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A B S T R A C T

This paper aims to achieve vibration suppression for multi-component floating structures under ocean waves.
To this end, a multiple-passive-TMD (tuned mass damper) structure is employed, and a numerical model is
developed incorporating both the dynamics of a hinged floating foundation and passive TMDs. A data-driven
parameter optimization method is developed to search for optimal TMD parameters. This method is built
upon Bayesian Ascent (BA) – an advanced sequential searching strategy for optimizing black-box functions,
combining the merits of both the Bayesian Optimization method and the gradient-free trust-region algorithm.
Simulation results under different wave conditions verify the effectiveness of the BA-based parameter selection
method, showing that the resulting passive TMDs can significantly reduce the vibration of the whole floating
structure.
1. Introduction

Floating foundations are widely used in offshore regions for various
purposes, such as oil and gas exploration, offshore wind platforms,
ocean observation and monitoring, etc. Due to offshore floating foun-
dations are often located in ocean regions with harsh environmental
conditions over long time periods, they are inevitably subjected to
different types of environmental loads, including wave, wind, and cur-
rent (Faltinsen, 1993). These environmental loads may cause vibrations
or motions of offshore foundations, which may pose significant negative
effects, such as fatigue failure of structures, degraded efficiency in
operations, and discomfort of crews. Therefore, it is always of great
significance to find out proper ways to mitigate the structural loads
and motions of offshore floating foundations.

There have been a lot of researches focusing on vibration/motion
reduction control of single offshore foundations (and the foundations
themselves are commonly regarded as rigid structures) (Zhang et al.,
2017), such as viscoelastic mechanisms (Patil and Jangid, 2005), damp-
ing isolation mechanisms (Ou et al., 2007), and dynamic vibration
absorbers. One popular example of dynamic vibration absorbers is
the tuned mass damper (TMD) (Hoang et al., 2008; Alexander and
Schilder, 2009). A typical TMD module usually consists of a mass, a
spring and a damper. By properly setting the parameters of spring &
damper and/or providing additional external forces, TMD is expected
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to act as a ‘‘counteragent’’ and absorb the kinetic energy that induces
the main plant’s vibration, reducing the whole structure’s maximum
vibration amplitude while weighing much less than it (a TMD module
usually weights 2%–6% of the whole plant Kundu, 2012; Stewart and
Lackner, 2013; Lackner and Rotea, 2011; Fitzgerald et al., 2018; Li
and Gao, 2015; Zhang et al., 2020; Park et al., 2019). TMDs have
been widely used to suppress the vibrations of large structures, such
as skyscrapers (Zhou et al., 2022) and bridges (Xu et al., 2019; Yin
et al., 2019). In general, TMDs can be categorized into three main
types: passive TMD (Stewart and Lackner, 2013; Lackner and Rotea,
2011), active TMD (Fitzgerald et al., 2018; Li and Gao, 2015; Zhang
et al., 2020), and semi-active TMD (Park et al., 2019). Passive TMD
has constant spring stiffness and damping coefficient. In contrast, active
TMD employs actively powered actuators to generate an extra control
force, aiming to achieve enhanced control performance. But active
TMD has critical drawbacks, including high power consumption and
stability issues. Semi-active TMD provides additional control freedoms
by modifying the parameters of TMDs (damping coefficient and spring
stiffness) instead of directly applying additional forces to the TMD. But
semi-active TMD still needs external power sources, and it is typically
hard to build. Due to these facts, the passive-stability and low-cost
features of passive TMD render it currently the most popular type
among the three options in practical applications.
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TMDs are suitable and widely-employed choices for the vibra-
tion/motion suppression of floating structures. A prototypical appli-
cation scenario of TMDs in ocean engineering is related to offshore
wind foundations’ vibration/motion suppression control. The motions
of a floating platform can have negative effects on the whole plat-
form’s structural integrity and the wind turbine’s power capture effi-
ciency (Wen et al., 2018). Yang et al. (2019) applied a passive TMD
in a barge-type offshore wind floating foundation and derived its pa-
rameters by the frequency tuning method and generic algorithm. Yang
and He (2020) investigated the vibration suppression effect of a two-
TMDs mechanism (one in the platform and the other in the turbine’s
nacelle) for a spar-type offshore wind turbine, showing that TMDs can
successfully mitigate the structural vibration of offshore floating wind
turbines. The effectiveness of TMDs in the motion/vibration suppres-
sion of TLP-type offshore wind floating foundations was explored and
proved by Wu and Li (2020). Li and Gao (2015) proposed a robust
control method to suppress a floating turbine’s vibration via an active
TMD. Based on the same simulator as in Li and Gao (2015) and Zhang
et al. (2020) designed a reinforcement learning algorithm to control
TMD. In addition, TMD-based motion/vibration suppression methods
also have been applied to many other types of floating structures. For
example, based on numerical simulations, Jin et al. (2021) found that
the hydro-elastic transient motion and mooring tensions of a submerged
floating tunnel under seismic excitation were significantly reduced by
using an optimized TMD.

