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Bivariate meta-analysis provides a useful framework for combining information
across related studies and has been utilized to combine evidence from clini-
cal studies to evaluate treatment efficacy on two outcomes. It has also been
used to investigate surrogacy patterns between treatment effects on the surro-
gate endpoint and the final outcome. Surrogate endpoints play an important role
in drug development when they can be used to measure treatment effect early
compared to the final outcome and to predict clinical benefit or harm. The stan-
dard bivariate meta-analytic approach models the observed treatment effects on
the surrogate and the final outcome outcomes jointly, at both the within-study
and between-studies levels, using a bivariate normal distribution. For binomial
data, a normal approximation on log odds ratio scale can be used. However, this
method may lead to biased results when the proportions of events are close to
one or zero, affecting the validation of surrogate endpoints. In this article, we
explore modeling the two outcomes on the original binomial scale. First,
we present a method that uses independent binomial likelihoods to model
the within-study variability avoiding to approximate the observed treatment
effects. However, the method ignores the within-study association. To over-
come this issue, we propose a method using a bivariate copula with binomial
marginals, which allows the model to account for the within-study association.
We applied the methods to an illustrative example in chronic myeloid leukemia
to investigate the surrogate relationship between complete cytogenetic response
and event-free-survival.

K E Y W O R D S

binary outcomes, bivariate meta-analysis, copula modeling, surrogate endpoints

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

Statistics in Medicine. 2022;41:4961–4981. wileyonlinelibrary.com/journal/sim 4961

 10970258, 2022, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9547 by T
est, W

iley O
nline L

ibrary on [15/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-8971-6221
https://orcid.org/0000-0003-4819-1611
https://orcid.org/0000-0002-7557-1567
https://orcid.org/0000-0002-3003-9403
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsim.9547&domain=pdf&date_stamp=2022-08-05


4962 PAPANIKOS et al.

1 INTRODUCTION

Bivariate meta-analytic methods provide a natural framework for synthesizing evidence obtained from two outcomes.
When meta-analyzing correlated outcomes, two sources of association exist in the data, one at the individual level and
one at the study level. Specifically, within each study, the treatment effects on the two outcomes are measured on the
same individuals and therefore are correlated (within-study correlation). Additionally, the between-studies variability on
the first and the second outcome (due to, eg, differences in study population or treatment dose) generate correlation at
the between-studies level (between-studies correlation).1

A bivariate random effects meta-analysis (BRMA) model2 can be used to perform bivariate meta-analysis of correlated
and normally distributed treatment effects on two outcomes. This method models treatment effects on both outcomes
jointly with a bivariate normal distribution. A very popular form of the bivariate normal meta-analytic method has been
described by van Houwelingen et al2 and Riley et al.3 This approach accounts for the within-study correlation and it
can be used to obtain mean treatment effects on both outcomes, as well as, to assess the study-level association between
the treatment effects between the first and the second outcome.4,5 When this approach is applied to binomial data, the
proportions of events in each arm across outcomes can be transformed to obtain treatment effects on log odds ratio (OR)
scale, which are assumed to be approximately normally distributed. However, when modeling binomial data on log OR
scale, the assumption of normality may not always be reasonable. Hamza et al6 showed that the normal approximation,
used for binomial data in univariate meta-analysis of diagnostic test accuracy studies leads to biased results, especially
when the proportions of events are very close to zero or one and the variance is large. A similar issue is likely to occur
when modeling binomial responses to treatment. While synthesis of a single binomial outcome data using exact binomial
likelihood is straightforward, a bivariate meta-analysis is challenging, unless some structure of the data is present (such
as outcomes are mutually exclusive or have an is-subset-of relationship) and taken into account.7

In this article, we investigate the importance of the choice of the scale and the corresponding distributional assump-
tions when modeling bivariate binomial data in a meta-analytic framework in the context of surrogate endpoint
evaluation. Bivariate meta-analysis of treatment effects on a surrogate endpoint and a final outcome allows for the study
level validation of a surrogate endpoint. A standard way to validate the study level surrogacy is to perform a form of bivari-
ate meta-analysis, such as BRMA, to model jointly correlated and normally distributed treatment effects on surrogate
and final outcomes2,8 and monitor the between-studies correlation parameter. When study level validation of surrogate
endpoints is based on data from modern clinical trials assessing personalized treatments, the high effectiveness of such
targeted therapies results in large proportions of responders and very small proportions of progressions or deaths. There-
fore, the assumption of normality when modeling binomial aggregate data on effectiveness of such therapies may lead to
poor inferences about the parameters describing the surrogate relationship and may affect the study level validation of a
surrogate endpoint. This may have a significant impact on regulatory decisions about market access of new therapies, in
particular when the poor choice of modeling assumptions can lead to over/underestimation of the correlation.

To address this issue, we present two random effect meta-analytic methods for the evaluation of study level surro-
gate relationships of the treatment effects on binomial outcomes, using exact likelihood approach based on the binomial
distribution when modeling within-study variability. The first approach is an modification of a generalized liner mixed
model (GLMM) applied to meta-analysis of diagnostic accuracy studies,9 extending the method to model data from com-
parative studies. It uses the exact independent binomial likelihoods across outcomes and treatment arms to model the
within-study variability. This model, however, ignores potential within-study associations. In a previous work, Riley10

highlighted the importance of taking into account the within-study correlation when using BRMA model. To account
for the within-study association on the binomial scale, we introduce another method which models the summarized
events on each outcome jointly using a bivariate copula with binomial marginal distributions. This model accounts for
the within-study association between the summarized events on the surrogate and the final outcome through the copula
dependence parameter. This makes the copula model a more appropriate approach, compared to one using indepen-
dent binomial likelihoods, as the events on the surrogate endpoint and the final outcome are obtained from the same
patients and therefore, they are correlated. Copulas have been previously used to model individual level surrogacy pat-
terns modeling dependencies between, for example, time to event surrogate and final outcomes in individual patient
data (IPD) based methods.11 IPD, however, are often not available, and only study level surrogacy can be validated
using summary data. Thus robust methods for the synthesis of aggregate data for surrogate endpoint evaluation are very
important.

We investigate the impact of assumptions made when modeling the within-study variability on the estimates of the
between-studies parameters in the meta-analysis of two binomial outcomes (surrogate and final) and in particular when
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T A B L E 1 Summarized data in CML

Complete cytogenetic response Event-free-survival

Control arm Treatment arm Control arm Treatment arm

Study name Arm size Responses Arm size Responses Arm size Events Arm size Events

Cortes et al15 252 171 250 175 252 222 250 230

Kantarjian et al16 260 189 259 216 260 239 259 243

Radich et al17 61 42 70 59 123 117 123 118

Kantarjian et al18 243 184 236 219 283 267 281 276

Baccarani et al19 108 63 108 69 108 74 108 77

Preudhomme et al20 158 92 160 104 159 149 160 149

Hehlmann et al21 306 151 328 206 324 308 338 317

Cortes et al22 157 103 319 223 157 149 319 311

Deininger et al23 49 33 41 35 73 68 72 60

Wang et al24 133 107 134 104 133 125 134 124

the proportions of events (such as responses to treatment or deaths) are close to zero or one. We carry out this investigation
in a simulation study, comparing the two proposed methods and the standard BRMA approach, as well as by applying
the methods to an illustrative example in chronic myeloid leukemia (CML).

The illustrative data example in CML is introduced Section 2. Section 3 discusses existing and the proposed method-
ology providing also a short overview of the copula theory. Section 4 presents the results of fitting the models to the data
of the motivating example. To illustrate the motivation and the application of the proposed method in a more detailed
and controlled manner and to compare its performance against the existing models, we carried out a simulation study.
The design and the results of the simulation study are discussed in Section 5. The article concludes with a discussion in
Section 6.

