
The Library
Complex and tropical counts via positive characteristic
Tools
Pacini, Marco and Testa, Damiano (2022) Complex and tropical counts via positive characteristic. Expositiones Mathematicae, 40 (4). pp. 1096-1115. doi:10.1016/j.exmath.2022.07.003 ISSN 0723-0869.
![]() |
PDF
WRAP-complex-tropical-counts-via-positive-characteristic-Testa-2022.pdf - Accepted Version Embargoed item. Restricted access to Repository staff only until 4 May 2024. Contact author directly, specifying your specific needs. - Requires a PDF viewer. Available under License Creative Commons Attribution Non-commercial No Derivatives 4.0. Download (568Kb) |
Official URL: https://doi.org/10.1016/j.exmath.2022.07.003
Abstract
We study two classical families of enumerative problems: inflection lines of plane curves and theta-hyperplanes of canonical curves. In these problems the complex counts and the tropical counts disagree. Each problem suggests a prime with special behavior. On the one hand, we analyze the reduction modulo these special primes, and we prove that the complex solutions coalesce in uniform clusters. On the other hand, we observe that the counts in special characteristic and in tropical geometry match.
Item Type: | Journal Article | ||||||||
---|---|---|---|---|---|---|---|---|---|
Divisions: | Faculty of Science, Engineering and Medicine > Science > Mathematics | ||||||||
Journal or Publication Title: | Expositiones Mathematicae | ||||||||
Publisher: | Elsevier | ||||||||
ISSN: | 0723-0869 | ||||||||
Official Date: | December 2022 | ||||||||
Dates: |
|
||||||||
Volume: | 40 | ||||||||
Number: | 4 | ||||||||
Page Range: | pp. 1096-1115 | ||||||||
DOI: | 10.1016/j.exmath.2022.07.003 | ||||||||
Status: | Peer Reviewed | ||||||||
Publication Status: | Published | ||||||||
Access rights to Published version: | Restricted or Subscription Access | ||||||||
Date of first compliant deposit: | 4 August 2022 | ||||||||
Related URLs: |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |