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A B S T R A C T

A common problem in data analysis is the separation of signal and background. We revisit and generalise
the so-called sWeights method, which allows one to calculate an empirical estimate of the signal density of a
control variable using a fit of a mixed signal and background model to a discriminating variable. We show
that sWeights are a special case of a larger class of Custom Orthogonal Weight functions (COWs), which can
be applied to a more general class of problems in which the discriminating and control variables are not
necessarily independent and still achieve close to optimal performance. We also investigate the properties of
parameters estimated from fits of statistical models to sWeighted data and provide closed formulas for the
asymptotic covariance matrix of the fitted parameters. To illustrate our findings, we discuss several practical
applications of these techniques.
. Introduction

This article takes a fresh look at the sWeights (or sPlot) formalism
iscussed by Barlow [1] and popularised more recently by Pivk and
e Diberder [2]. The sWeights method is used to infer properties of
signal distribution in a mixed data set containing signal and back-

round events. The signal distribution is extracted non-parametrically
y applying weights to individual events. Inference is then done on the
eighted data set. The method is applicable, when individual points

rom the data distribution consist of a discriminating variable(s), here
alled 𝑚, and one or more statistically independent control variables,
ere called 𝑡. Both 𝑚 and 𝑡 can be vectors and of different dimensions
ithout changing any of the conclusions. We will only refer to the
ne-dimensional case to simplify the discussion, but the general case
s always implied. By fitting parametric models to the signal and back-
round in the discriminating variable 𝑚, one can compute the weighted
istribution that represents the signal density in the control variable 𝑡.
he advantage of this method, compared to a fully parametric fit to
he (𝑚, 𝑡) distribution, is that one avoids the need to parameterise the
ackground density in the control variable 𝑡, which is often challenging.

In Section 2 we re-derive the established sWeights method from
he starting point of orthonormal functions. We show several ways of
alculating the weights and compare their trade-offs, and emphasise
hat sWeights can easily be computed without some of the restrictions
een previously.
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C. Langenbruch), michael.schmelling@mpi-hd.mpg.de (M. Schmelling).

In Section 3 we then discuss a generalisation of the sWeights method
which we dub Custom Orthogonal Weight functions (COWs). COWs relax
most of the requirements of the sWeights formalism and can be applied
to a larger class of problems than sWeights, at a small loss in precision.

In Section 4 we then discuss the properties of estimates obtained
when fitting models to weighted data. We give an asymptotically
correct formula for the covariance matrix of the parameters obtained
from such a fit.

Finally in Section 5 we perform a variety of studies on simulated
Monte Carlo which deploy sWeights and COWs on various applications
and show comparisons of their performance. We also discuss a test of
independence that can be used to determine if sWeights are applicable
or whether the more general COWs method is needed.

2. sWeights as orthonormal functions

To compute the weights for the signal distribution in the control
variable 𝑡, we use a discriminant variable 𝑚 (often the invariant mass
of some particle’s decay products). The signal and background density
only need to be parameterised in the discriminant variable 𝑚. In the
sWeights formalism, the variables 𝑚 and 𝑡 must be statistically indepen-
dent in each component, so that the respective p.d.f.s of the variables
factorise. The total p.d.f. then has the following form

𝑓 (𝑚, 𝑡) = 𝑧 𝑔𝑠(𝑚)ℎ𝑠(𝑡) + (1 − 𝑧) 𝑔𝑏(𝑚)ℎ𝑏(𝑡), (1)
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where 𝑧 is the signal fraction, 𝑔𝑠(𝑚) and ℎ𝑠(𝑡) are the signal p.d.f.s in the
discriminating and control variables, respectively, and 𝑔𝑏(𝑚) and ℎ𝑏(𝑡),
the corresponding background p.d.f.s. The sWeights method allows one
to obtain an asymptotically efficient non-parametric estimate of 𝑧 ℎ𝑠(𝑡)

hile only requiring parametric models for 𝑔𝑠(𝑚) and 𝑔𝑏(𝑚).
We stress that the sWeights method is only applicable when the

p.d.f.s in 𝑚 and 𝑡 factorise for both the signal and the background,
which is conditional on their independence. Independence is a stronger
condition than lack of correlation; tests which demonstrate a lack
of correlation between 𝑚 and 𝑡 provide necessary, but not sufficient,
evidence for the applicability of the sWeights method. We come back to
proper tests of independence in Section 5.

2.1. Construction of an optimal weight function

We postulate that a weight function, 𝑤𝑠(𝑚), exists which extracts the
signal component, 𝑧 ℎ𝑠(𝑡), when 𝑓 (𝑚, 𝑡) is multiplied by it and integrated
over 𝑚1:

𝑧 ℎ𝑠(𝑡)
!
= ∫ d𝑚 𝑤𝑠(𝑚) 𝑓 (𝑚, 𝑡)

= ∫ d𝑚 𝑤𝑠(𝑚)
[

𝑧 𝑔𝑠(𝑚)ℎ𝑠(𝑡) + (1 − 𝑧) 𝑔𝑏(𝑚)ℎ𝑏(𝑡)
]

= 𝑧 ℎ𝑠(𝑡)∫ d𝑚 𝑤𝑠(𝑚) 𝑔𝑠(𝑚) + (1 − 𝑧)ℎ𝑏(𝑡)∫ d𝑚 𝑤𝑠(𝑚) 𝑔𝑏(𝑚).

(2)

The left and the right-hand sides of Eq. (2) are equal in general only if
the following conditions hold:

∫ d𝑚 𝑤𝑠(𝑚) 𝑔𝑠(𝑚) = 1 and ∫ d𝑚 𝑤𝑠(𝑚) 𝑔𝑏(𝑚) = 0. (3)

If we regard ∫ d𝑚𝜙(𝑚)𝜓(𝑚) as the inner product of a vector space over
functions, then these conditions define 𝑤𝑠(𝑚) as the vector orthogonal
to 𝑔𝑏(𝑚) and normal to 𝑔𝑠(𝑚). In other words, 𝑤𝑠(𝑚) is an orthonormal
function in this space.

Since the vector space over 𝑚 is infinite-dimensional, there are in-
finitely many orthonormal functions 𝑤𝑠(𝑚) that satisfy these conditions.
For example, the classic sideband subtraction method can be regarded
as a special case where 𝑤𝑠(𝑚) is a piece-wise constant function which
is positive in the signal region and negative in the background region.

In order to obtain a unique solution for 𝑤𝑠(𝑚) we can chose to
minimise its variance. Since 𝑓 (𝑚, 𝑡) factorises and 𝑤𝑠(𝑚) is only a
function of 𝑚, we can obtain all information about 𝑤𝑠 from the density
𝑔(𝑚), computed by integrating Eq. (1) over 𝑡,

𝑔(𝑚) = ∫ d𝑡 𝑓 (𝑚, 𝑡) = 𝑧 𝑔𝑠(𝑚) + (1 − 𝑧) 𝑔𝑏(𝑚). (4)

The expectation of 𝑤𝑠 over 𝑔(𝑚) is

E[𝑤𝑠] = ∫ 𝑤𝑠(𝑚) 𝑔(𝑚)d𝑚 = 𝑧, (5)

and the variance of 𝑤𝑠 over 𝑔(𝑚) is given by

Var(𝑤𝑠) = E[𝑤2
𝑠 ] − E[𝑤𝑠]2 = ∫ 𝑤𝑠(𝑚)2 𝑔(𝑚)d𝑚 − 𝑧2. (6)

Minimising the variance, Var(𝑤𝑠), guarantees that the sample esti-
mate �̂� = 1∕𝑁

∑𝑁
𝑖 �̂�𝑠(𝑚𝑖) asymptotically has minimum variance. As

a byproduct, this choice also produces minimum variance for the
estimated background fraction (1 − �̂�), and generally smooth functions,
𝑤𝑠(𝑚), since oscillating solutions have larger variance.

To find the function 𝑤𝑠(𝑚) which minimises Var(𝑤𝑠), we have to
solve a constrained minimisation problem. The solution, computed in
Appendix A, is

𝑤𝑠(𝑚) =
𝛼𝑠 𝑔𝑠(𝑚) + 𝛼𝑏 𝑔𝑏(𝑚)

𝑔(𝑚)
. (7)

1 Throughout this paper the symbol, !
=, is used to indicate that the equation

hould be solved.
2

The constants 𝛼𝑠,𝑏 are obtained by inserting Eq. (7) into Eq. (3) and
solving the resulting system of linear equations. The signal component
plays no special role in the derivation so far. We could have equally
postulated a weight function 𝑤𝑏(𝑚) to extract the background, which
leads to the conditions

∫ d𝑚 𝑤𝑏(𝑚) 𝑔𝑠(𝑚) = 0 (8)

d𝑚 𝑤𝑏(𝑚) 𝑔𝑏(𝑚) = 1, (9)

nd

𝑏(𝑚) =
𝛽𝑠 𝑔𝑠(𝑚) + 𝛽𝑏 𝑔𝑏(𝑚)

𝑔(𝑚)
. (10)

The coefficients 𝛼𝑐 and 𝛽𝑐 with 𝑐 ∈ {𝑠, 𝑏} can be computed by solving
(

𝑊𝑠𝑠 𝑊𝑠𝑏
𝑊𝑠𝑏 𝑊𝑏𝑏

)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝑾

⋅
(

𝛼𝑠 𝛽𝑠
𝛼𝑏 𝛽𝑏

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑨

=
(

1 0
0 1

)

, (11)

ith

𝑐𝑑 = ∫ d𝑚
𝑔𝑐 (𝑚) 𝑔𝑑 (𝑚)

𝑧𝑔𝑠(𝑚) + (1 − 𝑧)𝑔𝑏(𝑚)
, (12)

here 𝑐, 𝑑 ∈ {𝑠, 𝑏}. In other words, the matrix 𝑨, formed by the
oefficients to compute 𝑤𝑠(𝑚) and 𝑤𝑏(𝑚), is the inverse of the symmetric
ositive-definite 𝑾 matrix. The discussion throughout this section
ssumes just two components (one signal and one background) but is
qually applicable to any number of components, 𝑁 , in which case the

and 𝑨 matrices are not 2 × 2 but 𝑁 ×𝑁 .
Applying Cramer’s rule to Eq. (11), we get

𝑠 =
𝑊𝑏𝑏

𝑊𝑠𝑠𝑊𝑏𝑏 −𝑊 2
𝑠𝑏

, 𝛼𝑏 =
−𝑊𝑠𝑏

𝑊𝑠𝑠𝑊𝑏𝑏 −𝑊 2
𝑠𝑏

, (13)

𝛽𝑠 =
−𝑊𝑠𝑏

𝑊𝑠𝑠𝑊𝑏𝑏 −𝑊 2
𝑠𝑏,

𝛽𝑏 =
𝑊𝑠𝑠

𝑊𝑠𝑠𝑊𝑏𝑏 −𝑊 2
𝑠𝑏

. (14)

ne can further replace 𝑔(𝑚) in the denominator of Eq. (7) (or Eq. (10))
y inserting Eq. (7) into Eq. (5) to find that 𝑧 = 𝛼𝑠 + 𝛼𝑏, and similarly
ne finds 1 − 𝑧 = 𝛽𝑠 + 𝛽𝑏. With these ingredients, we obtain the final
quations

𝑤𝑠(𝑚) =
𝑊𝑏𝑏 𝑔𝑠(𝑚) −𝑊𝑠𝑏 𝑔𝑏(𝑚)

(𝑊𝑏𝑏−𝑊𝑠𝑏) 𝑔𝑠(𝑚) + (𝑊𝑠𝑠−𝑊𝑠𝑏)𝑔𝑏(𝑚)
, (15)

𝑏(𝑚) =
𝑊𝑠𝑠 𝑔𝑏(𝑚) −𝑊𝑠𝑏 𝑔𝑠(𝑚)

(𝑊𝑏𝑏−𝑊𝑠𝑏) 𝑔𝑠(𝑚) + (𝑊𝑠𝑠−𝑊𝑠𝑏)𝑔𝑏(𝑚)
. (16)

n summary, to obtain 𝑤𝑠(𝑚) or 𝑤𝑏(𝑚) one has to compute the matrix
lements 𝑊𝑠𝑠,𝑊𝑠𝑏,𝑊𝑏𝑏, which depend only on 𝑔𝑠,𝑏(𝑚) and 𝑧.

.2. Application to finite samples

The calculations so far were carried out for the true p.d.f.s, 𝑔𝑠,𝑏(𝑚),
nd true signal fraction, 𝑧, on which the matrix elements 𝑊𝑐𝑑 depend.
n practice, these need to be replaced by sample estimates �̂�𝑠,𝑏(𝑚) and
̂, typically obtained from a maximum-likelihood fit, although any kind
f estimation can be used. The plug-in estimate [3] of Eq. (15) is

̂ 𝑠(𝑚) =
𝑊𝑏𝑏 �̂�𝑠(𝑚) −𝑊𝑠𝑏 �̂�𝑏(𝑚)

(𝑊𝑏𝑏−𝑊𝑠𝑏) �̂�𝑠(𝑚) + (𝑊𝑠𝑠−𝑊𝑠𝑏) �̂�𝑏(𝑚)
. (17)

or the computation of the estimates 𝑊𝑐𝑑 we face a choice between
everal options.

• Variant A: We replace the true quantities in Eq. (12) with their
plug-in estimates and compute the integral analytically or numer-
ically,

𝑊 𝐴
𝑐𝑑 = ∫ d𝑚

�̂�𝑐 (𝑚) �̂�𝑑 (𝑚)
�̂� �̂�𝑠(𝑚) + (1 − �̂�) �̂�𝑏(𝑚)

. (18)

Solving the one-dimensional integral numerically is not an issue;
this is a standard problem for which efficient and robust algo-
rithms exist. The computation is independent of the number of
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data points. A numerical integration typically requires around
100 to 1000 function evaluations.
If the p.d.f.s 𝑔𝑐 (𝑚) have no shape parameters that need to be
estimated from the data, we have �̂�𝑐 (𝑚) = 𝑔𝑐 (𝑚) and only �̂� has to
be estimated. In this special case, it is shown in Appendix C that
the sum over sWeights in a bin 𝑘 of 𝑡 are uncorrelated and their
variance is estimated by the sum of weights squared. In practice,
however, the component p.d.f.s are often not known, and thus in
general, the sums of weights in different bins are not uncorrelated
and the sum of weights squared is not a proper estimate of the
bin-wise variance. Calculation of the covariance then requires the
sandwich estimator described in Appendix C.

