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Abstract EOS is an open-source software for a variety of computational tasks in flavor physics. Its use cases include
theory predictions within and beyond the Standard Model of particle physics, Bayesian inference of theory parameters from
experimental and theoretical likelihoods, and simulation of pseudo events for a number of signal processes. EOS ensures
high-performance computations through a C++ back-end and ease of usability through a Python front-end. To achieve this
flexibility, EOS enables the user to select from a variety of implementations of the relevant decay processes and hadronic
matrix elements at run time. In this article, we describe the general structure of the software framework and provide basic
examples. Further details and in-depth interactive examples are provided as part of the EOS online documentation.
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1 Introduction and physics case

Flavor physics phenomenology has a long history of substantial impact on the development of the Standard Model (SM) of
particle physics. Over the last decades, two developments are particularly noteworthy:

First, the determination of the Cabibbo–Kobayashi–Maskawa (CKM) matrix elements has developed into a precision
enterprise, thanks in large parts to the efforts at the B-factory experiments BaBar and Belle [1] and more recently the
LHCb experiment [2], the technological progress in lattice gauge theory predictions [3], and the development of precision
phenomenology with continuum methods.

Second, the emergence of the so-called “b anomalies” has led to cautious excitement in the community. These anomalies
are substantial tensions between theory predictions of b-quark decay observables and their measurements by the ATLAS,
BaBar, Belle, CMS, and LHCb experiments, which present a coherent pattern that might be due to Beyond the Standard
Model (BSM) effects, but do not yet reach individually the required significance of 5 σ ; see e.g. Refs. [4,5] for recent reviews.

Both developments have led to increasingly sophisticated phenomenological analyses.
Such analyses involve researchers regularly carrying out structurally similar and recurring tasks. These typical use cases

include

1. predicting flavor observables and assessing their theory uncertainties both within the SM and for general BSM scenarios
in the Weak Effective Theory (WET);

2. inferring hadronic, SM, and/or WET parameters from an extendable database of experimental and theoretical likelihoods;
3. simulating flavor processes and producing high-quality pseudo events for use in sensitivity studies and for the preparation

of experimental analyses.

The EOS software [6] has been continuously developed since 2011 [7,8] to achieve these tasks. EOS is a free software
published under the GNU General Public License 2 [9]. It has produced publication-quality results for approximately 30
peer-reviewed and published phenomenological studies [10–38].

Besides applications in phenomenology, EOS also has been used in a number of published experimental studies by the
CDF [39], the CMS [40,41] and the LHCb [42–47] experiments. The Belle II experiment has included EOS as part of the
external software [48] within the Belle II software analysis framework [49].

In this article, we describe the EOS user interface. Although the software is developed mainly in C++, it is designed to be
used in Python [50]. As such, EOS relies heavily on the numpy [51] and pypmc [52] packages. We highly recommend
new users to use EOS within a Jupyter notebook environment [53].
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EOS can be installed in binary form on Linux-based systems1 with a single command:
� �

python3 -m pip install eoshep
� �

To avoid conflicts with the system packages, we strongly recommend to install EOS in a virtual Python environment, as
described in the frequently-asked questions [55, FAQ].

Afterwards, the EOS Python module can be accessed, e.g. within a Jupyter notebook, using
� �

import eos
� �

We note that this means of installation also works for the “Windows Subsystem for Linux v2 (WSL2)”. For the purpose
of installing EOS, WSL2 can be treated like any Linux system. Although EOS can also be built and installed from source on
macOS systems, we do not currently support these. For macOS users we recommend to install on a remote-accessible Linux
system and access a Jupyter notebook via SSH; our recommendation is described in detail as part of the frequently-asked
questions [55]. Prospective EOS developers find detailed instructions on how to build EOS from source in the installation
section of the documentation [55].

Presently, EOS provides a total of 844 (pseudo-)observables2 pertaining to a large variety of flavor processes. Obtaining
and browsing the full list of observables is discussed in Sect. 2.4. The processes implemented include

– (semi)leptonic charged-current B̄ meson decays (e.g., B̄ → D∗τ ν̄);
– semileptonic charged-current Λb baryon decays (e.g., Λb → Λc(→ Λπ)μν̄);
– rare (semi)leptonic and radiative neutral-current B̄ meson decays (e.g., B̄ → K̄ ∗μ+μ−);
– rare semileptonic and radiative neutral-current Λb baryon decays (e.g., Λb → Λ(→ pπ)μ+μ−); and
– B-meson mixing observables (e.g., Δms).

EOS is designed to be self documenting: a complete list of processes and their respective observables is automatically generated
as part of documentation, which is accessible both through the software itself and online [55]. The theoretical descriptions
of most observables use the WET to account for both SM and BSM predictions. Details of the EOS bases of WET operators
are described in Appendix A.2.

Although EOS is – to our knowledge – the first publicly available open-source flavor physics software [7,8], it is by far
not the only one. EOS competes with the flavio [56], SuperIso [57], HEPfit [58] and FlavBit [59] software. Major
distinctions between EOS and these competitors are:

– EOS focuses on the simultaneous inference of hadronic and BSM parameters;
– EOS ensures modularity of hadronic matrix elements, i.e., the possibility to select from various hadronic models and

parametrizations at run time;
– EOS provides means to produce pseudo events for use in sensitivity studies and in preparation for experimental measure-

ments; and
– EOS provides means to predict hadronic matrix elements from QCD sum rules.

These distinctions make analyses possible that cannot currently be carried out with the competing software [13,15,26,29,60],
e.g., due to multi-modal or otherwise complicated posteriors that cannot be captured by Markov chain Monte Carlo methods
alone. However, this benefit comes with an increased level of complexity, which we address in the EOS documentation [55]
and – to some extent – in this article.

1.1 How to read this document

Although this paper will give you a first impression of EOS and basic examples to try in a Jupyter notebook, it is not meant
to be a stand-alone document. To obtain a deeper understanding, additional documentation, and further examples, the user

1 This is limited to systems with Python version 3.6 or later that also fulfill the “manylinux_2_17_x86_64” platform requirement as defined in
PEP 600 [54].
2 EOS does not distinguish between true observables, which can be unambiguously measured in an experimental setting, and pseudo-observables,
which can not be unambiguously inferred from experimental or theoretical data. Pseudo-observables in EOS include hadronic form factors and
other auxiliary hadronic quantities.
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is referred to Refs. [55,61,62]. Wherever we list Python code, we assume that the reader evaluates it within a Jupyter
notebook environment, to make full use of its rich display capabilities.

In Sect. 2, we illustrate the basic usage of EOS, beginning with an overview of the various classes and concepts available
through the Python interface. In Sect. 3 we continue with a discussion of and examples for the main use cases. In a series
of appendices we provide further details.

– We describe the three physics models available in EOS in Appendix A.
– We relegate lengthy Python code examples that would otherwise interrupt reading Sect. 3 to Appendix B.
– We document the EOS internal data format for storing experimental and theoretical likelihoods in Appendix C.
– We include a glossary of the main EOS objects and associated methods in Appendix D.

This article is accompanied by a number of auxiliary files, containing example Jupyter notebooks for the basic usage and
each of the use cases. These notebooks correspond to the examples contained in the public source code repository [62] as of
EOS version 1.0.

2 Basic classes and concepts

EOS provides a number of Python classes that make it possible to fulfill the physics use cases discussed in Sect. 3. Three
of the most relevant classes are used as follows:

– hadronic and BSM parameters are represented by objects of the eos.Parameter class;

– physical observables and pseudo-observables (such as hadronic form factors) are represented by objects of the
eos.Observable class;

– likelihood functions, stemming from either experimental measurements or theoretical calculations, are represented by
objects of the eos.Constraint class.

To facilitate their handling, EOS has databases for all known objects of these classes. The user can interactively inspect these
databases within a Jupyter notebook in the following way:
� �

display(eos.Parameters())   # only run one line at a time, since the output is lengthy
display(eos.Observables())
display(eos.Constraints())

� �

EOS provides a rich display for most classes, including the above, which is not shown here for brevity. Note that the
information displayed by the above commands can also be obtained form the list of parameters, observables, and constraints
that are part of the EOS documentation [55].