2 DATA EXAMPLE

CML is a myeloproliferative neoplasm of hematipoietic stem cells associated with a characteristic chromosomal transloca-
tion called the Philadelphia chromosome. The main characteristic is that CML is regarded as a slow progressive disease.12

Before the molecular pathogenesis of the disease was well understood, the median survival was 6 years, with a predicted
5-year overall survival (OS) of 47.2%.13 However, the introduction of tyrosine kinase inhibitor (TKI)14 therapies has led to
dramatically improved long-term survival rates resulting in high response rates of complete cytogenetic response (CCyR)
at 12 months and very few events such as loss of response (eg, CCyR, major molecular response etc.), progression to accel-
erated phase (AP) or blast crisis (BC) and death from any cause. We identified 10 studies comparing first generation TKI
therapies (eg, 400 mg imatinib) with second generation TKIs (eg, dasatinib, nilotinib, busotinib) or different doses of first
generation TKIs (600 or 800 mg imatinib) and performed bivariate meta-analysis. The aim of the meta-analysis was to eval-
uate the study level surrogate relationship between the candidate endpoint (CCyR) at 12 months and the final outcome
(event-free-survival [EFS]) at 24 months, using a standard and alternative bivariate meta-analytic methods described in
Section 3, as well as to compare the results of the methods against each other. We chose CCyR at 12 months as it has
been extensively used in the literature as a gold standard for a good measure of response and EFS at 24 months as it is
very significant in view of the dismal prognosis of the patients proceeding to advanced stages or losing response. Table 1
presents the summarized responses in the treatment and the control arms on both outcomes along with the sample size
per arm and outcome. We chose to work with positive correlations and to do so, we modeled the number of patients who
were event-free at 24 months EFS.
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3 METHODS

3.1 Bivariate random effects meta-analysis

The BRMA model for correlated and normally distributed treatment effects on two outcomes Y1i and Y2i was first intro-
duced by McIntosh25 and since then many extensions have been proposed. It is usually presented in the form described
by van Houwelingen et al2 and Riley et al:3

(
Y1i

Y2i

)
∼ N

((
𝛿1i

𝛿2i

)
,

(
𝜎

2
1i 𝜎1i𝜎2i𝜌wi

𝜎1i𝜎2i𝜌wi 𝜎
2
2i

))
, (1)

(
𝛿1i

𝛿2i

)
∼ N

((
d1

d2

)
,

(
𝜏

2
1 𝜏1𝜏2𝜌b

𝜏1𝜏2𝜌b 𝜏
2
2

))
. (2)

In this model, the treatment effects on the first and the second outcome Y1i, Y2i, which can be log OR, are assumed
to estimate the correlated true treatment effects 𝛿1i and 𝛿2i with corresponding within-study variances 𝜎2

1i and 𝜎
2
2i of

the estimates and the within-study correlation 𝜌wi between them. In this hierarchical framework, these true study-level
effects follow a bivariate normal distribution with means (d1, d2) corresponding to the two outcomes, the between-studies
variances 𝜏2

1 and 𝜏2
2 and the between-studies correlation 𝜌b. In the context of surrogate endpoints the between-studies

correlation 𝜌b is the main parameter of interest and it is used to assess the study level association between the treatment
effect on the surrogate endpoint and the effect on the final outcome. Equation (1) represents the within-study model and
(2) is the between-studies model.

The elements of the within-study covariance matrix, 𝜎2
1i, 𝜎

2
2i, and 𝜌wi are assumed to be known. While the estimates

of the variances are easily obtained by taking the square of the standard error for each outcome, the estimates of the
within-study correlations between the treatment effects on the two outcomes are more difficult to obtain as they would
not be reported in the original articles. When IPD are available, the correlation can be obtained for normally distributed
outcomes by, for example, fitting a regression model for the two outcomes with correlated errors.26 For transformed bino-
mial or time to event outcomes (such as log OR or log HR) the within-study correlation can be estimated by bootstrapping
(see details in Section 3.4 and Section A.1 of the supplementary material). Other methods of estimating the within-study
correlations have been discussed elsewhere and are summarized in Bujkiewicz et al.4 Implementing the model in the
Bayesian framework the unknown parameters 𝜏2

1 , 𝜏2
2 , d1, d2, and 𝜌b have to be estimated and therefore, prior distribu-

tions should be specified for them. For instance, the following prior distributions can be placed on the these parameters:
d1,2 ∼ N(0, 102), 𝜏1,2 ∼ U(0, 5), to implement the natural constrain of −1 ≤ 𝜌b ≤ 1 we used the Fisher’s z transformation
as, 𝜌b = tanh(z), z ∼ N(0, 1).

When this model is applied to binomial aggregate data, the data are transformed to obtain treatment effects on the
log OR scale: Y1i = log

(
r1Bi

NBi−r1Bi

)
− log

(
r1Ai

NAi−r1Ai

)
, Y2i = log

(
r2Bi

NBi−r2Bi

)
− log

(
r2Ai

NAi−r2Ai

)
with corresponding the variances:

𝜎
2
1i =

1
r1Bi
+ 1

NBi−r1Bi
+ 1

r1Ai
+ 1

NAi−r1Ai
and 𝜎2

2i =
1

r2Bi
+ 1

NBi−r2Bi
+ 1

r2Ai
+ 1

NAi−r2Ai
, where r1Ai, r2Ai, r1Bi, r2Bi are the numbers of events

in the control arm A and treatment arm B on both outcomes in study i, whereas NAi and NBi are the arm sizes in study i.
A modeling issue occurs when there are no events in either of the treatment arms as the log odds ratios (Y1i, Y1i) and their
variances cannot be defined. A very simple way to tackle this problem is to apply a correction, for instances, by adding 0.5.
However, in some situations the effect of adding 0.5 may lead to biased results.27,28 Furthermore, when the proportions
of events are close to zero or one the assumption of normality of log ORs is unreasonable and can lead to biased results.6
To address these issues, we explore two alternative approaches to modeling binomial data using exact binomial likelihood,
which are described in the following two sections; one approach ignoring the within-study correlation and one applying
a copula to account for the association at the within-study level.

3.2 Bivariate random effect meta-analysis with independent binomials

In this section, we present a bivariate meta-analytic model with independent binomial likelihoods for two outcomes at
the within-study level. This approach is very similar to a standard generalized linear mixed effects model (GLMM) for
meta-analysis of diagnostic test accuracy studies9,29 (where true positive and true negative observations are not correlated
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within a study as they are obtained from different individuals). To adapt GLMM to the context of bivariate meta-analysis
of randomized clinical trials, we assume that the numbers of events r1Ai, r2Ai, in the control arm A and r1Bi, r2Bi in the
experimental arm B, on the two outcomes (the surrogate and the final outcome, respectively) follow independent binomial
distributions with the corresponding true probabilities of events p1Ai, p2Ai, p1Bi, and p2Bi:

r1Ai ∼ Bin(p1Ai,NAi), r2Ai ∼ Bin(p2Ai,NAi), r1Bi ∼ Bin(p1Bi,NBi), r2Bi ∼ Bin(p2Bi,NBi). (3)

At the between-studies level (4), the true probabilities of events are transformed using a link function g(⋅) (eg, logit).

g(p1Ai) = 𝜇1i, g(p1Bi) = 𝜇1i + 𝛿1i,

g(p2Ai) = 𝜇2i, g(p2Bi) = 𝜇2i + 𝛿2i,(
𝛿1i

𝛿2i

)
∼ N

((
d1

d2

)
,

(
𝜏

2
1 𝜏1𝜏2𝜌b

𝜏1𝜏2𝜌b 𝜏
2
2

))
, (4)

where 𝜇ji are the study specific baseline effects (ie, the log-odds for the control group A and outcome j = 1, 2 in study i)
while, 𝛿ji are the study specific correlated true treatment effects on the log OR scale for outcome j = 1, 2 in study i.
(d1, d2) are the mean treatment effects on first and the second outcome, 𝜏1 and 𝜏2 are the between-studies heterogeneity
parameters and 𝜌b the between-studies correlation. Similarly as in the BRMA, between-studies correlation quantifies the
relationship between the surrogate endpoint and the final outcome.