Apart from single offshore floating platforms/foundations, intercon-
nected multi-component floating structures are also widely employed
in various engineering scenarios, such as hinged wave energy convert-
ers (Yu et al., 2016), multi-component very large floating structures
used as airports (Zhang et al., 2018), etc. Zhang et al. (2021) proposed a
‘‘one-platform-multi-turbines’’ concept using a hinged multi-component
floating structure as the floating foundation. Except for wave energy
converters whose motions are expected to be enlarged for improving
power efficiency, most interconnected floating structures expect to
mitigate their vibration/motion to ensure structural integrity (such
as for very large floating structures) and/or power capture efficiency
(such as for offshore wind turbines). Some researchers applied wave
energy absorption units at the interconnection to suppress the motion
of the multi-component floating structure and capture energy in the
meantime (Zhang et al., 2019a,b). Although the TMD’s effectiveness
in the vibration/motion suppression of single floating platforms has
been widely studied, there lacks direct evidence of their effectiveness in
multi-component floating structures. It is noteworthy that the dynami-
cal interactions and movement couplings of different components in a
large floating structure make the selection of TMD parameters challeng-
ing. Conventional methods that depend on natural frequencies are no
longer functional due to these inherent features associated with multi-
component structures. To the authors’ knowledge, it is still a research
gap in developing an effective method for the design & determination of
TMD structures & parameters for multi-component floating structures.
We aim to fill this research gap in this paper by applying the TMD-based
vibration suppression method for multi-component floating structures
and designing a data-driven method to determine TMD parameters.

We employ multiple passive TMDs (every component of the whole
floating structure is installed with a passive TMD) to achieve vibra-
tion/motion suppression for the whole multi-component floating struc-
ture. We note parameters (i.e. spring stiffness and damping coefficient)
are the key for the employment of passive TMDs, and improper param-
eter choices can lead to greatly degraded vibration/motion suppression
performance. Since we consider the floating structure’s components are
connected via hinges with each other (which is a common practice),
their motions are highly coupled. This problem brings significant dif-
ficulties for the passive TMDs’ parameter selection. In this paper, we
propose a data-driven parameter optimization method to address this
issue. Without loss of generality, a hinged three-component floating
2

structure is taken, and a numerical model is developed incorporating
both the dynamics of the hinged floating structure and passive TMDs.
Based on this model, we mold the parameter optimization task of TMDs
into the Bayesian Ascent (BA) algorithm (Park and Law, 2016). BA is
an advanced sequential searching strategy for the optimization of black-
box functions. It combines the merits of both the Bayesian Optimization
(BO) method (Brochu et al., 2010) and the gradient-free trust-region
algorithm (Rios and Sahinidis, 2013). One of the main advantages
of BA is that a proximity constraint for the acquisition function is
embedded in it, rendering the algorithm to sample states that are near
to the observed optimal solutions and leading to potentially enhanced
learning performance. A composite performance index considering the
motions of all the components of the floating structure is employed
as the reward signal, and the data from the integrated model under
different TMD parameters are fed into BA to learn the optimal settings
iteratively. Simulation results under different wave conditions verify
the effectiveness of the BA-based parameter selection method, showing
that the resulting passive TMDs can significantly reduce the vibration
of the whole floating structure.

The remainder of this paper is organized as follows. Firstly the
mathematical models of the hinged multi-component floating structure
and TMDs are given in Section 2. The BA-based parameter optimization
method for passive TMDs is proposed in Section 3. Results and discus-
sions are given in Section 4 whereas the main conclusions are drawn
in Section 5.

2. Mathematical models for floating structures and TMDs

2.1. Notations and definitions

A schematic of a hinged three-component floating structure is
shown in Fig. 1. Each floater of the structure has the same dimension
with length 𝐿 = 40 m, width 𝐵 = 40 m and height 𝐻 = 10 m. The
rift of each floater at the still water level is 𝐷 = 5 m. We denote the
lobal coordinate system as 𝑟 = {𝑜𝑟, 𝑥𝑟, 𝑦𝑟, 𝑧𝑟}, where the horizontal

plane 𝑜𝑟𝑥𝑟𝑦𝑟 coincides with the still water plane and 𝑧𝑟 axis is positive
upwards. It is noted that the distance between three floaters is set
as zero in the following analysis despite that a small gap may exist
between adjacent floaters in reality.

As shown in Fig. 2, for each floater/component, a body-fixed coordi-
nate system is defined as 𝑖𝑏 = {𝑖𝑜𝑏, 𝑖𝑥𝑏, 𝑖𝑦𝑏, 𝑖𝑧𝑏}, 𝑖 = 1, 2, 3. Throughout
the paper, the left-superscript ⋅𝑟 and ⋅𝑏 are employed to indicate that
the corresponding vector is expressed in 𝑟 and 𝑖𝑏, respectively. In
addition, we define 𝑖𝑻 𝑏∕𝑟 as the transformation matrix from 𝑟 to 𝑖𝑏
and 𝑖𝑻 𝑟∕𝑏 as the transformation matrix from 𝑖𝑏 to 𝑟. Therefore, one
has 𝑖𝑻 𝑟∕𝑏 = 𝑖𝑻 T

𝑏∕𝑟 = 𝑖𝑻 −1
𝑏∕𝑟. We use 𝑆(⋅) to indicate the anti-symmetric

matrix of the corresponding three-dimension vector. Throughout the
paper, any three-dimension vector 𝑥 can be decomposed into 𝒙 =
[𝑥1, 𝑥2, 𝑥3]T.