All three databases can be searched by name of the target object. EOS uses the same naming scheme for all three databases,
which is enforced through use of the eos.QualifiedName class. The naming scheme is

PREFIX::NAME[@SUFFIX][;OPTIONLIST]

where parts shown in square brackets are optional. The individual parts have the following meaning:

PREFIX The prefix part is used to separate objects with (otherwise) identical names into different namespaces, to avoid
conflicts. Examples of prefixes include parameter categories (e.g., mass or decay-constant), physical processes
(e.g., B->Kll), or sectors of the WET (e.g., sbsb).

NAME The name part is used to identify objects within its PREFIX namespace. Examples include observable names (e.g., BR
for a branching ratio) or names of WET Wilson coefficients (e.g., cVL for a coefficient of a left-handed vector operator).

SUFFIX The (optional) suffix part is used to distinguish between objects of otherwise identical names based on context. One
example is the parameter describing the Λb baryon polarization, which takes different values based on the experimental
environment. Generally, the Λb polarization would be represented byLambda_b::polarization. The use of@LHCb
and @unpolarized as a suffix distinguishes between the average polarization encountered within the LHCb experiment
and an unpolarized setting (e.g. when using the whole phase space of the ATLAS and CMS experiments).
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Fig. 1 Visual representation of
the basic EOS classes and their
relationships

OPTIONLISTThe option list is an optional comma-separated list of key/value pairs, which allows to modify the named object
in an unambiguous way. One example is model=SM,l=mu,q=s, which instructs an observable to use the Standard
Model, μ lepton flavor, and strange-flavored spectator quarks. Details on possible options are discussed in Sect. 2.4.

In the remainder of this section we discuss how to use the six representation classes and their corresponding database
classes

– eos.Parameter within eos.Parameters,
– eos.KinematicVariable within eos.Kinematics,
– eos.Option within eos.Options,
– eos.Observable within eos.Observables,
– eos.Constraint within eos.Constraints, and
– eos.SignalPDF within eos.SignalPDFs,

and the utility classes eos.Analysis and eos.Plotter. The relationship between the first four sets of classes are
illustrated in Fig. 1. We provide a few examples here. However, for more exhaustive and interactive examples we refer to the
notebook named basics.ipynb, which is part of the collection of EOS example notebooks [62].

2.1 Classes eos.Parameters and eos.Parameter

EOS makes extensive use of the eos.Parameter class, which provides access to a single real-valued scalar parameter.
Any such eos.Parameter object is part of a large set of built-in parameters. Users cannot directly create new objects of
the eos.Parameter class. However, new named sets of parameters can be created from which the parameter of interest
can be extracted, inspected, and altered.

We begin by creating and displaying a new set of parameters:
� �

parameters = eos.Parameters()
display(parameters)

� �

The new variable parameters now contains a representation of all parameters known to EOS. The Jupyter display
command has been augmented to provide a sectioned list of the known parameters, which is rather lengthy and not shown
here. It is equivalent to the section “List of Parameters“ in the EOS documentation [55]. The display provides the user with
an overview of all parameter names, their canonical physical notation, and their value and unit. A single parameter, here the
muon mass as an example, can be isolated:
� �

parameters['mass::mu']
� �
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Again, the user is provided with an overview of the parameter, including its qualified name, unit, default value, and current
value. The value of an eos.Parameter object can be altered with the set method:
� �

m_mu = parameters['mass::mu']
display(m_mu)    # shows a value of 0.10566
m_mu.set(1.779)  # we just made the muon as heavy as the tauon!
display(m_mu)    # shows a value of 1.779

� �

In this example, the muon mass parameter within parameters has been set to the measured value for the tauon mass, and
the m_mu object, which represents this parameter, has transparently changed its value. Put differently: any eos.Parameter
object “remembers“ the set of parameters (i.e., the eos.Parameters object) that it belongs to and forwards all changes to
that set. To obtain an independent set of parameters, the user can use
� �

parameters2 = eos.Parameters()
parameters2['mass::mu']
display(parameters2 == parameters) # prints 'False', since the two sets are not identical!

� �

A parameter’s properties can be readily accessed through the methods name, latex, and evaluate
� �

display(m_mu.name())     # shows 'mass::mu'
display(m_mu.latex())    # shows 'm_\mu'
display(m_mu.evaluate()) # shows 1.779, since we changed it above.

� �

A parameter object can be used like any other Python object, e.g., as an element of a list, a dict, or a tuple:
� �

lepton_masses = [parameters['mass::' + l] for l in ['e', 'mu', 'tau']]
[display(p) for p in lepton_masses]
translation = {p.name(): p.latex() for p in lepton_masses}
display(translation)

� �

These properties allow to bind a function (e.g., the functional expression of an observable or a likelihood function) to an
arbitrary number of parameters, let the function evaluate these parameters in a computationally efficient way, and let the user
change these parameters at a whim. Parameter sets are meant to be shared, i.e., a single set of parameters is meant to be used
by any number of functions. The sharing of parameters across observables makes it possible for EOS to consistently and
efficiently evaluate a large number of functions.

The default set of parameters is stored in YAML files that are installed together with the binary EOS library and the
Python modules and scripts. The default parameter set can be replaced. To do this, the user must set the environment
variable EOS_HOME to point to an accessible directory. The YAML files found within EOS_HOME/parameters will be
used instead of the default set of parameters contained in the EOS package. The class eos.Parameters facilitates creating
such files, through the dumpmethod, which writes the current set of parameters to a YAML file. Alternatively, to use mostly the
default parameter set, but override a subset of parameters in a persistent way, the user can use the override_from_file
method to load only a subset of parameters from a given file.

2.2 Classes eos.Kinematics and eos.KinematicVariable

EOS uses the eos.Kinematics class to store a set of real-valued scalar kinematic variables by name. Contrary to the class
eos.Parameters, there are neither default variables nor default values. Instead, eos.Kinematics objects are empty by
default. Moreover, their variables are only defined within the scope of a single eos.Observable object: two observables
that do not share an eos.Kinematics object can use identically-named, independent kinematic variables. Therefore, the
names of kinematic variables do not require any prefix, and are simply (short) strings.

An empty set of kinematic variables can be created by
� �

kinematics = eos.Kinematics()
� �

A new kinematic variable can be declared with the existing (empty) set by providing a key/value pair to the kinematics
object, e.g.
� �

k1 = kinematics.declare('q2',             1.0)   # 1 GeVˆ2
k2 = kinematics.declare('E_pi',           0.139) # 139 MeV, a pion at rest!
k3 = kinematics.declare('cos(theta_pi)', -1.0)   # negative values are OK!

� �

In this example, we have also captured the newly created kinematic variables as objects k1, k2, and k3 of class eos.
KinematicVariable for latter use. EOS uses the following guidelines for names and units of kinematic variables:
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– using 'q2', 'p2', and so on for the squares of four momenta qμ, pμ;
– using 'E_pi', 'E_gamma', and so on for the energies of states π , γ in the rest frame of a decaying particle;
– using 'cos(theta_pi)' and similar for the cosine of a helicity angle θπ ;
– using natural units, i.e., expressing all momenta and energies as powers of GeV.

The new eos.KinematicVariable objects are now collected within the kinematics object. They can be collectively
inspected using
� �

display(kinematics)
� �

In addition, the individual objects k1, k2, etc. can also be inspected
� �

display(k1)
display(k2)

� �

To directly obtain an eos.Kinematics object pre-populated with the variables one needs, a Python dict can be
provided to the constructor:
� �

kinematics = eos.Kinematics({ 'q2': 1.0, 'E_pi': 0.139, 'cos(theta_pi)': -1.0 })
� �

To extract a previously declared kinematic variable from the kinematics object, the eos.Kinematics provides
access via the subscript operator [...]
� �

k1 = kinematics['q2']
k1.set(16.0)

� �

In the above, the set method is used to change the value of k1.
Kinematic variables and their naming usually pertain to only one observable, which will be discussed below in Sect. 2.4.

Therefore, when creating observables, the user should create only a single independent set of kinematic variables per observ-
able. Nevertheless, it is possible to create observables that have a common set of kinematic variables. This makes it possible
to investigate correlations among observables that share a kinematic variable (e.g., LFU ratios such as RK as a function of
the lower dilepton momentum cut-off).

2.3 Class eos.Options

EOS uses objects of the eos.Options class to modify the behavior of observables at runtime. A new and empty set of
options is created as follows
� �

options = eos.Options()
� �

This object is usually populated with individual options, which are key/value pairs of str objects. Typical keys and their
respective values include:

model is used to change the behavior of the low-energy observables. As of EOS version 1.0, it can take the values SM, CKM,
WET.

