contribution to N(H) from these O(1) special
choices of d is O(H3), since there are O(H) possibilities for e.

For the other O(H) specialisations of d, the Galois group of F (d, e;X) ∈ Q(e)[X] is S5.
Having specialised d as well as a, b, c, we return to examine the sextic resolvent.

Lemma 3.2. Let a, b, c, d ∈ Z, and suppose that

Gal(X5 + aX4 + bX3 + cX2 + dX + e,Q(e)) = S5.

Then
h(e, y) := g(d, e, y) ∈ Z[e, y]

is irreducible over Q.

Proof. It follows from a generalisation of Hilbert’s irreducibility theorem [19, Theorem 2.1]
that for some e0 ∈ Z we have

Gal(X5 + aX4 + bX3 + cX2 + dX + e0,Q) = S5.

Now, by [21, Proposition 13.2.7], the sextic resolvent h(e0, y) ∈ Z[y] is irreducible over Q.
Let us write

h(e, y) = y6 + b1(e)y
5 + · · ·+ b6(e),

where b1(e), . . . , b6(e) ∈ Z[e], and suppose for a contradiction that h is reducible over Q.
Then

h(e, y) = (yk + c1(e)y
k−1 + · · ·+ ck(e))(y

6−k + d1(e)y
5−k + · · ·+ d6−k(e)) ∈ Q[e, y],

for some k ∈ {1, 2, 3, 4, 5} and some c1(e), . . . , ck(e), d1(e), . . . , d6−k(e) ∈ Q[e]. Now

h(e0, y) = (yk + c1(e0)y
k−1 + · · ·+ ck(e0))(y

6−k + d1(e0)y
5−k + · · ·+ d6−k(e0)),

contradicting the irreducibility of the univariate polynomial h(e0, y) over Q. �

As h(e, y) contains the monomial y6, Theorem 2.2 now gives

#{(e, y) ∈ Z2 : |e| 6 H, y � H2, h(e, y) = 0} � Hε+1/6.

These specialisations of d therefore contribute O(Hε+19/6) to N(H).
We conclude that there are O(Hε+19/6) quintuples (a, b, c, d, e) ∈ (Z ∩ [−H,H])5, with

(a, b, c) degenerate, such that f(a, b, c, d, e;X) ∈ Z[X] is solvable. This, coupled with the
conclusion of §3.2, completes the proof of Theorem 1.1.

4. Separable and irreducible resolvents

Let n > 3 be an integer, and let G be a proper subgroup of Sn. In the sequel, we fix a
total ordering of C, so that the Galois group of an irreducible polynomial

f(X) = Xn + a1X
n−1 + · · ·+ an−1X + an = (X − α1) · · · (X − αn) ∈ Z[X] (4.1)

is a well-defined subgroup of Sn, without any notion of equivalence.
A resolvent is an auxiliary polynomial whose factor type reveals information about the

Galois group of the original polynomial. As a consequence of [21, Proposition 13.2.7], the
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sextic resolvent that we saw in the previous section has the property of always being separa-
ble, as long as f is irreducible. It is easy to show that the quadratic resolvent y2−∆, where
∆ is the discrimant, is a resolvent for the alternating group that also has this property. So
too does the cubic resolvent of a quartic polynomial, which was used in [15], since a quartic
polynomial has the same discriminant as its cubic resolvent. In general, however, it is not
known whether an always separable resolvent exists for an arbitrary permutation group G.

Separability is a highly desirable property for a resolvent to have, see [21, §13.3]. It can
be used to prove converse results of the type that if the resolvent has a rational root then Gf

is conjugate to a subgroup of G. What we require here is stronger in a way, for example we
want that if Gf = Sn and the resolvent is separable then it is irreducible over the rationals.
Separable resolvents are two-way bridges between Galois theory and diophantine equations.
We hope that one day they will lead to Galois-theoretic Lefschetz principles, so that Cohen’s
p-adic machinery [17] can be brought to bear on the characteristic 0 setting. This article
and the earlier works [14, 23] develop a framework for navigating some of these issues.

If Gf = G then, by [23, Lemma 5], the polynomial

Φ(y) = Φ(y; a1, . . . , an) =
∏

σ∈Sn/G

(
y −

∑
τ∈G

∏
i6n

αiστ(i)

)
∈ Z[y; a1, . . . , an] (4.2)

has an integer root y. By [23, Lemma 1], if a1, . . . , an � H then

y =
∑
τ∈G

∏
i6n

αiστ(i) �n H
On(1) (4.3)

for some σ. We will see that the total degree of Φ is On(1).
The more general family of resolvents

Φw,e,g(y; a1, . . . , an) =
∏

σ∈Sn/G

(y − rw,e,g(σ)) ∈ Z[y; a1, . . . , an],

where

rw,e,g(σ) =
∑
k6|G|

wk
∑
τ∈G

∏
i6n

(αστ(i) + g)kei ,

w = (w1, . . . , w|G|) ∈ N|G|, e = (e1, . . . , en) ∈ Nn, and g ∈ Z, was introduced in [14]. Here
we establish some additional features, in particular with regards to uniformity.

Lemma 4.1. If Gf 6 G, then Ψ has an integer root y �n ‖w‖∞(H + |g|)On(‖e‖∞). Finally,
the total degree of Ψ is On(1).

Proof. For

y =
∑
k6|G|

wk
∑
τ∈G

∏
i6n

(ατ(i) + g)kei ,

observe that if σ ∈ Gf 6 G then σ(y) = y, and so y ∈ Q by the Galois correspondence. As
Ψ is monic, we then have y ∈ Z. The bound follows from [23, Lemma 1].

Put d = [Sn : G]. Writing

Φ(y) = yd + h1(a1, . . . , an)yd−1 + · · ·+ hd(a1, . . . , an),

it remains to prove that h1, . . . , hd are bounded-degree polynomials. By Vieta’s formulas,
these are elementary symmetric polynomials in the roots rw,e,g(σ) of Ψ, up to sign. Given
i ∈ {1, 2, . . . , n}, the polynomial hi has bounded degree in α1, . . . , αn. From the proof
of the fundamental theorem of symmetric polynomials [22, Chapter 7, §1, Theorem 3], any
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symmetric polynomial of degree On(1) in n variables also has degree On(1) in the elementary
symmetric polynomials. Therefore deg(hi)�n 1. �

The following is a refinement of [14, Lemma 3].

Lemma 4.2. Let C,P ∈ N be large in terms of n, let g = C3P , and let a1, . . . , an ∈ [−P, P ]
be such that the roots α1, . . . , αn of the polynomial f(X) = Xn+a1X

n−1+· · ·+an are pairwise
distinct. Then there exist w, e, with ‖w‖∞, ‖e‖∞ 6 C, such that Φw,e,g(y; a1, . . . , an) is
separable.

Proof. We know from [23, Lemma 1] that if |a1|, . . . , |an| 6 P then

|α1|, . . . , |αn| 6 CP.

Let us introduce the notation

ωσ,τ,e,g =
∏
i6n

(αστ(i) + g)ei .

Our immediate goal is to choose positive integers e1, . . . , en 6 C such that

ωσ1,τ1,e,g 6= ωσ2,τ2,e,g

whenever σ1 6= σ2.
Let σ1, σ2 ∈ Sn/G with σ1 6= σ2, and let τ1, τ2 ∈ G. Then σ1τ1 6= σ2τ2, so for some

i ∈ {1, 2, . . . , n} we have αs 6= αt, where s = σ1τ1(i) and t = σ2τ2(i). Moreover, if ωσ1,τ1,e,g =
ωσ2,τ2,e,g then (

αs + g

αt + g

)ei
= c,

for some c = c(α, g, e1, . . . , ei−1, ei+1, . . . , en). We claim that this has at most one positive
integer solution ei 6 C. The argument of (αs + g)/(αt + g) is O(C−2), and so its first C
powers are pairwise distinct. This establishes the claim. As C is large and there are On(Cn−1)
vectors to avoid out of Cn possibilities, we conclude that there exist e1, . . . , en 6 C with the
desired property.

Finally, we may choose positive integers w1, . . . , w|G| 6 C such that the roots

rw,e,g(σ) =
∑
k6|G|

wk
∑
τ∈G

ωkσ,τ,e,g

of Φw,e,g are pairwise distinct. This is achieved by avoiding On(1) proper, linear subspaces,
as in the proof of [14, Lemma 3]. �

The following is a refinement of [14, Lemma 4].

Lemma 4.3. Let
g(T1, . . . , Ts, X) ∈ Z[T1, . . . , Ts, X]

be separable and monic of degree n > 1 in the variable X, let G be its Galois group over
Q(T1, . . . , Ts), and let K 6 G. Let D be the total degree of g. Then there exists

Φg,K(T1, . . . , Ts, Y ) ∈ Z[T1, . . . , Ts, Y ]

of total degree Os,D(1), monic of degree [Sn : K] in Y , such that:

(i) Each irreducible divisor has degree at least [G : K] in Y .
(ii) If t1, . . . , ts ∈ Z and g(t1, . . . , ts, X) has Galois group K over Q then Φg,K(t1, . . . , ts, Y )

has an integer root y �D (|g| · ‖t‖∞)OD(1).

Remark 4.4. As n ∈ {1, 2, . . . , D}, any dependence of implied constants on n is controlled
by the dependence on D.
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Proof. The discrimant ∆ of g in Y is a non-zero polynomial of degree OD(1) in T1, . . . , Ts,
so there exist integers t1, . . . , ts �D 1 such that ∆(t1, . . . , ts) 6= 0. We can then use Lemma
4.2 with P �D |g|, in lieu of [14, Lemma 3], in the proof of [14, Lemma 4]. This constructs
Φg,K .

From the proof of the fundamental theorem of symmetric polynomials [22, Chapter 7, §1,
Theorem 3], any symmetric polynomial of degree Os(1) in s variables also has degree Os(1)
in the elementary symmetric polynomials. We will use this fact to show that the total degree
of Φg,K is Os,D(1).

By construction, the total degree of Φg,K in α1(T1, . . . , Ts), . . . , αn(T1, . . . , Ts) from [14,
Lemma 4] is Os,n(1). The total degree of Φg,K in g1(T1, . . . , Ts), . . . , gn(T1, . . . , Ts) from [14,
Lemma 4] is therefore also Os,n(1), by the fact explained in the previous paragraph. Thus,
the total degree in T1, . . . , Ts is Os,D(1).

A root y of Φg,K has the form

y =
∑
k6|K|

wk
∑
τ∈G

∏
i6n

(ατ(i) + g)kei ,

for some positive integers w1, . . . , w|K|, e1, . . . , en �D 1 and some integer g �D |g|. By [23,
Lemma 1] we have

αj �n |g| · ‖t‖D∞ (1 6 j 6 n),

so y �D (|g| · ‖t‖D∞)On(1). �

The following lemma serves as a strong converse to Lemma 4.1.

Lemma 4.5. If Gf = Sn and Ψ = Φw,e,g is separable then Ψ is irreducible over Q.

Proof. Suppose for a contradiction that Ψ(y) = Ψ1(y)Ψ2(y), where Ψ1(y),Ψ2(y) ∈ Q[y] are
non-constant polynomials. Let rσ1 = rw,e,g(σ1) and rσ2 = rw,e,g(σ2) be roots of Ψ1 and Ψ2

respectively. As Ψ1 has rational coefficients and σ2σ
−1
1 ∈ Gf , the complex number

rσ2 = σ2σ
−1
1 (rσ1)

must be a root of Ψ1, contradicting the separability of Ψ. �

Lemma 4.6. Let a1, . . . , an−3 ∈ Z ∩ [−H,H], and let L(a, b) ∈ Q[a, b] be linear. Assume
that

Gal(Xn + a1X
n−1 + · · ·+ an−3X

3 + aX2 + bX + L(a, b),Q(a, b)) = Sn.