Though employing hinges can significantly reduce the floating foun-
dation’s bending moment, the downside is that this design inevitably
results in larger motions than its counterpart (without hinges). As
indicated in Fig. 2, we embed each floater/component with a passive
TMD to suppress its pitch motion (i.e. the rotation around 𝑦𝑟 axis).
Therefore, each TMD is installed along the 𝑥𝑏 direction of each floater.
In practice, track or rail systems are usually employed to keep the
movement of TMDs in the 𝑥𝑏 direction.

2.2. Dynamics of the hinged three-component floating structure

Each floater of the hinged three-component floating structure (see
Fig. 1) has six degrees of freedom and its displacement vector is defined
as 𝑖𝛏 = [𝑖𝜉1, 𝑖𝜉2, 𝑖𝜉3, 𝑖𝜉4, 𝑖𝜉5, 𝑖𝜉6]𝑇 , where 𝑖𝜉𝑗 (𝑗 = 1, 2, 3) is the translational
displacement along 𝑥𝑟, 𝑦𝑟 and 𝑧𝑟 axis, respectively, and 𝑖𝜉𝑗 (𝑗 = 4, 5, 6) is

the rotational displacement around 𝑥𝑟, 𝑦𝑟 and 𝑧𝑟 axis, respectively. The
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Fig. 1. A schematic of a hinged three-component floating structure.
Fig. 2. Illustration of Component 𝑖 with TMD 𝑖.

equations of motion for the hinged three-component floating structure
are established as follows,

𝐌𝛏̈ = 𝐅𝑒𝑥𝑐 (𝑡) − 𝐀(∞)𝛏̈ − ∫

𝑡

𝜏=0
𝜞 (𝑡 − 𝜏)𝛏̇(𝜏)𝑑𝜏 + 𝐅ℎ(𝑡) + 𝐅𝑐 (𝑡) + 𝐅𝑡𝑚𝑑 (𝑡) (1)

where 𝛏 = [1𝛏, 2𝛏, 3𝛏]𝑇 , 𝛏̇, 𝛏̈ (all with dimension of 18 × 1) are the
displacement, velocity and acceleration vectors of the hinged float-
ing structure, respectively; 𝐌 is the mass matrix whose dimension is
18 × 18; 𝐅𝑒𝑥𝑐 is the wave excitation force; 𝐀(∞) is the added mass
matrix of the hinged floating structure at infinite frequency; 𝜞 (𝑡) is the
retardation function which is related with the damping matrix 𝐁(𝜔) as,

𝜞 (𝑡) = 2
𝜋 ∫

∞

0
𝐁(𝜔)𝑐𝑜𝑠(𝜔𝑡)𝑑𝜔 (2)

𝐅ℎ is the hydrostatic force; 𝐅𝑐 is the force on the floating structure
exerted by the hinge connection; 𝐅𝑡𝑚𝑑 is the force on the floating
structure exerted by the TMD implementation, the details of which
are given in Section 2.3. It is noted that since no mooring system
is considered (i.e. no restoring force for the motion of the floating
structure in the horizontal plane), only heave, roll and pitch motions
are taken into account in the following analysis. This means that the
dimension of the displacement vector 𝛏 is reduced to 9 × 1 and other
matrices are adjusted accordingly. The force (and moment) vector for
the hinge connector is denoted as 𝐅𝐽 = 𝐊𝐽𝜳𝛏, where 𝐊𝐽 is the stiffness
matrix used to represent the hinge connector mathematically and 𝜳𝛏
is the difference of the displacement at two sides of the connector
with 𝜳 being the transformation matrix. Then the forces imposed on
the centers of gravity of all floaters/components of the hinged floating
structure can be described as

𝐅𝑐 = −𝜳 𝑇𝐅𝐽 = −𝜳 𝑇𝐊𝐽𝜳𝛏 (3)

The specific expressions for the above-mentioned matrices such as 𝐊𝐽
and 𝜳 are given in Appendix.
3

2.3. TMD embedding

In this section the dynamics of TMDs embedded in the floating
structure is presented, and a novel data-driven parameter selection
method for TMDs is developed via Bayesian ascent (BA) (Park and Law,
2016).

In our design, each floater/component employs a TMD to suppress
its pitch angle (i.e., the rotational vibration along the 𝑦𝑏 axis), as shown
in Fig. 2. Particularly, the rotational vibration of a floater along its
𝑦𝑏 axis will lead to the translational movement of TMD along the 𝑥𝑏
axis. By properly setting parameters (the spring stiffness and damp-
ing coefficient), the TMD can have different moving phases from the
floater, absorb and consume the kinetic energy by damping effects, and
therefore suppress the whole structure’s vibration. In this subsection,
we deduce the dynamics of the TMD module for each floater. By
combining the results in this subsection and Section 2.2, one can get
the whole floating structure’s dynamics.