When choosing SM, the observables are computed within the SM, and the values of the WET Wilson coefficients are
computed from SM parameters. CKM matrix elements are computed within the Wolfenstein parametrization. Details,
such as the relevant parameter names, are discussed in Appendix A.1.

When choosing CKM, the observables are computed with SM values for the WET Wilson coefficients. However, the CKM
matrix elements are not computed from the Wolfenstein parameters. Instead, each CKM matrix elements is parametrized
in terms of two parameters for its absolute value and complex argument. This choice makes fitting CKM matrix elements
possible. Details, such as the relevant parameter names, are discussed in Appendix A.1.

When choosing WET, the observables are computed with generic values for the WET Wilson coefficients. The CKM
matrix elements are treated as in the CKM case. This choice makes fitting WET Wilson coefficients possible. Details, such
as the EOS convention for the basis of WET operators and the relevant parameter names, are discussed in Appendix A.2.

form-factors is used to select from one of the available parametrizations of hadronic form factors that are pertinent to
the process. Its values are process-specific. For true observables (e.g., a semileptonic branching ratio) a sensible default
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choice is always provided. For pseudo-observables (e.g., the hadronic form factors f+(q2) in B → π transitions) the
choice must be made by the user.

l is used to select the charged lepton flavor in processes with at least one charged lepton. Allowed values are generally e,
mu and tau. Individual processes might restrict the set of allowed values further, e.g., when hadronic matrix elements
relevant to semitauonic decays are either unknown or unimplemented.

q is used to select the spectator quark flavor. Allowed values are typicallyu,d,s, andc. Individual processes might restrict the
set of allowed values further. Processes withs andc spectator quarks are typically accessible through explicit specification
of the spectator quark flavor in the process name, e.g., B_s->K^*lnu.

Obtaining the full list of option keys pertaining to a specific observable and their allowed keys is discussed in Sect. 2.4.
Adding new options to an existing options object is achieved as follows

� �

options.declare('model', 'CKM')
options.declare('form-factors', 'BSZ2015')
options.declare('l', 'mu')                 # Since we are all so "cautiously excited"!
options.declare('q', 's')
display(options)

� �

Analogously to the kinematic variables, an eos.Options object can be created pre-populated with the values one needs
using a Python dict
� �

options = eos.Options({
    'form-factors': 'BSZ2015', # Bharucha, Straub, Zwicky 2015
    'model': 'WET',
    'l': 'tau',
    'q': 's'
})

� �

2.4 Classes eos.Observables and eos.Observable

EOS uses the eos.Observable class to provide theory predictions for a variety of flavor physics processes and their asso-
ciated (pseudo-)observables. The complete list of observables known to EOS is available as part of the online documentation
[55, List of Observables] and interactively in a Jupyter notebook via
� �

eos.Observables() # Lengthy output!
� �

Within this list, all observables are uniquely identified by an eos.QualifiedName object; see the beginning of Sect. 2
for information on how such a name is structured. To ease recognition, the typically used mathematical symbol for each
observable is shown next to its name. To search within this list, keyword arguments for the prefix part, name part, or suffix part
of a qualified name will filter the output. For example, the following code displays only branching ratios (BR) in processes
involving a B∓ meson (B_u)
� �

eos.Observables(prefix='B_u', name='BR')
� �

Amongst others, this command lists the observable B_u->lnu::BR, representing the branching ratio of B∓ → 
∓ν̄ decays.
As part of the output the user is notified that this particular observable requires no kinematic variables. The user is also notified
about the eos.Options keys recognized by this observable, which include model and l.

To create a new eos.Observable object the user needs to

– identify it by name;
– provide a set of parameters that can optionally be shared with other observables;
– provide a set of kinematic variables that can optionally be shared with other observables; and
– specify the relevant options.

Again, the branching ratio of B∓ → 
∓ν̄ is used as an example, specifically for a τ in the final state. The observable is
created as an eos.Observable object as follows
� �

observable1 = eos.Observable.make('B_u->lnu::BR',
                                  eos.Parameters(), eos.Kinematics(), eos.Options({'l': 'tau', 'model': 'WET'}))

� �

Here B_u->lnu::BR is the eos.QualifiedName for this particular observable, and default parameters are provided
when using eos.Parameters(). This observable does not require any kinematic variables, and therefore an empty
eos.Kinematics object is provided. Setting the l option to tau selects a τ final state. Setting the model option to WET
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enables the user to evaluate the observable in the WET for arbitrary values of the Wilson coefficients; see Appendix A.2 for
details. The eos.Observable class provides access to the name, parameters, kinematics, options, and current value of an
observable by means of the following methods
� �

display(observable1.name())       # shows 'B_q->lnu::BR'
observable1.parameters()          # accesses the parameters
observable1.kinematics()          # accesses the (emtpy) set of kinematic variables
display(observable1.options())    # shows the options used to create the observable
display(observable1.evaluate())   # shows the current value

� �

Note that each observable is associated with one object of the class eos.Parameters. To illustrate this feature, the
above code is repeated to create a second observable observable2
� �

observable2 = eos.Observable.make('B_u->lnu::BR',
                                  eos.Parameters(), eos.Kinematics(), eos.Options({'l': 'tau', 'model': 'WET'}))

� �

Even though the two objects observable1 and observable2 share the same name and options, their respective
parameter sets are independent, as can be checked as follows:
� �

observable1.parameters() == observable2.parameters()  # yields False
� �

To correlate any number of observables, it is necessary to create all of them using the same eos.Parameters object;
this will be further discussed in Sect. 3.2. In the above, this is not the case, since for the creation of each observable the call
to eos.Parameters() created a new, independent set of parameters as explained in Sect. 2.1.

In many cases, observables have a default set of options, e.g., the default choice of hadronic form factors or the default
choice of a BSM model. In some cases, it does not make sense to have a default choice. In such cases, an error will be
shown through a Python exception if the user does not provide a valid option value. An example for this behavior are
the form factor pseudo-observables, e.g., B->K^*::V(q2), which always require providing a valid value for the option
form-factors. This is achieved by including the option as part of the eos.QualifiedName. In this case,
B->K^*::V(q2);form-factors=BSZ2015 selects the form factor parametrization as used by Bharucha, Straub,
and Zwicky [63] in 2015. A full list of all option keys and their respective valid values is available as part of the online
documentation [55] and by displaying eos.Observables() in an interactive Jupyter notebook.

Contrary to parameters and kinematic variables, modifying the eos.Options object of any observable after its creation
has no effect
� �

observable1.options().declare('l', 'mu') # does not affect observable1
� �

This design decision ensures high-performance evaluations of all observables.
Objects of type eos.Observable are regular Python objects. For example, they can be collected in a list, which

is useful for evaluating a number of identical observables at different points in their phase space. This can be achieved as
follows
� �

import numpy
parameters  = eos.Parameters()
observables = [eos.Observable.make('B->Dˆ∗lnu::A_FB(q2)', parameters, eos.Kinematics(q2=q2_value), eos.Options())
               for q2_value in numpy.linspace(1.00, 10.67, 10)]
values      = [o.evaluate() for o in observables]
display(values)

� �

Here the instantiation of all observables with the same eos.Parameters object parameters ensures that they share
the same numerical values for all parameters. As a consequence, changes of numerical values within parameters are
broadcasted to all these instances and are taken into account in their subsequent evaluations.

2.5 Classes eos.Constraints and eos.Constraint

EOS uses the class eos.Constraint to manage and create individual likelihood functions at run time. To this end, objects
of type eos.Constraint contain both information on the concrete likelihood (e.g., mean values and standard deviation
of a Gaussian measurement) and meta-information about the constrained observables (e.g., the EOS internal names for an
observable, relevant kinematic variables, and required options).