Then, associated to any proper subgroup of Sn, there exist w, e, g, with ‖w‖∞, ‖e‖∞ �n 1
and g� HO(1)(1 + |L|), such that

h(a, b, y) = Φw,e,g(y; a1, . . . , an−3, a, b, L(a, b))

is irreducible over Q. The same is true with

Φw,e,g(y; a1, . . . , an−3, a, L(a, b), b)

or
Φw,e,g(y; a1, . . . , an−3, L(a, b), a, b)

in place of Φw,e,g(y; a1, . . . , an−3, a, b, L(a, b)), with the corresponding change to the hypothe-
sis.

Proof. Let C ∈ N be a large constant, and let P = HC . Write

L(a, b) = λa+ µb+ ν,

and define

G0(X) = Xn + a1X
n−1 + · · ·+ an−3X

3 + ν, G1(X) = X2 + λ, G2(X) = X + µ.
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By [19, Theorem 2.1], there can be at most HO(1)P 3/2 logP pairs (a, b) ∈ [−P, P ]2 of in-
tegers for which GG0+aG1+bG2 6= Sn. Hence, there exist integers a0, b0 ∈ [−P, P ] such that
GG0+a0G1+b0G2 = Sn. Now Lemma 4.5 tells us that h(a0, b0, y) is irreducible over Q, when
w, e, g are obtained by applying Lemma 4.2 to the polynomial

Xn + a1X
n−1 + · · ·+ an−3X

3 + a0X
2 + b0X + L(a0, b0).

Suppose for a contradiction that h(a, b, y) is reducible over Q. Then, for some positive
integer k 6 d− 1 and some b1(a, b), . . . , bk(a, b), c1(a, b), . . . , cd−k(a, b) ∈ Q(a, b), we have

h(a, b, y) = (yk + b1(a, b)y
k−1 + · · ·+ bk(a, b))(y

k−d + c1(a, b)y
k−d−1 + · · ·+ cd−k(a, b)).

Specialising a = a0 and b = b0 contradicts the irreducibility of h(a0, b0, y).
The final sentence of the lemma is confirmed by imitating the proof of its first assertion. �

5. Sextic Galois theory

In this section, we establish Theorem 1.10. Let

f(X) = X6 − a1X5 + a2X
4 − a3X3 + a4X

2 − a5X + a6 ∈ Z[X]

be irreducible, and suppose its Galois group Gf is not conjugate to S6 or A6. Then Gf is
conjugate to a subgroup of G72, G48, or H120, in the notation of Hagedorn [28]. Note that
G72 and G48 are solvable, whereas H120 is insolvable.

5.1. A decic resolvent. If Gf is conjugate to a subgroup of G72, then by [28, Theorem 2]
the polynomial f10(X) from that article has a rational root. As f10(X) is a monic, decic
polynomial with integer coefficients, it follows that f10(y) = 0 for some y ∈ Z.

5.1.1. Non-degenerate quadruples for the decic resolvent. Let a1, . . . , a4 ∈ [−H,H] be inte-
gers such that the vanishing of

g(a5, a6, y) = f10(y; a1, . . . , a6)

cuts out an absolutely irreducible surface with no rational lines. Expressions for the coef-
ficients of f10 as polynomials in a1, . . . , a6 are given in the appendix of [28], and we also
computed them using Mathematica. Note that

f10(y) = y10 − b1y9 + · · · − b9y + b10,

where bi � H i for all i assuming a1, . . . , a6 � H, and therefore all solutions have y � H.
Note that a large part of the expression for b10 is missing from [28].

We adopt the strategy of §3.2. First we cover all but O(Hε+2/
√
10) points by O(Hε+1/

√
10)

curves. Next, we eliminate y, giving F (d, e) = 0 with deg(F ) � 1, and let F(d, e) be an
irreducible factor of F (d, e). There are O(Hε+1/2) zeros (d, e) unless F is linear, by Theorem
2.2. In the latter case we obtain

P(d, y) = F(d, e) = 0,

say, where P is irreducible over Q. Now P cannot be linear, so by Theorem 2.2 we have

#{(d, y) ∈ (Z ∩ [−H,H])2 : P(d, y) = 0} � Hε+1/2.

The contribution from non-degenerate quadruples is O(Hε+9/2+1/
√
10).
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5.1.2. Degenerate quadruples for the decic resolvent. We begin by discussing absolute irre-
ducibility. Note that g is decic in a5, a6, y, no matter the specialisation a1, . . . , a4 ∈ Z. Thus,
by [40, Chapter V, Theorem 2A], there exist integer polynomials

p1(a1, . . . , a4), . . . , ps(a1, . . . , a4)

of degree O(1) such that if a1, . . . , a4 ∈ C then

g is not absolutely irreducible ⇔ pi(a1, . . . , a4) = 0 (1 6 i 6 s).

The next lemma shows that pi is non-zero for some i.

Lemma 5.1. If a1 = · · · = a4 = 0 then g(a5, a6, y) is absolutely irreducible.

Proof. Let a1 = · · · = a4 = 0. Then

b1 = · · · = b4 = 0, b5 = −123a25, b6 = 129a26, b7 = 0,

b8 = 66a25a6, b9 = 64a36, b10 = a45,

so
g(a5, a6, y) = y10 + 123a25y

5 + 129a26y
4 + 66a25a6y

2 − 64a36y + a45.

This is monic in y, so it suffices to prove that

g(a5, 1, y) = y10 + 123a25y
5 + 129y4 + 66a25y

2 − 64y + a45

is absolutely irreducible. Mathematica assures us that g(a5, 1, y) is irreducible over the
rationals. Its Newton polygon is the convex hull of

(0, 10), (2, 5), (0, 4), (2, 2), (0, 1), (4, 0),

which has vertices (0, 1), (0, 10), (4, 0). As gcd(0, 1, 0, 10, 4, 0) = 1, absolute irreducibility is
ensured by [3, Proposition 3]. �

Consequently, the quadruples (a1, . . . , a4) such that g(a5, a6, y) is reducible over Q are all
zeros of a fixed non-zero polynomial of degree O(1). In particular, there are O(H3) such
quadruples (a1, . . . , a4).

Next, we discuss lines on the surface. The idea is to show that, for generic a1, . . . , a4, the
surface {g(a5, a6, y) = 0} contains no rational lines or, a fortiori, no complex lines. A line
on the surface has one of the following parametrisations:

I. {(0, β, γ) + t(1, b, c) : t ∈ C}, for some β, γ, b, c ∈ C
II. {(α, 0, γ) + t(0, 1, c) : t ∈ C}, for some α, γ, c ∈ C

III. {(α, β, 0) + t(0, 0, 1) : t ∈ C}, for some α, β ∈ C.

We use the ‘SymmetricReduction’ command in Mathematica to evaluate and store the
polynomial g(a5, a6, y) explicitly:

ClearAll["Global‘*"];

r1 = (x1 + x2 + x3)*(x4 + x5 + x6); r2 = (x1 + x2 + x4)*(x3 + x5 + x6); r3 = (x1 + x2 + x5)*(x3 + x4 + x6);

r4 = (x1 + x2 + x6)*(x3 + x4 + x5); r5 = (x1 + x3 + x4)*(x2 + x5 + x6); r6 = (x1 + x3 + x5)*(x2 + x4 + x6);

r7 = (x1 + x3 + x6)*(x2 + x4 + x5); r8 = (x1 + x4 + x5)*(x2 + x3 + x6); r9 = (x1 + x4 + x6)*(x2 + x3 + x5);

r10 = (x1 + x5 + x6)*(x2 + x3 + x4);

b1 = SymmetricPolynomial[1, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10}];

b2 = SymmetricPolynomial[2, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10}];

b3 = SymmetricPolynomial[3, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10}];

b4 = SymmetricPolynomial[4, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10}];

b5 = SymmetricPolynomial[5, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10}];

b6 = SymmetricPolynomial[6, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10}];

b7 = SymmetricPolynomial[7, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10}];

b8 = SymmetricPolynomial[8, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10}];

b9 = SymmetricPolynomial[9, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10}];

b10 = SymmetricPolynomial[10, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10}];
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B1 = SymmetricReduction[b1, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]];

B2 = SymmetricReduction[b2, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]];

B3 = SymmetricReduction[b3, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]];

B4 = SymmetricReduction[b4, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]];

B5 = SymmetricReduction[b5, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]];

B6 = SymmetricReduction[b6, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]];

B7 = SymmetricReduction[b7, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]];

B8 = SymmetricReduction[b8, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]];

B9 = SymmetricReduction[b9, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]];

B10 = SymmetricReduction[b10, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]];

g = y^(10) - B1*y^9 + B2*y^8 - B3*y^7 + B4*y^6 - B5*y^5 + B6*y^4 - B7*y^3 + B8*y^2 - B9*y + B10;

Then we expand it as a polynomial in t, in each of the three cases. In Case I, the polynomial
is c10t10 plus lower-order terms, and so c = 0. When we specialise c = 0, we obtain a monic,
quartic polynomial t. Such a polynomial cannot vanish identically, so there are no lines of
Type I.

Similarly in Case II we must have c = 0, and then we obtain a polynomial of degree at
most 3 in t. Setting the cubic coefficient to 0 expresses

γ = a21/4.

We then substitute this into the equation obtained by setting the quadratic coefficient to 0,
determining an equation P (a1, . . . , a4) = 0, where P ∈ Z[a1, . . . , a4] \ {0} has degree O(1),
because α so happens to be eliminated as a result of this substitution. Thus, there are O(H3)
integer quadruples (a1, . . . , a4) such that {g(a5, a6, y) = 0} contains a line of Type II.

In Case III the polynomial is monic of degree 10, so there are no lines of Type III. Having
considered all cases, we conclude that there are O(H3) integer quadruples (a1, . . . , a4) such
that {g(a5, a6, y) = 0} contains a line.

Finally, we estimate the contribution from degenerate quadruples. We showed that there
are O(H3) degenerate quadruples (a1, . . . , a4) ∈ [−H,H]. Let us now fix such a quadruple.
By [23, Lemma 2], there are at most O(1) values of a5 ∈ Z for which

X6 − a1X5 + · · · − a5X + a6 ∈ Q(a6)[X]

has non-S6 Galois group over Q(a6). The contribution from these choices of a5 is O(H4).
Now let a5 ∈ [−H,H] be such that the Galois group is S6.

Let C ∈ N be a large constant, and let P = HC . By [19, Theorem 2.1], there exists
a∗6 ∈ Z ∩ [−P, P ] such that

Gal(X6 − a1X5 + · · ·+ a4X
2 − a5X + a∗6,Q) = S6.

By Lemma 4.5, the polynomial

Φw,e,g(y; a1, . . . , a5, a
∗
6) ∈ Q[y]

is irreducible, where w, e, g are obtained by applying Lemma 4.2 to the polynomial

X6 − a1X5 + · · ·+ a4X
2 − a5X + a∗6.