We denote 𝑖𝒓𝑏𝑜 as the equilibrium point of the TMD 𝑖. Without loss
of generality, we assume 𝑖𝒓𝑏𝑜 is coincident with the origin point of 𝑖𝑏
(i.e., 𝑖𝑜𝑏). We also denote 𝑖𝒓𝑏𝑑𝑏 and 𝑖𝒓𝑏𝑑𝑟 as the vector from 𝑖𝑜𝑏 to TMD and
the vector from 𝑜𝑟 to TMD, respectively. In addition, 𝑖𝒓𝑏𝑏𝑟 is the vector
from 𝑜𝑟 to 𝑖𝑜𝑏, and 𝑖𝝎𝑏

𝑏𝑟 is the angular velocity vector of 𝑖𝑏 with respect
to 𝑟.

Based on these definitions, we have
𝑖𝒓𝑏𝑑𝑏 =

𝑖𝒓𝑏𝑑𝑟 −
𝑖𝒓𝑏𝑏𝑟 (4)

By taking derivatives for both sides of Eq. (4) with respect to time and
expressing the results in 𝑖𝑏, one has
𝑖𝒓̇𝑏𝑑𝑏 =

𝑖𝒓̇𝑏𝑑𝑟 −
𝑖𝒓̇𝑏𝑏𝑟 − 𝑆(𝑖𝝎𝑏

𝑏𝑟) ⋅
𝑖𝒓𝑏𝑑𝑏 (5)

Differentiating both side of Eq. (5) again renders
𝑖𝒓̈𝑏𝑑𝑏 =

𝑖𝒓̈𝑏𝑑𝑟 −
𝑖𝒓̈𝑏𝑏𝑟 − 𝑆(𝑖𝝎̇𝑏

𝑏𝑟) ⋅
𝑖𝒓𝑏𝑑𝑏 − [𝑆(𝑖𝝎𝑏

𝑏𝑟)]
2 ⋅ 𝑖𝒓𝑏𝑑𝑏 − 2𝑆(𝑖𝝎𝑏

𝑏𝑟) ⋅
𝑖𝒓̇𝑏𝑑𝑏 (6)

We denote the mass, spring stiffness and damping coefficient of
TMD 𝑖 by 𝑚𝑖, 𝑘𝑖 and 𝑐𝑖, respectively. We also define the following
variables: (1) 𝑖𝒇 𝑏

𝑔 = 𝑖𝑻 𝑏∕𝑟 ⋅ [0, 0,−𝑚𝑔]T, which denotes the gravity vector
of TMD 𝑖 in 𝑖𝑏; (2) 𝑖𝒇 𝑏

𝑇𝑀𝐷, which denotes the total force applied
on the mass of TMD 𝑖; (3) 𝑖𝒇 𝑏

𝑏 = [𝑖𝑓 𝑏
𝑏1,

𝑖𝑓 𝑏
𝑏2,

𝑖𝑓 𝑏
𝑏3]

T, which denotes the
total force applied on Component 𝑖 due to the employment of TMD 𝑖;
(4) 𝑖𝝉𝑏𝑏 = [𝑖𝜏𝑏𝑏1,

𝑖𝜏𝑏𝑏2,
𝑖𝜏𝑏𝑏3]

T, which denotes the total torque applied on
Component 𝑖 due to the employment of TMD 𝑖.

Then one has
𝑖𝒓̈𝑏𝑑𝑟 =

𝑖𝒇 𝑏
𝑇𝑀𝐷∕𝑚𝑖 (7)

and here 𝑖𝒇 𝑏
𝑇𝑀𝐷 follows

𝑖𝒇 𝑏
𝑇𝑀𝐷 =

⎡

⎢

⎢

⎢

⎣

−𝑐𝑖 ⋅ 𝑖 𝑟̇𝑏𝑑𝑏1 − 𝑘𝑖 ⋅ 𝑖𝑟𝑏𝑑𝑏1 +
𝑖𝑓 𝑏

𝑔1
𝑖𝑓 𝑏

𝑔2 −
𝑖𝑓 𝑏

𝑏2
𝑖𝑓 𝑏

𝑔3 −
𝑖𝑓 𝑏

𝑏3

⎤

⎥

⎥

⎥

⎦

(8)

Moreover, since TMD 𝑖 only moves along the 𝑖𝑥𝑏 direction, one has
𝑖𝑟𝑏𝑑𝑏2 =

𝑖 𝑟̇𝑏𝑑𝑏2 =
𝑖 𝑟̈𝑏𝑑𝑏2 = 0, 𝑖𝑟𝑏𝑑𝑏3 =

𝑖 𝑟̇𝑏𝑑𝑏3 =
𝑖 𝑟̈𝑏𝑑𝑏3 = 0 (9)

By summarizing all the analysis above, we can get the following

results.
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a
(

(1) The dynamics of TMD 𝑖 along the 𝑖𝑥𝑏 direction:

𝑖 𝑟̈𝑏𝑑𝑏1 = −
𝑐𝑖
𝑚𝑖

𝑟̇𝑏𝑑𝑏1 + [−
𝑘𝑖
𝑚𝑖

+ (𝑖𝜔𝑏
𝑏𝑟2)

2 + (𝑖𝜔𝑏
𝑏𝑟3)

2] 𝑖𝑟𝑏𝑑𝑏1

− 𝑖 𝑟̈𝑏𝑏𝑟1 +
1
𝑚𝑖

𝑖𝑓 𝑏
𝑔1

(10)

lease notice that Eq. (10) is deduced by substituting Eqs. (7)–(9) into
q. (6) and taking the result along the 𝑖𝑥𝑏 direction. It should also be
mphasized that there is no relative movement between TMD 𝑖 and
omponent 𝑖 along the 𝑖𝑦𝑏 and 𝑖𝑧𝑏 directions.

(2) The total additional force that is applied on Component 𝑖 due to
he employment of TMD 𝑖 satisfies:

𝒇 𝑏
𝑏 =

⎡

⎢

⎢

⎢

⎣

𝑐𝑖 𝑖 𝑟̇𝑏𝑑𝑏1 + 𝑘𝑖 𝑖𝑟𝑏𝑑𝑏1
𝑖𝑓 𝑏

𝑔2 − 𝑚(𝑖 𝑟̈𝑏𝑏𝑟2 + (𝑖𝜔̇𝑏
𝑏𝑟3 +

𝑖𝜔𝑏
𝑏𝑟1

𝑖𝜔𝑏
𝑏𝑟2)

𝑖𝑟𝑏𝑑𝑏1 + 2𝑖𝜔𝑏
𝑏𝑟3

𝑖 𝑟̇𝑏𝑑𝑏1)
𝑖𝑓 𝑏

𝑔3 − 𝑚(𝑖 𝑟̈𝑏𝑏𝑟3 − (𝑖𝜔̇𝑏
𝑏𝑟2 −

𝑖𝜔𝑏
𝑏𝑟1

𝑖𝜔𝑏
𝑏𝑟3)

𝑖𝑟𝑏𝑑𝑏1 − 2𝑖𝜔𝑏
𝑏𝑟2

𝑖 𝑟̇𝑏𝑑𝑏1)

⎤

⎥

⎥

⎥

⎦

(11)

(3) The total torque that is applied on Component 𝑖 due to TMD 𝑖
s:

𝝉𝑏𝑏 =
𝑖𝒓𝑏𝑑𝑏 ×

𝑖𝒇 𝑏
𝑏 = [0, −𝑖𝑟𝑏𝑑𝑏1 ⋅

𝑖𝑓 𝑏
𝑏3,

𝑖𝑟𝑏𝑑𝑏1 ⋅
𝑖𝑓 𝑏

𝑏2]
T (12)

he aggregated force vector exerted on the whole floating structure by
ll TMDs, i.e. 𝐅𝑡𝑚𝑑 (𝑡) (see Eq. (1)), can be calculated as

𝑡𝑚𝑑 (𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1𝑻 𝑟∕𝑏 ⋅
1𝒇 𝑏

𝑏
1𝑻 𝑟∕𝑏 ⋅

1𝝉𝑏𝑏
2𝑻 𝑟∕𝑏 ⋅

2𝒇 𝑏
𝑏

2𝑻 𝑟∕𝑏 ⋅
2𝝉𝑏𝑏

3𝑻 𝑟∕𝑏 ⋅
3𝒇 𝑏

𝑏
3𝑻 𝑟∕𝑏 ⋅

3𝝉𝑏𝑏

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(13)

By substituting Eq. (13) into Eq. (1), we are able to calculate the
ynamic responses of the whole floating structure with TMDs embed-
ing, and therefore the vibration suppression performance of the TMDs
an be evaluated.

. TMD parameter learning via Bayesian ascent

This section introduces how to decide the TMD parameters via
he Bayesian ascent (BA) algorithm (Park and Law, 2016). BA is an
dvanced sequential searching strategy for the optimization of black-
ox functions. We briefly introduce the fundamental principles of BA
s follows. More detailed explanations can be found in Park and Law
2016) and Brochu et al. (2010).

We denote the unknown target function to be optimized by 𝐹 ∶  →
, where  is the state domain. Without loss of generality, we consider
maximization problem, i.e., we aim to find the optimal state 𝒙∗, such

hat
∗ = argmax

𝒙∈
𝐹 (𝒙) (14)

s a sequential decision-making algorithm, BA selects a state 𝒙𝑛 to
bserve 𝑦𝑛 = 𝐹 (𝒙𝑛) + 𝜖 in each learning iteration 𝑛, where 𝜖 is a
aussian noise satisfying 𝜖 ∼ 𝑁(0, 𝜎2𝜖 ). After that, BA stores (𝑥𝑛, 𝑦𝑛) and

amples the next state 𝒙𝑛+1 based on all the stored data (denoted by
𝑛 = {(𝒙𝑘, 𝑦𝑘)|𝑘 = 1, 2,… , 𝑛}).