Besides (multivariate) Gaussian likelihood functions, EOS also supports LogGamma and Amoroso functions [64], and
Gaussian mixture densities. The database of constraints makes it possible to construct a likelihood function for any experi-
mental measurement and/or theory input in terms of eos.Observable objects. Hence, eos.Constraint objects are
the building blocks for parameter inference studies that use the EOS software.
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EOS provides a database of constraints, which is available as part of the online documentation [55, List of Constraints] as
well as interactively accessible in a Jupyter notebook via
� �

display(eos.Constraints())
� �

This database is stored within EOS in a series of YAML files. Most EOS users will not require knowledge about the file format.
However, advanced users may need to provide constraints that are not part of the built-in database. In such a case, the user
can specify a manual constraint; see Sect. 2.7 and Ref. [61] for details. Alternatively, similar to the eos.Parameters
database, the user can set the EOS_HOME environment variable to point to an accessible directory. All YAML files within
EOS_HOME/constraints will be loaded and used instead of the default eos.Constraints database. We document
the format in Appendix C and an example entry is shown in Listing C.1.

Examples of built-in constraints that are used later on in this document include:

– The constraint B->D::f_++f_0@FNAL+MILC:2015B describes a lattice QCD result for the B̄ → D form factors
f+ and f0. Here the suffix indicates that this constraint has been extracted from Ref. [65], which is included in the
EOS list of references as FNAL+MILC:2015B. The constraint can be used to create a likelihood function for the model
parameters for the form factors f+ and f0, e.g., when using the BSZ2015 parametrization as the form factor model. Using
B->D::f_++f_0@FNAL/MILC:2015B;form-factors=BSZ2015 (i.e., the constraint name including an option
list that specificies the form factor model) ensures that the correct form factor model (here: BSZ2015) is used when
creating a likelihood from this constraint.

– The constraint B^0->D^+e^-nu::BRs@Belle:2015A describes the correlated measurement of the B̄0 → D+e−ν̄

branching ratio in 10 bins of the kinematic variable q2. Here the suffix indicates that the results have been extracted from
Ref. [66], which is included in the EOS list of references as Belle:2015A.

2.6 Classes eos.SignalPDFs and eos.SignalPDF

EOS uses the eos.SignalPDF class to provide a theoretical prediction for the Probability Density Function (PDF) that
describes a physical process, be it a decay or a scattering process. The dependence on an arbitrary number of kinematic
variables are modeled through a shared object of class eos.Kinematics, and its eos.KinematicVariable objects.
Parameters can be modified or inferred through a shared eos.Parameters object. Hence, each eos.SignalPDF object
works very similar to an eos.Observable object. The list of PDFs can be accessed using the eos.SignalPDFs class.
Searching for a specific PDF in the EOS database of signal PDFs is possible by filtering by the prefix part, name part, or suffix
part of the signal PDF qualified name, very similar to how the database of observables is searchable
� �

eos.SignalPDFs(prefix='B->Dlnu') # display a list of all known SignalPDF objects
                                 # this include 'B->Dlnu::dGamma/dq2', which requires
                                 # 'q2_min', 'q2_max', 'q2' as kinematic variables.

� �

The signal PDF B->Dlnu::dGamma/dq2 features one kinematic variable, q2. Its boundaries are also passed by means
of eos.KinematicVariable objects, which are conventionally named q2_min and q2_max.
� �

pdf = eos.SignalPDF.make('B->Dlnu::dGamma/dq2', eos.Parameters(),
                         eos.Kinematics({'q2_min': 0.0, 'q2_max': 10.0, 'q2': 5.0}),
                         eos.Options({'l': 'mu', 'model': 'WET'}))

� �

The PDF’s parameters, kinematics, and options can be accessed with eponymous methods. This design permits the user some
flexibility. It makes it possible to produce pseudo-events within the SM and in the generic WET; see Sect. 3.3 for this use
case. In addition, it enables unbinned likelihood fits; their description goes beyond the scope of this document.

2.7 Class eos.Analysis

EOS uses the eos.Analysis as an interface for the user to describe a Bayesian analysis to infer one or more parameters.
When creating an eos.Analysis object, the following arguments are used:

priors is a mandatory list describing the univariate priors. This argument must describe at least one prior. Each prior is
described through a dict object, the structure of which is documented as part of the Python API documentation [61,
eos.Analysis].

likelihood is a mandatory list describing all the constraints that enter the likelihood. Each element is a str or
eos.QualifiedName, specifying a single constraint. Although it is a mandatory parameter, this list can be left empty.
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global_options is an optional dict describing the options that will be applied to all the observables that enter the
likelihood. Note that these global options override those specified via the qualified name scheme. For example, in a BSM
analysis, it is useful to include 'model': 'WET' as a global option, to ensure that all observables will be evaluated
using a selectable point in the WET parameter space.

fixed_parameters is an optional dict describing parameters that shall be fixed to non-default values as part of the
analysis. For example, to carry out a BSM analysis of b → cτν processes for a non-default renormalization scale, the
user can set the scale parameter to a fixed value of 3 GeV using 'cbtaunutau::mu': '3.0'.

manual_constraints is an optional dict describing constraints that are not yet included in the EOS database of
constraints. The constraint format is described in Appendix C. Note that to use any of the manual constraints as part of
the likelihood, their qualified names must still be added to the likelihood argument.

Listing 1 Example for a Bayesian analysis to extract the CKM parameter |Vcb| from B̄ → D{e−, μ−}ν̄ data by the Belle experiment and lattice
QCD input by the HPQCD and Fermilab/MILC collaborations.
� �

analysis_args = {
  'global_options': { 'form-factors': 'BSZ2015', 'model': 'CKM' },
  'priors': [
    {'parameter': 'CKM::abs(V_cb)',           'min': 38e-3, 'max': 45e-3, 'type': 'uniform'},
    {'parameter': 'B->D::alphaˆf+_0@BSZ2015', 'min':  0.0,  'max':  1.0,  'type': 'uniform'},
    {'parameter': 'B->D::alphaˆf+_1@BSZ2015', 'min': -4.0,  'max': -1.0,  'type': 'uniform'},
    {'parameter': 'B->D::alphaˆf+_2@BSZ2015', 'min':  4.0,  'max':  6.0,  'type': 'uniform'},
    {'parameter': 'B->D::alphaˆf0_1@BSZ2015', 'min': -1.0,  'max':  2.0,  'type': 'uniform'},
    {'parameter': 'B->D::alphaˆf0_2@BSZ2015', 'min': -2.0,  'max':  0.0,  'type': 'uniform'}
  ],
  'likelihood': [
    'B->D::f_++f_0@HPQCD:2015A',
    'B->D::f_++f_0@FNAL+MILC:2015B',
    'Bˆ0->Dˆ+eˆ-nu::BRs@Belle:2015A',
    'Bˆ0->Dˆ+muˆ-nu::BRs@Belle:2015A'
  ]
}
analysis = eos.Analysis(∗∗analysis_args)

� �

In Listing 1 we define a statistical analysis for the inference of |Vcb| from measurements of the B̄ → D
−ν̄ branching ratios
by the Belle experiment. This example will be further discussed in Sect. 3.2.1. First, we define all the arguments used in our
analysis.

– Using the global_options, we choose the BSZ2015 parametrization [63] to model the hadronic form factors that
enter semileptonic B̄ → D transitions. We also choose the CKM model to ensure that |Vcb| is represented by a single
parameter.

– Priors for both the |Vcb| parameter and the BSZ2015 parameters are described in priors. Here, each parameter is
assigned a uniform prior, which is chosen to contain at least 98% (∼ 3 σ ) of the ideal posterior probability, i.e., the priors
have been chosen to be wide enough to “contain“ the posterior defined by this analysis.

– The likelihood is defined through a list of constraints, which in the above includes both theoretical lattice QCD results as
well as experimental measurements by the Belle collaboration. For the first part we combine the correlated lattice QCD
results published by the Fermilab/MILC and HPQCD collaborations in 2015 [67,68]. For the second part, we combine
binned measurements of the branching ratio for B̄0 → D+e−ν̄ and B̄0 → D+μ−ν̄ decay. We reiterate that EOS treats
genuine physical observables and pseudo-observables identically.

The class eos.Analysis further provides convenience methods to carry out the statistical analysis:

optimize uses the scipy.optimize module to find the best fit point of the posterior. Optional parameters determine
the abort condition for the optimization and the starting point.

sample uses the pypmc module to produce random variates of the posterior using an adaptive version of the Metropolis-
Hastings algorithm [69–71] with a single Markov chain. This method can be run several times to repeatedly explore the
posterior density and accurately sample from it.

sample_pmc uses the pypmc module to produce random variates of the posterior using the Population Monte Carlo
algorithm [72]. To this end, an initial guess of the posterior in form of a Gaussian mixture density is created [73] from
Markov chain Monte Carlo samples obtained using sample.
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At any point, the attribute parameters can be used to access the analysis’ parameter set, e.g., to save the set to a file via
the dump method. We refer to the documentation of the EOS Python API [61] for further information.