It then follows that

h(a6, y) := Φw,e,g(y; a1, . . . , a5, a6) ∈ Q[a6, y]

is irreducible. Indeed, it is monic in y, and if we were to have

h(a6, y) = h1(a6, y)h2(a6, y)

for some h1, h2 of positive degrees in y, then

h(a∗6, y) = h1(a
∗
6, y)h2(a

∗
6, y)

would be a non-trivial factorisation of h(a∗6, y).
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Further, by Lemma 4.1, if a6 ∈ Z∩[−H,H] and Gf 6 G72 then h(a6, y) has an integer root
y � HO(1). By Theorem 2.2, the diophantine equation h(a6, y) = 0 has O(Hε+|G72|/720) =
O(Hε+0.1) integer solutions a6, y with a6 � H and y � HO(1). The contribution from
degenerate quadruples, when Gf 6 G72, is therefore O(H4.1+ε).

We conclude that

NG � H9/2+ε+1/
√
10 (G 6 G72).

5.2. A resolvent of degree 15.

5.2.1. Non-degenerate quadruples for the resolvent of degree 15. For Gf 6 G48, we use the
resolvent

f15(y) = y15 − c1y14 + · · ·+ c14y − c15
from [28], where ci � H i for all i assuming a1, . . . , a6 � H. Expressions for c1, . . . , c15
as polynomials in a1, . . . , a6 are given in the appendix of [28], and we also computed them
using Mathematica. Note that the former contains a few small errors. The argument of
§5.1.1 bounds the contribution from this case by a constant times

H4+0.5+ε+1/
√
15 � H4.76.

We provide the code below.

ClearAll["Global‘*"];

r1 = (x1*x2) + (x3*x4) + (x5*x6); r2 = (x1*x2) + (x3*x5) + (x4*x6); r3 = (x1*x2) + (x3*x6) + (x4*x5);

r4 = (x1*x3) + (x2*x4) + (x5*x6); r5 = (x1*x3) + (x2*x5) + (x4*x6); r6 = (x1*x3) + (x2*x6) + (x4*x5);

r7 = (x1*x4) + (x2*x3) + (x5*x6); r8 = (x1*x4) + (x2*x5) + (x3*x6); r9 = (x1*x4) + (x2*x6) + (x3*x5);

r10 = (x1*x5) + (x2*x3) + (x4*x6); r11 = (x1*x5) + (x2*x4) + (x3*x6); r12 = (x1*x5) + (x2*x6) + (x3*x4);

r13 = (x1*x6) + (x2*x3) + (x4*x5); r14 = (x1*x6) + (x2*x4) + (x3*x5); r15 = (x1*x6) + (x2*x5) + (x3*x4);

b1 = SymmetricPolynomial[1, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}];

b2 = SymmetricPolynomial[2, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}];

b3 = SymmetricPolynomial[3, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}];

b4 = SymmetricPolynomial[4, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}];

b5 = SymmetricPolynomial[5, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}];

b6 = SymmetricPolynomial[6, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}];

b7 = SymmetricPolynomial[7, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}];

b8 = SymmetricPolynomial[8, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}];

b9 = SymmetricPolynomial[9, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}];

b10 = SymmetricPolynomial[10, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}];

b11 = SymmetricPolynomial[11, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}];

b12 = SymmetricPolynomial[12, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}];

b13 = SymmetricPolynomial[13, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}];

b14 = SymmetricPolynomial[14, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}];

b15 = SymmetricPolynomial[15, {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}];

B1 = SymmetricReduction[b1, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]

B2 = SymmetricReduction[b2, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]

B3 = SymmetricReduction[b3, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]

B4 = SymmetricReduction[b4, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]

B5 = SymmetricReduction[b5, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]

B6 = SymmetricReduction[b6, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]

B7 = SymmetricReduction[b7, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]

B8 = SymmetricReduction[b8, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]

B9 = SymmetricReduction[b9, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]

B10 = SymmetricReduction[b10, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]

B11 = SymmetricReduction[b11, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]

B12 = SymmetricReduction[b12, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]

B13 = SymmetricReduction[b13, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]

B14 = SymmetricReduction[b14, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]

B15 = SymmetricReduction[b15, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]
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5.2.2. Degenerate quadruples for the resolvent of degree 15. We begin by discussing ab-
solute irreducibility. Note that g has degree 15 in a5, a6, y, no matter the specialisation
a1, . . . , a4 ∈ Z. Thus, by [40, Chapter V, Theorem 2A], there exist integer polynomials
p1(a1, . . . , a4), . . . , ps(a1, . . . , a4) of degree O(1) such that if a1, . . . , a4 ∈ C then

g is not absolutely irreducible ⇔ pi(a1, . . . , a4) = 0 (1 6 i 6 s).

The next lemma shows that pi is non-zero for some i.

Lemma 5.2. The polynomial

g(a5, a6, y) := f15(y; 0, 0, 0, 0, a5, a6)

is absolutely irreducible.

Proof. As g(a5, a6, y) is monic in y, it suffices to prove that g(a5, 1, y) is absolutely irreducible.
We compute using Mathematica that

g(a5, 1, y) = 32a65 + 1296a25y + 792a45y
2 − 1728y3 − 96a25y

4 − 353a45y
5

−1232y6 + 288a25y
7 + 453y9 − 21a25y

10 − 42y12 + y15

is irreducible over the rationals. Its Newton polygon is the convex hull of

(6, 0), (2, 1), (4, 2), (0, 3), (2, 4), (4, 5), (0, 6), (2, 7), (0, 9), (2, 10), (0, 12), (0, 15),

which has vertices (6, 0), (0, 3), (0, 15), (2, 1). As gcd(6, 0, 0, 3, 0, 15, 2, 1) = 1, absolute irre-
ducibility is assured by [3, Proposition 3]. �

Consequently, the quadruples (a1, . . . , a4) such that g(a5, a6, y) is reducible over C are all
zeros of a fixed non-zero polynomial of degree O(1). In particular, there are O(H3) such
quadruples (a1, . . . , a4).

Next, we discuss lines on the surface. We have the same trichotomy as in the previous
subsection. In Case I, the polynomial is c15t15 plus lower-order terms, so c = 0. When we
specialise c = 0, we obtain 32t6 plus lower-order terms. Such a polynomial cannot vanish
identically, so there are no lines of Type I.

Similarly in Case II we must have c = 0, and then we obtain a polynomial of degree at
most 4 in t. We set the quartic, cubic and quadratic coefficients to 0, computing them using
Mathematica. Calling these P4, P3, P2 respectively, we obtain

P4(a1, a2, γ) = P3(a1, . . . , a4, α, γ) = P2(a1, . . . , a4, α, γ) = 0, (5.1)

and P4, P3, P2 are non-zero polynomials of degree O(1). It so happens that

P4(a1, a2, γ) = −49a61 + 315a41a2 − 648a21a
2
2 + 432a32 + 189a41γ − 1080a21a2γ

+ 1296a22γ + 432a21γ
2 − 1728γ3

does not involve a3, a4, α. Now R(a1, . . . , a4, γ) = 0, where R is the resultant of P3 and P2

in the variable α. We explicitly evaluate R using Mathematica.
Let P (a1, . . . , a4) be the resultant of P4 and R in the variable γ. We can compute

P (1, 0, 0, 0) using Mathematica, by specialising before taking the resultant. The outcome
is non-zero, so P is not the zero polynomial. Furthermore

P (a1, . . . , a4) = 0

whenever (a1, a2, a3, a4, α, γ) ∈ C6 is a solution to (5.1). Thus, there are O(H3) integer
quadruples (a1, . . . , a4) such that {g(a5, a6, y) = 0} contains a line of Type II.
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In Case III the polynomial is monic of degree 15, so there are no rational lines of Type III.
Having considered all cases, we conclude that there are O(H3) integer quadruples (a1, . . . , a4)
such that {g(a5, a6, y) = 0} contains a complex line.

The upshot is that there are O(H3) degenerate quadruples to consider. Now the reasoning
of the previous subsection bounds their contribution by O(Hε+61/15). We conclude that if
G 6 G48 then

NG � H4+0.5+ε+1/
√
15 6 H4.76.

This completes the proof of the second statement in Theorem 1.10.

5.3. Insolvable sextics. For subgroups of H120, we use Stauduhar’s [43] resolvent

Ψ(y; a1, . . . , a6) =
∏

σ∈S6/H120

(y − σθ) ∈ Z[y; a1, . . . , a6],

where

θ = (α1α2 + α3α5 + α4α6)(α1α3 + α4α5 + α2α6)(α3α4 + α1α6 + α2α5)

· (α1α5 + α2α4 + α3α6)(α1α4 + α2α3 + α5α6).

Here, if
f(X) = X6 − a1X5 + a2X

4 − a3X3 + a4X
2 − a5X + a6 ∈ Z[X]

is irreducible, we write α1, . . . , α6 for the roots of f . At first it may appear that Stauduhar
uses right cosets in [43], but in modern language these σH120 are more commonly referred
to as left cosets; see the footnote on [43, p. 983].

As H120 is generated by (126)(354), (12345) and (2354), from [43, Table 1] where it is
denoted G120, we see that θ is H120-invariant. Thus, if Gf 6 τH120τ

−1 for some τ ∈ S6, then
τθ is a Gf -invariant algebraic integer and so τθ ∈ Z. The upshot is that if Gf is conjugate
to a subgroup of H120 then Ψ has an integer root.

One can find the cycle types of the conjugacy classes of H120, which is also known as
6T14, in [12, Table 6C], to see that H120 has no 2-cycles and no 3-cycles. It follows that
{(1), (12), (13), (14), (15), (16)} constitutes a complete set of left coset representatives for
H120 in S6. This enables us to construct the resolvent in Mathematica:

ClearAll["Global‘*"];

r1 = (x1*x2 + x3*x5 + x4*x6)*(x1*x3 + x4*x5 + x2*x6)*(x3*x4 + x1*x6 + x2*x5)*(x1*x5 + x2*x4 + x3*x6)

*(x1*x4 + x2*x3 + x5*x6);

r2 = (x2*x1 + x3*x5 + x4*x6)*(x2*x3 + x4*x5 + x1*x6)*(x3*x4 + x2*x6 + x1*x5)*(x2*x5 + x1*x4 + x3*x6)

*(x2*x4 + x1*x3 + x5*x6);

r3 = (x3*x2 + x1*x5 + x4*x6)*(x3*x1 + x4*x5 + x2*x6)*(x1*x4 + x3*x6 + x2*x5)*(x3*x5 + x2*x4 + x1*x6)

*(x3*x4 + x2*x1 + x5*x6);

r4 = (x4*x2 + x3*x5 + x1*x6)*(x4*x3 + x1*x5 + x2*x6)*(x3*x1 + x4*x6 + x2*x5)*(x4*x5 + x2*x1 + x3*x6)

*(x4*x1 + x2*x3 + x5*x6);

r5 = (x5*x2 + x3*x1 + x4*x6)*(x5*x3 + x4*x1 + x2*x6)*(x3*x4 + x5*x6 + x2*x1)*(x5*x1 + x2*x4 + x3*x6)

*(x5*x4 + x2*x3 + x1*x6);

r6 = (x6*x2 + x3*x5 + x4*x1)*(x6*x3 + x4*x5 + x2*x1)*(x3*x4 + x6*x1 + x2*x5)*(x6*x5 + x2*x4 + x3*x1)

*(x6*x4 + x2*x3 + x5*x1);

b1 = SymmetricPolynomial[1, {r1, r2, r3, r4, r5, r6}];

b2 = SymmetricPolynomial[2, {r1, r2, r3, r4, r5, r6}];

b3 = SymmetricPolynomial[3, {r1, r2, r3, r4, r5, r6}];

b4 = SymmetricPolynomial[4, {r1, r2, r3, r4, r5, r6}];

b5 = SymmetricPolynomial[5, {r1, r2, r3, r4, r5, r6}];

b6 = SymmetricPolynomial[6, {r1, r2, r3, r4, r5, r6}];

B1 = SymmetricReduction[b1, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]; Export["B1.txt", B1];

B2 = SymmetricReduction[b2, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]; Export["B2.txt", B2];

B3 = SymmetricReduction[b3, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]; Export["B3.txt", B3];

B4 = SymmetricReduction[b4, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]; Export["B4.txt", B4];

B5 = SymmetricReduction[b5, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]; Export["B5.txt", B5];

B6 = SymmetricReduction[b6, {x1, x2, x3, x4, x5, x6}, {a1, a2, a3, a4, a5, a6}][[1]]; Export["B6.txt", B6];
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5.3.1. Non-degenerate quadruples. In due course, we will define a non-zero polynomial

R(a1, . . . , a4) ∈ Z[a1, . . . , a4]

with coefficients and degree On(1). Let a1, . . . , a4 ∈ [−H,H] be integers such that the
vanishing of

g(a5, a6, y) = Ψ(y; a1, . . . , a6)

cuts out an absolutely irreducible surface with no rational lines, and such that

(5a21 − 18a2)R(a1, . . . , a4) 6= 0. (5.2)

We wish to count integer zeros of g with a5, a6 � H, and for these we have y � HM for
some absolute constant M ∈ N, by [23, Lemma 1]. Following §3.2, we can cover all but

O(Hε+2/
√
6) points by O(Hε+1/

√
6) curves using Theorem 2.5. Then we eliminate y, giving

F (a5, a6) = 0 with deg(F )� 1, and let F(a5, a6) be an irreducible factor of F (a5, a6). There
are O(Hε+1/2) zeros (a5, a6) unless F is linear, so we now assume the latter. We divide into
two cases according to whether or not the coefficient of a6 in F vanishes.

Case 1: a6 = Ha5 + L. Substituting this into g(a5, a6, y) = 0 and factorising, we obtain

P(a5, y) = F(a5, a6) = 0,

where P is irreducible over Q. Moreover, since there are no rational lines, the polynomial P
must be non-linear. By Theorem 2.2, we have

#{(a5, y) ∈ Z2 ∩ [−H,H]× [−CHM , CHM ] : P(a5, y) = 0} � Hε+M/D,

where C is a large, positive constant and

2 6 D := max{dega5(P),Mdegy(P)} � 1.

If D > 2M then the bound is adequate, so we may suppose that 2 6 D 6 2M − 1, and in
particular degy(P) 6 1. As P(a5, y) divides

g(a5,Ha5 + L, y) = y6 +
5∑
i=0

Pi(a5)y
i,

we infer that P(a5, y) is a rational multiple of y − F (a5), where F (a5) ∈ Q[a5] has degree
dega5(P). Thus, we may assume that

P(a5, y) = y − F (a5).

Next, write

(y − F (a5))

(
y5 +

4∑
i=0

fi(a5)y
i

)
= y6 +

5∑
i=0

Pi(d)yi.

Equating coefficients in y yields

f4(a5)− F (a5) = P5(a5)

f3(a5)− f4(a5)F (a5) = P4(a5)

f2(a5)− f3(a5)F (a5) = P3(a5)

f1(a5)− f2(a5)F (a5) = P2(a5)

f0(a5)− f1(a5)F (a5) = P1(a5)

−f0(a5)F (a5) = P0(a5).

Using Mathematica, we compute that

deg(Pi) 6 2(6− i) (0 6 i 6 5).
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The argument of §3.2 then delivers a contradiction, unless deg(F ) = 2. We now assume the
latter.

From the equations above, we have

f4(a5) = P5(a5) + F (a5),

so
f3(a5) = P4(a5) + F (a5)(P5(a5) + F (a5)).

Continuing make the substitutions, we obtain

P = 0

for some explicit polynomial P in F (a5), P5(a5), . . . , P0(a5). Let

F (a5) = Aa25 + Ba5 + G,

where A,B,G ∈ C, and substitute this into P to give

P = 0 ∈ Q[a1, . . . , a4,A,B,G,H,L][a5],

for some polynomial P that we computed using Mathematica. With the coefficients of the
resolvent having been evaluated and stored, the code is as follows:

F = A a5^2 + B a5 + G; a6 = H a5 + L;

f4 = F - B1; f3 = f4 F + B2; f2 = f3 F - B3; f1 = f2 F + B4; f0 = f1 F - B5;

P = f0 F + B6;

For i = 0, 1, . . . , 12, denote by ci the coefficient of ai5 in P . We have

0 = c12 = (A− 32)(A− 2)5,

so A ∈ {2, 32}. If A = 2 then c11 = −30(a1 − 6H)5, whereupon H = a1/6 and

0 = c10 =
5(5a21 − 18a2)

5

1296
,

contradicting (5.2).
Therefore A = 32. The equation c11 = 0 then enables us to write B as an explicit

polynomial in H, a1, . . . , a4. We substitute both of these data into the other coefficients.
Finally, taking resultants yields

R(a1, a2, a3, a4) = 0,

where

R1 = Res(c10, c9,G), R2 = Res(c10, c8,G), R3 = Res(c10, c7,G), R4 = Res(c10, c6,G),

R5 = Res(R1, R2,H), R6 = Res(R3, R4,H), R = Res(R5, R6,L),

again contradicting (5.2). Mathematica assures us that R(1, 0, 0, 1) 6= 0, so in particular R
is not the zero polynomial.

Case 2: a5 = H is constant. Substituting this into g(a5, a6, y) = 0 and factorising, we
obtain

P(a6, y) = F(a5, a6) = 0,

where P is irreducible over Q. Following the argument of the previous case, we find that

deg(Pi) < 2(6− i) (0 6 i 6 5),

and the reasoning of §3.2 delivers a contradiction.

The total contribution from non-degenerate quadruples is O(Hε+9/2+1/
√
6).
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5.3.2. Degenerate quadruples. We begin by discussing absolute irreducibility. One can check,
using Mathematica, that g is dodecic in a5, a6, y, no matter the specialisation a1, . . . , a4 ∈ Q.
Thus, by [40, Chapter V, Theorem 2A], there exist integer polynomials

p1(a1, . . . , a4), . . . , ps(a1, . . . , a4)

of degree O(1) such that if a1, . . . , a4 ∈ C then

g is not absolutely irreducible ⇔ pi(a1, . . . , a4) = 0 (1 6 i 6 s).

The next lemma shows that pi is non-zero for some i.

Lemma 5.3. If a1 = · · · = a4 = 0 then {g(a5, a6, y) = 0} is absolutely irreducible.

Proof. Using Mathematica, we compute that

g(a5, a6, y) = Ψ(y; 0, 0, 0, 0, a5, a6) = y6 − 42a25y
5 + 360a45y

4 − (1360a65 − 46656a56)y
3

+ (2640a85 − 34992a25a
5
6)y

2 − 2592a105 y + 1024a125 .

As g is monic in y, it suffices to prove that

g(1, a6, y) = y6 − 42y5 + 360y4 − (1360− 46656a56)y
3 + (2640− 34992a56)y

2 − 2592y + 1024

is absolutely irreducible. Mathematica tells us that g(1, a6, y) is irreducible over Q. Its
Newton polygon is the convex hull of

(0, 6), (0, 5), (0, 4), (5, 3), (5, 2), (0, 1), (0, 0),

which has vertices (0, 0), (5, 2), (5, 3), (0, 6). As gcd(0, 0, 5, 2, 5, 3, 0, 6) = 1, absolute irre-
ducibility is secured by [3, Proposition 3]. �

Consequently, the quadruples (a1, . . . , a4) such that g(a5, a6, y) is reducible over C are all
zeros of a fixed non-zero polynomial of degree O(1). In particular, there are O(H3) such
quadruples (a1, . . . , a4).

Next, we discuss lines on the surface, using the trichotomy from the previous two subsec-
tions. If there is a line of Type I, then

Ψ(γ + ct; a1, . . . , a4, t, β + bt) = 0,

for some β, γ, b, c ∈ C. The left hand side is 1024t12 plus lower order terms, so there are no
lines of this type. If there is a line of Type III, then

Ψ(t; a1, . . . , a4, α, β) = 0,

for some α, β ∈ C. The left hand side is monic of degree 6, so there are no lines of this type.
If there is a line of Type II, then

Ψ(γ + ct; a1, . . . , a4, α, t) = 0

for some α, γ, c ∈ C. The coefficient of t8 is

2401a121 − 30870a101 a2 + 162729a81a
2
2 − 450576a61a

3
2 + 692064a41a

4
2 − 559872a21a

5
2 + 186624a62,

so there are O(H3) integer quadruples (a1, . . . , a4) such that {g(a5, a6, y) = 0} contains a
complex line.

Finally, there are O(H3) exceptions to (5.2). Thus, there are O(H3) degenerate quadru-
ples, and the reasoning of the previous subsections bounds their contribution by O(H4+ε+1/6).
We conclude that if G 6 H120 then

NG � H9/2+ε+1/
√
6.

This completes the proof of Theorem 1.10.
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6. Auxiliary results

6.1. An almost-uniform version of Hilbert’s irreducibility theorem.

Theorem 6.1. Let g(T,X1, . . . , Xs, Y ) ∈ Z[T,X1, . . . , Xs, Y ] be irreducible of total degree
D, and monic of degree d > 2 in the variable Y . Then there are Os,D,ε(|g|εHε+1/2) integers
t ∈ [−H,H] such that

g(t,X1, . . . , Xs, Y ) ∈ Z[X1, . . . , Xs, Y ]

is reducible.

Remark 6.2. The point is that we have exerted strong quantitative control over the depen-
dence on the coefficients of g. In S. D. Cohen’s work [19] the dependence is |g|O(1), but in
practice it is more useful to have O(|g|ε) dependence. As d ∈ {2, 3, . . . , D}, any dependence
on d is controlled by the arbitrary dependence on D.

Proof. We begin by reducing to the case s = 0. By [19, Theorem 2.1], there exist inte-
gers x1, . . . , xs � |g|Os,D(1) such that g(T, x1, . . . , xs, Y ) is irreducible. Suppose t ∈ Z and
g(t,X1, . . . , Xs, Y ) is reducible. Then there exist

g1(X1, . . . , Xs, Y ), g2(X1, . . . , Xs, Y ) ∈ Z[X1, . . . , Xs, Y ],

monic of positive degrees in Y , such that

g(t,X1, . . . , Xs, Y ) = g1(X1, . . . , Xs, Y )g2(X1, . . . , Xs, Y ).

Now
g(t, x1, . . . , xs, Y ) = g1(x1, . . . , xs, Y )g2(x1, . . . , xs, Y )

is a non-trivial factorisation, so we have indeed reduced the problem to the s = 0 case.
As g(T, Y ) ∈ Z[T, Y ] is irreducible, its discriminant in Y is a non-zero polynomial in Z[T ].

Hence, there are Od(1) integers t such that g(t, Y ) ∈ Z[Y ] is inseparable. Let us denote by
G the Galois group of g(T, Y ) over Q(T ). Given t ∈ Z such that g(t, Y ) is separable, its
Galois group Gt is a subgroup of G via the embedding in [14, Lemma 1]. There are Od(1)
possibilities for Gt, and if g(t, Y ) is reducible then Gt must be a proper subgroup of G, since
a polynomial is irreducible if and only if its Galois group is transitive.