• Variant B: The integral in Eq. (18) can be replaced by a sum over
the observations in the data sample. In general, an integral over
a function 𝜙(𝑚) can be written as an expectation value over the
p.d.f. 𝑔(𝑚),

∫ d𝑚 𝜙(𝑚) = ∫ d𝑚 𝑔(𝑚)
𝜙(𝑚)
𝑔(𝑚)

= E
[

𝜙(𝑚)
𝑔(𝑚)

]

. (19)

In a finite sample, the arithmetic mean is an unbiased estimate
of the expectation due to the law of large numbers, thus we can
construct an unbiased estimator by replacing the expectation with
the arithmetic mean,

E
[

𝜙(𝑚)
𝑔(𝑚)

]

⟶
1
𝑁

∑

𝑖

𝜙(𝑚𝑖)
𝑔(𝑚𝑖)

, (20)

where 𝑚𝑖 is the 𝑖th observed value of 𝑚 and 𝑁 is the sample size.
We obtain

𝑊 𝐵
𝑐𝑑 = 1

𝑁
∑

𝑖

�̂�𝑐 (𝑚𝑖) �̂�𝑑 (𝑚𝑖)
(

�̂��̂�𝑠(𝑚𝑖) + (1 − �̂�)�̂�𝑏(𝑚𝑖)
)2
, (21)

which is the formula to compute sWeights given in Ref. [2]. We
will refer to sWeights computed with variant B as classic sWeights
throughout the paper.
The computation with variant B is straight-forward, there is no
need for a numerical integration algorithm. For large samples that
exceed 1000 items, variant A will in general be faster than variant
B, but the difference is hardly noticeable in practice. Sums over
sWeights in bins of 𝑡 computed with Eq. (21) are always correlated,
even if the component p.d.f.s are parameter-free (in contrast to
variant A), as shown in Ref. [4].

In general, both variant A and B produce correlations between
sums of sWeights in bins of 𝑡 (a weighted histogram), which makes
further analysis more complicated. Ref. [2] states that such bins are
uncorrelated and have simple variance estimates, but this is correct
only under the special circumstances discussed in the following.

In the case of variant A, the correlations vanish only if the true
shapes in the component p.d.f.s, 𝑔𝑐 (𝑚), are known, which is almost
never the case in practice. In the case of variant B, correlations are
present even if the component p.d.f.s are known. The correlations are
usually small, but do not vanish as the sample size grows.

In general, the covariance matrix for a weighted histogram has to be
computed with a sandwich estimator, irrespective of whether variant A
or B are used. Variant A has a slight advantage over B, since the compu-
tation of the sandwich estimator is a bit simpler. Sandwich estimators
for binned and unbinned fits to sWeighted data are given in Ref. [4]. The
sandwich estimator for an unbinned fit is described in Section 4 and
an outline for the computation of a sandwich estimator for a weighted
histogram is given in Appendix C. The computation of these sandwich
estimators can be automated by software. Altogether, we recommend
variant B for practical applications, since it produces estimates with
smaller variance than variant A, as described in Section 4, but we also
note that the difference between variant A and B is negligible in most
toy examples that we tried.
3

Finally, we note that the sum over sWeights computed with either
variant is exactly equal to the previously estimated signal yield �̂�𝑠 =
𝑁�̂� that is used in their calculation,

𝑇 =
∑

𝑖
�̂�𝑠(𝑚𝑖) = 𝑁�̂� = �̂�𝑠. (22)

The proofs are provided in Appendix D. For variant B this is generally
true, and for variant A, it is true, if �̂�𝑠, �̂�𝑏, and the component p.d.f.s
�̂�𝑐 (𝑚) are estimated with the extended maximum-likelihood method,
described in the next section.

2.3. Connection to extended maximum-likelihood fit

There is a curious connection between Eq. (21) and the results of
an extended maximum-likelihood fit in which �̂�𝑠 and �̂�𝑏 are maximum-
likelihood estimates and the respective signal and background yields,
𝑁𝑠 and 𝑁𝑏, are regarded as independent variables [2]. In such a fit,
one maximises the extended log-likelihood function [5] which, without
constant terms, is

ln(𝑁𝑠, 𝑁𝑏) = −(𝑁𝑠 +𝑁𝑏) +
∑

𝑖
ln[𝑁𝑠 �̂�𝑠(𝑚𝑖) +𝑁𝑏 �̂�𝑏(𝑚𝑖)]. (23)

The extremum is determined by solving the score functions

𝜕 ln
𝜕𝑁𝑐

= −1 +
∑

𝑖

�̂�𝑐 (𝑚𝑖)
𝑁𝑠 �̂�𝑠(𝑚𝑖) +𝑁𝑏 �̂�𝑏(𝑚𝑖)

!
= 0, (24)

with 𝑐 ∈ {𝑠, 𝑏}. The maximum-likelihood estimates obtained from these
score functions are �̂�𝑠 = 𝑁�̂� and �̂�𝑏 = 𝑁(1−�̂�), where �̂� is the estimated
signal fraction as before. The elements of the Hessian matrix, of second
derivatives of the log-likelihood function, are given by

𝜕2 ln
𝜕𝑁𝑐 𝜕𝑁𝑑

= −
∑

𝑖

�̂�𝑐 (𝑚𝑖) �̂�𝑑 (𝑚𝑖)
(

𝑁𝑠 �̂�𝑠(𝑚𝑖) +𝑁𝑏 �̂�𝑏(𝑚𝑖)
)2
. (25)

We note the similarity between Eq. (25) and Eq. (21) and evaluate the
second derivative at the maximum of ln to find

− 𝜕2 ln
𝜕𝑁𝑐 𝜕𝑁𝑑

|

|

|

|𝑁𝑠=𝑁�̂�,𝑁𝑏=𝑁(1−�̂�)
=
∑

𝑖

�̂�𝑐 (𝑚𝑖) �̂�𝑑 (𝑚𝑖)
(

𝑁 �̂� �̂�𝑠(𝑚𝑖) +𝑁 (1 − �̂�) �̂�𝑏(𝑚𝑖)
)2

= 1
𝑁
𝑊 𝐵
𝑐𝑑 . (26)

This offers another opportunity to compute estimates of 𝑊𝑐𝑑 , which
as already pointed out in Ref. [2]. The second derivatives of the log-

ikelihood for �̂�𝑠, �̂�𝑏, and the shape parameters 𝜽𝑠,𝑏 of �̂�𝑠,𝑏(𝑚;𝜽𝑠,𝑏) are
outinely computed by MINUIT [6] by calling the routine HESSE to
stimate the covariance matrix 𝐂 of the parameters once a minimum
s found by the routine MIGRAD. The matrix 𝐂 obtained in this way is
he negative inverse of the Hessian,

−1 = −

⎛

⎜

⎜

⎜

⎜

⎝

𝜕2 ln
𝜕𝑁2

𝑠

𝜕2 ln
𝜕𝑁𝑠𝜕𝑁𝑏

…
𝜕2 ln
𝜕𝑁𝑠𝜕𝑁𝑏

𝜕2 ln
𝜕𝑁2

𝑏
…

⋮ ⋮ ⋱

⎞

⎟

⎟

⎟

⎟

⎠

. (27)

The dotted parts of the matrix correspond to derivatives that contain
one or two shape parameters of 𝜽𝑠,𝑏.

Variant C to compute the elements of 𝑊 𝐶
𝑐𝑑 consists of the following

steps:

• Invert the covariance matrix 𝐂 of the fit of yields 𝑁𝑠,𝑏 and shape
parameters 𝜽𝑠,𝑏.

• Isolate the 2 × 2 sub-matrix of the Hessian which contains the
derivatives with respect to the yields 𝑁𝑠,𝑏.

• Use Eq. (26) on these matrix elements to obtain 𝑊 𝐶
𝑐𝑑 .

t would be incorrect to switch steps 1 and 2, i.e. isolate the 2 × 2 sub-
matrix of 𝐂 that contains the yields and invert it, because this does not
restore the derivatives.

An equivalent alternative is to do a second fit which leaves only

the yields free while keeping shape parameters fixed. In this case,
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the covariance matrix computed by MINUIT can be scaled to yield an
estimate of the coefficient matrix from Eq. (11):
(

�̂�𝑠 𝛽𝑠
�̂�𝑏 𝛽𝑏

)

= 1
𝑁

(

𝐶𝑠𝑠 𝐶𝑠𝑏
𝐶𝑠𝑏 𝐶𝑏𝑏

)

. (28)

Mathematically, variant B and C should produce the exact same
result. In practice, this is not exactly true, because the Hessian matrix
is not calculated analytically with Eq. (25). The second derivatives in
Eq. (27) are instead computed approximately by numerical differen-
tiation of Eq. (23). The accuracy of a numerically computed second
derivative is of the order of 𝜖1∕3, where 𝜖 is the round-off error of float-
ing point arithmetic on a computer (𝜖 ≈ 10−12 for double precision).
The accuracy of the 𝑊 matrix computed with variant C is much lower
than one computed with variant B or A, so that Eq. (22) only holds
approximately.

3. Custom orthogonal weight functions

So far we considered the special case where the p.d.f. is a mix-
ture of two components that each factorise in both the discriminant
and control variables. We now generalise to an arbitrary number of
factorising components, and also allow for a non-factorising function
of frequency weights, 𝜖(𝑚, 𝑡), which are usually identified with an
efficiency. In High Energy Physics applications, such a function may
arise from a non-uniform acceptance introduced by the detector or
the selection requirements applied to the data in order to improve the
signal-to-background ratio. The p.d.f. for the observed data then is

𝜌(𝑚, 𝑡) = 1
𝐷
𝜖(𝑚, 𝑡)𝑓 (𝑚, 𝑡) with 𝐷 = ∫ d𝑚 d𝑡 𝜖(𝑚, 𝑡) 𝑓 (𝑚, 𝑡) . (29)

The normalisation constant, 𝐷, ensures that 𝜌(𝑚, 𝑡) is a probability
density. We expand the true density of the events into 𝑛 factorising
components,

𝑓 (𝑚, 𝑡) =
𝑛
∑

𝑘=0
𝑧𝑘 𝑔𝑘(𝑚)ℎ𝑘(𝑡) with

𝑛
∑

𝑘=0
𝑧𝑘 = 1 . (30)

The Kolmogorov–Arnold representation theorem [7,8] ensures that a
finite sum of terms on the right-hand side can represent any two-
dimensional function 𝑓 (𝑚, 𝑡). The 𝑔𝑘(𝑚) and ℎ𝑘(𝑡) are normalised prob-
ability densities. Normalised Bernstein [9] or B-spline [10] basis poly-
nomials can fill this role in general. For practical applications, it is
beneficial if the expansion requires only a few terms, which can be
achieved with 𝑔𝑘(𝑚) and ℎ𝑘(𝑡) suitably chosen for the specific case. For
a given expansion, we will assume that the first 𝑠 terms pertain to the
signal density while the others describe the background, i.e.

𝑓 (𝑚, 𝑡) =
𝑠−1
∑

𝑘=0
𝑧𝑘 𝑔𝑘(𝑚)ℎ𝑘(𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
signal

+
𝑛
∑

𝑘=𝑠
𝑧𝑘 𝑔𝑘(𝑚)ℎ𝑘(𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
background

. (31)

Each partial sum in general produces a non-factorising function. This
makes it possible to generalise the previous results from Section 2.1 to
non-factorising signal and background components.

Any single function ℎ𝑘(𝑡) in 𝑓 (𝑚, 𝑡) can be isolated by a weight
function

𝑤𝑘(𝑚) =
𝑛
∑

𝓁=0

𝐴𝑘𝓁 𝑔𝓁(𝑚)
𝐼(𝑚)

with 𝐴 = 𝑊 −1 and 𝑊𝑘𝓁 = ∫ d𝑚
𝑔𝑘(𝑚) 𝑔𝓁(𝑚)

𝐼(𝑚)
.

(32)

The function 𝐼(𝑚) is an arbitrary non-zero function in the consid-
red range of 𝑚, this is another generalisation with respect to classic
Weights. We dub it the variance function, because the optimal function
(𝑚) corresponds to the point-wise variance of a density estimate (as we
ill see later). It is straight-forward to show with ∑

𝐴 𝑊 = 𝛿 that
𝑖 𝑘𝑖 𝑖𝑗 𝑘𝑗

4

eight functions defined in this way are orthonormal to the component
.d.f.s 𝑔𝑘(𝑚),

d𝑚𝑤𝑘(𝑚) 𝑔𝓁(𝑚) = 𝛿𝑘𝓁 . (33)

The Custom Orthogonal Weight function (COW) to extract the density
𝑘 ℎ𝑘(𝑡) from data, is then

′
𝑘(𝑚, 𝑡) = 𝐷

𝑤𝑘(𝑚)
𝜖(𝑚, 𝑡)

, (34)

hich is now a function of both 𝑚 and 𝑡. The expectation value of the
OW in an infinitesimal bin, d𝑡, in the control variable is

d
d𝑡 E

[

𝐷
𝑤𝑘(𝑚)
𝜖(𝑚, 𝑡)

]

= 𝑧𝑘 ℎ𝑘(𝑡), (35)

o it is an asymptotically unbiased estimate of the efficiency corrected
ensity, ℎ𝑘(𝑡), for any choice 𝐼(𝑚). The COWs that project out the entire
ignal or background component are given by

′
𝑠(𝑚, 𝑡) =

𝑠−1
∑

𝑘=0
𝑤′
𝑘(𝑚, 𝑡) and 𝑤′

𝑏(𝑚, 𝑡) =
𝑛
∑

𝑘=𝑠
𝑤′
𝑘(𝑚, 𝑡) . (36)

By integrating Eq. (35) over 𝑡, one sees that E[𝑤′
𝑘] = 𝑧𝑘. An estimate

f 𝑧𝑘 is

̂𝑘 =
�̂�
𝑁

𝑁
∑

𝑖=1

𝑤𝑘(𝑚𝑖)
𝜖(𝑚𝑖, 𝑡𝑖)

=
𝑁
∑

𝑖=1

𝑤𝑘(𝑚𝑖)
𝜖(𝑚𝑖, 𝑡𝑖)

/ 𝑁
∑

𝑖=1

1
𝜖(𝑚𝑖, 𝑡𝑖)

. (37)

The estimate for 𝐷 used here is derived from Eq. (29),

1
𝐷

= ∫
𝑓 (𝑚, 𝑡)
𝐷

d𝑚d𝑡 = ∫
1

𝜖(𝑚, 𝑡)
𝜌(𝑚, 𝑡)d𝑚d𝑡

= E
[1
𝜖

]

⟶
1
𝑁

∑

𝑖

1
𝜖(𝑚𝑖, 𝑡𝑖)

. (38)

In analogy with Section 2, one also has to replace the true 𝑊 matrix
ith an estimate. The estimates for COWs corresponding to variant A
nd B for sWeights are

̂𝐴
𝑘𝓁 = ∫ d𝑚

�̂�𝑘(𝑚) �̂�𝓁(𝑚)
𝐼(𝑚)

(39)

̂𝐵
𝑘𝓁 = 1

𝑁
∑

𝑖

�̂�𝑘(𝑚𝑖) �̂�𝓁(𝑚𝑖)
�̂�𝑚(𝑚𝑖) 𝐼(𝑚𝑖)

, (40)

here all true functions are replaced with estimates and �̂�𝑚(𝑚) is an
stimate of the observed density, 𝜌𝑚(𝑚) = ∫ d𝑡 𝜌(𝑚, 𝑡), in the discrimi-
ant variable. Since 𝑊 𝐵

𝑘𝓁 for COWs is more cumbersome to estimate,
e consider only 𝑊 𝐴

𝑘𝓁 in the following and omit the distinction.
In contrast to sWeights, the sum of COWs is not unity in general,

ven if 𝜖(𝑚, 𝑡) = 1. This is the case only if 𝐼(𝑚) is a linear combination
f the basis functions, 𝑔𝑘(𝑚). One finds for arbitrary constants 𝑎𝑘
𝑛
∑

=0
𝑤𝑘(𝑚) = 1 if 𝐼(𝑚) =

𝑛
∑

𝑘=0
𝑎𝑘 𝑔𝑘(𝑚) , (41)

s shown in Appendix E. When 𝐼(𝑚) takes this form, every event
ontributes with a total weight of unity to the possible states 𝑘. This
roperty is not of practical relevance, however. A corollary of this
esult is that with an increasing number of terms the sum ∑

𝑘𝑤𝑘(𝑚)
ill converge towards unity for any function 𝐼(𝑚), since a linear

ombination of sufficiently many basis functions 𝑔𝑘(𝑚) always allows
or a good approximation of 𝐼(𝑚).

We now discuss an optimal choice for the variance function 𝐼(𝑚).
e can find functions, such that

(I) the variances of the �̂�𝑘 are minimal,
(II) the �̂�𝑘 are maximum-likelihood estimates.

As shown in Appendix F, requirement I leads to

(𝑚) = 𝑞(𝑚) = d𝑡 𝜌(𝑚, 𝑡) . (42)
∫ 𝜖2(𝑚, 𝑡)
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This choice minimises the variances of the �̂�𝑘 and is therefore optimal.
n estimate of 𝑞(𝑚) can be obtained by a histogram of the 1∕𝜖2(𝑚, 𝑡)

weighted 𝑚-distribution or by fitting a suitable parameterisation to it.
The extreme case of a single-bin histogram is equivalent to 𝐼(𝑚) = 1
the scale of 𝐼(𝑚) is irrelevant). The exact details of the binning are not
mportant, since a coarse binning will merely increase the variance of
�̂�𝑘 above the minimum possible.

Appendix G shows that the alternative requirement II leads to

(𝑚) =
𝑛
∑

𝑘=0
�̂�𝑘 𝑔𝑘(𝑚) , (43)

here the �̂�𝑘 are estimates for the true fractions 𝑧𝑘 obtained from an
∕𝜖(𝑚, 𝑡) weighted unbinned maximum-likelihood fit. In general, this
ariance function is different from 𝑞(𝑚) and not optimal.

In the special case of constant efficiency, equivalent to setting
(𝑚, 𝑡) = 1, the two variance functions converge asymptotically,

I(𝑚) = 𝑞(𝑚) =
𝑛
∑

𝑘=0
𝑧𝑘 𝑔𝑘(𝑚) and 𝐼II(𝑚) =

𝑛
∑

𝑘=0
�̂�𝑘 𝑔𝑘(𝑚). (44)

omputing sWeights as described in Section 2 is equivalent to using
II(𝑚), which is asymptotically optimal in this case.

.1. Mismodelled signal density

A common task is to extract a single signal component that fac-
orises in 𝑚 and 𝑡, contaminated with a background that is not fac-
orising. To construct the signal-extracting COW, 𝑤′

0, one requires a
odel for the signal density, 𝑔0(𝑚) according to Eq. (32), and a set of

ackground p.d.f.s 𝑔𝑘(𝑚) (where 𝑘 = 1,… , 𝑛) and a variance function,
(𝑚). Often, the signal shape 𝑔0(𝑚) is a non-trivial function containing
number of nuisance parameters. We now investigate what happens if
0(𝑚) is mismodelled and does not match the true signal density.

We distinguish between the true p.d.f.s, 𝑔𝑘(𝑚), and their mismod-
elled proxy p.d.f.s, 𝐺𝑘(𝑚), which are used in the calculation of COWs,
𝑘(𝑚). If we review the mathematical steps in the previous section, we

ind that 𝐺𝑘(𝑚) = 𝑔𝑘(𝑚) is not required for the construction of COWs.
he construction steps and the properties of the 𝐴 and 𝑊 matrices

remain the same if 𝐺𝑘(𝑚) ≠ 𝑔𝑘(𝑚). We only get a different result if we
integrate over the product of the total density 𝜌(𝑚, 𝑡) and the COWs.

We can write the expected signal weight in an infinitesimal bin of
width d𝑡 in the control variable as
dE[𝑤′

0]
d𝑡 = ∫ 𝜌(𝑚, 𝑡)𝐷

𝑤0(𝑚)
𝜖(𝑚, 𝑡)

d𝑚

=
𝑛
∑

𝑘=0
𝑧𝑘 ℎ𝑘(𝑡)∫ 𝑔𝑘(𝑚)𝑤0(𝑚)d𝑚

=
𝑛
∑

𝑘=0
𝑧𝑘 ℎ𝑘(𝑡)

𝑛
∑

𝓁=0
𝐴0𝓁 ∫

𝑔𝑘(𝑚)𝐺𝓁(𝑚)
𝐼(𝑚)

d𝑚 (45)

Since we only consider the signal p.d.f. to be mismodelled, we have
𝐺𝑘(𝑚) = 𝑔𝑘(𝑚) for 𝑘 ≥ 1, and

𝑔𝑘(𝑚)𝐺𝓁(𝑚)
𝐼(𝑚)

d𝑚 = ∫
𝐺𝑘(𝑚)𝐺𝓁(𝑚)

𝐼(𝑚)
d𝑚 = 𝑊𝑘𝓁 for 𝑘 ≥ 1.

e use this and the symmetry of 𝑊𝑘𝑙 to find

dE[𝑤′
0]

d𝑡 = 𝑧0 ℎ0(𝑡)

[ 𝑛
∑

𝓁=0
𝐴0𝓁 ∫

𝑔0(𝑚)𝐺𝓁(𝑚)
𝐼(𝑚)

d𝑚
]

+
𝑛
∑

𝑘=1
𝑧𝑘 ℎ𝑘(𝑡)

𝑛
∑

𝓁=0
𝐴0𝓁𝑊𝓁𝑘

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝛿0𝑘

∝ ℎ0(𝑡) , (46)

ince the first sum in the square bracket is a constant independent of 𝑡,

nd the second sum is zero. ℎ

5

Therefore, a mismodelling of the signal component 𝐺0(𝑚) in the
iscriminatory variable introduces no bias for the estimation of ℎ0(𝑡),
lthough the method is then no longer optimal in the previous sense.
his offers an intriguing possibility in practice. If one is only interested

n projecting out the normalised signal p.d.f., ℎ0(𝑡), there is great free-
om in the construction of the p.d.f. 𝐺0(𝑚) and the variance function
(𝑚) in the discriminating variable. Any p.d.f. works for 𝐺0(𝑚) which
s not a linear combination of background p.d.f.s 𝑔𝑘(𝑚) with 𝑘 ≥ 1.
he best results are nevertheless obtained with a 𝐺0(𝑚) that is as close
o 𝑔0(𝑚) as possible, and as few basis polynomials for the background
s possible. Poorly chosen functions 𝐼(𝑚) and 𝐺0(𝑚) will increase the
ariance of the estimate ℎ̂0(𝑡).

.2. COWs in the wild

In this section, we remark on points that are important for the
ractical applications of COWs, which arose in discussions on this
ethod.

Firstly, we emphasise the important consequence for analyses in
article physics that follows from the previous section. If the signal
actorises in 𝑚 and 𝑡, a COW for the signal can be computed without a
it. We refer to this variant as COWs lite, to contrast it with full COWs
here both signal and background are non-factorising. A histogram of

he simulated signal distribution in 𝑚 obtained from simulation can be
sed for 𝐺0(𝑚), the proxy p.d.f. for the signal density, and a histogram
f the signal and background distribution 𝑔(𝑚) in the simulation can
e used for the variance function 𝐼(𝑚). Even if the simulation does
ot describe the real experiment perfectly, using these proxies does
ot create a bias and the substitutes will usually be close to optimal.
he optimal variance function 𝑞(𝑚) can be estimated from data with
1∕𝜖2(𝑚, 𝑡)-weighted histogram of the 𝑚-distribution. The details of

he binning are not important provided bins are not empty. A non-
ptimal binning will increase the variance of the signal COW above
he minimum possible, but the influence is very weak and therefore it
s not necessary to carefully optimise the binning. The extreme case of

single-bin histogram is equivalent to 𝐼(𝑚) = 1 (the scale of 𝐼(𝑚) is
rrelevant) and also a valid choice.

A good description of the background under the signal is however
rucial to avoid bias. The background can be expanded generally into
ernstein or B-spline polynomials, which can approximate any p.d.f.
ith enough terms. A systematic bias related to the choice of the
ackground model, i.e. incurred by not having sufficient terms in the
ackground description, can be probed by adding more terms and
erifying with goodness-of-fit tests (see e.g. Ref. [11]) that the model is
ufficient to describe the 𝑚 distribution. For a chi-square test statistic
n a binned fit, the Fisher 𝐹 -test indicates whether adding further terms
mproves the model significantly. When two models are tested on a
istogram with 𝑛 bins, where model 1 has 𝑘1 terms and model 2 has
2 > 𝑘1 terms, the statistic

=
(𝜒2

1 − 𝜒2
2 )∕(𝑘2 − 𝑘1)

𝜒2
2∕(𝑛 − 𝑘2)

(47)

s asymptotically 𝐹 distributed. Cross-validation [12] is another option
f the fit is unbinned.

Secondly, we want to give some insight into why it is beneficial
o include the efficiency function 𝜖(𝑚, 𝑡) into the sWeights estimation,
nstead of trying to separate signal and background first and then
orrect for efficiency in a separate step. If the efficiency function is
ot directly included in the analysis, both signal and background are
on-factorising because of the effect of the efficiency function. In the
OWs framework, we can still extract sWeights by setting 𝜖(𝑚, 𝑡) = 1, but
ow sufficiently many terms in the signal and background part of the
ata model are required to account for factorisation-breaking effects.
his reduces the statistical power of the method and an additional
omplication arises. Once the signal density in the observed sample,
̃ (𝑡), has been determined, the efficiency correction must be done with
𝑠
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the signal efficiency projected into the control variable, 𝜖(𝑡), to obtain
the true density ℎ𝑠(𝑡) ∝ ℎ̃𝑠(𝑡)∕𝜖(𝑡). In weighted unbinned fits or when
generating a histogram estimate of ℎ𝑠(𝑡), one has to use 𝑤𝑠(𝑚𝑖)∕𝜖(𝑡𝑖),
where 𝑖 indexes the data points in the sample. Using 𝑤𝑠(𝑚𝑖)∕𝜖(𝑚𝑖, 𝑡𝑖) as
n event-by-event weight instead is wrong, since the 𝑚-dependence in
he efficiency factor destroys the orthogonality relations for the COW,
nd the signal estimate in 𝑡 becomes polluted by background. The
rojected efficiency is given by

̄(𝑡) = ∫ d𝑚𝜖(𝑚, 𝑡) 𝑓𝑠(𝑚, 𝑡) , (48)

here 𝑓𝑠(𝑚, 𝑡) denotes the signal component of the true p.d.f., and is not
traight-forward to estimate from the sample. One could take 𝜖(𝑡) from
imulation, with the caveat that the simulation may differ from the real
xperiment. If the efficiency function factorises, 𝜖(𝑚, 𝑡) = 𝜖𝑚(𝑚) 𝜖𝑡(𝑡), we
et

̄(𝑡) = 𝜖𝑡(𝑡)
(

∫ d𝑚
𝜌𝑠(𝑚)
𝜖𝑚(𝑚)

)−1
∝ 𝜖𝑡(𝑡) , (49)

where 𝜌𝑠(𝑚) = ∫ d𝑡 𝜌𝑠(𝑚, 𝑡) is the observed signal p.d.f. in 𝑚. This
arginally simplifies the matter, since 𝑤𝑠(𝑚𝑖)∕𝜖𝑡(𝑡𝑖) can be used instead

of 𝑤𝑠(𝑚𝑖)∕𝜖(𝑡𝑖) in this case, if only the shape of ℎ𝑠(𝑡) is of interest. Nev-
ertheless, these additional complications make the two-step approach
unfavourable.

4. Variance of estimates from weighted data

This section discusses how to correctly perform parameter uncer-
tainty estimation in an unbinned fit of weighted data, when using
sWeights. The more complex binned fit for this case is described in
Ref. [4]. We will give explicit formulas for classic sWeights computed
with variant B, as introduced in Section 2.2. The general approach we
discuss here also applies to fits of weighted data obtained from variant
A or the COWs method, but we will not give explicit formulas for the
other variants for the sake of brevity, as each variant has its own varied
uncertainty estimate. We will point out how the formulas have to be
adapted, but leave the explicit calculations to the reader.

Parameter estimation using weighted unbinned data sets can be
performed by maximising the weighted likelihood [13], which is equiv-
alent to solving the weighted score functions
∑

𝑖
𝑤𝑖
𝜕 lnℎ𝑠(𝑡𝑖;𝝓)

𝜕𝜙𝑘

!
= 0, (50)

with 𝑤𝑖 = 𝑤𝑠(𝑚𝑖) in case of sWeights or 𝑤𝑖 = 𝑤′
𝑠(𝑚𝑖, 𝑡𝑖) in case of

COWs and shape parameters 𝝓 of the signal p.d.f. ℎ𝑠(𝑡;𝝓). The weighted
likelihood is not a true likelihood (product of probabilities) and so
the inverse of the Hessian matrix [13] of the weighted likelihood does
not asymptotically provide an estimate of the covariance matrix of the
parameters. Eq. (50) is an example of an M-estimator [14]. A complete
derivation of the asymptotic covariance matrix for the parameters 𝝓
can be found in the appendix of Ref. [4], here we only summarise the
main findings.

A complication arises due to the fact that the sWeights depend, via
Eq. (17), on the elements of the 𝑊 matrix, which is determined via
Eq. (21). The estimates 𝑊𝑐𝑑 in turn depend on the estimates of the
signal and background yields, �̂�𝑠 and �̂�𝑏, usually determined from an
extended maximum likelihood fit. Problems of this type are described
as two-step M-estimation in the statistical literature [15,16]. To account
for the fact that the parameters are estimated from the same data
sample and are not independent, one has to combine the estimating
equations for the parameters of interest with those of the yields and
the inverse covariance matrix elements in a single vector.

We construct the quasi-score function 𝑺(𝝀), where 𝝀 = {𝑁𝑠, 𝑁𝑏,𝜽,
,𝑊 ,𝑊 ,𝝓} is the vector of all such parameters; 𝜽 and 𝝓 are also
𝑠𝑠 𝑠𝑏 𝑏𝑏
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vectors for the shape parameters in 𝑚 and 𝑡, respectively. The elements
f 𝑺 are given by

(𝝀) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕 ln(𝑁𝑠, 𝑁𝑏,𝜽)∕𝜕𝑁𝑠
𝜕 ln(𝑁𝑠, 𝑁𝑏,𝜽)∕𝜕𝑁𝑏
𝜕 ln(𝑁𝑠, 𝑁𝑏,𝜽)∕𝜕𝜃1

⋮
𝜕 ln(𝑁𝑠, 𝑁𝑏,𝜽)∕𝜕𝜃𝑛
𝜓𝑠𝑠(𝑁𝑠, 𝑁𝑏,𝜽,𝑊𝑠𝑠)
𝜓𝑠𝑏(𝑁𝑠, 𝑁𝑏,𝜽,𝑊𝑠𝑏)
𝜓𝑏𝑏(𝑁𝑠, 𝑁𝑏,𝜽,𝑊𝑏𝑏)

𝜉1(𝜽,𝑊𝑠𝑠,𝑊𝑠𝑏,𝑊𝑏𝑏,𝝓)
⋮

𝜉𝑝(𝜽,𝑊𝑠𝑠,𝑊𝑠𝑏,𝑊𝑏𝑏,𝝓)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (51)

where,

𝜕 ln
𝜕𝑁𝑐

=
∑

𝑖

[

𝑔𝑐 (𝑚𝑖,𝜽)
𝑁𝑠 𝑔𝑠(𝑚𝑖,𝜽) +𝑁𝑏 𝑔𝑏(𝑚𝑖,𝜽)

− 1
𝑁

]

,

𝜕 ln
𝜕𝜃𝑘

=
∑

𝑖

𝑁𝑠 𝜕𝑔𝑠(𝑚𝑖,𝜽)∕𝜕𝜃𝑘 +𝑁𝑏 𝜕𝑔𝑏(𝑚𝑖,𝜽)∕𝜕𝜃𝑘
𝑁𝑠 𝑔𝑠(𝑚𝑖,𝜽) +𝑁𝑏 𝑔𝑏(𝑚𝑖,𝜽)

,

𝜓(𝑐𝑑) =
∑

𝑖

[

𝑔𝑐 (𝑚𝑖,𝜽) 𝑔𝑑 (𝑚𝑖,𝜽)
(

𝑁𝑠 𝑔𝑠(𝑚𝑖,𝜽) +𝑁𝑏 𝑔𝑏(𝑚𝑖,𝜽)
)2

−
𝑊𝑐𝑑
𝑁

]

,

𝜉𝑘 =
∑

𝑖
𝑤𝑠(𝑚𝑖;𝜽,𝑊𝑠𝑠,𝑊𝑠𝑏,𝑊𝑏𝑏)

𝜕 lnℎ𝑠(𝑡𝑖;𝝓)
𝜕𝜙𝑘

with 𝑐, 𝑑 ∈ {𝑠, 𝑏}, (𝑐𝑑) iterating over the three unique combinations
{𝑠𝑠, 𝑠𝑏, 𝑏𝑏}, and the shape parameters of 𝜽 and 𝝓 running between
1… 𝑛} and {1… 𝑝}, respectively. For reference these can be compared
o the equivalent expressions in Eq. (21) and Eq. (24). One can show
hat E[𝑺(𝝀0)] = 𝟎, if 𝝀0 is the vector of true parameter values [4].
herefore, a consistent estimate �̂� can be constructed as the solution
o 𝑺(𝝀)

!
= 𝟎. We note that the elements of 𝑺(𝝀) can be multiplied by

rbitrary non-zero constants without changing these results.
The asymptotic covariance of 𝝀, which includes the parameters of

nterest 𝝓, is then given by [17–19]

𝝀 = E
[

𝜕𝑺
𝜕𝝀𝑇

]−1
× 𝑪𝑺 × E

[

𝜕𝑺
𝜕𝝀𝑇

]−𝑇
, (52)

where 𝜕𝑺∕𝜕𝝀𝑇 is defined as the Jacobian matrix built from the deriva-
ives 𝜕𝑆𝑘∕𝜕𝜆𝓁 and 𝑪𝑺 = E

[

𝑺𝑺𝑇
]

. We note that the inverse of the
Jacobian 𝜕𝑺∕𝜕𝝀𝑇 introduces correlations between the parameter un-
certainties. In a finite sample, the expectation values in Eq. (52) can be
estimated from the sample. The estimate for E[𝜕𝑺∕𝜕𝝀𝑇 ] is 𝜕𝑺∕𝜕𝝀𝑇 |�̂�,
while the elements of the matrix �̂�𝑺 are provided in Appendix H. In
the literature, Eq. (52) is often referred to as the sandwich estimator, but
in this case the variance of the score is modified because we consider
fluctuations in the sample size.

This general pattern repeats for sWeights obtained with variant A
and for COWs. Eq. (52) is general and holds for all variants, and the 𝜉𝑘
in the quasi-score vector in Eq. (51) always remain the same, but the
other parts of the quasi-score vector change. The vector has to include
a quasi-score for each sample estimate that is used in the calculation of
the weights.

• If sWeights are computed with variant A, the estimates of the 𝑊
matrix given by Eq. (18) are not computed from the sample; they
are a function of other estimates, �̂� = �̂�𝑠∕𝑁 and �̂�. The 𝜓(𝑐𝑑) drop
out of the quasi-score vector, since the weights 𝑤𝑠(𝑚;𝜽, 𝑁𝑠, 𝑁𝑏) in
𝜉𝑘 can now be expressed directly as a function of these parameters
by inserting Eq. (18).

• If COWs lite are computed as described in Section 3.2 with a fixed
signal model 𝐺0(𝑚) or full COWs with a generic expansion for
the signal, a fixed variance function 𝐼(𝑚) = 1 (or any other fixed
function), and a fixed efficiency function, the quasi-score vector
reduces to the 𝜉𝑘. Only in this case, the weights are independent
of the sample and the sum of weights squared is an asymptot-

ically correct estimate of the weight variance, as described in
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Appendix B, and the signal p.d.f. ℎ𝑠(𝑡) can be estimated with a
simple weighted histogram, as described in Appendix C.

• If COWs are computed and the optimal signal p.d.f. 𝑔0(𝑚) is
estimated from the sample, the estimating equations 𝜕 ln∕𝜕𝜃𝑘
for the shape parameters 𝜽 of 𝑔0(𝑚;𝜽) have to be included in the
score vector as in case of classic sWeights. If the estimated variance
function 𝐼(𝑚) = �̂�(𝑚) is used, one needs in addition 𝜕 ln∕𝜕𝑁𝑐 ,
where 𝑁𝑐 is the amplitude of component 𝑐, also analogue to
classic sWeights. If the optimal variance function 𝐼(𝑚) = 𝑞(𝑚)
is estimated from the sample as a histogram, as described in
Section 3.2, one has to include a quasi-score function for each
bin of the histogram, because the value in each bin is a sample
estimate. If the efficiency function is estimated from the sample
as well, its score functions also need to be included.

We close with a discussion of an explicit result obtained for classic
Weights (signal and background are each independent in discrimi-

natory and control variable, and there is no factorisation-breaking
efficiency correction) computed with variant B, when the shapes of
𝑔𝑠(𝑚) and 𝑔𝑏(𝑚) are fixed. Then, some simplifications in Eq. (52) are
ossible, as detailed in Ref. [4]. They result in the following covariance
atrix

̂𝝓 = 𝑯−1𝑯 ′𝑯−𝑇 −𝑯−1𝑬𝑪 ′𝑬𝑇𝑯−𝑇 , (53)

or the parameters of interest 𝝓, with

𝐻𝑘𝓁 =
∑

𝑖
�̂�𝑠(𝑚𝑖)

𝜕2 lnℎ𝑠(𝑡𝑖;𝝓)
𝜕𝜙𝑘 𝜕𝜙𝓁

|

|

|

|�̂�
,

𝐻 ′
𝑘𝓁 =

∑

𝑖
�̂�2
𝑠 (𝑚𝑖)

(

𝜕 lnℎ𝑠(𝑡𝑖;𝝓)
𝜕𝜙𝑘

𝜕 lnℎ𝑠(𝑡𝑖;𝝓)
𝜕𝜙𝓁

)

|

|

|

|�̂�
,

𝐸𝑘(𝑐𝑑) =
∑

𝑖

𝜕𝑤𝑠(𝑚𝑖)
𝜕𝑊𝑐𝑑

|

|

|

|𝑊𝑠𝑠 ,𝑊𝑠𝑏 ,𝑊𝑏𝑏

𝜕 lnℎ𝑠(𝑡𝑖;𝝓)
𝜕𝜙𝑘

|

|

|

|�̂�
,

𝐶 ′
(𝑐𝑑)(𝑢𝑣) =

∑

𝑖

𝑔𝑐 (𝑚𝑖) 𝑔𝑑 (𝑚𝑖) 𝑔𝑢(𝑚𝑖) 𝑔𝑣(𝑚𝑖)
(

�̂�𝑠 𝑔𝑠(𝑚𝑖) + �̂�𝑏 𝑔𝑏(𝑚𝑖)
)4
,

here (𝑐𝑑) and (𝑢𝑣) iterate over {𝑠𝑠, 𝑠𝑏, 𝑏𝑏}, and �̂�𝑠(𝑚𝑖) = 𝑤𝑠(𝑚𝑖; �̂�𝑠𝑠,
̂ 𝑠𝑏, �̂�𝑏𝑏). The asymptotically correct expression for the binned ap-
roach is also derived in Ref. [4]. The first term of Eq. (53) is the
ovariance for a weighted score function as described by Eq. (50)
ith independent weights 𝑤𝑖. The second term is specific to sWeights

omputed with variant B. Since the term itself is always positive, it
educes the estimated covariance of �̂�. This reduction is caused by
he fact that sWeights are estimated from the same data sample. If the
hapes of 𝑔𝑠(𝑚) and 𝑔𝑏(𝑚) are also estimated from the data sample,
q. (53) has to be extended with further terms, see Appendix H.

. Practical applications of COWs and sweights

In this section we investigate the performance of sWeights and the
ew COW methods in various test-case scenarios. The studies presented
n this section make use of the sweights Python package [20],
eveloped by the authors. The software includes generic implementa-
ions of extracting classic sWeights (Section 2) and COWs (Section 3)
ith the variants detailed in this document, as well as a class which
erforms a correction to the covariance matrix when fitting unbinned
eighted data (Section 4). The Python interface offers support for
robability distribution functions defined in either scipy [21], ROOT
via TTrees) [22] or RooFit [23]. Classic sWeights computed with
ariant B are also implemented in the RooStats [24] package, but
here is no implementation of the other variants or COWs.

We emphasise again that computing sWeights only requires sensible
stimates for the signal and background shapes, �̂�𝑠(𝑚), �̂�𝑏(𝑚), and the

signal fraction �̂�. It does not require any special refitting or yield-only
fitting which has been commonly recommended in other sWeights dis-
cussions, and is enforced in the RooStats software implementation.
sing the description for sWeights outlined in this article, one only
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needs to fit the discriminant variable(s) (usually a candidate invariant
mass) once to obtain �̂�𝑠(𝑚), �̂�𝑏(𝑚), and the signal fraction �̂�, with the
freedom to float, fix or constrain (by means of penalty terms in the
likelihood) any of the shape or yield parameters.

More generally, the sWeights formalism described in this article
extracts the weight function 𝑤𝑘(𝑚) for each component 𝑘, which is
generally valid for any control variable that is independent of the
discriminant variable. There can be several control variables or the
control variable can be multi-dimensional. There are other beneficial
consequences. The range used to estimate the p.d.f.s and yields can be
different from the range used to extract the weights. It is also possible
to use a binned fit to obtain estimates of the p.d.f.s and still extract per-
event sWeights. This is helpful if the sample size is very large, when an
unbinned fit can take much more computation time than a binned fit.

In the case of extracting COWs for a factorising signal component
(we call this case COWs lite), a fit never even needs to be performed.
One needs an approximation 𝐺𝑠(𝑚), which does not have to agree
with the true p.d.f. 𝑔𝑠(𝑚) (although it should be close to minimise the
variance of sWeights), a generic expansion for the background, and the
variance function 𝑞(𝑚) that can be estimated as a histogram from the
data, as described in Section 3.2.

We demonstrate in the examples below that there are some pitfalls
to be wary of. Generally, we recommend that each non-trivial use-case
follows our approach here: produce ensembles of simulated events to
check that biases are small and variances are as expected. We start off
by explaining how a statistical test of independence can be helpful in
deciding whether sWeights can be applied.

5.1. Statistical test of independence

A prerequisite for the extraction of sWeights, described in Section 2,
is that the signal and background samples are each independent in the
discriminant and control variables, so that the p.d.f. of the respective
component factorises for the discriminant and control variables. If this
is not the case then the extracted sWeights are biased in general. The
COWs method, described in Section 3, overcomes this, but it is useful
to know when the sWeights method can be applied and is sufficient. A
statistical test of independence is useful here.

It is important to truly test for independence. In practice, it is
common to compute the correlation coefficient of the discriminant
and control variable and test whether it is compatible with zero, but
this cannot detect a non-linear dependence that has no linear compo-
nent, for example, the functional relationship 𝑦 = 𝑥2 will erroneously
pass this test, if 𝑥 is distributed symmetrically around zero. We rec-
ommend the USP test of independence [25], which is applied to a
two-dimensional histogram constructed from pairs of the discriminant
and control variable. The test has proven optimal properties and high
statistical power [25].

Implementations of the USP test are available in R [26] and
Python [27]. The implementations use a histogram as input and com-
pute a 𝑝-value. The binning of the histogram should be fine enough
to capture the essential variation in both variables. Bins with a small
number of entries or even zero entries are not an issue for this test.
If the 𝑝-value is very small, evidence for a dependence was detected.
The test needs to be applied to the signal and background samples
separately, which requires that the test is applied to the simulation
where signal and background can be disentangled. If the test passes for
the signal, but not the background, one can use the COWs lite approach
described in Section 3.2. If both components show dependence, one has
to use the full COWs method described in Section 3.

5.2. A simple example comparing sWeights variants

We apply the sWeights method on a simple toy example and illus-
trate the small differences between the variants to compute the 𝑊

matrix described in Section 2.2. A common application of sWeights
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Fig. 1. The p.d.f. used to generate the pseudo-experiments studied in Section 5.2, shown in two-dimensions (bottom left) along with the one-dimensional projections in invariant
mass, 𝑚, (top left) and decay time, 𝑡, (bottom right).
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n particle physics is to extract the lifetime of a candidate using its
nvariant mass to isolate it from the background. We consider two
ndependent variables; the invariant mass, 𝑚, and decay time, 𝑡, of
𝐵-meson candidate. The simulated dataset contains a mixture of

ignal and background events. The signal is normally (exponentially)
istributed in 𝑚 (𝑡), whilst the background is exponentially (normally)
istributed in 𝑚 (𝑡). The p.d.f. used to generate events, which is the
(𝑚, 𝑡) of Eq. (1), is shown in Fig. 1.

For each simulated dataset, the estimates �̂�𝑠(𝑚) and �̂�𝑏(𝑚) are ob-
tained from an unbinned maximum likelihood fit to the generated
invariant mass distribution. The 𝑊 matrix, with variants A to C, is
computed with Eqs. (18), (21), and (26), respectively. Within variant C,
we compute the 𝑊 matrices from the covariance matrix obtained from
the HESSE routine in the iminuit package [6,28] using both of the
methods described in Section 2.3: (i) by inverting the covariance matrix
obtained from the full fit and extracting the relevant components,
and (ii) by fitting once to obtain maximum-likelihood estimates for
all parameters, and then again with only the event yields as free
parameters, while all other parameters are fixed to their previous
values, and inverting the resulting 2 × 2 covariance matrix. Finally,
the weight functions, �̂�𝑠(𝑚) and �̂�𝑏(𝑚), are computed for each variant
using Eq. (17).

The distribution of the weight functions, �̂�𝑠(𝑚) and �̂�𝑏(𝑚), from one
pseudo-experiment containing 50 000 (200 000) signal (background)
events, are shown for the nominal variant B method in Fig. 2 (left).
The other variants give very similar distributions. As expected, tiny
differences can be seen when inspecting their relative differences as
shown in Fig. 2 (right), which vary from pseudo-experiment to pseudo-
experiment. It is explained in Section 2.3 why the results obtained with
variant Ci and Cii differ from B, although they should be mathemati-

cally identical. T
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Table 1
A comparison of the fitted component yields and the errors from the fit with the
extracted sum of weights and sum of weights squared. This numerically demonstrates
one reason why we recommend variant B as the best choice, because the weights
precisely reproduce both the central value and uncertainty of the fitted yield in a yield
only fit.

Fit methods 𝑁𝑠 𝜎(𝑁𝑠) 𝑁𝑏 𝜎(𝑁𝑏)

EML Fit (all pars.) 49591.22 351.23 200409.16 523.61
EML Fit (yields only) 49591.22 311.25 200409.16 497.69

sWeight methods ∑

𝑤𝑠

√

∑

𝑤2
𝑠

∑

𝑤𝑏

√

∑

𝑤2
𝑏

Variant A 49591.01 311.26 200408.99 497.70
Variant B 49591.22 311.25 200409.16 497.69
Variant Ci 49595.97 311.24 200408.98 497.67
Variant Cii 49596.17 311.24 200410.08 497.67

We evaluate the sum of weights and sum of squared weights for all
four methods in order to make a comparison with the yield estimates
and uncertainties extracted from the discriminant variable fit. The sum
of squared weights is an approximate estimate for the variance of the
sum of sWeights. As shown in Appendix B, it is an exact estimate only
when the weights are independent of the sample, but sWeights are not
ndependent since the component p.d.f.s have nuisance parameters that
re estimated from the same sample. The deviation in this example is
mall, but that is not always the case. The results are shown in Table 1,
long with those from maximum-likelihood fits to the distribution in
, in which firstly all parameters are estimated, and secondly only

he event yields are estimated, while the other parameters are set to
heir respective true values. As expected, we find that the sum of
quared weights is comparable to the variance obtained from a fit in
hich only the yields are estimated and all shape parameters are fixed.
he sum of squared weights alone underestimates the variance of the
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Fig. 2. Left: Distribution of the weight functions, 𝑤𝑠(𝑚) (red) and 𝑤𝑏(𝑚) (blue), as well as their sum (black), extracted using the variant B method. The other variants give very
imilar results. Right: Difference between the extracted signal weights, 𝑤𝑠(𝑚), from each variant with variant B as the reference.
Fig. 3. Left: The decay-time distribution of true signal candidates (red points) and the total signal and background dataset, weighted with 𝑤𝑠(𝑚) (blue points), extracted using
variant B. The solid blue line shows the result of an exponential fit to the weighted distribution. The dashed red line shows the true underlying decay-time distribution used to
generate the sample. Weights extracted using the other variants give very similar results. Right: The ratio of the fitted function, the weighted distribution and the true distribution
with respect to the true function.
Table 2
A comparison of the values and uncertainties extracted
from a fit to the exponential slope of the weighted
control variable distribution with the outcome of a
two-dimensional fit.
Method Fit result

2D Fit 2.0025 ± 0.0137
Variant A 2.0067 ± 0.0138
Variant B 2.0067 ± 0.0138
Variant Ci 2.0068 ± 0.0138
Variant Cii 2.0068 ± 0.0138

fitted yields when also the shape parameters are estimated from the
sample. This is important to keep in mind and why one has to use the
sandwich estimator described in Section 4 in general to fully propagate
the uncertainty, which also takes into account that the weights are not
independent of the sample. The validity of Eq. (22) for variant A, B, and
C is also demonstrated, i.e. that the fitted yield is exactly reproduced
y the sum of weights. In case of variant A and C, the small deviations
riginate from round-off errors and the comparably low accuracy of a
umerically computed second derivative.

Finally, the sWeights are applied to the distribution in the control
ariable, 𝑡, which is then fitted with an exponential distribution. This

accurately reproduces the true shape, ℎ𝑠(𝑡), and gives an estimate of the
exponential slope parameter, 𝜆, consistent with that obtained from a
two-dimensional unbinned maximum likelihood fit, as shown in Fig. 3
and Table 2. The estimated exponential slopes for each variant of
sWeights and for the full two-dimensional fit are given in Table 2. In
the case of the fits to weighted data, the uncertainties on the slopes are
calculated with Eq. (53). The precision when fitting the weighted data
is comparable to the full two-dimensional fit in this particular case, but
in general this will not always be true.
9

This study is repeated on ensembles containing 500
pseudo-experiments in order to ensure that any of the behaviour seen
is not just a fluke of the specific dataset shown in this example. We
further perform the same study on ensembles with smaller sample sizes
and with different signal to background ratios. The results are shown in
Figs. 4 and 5. We find that the four sWeights variants give very similar
results and can accurately reproduce the correct decay-time slope, and
with a precision comparable to a two-dimensional fit.

We further see in Fig. 4 that the sum of weights (left two panels) for
variant B exactly reproduces the fitted yield within numerical precision,
as expected. Variant A also produces an unbiased estimate, but has
a slightly larger spread (note the very small range on the y-axis).
Variants Ci and Cii give a very small bias and tend to overestimate
the yield by about 0.1 per mill. This is an artefact of computing the
second derivative of the log-likelihood numerically and shows why we
recommend variant B over C. When inspecting the variance properties,
using the sum of squared weights (right two panels of Fig. 4), we find
that the sum of squared weights slightly overestimate the true variance
of the yield, which is due to the aforementioned fact that sWeights are
not independent from the sample.

The bias of the fitted slope parameters and their average variance
estimates computed over the ensembles are shown for different scenar-
ios in Fig. 5. We find that the variance estimates for the parameter
obtained from the sWeights variants are comparable to that from a
full two-dimensional fit when the sample size is large. For very small
amounts of signal, either small overall sample size or small values
of the signal to background ratio, we see slight biases and a smaller
variance estimate when using the weights method, compared to the full
two-dimensional fit. Inspection of the studentised residual distributions
suggest a small level (∼ 10%) of under-coverage in these cases, which

arises from the asymptotic assumptions made when computing the
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Fig. 4. The upper (lower) left plots show the percentage difference between the sum of weights and the fitted yield, from a fit to the discriminant mass variable in which only the
yields float, for the signal (background) components. The right plots show the percentage difference between the square root of the sum of squared weights and the error on the
fitted yield, obtained from the second derivative of the likelihood. The points (error bars) show the mean (width) of the distribution across the ensemble of pseudo-experiments.
Fig. 5. A comparison of the performance of each sWeight variant with a full two-dimensional fit as a function of the sample size (left) and signal to background ratio, 𝑧,
(right). In the left figure 𝑧 = 0.2 and in the right figure the sample size is 𝑁 = 2500. The points show the mean of the distribution of fitted exponential slope values across the
ensemble of pseudo-experiments. The error bars shows the square root of the mean of the variances of the fitted slope extracted across the ensemble. The variance of the brown
crosses is computed, in the naive and incorrect way, directly from the double differentials of the weighted likelihood given in Eq. (50), whereas the orange diamonds, green
downward-triangles, red upward-triangles and purple squares use the full sandwich estimator of Eq. (52). Note, neither of the 𝑥-axes are on a linear scale.
variance with the sandwich estimator. The importance of using the full
sandwich estimator, which takes all sources of variance into account, is
demonstrated by the points labelled as Variant B No Correction, which
were computed with the first term of Eq. (53) only (which is sufficient
for independent weights) and produce a variance estimate that is too
small.

5.3. sWeights applied to a more complex example

In this section we show a more complex example with multiple
factorising components within 𝑓 (𝑚, 𝑡), of which some may be signal and
some may be backgrounds. Because each component factorises in 𝑚 and
𝑡 we can still use the classic sWeights approach described in Section 2.
In this example, we use the invariant mass of a reconstructed 𝐵-meson
candidate as the discriminant variable once more, but now have six
different components. Some are even peaking under or near the signal
in a similar way to the signal, as shown in Fig. 6 (left). We label the
components with a discrete integer, 𝑐 ∈ [1, 6], where,
10
• 𝑐 = 1 represents the signal, which peaks in invariant mass, and is
labelled ‘‘Signal’’,

• 𝑐 = 2 and 𝑐 = 3 represent backgrounds where one of the final state
particles is mis-reconstructed, e.g. a neutral pion is reconstructed
as a photon or a charged kaon is reconstructed as a charged pion.
These are still peaking but are broader than the signal and have
their peak position shifted with respect to the signal. They are
labelled ‘‘MisRec 1’’ and ‘‘MisRec 2’’,

• 𝑐 = 4 and 𝑐 = 5 represent backgrounds which have been partially
reconstructed, i.e. one final state particle has been missed (shifting
the mass shape down) or one final state particle from another
source is erroneously added (shifting the mass shape up). These
are labelled ‘‘PartRec 1’’ and ‘‘PartRec 2’’,

• 𝑐 = 6 represents the continuum background containing ran-
dom combinations of particles not from the same decay. This is
labelled ‘‘Background’’.

The control variables are two so-called Dalitz variables. We have as-
sumed that the discriminant invariant mass variable is constructed from
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Fig. 6. Left: the probability distribution functions in the discriminant variable for the more complex example. Right: The true distribution of the Dalitz variables in the more
omplex example, with events coloured by their true event type. The Dalitz variables are uniformly distributed for all components apart from the signal (blue) and one of the
ackgrounds (purple) which appear as the vertical and horizontal bands in the Dalitz plot, respectively.
Fig. 7. Left: The distributions of the weight functions, 𝑤𝑐 (𝑚), for each of the components in the invariant mass fit. Their sum (equal to 1) is shown by the black line. Right:
he sum of weights for each component and its true amount in grey. The colour of each bar (bars have their 𝑥 position offset to aid the visualisation) represents the respective
omponent weight that has been applied. One can see that each sum of weights, ∑𝑖 𝑤𝑐 (𝑚𝑖), projects out its own component and nullifies the other components.
three-body decay of the form 𝑋 → 𝐴𝐵𝐶 and in this case the Dalitz
ariables are the invariant mass squared of the 𝐴𝐵 and 𝐴𝐶 combi-

nations. We generate a pseudo-experiment from the true underlying
model, in which the Dalitz variables are uniformly distributed across
the phase space for all components, apart from the signal which has a
resonance in the 𝐴𝐵 invariant mass, and one of the backgrounds which
has a resonance in the 𝐴𝐶 invariant mass. These appear as horizontal
and vertical bands in the Dalitz plot, shown in Fig. 6 (right).

The generated dataset is fitted in the invariant mass, by maximising
the extended unbinned likelihood with the shape parameters of the
p.d.f.s, 𝑔𝑐 (𝑚), fixed to their true values, in order to obtain estimates for
he event yields. The result of this fit is shown in Fig. 6 (left). We then
se variant B to obtain the (in this case 6 × 6) 𝑊 matrix and extract
he corresponding weight functions, 𝑤𝑐 (𝑚). The distributions of these

weight functions are shown in Fig. 7 (left). As shown in Fig. 7 (right),
each sum of weights, ∑𝑖𝑤𝑐 (𝑚𝑖), projects out its component 𝑐 and not
he others.

In contrast to the previous example, this more complex example
xhibits rapidly oscillating weight functions. They oscillate much more
uickly than the actual variation of the relevant component shapes
hemselves. This is because the weight is related to how the shapes
verlap as well as how they vary themselves with mass. One can also
ee that the weight functions for competing (i.e. similar) shapes have
nti-correlated weights, which is what we would expect as their yields
re anti-correlated. The sum of all component weights for any value of
he discriminant variable is still unity.

The weighted Dalitz variables for each component are shown in
ig. 8. The weights project out the respective components, also the
eaking ones. It is worth highlighting that the components with the
11
smallest yields have the largest amplitudes of the weight function, as
can be seen in Fig. 7 (left). This is a general feature of sWeights:
a component with a small yield has larger uncertainties and corre-
spondingly more oscillations in the weight function and a larger weight
variance. This can then lead to sizeable fluctuations when weights are
visualised like in Fig. 8. When inspecting these plots, it is possible
to mistake fluctuations as features in a distribution; for example, a
band might seem to appear in a Dalitz distribution when in reality
it is just large fluctuations around zero. Minimising the size of these
fluctuations is prudent as it is generally undesirable to have few events
with large weights. Since the oscillations of the weight functions cannot
be reduced (they are already minimal by construction), we recommend,
for display purposes, to increase the bin size accordingly in plots like
Fig. 8 for components that have a very small yield. Generally, we
recommend to proceed with caution when trying to use sWeights for
a component which is considerably smaller than the others.

5.4. COWs applied to an example with non-factorising background and
efficiency

In the final example, we consider a case similar to the first example
in Section 5.2, but which now contains non-factorising background
and a non-factorising efficiency. The signal is still factorising and is
normally (exponentially) distributed in 𝑚 (𝑡). The background is expo-
nentially (normally) distributed in 𝑡 (𝑚) but with the shape parameters
in 𝑚 (𝑡) containing a dependence on 𝑡 (𝑚). The background p.d.f. can
be written as

𝑓𝑏(𝑚, 𝑡) = 𝑁𝑒−(𝜆−𝑠𝜆𝑡)𝑚 × 𝑒−(𝑡−𝜇−𝑠𝜇𝑚)
2

, (54)

2(𝜎 + 𝑠𝜎𝑚)2



H. Dembinski, M. Kenzie, C. Langenbruch et al. Nuclear Inst. and Methods in Physics Research, A 1040 (2022) 167270
Fig. 8. The weighted Dalitz distribution when applying each of the six components weights: signal (top left), mis-reconstructed 1 (top right), mis-reconstructed 2 (middle left),
partially reconstructed 1 (middle right), partially reconstructed 2 (bottom left) and background (bottom right). One can see that the true distributions are appropriately recovered,
with some fluctuations.
d
C
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where 𝑁 is a normalisation constant and 𝑠𝜆 (𝑠𝜇 , 𝑠𝜎) encode the strength
of the dependence in 𝑚 (𝑡) on 𝑡 (𝑚). This emulates the more realistic use
case in which the signal model is straightforward, but the background
model is not, and where the efficiency loss is an additional compli-
cation. The nature of the true model used to generate ensembles of
experiments is shown in Fig. 9, in which the non-factorising nature
of the background is manifest in that the exponential slope of the
background in mass varies with decay time, and both the mean and
width of the normal distribution describing the background in decay
time vary with mass. Projections of the integrated distributions along
with the projection of the efficiency model used are also shown in
Fig. 9.