There are two core phases in the optimization approach: (1) Learn-
ng/Approximation Phase, in which an approximation strategy for 𝐹 (𝒙) is
eeded based on the stored training data, and (2) Optimizing/Searching
hase, in which a sampling method for the next state 𝒙𝑛+1 needs to be
esigned. The first phase is handled by representing 𝐹 (𝒙) as a Gaussian
rocess (GP), formalized by

(𝐹1∶𝑛) = GP(𝑚(⋅), 𝑘(⋅, ⋅)) (15)

here 𝐹1∶𝑛 = {𝐹 (𝒙1), 𝐹 (𝒙2),… , 𝐹 (𝒙𝑛)}, 𝑚(⋅) denotes a mean function,
nd 𝑘(⋅, ⋅) represents a kernel function. By optimizing the hyperparam-
ters based on the stored training data, the posterior distribution of 𝐹
an be described by the following 1-D Gaussian distribution:

𝑛 2 𝑛
4

∼ 𝑁(𝜇(𝒙|𝐷 ), 𝜎 (𝒙|𝐷 )) (16) h
here 𝜇(𝒙|𝐷𝑛) and 𝜎2(𝒙|𝐷𝑛) are employed to estimate the mean and
he variance of the unknown function 𝐹 , respectively. They satisfy

(𝒙|𝐷𝑛) = 𝑘T(𝐾 + 𝜎2𝜖 I)
−1𝑦1∶𝑛 (17)

2(𝒙|𝐷𝑛) = 𝑘(𝒙,𝒙) − 𝑘T(𝐾 + 𝜎2𝜖 I)
−1𝑘 (18)

nd here 𝑦1∶𝑛 = {𝑦1, 𝑦2,… , 𝑦𝑛} and 𝐾 denotes the kernel matrix whose
𝑖, 𝑗)th entry satisfies 𝐾𝑖𝑗 = 𝑘(𝒙𝑖,𝒙𝑗 ).

The optimizing/searching phase can be addressed by choosing a
roper acquisition function. An example is the upper confidence bound
UCB) acquisition function, formulized by

𝑛+1 = argmax
𝒙

[𝜇(𝒙|𝐷𝑛) + 𝜌𝑛𝜎2(𝒙|𝐷𝑛)] (19)

here 𝜌𝑛 is employed to make a trade-off between exploitation and
xploration.

Another popular example is the expected improvement (EI) acqui-
ition function, defined by

𝑛+1 = argmax
𝒙

𝐸[{0, 𝐹 − 𝐹max}|𝐷𝑛] (20)

here 𝐹max denotes the maximum target function value that is evalu-
ted by the Learning/Approximation Phase of the 𝑛th learning iteration.
fter selecting the acquisition function, the next state 𝒙𝑛+1 can be
etermined by getting its solution.

Different from BO, the BA algorithm introduces a proximity con-
traint for the acquisition function, such that the algorithm tends to
ample 𝒙𝑛+1 that is near the optimal solution observed so far (the 𝑛th
teration). To be more specific, in the Optimizing/Searching Phase,
A solves 𝒙𝑛+1 by the EI acquisition function while considering a
ypercube trust region, formulized by

𝑛+1 = argmax
𝒙

𝐸[{0, 𝐹 − 𝐹max}|𝐷𝑛]

.t. 𝒙 ∈ 𝑻 ∶= {𝒙|‖𝑥𝑖 − 𝑥max
𝑖 ‖ < 𝜏𝑖 for 𝑖 = 1, 2,… , 𝑝}

(21)

here 𝑝 is the length of 𝒙; 𝜏𝑖 is the trust region for every entry in 𝒙,
nd it can be adjusted during the learning process. After deciding 𝒙𝑛+1
ased on Eq. (21), one can observe 𝑦𝑛+1 and update the training dataset.
hen, the parameters in the GP approximation can be adjusted based on
he updated training dataset, and 𝒙𝑛+2 can be selected via the adjusted
P result. Such an iteration repeats until the state converges or meets

he stopping criteria.
Based on these preliminaries, we are ready to mold our parameter

election task for multiple passive TMDs into BA. We aim to decide the
pring stiffness and damping coefficient for all the TMDs. To this end,
e set 𝒙 = [𝑘̄1, 𝑐1, 𝑘̄2, 𝑐2,… , 𝑘̄ℎ, 𝑐ℎ]T, where 𝑘̄𝑖 = 𝑘𝑖∕𝑘𝑠 and 𝑐𝑖 = 𝑐𝑖∕𝑐𝑠,
nd here 𝑘𝑠 and 𝑐𝑠 are constants that are employed for normalization
urpose. We employ 𝑖𝛾with_TMD(𝑡) and 𝑖𝛾without_TMD(𝑡) to denote the pitch
ngles of Component 𝑖 at time step 𝑡 with and without TMD 𝑖 (whose
arameters are 𝑚𝑖, 𝑘𝑖, 𝑐𝑖), respectively. The overall performance index
or the vibration suppression task is set to be