Note that the C++ backend used by eos.Analysis parallelizes the evaluation of the likelihood function. By default, the
number of concurrent threads will match the number of available processors. Users who need to limit this number (e.g., due to
using EOS on a multi-user system in parallel to other users’ jobs) can do so by setting the EOS_MAX_THREADS environment
variable to the limit.

2.8 Class eos.Plotter

EOS implements a versatile plotting framework based on the class eos.Plotter, which relies on matplotlib [74] for
the actual plotting. Its input must be formatted as a dictionary containing two keys: plot contains metadata and contents
describes the plot items. The value associated to the plot key is a dictionary; it describes the layout of the plot, including
axis labels, positioning of the legend, and similar settings that affect the entire plot. The value associated to the contents
key is a list; it describes the contents of the plot, expressed in terms of independent plot items. Possible types of plot items
include points, bands, contours, histograms.

Listing 2 High-level description of the arguments for the eos.Plotter class. The plot will appear inline in a Jupyter notebook (if FILENAME
is not specified) or be written to FILENAME (if specified). In the latter case, the output format will be determined based on the file extension.
� �

plot_desc = {
    'plot': {
        'x': { ... },       # description of the x axis
        'y': { ... },       # description of the y axis
        'legend': { ... },  # description of the legend
        ...                 # further layouting options
    },
    'contents': [
        { ... }, # first plot item
        { ... }, # second plot item
    ]
}
eos.plot.Plotter(plot_desc, FILENAME).plot()

� �

Each of the items is represented by a dictionary that contains a type key and an optional name key. A full description
of all item types and their parameters is available as part of the EOS Python API documentation [61]. Here, we provide a
brief summary for the most common types, which are used within examples in the course of this document:

observable plots a single EOS observable without uncertainties as a function of one kinematic variable or one parameter.
See Listing 3 for an example.

histogram
histogram2D plots either a 1D or a 2D histogram of pre-existing random samples. These samples can be contained in

Python objects within the notebook’s memory or contained in a datafile on disk. See listing 5 and listing 14 for examples.
uncertainty plots the uncertainty band of an observables as a function of one kinematic variable or one parameter. The

random samples for the observables can be contained in Python objects within the notebook’s memory or contained in
a datafile on disk. See Listing 7 for an example.

constraint displays a constraint either from the EOS library or a manually added constraint. See listing 11 for an example.

Beyond type and name keys, all item types also recognise the following optional keys:

alpha A float, between 0.0 and 1.0, which describes the opacity of the plot item expressed as an alpha value. A value of
0.0 means completely transparent, 1.0 means completely opaque.

color A str, containing any valid matplotlib color specification, which describes the color of the plot item. Defaults
to one of the colors in the matplotlib default color cycler.

label A str, containing LaTeX commands, which describes the label that appears in the plot’s legend for this plot item.

In Listing 2, FILENAME is an optional argument naming the file into which the plot shall be placed. The file format is
automatically determined based on the file name extension.
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2.9 Classes eos.References, eos.Reference, and eos.ReferenceName

EOS strives to give complete credit to the various works that underpin the theory predictions and the experimental and
phenomenological analyses that provide likelihoods. To this end, EOS keeps a database of bibliographical metadata, which
is accessible via the eos.References class. Each entry is a tuple of an eos.ReferenceName object that uniquely
identifies the reference and the metadata data of the reference as an eos.Reference object. For a complete list of works
used within EOS, we refer to the documentation [55, List of References].

Each observable provides a list of reference names, corresponding to the pertinent pieces of literature that were used in their
implementations. This list is obtained via the references method, which returns a generator of eos.ReferenceName
objects:
� �

obs = eos.Observable.make('B_u->lnu::BR',
      eos.Parameters(), eos.Kinematics(), eos.Options({'l': 'tau', 'model': 'WET'}))
display([rn for rn in obs.references()]) # shows 'DBG:2013A', amongst others

� �

Further information on this reference can be obtained from its eos.Reference object:
� �

ref = eos.References()['DBG:2013A']
display(ref)                        # displays the reference's title, authors, and eprint hyperlink (if available)

� �

In a similar way, by convention the suffix part of each eos.Constraint is a valid reference name. Therefore, to look up
the reference that provides a constraint (e.g., B->D::f_++f_0@FNAL+MILC:2015B) the user can look up the associated
bibliographical metadata based on the name’s suffix part:
� �

display(eos.References()['FNAL+MILC:2015B'])
� �

If you feel that your work should be listed as part of a reference for any of the EOS observables, please contact the authors
to include it.

3 Use cases

Each of the three major use cases introduced in Sect. 1 is discussed in details in Sects. 3.1 to 3.3.

3.1 Theory predictions

[The example developed in this section can be run interactively from the example notebook for theory predictions available
from Ref. [8], file examples/predictions.ipynb]

EOS is equipped to produce theory predictions including their parametric uncertainties for any of its built-in observables
using Bayesian statistics. This requires knowledge of the probability density function (PDF) of the pertinent parameters. Here
and throughout we will denote the set of parameters as ϑ , with

ϑ ≡ (x, ν)

where x represents the parameters of interest, and ν represents the nuisance parameters. This distinction is entirely a semantic
one, and no technical differences arise from treating a parameter either way. Production of theory predictions then falls into
one of the following cases:

1. theory predictions for fixed values of all parameters ϑ = ϑ∗;
2. a priori predictions with propagation of uncertainties due to the prior PDF P0(ϑ);
3. a posteriori predictions with propagation of uncertainties due to the posterior PDF P(ϑ |D), where D represents some

data D.

Case 1 has been already mentioned with the concluding example of Sect. 2.4. In Sect. 3.1.1 we provide an example
showcasing how to efficiently obtain these predictions. Cases 2 and 3 can be handled identically in a Monte-Carlo framework
and are discussed collectively in Sect. 3.1.2.
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3.1.1 Direct evaluation for fixed parameters

In Sect. 2 we have explained how to evaluate an observable for a single configuration of the kinematic variables, e.g., an
integrated branching ratio with fixed integration boundaries, or a differential branching ratio at one point in the kinematic
phase space. Commonly, users need to plot such differential observables as a function of the kinematic variable but for
fixed values of its parameters. To illustrate how this can be achieved with EOS, we use the differential branching ratios for
B̄ → D{μ−, τ−}ν̄ as an example. The eos.Plotter class (see Sect. 2.8), provides means to plot any EOS observable as
a function of a single kinematic variable (here: q2).

Listing 3 Plot the q2-differential branching ratios for B̄ → D{μ−, τ−}ν̄. The results are shown as the two central curves in the right plot Output 1.
� �

plot_args = {
    'plot': {
        'x': {'label': r'$qˆ2$', 'unit': r'$\textnormal{GeV}ˆ2$', 'range': [0.0, 11.60] },
        'y': {'label': r'$d\mathcal{B}/dqˆ2$',                    'range': [0.0,  5e-3] },
        'legend': { 'location': 'upper center' }
    },
    'contents': [
        {
            'type': 'observable',  'observable': 'B->Dlnu::dBR/dq2;l=mu',
            'variable': 'q2',      'range': [0.02, 11.60],
            'label': r'$\ell=\mu$',
        },
        {
            'type': 'observable',  'observable': 'B->Dlnu::dBR/dq2;l=tau',
            'variable': 'q2',      'range': [3.17, 11.60],
            'label': r'$\ell=\tau$',
        }
    ]
}
eos.plot.Plotter(plot_args).plot()

� �

The output is a plot containing the branching ratios for 
 = μ, τ , where x axis shows the kinematic variable q2, and the y
axis shows the value of the differential branching ratio. The output corresponds to the central curves shown in the right plot
of Output 1. In the listing above, the statement 'variable': 'q2' specifies that the kinematic variable q2 is varied in
the available range.