To demonstrate the failure of classic sWeights in contrast to COWs
in this case, we apply both methods to a single high-statistics pseudo-
experiment containing 500 000 events. For classic sWeights, a fit to
the invariant mass, shown in Fig. 10 (left), is used to estimate the
signal and background p.d.f.s required to extract the sWeights. When
constructing COWs for this case, no fit is performed as described
in Section 3.2. Therefore, only the signal function, the background
functions (in this case polynomials up to order 4 are chosen) and the

variance function, 𝐼(𝑚) = 1, used to build the COWs, are shown in

12
Fig. 10 (right). The choice of 𝐼(𝑚) is not optimal, but it is an allowed
simple choice.

The extracted weight functions for both methods are shown in
Fig. 11. A comparison of the weighted events and true distributions
in the control variable, 𝑡, is shown in Fig. 12. The sWeights method
cannot handle the non-factorising nature of the background and the
efficiency, and therefore the correct distributions are not recovered.
The COWs method correctly reproduces the desired distribution and
can be applied even without fitting the data.

We further perform an analysis on ensembles of simulated datasets
using variant B of the sWeights procedure along with various implemen-
tations of the COW formalism presented in Section 3. The simulated
sample size is 2 000 with equal amounts of signal and background. For
the sWeights implementation the signal, �̂�𝑠(𝑚), and background, �̂�𝑏(𝑚)
istributions are estimated by fitting the simulated sample. To compute
OWs, the same signal model is used, while the background expansion
nd the variance function 𝐼(𝑚) are varied. We use these variants for the
ackground:

• A single background component, the same as the fitted estimate

of the background from the sWeights calculation, �̂�𝑏(𝑚).
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Fig. 9. The p.d.f. used to generate the pseudo-experiments studied in Section 5.4, shown in two-dimensions (bottom left) along with the one-dimensional projections in invariant
mass, 𝑚, (top left) and decay time, 𝑡, (bottom right). The projections show the true signal (dashed green line) and background (dashed red line) p.d.f.s, along with their sum (solid
blue line). Projections of the efficiency model (dotted black line) are also shown. The different coloured dotted lines show the background p.d.f. conditional on values of the other
parameter, and demonstrate how dependent the shape in 𝑚 (𝑡) is on the value of 𝑡 (𝑚).
Fig. 10. Left: a fit to the invariant mass to determine the signal and background functions used to compute the sWeights. Right: the signal (red), background (blue) and variance
black) functions used when constructing the COW.
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• Several background components, given by polynomial powers of
𝑚, up to 1st, 3rd and 5th order.

e do not expect COWs to perform well with a single background
omponent, because the background is non-factorising, which requires
everal components. We use the following variance functions:

• Unity, 𝐼(𝑚) = 1.
• The true p.d.f. in the mass variable as in Eq. (43), 𝐼(𝑚) = 𝑔(𝑚).

This is the COWs equivalent of sWeights computed with variant
A.

• Estimates computed from the data sample itself using a histogram
of the 1∕𝜖2(𝑚, 𝑡) weighted 𝑚-distribution, as in Eq. (42), 𝐼(𝑚) =
𝑞 (𝑚), where 𝑏 is the number of bins in the histogram from 10
𝑏 d

13
to 50. This estimate approaches the optimal variance function
(general advice on an appropriate binning is given in Section 3.2).

After the weights are constructed, we calculate an estimate of the
lope parameter, 𝜆, with an unbinned weighted maximum-likelihood
it to the signal-weighted decay-time distribution. For reference, we
lso include in the comparison a 2D maximum-likelihood fit of the
wo-dimensional parametric model in which all parameters apart from
he slope parameter are known, and a fit of the distributions in the
iscriminant variable 𝑚 in 25 slices of the control variable 𝑡. The slope
arameter of the signal in the control variable is then estimated from
he signal yield per slice.

Whether a method produces consistent results is indicated by the
istribution of the so-called pull of the slope estimate computed over
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Fig. 11. The extracted weight functions for the signal (red) and background (blue) when using classic sWeights (left) and COWs (right). For the COWs, the background weight
function is taken as the sum of weight functions for each polynomial component (which is equal to 1).
Fig. 12. Signal weighted (blue points) and background weighted (red points) distributions in decay-time along with the true p.d.f.s (blue and red lines) when using classic sWeights
(left) and a COW (right).
the ensemble. The pull is defined as the difference of the estimated
and true values of 𝜆 divided by the estimated uncertainty of 𝜆. For an
unbiased estimate with the correct variance estimate, the pull distri-
bution has a mean consistent with zero and a width consistent with
one. As described in Section 4, the sandwich estimator is needed to
obtain an asymptotically correct estimate of the slope uncertainty in
the weighted unbinned maximum-likelihood fit. The standard HESSE
routine in MINUIT [6] applied to a weighted likelihood computes
the inverse matrix of second derivatives of the weighted likelihood
function, but this does not give correct uncertainty estimates since
the weighted likelihood is not a true likelihood. We further assess the
statistical power of all methods by computing the variance of the slope
parameter relative to the ideal case where each signal event can be
correctly identified and the uncertainty is just Poissonian.

The results of this study are shown in Fig. 13. As expected, classic
sWeights and COWs without sufficiently many background components
yield a biased estimate in this factorisation-breaking example; this is
indicated by the pull that deviates from zero. COWs with sufficiently
many background components produce an unbiased result. Adding
more background components than necessary reduces the statistical
power of COWs. The optimal trade-off is case-specific, but can be found
empirically using simulations or with goodness-of-fit tests on the data,
as described in Section 3.2.

The variance function 𝑞𝑏(𝑚) performs better than 𝐼(𝑚) = 𝑓 (𝑚) or
𝐼(𝑚) = 1, this is also expected as 𝑞𝑏(𝑚) approaches the optimal choice
𝑞(𝑚) as 𝑏 increases. The 2D fit has better statistical power than COWs,
but it requires a parametric model of the background, which is often
not known. Fitting in slices still does not produce an unbiased estimate
of the slope because the factorisation breaking is severe enough that
the p.d.f.s do not factorise within each slice.

We have further tested cases with different signal-to-background
ratios and with different sample sizes and the conclusions are similar,
although fewer orders of background polynomial are required for the
14
COWs to produce a minimal bias when the sample size is smaller. In
small samples, the residual bias from using a finite number of orders
gets masked by the statistical variance. So when using COWs in general
there is a trade-off between systematic bias and statistical precision. It is
also worth noting that for small samples (< 100 events) there are small
biases due to the fact that the covariance computed with the sandwich
estimator is only asymptotically valid.

6. Conclusions

This article provides a new perspective on the classic sWeights
method, by re-deriving the results in the context of orthonormal func-
tions. This approach provides many new insights and allowed us to
generalise the method to what we dub Custom Orthogonal Weight func-
tions (COWs). COWs produce correct results in cases when sWeights fail,
namely when the background is not factorising in the discriminant and
control variable, or when the detection is affected by finite efficiency
that does not factorise. Both of these ailments are not uncommon in
practice. We show how to obtain optimal (minimum variance) COWs
under these conditions. When only the shape of the signal distribution
in the control variable is of interest, COWs can be constructed without
performing a fit to the distribution in the discriminant variable. We
further summarise the work presented elsewhere [4] on the correct
application of the sandwich estimator to weighted maximum-likelihood
fits that use sWeights.

For the specific toy examples that we studied in this paper, fits to
sWeighted data had statistical precision comparable to a fully paramet-
ric two-dimensional maximum-likelihood fit of the distribution of the
discriminant and control variables. This is remarkable, but we also note
that weighted fits are in general less efficient than fully parametric
maximum-likelihood fits [4]. In a toy example with non-factorising
background and efficiency, the statistical power for COWs is lower than
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Fig. 13. Results of the ensemble study on an example with non-factorising efficiency and non-factorising background. The top panel shows the pull of the fitted exponential slope
arameter over the ensemble. The bottom panel shows the variance of the fitted exponential slope parameter values over the ensemble with respect to the ideal variance that
ould be obtained if all signal events could be correctly identified. The eight panels, from left-to-right, show the performance under various different scenarios. The different

olours represent different choices for the modelling of the background function, 𝑔𝑏(𝑚), in the COWs. The two benchmark scenarios and classic sWeights are shown in black.
Fig. 14. Guide for the practical application of sWeights or COWs. A description of this chart is given in the conclusions.
what is obtained in a fully parametric fit, but better than using multiple
fits in slices of the control variable.

A summary of our recommendations for the optimal use of sWeights
and COWs is given in Fig. 14. When the signal, background, and
15
efficiency all factorise in the discriminant and control variables, one
should use classic sWeights computed with variant B, described in
Section 2.2. This method minimises the variance of the weights, and
is the one previously described in the literature [1,2]. When only the
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signal factorises, one should use what we dub COWs lite described
in Section 3.2. In this case, an approximate signal p.d.f. is sufficient.
The result is unbiased for any signal p.d.f., but the statistical power
is maximised when the signal p.d.f. is close to the true signal. It
can be obtained as a histogram from simulation. The non-factorising
background should be expanded into basis functions, we recommend
Bernstein polynomials or basis splines. The optimal variance function,
𝑞(𝑚), for this case can be estimated from the data sample with a
histogram too, as described in Section 3.2. Finally, if the signal is also
non-factorising, then one has use the full COWs approach, which is like
COWs lite but now the signal is also expanded into basis functions,
which must be linear-independent from the basis functions used in the
expansion of the background.
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Appendix A. Constrained minimisation problem

We use Lagrange multipliers to find the function 𝑤𝑠(𝑚) which
minimises Eq. (6) under the constraints in Eq. (3). We need to find the
extremum of

𝐿(𝑤𝑠(𝑚), 𝛼𝑠, 𝛼𝑏) = ∫ 𝑤𝑠(𝑚)2 𝑔(𝑚)d𝑚 − 𝑧2

−2𝛼𝑠

(

∫ d𝑚 𝑤𝑠(𝑚) 𝑔𝑠(𝑚) − 1
)

−2𝛼𝑏 ∫ d𝑚 𝑤𝑠(𝑚) 𝑔𝑏(𝑚). (A.1)

The Lagrange multipliers 𝛼𝑠,𝑏 in 𝐿 were scaled by a factor of two
without loss of generality. Since 𝐿 is a functional of 𝑤𝑠(𝑚), we need
to use variational calculus. With

𝛿 ∫ d𝑚 𝑤𝑠(𝑚)𝜙(𝑚) = ∫ d𝑚 𝛿𝑤𝑠(𝑚)𝜙(𝑚)

𝛿 ∫ d𝑚 𝑤𝑠(𝑚)2 𝜙(𝑚) = ∫ d𝑚 2𝑤𝑠(𝑚) 𝛿𝑤𝑠(𝑚)𝜙(𝑚)

the variational score function is

𝛿𝐿 = 2 d𝑚 𝛿𝑤𝑠(𝑚)
[

𝑤𝑠(𝑚) 𝑔(𝑚) − 𝛼𝑠 𝑔𝑠(𝑚) − 𝛼𝑏 𝑔𝑏(𝑚)
] !
= 0. (A.2)
∫
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According to the fundamental lemma of calculus of variations, the
equation is satisfied for any continuous 𝛿𝑤𝑠(𝑚) only if the integrand
inside the square brackets is zero. So we obtain

𝑤𝑠(𝑚) =
𝛼𝑠 𝑔𝑠(𝑚) + 𝛼𝑏 𝑔𝑏(𝑚)

𝑔(𝑚)
. (A.3)

ppendix B. Variance of a sum of weights

We compute the variance of a sum of independently and identically
istributed weights, 𝑇 =

∑𝑛
𝑖 𝑤𝑖, where the sample size 𝑛 is a Poisson-

distributed number. The latter changes the computation of the variance
of 𝑇 . sWeights and COWs in general are not independently distributed,
so that the simple formula derived here only applies in rare special
cases (as pointed out in Appendix C).

We follow the derivation in Ref. [29]; the key insight is that the
sampling of 𝑛 is independent of the sampling of the 𝑤𝑖. The variance
of 𝑇 is Var(𝑇 ) = E[𝑇 2] − E[𝑇 ]2, so we need the respective expectations.
The expectation of 𝑇 is

E[𝑇 ] = E𝑛[E𝑤[𝑇 ]] = E𝑛

[ 𝑛
∑

𝑖
E[𝑤]

]

= E[𝑛] E[𝑤], (B.1)

here E𝑛 is an expectation taken with respect to 𝑛 only, likewise for
𝑤. The expectation of 𝑇 2 is

[𝑇 2] = E𝑛[E𝑤[𝑇 2]] = E𝑛
[

Var𝑤(𝑇 ) + E𝑤[𝑇 ]2
]

= E𝑛

[ 𝑛
∑

𝑖
Var(𝑤) + 𝑛2 E[𝑤]2

]

= E[𝑛] Var(𝑤) + E[𝑛2] E[𝑤]2. (B.2)

ere we used that the variance of a sum of independent random
ariables is equal to the sum of their variances. The variance of 𝑇 then
s

ar(𝑇 ) = E[𝑛] Var(𝑤) + E[𝑛2] E[𝑤]2 − E[𝑛]2 E[𝑤]2

= E[𝑛] Var(𝑤) + Var(𝑛) E[𝑤]2. (B.3)

ith Var(𝑛) = E[𝑛] for a Poisson distribution, the variance reduces to

ar(𝑇 ) = E[𝑛] (Var(𝑤) + E[𝑤]2) = E[𝑛] E[𝑤2]. (B.4)

n unbiased estimate of this is given by

âr(𝑇 ) = 𝑛 × 1
𝑛
∑

𝑖
𝑤2
𝑖 =

∑

𝑖
𝑤2
𝑖 . (B.5)

Appendix C. Covariance matrix of a weighted histogram

For sWeights and COWs, the sums of weights in bins (a weighted
histogram) of the control variable are asymptotically unbiased esti-
mates of the respective component p.d.f.. The asymptotically correct
covariance matrix of the bin contents is obtained with the sandwich
estimator generally described in Section 4, which properly accounts for
correlations between all estimates extracted from the same sample.

In special cases, the bins of the weighted histograms are uncor-
related and the variance of each bin is correctly estimated by the
sum of the squares of the weights, which simplifies the analysis of
the weighted histograms. This is the case if the efficiency is constant
and the component p.d.f.s 𝑔𝑐 (𝑚) are fixed a priori, no component 𝑔𝑐 (𝑚)
is misspecified, and one of the following conditions applies to the
variance function 𝐼(𝑚):

A. The variance function 𝐼(𝑚) is fixed a priori.
B. The variance function is the estimated density �̂�(𝑚) =

∑

𝑐 �̂�𝑐 𝑔𝑐
(𝑚).