Let us now fix a proper subgroup K of G, and count integers t ∈ [−H,H] such that
Gt = K. Applying Lemma 4.3, we obtain a polynomial Φ(T, Y ) ∈ Z[T, Y ] of total degree
OD(1), monic of degree [Sd : K] in Y , such that:

(i) If t ∈ Z ∩ [−H,H] and Gt = K then Φ(t, Y ) ∈ Z[Y ] has an integer root

y �D (|g|H)OD(1).

(ii) Any irreducible divisor of Φ(T, Y ) has degree at least [G : K] in Y .

Finally, by Theorem 2.2, any irreducible divisor of Φ(T, Y ) has OD,ε(|g|εHε+1/2) integer roots
(t, y) with |t| 6 H and y �D (|g|H)OD(1). �

6.2. A lopsided version of Pila’s theorem.

Theorem 6.3. Let g(A,B, Y ) ∈ Z[A,B, Y ] be irreducible of total degree D, and monic of
degree d > 2 in the variable Y . Then g has OD,ε(|g|εH1+ε+1/d) integer roots (a, b, y) with
|a|, |b| 6 H.

The bound is essentially sharp, for example if g(a, b, y) = a− yd then there are at least a
positive constant times H1+1/d solutions. Before proceeding towards the proof, we provide
some context. By [23, Lemma 1], if |a|, |b| 6 H and g(a, b, y) = 0 then y �D |g|HD. If g
were irreducible over R, then an application of Pila’s Theorem 2.3 would reveal that g has
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OD,ε(H
1+ε+1/d) integer roots (a, b, y) with |a|, |b|, |y| 6 H. Theorem 6.3 is a variant of this

for which y is not constrained to lie in [−H,H].

Proof. Let C = CD be a large, positive constant, so that if |a|, |b| 6 H and g(a, b, y) = 0
then |y| 6 C|g|HD. We classify b ∈ Z as being:

• good, if g(A, b, Y ) ∈ Z[A, Y ] is irreducible;
• bad, if g(A, b, Y ) ∈ Z[A, Y ] is reducible but has no linear divisor;
• superbad, if g(A, b, Y ) ∈ Z[A, Y ] has a linear divisor.

Let b ∈ [−H,H] be good. In Theorem 2.2 we have T > (C|g|HD)d, so there are at most
O(|g|εHε+1/d) integer zeros (a, y) ∈ [−H,H]× [−C|g|HD, C|g|HD]. Thus, there are at most
O(H1+ε+1/d) integer triples (a, b, y) ∈ [−H,H]2 × [−C|g|HD, C|g|HD] such that b is good
and g(a, b, y) = 0.

Next, let us suppose instead that b ∈ [−H,H] is bad. By [19, Theorem 2.1], there exists
an integer a0 � |g|O(1) such that g(a0, B, Y ) ∈ Z[B, Y ] is irreducible. As b is bad and g
is monic in Y , the polynomial g(a0, b, Y ) ∈ Z[Y ] is reducible, so by Theorem 6.1 there are
O(|g|εHε+1/2) such choices of b. Let h(A, Y ) ∈ Z[A, Y ] be an irreducible divisor of g(A, b, Y ),
and note from the choice of b that deg(h) > 2. By Theorem 2.2, there are O(Hε+1/2) zeros
(a, y) ∈ [−H,H] × [−C|g|HD, C|g|HD] of h. Whence, there are O(|g|εH1+ε) integer triples
(a, b, y) ∈ [−H,H]2 × R such that b is bad and g(a, b, y) = 0.

Finally, we bound the numberN of superbad integers b ∈ [−H,H], and use this to estimate
their contribution to the number of roots of g that we are counting. By [19, Theorem 2.1],
choose an integer a0 � |g|O(1) such that g(a0, B, Y ) ∈ Z[B, Y ] is irreducible. If b is superbad
then g(A, b, Y ) ∈ Z[A, Y ] has a divisor of the form Y − tA, for some t ∈ Z, and in particular
g(a0, b, Y ) ∈ Z[Y ] has an integer root. Thus, by Theorem 2.2, we have

N 6 #{(b, y) ∈ Z2 : |b| 6 H, |y| 6 C|g|HD, g(a0, b, y) = 0} � |g|εHε+1/d.

There are O(H) possibilities for a, and then there are at most d possibilities for y such that
h(a, b, y) = 0. Hence, there are O(|g|εH1+ε+1/d) integer triples (a, b, y) ∈ [−H,H]2 × R such
that b is superbad and h(a, b, y) = 0.

We have considered all cases, and conclude that there are O(|g|εH1+ε+1/d) integer triples
(a, b, y) ∈ [−H,H]2 × R such that h(a, b, y) = 0. �

6.3. Algebraic toolkit. In the course of our treatment of higher-degree polynomials, we
will work with Galois groups over two-parameter function fields, using the method of Uchida
[44], Smith [42] and Cohen [17, 18]. Here we review some of the theory, following Cohen
[17, 18]. A polynomial is normal if its factor type is (1, . . . , 1) or (1, . . . , 1, 2). The following
criterion is similar to [17, Lemma 2].

Lemma 6.4 (Normality criterion). Let G(X),H(X) ∈ C(X) \ {0} be coprime polynomials,
and put r = G/H. Then f := G + bH is normal for all b ∈ C if the following two statements
hold:

• The system

r′(x) = r′′(x) = 0, H(x) 6= 0 (6.1)

has no solution x ∈ C.
• The system

r(x)− r(y) = r′(x) = r′(y) = 0, x 6= y, H(x)H(y) 6= 0 (6.2)

has no solution (x, y) ∈ C2.
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Proof. Let b ∈ C. First suppose f has a triple root x ∈ C. Then

f(x) = f ′(x) = f ′′(x) = 0, H(x) 6= 0,

since G and H are coprime, and so

G(x) = −bH(x), G ′(x) = −bH′(x), G ′′(x) = −bH′′(x).

By the quotient rule

r′(x) =
H(x)G ′(x)− G(x)H′(x)

H(x)2
= 0

and

r′′(x) =
H(x)2(H(x)G ′′(x)− G(x)H′′(x))− 2H(x)H′(x)(H(x)G ′(x)− G(x)H′(x))

H(x)4

= 0.

In this case x ∈ C is a solution to (6.1).
Now suppose x, y ∈ C are distinct double roots of f . Then

f(x) = f ′(x) = f(y) = f ′(y) = 0, H(x)H(y) 6= 0,

since G and H are coprime, and so

G(x) = −bH(x), G ′(x) = −bH′(x), G(y) = −bH(y), G ′(y) = −bH′(y).

By the quotient rule r′(x) = r′(y) = 0. Moreover, we have

r(x)− r(y) = −b+ b = 0.

In this case (x, y) ∈ C2 is a solution to (6.2). �

The following standard consequence of Bézout’s theorem is a special case of [17, Lemma 3].

Lemma 6.5. Let n ∈ N, and let f(X, Y ), g(X, Y ) ∈ C(X, Y ) be coprime polynomials of
degree at most n. Then there are On(1) solutions (x, y) ∈ C2 to

f(x, y) = g(x, y).

If P (X) ∈ C[X] and Q(X) ∈ C[X] \ {0} are coprime and R = P/Q, we write

deg(R) = max{deg(P ), deg(Q)},

as well as

BR(X, Y ) = Q(X)P (Y )− P (X)Q(Y ) ∈ C[X, Y ]/ ∼
and

B∗R(X, Y ) =
BR(X, Y )

X − Y
∈ C[X, Y ]/ ∼,

where the equivalence relation is multiplication by a unit.

Lemma 6.6. For i = 1, 2, let Pi(X) ∈ C[X] and Qi(X) ∈ C[X] \ {0} be relatively prime,
and suppose

x, y ∈ C, x 6= y, Q1(x)Q1(y)Q2(x)Q2(y) 6= 0.

Put fi = Pi/Qi for i = 1, 2, and assume that

f1(x)f2(y) = f1(y)f2(x), f2(x)f2(y) 6= 0.

Then, with R = f1/f2, we have B∗R(x, y) = 0.
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Proof. Put
g = (P1, P2), P1 = gp1, P2 = gp2

and
h = (Q1, Q2), Q1 = hq1, Q2 = hq2.

Then
g(x)g(y)p1(x)p2(y)

h(x)h(y)q1(x)q2(y)
=
g(x)g(y)p1(y)p2(x)

h(x)h(y)q1(y)q2(x)
.

As g(x)g(y) | P2(x)P2(y), we have g(x)g(y) 6= 0, so

R(x) =
p1(x)q2(x)

q1(x)p2(x)
=
p1(y)q2(y)

q1(y)p2(y)
= R(y),

and so BR(x, y) = 0. As x 6= y, we finally have B∗R(x, y) = 0. �

The following lemma is essentially [17, Lemma 4].

Lemma 6.7. Let R1(X) ∈ C(X), and suppose D(X, Y ) ∈ C[X, Y ] is a non-constant divisor
of B∗R1

(X, Y ). Then there exists R(X) ∈ C(X) with the following properties:

(i) If R2(X) ∈ C(X), then D(X, Y ) divides B∗R2
(X, Y ) if and only if R2(X) ∈ C(R(X)).

(ii) deg(R) > 2.
(iii) R = P/Q, where P (X), Q(X) ∈ C[X] \ {0} and deg(P ) > deg(Q).

Proof. Let α1, . . . , αu ∈ C(X) be the roots of D(X, Y ), regarded as a polynomial in Y with

coefficients in C[X], and let αu+1, . . . , αv ∈ C(X) be the other roots of B∗R1
(X, Y ). Set

E = C(X,α1, . . . , αv),

and write R1(Y ) = f1(Y )/g1(Y ) with f1(Y ), g1(Y ) ∈ C[Y ] relatively prime. The polynomial

f1(Y )−R1(X)g1(Y ) ∈ C(R1(X))[Y ]

is irreducible over C(R1(X)), and is therefore separable over this perfect field. Therefore E,
being its splitting field, is a Galois extension of C(R1(X)), and moreover X,α1, . . . , αv are
pairwise distinct. Let G be the Galois group of E over C(R1(X)), and denote by S the set
of σ ∈ G such that

σ(X) ∈ {X,α1, . . . , αu}.
As S contains the stabiliser of X, the field E1 := ES lies between C and C(X) = EStab(X).
Thus, by Lüroth’s theorem [20, Chapter 4, Theorem 6.8], there exists R(X) ∈ C(X) such
that E1 = C(R(X)). Moreover, as R1(X) ∈ E1 \ C, we know that R(X) is non-constant.

As f1(Y )−R1(X)g1(Y ) is irreducible over C(R1(X)), its Galois group G acts transitively
on its roots X,α1, . . . , αv. Thus, for each i ∈ {1, 2, . . . , u} there exists σi ∈ S such that
σi(X) = αi. Finally, for R2(X) ∈ C(X), we have

D(X, Y ) | B∗R2
(X, Y )⇔ BR2(X,αi) = 0 (1 6 i 6 u)

⇔ R2(X) = R2(αi) (1 6 i 6 u)

⇔ R2(X) ∈ ES = C(R(X)).

To see that deg(R) > 2, observe that D(X, Y ) does not divide B∗X(X, Y ) = 1. Therefore
X /∈ C(R(X)), so deg(R) 6= 1. As R is not constant and deg(R) 6= 1, we must have
deg(R) > 2.

For the third property, we can swap P and Q if necessary to ensure that deg(P ) > deg(Q).
If deg(P ) = deg(Q) then we can subtract a linear multiple of P from Q to reduce the degree
of Q below that of P , securing the third property. All of this leaves C(R(X)) unchanged, so
our modified rational function R still has the first two properties. �
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We also require the following standard, elementary fact.