(𝑥) =
ℎ
∑

𝑖=1
𝑤𝑖

∑𝑇
𝑡=0 |

𝑖𝛾without_TMD(𝑡)| −
∑𝑇

𝑡=0 |
𝑖𝛾with_TMD(𝑡)|

ℎ
∑𝑇

𝑡=0 |
𝑖𝛾without_TMD(𝑡)|

(22)

where the positive constants 𝑤1, 𝑤2,… , 𝑤ℎ are employed for weighting
purpose, ℎ denotes the number of floaters, and 𝑇 denotes the total simu-
lation steps in one iteration. Therefore, the objective of BA is to find the
optimal parameters for all TMDs (i.e., 𝒙∗ = [𝑘̄∗1 , 𝑐

∗
1 , 𝑘̄

∗
2 , 𝑐

∗
2 ,… , 𝑘̄∗ℎ, 𝑐

∗
ℎ]

T)
subject to a pre-determined searching domain  , such that 𝐹 (𝒙∗) can
e maximized.

. Simulation results

As discussed in Section 2, we consider a floating foundation with
size of 120 m × 40 m × 10 m, which has three floaters/components

whose size are all 40 m × 40 m × 10 m) that are connected by two

inge structures.
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Fig. 3. Vibration suppression results with 𝑙 = 120 m.
Fig. 4. Vibration suppression results with 𝑙 = 100 m.
Fig. 5. Vibration suppression results with 𝑙 = 80 m.
Fig. 6. Vibration suppression results with 𝑙 = 60 m.
The mass of each component is 8.2 × 106 kg. As we mentioned in
he introduction, it is a common practice to set the TMD module to
e 2%–6% of the whole structure’s weight. Based on that, we set the
MD’s mass to be 4% of the component’s mass, i.e., 𝑚𝑖 = 328 000 kg,
= 1, 2, 3. Other parameters in simulations include 𝑘𝑠 = 107 381 N∕m,
𝑠 = 8161 N/(m/s), 𝑇 = 200 s, and 𝑤𝑖 = 1, 𝑖 = 1, 2, 3. We employ BA to

decide the spring stiffness and damping coefficient for all TMDs under
four typical wavelengths: 𝑙 = 120 m, 𝑙 = 100 m, 𝑙 = 80 m, and 𝑙 = 60 m.
5

The maximum iteration step in each testing is 200, and the searching
domain is constrained by 𝑘̄𝑖 ∈ (0.05, 10) and 𝑐𝑖 ∈ (0.05, 10), 𝑖 = 1, 2, 3.

We first test the performance of our BA-based TMD parameter
optimization method under fixed wavelengths as given above. After
the learning process is finished, we apply the best solutions from BA
to determine TMD parameters and test their performance for each
wavelength. The results are given in Figs. 3–6 and Table 1. One can see
that, with the parameters tuned by BA, TMDs can significantly reduce
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Fig. 7. Vibration suppression results with 𝑙 = 120 m under unified TMD parameters.
Fig. 8. Vibration suppression results with 𝑙 = 100 m under unified TMD parameters.
Fig. 9. Vibration suppression results with 𝑙 = 80 m under unified TMD parameters.
Fig. 10. Vibration suppression results with 𝑙 = 60 m under unified TMD parameters.
the floating foundation’s vibrations. The performance indexes (which
are equivalent to the averaged vibration reduction rates in this case)
for 𝑙 = 120 m, 100 m, 80 m, and 60 m are 33.02%, 47.35%, 32.49%,
and 21.30%, respectively.

Then we consider using a unified set of TMD parameters to adapt to
all wavelengths. To this end, we employ the following reward, which
takes into account the overall performance of TMDs under different
6

wavelengths:

𝑅(𝑥) =
4
∑

𝑗=1
ℎ𝑗𝐹𝑗 (𝑥) (23)

where the index 𝑗 is employed to denote different wavelengths, the
constant ℎ𝑗 is employed for weighting purposes, and 𝐹𝑗 follows the
definition in Eq. (22). Here we set ℎ1 = 0.3, ℎ2 = 0.3, ℎ3 = 0.3,
and ℎ = 0.1. We make such selections because the amplitudes of
4
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Fig. 11. Vibration suppression results with the wave height to be 2 m and the wave direction to be 15◦.
Fig. 12. Vibration suppression results with the wave height to be 2 m and the wave direction to be 30◦.
Fig. 13. Vibration suppression results with the wave height to be 2 m and the wave direction to be 45◦.
Table 1
Simulation result summary.

Case Wavelength 𝐹 (𝑥∗) 𝑥∗

1 120 m 33.02% [2.52, 1.60, 1.41, 6.90, 3.14, 2.18]T

2 100 m 47.35% [2.78, 2.00, 0.71, 1.20, 0.69, 5.52]T

3 80 m 32.49% [0.53, 2.56, 6.03, 2.49, 6.44, 9.74]T

4 60 m 21.30% [1.02, 3.14, 0.60, 9.57, 7.03, 2.15]T

vibrations under 𝑙 = 120 m, 100 m and 80 m are much larger than that
under 𝑙 = 60 m in our case study. Therefore, larger weighting constants
(i.e., ℎ1, ℎ2 and ℎ3) are set for them to pursue better overall vibration
suppression performance. Please notice that ℎ1 to ℎ4 are user-defined
constants and they can be changed under different situations.