To implement the model in the Bayesian framework, we place prior distributions on unknown parameters including
the baseline treatment effects 𝜇1i,2i ∼ N(0, 102), the mean effects d1,2 ∼ N(0, 102), the between-studies standard deviations
𝜏1,2 ∼ U(0, 5) and 𝜌b = tanh(z), z ∼ N(0, 1).

The main difference between this method and the BRMA model is the within-study level (3). BRMA-IB models the
within-study variability using the exact likelihood approach based on the binomial distribution avoiding to make the
restrictive assumption of normality. This approach does not require continuity corrections, however, the model ignores
the within-study association which is restrictive as within each study the treatment effects on the two outcomes are
measured on the same individuals and hence are correlated. As discussed above, when modeling aggregate data obtained
from correlated binary outcomes, two sources of association exist; one at the individual level and one at the study level,
and BRMA-IB model accounts only for the latter.

3.3 Model with bivariate copula

In this section, we propose a novel method using a copula representation to model the within-study variability in such
a way to allow for the association between the numbers of events in each arm on the first and the second outcome to be
taken into account. Copulas are flexible tools for modeling multivariate data as they account for the dependencies between
multiple outcomes and allow for different dependence structures, avoiding the restrictive assumption of normality. First,
we introduce some background on copula models. The new model based on copulas is presented in Section 3.3.2.

3.3.1 Overview of copula theory

A bivariate copula C is a bivariate cumulative distribution function (CDF) restricted to the unit square with standard
uniform marginal distributions.30-32

If H is a bivariate CDF with univariate CDF margins F1, F2 then according to the Sklar’s theorem33 for every bivariate
distribution there exists a copula representation C such that

H(x1, x2, 𝜃) = C(F1(x1),F2(x2), 𝜃). (5)

The copula C is unique if F1, F2 are continuous random variables; otherwise, there are many possible copulas if some
of the margins have discrete components as emphasized by Genest and Neslehová34 but all coincide on the closure of
Ran(F1) × Ran(F2) where Ran(F) denotes the range of F. The discrete bivariate probability mass function (pmf) can be
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4966 PAPANIKOS et al.

written in the following form:

h(x1, x2, 𝜃) = C(F1(x1),F2(x2), 𝜃) − C(F1(x1 − 1),F2(x2), 𝜃)
− C(F1(x1),F2(x2 − 1), 𝜃) + C(F1(x1 − 1),F2(x2 − 1), 𝜃). (6)

The key benefit of this theory is that copulas avoid the assumption of normality when modeling non-normal data and
allow the marginal distributions and the dependence structure to be estimated separately as they provide a natural way
to study and measure the dependence among random variables.

In this article, we used the normal copula to model the dependence between correlated binary outcomes. The normal
copula35 is the most commonly used copula of the elliptical family of copulas and can be described with the following
form:

CG
𝜌 (u1,u2, 𝜌) = Φ2(Φ−1(u1),Φ−1(u2)| 𝜌), (7)

where Φ2(⋅|𝜌) is the cdf of a bivariate standard normal distribution N(0,Σ) with covariance matrix Σ, Φ−1 is the inverse
cdf of the standard univariate normal distribution and 𝜌 is the correlations parameter. The normal copula interpolates
from the Frechet lower bound 𝜌 → −1 (perfect negative dependence) to the Frechet upper bound 𝜌→ 1 (perfect positive
dependence).

As the bivariate normal copula does not have a closed form but can be evaluated numerically using Owen’s
T-function.36 Therefore, the normal copula can be described in terms of T-function with the following expression:35

C(u1,u2, 𝜌) =
u1 + u2

2
− T(Φ−1(u1), au1) − T(Φ−1(u2), au2) − 𝛿(u1,u2), (8)

where

𝛿(u1,u2) =

{
1
2
, if u1 <

1
2
, u2 ≥

1
2
, or u ≥ 1

2
, u2 <

1
2
,

0, else
(9)

and

au1 =
1√

1 − 𝜌2

(
Φ−1(u2)
Φ−1(u1)

− 𝜌
)
, au2 =

1√
1 − 𝜌2

(
Φ−1(u1)
Φ−1(u2)

− 𝜌
)
. (10)

3.3.2 Bivariate random effects meta-analysis with bivariate copulas

BRMA-IB model assumes independence of the numbers of events across arms and outcomes and accounts only for the
correlation at the between-studies level. However, when modeling correlated binary outcomes (surrogate endpoint and
final outcome) this assumption is too strong. As highlighted previously, at the within-study level, the numbers of events
in each arm on the first and the second outcome are obtained from the same patients and are therefore correlated. Addi-
tionally, as discussed by Riley et al,1 the heterogeneity of the treatment effects on both outcomes across studies generates
the between-studies correlation. Hence, two sources of association exist in the data: at the within-study level and at
between-studies level.

To account for the within-study association on the binomial scale (without transforming the data to log odds ratios),
the numbers of events on both outcomes should be modeled jointly, assuming association between them. This can be
achieved by using a copula representation with discrete (binomial) marginals, as copulas account for the dependence
between marginals and allow for modeling various dependence structures, providing a flexible representation of the
bivariate distribution. Therefore, a joint density constructed with copulas can be much more flexible compared to the
bivariate normal distribution which only allows for normal marginals and linear dependence structure.

At the within-study level, we assume that the summarized events in each arm on both outcomes follow bivariate
distributions h(p1i, p2i,Ni, 𝜌i) with binomial marginal distributions. The parameters p1Ai, p2Ai, p1Bi, p2Bi denote the true
probabilities of the numbers of events in each arm on the first and the second outcome, NAi and NBi are the numbers of
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patients in the control arm A and experimental arm B in trial i.

(
r1Ai

r2Ai

)
∼ h(p1Ai, p2Ai,NAi, 𝜌Ai),

(
r1Bi

r2Bi

)
∼ h(p1Bi, p2Bi,NBi, 𝜌Bi),

g(p1Ai) = 𝜇1i, g(p1Bi) = 𝜇1i + 𝛿1i g(p2Ai) = 𝜇2i, g(p2Bi) = 𝜇2i + 𝛿2i,(
𝛿1i

𝛿2i

)
∼ N

((
d1

d2

)
,

(
𝜏

2
1 𝜏1𝜏2𝜌b

𝜏1𝜏2𝜌b 𝜏
2
2

))
,

where

h(r1Ai, r2Ai|p1Ai, p2Ai,NAi, 𝜌Ai) = C(F1(r1Ai),F2(r2Ai), 𝜌Ai) − C(F1(r1Ai − 1),F2(r2Ai), 𝜌Ai)
− C(F1(r1Ai),F2(r2Ai − 1), 𝜌Ai) + C(F1(r1Ai − 1),F2(r2Ai − 1), 𝜌Ai),

h(r1Bi, r2Bi|p1Bi, p2Bi,NBi, 𝜌Bi) = C(F1(r1Bi),F2(r2Bi), 𝜌Bi) − C(F1(r1Bi − 1),F2(r2Bi), 𝜌Bi)
− C(F1(r1Bi),F2(r2Bi − 1), 𝜌Bi) + C(F1(r1Bi − 1),F2(r2Bi − 1), 𝜌Bi).

F1(r1Ai), F2(r2Ai) and F1(r1Bi), F2(r2Bi) are the CDFs of the binomial marginal distributions on the two outcomes and C(⋅, ⋅)
is the bivariate normal copula.