Lemma 6.8. If a group G acts doubly-transitively on {1, 2, . . . , n} and contains a transpo-
sition, then G is the full symmetric group.

Proof. By symmetry, we may suppose that n > 2 and (12) ∈ G. Let i, j ∈ {1, 2, . . . , n} be
distinct. As G acts doubly-transitively, there exists σ ∈ G with σ(1) = i and σ(2) = j. Now
(ij) = σ(12)σ−1 ∈ G. �

7. Higher-degree polynomials

In this section, we establish Theorem 1.9. Let us start by showing that d > 240, which is
the first assertion of the theorem. By [23, Lemma 3], if n > 12 then

d >
1

2

(
n

bn/2c

)
> 462.

We see from the classification by Butler and McKay [12] that if n ∈ {9, 11} then d > 240.
In particular, we have secured the inequality d > 240 in all cases covered by the theorem. It
remains to show that

NG,n �n,ε H
n+ε−3/2+3d−1/3

. (7.1)

We use the notation (4.1).

7.1. Non-degenerate tuples. We wish to count monic, irreducible polynomials f of degree
n, with integer coefficients in [−H,H], for which Gf = G. Recalling (4.2) and (4.3), given
such a polynomial f , the associated resolvent Φ has an integer root y �n H

On(1). To ease
notation, we write

a = an−2, b = an−1, c = an,

so that

f(X) = Xn + a1X
n−1 + · · ·+ an−3X

3 + aX2 + bX + c. (7.2)

Let us choose

(a1, . . . , an−3) ∈ (Z ∩ [−H,H])n−3

non-degenerate, meaning that

− 2a3 6=
(
n

3

)
(−2a1/n)3 +

(
n− 1

2

)
(−2a1/n)2a1 + (n− 2)(−2a1/n)a2 (7.3)

and the vanishing of g(a, b, c, y) = Φ(y; a1, . . . , an−3, a, b, c) cuts out an absolutely irreducible
affine threefold Y = Ya1,...,an−3 . By Theorem 2.4, there exist

g1(a, b, c, y), . . . , gJ(a, b, c, y) ∈ Z[a, b, c, y],

coprime to g(a, b, c, y) and of degree On,ε(1), where J � Hε+3d−1/3
, such that if (a, b, c, y) ∈ Y

and

|a|, |b|, |c| 6 H, y �n H
On(1)

then

g(a, b, c, y) = gj(a, b, c, y) = 0 (7.4)

for some j. Now we fix j and count solutions to (7.4).
Note that degy(g) = d > 0. If degy(gj) = 0 then let F (a, b, c) = gj(a, b, c, y), and otherwise

let F (a, b, c) be the resultant of g and gj in the variable y. By [22, Chapter 3, §6, Proposition
3], applied with k = Q(a, b, c), this is a non-zero element of Z[a, b, c]. By [22, Chapter 3, §6,
Proposition 5], we have F (a, b, c) = 0 for any solution (a, b, c, y) to (7.4).
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Next, we factorise over the reals. For a, b, c ∈ Z, observe that F (a, b, c) = 0 if and only
if we have F(a, b, c) = 0 for some irreducible divisor F(a, b, c) ∈ R[a, b, c] of F (a, b, c). By
Theorem 2.3, if F is non-linear then

#{(a, b, c) ∈ (Z ∩ [−H,H])3 : F(a, b, c) = 0} � Hε+3/2.

Then y is determined from g(a, b, c, y) = 0 in at most d ways, so the number of solutions
(a, b, c, y) counted in this case is O(Hε+3/2). The total contribution to NG,n from this non-
linear case is therefore

O(Hn−3Hε+3d−1/3

Hε+3/2)� H2ε+n−3/2+3d−1/3

. (7.5)

Next, suppose F is linear. Then

F(a, b, c) = αa+ βb+ γc+ δ = 0,

for some α, β, γ, δ ∈ R with (α, β, γ) 6= (0, 0, 0). Supposing for the time being that F is not
a multiple of a rational polynomial, we can write

F =
∑
i6r

λiFi,

where r ∈ {2, 3, 4}, the Fi are linear polynomials with rational coefficients, and λ1, . . . , λr are
linearly independent over Q. Following the argument presented in the proof of [29, Corollary
1], some Fi is not a multiple of F , and any rational root of F must also be a root of this
Fi. It then follows from linear algebra that there are O(H) possibilities for (a, b, c). The

contribution to NG,n from this situation is O(Hn−2+ε+3d−1/3
).

Thus, we may assume in the sequel that α, β, γ, δ ∈ Z. Moreover, if F(a, b, c) = 0 has an
integer solution then (α, β, γ) | δ, so we may divide through by (α, β, γ) and assume that
(α, β, γ) = 1.

Lemma 7.1. If max{|α|, |β|, |γ|} > H then

#{(a, b, c) ∈ (Z ∩ [−H,H]3) : αa+ βb+ γc+ δ = 0} � H.

Proof. By symmetry, we may assume that γ > H. We may also assume that there exists
(a0, b0, c0) ∈ (Z ∩ [−H,H])3 for which

αa0 + βb0 + γc0 + δ = 0.

Now

αx+ βy + γz = 0,

where x = a− a0, y = b− b0 and z = c− c0 lie in [−2H, 2H], and in particular

αx+ βy ≡ 0 mod γ.

This condition defines a full-rank lattice Λ of determinant γ, by [16, Lemma 2.14]. Its first
successive minimum satisfies λ1 > 1, since Λ ⊂ Z2. Thus, by [41, Lemma 2], we have

#{(x, y) ∈ Λ ∩ [−2H, 2H]2} � H2

γ
+H � H.

�

The contribution to NG,n from the scenario max{|α|, |β|, |γ|} > H is therefore

O(Hn−2+ε+3d−1/3

),
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which is negligible for the purposes of proving (7.1). We may therefore suppose that
|α|, |β|, |γ| 6 H. Now there are no solutions (a, b, c) ∈ [−H,H]3 to

αa+ βb+ γc+ δ = 0

unless |δ| 6 3H2. Henceforth, we assume that

|α|, |β|, |γ| 6 H, |δ| 6 3H2. (7.6)

Polynomials G0(X), G1(X), G2(X) ∈ C[X] are strongly totally composite if there exist a
rational function R = P/Q, where P (X) ∈ C[X] and Q(X) ∈ C[X] \ {0} are coprime, and
P0(X), P1(X), P2(X) ∈ C[X], such that

deg(R) > 2, deg(P ) > deg(Q), L := max{deg(P0), deg(P1), deg(P2)} > 2,

and

Gi(X) = Q(X)LPi(R(X)) (i = 0, 1, 2).

The analysis naturally divides into three cases. The overall structure of the argument will
be the same in the three cases, but some details will differ.

7.1.1. Case 1: γ 6= 0. Then

f(X) = Xn + a1X
n−1 + · · ·+ an−3X

3 + aX2 + bX − γ−1(αa+ βb+ δ)

= G0(X) + aG1(X) + bG2(X),

where

G0(X) = Xn + a1X
n−1 + · · ·+ an−3X

3 − δ/γ, G1(X) = X2 − α/γ, G2(X) = X − β/γ.

We study Gal(f,C(a, b)) using the method of Uchida [44], Smith [42] and Cohen [17, 18]. As
we only wish to count irreducible polynomials, we may assume that there exists an irreducible
specialisation over the rationals. Whence f is irreducible over Q(a, b), and is therefore also
separable. Note that G0, G1, G2 are coprime, and that they are linearly independent over C.

Recall the following elementary fact.

Lemma 7.2. Let n > 3 be an integer, and let G be a group. Then the action of G on
{1, 2, . . . , n} is doubly-transitive if and only if the stabiliser subgroup of any point acts tran-
sitively on the remaining points.

Proof. The forward direction is clear. For the backward direction, let i1 6= i2 and j1 6= j2 be
elements of {1, 2, . . . , n}, and let k ∈ {1, 2, . . . , n} \ {i1, j1}. Then the composition

i1 7→ i1 7→ j1 7→ j1

i2 7→ k 7→ k 7→ j2

maps (i1, i2) to (j1, j2). �

In light of this, the Galois group of f is doubly-transitive if and only if f(X)/(X − x)

is irreducible over C(a, b, x) for any root x ∈ C(a, b). Note that any root of f must be
transcendental over C.

Lemma 7.3. The permutation group Gal(f,C(a, b)) is doubly-transitive.

This is analogous to [18, Lemma 4].
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Proof. Assume for a contradiction that Gal(f,C(a, b)) is not doubly-transitive. Then there

exists a root x ∈ C(a, b) of f such that f(X)/(X−x) is reducible over C(a, b, x). By Gauss’s
lemma, the polynomial f(X)/(X − x) is reducible over C[a, b, x]. As f(x) = 0, we have

bG2(x) = −G0(x)− aG1(x),

so

G2(x)f(X) = G2(x)(G0(X) + aG1(X) + bG2(X))

= G2(x)G0(X)−G0(x)G2(X) + a(G2(x)G1(X)−G1(x)G2(X)).

This is linear in a and separable in X, so for f(X)/(X − x) to be reducible there must exist

ξ ∈ C(x) \ {x} for which

G2(x)Gi(ξ) = G2(ξ)Gi(x) (i = 0, 1).

Note that x 6= β/γ, being transcendental over C. The equation with i = 1 is quadratic in
ξ, with one of the roots being x. Therefore ξ equals the other root:

ξ =
x2 − α/γ
x− β/γ

− x =
βx− α
γx− β

.

Substituting this into the equation with i = 0 yields(
x− β

γ

)
G0

(
βx− α
γx− β

)
=

(
βx− α
γx− β

− β

γ

)
G0(x) =

β2 − αγ
γ(γx− β)

G0(x),

or equivalently

(γx− β)nG0

(
βx− α
γx− β

)
− (β2 − αγ)(γx− β)n−2G0(x) = 0.

As x is transcendental over C, it cannot be the root of a non-zero polynomial over C, and
whence

(γX − β)nG0

(
βX − α
γX − β

)
− (β2 − αγ)(γX − β)n−2G0(X) = 0 ∈ C[X],

or equivalently

G0

(
βX − α
γX − β

)
=

(β2 − αγ)G0(X)

(γX − β)2
∈ C(X).

Taking X →∞ yields β2 − αγ = 0 and G0(β/γ) = 0. As

G1(β/γ) = β2/γ2 − α/γ = γ−2(β2 − αγ) = 0, G2(β/γ) = 0,

we now have f(β/γ) = 0, contradicting the irreducibility of f over Q(a, b). �

We will show that the permutation group Gal(f,C(a, b)) contains a transposition, but first
we require a preparatory result.

Lemma 7.4. The polynomials G0, G1, G2 are not strongly totally composite.

Proof. Suppose for a contradiction that

G2(X) = Q(X)LP2(R(X)), R = P/Q,

where P (X), Q(X) ∈ C[X] \ {0} are coprime, P2(X) ∈ C[X], and

deg(P ) > max{deg(Q), 1}, L > s := deg(P2), L > 2.

Writing
P2(X) = bsX

s + · · ·+ b0, b0, . . . , bs ∈ C, bs 6= 0,
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we have

X − β/γ = Q(X)L−s(bsP (X)s + · · ·+ b0Q(X)s).

The right hand side has degree (L− s)deg(Q) + s · deg(P ) > (L− s)deg(Q) + 2s. Now s = 0
and deg(Q) = 0, and we reach a contradiction, completing the proof. �

Lemma 7.5. The permutation group Gal(f,C(a, b)) contains a transposition.

This is analogous to [18, Corollary 6 and Lemma 7].