Similarly, we can plot an observable as a function of a single parameter, with all other parameters kept fixed and for a
given kinematic configuration. To this end, the 'xrange' requires adjustment compared to the previous example, and the
contents should be replaced by
� �

...
    'contents': [
        {
            'type': 'observable',   'observable': 'B->Dlnu::dBR/dq2;l=mu,model=WET',
            'kinematics': {'q2': 2.0}, 'parameters': {'CKM::abs(V_cb)' : 0.042},
            'variable': 'cbmunumu::Re{cSL}', 'range': [-1.0, 1.0],
            'label': r'$\ell=\mu$',
        }
    ]
...

� �

Here the dependence of the differential branching fraction at q2 = 2 GeV2 on the real part of the WET Wilson coefficient
CSL in the c̄bμνμ sector of the WET is plotted. Note that the kinematics key is used to provide the fixed set of kinematic
variables and theparameters key is used to modify parameter values. As before,variable selects the entity that is plotted
on the x axis, which is now recognized to be an eos.Parameter object rather than an eos.KinematicVariable
object.

3.1.2 Predictions from Monte Carlo sampling

EOS provides the means for a more sophisticated estimation of theory uncertainties using Monte Carlo techniques, including
importance sampling techniques. For the sampling of a probability density function, EOS relies on the pypmc package that
provides methods for adaptive Metropolis-Hastings [69–71] and Population Monte Carlo [72,73] sampling. The uncertainty
of an observable O is estimated from its random variates. We recall that O ∼ P(O) with [75]

P(O) =
∫

dϑ P(O,ϑ) =
∫

dϑ P(O|ϑ)P(ϑ) =
∫

dϑ δ [O − fO(ϑ)] P(ϑ). (1)
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Here the Dirac δ-function was used and fO(ϑ) is the theoretical expression that predicts O for a given set of parameters ϑ .
With this knowledge at hand, we approach the two cases 2 and 3 as discussed in 3.1 in a basically identical way:

For case 2, we use P(ϑ) = P0(ϑ), i.e., the prior PDF. We note that EOS treats all priors P0 as univariate PDFs and
therefore as uncorrelated. Mathematically, a multivariate prior is equivalent to a multivariate likelihood with flat, univariate
priors. By design, EOS implements multivariate correlated priors in terms of a multivariate correlated likelihood. For example,
the parameters in the parameterizations of hadronic form factors are constrained by various theoretical methods like lattice
QCD calculations, light-cone sum rule calculations, unitarity bounds and constraints that arise in the limit of a heavy-quark
mass. Under these circumstances one might still use the terminology prior prediction whenever the included constraints are
only of theoretical nature, i.e. no experimental information was used.

For case 3, we use P(ϑ) = P(ϑ |D), i.e., the posterior PDF as obtained from a previous fit given some data D. Although
based on case 3, the examples below also illustrate case 2, since this distinction is entirely a semantic one.

We continue using the integrated branching ratios of B− → D0{μ−, τ−}ν̄ decays as examples. The largest source of
theoretical uncertainty in these decays arises from the hadronic matrix elements, i.e., from the form factors f B̄→D+ (q2)

and f B̄→D
0 (q2). Both form factors have been obtained independently using lattice QCD simulations by the HPQCD [67]

and FNAL/MILC [65] collaborations. In the following this information is used as part of the data D in the form of a joint
likelihood. The form factors at different q2 values of each calculation are available in EOS as eos.Constraint objects
under the names B->D::f_++f_0@HPQCD:2015A and B->D::f_++f_0@FNAL+MILC:2015B. Here, we use these
two constraints to construct a multivariate Gaussian prior as follows:
� �

analysis_args = {
  'priors': [
    {'parameter': 'B->D::alphaˆf+_0@BSZ2015', 'min': 0.0, 'max': 1.0, 'type': 'uniform'},
    {'parameter': 'B->D::alphaˆf+_1@BSZ2015', 'min':-5.0, 'max':+5.0, 'type': 'uniform'},
    {'parameter': 'B->D::alphaˆf+_2@BSZ2015', 'min':-5.0, 'max':+5.0, 'type': 'uniform'},
    {'parameter': 'B->D::alphaˆf0_1@BSZ2015', 'min':-5.0, 'max':+5.0, 'type': 'uniform'},
    {'parameter': 'B->D::alphaˆf0_2@BSZ2015', 'min':-5.0, 'max':+5.0, 'type': 'uniform'}
  ],
  'likelihood': [ 'B->D::f_++f_0@HPQCD:2015A', 'B->D::f_++f_0@FNAL+MILC:2015B' ]
}
prior = eos.Analysis(∗∗analysis_args)

� �

Next we create two observables: the semimuonic branching ratio and the semitauonic branching ratio. By using
prior.parameters in the construction of these observables, we ensure that our observables and the prior share
the same parameter set. This means that changes to prior.parameters will affect the evaluation of both observables.

Listing 4 Produce samples of the prior and prior-predictive samples for two observables.
� �

obs_mu  = eos.Observable.make('B->Dlnu::BR',  prior.parameters, eos.Kinematics({'q2_min': 0.02, 'q2_max': 11.60}),
                              eos.Options({'l':'mu', 'form-factors':'BSZ2015'}))
obs_tau = eos.Observable.make('B->Dlnu::BR',  prior.parameters, eos.Kinematics({'q2_min': 3.17, 'q2_max': 11.60}),
                              eos.Options({'l':'tau','form-factors':'BSZ2015'}))
observables = (obs_mu, obs_tau)
parameter_samples, _, observable_samples = prior.sample(N=5000, pre_N=1000, observables=observables)

� �

In the above, we provide the option 'form-factors': 'BSZ2015' to ensure that the form factor plugin corresponds
to the set of parameters that are described by prior. Sampling from the natural logarithm of the prior PDF and – at the same
time – producing prior-predictive samples of both observables is achieved using the sample method. This method runs one
Markov chain using the pypmc package, and it is discussed in more detail in Sect. 3.2. Here N=5000 samples of both the
parameter set and the observable set are produced, and we discard the values of the log prior for each parameter sample by
assigning the return value to _. Note that the production of posterior-predictive samples is achieved in the same way. The
distinction between a prior PDF and a posterior PDF is entirely a semantic one.

To illustrate the prior-predictive samples we use EOS’ plotting framework:

Listing 5 Histogram prior-predictive samples of two observables. The output is shown in the left plot Output 1.
� �

plot_args = {
    'plot': {
        'x': { 'label': r'$d\mathcal{B}/dqˆ2$',  'range': [0.0,  3e-2] },
        'legend': { 'location': 'upper center' }
    },
    'contents': [
        { 'label': r'$\ell=\mu$', 'type': 'histogram', 'bins': 30,
          'data': { 'samples': observable_samples[:, 0] } },
        { 'label': r'$\ell=\tau$','type': 'histogram', 'bins': 30,
          'data': { 'samples': observable_samples[:, 1] } },
    ]
}
eos.plot.Plotter(plot_args).plot()

� �
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The arithmetic mean and the variance of the samples can be determined with standard techniques, e.g., using the NumPy
routines numpy.average and numpy.var.

A further recurring task is to produce and plot uncertainty bands for differential observables. Here, we use the differential
branching ratios for the previously discussed semimuonic and semitauonic decays. Using EOS we approach this task by
creating two lists of observables. The first list includes only the B̄ → Dμ−ν̄ at various points in its phase space. Due to the
strong dependence of the branching ratio on q2, we do not distribute the points equally across the full phase space. Instead,
we equally distribute half of the points in the interval [0.02 GeV2, 1.00 GeV2] and the other half in the remainder of the phase
space. The second list is constructed similarly for B̄ → Dτ−ν̄. We then pass these lists to sample, to obtain prior-predictive
samples of the observables:

Listing 6 Produce prior-predictive samples for the differential B̄ → D{μ−, τ−}ν̄ branching ratios at various points in their respective phase spaces.
The results are used in Listing 7 to produce the output shown in the right plot of Output 1.
� �

mu_q2values  = numpy.unique(numpy.concatenate((numpy.linspace(0.02,  1.00, 20), numpy.linspace(1.00, 11.60, 20))))
mu_obs       = [eos.Observable.make(
                   'B->Dlnu::dBR/dq2', prior.parameters, eos.Kinematics(q2=q2),
                   eos.Options({'form-factors': 'BSZ2015', 'l': 'mu'}))
               for q2 in mu_q2values]
tau_q2values = numpy.linspace(3.17, 11.60, 40)
tau_obs      = [eos.Observable.make(
                   'B->Dlnu::dBR/dq2', prior.parameters, eos.Kinematics(q2=q2),
                   eos.Options({'form-factors': 'BSZ2015', 'l': 'tau'}))
               for q2 in tau_q2values]
_, _, mu_samples  = prior.sample(N=5000, pre_N=1000, observables=mu_obs)
_, _, tau_samples = prior.sample(N=5000, pre_N=1000, observables=tau_obs)