Additionally, 𝜌Ai, 𝜌Bi are the dependence parameters (within-study correlations) in each arm, respectively and they,
similarly as the within-study correlation in BRMA model, are assumed to be known. In practice, they are not reported and
can be estimated using bootstrapping, as discuss in the next section, when IPD are available. The within-study correlations
are different across studies and hence each study has a different dependence parameter. However, in cases where IPD
are not available for all studies, the same dependence parameter can be assumed across the studies, which, for example,
can be an average obtained from studies with IPD available. In the absence of IPD, informative prior distributions can be
constructed combining evidence from external sources such as observational studies.

At the between-studies level, the model is exactly the same as (Equation 4) in BRMA-IB. The true probabilities of
events p1Ai, p2Ai, p1Bi, p2Bi are transformed using a link function g(⋅) and the true treatment effects on both outcomes are
normally distributed and correlated. This model was implemented in the Bayesian framework assuming the same prior
distributions as BRMA-IB.

Overall, BRMA-BC is less restrictive compared to BRMA and BRMA-IB, as it accounts for the within-study association
and models the data on the original binomial scale, avoiding a potentially inappropriate normal approximation for the
marginal distributions.

3.4 Bootstrap methods

As discussed in Section 3.1 the within-study correlations are needed to populate the correlation matrix of the BRMA
model (Equation 1). These correlations can be estimated when IPD are available by using a bootstrap method. The method
estimates the correlation between the estimated treatment effects on both outcomes obtained by bootstrap samples with
replacement from IPD.8 In this article, we aim to apply the method to binomial data, thus the number of events should
be calculated and then transformed to log odds ratio scale for each bootstrap sample by using standard formulas. Having
many pairs of the treatment effects (log ORs) on the surrogate endpoint and on the final outcome obtained from mul-
tiple bootstrap samples, it is possible not to calculate the Pearson’s correlation between the treatment effect on the two
outcomes.

BRMA-BC model accounts for the within-study correlations on the original binomial scale by modeling the number
of events on both outcomes jointly via bivariate normal copulas. Therefore, similarly to BRMA model, a bootstrap method
needs to be used to populate the dependence parameters 𝜌Ai and 𝜌Bi of the model. In this case, the number of events
in each arm should be calculated for each bootstrap sample and then the dependence parameter of the copula function
(which defines the within-study correlation between the number of events on the first and the second outcome) can be
estimated by using a optimizer such as the one available within the command nlminb in R.37
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4968 PAPANIKOS et al.

The code for the bootstrap methods can be found in Sections A.1 and A.2 of the the supplementary materials.

3.5 Implementation

We conducted Bayesian analysis implementing the models in cmdstanR 2.28.0.38 Posterior estimates were obtained after
running 4 chains consisting of 2000 MCMC iterations each after discarding 1000 iterations as warm-up period. To achieve
better convergence non-centered parameterizations were used across all the models. Convergence was visually assessed
by checking rank plots, trace plots and using the diagnostic metrics of cmdstanR such as R̂. R̂ is probably the most widely
used diagnostic.39 Stan uses rank-normalized folded-split R̂ proposed by Vehtari et al.40 Traditionally a threshold of 1.05 is
used to determine convergence, however recently Vehtari et al40 suggested that a new more strict convergence threshold
R̂ < 1.01. The Stan code of the models as well as the analysis of convergence for the simulation study and the data example
can be found in Sections A.3, A.4, A.5, A.9, and A.10 of the supplementary materials

The within-study association parameters for each model (BRMA and BRMA-BC) were estimated by using the two
bootstrap methods (discussed in Section 3.4). While the calculation of the within-study correlation (Pearson’s correlation)
for BRMA model is computationally trivial via R, the maximum likelihood estimation of the dependence parameters for
BRMA-BC can be computationally difficult. To estimate the dependence parameters, a two-stage estimation procedure
was used. The first stage included maximum likelihood estimation of univariate binomial marginal distributions, and the
second stage involved maximum likelihood estimation of the dependence parameters of the bivariate copula function with
the univariate parameters from the first stage41 being held fixed. The maximum likelihood estimations were performed
using nlminb optimizer in R.37 The convergence status of the method was assessed by checking the convergence argument
of the nlminb function. This ensures that the optimizer provides reliable estimates.

4 RESULTS OF CML DATA EXAMPLE

In this section, we present results of applying the existing methodology (BRMA, BRMA-IB) and the proposed model
BRMA-BC to a motivating data example in CML. The aim of the analysis is to evaluate the study level surrogate relation-
ship between the candidate endpoint (CCyR) at 12 months and the final outcome (EFS) at 24 months using BRMA-BC,
BRMA-IB and BRMA models. As discussed in Section 3, the within-study association between treatment effects on the
two outcomes can be estimated using a bootstrap method from IPD. However, in this dataset IPD were not available for
any of these studies, hence we were unable to estimate the dependence parameters 𝜌A and 𝜌B of BRMA-BC and Pearson’s
within-study correlations 𝜌w of BRMA. Instead, we constructed informative prior distributions for each of the parame-
ters using external evidence obtained from three observational cohort studies.42-44 These studies measured the impact of
achieving a CCyR at 1 year on EFS. They reported rates of CCyR at 1 year and the rates of EFS at 2 years for the patients
who either did or did not achieve CCyR at 1 year. Having this information, pseudo IPD could be generated for each of
the studies, and hence the within-study associations could be estimated for each arm. Figure 1 displays the three density
distributions derived from the cohort studies using double bootstrapping (see Section A.6 of the supplementary mate-
rial). The first two density distributions correspond to the prior distributions for the dependence parameters 𝜌A and 𝜌B of
BRMA-BC model and the other one to the Pearson’s within-study correlation 𝜌w used to populate BRMA.

F I G U R E 1 Empirical distributions of the within-study correlation parameters generated with a double bootstrap method. 𝜌A and 𝜌B

correspond to the dependence parameters in BRMA-BC between the two outcomes in treatment arms A and B, respectively and 𝜌w is the
within-study correlation in BRMA
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PAPANIKOS et al. 4969

T A B L E 2 Between-studies estimates across models

Models BRMA BRMA-BC BRMA-IB

Measures Mean (median) 95% CrI Mean (median) 95% CrI Mean (median) 95% CrI

Parameters

𝜌b 0.23 (0.36) (−0.93, 0.97) 0.34 (0.50) (−0.89, 0.97) 0.44 (0.61) (−0.83, 0.98)

𝜏1 0.40 (0.38) (0.11, 0.84) 0.43 (0.40) (0.14, 0.90) 0.46 (0.43) (0.16, 0.95)

𝜏2 0.24 (0.20) (0.01, 0.73) 0.28 (0.24) (0.02, 0.80) 0.32 (0.28) (0.02, 0.86)

d1 0.47 (0.46) (0.14, 0.81) 0.48 (0.48) (0.14, 0.86) 0.49 (0.49) (0.13, 0.88)

d2 0.27 (0.27) (−0.04, 0.61) 0.30 (0.30) (−0.02 0.64) 0.30 (0.30) (−0.04, 0.67)

We assumed the same prior knowledge for the within-study association parameters across all studies. Vague prior
distributions were placed on all the other unknown parameters as described in Section 3.

Estimates of the between-studies parameters were obtained by running 4 chains. The convergence of the estimates
was assess visually and by checking Rhat diagnostics. Detailed trace plots are presented in the supplementary material in
Section A.9.

Table 2 shows the estimates (means, medians and 95% CrIs) of the between-studies parameters. BRMA model yielded
a posterior distribution of 𝜌b with smallest posterior median (0.37) and the widest 95% CrI compared to the other two
models; however, all three 95% CrIs of 𝜌b were very wide spanning almost from−1 to 1. Similarly, BRMA model resulted in
the smallest posterior means/medians of the heterogeneity parameters 𝜏1, 𝜏2 and of the pooled effects d1, d2, whereas their
CrIs were narrower compared to the CrIs of BRMA-IB and BRMA-BC. On the other hand, BRMA-IB gave estimates with
the largest values for these parameters in these data resulting also in wider 95% CrIs for the heterogeneity parameters and
the pooled treatment effects. BRMA-BC resulted in higher posterior means and median of the between-studies parameters
compared to BRMA model but slightly lower than BRMA-IB.