C. The variance function 𝐼(𝑚) is a histogram of the observed distri-
bution in 𝑚, a binned estimate of �̂�(𝑚).
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These cases are not only of academic interest. A fixed variance function
𝐼(𝑚) = 1 is a valid (albeit not optimal, in the sense of achieving
minimum variance for sWeights) variance function. The component
p.d.f.s 𝑔𝑐 (𝑚) are fixed when a general expansion into basis functions
is used to construct COWs. Case B corresponds to classic sWeights
with fixed component p.d.f.s (not common in practice) computed with
variant A. Cases B and C correspond to the application of the full COWs
where both the signal and background components are expanded into
fixed basis functions and when the efficiency is constant. The choices
for 𝐼(𝑚) are then optimal or nearly optimal in case of the histogram.

We will now prove these claims. Since the component p.d.f.s 𝑔𝑐 (𝑚)
are complete and not misspecified, the true density is a linear combina-
tion of the components, 𝑔(𝑚) = ∑

𝑐 𝑧𝑐 𝑔𝑐 (𝑚). The efficiency is constant,
which is equivalent to setting 𝜖(𝑚, 𝑡) = 1. For a variance function
𝐼(𝑚), the weight function 𝑤𝑐 (𝑚) that projects out a single component
𝑐 is given by Eq. (32). We will omit the index 𝑐 in the following,
𝑤(𝑚) ∶= 𝑤𝑐 (𝑚). The content of the 𝑘th bin of a weighted histogram
for component 𝑐 in 𝑡 is given by

�̂�𝑘 =
�̂�𝑘
∑

𝑖=1
𝑤(𝑚𝑖;𝜶) , (C.1)

where the sum is taken over samples with 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1 and 𝑤(𝑚;𝜶)
potentially depends on parameters 𝜶 that are estimated from the sam-
ple. The number of entries �̂�𝑘 in bin 𝑘 is a Poisson distributed random
variable with expectation value 𝑁𝑘. If E [𝑤(𝑚;𝜶)] = 𝑧, the true fraction
of component 𝑐, �̂�𝑘 is an unbiased estimate of the expected bin content
𝐵𝑘,

E
[

�̂�𝑘
]

= E
⎡

⎢

⎢

⎣

�̂�𝑘
∑

𝑖=1
𝑤(𝑚𝑖;𝜶)

⎤

⎥

⎥

⎦

= E
[

�̂�𝑘
]

E [𝑤(𝑚;𝜶)] = 𝑁𝑘 𝑧 = 𝐵𝑘 . (C.2)

We will now compute the covariance matrix 𝐶 of the histogram 𝑩.
We introduce unspecified score functions 𝑷 whose roots shall determine
all nuisance parameters 𝜶 in the calculation of the weights 𝑤(𝑚;𝜶),
which may include, for example, the component fractions 𝑧𝑐 and shape
parameters 𝜽 of the component p.d.f.s 𝑔𝑐 (𝑚;𝜽). The bin-contents in 𝑡 are
defined by the roots of the score functions 𝑸,

𝑄𝑘 = 𝐵𝑘 −
�̂�𝑘
∑

𝑖=1
𝑤(𝑚𝑖;𝜶) . (C.3)

The combined estimate of all parameters is obtained from the roots of
the joint vector (𝑷 ,𝑸). Asymptotically, the covariance matrix of nui-
sance parameters and bin contents is given by the sandwich estimator

⎛

⎜

⎜

⎜

⎝

E
[ 𝜕𝑷
𝜕𝜶

]

E
[ 𝜕𝑷
𝜕𝑩

]

E
[

𝜕𝑸
𝜕𝜶

]

E
[

𝜕𝑸
𝜕𝑩

]

⎞

⎟

⎟

⎟

⎠

−1
(

E
[

𝑷𝑷 𝑇 ] E
[

𝑷𝑸𝑇 ]

E
[

𝑸𝑷 𝑇 ] E
[

𝑸𝑸𝑇 ]

) ⎛

⎜

⎜

⎜

⎝

E
[ 𝜕𝑷
𝜕𝜶

]

E
[ 𝜕𝑷
𝜕𝑩

]

E
[

𝜕𝑸
𝜕𝜶

]

E
[

𝜕𝑸
𝜕𝑩

]

⎞

⎟

⎟

⎟

⎠

−𝑇

.

(C.4)

The partial derivatives represent Jacobian matrices of the derivatives
of the score-function parts 𝑷 and 𝑸 with respect to the parameters 𝜶
and 𝑩. We are only interested in the latter; the covariance matrix 𝐶 is
the lower-right block matrix of the matrix product. By construction, we
have E

[

𝜕𝑷 ∕𝜕𝑩
]

= 0 and E
[

𝜕𝑸∕𝜕𝑩
]

= 1. If the derivatives E
[

𝜕𝑸∕𝜕𝜶
]

re all zero, 𝐶 reduces to E
[

𝑸𝑸𝑇 ], which has a simple structure as we
ill see. For the trivial case A of no nuisance parameters, E

[

𝜕𝑸∕𝜕𝜶
]

is
rivially zero and Eq. (C.2) trivially holds.

We compute the matrix 𝐶 under this condition,

𝑘𝓁 = E
[

𝑄𝑘𝑄𝓁
]

= E
⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

𝐵𝑘 −
�̂�𝑘
∑

𝑖=1
𝑤(𝑚𝑖)

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝐵𝓁 −
�̂�𝓁
∑

𝑗=1
𝑤(𝑚𝑗 )

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

= −𝐵𝑘𝐵𝓁 + E
⎡

⎢

⎢

�̂�𝑘
∑

�̂�𝓁
∑

𝑤(𝑚𝑖)𝑤(𝑚𝑗 )
⎤

⎥

⎥

.

(C.5)
⎣

𝑖=1 𝑗=1
⎦
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Since the bins are non-overlapping, the sums over 𝑖 and 𝑗 are disjoint
and the expectation value for 𝑘 ≠ 𝑙 factorises. The off-diagonal elements
are zero,

𝐶𝑘𝓁 = −𝐵𝑘𝐵𝓁 +𝑁𝑘𝑁𝓁𝑧
2 = 0 . (C.6)

e calculate the diagonal elements by splitting the double sum into
ndependent pairs and identical pairs, and we use E[�̂�2

𝑘 ] = 𝑁2
𝑘 +𝑁𝑘 for

Poisson-distributed variable,

𝑘𝑘 = −𝐵2
𝑘 + E

⎡

⎢

⎢

⎣

�̂�𝑘
∑

𝑖=1

�̂�𝑘
∑

𝑗=1
𝑤(𝑚𝑖)𝑤(𝑚𝑗 )

⎤

⎥

⎥

⎦

= −𝐵2
𝑘 + E

[

�̂�𝑘(�̂�𝑘 − 1)
]

E [𝑤]2 + E
[

�̂�𝑘
]

E
[

𝑤2]

= −𝐵2
𝑘 +𝑁

2
𝑘𝑧

2 +𝑁𝑘 E
[

𝑤2] = 𝑁𝑘 E
[

𝑤2] = E
⎡

⎢

⎢

⎣

�̂�𝑘
∑

𝑖=1
𝑤2(𝑚𝑖)

⎤

⎥

⎥

⎦

.

(C.7)

he variance of the bin is estimated by the sum of weights squared and
ifferent bins are uncorrelated. The same result can be derived from
he fact that the weights in each bin are independently sampled. It also
ollows from independence that different bins are uncorrelated and the
ariance of the sum of weights per bin is given by Appendix B in this
ase.

We now show that Eq. (C.2) is true and E
[

𝜕𝑸∕𝜕𝜶
]

is zero for the
on-trivial cases B and C. More generally, E

[

𝜕𝑸∕𝜕𝜶
]

is zero, if only
he variance function 𝐼(𝑚;𝜶) depends on nuisance parameters 𝜶, but
ot the component p.d.f.s 𝑔𝑐 (𝑚). In case B, the nuisance parameters are
he fractions 𝒛 in 𝐼(𝑚; 𝒛) =

∑

𝑐 𝑧𝑐 𝑔𝑐 (𝑚), which are estimated from the
ample. In case C, the expected variance function is

(𝑚; 𝜷) =
∑

𝑘
𝛽𝑘 𝜂𝑘(𝑚), (C.8)

ith 𝜂𝑘(𝑚) ∶= 𝐻(𝑚−𝑚𝑘)𝐻(𝑚𝑘+1 −𝑚) where 𝐻(𝑥) is the Heaviside step
unction, 𝑚𝑘 is the lower edge of bin 𝑘, and the nuisance parameters
re the bin fractions 𝜷, with expectation values 𝛽𝑘 = ∫ 𝑚𝑘+1𝑚𝑘

d𝑚𝑔(𝑚).
For Eq. (C.2) to hold, we need to show that E

[

𝑤0(𝑚;𝜶)
]

= 𝑧0 for any
. We compute the expectation for weights computed with a variance

unction 𝐼(𝑚;𝜶),

E
[

𝑤0(𝑚;𝜶)
]

=
∑

𝓁

𝐴0𝓁 ∫ d𝑚
𝑔𝓁(𝑚)
𝐼(𝑚;𝜶)

𝑔(𝑚)

=
∑

𝓁,𝑘
𝑧𝑘 𝐴0𝓁 ∫ d𝑚

𝑔𝓁(𝑚)𝑔𝑘(𝑚)
𝐼(𝑚;𝜶)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑊𝓁𝑘

=
∑

𝑘
𝑧𝑘 𝛿0𝑘 = 𝑧0 ,

(C.9)

where we used that 𝐴 is the inverse of 𝑊 .
Regarding E

[

𝜕𝑸∕𝜕𝜶
]

, we find for component 𝑐,

E
[

𝜕𝑄𝑘
𝜕𝛼𝓁

]

= E
⎡

⎢

⎢

⎣

𝜕
𝜕𝛼𝓁

⎛

⎜

⎜

⎝

𝐵𝑘 −
�̂�𝑘
∑

𝑗=1
𝑤𝑐 (𝑚𝑗 ;𝜶)

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

= −E
⎡

⎢

⎢

⎣

�̂�𝑘
∑

𝑗=1

𝜕𝑤𝑐 (𝑚𝑗 ;𝜶)
𝜕𝛼𝓁

⎤

⎥

⎥

⎦

= −𝑁𝑘 E
[

𝜕𝑤𝑐
𝜕𝛼𝓁

]

.

(C.10)

o it remains to be shown that E
[

𝜕𝑤𝑐∕𝜕𝛼𝓁
]

is zero. We insert Eq. (32)
nd 𝑔(𝑚) = ∑

𝑐 𝑧𝑐 𝑔𝑐 (𝑚),
[

𝜕𝑤𝑐
𝜕𝛼𝑘

]

=
∑

𝓁

(

𝜕𝐴𝑐𝓁
𝜕𝛼𝑘 ∫ d𝑚

𝑔𝓁(𝑚)
𝐼(𝑚;𝜶)

𝑔(𝑚)

+ 𝐴𝑐𝓁 ∫ d𝑚 𝜕
𝜕𝛼𝑘

(

𝑔𝓁(𝑚)
𝐼(𝑚;𝜶)

)

𝑔(𝑚)
)

=
∑

𝓁,𝑑
𝑧𝑑

(

𝜕𝐴𝑐𝓁
𝜕𝛼𝑘 ∫ d𝑚

𝑔𝓁(𝑚)𝑔𝑑 (𝑚)
𝐼(𝑚;𝜶)

+ 𝐴𝑐𝓁
𝜕 d𝑚

𝑔𝓁(𝑚)𝑔𝑑 (𝑚)
)

𝜕𝛼𝑘 ∫ 𝐼(𝑚;𝜶)
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(

W
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E

𝑇

t

𝑘

V

t
s
t
w
b

∫

r

∫

T
b
f

𝑤

=
∑

𝓁,𝑑
𝑧𝑑

(

𝜕𝐴𝑐𝓁
𝜕𝛼𝑘

𝑊𝓁𝑑 + 𝐴𝑐𝓁
𝜕𝑊𝓁𝑑
𝜕𝛼𝑘

)

=
∑

𝓁,𝑑
𝑧𝑑

𝜕
𝜕𝛼𝑘

(𝐴𝑐𝓁𝑊𝓁𝑑 )

=
∑

𝑑
𝑧𝑑

𝜕
𝜕𝛼𝑘

(

∑

𝓁

𝐴𝑐𝓁𝑊𝓁𝑑

)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝛿𝑐𝑑

= 0 , (C.11)

where we used that the 𝐴 and 𝑊 matrices are inverses of each other.
Since E

[

𝜕𝑸∕𝜕𝜶
]

is zero, the covariance matrix 𝐶 also takes the same
simple form as in the trivial case A.

We emphasise that this only holds for COWs and sWeights computed
with variant A. If classic sWeights are computed with variant B, extra
terms appear in the calculation of the covariance matrix, as discussed
in Ref. [4].

Appendix D. Self-consistency of sWeights

Here, we prove Eq. (22) for sWeights computed with variant A or B.
The sum of sWeights is given by Eq. (7), if true p.d.f.s are replaced by
estimates,

𝑇 =
∑

𝑖
�̂�𝑠(𝑚𝑖) =

∑

𝑖

�̂�𝑠𝑠 �̂�𝑠(𝑚𝑖) + �̂�𝑠𝑏 �̂�𝑏(𝑚𝑖)
�̂�(𝑚𝑖)

, (D.1)

where �̂� is the inverse of the 𝑊 matrix, which can be computed with
Eq. (18) (variant A) or Eq. (21) (variant B).

The proof for variant A requires that the component fractions 𝑁𝑐
with 𝑐 ∈ {𝑠, 𝑏} are estimated with the extended maximum-likelihood
EML) method. The EML estimates �̂�𝑠 and �̂�𝑏 are solutions to the score

functions (compare to Eq. (24)),
∑

𝑖

�̂�𝑠(𝑚𝑖)
𝑁 �̂�(𝑚𝑖)

= 1 and
∑

𝑖

�̂�𝑏(𝑚𝑖)
𝑁 �̂�(𝑚𝑖)

= 1 , (D.2)

with 𝑁 �̂�(𝑚) = �̂�𝑠 �̂�𝑠(𝑚) + �̂�𝑏 �̂�𝑏(𝑚) and estimated p.d.f.s �̂�𝑐 (𝑚), whose
nuisance parameters are obtained from the EML fit. With Eq. (D.2), we
obtain

𝑇
𝑁

=

(

�̂�𝑠𝑠
∑

𝑖

�̂�𝑠(𝑚𝑖)
𝑁 �̂�(𝑚𝑖)

+ �̂�𝑠𝑏
∑

𝑖

�̂�𝑏(𝑚𝑖)
𝑁 �̂�(𝑚𝑖)

)

= �̂�𝑠𝑠 + �̂�𝑠𝑏 =
∑

𝑘
�̂�𝑠𝑘 . (D.3)

e now use Eq. (18),

= ∫ d𝑚 �̂�𝑘(𝑚) = ∫ d𝑚 �̂�𝑘(𝑚)
�̂�(𝑚)
�̂�(𝑚)

=
∑

𝓁

�̂�𝓁

𝑁
𝑊𝑘𝓁 (D.4)

Since �̂� is the inverse of 𝑊 , we finally get

𝑇 = 𝑁
∑

𝑘,𝓁
�̂�𝑠𝑘

�̂�𝓁

𝑁
𝑊𝑘𝓁 =

∑

𝓁

𝛿𝑠𝓁 �̂�𝓁 = �̂�𝑠 . (D.5)

To prove the result for variant B, we go back to Eq. (D.1) and use
q. (21),

=
∑

𝑖,𝑘

�̂�𝑠𝑘 �̂�𝑘(𝑚𝑖)
�̂�(𝑚𝑖)

= 1
𝑁

∑

𝑖,𝑘

�̂�𝑠𝑘 �̂�𝑘(𝑚𝑖)
(

�̂�𝑠 �̂�𝑠(𝑚𝑖) + �̂�𝑏 �̂�𝑏(𝑚𝑖)
)

[�̂�(𝑚𝑖)]2

= 1
𝑁

∑

𝑖,𝑘,𝓁

�̂�𝓁 �̂�𝑠𝑘 �̂�𝑘(𝑚𝑖) �̂�𝓁(𝑚𝑖)
[�̂�(𝑚𝑖)]2

=
∑

𝑘,𝓁
𝑁𝓁 �̂�𝑠𝑘𝑊𝑘𝓁 =

∑

𝓁

𝑁𝓁 𝛿𝑠𝓁 = �̂�𝑠 (D.6)

This proof does not make use of Eq. (D.2) and therefore holds more
generally.