� �

We plot the so-obtained prior-predictive samples with EOS’s plotting framework:

Listing 7 Plot the previously obtained prior-predictive samples. The production of the samples is achieved in Listing 6, and the output is shown in
the right plot of Output 1.
� �

plot_args = {
    'plot': {
        'x': {'label': r'$qˆ2$', 'unit': r'$\textnormal{GeV}ˆ2$', 'range': [0.0, 11.60] },
        'y': {'label': r'$d\mathcal{B}/dqˆ2$',                    'range': [0.0,  5e-3] },
        'legend': { 'location': 'upper center' }
    },
    'contents': [
        {
          'label': r'$\ell=\mu$', 'type': 'uncertainty', 'range': [0.02, 11.60],
          'data': { 'samples': mu_samples, 'xvalues': mu_q2values }
        },
        {
          'label': r'$\ell=\tau$','type': 'uncertainty', 'range': [3.17, 11.60],
          'data': { 'samples': tau_samples, 'xvalues': tau_q2values }
        },
    ]
}
eos.plot.Plotter(plot_args).plot()

� �

3.2 Parameter inference

[The example developed in this section can be ran interactively from the example notebook for parameter inference available
from Ref. [8], file examples/inference.ipynb]

EOS infers parameters from a database of experimental or theoretical constraints in combination with its built-in observables.
This section illustrates how to construct an eos.Analysis object that represents the statistical analysis and to infer the
best-fit point and uncertainties of a list of parameters through optimization and Monte Carlo methods. We pick up the example
introduced in Sect. 2.7 to illustrate the above-mentioned features of EOS. In particular, we use the two experimental constraints
B^0->D^+e^-nu::BRs@Belle:2015A and B^0->D^+mu^-nu::BRs@Belle:2015A, to infer the value of the
CKM matrix element |Vcb|.

3.2.1 Defining the statistical analysis

To define our statistical analysis for the inference of |Vcb| from measurements of the B̄ → D
−ν̄ branching ratios, some
decisions are needed. First, we must decide how to parametrize the hadronic form factors that describe semileptonic B̄ → D
transitions. For what follows we will use the parametrization of Ref. [63], referred to as [BSZ:2015A]. Next, we must
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Output 1 Plot of the branching ratios of B̄ → D{μ−, τ−}ν̄. Left:
prior-predictive samples for the integrated branching ratios obtained
from the code in Listing 4. Right: differential branching ratios as func-

tions of q2. The central curves are obtained from Listing 3. The uncer-
tainty bands are obtained from the samples obtained in Listing 6 using
the plotting code in Listing 7

Output 2 Display of the best-fit point and goodness-of-fit summary obtained from optimizing the the B̄ → D
−ν̄ analysis shown in Listing 1

decide the theory input for the form factors. For this, we will combine the correlated lattice QCD results published by the
Fermilab/MILC and HPQCD collaborations in 2015 [67,68].

The corresponding eos.Analysis object is shown in Listing 1; it has been used previously as an example in Sect. 2.7.
The global options ensure that our choice of form factor parametrization is used throughout, and that for CKM matrix
elements the CKM model is used. The latter provides parametric access to the Vcb matrix element through two objects of type
eos.Parameter: the absolute value CKM::abs(V_cb) and the complex phase CKM::arg(V_cb). The latter is not
accessible from b → c
ν̄.

We also set the starting value of CKM::abs(V_cb) to a sensible value of 42·10−3 via
� �

analysis.parameters['CKM::abs(V_cb)'].set(42.0e-3)
� �

To maximize the (logarithm of the) posterior density we can call the optimize method, as shown in Listing 8. In a
Jupyter notebook, it is useful to display the return value of this method, which illustrates the best-fit point. Further useful
information is contained in the goodness-of-fit summary. The latter lists each constraint, its degrees of freedom, and its χ2

value (if applicable3), alongside the p-value for the entire likelihood.

Listing 8 Optimize the posterior density and provide the best-fit point and goodness-of-fit summary. The output is shown in Output 2.
� �

bfp = analysis.optimize()
display(bfp)
display(analysis.goodness_of_fit())

� �

Instead of setting individual parameters to sensible values as we did for CKM::abs(V_cb) earlier, a starting point can
alternatively be provided to optimize using the start_point keyword argument.

The maximization of the posterior by means of optimize uses SciPy’s optimize module [76]. The default opti-
mization algorithm is the Sequential Least SQuares Programming (SLSQP). Other algorithms can be selected and configured
through keyword arguments that optimize forwards to scipy.optimize.

To interface with optimizers other than available within SciPy, EOS provides the log_pdf method. As its first
argument, it expects the list of the parameter values. The parameters’ ordering must correspond to the ordering of

3 Note that EOS supports likelihood functions that do not have a χ2 test statistic or any test statistic at all.
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Output 3 Distribution of samples (left) of the 1D-marginal poste-
rior of |Vcb| as a regular histogram and as a kernel density estimate
(blue line); and (right) of the 2D-marginal joint posterior of |Vcb| and

f B̄→D+ (0) as contours at 68% and 95% probability (orange lines and
filled areas). The plots are produced by listing B.1 and listing B.2,
respectively

analysis.varied_parameters, and each parameter’s values must be rescaled to the interval [−1,+1], where the
boundaries correspond to the minimal/maximal value in the prior specification.

3.2.2 Importance sampling of the posterior

To sample from the posterior, EOS provides the sample method. Optionally, this can also produce posterior-predictive
samples for a list of observables. We can use these samples to illustrate the results of our fit in relation to the experimental
constraints.

For this example, we produce such posterior-predictive samples for the differential B̄ → D+μ−ν̄ branching ratio in the
40 points of the kinematic variable q2 used in the previous examples (redefined in the following listing for completeness).

Listing 9 Produce posterior-predictive samples for the differential B̄ → D+μ−ν̄ branching ratio.
� �

mu_q2values = numpy.unique(numpy.concatenate((numpy.linspace(0.02,  1.00, 20),
                                              numpy.linspace(1.00, 11.60, 20))))
mu_obs      = [eos.Observable.make('B->Dlnu::dBR/dq2', analysis.parameters, eos.Kinematics(q2=q2),
                                   eos.Options({'form-factors': 'BSZ2015', 'l': 'mu', 'q': 'd'})) for q2 in 

mu_q2values]
parameter_samples, log_weights, mu_samples = analysis.sample(N=20000, stride=5, pre_N=1000, preruns=5, start_point=

bfp.point,
                observables=mu_obs)

� �

In the above we start sampling at the best-fit point as obtained earlier through optimization, which is optional. We carry
out 5 burn-in runs/preruns of 1000 samples each. The samples obtained in each of these preruns are used to adapt the
Markov chain but are then discarded. The main run produces a total of N * stride = 100000 random Markov Chain
samples. The latter are thinned down by a factor of stride = 5 to obtain N = 20000 samples, which are stored in
parameter_samples. The thinning reduces the autocorrelation of the samples. The values of the log(posterior) are stored
in log_posterior. The posterior-predictive samples for the observables are only returned if the observables keyword
argument is provided; in the above example, they are stored in mu_samples.

We can now illustrate the posterior samples either as a histogram or as a kernel density estimate (KDE) using the built-in
plotting functions, see Output 3 and listing B.1. Contours at given levels of posterior probability, as shown in Output 3, can
be obtained for any pair of parameters using listing B.2.

Sampling with the Metropolis-Hastings algorithm is known to work well for unimodal densities. However, in cases of
multimodal densities or blind directions, problems regularly arise.EOS provides the means to follow the approach of Ref. [73],
which proposes to use (potentially unadapted) Markov chains to explore the parameter space to initialize a Gaussian mixture
density. The latter is then adapted using the Population Monte Carlo algorithm [72], for which EOS uses the pypmc package
[52]. Within EOS, we use schematically the following approach:
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Output 4 Plot of the posterior-predictive importance samples for the differential B̄ → D+μ−ν̄ branching ratio vs. q2, juxtaposed with bin-
averaged measurements of the B̄ → D+{e−, μ−}ν̄ branching ratio by the Belle experiment

Listing10 Create a mixture density from a number of Markov chains, and adapt it to the posterior through a call toeos.Analysis.sample_pmc.