Overall, we drew very similar inferences about the study level surrogate relationship between the treatment effects
on CCyR at 1 year and EFS at 2 years regardless of the model we used. The study level association was subopti-
mal as the credible intervals of the between-studies correlation were very wide, spanning almost from −1 to 1. This
implies that CCyR at 12 months cannot be considered as a valid surrogate endpoint for EFS at 24 months. This
is possibly due to the lack of evidence of treatment effect on EFS at 24 months, as many studies have previously
reported.15,16,18

To get a better understanding of the discrepancies between estimates of the models in this data example and to illus-
trate the motivation and the application of the proposed method in a more detailed and controlled manner we carried out
a simulation study.

5 SIMULATION STUDY

The presented methods make different assumptions at the within-study level. BRMA models the treatment effects for
binomial data using normally distributed log OR scale. BRMA-IB assumes that the numbers of events across outcomes
are independent and binomially distributed, whereas BRMA-BC models the numbers of events on both outcomes jointly
accounting for the dependence between them at the within-study level. We carried out a simulation study to assess the
performance of BRMA, BRMA-IB and BRMA-BC models and in particular to investigate the impact of the assumptions
made at the within-study level on estimates of the parameters at the between-studies level (𝜌b, 𝜏1, 𝜏2, d1, d2).

5.1 Simulation scenarios varying within-study association, proportions of events,
and numbers of participants

We simulated data under 12 scenarios generating 1000 replications for each of them and varying the within-study
association, the proportions of events and the numbers of participants.
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4970 PAPANIKOS et al.

When investigating the impact of different modeling assumptions about the within-study variability on the model
performance (in terms of estimating the between-studies parameters), we anticipated that such impact may depend on
the strength of the within-study association. To explore this, we varied the strength of the association by assuming weak,
moderate and strong within-study associations (see details in step 6 of the generation process below). To test the effect
of the magnitude of the proportions of events on the performance of the models, we considered two sets of scenarios,
one with average proportions of events equal to 0.5 and one with high average proportions of events (0.95). This was
implemented by varying the mean baseline treatment effects. In particular, baseline effects 𝜇1i,2i were drawn from the
bivariate normal distribution (see details in step 3 of the data generation below). As the baseline effects are transformed
on the logit scale, setting the mean baseline effects 𝜂1,2 = 0 correspond to 0.5 proportion of events in the control arm (as
logit−1(0) = 0.5), and similarly, 𝜂1,2 = 3 correspond to 0.95 proportion of events in the first arm and on both outcomes.
Lastly, we considered two settings for study sizes. The study size in both arms of each study was drawn from the following
normal distribution: nAi,Bi ∼ N(m, 5) where i = 1, … ,N and rounded off to the nearest integer. Setting the arm size
m = 400 and m = 150 covers two sets of scenarios one with large study size another one with small.

We simulated data at the individual level (zeros and ones) as within-study correlations 𝜌wi and within-study depen-
dence parameters 𝜌Ai and 𝜌Bi for the correlation between two binary outcomes in each study i are needed to populate
the BRMA and BRMA-BC models and as these parameters cannot be estimated from the aggregate data. All the mod-
els were fitted to the binomial aggregate data obtained from the IPD. We used generated IPD (zeros and ones) for each
study to estimate the within-study correlations and the dependence parameters for the copulas by means of bootstrap-
ping. However, in the scenarios with high proportions of events (0.95) it is likely that some studies are generated without
any non-events (zeros) both on the first and the second outcome. In such cases, the bootstrap method was unable to esti-
mate the within-study association as the variability in the IPD is zero. We addressed this by simulating studies with at
least one “zero value” either on the first or the second outcome.

Furthermore, as discussed in Section 3.5 the estimation of the copula dependence parameters 𝜌A and 𝜌B can be chal-
lenging. Therefore, to ensure that the optimizer provides reliable results we monitored the number of studies where the
optimizer failed to converge in each scenario. In such cases, the estimated value of 𝜌A or 𝜌B cannot be trusted as the opti-
mizer does not provide a reliable solution. We addressed this by resimulating IPD for these studies until the optimizer
provided a reliable solution.

The generation process is the following:

1. Set the number of studies to 30 (N = 30).
2. Simulate the heterogeneous arm sizes ni of each study i from the following normal distribution (ni ∼ N(m, 5)) and

then round them to the nearest integer.
3. Simulate the baseline treatment effects 𝜇1i, 𝜇2i from the following bivariate normal distribution (𝜇1i, 𝜇2i)T ∼

BVN
((

𝜂1
𝜂2

)
,

(
s2

1 s1s2𝜌
s1s2i𝜌 s2

2

))
, with s1 = s2 = 0.1 and 𝜌 = 0.8.

4. Simulate the true treatment effects from (𝛿1i, 𝛿2i)T ∼ BVN
((

d1
d2

)
,

(
𝜏

2
1 𝜏1𝜏2𝜌b

𝜏1𝜏2𝜌b 𝜏
2
2

))
, with d1 = 0.4, d2 = 0.2, 𝜏1 =

0.5, 𝜏2 = 0.5, 𝜌b = 0.8.
5. Calculate the true probabilities of events from p1Ai = logit−1(𝜇1i), p2Ai = logit−1(𝜇2i), p1Bi = logit−1(𝜇1i + 𝛿1i), p2Bi =

logit−1(𝜇2i + 𝛿2i) in each arm across outcomes.
6. Simulate correlated binary IPD by using a joint density with Bernoulli marginal distributions constructed with normal

copula in both arms. For each set of proportions of events (0.5, 0.95) we varied the dependence parameters to reflect
low, moderate and high within-study association. Note that the true values of dependence parameters at the IPD level
are not of direct interest (the dependence parameters at the aggregate data level, calculated in step 7, are of interest
as those are used to populate BRMA-BC model as discussed in Sections 3.3.2 and 3.4), but for completeness they are
listed in Section A.7 of the supplementary materials

7. Aggregate data within each simulated IPD set by obtaining log ORs representing the treatment effects for the two
outcomes for BRMA and the proportions of responders with the total of participants in each treatment arm for each
outcome for use in BRMA-IB and BRMA-BC. In addition, calculate the within-study correlations 𝜌wi for each study i
between log ORs for the two outcomes for BRMA and the dependence parameters 𝜌Ai and 𝜌Bi between the two binomial
outcomes in each treatment arm for BRMA-BC. The correlations and the dependence parameters are obtained from
each generated IPD via bootstrapping as described in Section 3.4.
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PAPANIKOS et al. 4971

Although the aim of the article was to model correlated binary outcomes both at the individual and the study level,
we also considered a set of scenarios with zero within-study association simulating from independent Bernoulli distribu-
tions (modifying step 6 of the generation process). This allows us to assess the robustness of the estimates obtained from
BRMA-BC to different distributional assumptions. The results from the data analysis of this set of scenarios are presented
and discussed briefly in Section A.8 of the supplementary materials.

5.2 Estimands and performance measures

The primary estimand of the simulation study was the parameter of the between-studies correlation 𝜌b. The second group
of estimands of the simulation study were the heterogeneity parameters 𝜏1, 𝜏2, the pooled effects d1, d2.

To evaluate the performance of the aforementioned models, in each simulation replication, we estimated
the posterior median of the between-studies correlation 𝜌b; 95% credible interval (CrI) of 𝜌b; coverage proba-
bility of 95% CrIs of 𝜌b and then we obtained values of bias of 𝜌b averaged over 1000 simulation replications;
and root mean squared error (RMSE) of 𝜌b across 1000 simulation replications. We used the same mea-
sures to evaluate the performance of the heterogeneity parameters 𝜏1 and 𝜏2, and the mean treatment effects
d1 and d2.