Appendix E. Sum of component weights obtained from COWs

When 𝐼(𝑚) is a linear combination of the p.d.f.s,

𝐼(𝑚) =
𝑛
∑

𝑎𝑘𝑔𝑘(𝑚), (E.1)

𝑘=0
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then the normalisation of the 𝑔𝑘(𝑚) implies that

1 = ∫ d𝑚𝑔𝑘(𝑚) = ∫ d𝑚𝑔𝑘(𝑚)
𝐼(𝑚)
𝐼(𝑚)

=
𝑛
∑

𝑙=0
𝑎𝑙 ∫ d𝑚

𝑔𝑘(𝑚)𝑔𝑙(𝑚)
𝐼(𝑚)

=
𝑛
∑

𝑙=0
𝑎𝑙𝑊𝑘𝑙 . (E.2)

Inverting this matrix equation, it follows that 𝑎𝑙 =
∑𝑛
𝑘=0 𝐴𝑘𝑙 and

hus,
𝑛
∑

=0
𝑤𝑘(𝑚) =

𝑛
∑

𝑘=0

𝑛
∑

𝑙=0

𝐴𝑘𝑙𝑔𝑙(𝑚)
𝐼(𝑚)

= 1
𝐼(𝑚)

𝑛
∑

𝑙=0
𝑎𝑙𝑔𝑙(𝑚) = 1. (E.3)

Appendix F. Variance function for COWs which minimises the
variances of �̂�𝒌

The variance of �̂�𝑘 from Eq. (37) is

ar(�̂�𝑘) = E[�̂�2𝑘] − E[�̂�𝑘]2

= 1
𝑁2

E

[

�̂�2
𝑁
∑

𝑖,𝑗=1

𝑤𝑘(𝑚𝑖)𝑤𝑘(𝑚𝑗 )
𝜖(𝑚𝑖, 𝑡𝑖)𝜖(𝑚𝑗 , 𝑡𝑗 )

]

− 𝑧2𝑘 (F.1)

= 1
𝑁2

( 𝑁
∑

𝑖≠𝑗
E
[

�̂�2 𝑤𝑘(𝑚𝑖)𝑤𝑘(𝑚𝑗 )
𝜖(𝑚𝑖, 𝑡𝑖)𝜖(𝑚𝑗 , 𝑡𝑗 )

]

+
𝑁
∑

𝑖=𝑗
E

[

�̂�2
𝑤2
𝑘(𝑚𝑖)

𝜖2(𝑚𝑖, 𝑡𝑖)

])

− 𝑧2𝑘

(F.2)

= 1
𝑁2

(

𝑁(𝑁 − 1)𝑧2𝑘 +𝑁 E

[

�̂�2
𝑤2
𝑘(𝑚)

𝜖2(𝑚, 𝑡)

])

− 𝑧2𝑘 (F.3)

= 1
𝑁

(

E

[

�̂�2
𝑤2
𝑘(𝑚)

𝜖2(𝑚, 𝑡)

]

− 𝑧2𝑘

)

. (F.4)

If the weight 𝐼(𝑚) is to be such that the variance of �̂�𝑘 is minimal it
hen follows that the expectation value E[𝑤2

𝑘(𝑚)∕𝜖
2(𝑚, 𝑡)] is minimal,

ince �̂� does not depend on 𝐼(𝑚). The minimisation has to incorporate
he constraints that the integrals of 𝑤𝑘(𝑚)𝑔𝑙(𝑚) are either zero or one,
hich is done by Lagrange multipliers, 2𝜆𝑙. The extremum condition
ecomes

d𝑚d𝑡 𝜌(𝑚, 𝑡)
[

𝑤2
𝑘(𝑚)

𝜖2(𝑚, 𝑡)
−

𝑛
∑

𝑙=0
2𝜆𝑙𝑤𝑘(𝑚)𝑔𝑙(𝑚)

]

!
= min. (F.5)

Only 𝜌(𝑚, 𝑡) and 𝜖(𝑚, 𝑡) depend on 𝑡. Encompassing the 𝑡-integral by
introducing

𝑞(𝑚) = ∫ d𝑡 𝜌(𝑚, 𝑡)
𝜖2(𝑚, 𝑡)

(F.6)

and using the extremum condition, which requires that any variations
𝛿𝑤𝑘(𝑚), with 𝛿𝑤2

𝑘(𝑚) = 2𝑤(𝑚)𝛿𝑤(𝑚), lead to zero variation of the
emaining 𝑚 integral, one finds

d𝑚 2 𝛿𝑤𝑘(𝑚)

[

𝑤𝑘(𝑚)𝑞(𝑚) −
𝑛
∑

𝑙=0
𝜆𝑙𝑔𝑙(𝑚)

]

= 0. (F.7)

his is true under any variations 𝛿𝑤𝑘(𝑚) provided the term in square
rackets zero. This implies that the functional form of the weight
unctions is

𝑘(𝑚) =
𝑛
∑

𝑙=0

𝜆𝑙𝑔𝑙(𝑚)
𝑞(𝑚)

, (F.8)

which in turn means that the optimal variance weight function is given
by

𝐼(𝑚) = 𝑞(𝑚) = ∫ d𝑡 𝜌(𝑚, 𝑡)
2

. (F.9)

𝜖 (𝑚, 𝑡)
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Appendix G. Variance function for COWs for which �̂�𝒌 are maxi-
mum likelihood estimates

Consider an Extended Maximum Likelihood fit of the yields, 𝑁𝑘,
for each component of the data model. The Maximum Likelihood (ML)
estimates, �̂�𝑘 are obtained by minimising

 =
𝑛
∑

𝑙=0
𝑁𝑘 −

𝑁
∑

𝑖=1

1
𝜖(𝑚𝑖, 𝑡𝑖)

ln

[ 𝑛
∑

𝑙=0
𝑁𝑙𝑔𝑙(𝑚)

]

. (G.1)

The requirement of a stationary point 𝜕∕𝜕�̂�𝑘 = 0 leads to

1 =
𝑁
∑

𝑖=1

1
𝜖(𝑚𝑖, 𝑡𝑖)

𝑔𝑘(𝑚𝑖)
∑

𝑙 �̂�𝑙𝑔𝑙(𝑚𝑖)
. (G.2)

nserting the estimates �̂�𝑘 = �̂�𝑘𝐷∕𝑁 means that

𝑁
𝐷

=
𝑁
∑

𝑖=1

1
𝜖(𝑚𝑖, 𝑡𝑖)

𝑔𝑘(𝑚𝑖)
∑

𝑙 �̂�𝑙𝑔𝑙(𝑚𝑖)
∀ 𝑘. (G.3)

he solution for this system of non-linear equations requires that the
ight-hand-side is the same for all 𝑘, namely 𝑁∕𝐷. Noticing here the
imilarity with Eq. (37), one can choose 𝐼(𝑚) such that the sum in
q. (G.3) becomes 𝑁∕𝐷. In this case one finds that

�̂�𝑘 =
𝑛
∑

𝑙=0
𝐴𝑘𝑙 = 𝑎𝑘 (G.4)

nd therefore

(𝑚) =
𝑛
∑

𝑙=0
�̂�𝑙𝑔𝑙(𝑚). (G.5)

ppendix H. Sample estimate for variance of the quasi-score vec-
or

Below we give the sample estimate for 𝑪𝑺 = E
[

𝑺𝑺𝑇
]

in Eq. (52).
e obtain

̂
[

𝜕 ln
𝜕𝑁𝑐

𝜕 ln
𝜕𝑁𝑑

]

=
∑

𝑖

�̂�𝑐 (𝑚𝑖)�̂�𝑑 (𝑚𝑖)
(

�̂�𝑠�̂�𝑠(𝑚𝑖) + �̂�𝑏�̂�𝑏(𝑚𝑖)
)2

(H.1)

Ê
[

𝜕 ln
𝜕𝑁𝑐

𝜕 ln
𝜕𝜃𝑘

]

=
∑

𝑖

�̂�𝑐 (𝑚𝑖)
(

�̂�𝑠
𝜕𝑔𝑠(𝑚𝑖)
𝜕𝜃𝑘

+ �̂�𝑏
𝜕𝑔𝑏(𝑚𝑖)
𝜕𝜃𝑘

)

|�̂�
(

�̂�𝑠�̂�𝑠(𝑚𝑖) + �̂�𝑏�̂�𝑏(𝑚𝑖)
)2

(H.2)

Ê
[

𝜕 ln
𝜕𝑁𝑐

𝜓(𝑢𝑣)

]

=
∑

𝑖

�̂�𝑐 (𝑚𝑖)�̂�𝑢(𝑚𝑖)�̂�𝑣(𝑚𝑖)
(

�̂�𝑠�̂�𝑠(𝑚𝑖) + �̂�𝑏�̂�𝑏(𝑚𝑖)
)3

(H.3)

Ê
[

𝜕 ln
𝜕𝑁𝑐

𝜉𝑘

]

=
∑

𝑖

�̂�𝑠(𝑚𝑖)�̂�𝑐 (𝑚𝑖)
�̂�𝑠�̂�𝑠(𝑚𝑖) + �̂�𝑏�̂�𝑏(𝑚𝑖)

𝜕 lnℎ𝑠(𝑡𝑖)
𝜕𝜙𝑘

|

|

|

|�̂�
(H.4)

Ê
[

𝜕 ln
𝜕𝜃𝑘

𝜕 ln
𝜕𝜃𝓁

]

=
∑

𝑖

(�̂�𝑠
𝜕𝑔𝑠(𝑚𝑖)
𝜕𝜃𝑘

+ �̂�𝑏
𝜕𝑔𝑏(𝑚𝑖)
𝜕𝜃𝑘

)|�̂�

�̂�𝑠�̂�𝑠(𝑚𝑖) + �̂�𝑏�̂�𝑏(𝑚𝑖)
(H.5)

×
(�̂�𝑠

𝜕𝑔𝑠(𝑚𝑖)
𝜕𝜃𝓁

+ �̂�𝑏
𝜕𝑔𝑏(𝑚𝑖)
𝜕𝜃𝓁

)|�̂�

�̂�𝑠�̂�𝑠(𝑚𝑖) + �̂�𝑏�̂�𝑏(𝑚𝑖)
(H.6)

Ê
[

𝜕 ln
𝜕𝜃𝑘

𝜓(𝑐𝑑)

]

=
∑

𝑖

�̂�𝑐 (𝑚𝑖)�̂�𝑑 (𝑚𝑖)
(

�̂�𝑠�̂�𝑠(𝑚𝑖) + �̂�𝑏�̂�𝑏(𝑚𝑖)
)3

(H.7)

×
(

�̂�𝑠
𝜕𝑔𝑠(𝑚𝑖)
𝜕𝜃𝑘

+ �̂�𝑏
𝜕𝑔𝑏(𝑚𝑖)
𝜕𝜃𝑘

)

|

|

|

|�̂�
(H.8)

Ê
[

𝜕 ln
𝜕𝜃𝑘

𝜉𝓁

]

=
∑

𝑖

(�̂�𝑠
𝜕𝑔𝑠(𝑚𝑖)
𝜕𝜃𝑘

+ �̂�𝑏
𝜕𝑔𝑏(𝑚𝑖)
𝜕𝜃𝑘

)|�̂�

�̂�𝑠�̂�𝑠(𝑚𝑖) + �̂�𝑏�̂�𝑏(𝑚𝑖)
(H.9)

× �̂�𝑠(𝑚𝑖)
𝜕 lnℎ𝑠(𝑡𝑖)
𝜕𝜙𝓁

|

|

|

|�̂�
(H.10)

Ê
[

𝜓(𝑐𝑑)𝜓(𝑢𝑣)
]

=
∑ �̂�𝑐 (𝑚𝑖)�̂�𝑑 (𝑚𝑖)�̂�𝑢(𝑚𝑖)�̂�𝑣(𝑚𝑖)

( )4
(H.11)
𝑖 �̂�𝑠�̂�𝑠(𝑚𝑖) + �̂�𝑏�̂�𝑏(𝑚𝑖)
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Ê
[

𝜓(𝑐𝑑)𝜉𝑘
]

=
∑

𝑖

�̂�𝑠(𝑚𝑖)�̂�𝑐 (𝑚𝑖)�̂�𝑑 (𝑚𝑖)
(

�̂�𝑠�̂�𝑠(𝑚𝑖) + �̂�𝑏�̂�𝑏(𝑚𝑖)
)2

(H.12)

×
𝜕 lnℎ𝑠(𝑡𝑖)
𝜕𝜙𝑘

|

|

|

|�̂�
(H.13)

Ê
[

𝜉𝑘𝜉𝓁
]

=
∑

𝑖
�̂�2
𝑠 (𝑚𝑖)

(

𝜕 lnℎ𝑠(𝑡𝑖)
𝜕𝜙𝑘

𝜕 lnℎ𝑠(𝑡𝑖)
𝜕𝜙𝓁

)

|

|

|

|�̂�
, (H.14)

where �̂�𝑐 (𝑚𝑖) = 𝑔𝑐 (𝑚𝑖; �̂�), ℎ𝑠(𝑡𝑖) = ℎ𝑠(𝑡𝑖,𝝓), �̂�𝑠(𝑚𝑖) = 𝑤𝑠(𝑚𝑖; �̂�𝑠, �̂�𝑏,𝑊𝑠𝑠,
�̂�𝑏,𝑊𝑏𝑏), 𝑐, 𝑑 ∈ {𝑠, 𝑏}, (𝑐𝑑) and (𝑢𝑣) each iterate over {𝑠𝑠, 𝑠𝑏, 𝑏𝑏}, and
, 𝑙 index the shape parameters of 𝜽 or 𝝓.
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