Proof. By [18, Corollary 6], it suffices to establish the existence of a, b ∈ C for which f has
factor type (1, . . . , 1, 2). We proceed in two steps. The first is to show that, for all but finitely
many a ∈ C, there exists b ∈ C such that ∆ = 0. To achieve this, we need to demonstrate
the existence of x, b ∈ C such that

G0(x) + aG1(x) + bG2(x) = 0, G′0(x) + aG′1(x) + b = 0.

We choose b = −(G′0(x) + aG′1(x)), and now we need to solve

G0(x) + aG1(x)− (G′0(x) + aG′1(x))G2(x) = 0.

As G1(X)−G′1(X)G2(X) = X2−α/γ−2X(X−β/γ) is non-constant, there can be at most
one value of a for which

G0(X) + aG1(X)− (G′0(X) + aG′1(X))G2(X)

is constant. For any other value of a ∈ C, there must exist a solution x ∈ C. This completes
the first step.

The remaining second step is to show that, for all but finitely many a ∈ C, for any b ∈ C
the polynomial f is normal. For this we will apply Lemma 6.4 with G = G0 + aG1 and
H = G2. As

G
(
β

γ

)
= G0

(
β

γ

)
+ a

(
β2

γ2
− α

γ

)
is a non-zero polynomial of degree at most 1 in the variable a, there is at most one value of
a ∈ C such that G and H are not coprime over C.

Suppose a, x ∈ C and that we have (6.1), where r = G/H. Then

0 = H(x)2r′(x) = H(x)G ′(x)− G(x)H′(x)

= (x− β/γ)(G′0(x) + 2xa)− (G0(x) + a(x2 − α/γ))

and

0 = H(x)3r′′(x) = H(x)(H(x)G ′′(x)− G(x)H′′(x))− 2H′(x)(H(x)G ′(x)− G(x)H′(x))

= (x− β/γ)2(G′′0(x) + 2a)− 2((x− β/γ)(G′0(x) + 2xa)− (G0(x) + a(x2 − α/γ))),

so

(x− β/γ)(G′′0(x) + 2a) = 0.

By (6.1), we have x 6= β/γ. Hence 2a = −G′′0(x), and so

2(x− β/γ)(G′0(x)−G′′0(x)x)− 2G0(x) +G′′0(x)(x2 − α/γ) = 0.

The polynomial has degree exactly n, so there are at most n solutions (a, x) ∈ C2 to (6.1).

Now suppose instead that we have (6.2) for some a, x, y ∈ C. With

r0 = G0/H, r1 = G1/H,
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we have

M

(
1
a

)
=

0
0
0

 ,

where

M =

r0(x)− r0(y) r1(x)− r1(y)
r′0(x) r′1(x)
r′0(y) r′1(y)

 .

Assume for a contradiction that rank(M) = 0. Then

2x =
x2 − α/γ
x− β/γ

=
y2 − α/γ
y − β/γ

= 2y,

contradicting (6.2). The upshot is that rank(M) > 1.
There are no solutions a ∈ C if rank(M) = 2, so we may assume in the sequel that

rank(M) = 1, in which case there is at most one solution a ∈ C. Next, we use an argument
from [17]. Considering minors yields

r′0(x)r′1(y) = r′1(x)r′0(y)

and
r′0(x)(r1(x)− r1(y)) = r′1(x)(r0(x)− r0(y)),

as well as
r′0(y)(r1(x)− r1(y)) = r′1(y)(r0(x)− r0(y)).

Solutions with r′0(x)r′0(y) = 0. By symmetry, it suffices to consider solutions with
r′0(y) = 0. As

H(y)2r′0(y) = H(y)G′0(y)−G0(y)

has degree n in y, there are only finitely many possibilities for y. Then

H(x)3H(y)(r′0(x)(r1(x)− r1(y))− r′1(x)(r0(x)− r0(y)))

= (H(x)G′0(x)−G0(x))(H(y)G1(x)−G1(y)H(x))

− (H(x)G′1(x)−G1(x))(H(y)G0(x)−G0(y)H(x))

is a degree n+ 2 polynomial in x, so it has finitely many zeros. We conclude that there are
finitely many solutions (a, x, y) of this type.

Solutions with r′0(x)r′0(y) 6= 0. We have

r′0(x)r1(x)− r0(x)r′1(x) = r′0(x)r1(y)− r0(y)r′1(x),

and so

r′0(y)(r′0(x)r1(x)− r0(x)r′1(x)) = r′0(y)(r′0(x)r1(y)− r0(y)r′1(x))

= r′0(x)(r′0(y)r1(y)− r0(y)r′1(y)).

Thus, by Lemma 6.6, we have

B∗R1
(x, y) = B∗R2

(x, y) = 0,

where

R1 =
r′1
r′0
, R2 =

r0r
′
1 − r′0r1
r′0

.

By Lemma 6.5, this has at most finitely many solutions unless the polynomials B∗R1
(X, Y )

and B∗R2
(X, Y ) have a common divisor of positive degree. Let us now assume the latter, for
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a contradiction. By Lemma 6.7, there exist R(X), θ(X), φ(X) ∈ C(X) such that deg(R) > 2
and

r′1(X) = θ(R(X))r′0(X), r0(X)r′1(X)− r′0(X)r1(X) = φ(R(X))r′0(X), (7.7)

and furthermore

R = P/Q, P (X), Q(X) ∈ C[X] \ {0}, deg(P ) > deg(Q),

and P,Q are coprime.
Assume for a contradiction that θ is constant. Then, by the quotient rule, we have

HG′1 −G1H′ = λ(HG′0 −G0H′)
for some λ ∈ C. More explicitly, we have

2X(X − β/γ)− (X2 − α/γ) = λ((X − β/γ)G′0(X)−G0(X)).

Equating Xn coefficients yields λ = 0, and then equating X2 coefficients delivers a contra-
diction. Therefore θ is non-constant.

Next, we substitute the first equation of (7.7) into the second. As r′0(X) 6= 0, this gives

θ(R(X))r0(X)− r1(X) = φ(R(X)).

Differentiating yields

r′1(X) = θ′(R(X))R′(X)r0(X) + θ(R(X))r′0(X)− φ′(R(X))R′(X).

Since R′, θ′ 6= 0 and r′1(X) = θ(R(X))r′0(X), we now have

r0(X) =
φ′(R(X))

θ′(R(X))
.

We had observed that there is at most one value of a ∈ C for which G and H are not
coprime over C. Let us now suppose that a ∈ C takes any other value. From the previous
paragraph, we see that r0(X), and hence also r0(X)+ar1(X), is a rational function of R(X).
Thus, for some coprime polynomials g0(X), g1(X) ∈ C[X], we have

G(X)

H(X)
=
g0(R(X))

g1(R(X))
.

Put
L = max{deg(g0), deg(g1)} > 1,

and observe that
G(X)

H(X)
=
Q(X)Lg0(R(X))

Q(X)Lg1(R(X))
.

Suppose for a contradiction that the polynomials Q(X)Lg0(R(X)) and Q(X)Lg1(R(X))
are not coprime. Then some x ∈ C is a common root. If Q(x) 6= 0 then R(x) is a common
root of g0 and g1, which is impossible because g0 and g1 are coprime. Therefore Q(x) = 0.
Let i ∈ {0, 1} be such that L = deg(gi), and write

gi(X) = bLX
L + bL−1X

L−1 + · · ·+ b0, b0, . . . , bL ∈ C, bL 6= 0.

Then
0 = Q(x)Lgi(P (x)/Q(x)) = bLP (x)L,

so P (x) = 0, contradicting the coprimality of P and Q. Hence Q(X)Lg0(R(X)) and
Q(X)Lg1(R(X)) are coprime.

Now
G(X) = τQ(X)Lg0(R(X)), H(X) = τQ(X)Lg1(R(X)),
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for some τ ∈ C \ {0}. We also know that r0(X) and r1(X) are rational functions of R(X).
Therefore

G0(X) = Q(X)Lg2(R(X)), G1(X) = Q(X)Lg3(R(X)),

for some rational functions g2, g3.
Let g2 = P2/Q2, where P2(X), Q2(X) ∈ C[X] are coprime and Q2 6= 0, and let

L2 = deg(g2).

Write

Q2(X) = csX
s + cs−1X

s−1 + · · ·+ c0, cs, . . . , c0 ∈ C, cs 6= 0.

Assume for a contradiction that s > 0. Arguing as before, the polynomialQ2(R(X))Q(X)L2

is coprime to P2(R(X))Q(X)L2 . ThereforeQ2(R(X))Q(X)L2 dividesQ(X)L in C[X]. Whence
L > L2 − s, and

csP (X)s + cs−1P (X)s−1Q(X) + · · ·+ c0Q(X)s = Q2(R(X))Q(X)s | Q(X)L−L2+s.

The polynomial Q2(R(X))Q(X)s has degree s · deg(P ) > 0. Therefore L > L2 − s and, for
some x ∈ C, we have

csP (x)s + cs−1P (x)s−1Q(x) + · · ·+ c0Q(x)s = 0,

so Q(x)L−L2+s = 0. Now Q(x) = 0, which implies that csP (x)s = 0 and so P (x) = 0, this
being impossible because P and Q are coprime.

Hence s = 0. The upshot is that g2 is a polynomial, and similarly g3 is a polynomial.
Recall that

G0(X) = Q(X)Lg2(R(X)), G1(X) = Q(X)Lg3(R(X))

and

G2(X) = H(x) = Q(X)L · τg1(R(X)),

where τ ∈ C \ {0}. As

G0(X) + aG1(X) = Q(X)Lg0(R(X)),

we deduce that

deg(g0) = deg(g2) > deg(g3),

whereupon

L = max{deg(g1), deg(g2), deg(g3)},
and finally

L > 2

by the linear independence of G0, G1, G2. This contradicts Lemma 7.4, that G0, G1, G2 are
not strongly totally composite.

We conclude that, for all but finitely many values of a ∈ C, the systems (6.1) and (6.2)
each have no solutions x, y ∈ C. Thus, by Lemma 6.4, for any b ∈ C the polynomial f is
normal. This completes the second step, and with it the proof of the lemma. �

By Lemmas 6.8, 7.3, and 7.5, we have Gal(f,C(a, b)) = Sn. As Gal(f,Q(a, b)) contains
Gal(f,C(a, b)), we conclude that

Gal(f,Q(a, b)) = Sn.

Let h be as in Lemma 4.6, and note that deg(h) �n 1. By Lemma 4.1, if Gf = G then
h(a, b, y) = 0 for some y ∈ Z. This has O(H1+ε+1/d) integer roots (a, b, y) with |a|, |b| 6 H,

by (7.6) and Theorem 6.3. In summary, this case γ 6= 0 contributes O(Hε+n−2+3d−1/3+d−1
) to

NG,n.



38 SAM CHOW AND RAINER DIETMANN

7.1.2. Case 2: γ = 0 and β 6= 0. Then

f(X) = Xn + a1X
n−1 + · · ·+ an−3X

3 + aX2 − β−1(αa+ δ)X + c

= G0(X) + aG1(X) + cG2(X),

where

G0(X) = Xn + a1X
n−1 + · · ·+ an−3X

3 − δ

β
X, G1(X) = X2 − α

β
X, G2(X) = 1.

We may assume that f is irreducible over Q(a, c), and therefore also separable.

Lemma 7.6. The permutation group Gal(f,C(a, c)) is doubly-transitive.