5.3 Results

The results from the data analysis of the simulation study are presented in two steps. In the first step, estimates of 𝜌wi,
𝜌Ai and 𝜌Bi for each study i were obtained from IPD using the bootstrap methods (described in Section 3.4). Section 5.3.1
displays the findings from the first step of the data analysis, presenting the median values of 𝜌w, 𝜌A, and 𝜌B estimated
from 3000 bootstrap samples across 30 studies and 1000 replications iterations in each scenario. In the second step of the
data-analysis, we carried out the Bayesian analyses using BRMA, BRMA-IB, and BRMA-BC, obtaining samples from the
posterior distributions of the between-studies parameters. The results of the second step are presented in Sections 5.3.2
to and 5.3.4 covering all the simulated scenarios.

5.3.1 Within-study correlations 𝜌w and within-study dependence parameters 𝜌A and 𝜌B

As discussed, within-study correlations 𝜌w and within-study dependence parameters 𝜌A and 𝜌B for each study i were
needed to populate the BRMA and BRMA-BC models, respectively. Therefore, we simulated data at the individual
level to estimate them. Tables 3 and 4 give details of the empirical distributions of 𝜌w, and the dependence parame-
ters of the normal copula with binomial marginal distributions 𝜌A, 𝜌B consisting of 30 000 studies (30 studies × 1000
simulation replications) assuming the number of patient in each arm on average 400 and 150, respectively. We also
listed results about the number of studies where the bootstrap method initially failed to provide a reliable solution,
that is, the optimizer failed to converge in Section A.10 (Table S7) of the supplementary material. This behavior was
very rare and occurred mainly in the scenarios where the average proportions of events were equal to 0.95 and the
size of the studies small (on average 150 participants in each arm). In such cases, these studies were resimulated
until convergence was reached. This strategy resulted in fully converged estimates of the within-study association
parameters.

5.3.2 Between-studies correlation

The between-studies correlation is the main parameter of interest in this article as it quantifies the study level association
between the treatment effects on the first (surrogate endpoint) and the second outcome (final outcome).

Figure 2 displays posterior medians and 95% CrIs of 𝜌b averaged over the 1000 replications along with the true value
of 𝜌b = 0.8 (dotted line). The plot on the left hand side (LHS), presents the results of the scenarios with large study size
(the numbers of patients in both arms were simulated from nAi,Bi ∼ N(400, 5)), whereas the plot on the right hand side
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4972 PAPANIKOS et al.

(RHS) illustrates the results of the scenarios with small study size (the numbers of patients in both arms were simulated
from nAi,Bi ∼ N(150, 5)).

Starting from the scenarios where the proportions of events were on average 0.5 and the study size was large (LHS
plot, first column), BRMA and BRMA-BC models performed very similarly regardless of the strength of the within-study
association. They resulted in narrow 95% CrIs and accurate posterior medians (the average median estimate was very
close to the true value). On the other hand, when the within-study association was strong, BRMA-IB model was the least
accurate method overestimating between-studies correlation 𝜌b.

The next set of scenarios (LHS plot, second column) include 0.95 average proportions of events and large study size.
BRMA-IB, BRMA-BC models outperformed BRMA model in terms of precision. However, BRMA-IB model was very
sensitive to the effect of within-study association. The higher was the strength of the within-study association the less
accurate the method was, resulting in accurate posterior medians only in the scenario with weak within-study association.
Furthermore reduced uncertainty around the estimate (compared to BRMA) was observed in all scenarios but this was
more pronounced in the scenarios with moderate and strong within-study association.

To investigate the effect of study size we repeated the same analysis reducing the number of participants in each study.
The second plot in Figure 2 presents the results of the scenarios with small study size (on average 150 participants in
each arm). Starting from the scenarios with 0.5 average proportions of events (RHS plot, first column), BRMA, BRMA-BC
were less precise but equally accurate compared to the scenarios with large study size (LHS plot, first column) resulting
in very similar posterior medians, but wider 95% CrIs. On the other hand, BRMA-IB was more susceptible to the effect of
study size in terms of accuracy compared to the other two methods. Specifically, when the within-study association was
either moderate or strong in scenarios presented on the RHS plot, BRMA-IB overestimated 𝜌b resulting in larger posterior
medians compared to the corresponding scenarios of the LHS plot and the true value.

The last set of scenarios (RHS plot, second column) corresponds to average proportions of events equal to 0.95 and
small number of participants. In this extreme set of scenarios, all three methods performed poorly in terms of estimating
𝜌b. This was mainly due to the extreme characteristics of this scenario (small study size combined with the high propor-
tions of events). Additionally, BRMA model resulted in the least accurate posterior medians and the widest 95% CrIs. On
the other hand, BRMA-IB was the most accurate and precise method.

Figure 3 presents the bias of 𝜌b averaged over the 1000 replications along with the coverage probabilities of the 95% CrIs
of 𝜌b and RMSE of the posterior median of between-study correlation 𝜌b across the 12 scenarios. It can be seen that when
the average proportions of events on the first and the second outcome were 0.5 (first column, LHS, RHS plots), BRMA
and BRMA-BC models performed very similarly across all three performance measures (bias, coverage, RMSE) regardless
of the study size (large or small). Specifically, there was no difference in their performance across the different strengths
of within-study associations, as both methods account for them. On the other hand, when within-study association was

T A B L E 3 Medians 2.5% and 97.5% quantiles of 𝜌w, 𝜌A, and 𝜌B, estimated by bootstrapping simulated IPD from all the studies
(30 studies) and across 1000 simulation replications, when the number of patient in each arm and was on average 400

Average proportion
of events= 0.5

Average proportion
of events= 0.95

Strength
of association Parameter

Median 2.5%
and 97.5%

Median 2.5%
and 97.5%

Low within-study
association

𝜌w 0.14 (0.04, 0.24) 0.14 (−0.01, 0.30)

𝜌A 0.14 (0.03, 0.24) 0.16 (−0.01, 0.29)

𝜌B 0.14 (0.04, 0.24) 0.14 (−0.04, 0.36)

Moderate within-study
association

𝜌w 0.40 (0.31, 0.49) 0.39 (0.15, 0.57)

𝜌A 0.41 (0.32, 0.50) 0.42 (0.19, 0.62)

𝜌B 0.40 (0.30, 0.49) 0.40 (0.10, 0.63)

High within-study
association

𝜌w 0.71 (0.64, 0.78) 0.72 (0.50, 0.85)

𝜌A 0.73 (0.66, 0.79) 0.76 (0.57, 0.90)

𝜌B 0.71 (0.60, 0.78) 0.73 (0.47, 0.90)
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PAPANIKOS et al. 4973

T A B L E 4 Medians 2.5% and 97.5% quantiles of 𝜌w, 𝜌A and 𝜌B, estimated by bootstrapping simulated IPD from all the studies
(30 studies) and across 1000 simulation replications, when the number of patient in each arm was on average 150

Average proportion
of events= 0.5

Average proportion
of events= 0.95

Strength
of association Parameter

Median 2.5%
and 97.5%

Median 2.5%
and 97.5%

Low within-study
association

𝜌w 0.13 (−0.04, 0.28) 0.13 (−0.09, 0.40)

𝜌A 0.13 (−0.04, 0.29) 0.16 (−0.06, 0.49)

𝜌B 0.12 (−0.04, 0.30) 0.14 (−0.06, 0.55)

Moderate within-study
association

𝜌w 0.40 (0.25, 0.54) 0.38 (0.04, 0.67)

𝜌A 0.41 (0.25, 0.55) 0.43 (−0.02, 0.76)

𝜌B 0.40 (0.24, 0.55) 0.42 (−0.03, 0.79)

High within-study
association

𝜌w 0.72 (0.60, 0.80) 0.71 (0.33, 0.95)

𝜌A 0.73 (0.61, 0.83) 0.77 (0.41, 0.98)

𝜌B 0.71 (0.57, 0.82) 0.75 (0.05, 0.98)

moderate (with small study size) or strong, BRMA-IB was on average the least accurate method resulting in, on average,
higher biases, RMSEs and under-coverage compared to the other two methods. Concerning the effect of study sample
size, in the set of scenarios with small study size, the average biases and RMSEs were substantially higher compared to
the scenarios with large study size across all methods.