With the reward 𝑅(𝑥) in Eq. (23), the optimal TMD parameter
setting by BA is 𝒙∗ = [0.58, 2.38, 9.72, 2.16, 7.13, 6.45], and the corre-
sponding vibration/motion suppression performance with it is illus-
trated in Figs. 7–10. One can see that, the passive TMDs with unified
optimal parameters can successfully adapt to different wavelengths
and achieve clear vibration/motion reduction for the multi-component
7

floating structure.
It is noteworthy that wavelength is the essential environmental
condition that induces structural vibrations and influences the perfor-
mance of TMDs. The simulation results above show that our method
is effective under different wavelengths. In addition to that, we also
test the effectiveness and advantage of our TMD-based vibration sup-
pression approach under other environmental conditions, including
wave directions and heights. Particularly, we set the wavelength and
height to be 100 m and 2 m, respectively, and vary the wind direc-
tion to be 15◦, 30◦, and 45◦, respectively. Following the parameter
learning result given before, the normalized TMD parameters are set
to be [2.78, 2.00, 0.71, 1.20, 0.69, 5.52]T. Simulation results are given in
Figs. 11–13. One can see that our method still successfully suppresses
the whole floating structure’s vibration under different wave heights
and directions, showing its strong robustness and adaptability.

5. Conclusion

A multiple-passive-TMD structure was designed in this paper to mit-
igate the vibration of multi-component floating foundations. A numer-
ical model was developed incorporating both the dynamics of a hinged
floating foundation and passive TMDs. Built upon the Bayesian Ascent

approach, a data-driven parameter optimization method was developed



Ocean Engineering 259 (2022) 112088X. Zhang et al.

S
L
r
o
a

to search for optimal TMD parameters. This sequential searching strat-
egy combined the merits of both the Bayesian Optimization method
and the gradient-free trust-region algorithm, rendering an enhanced
learning efficiency. Simulation results under different wave lengths,
heights and directions showed that the BA-based parameter selection
method could provide optimal settings for passive TMDs, and the
proposed TMD-based suppression method could significantly reduce the
vibration of the multi-component floating foundation. Extended studies
that may cover the wave nonlinearity & irregularity and consider differ-
ent forms of physical connections between floating components will be
investigated in the future to further explore the effectiveness of TMD-
based approaches in vibration/motion suppression of multi-component
floating structures.
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Appendix

As stated in Section 3, only heave, roll and pitch motions are
considered for the floating structure. For the mathematical modeling
of the hinge connector, a stiffness matrix is introduced to represent the
relationship between the force of the connector and the difference of
displacement at two sides of the connector, i.e.

𝐊𝐽 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐾11 0 0 0 0 0
0 𝐾12 0 0 0 0
0 0 𝐾13 0 0 0
0 0 0 𝐾21 0 0
0 0 0 0 𝐾22 0
0 0 0 0 0 𝐾23

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(24)

where 𝐾𝑖𝑗 (𝑖 = 1, 2) with 𝑗 = 1, 2, 3 represents the stiffness of the hinge
connector corresponding to heave, roll and pitch motion, respectively.
It is noted that for the hinge connection, two adjacent components
can rotate freely around 𝑦 axis whereas absolutely restricted in other
degrees of freedom, indicating that the value of 𝐾𝑖3(𝑖 = 1, 2) = 0 and
𝐾𝑖𝑗 (𝑖 = 1, 2; 𝑗 = 1, 2) should be given a rather large value.

Since the equations of motion are established at centers of grav-
ity of each component of the floating structure, the difference of
displacement at two sides of each connector is derived based on a
transformation matrix, i.e.

𝜳 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

1 0 −𝐿
2 −1 0 −𝐿

2 0 0 0
0 1 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 −𝐿

2 −1 0 −𝐿
2

0 0 0 0 1 0 0 −1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

(25)
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⎣

0 0 0 0 0 0 0 0 0
⎦

All three components of the hinged floating structure have the same
dimension. For a given component, the hydrostatic stiffness matrix
(considering heave, roll and pitch) is calculated as follows,

𝐂0 =
⎡

⎢

⎢

⎣

𝜌𝑔𝐴𝑤 0 0
0 𝜌𝑔𝑉𝑤𝑅𝑇 0
0 0 𝜌𝑔𝑉𝑤𝑅𝐿

⎤

⎥

⎥

⎦

(26)

where 𝜌 is the density of water, 𝑔 is the gravitational acceleration, 𝐴𝑤 is
the waterplane area of each component, 𝑉𝑤 is the displaced water vol-
ume, 𝑅𝑇 and 𝑅𝐿 are the transverse and longitudinal metacentric height,
respectively. The hydrostatic restoring force 𝐅ℎ is then calculated as,

𝐅ℎ = 𝐂𝛏 =
⎡

⎢

⎢

⎣

𝐂0 𝟎 𝟎
𝟎 𝐂0 𝟎
𝟎 𝟎 𝐂0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1𝛏
2𝛏
3𝛏

⎤

⎥

⎥

⎦

(27)
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