Proof. We imitate the proof of Lemma 7.3. Assume for a contradiction that Gal(f,C(a, c))

is not doubly-transitive. Then there exists a root x ∈ C(a, b) of f such that f(X)/(X − x)
is reducible over C[a, b, x]. Now

cG2(x) = −G0(x)− aG1(x),

so

G2(x)f(X) = G2(x)G0(X)−G0(x)G2(X) + a(G2(x)G1(X)−G1(x)G2(X)).

This is linear in a and separable in X, so for f(X)/(X − x) to be reducible there must exist

ξ ∈ C(x) \ {x} such that

G2(x)Gi(ξ) = G2(ξ)Gi(x) (i = 0, 1).

The equation with i = 1, namely

ξ2 − α

β
ξ = x2 − α

β
x,

is quadratic in ξ with one of the roots being x. Therefore ξ equals the other root:

ξ =
α

β
− x.

Substituting this into the equation with i = 0 yields

G0

(
α

β
− x
)

= G0(x).

As x is transcendental over C, it cannot be the root of a non-zero polynomial over C, and
whence

G0

(
α

β
−X

)
= G0(X). (7.8)

Equating Xn coefficients tells us that n is even. Then, equating Xn−1 coefficients gives

−nα/β − a1 = a1,

so α/β = −2a1/n. Finally, equating Xn−3 coefficients yields

−2a3 =

(
n

3

)
(α/β)3 +

(
n− 1

2

)
(α/β)2a1 + (n− 2)(α/β)a2

=

(
n

3

)
(−2a1/n)3 +

(
n− 1

2

)
(−2a1/n)2a1 + (n− 2)(−2a1/n)a2,

contradicting (7.3) and completing the proof. �

Lemma 7.7. The polynomials G0, G1, G2 are not strongly totally composite.
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Proof. Suppose for a contradiction that

Gi(X) = Q(X)LPi(R(X)) (i = 0, 1, 2), R = P/Q,

where P (X), Q(X) ∈ C[X] \ {0} are coprime,

P0(X), P1(X), P2(X) ∈ C[X], s1 := deg(P1), s2 := deg(P2),

and

deg(P ) > max{deg(Q), 1}, L > max{s1, s2, 2}.

Writing

P2(X) = bs2X
s2 + · · ·+ b0, b0, . . . , bs2 ∈ C, bs2 6= 0

and

P1(X) = cs1X
s1 + · · ·+ cs1 , cs1 , . . . , cs1 ∈ C, cs1 6= 0

we have

1 = Q(X)L−s2(bs2P (X)s2 + · · ·+ b0Q(X)s2)

and

X(X − α/β) = Q(X)L−s1(cs1P (X)s1 + · · ·+ c0Q(X)s1).

Therefore

0 = (L− s2)deg(Q) + s2 · deg(P )

and

2 = (L− s1)deg(Q) + s1 · deg(P ).

The only possibility is

s2 = 0, deg(Q) = 0, s1 = 1, deg(P ) = 2.

Now, for some λ0 ∈ C, we have

X(X − α/β) = λL−10 (c1P (X) + c0λ0).

As λ0, c1 6= 0, this enables us to write G0 as a polynomial in X(X − α/β). In particular, we
have (7.8), and this leads to a contradiction in the same way as in Case 1. �

Lemma 7.8. The permutation group Gal(f,C(a, c)) contains a transposition.

Proof. Following the proof of Lemma 7.5, the first step is to show that if a ∈ C then there
exist x, c ∈ C such that

G0(x) + aG1(x) + c = 0, G′0(x) + aG′1(x) = 0.

The second equation is the vanishing of a non-zero polynomial, so it has a solution x, and
then the first equation has a solution c. The rest of the proof is essentially the same as in
Case 1. �

By Lemmas 6.8, 7.6, and 7.8, we have Gal(f,C(a, c)) = Sn. Arguing as in the previous

case, we find that this case, too, contributes O(Hε+n−2+3d−1/3+d−1
) to NG,n.
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7.1.3. Case 3: β = γ = 0 and α 6= 0. Then

f(X) = Xn + a1X
n−1 + · · ·+ an−3X

3 − α−1δX2 + bX + c

= G0(X) + bG1(X) + cG2(X),

where

G0(X) = Xn + a1X
n−1 + · · ·+ an−3X

3 − α−1δX2, G1(X) = X, G2(X) = 1.

Similarly to the previous cases, or directly from [18, Theorem 1], we have Gal(f,C(b, c)) = Sn.

Arguing as in the previous cases, we find that this case also contributes O(Hε+n−2+3d−1/3+d−1
)

to NG,n.

We conclude that non-degenerate tuples contribute O(Hε+n−3/2+3d−1/3
) to NG,n, the dom-

inant contribution coming from (7.5).

7.2. Degenerate tuples. We begin by counting degenerate tuples. There are O(Hn−4)
integer vectors (a1, . . . , an−3) ∈ [−H,H]n−3 not satisfying (7.3).

For the degenerate tuples with (7.3), the idea is to show that Ya1,...,an−3 is absolutely
irreducible for generic a1, . . . , an−3. Let

D(a1, . . . , an) ∈ Z[a1, . . . , an]

be the discriminant of Φ(y). As Φ has total degree On(1), so too does D. Further, we know
from [23, Lemma 7] that D is not the zero polynomial. Whence, for all but O(Hn−4) integer
vectors (a1, . . . , an−3) ∈ [−H,H]n−3, the polynomial g(a, b, c, y) = Φ(y; a1, . . . , an−3, a, b, c) is
separable in y.

Let a1, . . . , an−3 be integers such that g(a, b, c, y) is separable in y, and recall (7.2). By
[18, Theorem 1], applied to the field F = Q(a), we have

Gal(f,Q(a, b, c)) = Sn.

Suppose for a contradiction that

g(a, b, c, y) = g1(y; a, b, c)g2(y; a, b, c) ∈ Q(a, b, c)[y],

for some non-constant polynomials g1, g2. Let rσi be a root of gi (i = 1, 2), where for σ ∈ Sn
we write

rσ =
∑
τ∈G

∏
i6n

αiστ(i),

where α1, . . . , αn are the roots of f in Q(a, b, c). Then for κ = σ2σ
−1
1 ∈ Gal(f,Q(a, b, c))

we have κ(rσ1) = rσ2 . As g1 has coefficients in Q(a, b, c), we now see that g1 and g2 have a
common root κ(rσ1) = rσ2 , which is impossible because g is separable.

We conclude that there are O(Hn−4) integer tuples

(a1, . . . , an−3) ∈ [−H,H]n−3

such that Ya1,...,an−3 is reducible over Q. The upshot is that there are O(Hn−4) degenerate
tuples (a1, . . . , an−3) ∈ [−H,H]n−3 in total. Now let us fix such a tuple.

Write

F(a, b, c,X) = Xn + a1X
n−1 + · · ·+ an−3X

3 + aX2 + bX + c.

By [23, Lemma 2], there are at most O(H) values of a, b ∈ Z ∩ [−H,H] for which the
polynomial F(a, b, c,X) ∈ Q(c)[X] has non-Sn Galois group, where the implied constant is
uniform in a1, . . . , an−3. The total contribution from these O(H) special choices of a, b is
O(Hn−2), since there are O(H) possibilities for c.
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For the other O(H2) specialisations of a, b, the polynomial

F(c,X) := F(a, b, c,X) ∈ Q(c)[X]

is separable with Galois group Sn. By Lemma 4.3, the polynomial

h(c, y) := ΦF ,G(c, y) ∈ Z[c, y]

is irreducible, so by Theorem 2.2 there are O(Hε+1/d) pairs (c, y) ∈ Z2 such that

h(c, y) = 0, |c| 6 H, y �n H
On(1).

We conclude that there are O(Hε+n−2+1/d) tuples (a1, . . . , an) ∈ (Z ∩ [−H,H])n, with
(a1, . . . , an−3) degenerate, such that Gf = G.

In total there are O(Hε+n−3/2+3d−1/3
) irreducible polynomials (4.1) with maxi |ai| 6 H and

Galois group G.

8. Even permutation groups

In this section, we establish Theorem 1.12. The inequality d > 6 follows from Theorem
1.9 when n > 11, and from the classification of transitive groups of low degree [12] when
3 6 n 6 10. Let (a1, . . . , an−2) ∈ (Z ∩ [−H,H])n−2, and let

g(a, b, y) = Φ(y; a1, . . . , an−2, a, b).

First suppose (a1, . . . , an−2) is non-degenerate, meaning that g is absolutely irreducible.
Denote by Y the affine surface cut out by the vanishing of g. By Theorem 2.5, there exist

g1, . . . , gJ ∈ Z[a, b, y] with J � Hε+1/
√
d, and a finite set Z ⊂ Y , such that

(1) Each gj is coprime to g and has degree O(1);

(2) |Z| � Hε+2/
√
d;

(3) If (a, b, y) ∈ Y ∩ Z3 \ Z and

|a|, |b| 6 H, y �n H
On(1)

then

g(a, b, y) = gj(a, b, y) = 0 (8.1)

for some j.

The contribution to NG,n from (a, b, y) ∈ Z is O(Hε+n−2+2/
√
d) � Hε+n−3/2+1/

√
d, so in the

non-degenerate case it remains to consider (8.1) for j fixed.
If degy(gj) = 0 then let F (a, b) = gj(a, b), and otherwise let F (a, b) be the resultant of g

and gj in the variable y. Then F (a, b) = 0 whenever we have (8.1), whereupon F(a, b) = 0
for some irreducible divisor F(a, b) ∈ Q[a, b] of F . If F is non-linear, then Theorem 2.2
yields

#{(a, b) ∈ (Z ∩ [−H,H])2 : F(a, b) = 0} � Hε+1/2,

and the contribution to NG,n from this case is O(Hε+n−2+1/
√
d+1/2) = O(Hε+n−3/2+1/

√
d). In

the non-degenerate case, it remains to treat the scenario in which F is linear.
If the a coefficient of F(a, b) is non-zero, then we have a = c1b + c2 for some c1, c2 ∈ Q.

As G < An, we have

P (b, z) := z2 −∆(a1, . . . , an−2, c1b+ c2, b) = 0

for some z ∈ N, where ∆(a1, . . . , an) denotes the discriminant of Xn + a1X
n−1 + · · · + an.

The polynomial P is irreducible, by [24, Lemma 5], see [25, §6] for why we assume (1.4).



42 SAM CHOW AND RAINER DIETMANN

Let C > 0 be large, and note that ∆ has total degree 2n − 2, so if |a1|, . . . , |an| 6 H then
|∆(a1, . . . , an)| 6 CH2n−2. Now Theorem 2.2 yields

#{(b, z) ∈ Z2 : |b| 6 H, |z| 6 CHn−1, P (b, z) = 0} � Hε+1/2,

and the contribution to NG,n from this case is O(Hε+n−3/2+1/
√
d).

Otherwise F(a, b) = λ(b− µ), for some µ ∈ Q and some λ ∈ Q \ {0}, and

Q(a, z) := z2 −∆(a1, . . . , an−2, a, µ) = 0

for some z ∈ N. The polynomial Q is irreducible, by [24, Lemma 6], see [25, §6] for why we
assume (1.4). Now Theorem 2.2 yields

#{(a, z) ∈ Z2 : |a| 6 H, |z| 6 CHn−1, Q(a, z) = 0} � Hε+1/2,

and the contribution to NG,n from this case is O(Hε+n−3/2+1/
√
d).

For degenerate tuples, we can follow §7.2 with minimal changes. We find that their
contribution to NG,n is O(Hε+n−2+1/d).

We have considered all cases, completing the proof of Theorem 1.12.
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