When the average proportions of events were 0.95 (second column, LHS and RHS plots), BRMA-BC and BRMA-IB
methods outperformed BRMA model across all scenarios regardless of the study size. BRMA model substantially under-
estimated the between-studies correlation 𝜌b in particular when the study size was small. In the set of scenarios
where the study size was large and the within-study association was moderate or strong BRMA-BC was more accu-
rate compared to BRMA-IB resulting also in coverages closer to 95%. On the other hand the RMSEs of BRMA-BC
were higher than RMSEs of BRMA-IB. This implies that the standard error of the estimates of BRMA-BC was larger
compared to those obtained form BRMA-IB despite being on average less biased across the 1000 replications (ie,
posterior medians were more dispersed around the true value). The estimate of the between-studies correlation of
BRMA-IB was upwardly biased when the study size was large and some under-coverage was also observed when the
within-study association was strong, that is, BRMA-IB produces overly optimistic 95% CrIs of the between-studies
correlation.

5.3.3 Heterogeneity parameters

To have a better understanding of the behavior of the between-study covariance matrix we also monitored the hetero-
geneity parameters (between-studies standard deviations) 𝜏1, 𝜏2. We report only the performance of the estimate of 𝜏2 as
𝜏1 performed in a very similar way. Figure 4 presents the bias of 𝜏2 averaged over the 1000 replications along with the
coverage probabilities of the 95% CrIs of 𝜏2 and RMSE across the 12 scenarios.

When the average proportions of events were 0.5 (first column, LHS and RHS plots) all methods were on average
unbiased, with coverage probabilities equal to 95% and small RMSEs regardless of study size.

When the average proportions of events were 0.95 (second column, LHS and RHS plots), BRMA model substantially
underestimated 𝜏2 across all strengths of within-study association regardless of the sample size. Furthermore, substantial
under-coverage was observed from BRMA model when the within-study association was moderate or strong implying
that BRMA resulted in overconfident 95% CrIs.

BRMA-IB overestimated the heterogeneity parameter 𝜏2 mainly when the within-study association was moderate
or strong and the proportions of events were 0.95. This can be associated with the upwardly biased estimates of the
between-studies correlation from this method particularly in these scenarios. BRMA-BC was the most accurate method in
this set of scenarios outperforming BRMA and BRMA-IB models. It yielded the most robust results achieving acceptable
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4974 PAPANIKOS et al.

F I G U R E 2 Posterior medians (black dot) and 95% CrIs (solid bars) of 𝜌b averaged over the 1000 replications along with the true value
of 𝜌b = 0.8 (dotted line) across the 12 scenarios

coverages when the study size was large, on average very accurate estimates and relatively small RMSEs. Only in the
extreme scenario were the study size was small and the within-study association was strong, it resulted in downwardly
biased estimates of the heterogeneity parameters.

Overall, these findings indicate that BRMA and BRMA-IB models were not appropriate methods when the proportions
of events are close to 1 and the strength of the within-study association moderate or strong.

5.3.4 Mean treatment effects

The last set of results presents the performance of the methods in terms of the estimate of the mean treatment effect
on the second (final) outcome d2. The parameters of the mean effects are the main parameters of interest in the general
meta-analytic framework. Figure 5 lists the bias of d̂2 averaged over the 1000 replications along with the coverage prob-
abilities and RMSE across the 12 scenarios. Similarly as in the previous section, we decided to only present results of d̂2,
as the estimates of the treatment effect on the first outcome performed in a very similar way.

When the average proportions of events were 0.5 (first column of the LHS and RHS plots) all methods performed well
and in a very similar way achieving zero bias,95% coverage probabilities and low RMSE regardless of the strength of the
within-study association and the number of participants in each study.

In the second set of scenarios where the average proportions of events were 0.95 (second column of the LHS
and RHS plots), BRMA gave downwardly biased estimates of d2, reduced coverages and marginally higher RMSEs
compared to BRMA-IB and BRMA-BC models, indicating that the assumption of normality was not reasonable.
Another interesting finding was the impact of the magnitude of the within-study association on the estimates of
the pooled effect d2. The stronger was the within-study association more under-coverage was observed for the esti-
mates of BRMA. This means that BRMA produced narrower 95% CrIs than it should have been. On the other hand,
BRMA-BC and BRMA-IB were less biased compared to BRMA resulting also in lower RMSEs and acceptable coverage
probabilities.
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5.4 Key findings

A short summary of the key findings from the simulation study is given below:

• The simulation study showed that the normal approximation fails for binary outcomes when the proportions of events
are close to one or zero. This confirms findings by Hamza et al6 for the univariate case and extends their finding to the
bivariate setting for binomial RCT data on two outcomes and two treatment arms. In our simulation study we focused
on the performance of the parameters describing the between-studies variability: the between-studies correlation 𝜌b
and heterogeneity parameters 𝜏1, 𝜏2. When the average proportions of events were 0.5, there was no clear difference
between BRMA model and BRMA-BC as they performed very similarly and sufficiently well. However, when the aver-
age proportions of events were increased to 0.95. BRMA model was not appropriate to estimate the between-studies
parameters as it resulted in poor coverage probabilities, that is, its 95% were more inflated than they should have been,
large RMSEs and downwardly biased estimates of 𝜌b, 𝜏1,2, and d1,2.

• The main aim of the simulation study was to explore the impact of the within-study association on the estimation of
the between-studies parameters when using the alternative modeling approaches. As discussed above, BRMA model
accounts for within-study association between the treatment effects on two outcomes. However, it is a suitable method
for estimating the between-studies parameters only when the proportions of events are close to 0.5. BRMA-IB model
was the most sensitive method to the effect of within-study association by far. This model assumes that the binomially
distributed numbers of events are independent across outcomes. As a result, within-study associations are not taken
into account and the “excess” of the association manifests itself in the upwardly biased estimate of the between-studies
correlation. In the simulation study, higher within-study associations led to more upwardly biased estimates of 𝜌b and
substantial under-coverage. BRMA-IB estimated 𝜌b with better precision and compared to BRMA-BC due to the fact
that it overestimated the heterogeneity parameters. Overall, BRMA-IB model is quite robust when modeling data with
modest within-study association, but inappropriate to estimate between-studies parameters when moderate or high
within-study association is present.

• The simulation study also investigated the effect of study size by having two sets of scenarios. Overall, in the scenarios
with small study size, all the methods resulted in higher biases and larger RMSEs across all methods. Furthermore, the

F I G U R E 3 Bias of 𝜌b averaged over the 1000 replications along with the coverage probabilities and RMSE across the 12 scenarios
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4976 PAPANIKOS et al.

simulation study highlighted the importance of study size in the scenarios with high proportions of events. Specifically,
in the scenarios with average proportions of events equal to 0.95 and small study sizes, BRMA-BC failed to estimate the
trial-level association with reasonable precision despite modeling the within-study variability on the original binomial
scale and accounting for within-study associations. This indicates that, the study size is important and can substantially
affect the accuracy of the estimates of the between-studies correlation when investigating binary outcomes with very
high/low proportions of events.

• BRMA-BC was the most appropriate method to investigate the study level association patterns between treatment
effects on two binary outcomes. The model performed sufficiently well in most of the scenarios without sub-
stantially over/underestimating the heterogeneity parameters and the mean effects resulting also more acceptable
coverage probabilities than BRMA. There were scenarios where it failed to estimate 𝜌b as accurately as BRMA-IB.
As explained in the previous paragraphs, this was due to the small size of the studies combined with the high pro-
portions of events. In practice, investigating between-studies association between treatment effects on correlated
binary outcomes with proportions of events close to one or zero requires studies with sufficiently large number of
participants.

6 DISCUSSION

We have introduced a new bivariate meta-analytic method (BRMA-BC) and modified an existing method (BRMA-IB)
which allow for modeling the within-study variability of the binomial data on the original binomial scale. BRMA-BC offers
a robust framework for meta-analysis of binary outcomes avoiding the use of an unreliable approximation of normality
for log odds ratios. In this article, we used the proposed methodology to improve the evaluation of study level surrogate
relationships between treatment effects at both the within-study and the between-study level on two binary outcomes
with high proportions of events. This can be particularly useful in diseases where the increased effectiveness of targeted
treatments often leads to high numbers of responses and reduced numbers of events.

Standard meta-analytic methods, such as BRMA, can model the observed treatment effects using a bivariate normal
distribution of log odds ratios. Although this approach accounts for the within-study association, the assumption of nor-
mality for the marginal distributions is unreasonable when the proportions of events are close to 1, leading to biased
results. BRMA-IB model avoids the assumption of normality but it is more restrictive compared to BRMA-BC. It models
the within-study variability using binomial likelihoods; however, it ignores the within-study association. BRMA-BC mod-
els the data on the original binomial scale and accounts for both sources of association (within-study and between-studies
correlation). At the within-study level, it models the numbers of events on the surrogate endpoint and the final outcome
jointly using bivariate distributions constructed with copulas.

BRMA-IB model performs well when the within-study association is weak regardless of the size of the studies. In such
scenarios, it can offer substantial gains in accuracy of the estimates of the parameters describing the surrogate relationship
(in particular when the proportions of events are close to one or zero), resulting also in acceptable coverage probabilities
and smaller RMSEs compared to BRMA model. However, as the strength of the within-study association increases, the
performance of the model becomes problematic. BRMA-IB ignores the within-study association and the “excess” of the
association manifests itself in the upwardly biased estimate of the between-studies correlation. For example, in the sce-
narios where the within-study association was moderate or strong the model failed to estimate well the between-studies
variability, giving upwardly biased estimates and low coverage probabilities of the between-studies correlation 𝜌b.

BRMA-BC is the most robust model to quantify the study level association regardless of the strength of the
within-study associations. In particular in the scenarios with average proportions of events of 0.95, the model resulted in
less biased estimates of the between-studies correlation compared to BRMA. Furthermore, the fact that in the majority of
the scenarios the model did not over/underestimate the heterogeneity parameters 𝜏1,2 led to more reasonable estimates of
the between-studies correlation 𝜌b compared to BRMA-IB. However, there were some extreme scenarios where BRMA-BC
failed to yield as accurate estimates of the between-studies correlation, as well as BRMA-IB model. For instance, when the
average proportions of events was 0.95 and the study size small, BRMA-BC model yielded on average downwardly biased
estimates of 𝜌b. This was due to small sample and the very small number of non-events which made the estimation of 𝜌b
extremely difficult. Therefore, when the proportions of events are very high, a sufficiently large sample size is needed to
estimate the between-studies correlation accurately. Overall, across the 12 scenarios of the simulation study, BRMA-BC
model was superior to BRMA model.
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In the data example, all methods found suboptimal study level association between the treatment effects on CCyR at
12 months and the treatment effects on EFS at 24 months. Across methods, the posterior medians of the between-studies
correlations were not very high and the corresponding 95% CrIs were extremely wide, spanning almost from −1 to 1.
However, BRMA-BC model resulted in larger between-studies correlation 𝜌b and slightly larger heterogeneity parameters
on the first and the second outcome compared to BRMA model. Overall, the posterior medians of the between-studies
parameters from BRMA model were lower compared to the other two models. This behavior is similar to the find-
ings of the simulation study in the scenarios with proportions of events close to 1, where BRMA resulted in the lowest
estimates of the between-studies correlation and the heterogeneity parameters and the pooled effects, while BRMA-IB
the highest. Furthermore, BRMA resulted in 95% CrIs of the heterogeneity parameters and the pooled effects with
reduced uncertainty compared to the other methods which is in line with the findings of the simulation study where,
BRMA produced narrower 95% CrIs than BRMA-BC and BRMA-IB (under-coverage was observed in many scenarios for
𝜏2 and d2).

Although BRMA-BC model provides robust results in a variety of scenarios, potential limitations should always be
kept in mind. First, in order to perform Bayesian inference, we run MCMC with a No-U-turn sampler (NUTS) using
cmdstanR. A limitation of the method was the fact that BRMA-BC model was very sensitive to initial values. Therefore,
the initiation of the estimation process was difficult without setting “sensible” initial values. This was tackled by fitting
BRMA-IB prior to BRMA-BC and then converting the estimates of BRMA-IB to initial values for BRMA-BC. However,
this issue makes the use of BRMA-BC model quite restrictive, as it requires another method to be fitted prior to BRMA-BC
model.

A limitation of the illustrative example was the lack of IPD. We informed the prior distributions of within-study asso-
ciation parameters using three cohort studies. We constructed binary pseudo IPD and hence calculated the within-study
association between the numbers of responses on the surrogate endpoint and the numbers of events on the final outcome
by using a double bootstrap method to account for uncertainty. Furthermore, the definition of EFS varied across these
studies with some studies presenting it as PFS and some others included a broader range of events in their definition than
others. However, a sensitivity analysis showed that by excluding a small number studies where EFS was defined slightly
differently did not affect the results and the inferences.

BRMA-BC can be extended in a number of ways. For instance, it can be extended by using also a copula at the
between-studies level in a similar way as in Nikolopoulos.45 This will allow to model the study level association on the
true scale (proportions of events) with beta marginal distributions avoiding the logit transformation. Taking advantage
of the setting proposed by Bujkiewicz et al,46 BRMA-BC can be extended to allow for modeling multiple surrogate end-
points (or the same surrogate endpoint but reported at multiple time points) via a vine-copula.47,48 In this work, the
main aim was to assess the impact of modeling the binomial data on the original scale. Therefore, we used the bivari-
ate normal copula as dependence structure to simulate data in the simulation study and to model the within-study
level of BRMA-BC model. This makes the comparison between BRMA and BRMA-BC fair as the two models share the
same dependence structure (linear and symmetric) at the within-study level. However, BRMA-BC is much more flex-
ible as it can easily be implemented using alternative copulas with different dependence structures. Furthermore, the
BRMA-BC can also model different types of data such as count data by using poison or negative-binomial marginal
distributions.

In summary, we developed a new Bayesian hierarchical meta-analytic method and modified an existing method to
perform bivariate meta-analysis of binary outcomes and particularly, to quantify the study level surrogate relationship.
In our view, BRMA-BC is a preferred model for modeling binary outcomes in the context of surrogate endpoints, as well
as, in the general meta-analytic context of multiple outcomes. The model can improve the process of the validation of
surrogate endpoints in the era of personalized medicine where the increased effectiveness of targeted treatments often
leads to high numbers of responses and reduced numbers of events.
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DATA AVAILABILITY STATEMENT
We identified 10 studies comparing first generation TKI therapies (eg, 400 mg imatinib) with second generation TKIs (eg,
dasatinib, nilotinib, busotinib) or different doses of first generation TKIs (600 or 800 mg imatinib) and performed bivariate
meta-analysis. Table 1 presents the summarized responses in the treatment and the control arms on both outcomes along
with the sample size per arm and outcome.
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F I G U R E 5 Bias of d̂2 averaged over the 1000 replications along with the coverage probabilities and RMSE across the 12 scenarios
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