� �

from pypmc.mix_adapt.r_value import make_r_gaussmix
chains = []
for i in range(10):
  # run Markov Chains for your problem
  chain, _ = analysis.sample(...) # use relevant settings for your analysis in the '...'
  chains.append(chain)

# please consult the pypmc documentation for details on the call below
proposal_density = make_r_gaussmix(chains, K_g=3, critical_r=1.1)

# adapt the proposal to the posterior and obtain high-quality samples
analysis.sample_pmc(proposal_density, ...) # use relevant settings for your analysis in the '...'

� �

We can visualize the posterior-predictive samples using:

Listing 11 Plot posterior-predictive importance samples for the differential B̄ → D+μ−ν̄ branching ratio vs. q2. The result is shown in Output 4.
� �

plot_args = {
    'plot': {
        'x': { 'label': r'$qˆ2$', 'unit': r'$\textnormal{GeV}ˆ2$', 'range': [0.0, 11.63] },
        'y': { 'label': r'$d\mathcal{B}/dqˆ2$',                    'range': [0.0,  5e-3] },
        'legend': { 'location': 'lower left' }
    },
    'contents': [
        {
            'label': r'$\ell=\mu$',
            'type': 'uncertainty',
            'range': [0.02, 11.60],
            'data': { 'samples': mu_samples, 'xvalues': mu_q2values }
        },
        {
            'label': r'Belle 2015 $\ell=e,\, q=d$',
            'type': 'constraint',
            'color': 'C0',
            'constraints': 'Bˆ0->Dˆ+eˆ-nu::BRs@Belle:2015A',
            'observable': 'B->Dlnu::BR',
            'variable': 'q2',
            'rescale-by-width': True
        },
        {
            'label': r'Belle 2015 $\ell=\mu,\,q=d$',
            'type': 'constraint',
            'color': 'C1',
            'constraints': 'Bˆ0->Dˆ+muˆ-nu::BRs@Belle:2015A',
            'observable': 'B->Dlnu::BR',
            'variable': 'q2',
            'rescale-by-width': True
        },
    ]
}
eos.plot.Plotter(plot_args).plot()

� �
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Note that the use of'rescale-by-width': True converts the database’s existing entry for the bin-integrated branching
ratio into the bin-averaged branching ratio. Only that latter can be meaningfully compared with the differential branching
ratio’s curve.

3.3 Event simulation

[The example developed in this section can be run interactively from the example notebook for event simulation available
from Ref. [8], file examples/simulation.ipynb]

EOS contains built-in probability density functions (PDFs) from which pseudo events can be simulated using Markov chain
Monte Carlo techniques.

3.3.1 Constructing a 1D PDF and simulating pseudo events

The simulation of events is performed using thesample_mcmcmethod. For example, the construction of the one-dimensional
PDF describing the B → D
ν
 decay distribution in the variable q2 and for 
 = μ leptons requires:

– the q2 kinematic variable that can be set to an arbitrary starting value.
– the boundaries, q2_min and q2_max, for the phase space from which we want to sample. If needed, the phase space

can be shrunk to a volume smaller than physically allowed; the normalization of the PDF will automatically adapt.

For B → D
ν
, the Markov chains can self adapt to the PDF in 3 preruns with 1000 pseudo events/samples each.
The simulation of stride*N=250000 pseudo events/samples from the PDF, which are thinned down to N=50000, is

performed with the following code:

Listing 12 Produce importance samples of the one-dimensional SignalPDF for the B̄ → D
−ν̄ differential branching ratio. The samples are
compared to the analytic expression in the left figure of Output 5, which is produced from Listing B.3.
� �

rng = numpy.random.mtrand.RandomState(123456) # Defines a seeded random number generator
mu_kinematics          = eos.Kinematics({'q2': 2.0, 'q2_min': 0.02, 'q2_max': 11.6})
mu_options             = eos.Options({'l': 'mu'})
mu_pdf                 = eos.SignalPDF.make('B->Dlnu::dGamma/dq2', eos.Parameters(), mu_kinematics, mu_options)
mu_samples, mu_weights = mu_pdf.sample_mcmc(N=50000, stride=5, pre_N=1000, preruns=3, rng=rng)

� �

Samples for other lepton flavors, e.g., 
 = τ , require only a change of theeos.Options object to use'l': 'tau' instead
and adjustment of the phase space. Similar to observables, eos.SignalPDF objects can be plotted as a function of a single
kinematic variable, while keeping all other kinematic variables fixed. The fixed kinematic variables are provided as a dict
via the kinematics key. We show two such plots in combination with histograms of the PDF samples in Output 5 (left).
The Output shows excellent agreement between the simulations and the respective analytic expressions for the 1D PDFs.

3.3.2 Constructing a 4D PDF and simulating pseudo events

Samples can also be drawn for PDFs with more than one kinematic variable. As an example, we use the full four-
dimensional PDF for B̄ → D∗
ν̄ decays. Declaration and initialization of all four kinematic variables (q2, cos(theta_l),
cos(theta_d), and phi) is similar to the 1D case.

Listing 13 Produce importance samples of the four-dimensional SignalPDF for the B̄ → D∗(→ Dπ)
−ν̄ differential branching ratio.
� �

dstarlnu_kinematics = eos.Kinematics({
    'q2':            2.0,  'q2_min':            0.02,     'q2_max':           10.5,
    'cos(theta_l)':  0.0,  'cos(theta_l)_min': -1.0,      'cos(theta_l)_max': +1.0,
    'cos(theta_d)':  0.0,  'cos(theta_d)_min': -1.0,      'cos(theta_d)_max': +1.0,
    'phi':           0.3,  'phi_min':           0.0,      'phi_max':           2.0 ∗ numpy.pi
})

� �

We then produce the samples in a similar way as for the 1D PDF:
� �

rng = numpy.random.mtrand.RandomState(74205) # Defines a seeded random number generator
dstarlnu_pdf        = eos.SignalPDF.make('B->Dˆ∗lnu::dˆ4Gamma', eos.Parameters(), dstarlnu_kinematics, eos.Options

())
dstarlnu_samples, _ = dstarlnu_pdf.sample_mcmc(N=10∗∗6, stride=5, pre_N=1000, preruns=3, rng=rng)

� �

The samples of the individual kinematic variables can be accessed as the columns of the dstarlnu_samples object. We
can now show correlations of the kinematic variables by plotting 2D histograms, e.g. q2 vs cos θ
:
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Output 5 Left: Distribution of B → D
ν
 events for 
 = μ, τ , as
implemented in EOS (solid lines) and as obtained from Markov Chain
Monte Carlo importance sampling (histograms). The samples are pro-

duced from listing 12, and the plot is produced by listing B.3. Right:
2D histogram of the B̄ → D∗(→ Dπ)μ−ν̄ PDF in the variables q2

and cos(θ
). This output is produced by the code shown in listing 14

Listing 14 Plot a 2D histogram for samples of the B̄ → D∗(→ Dπ)μ−ν̄ PDF in the variables q2 and cos(θ
). The samples are obtained from
Listing 13, and the Output is shown in the right plot of Output 5.
� �

plot_args = {
    'plot': {
        'x': { 'label':r'$qˆ2$', 'unit': r'$\textnormal{GeV}ˆ2$', 'range': [0.0, 10.50]},
        'y': { 'label':r'$cos(\theta_\ell)$',                     'range': [-1.0, +1.0]}
    },
    'contents': [
        {
            'label': r'samples ($\ell=\mu$)',
            'type': 'histogram2D',
            'data':{
                'samples': dstarlnu_samples[:, (0,1)]
            },
            'bins': 40
        },
    ]
}
eos.plot.Plotter(plot_args).plot()

� �

4 Conclusion and outlook

We have presented the EOS software in version 1.0 and explained its three main use cases at the hand of concrete examples in
the field of flavor physics phenomenology. Beyond these examples, EOS has been used extensively for numerical evaluations,
statistical analyses and plots in a number of peer-reviewed publications. We plan to extend EOS with further processes and
observables, while keeping the Python interface unchanged.

To keep this document concise, some advanced aspects of EOS have not been discussed. These aspects, documented in
the online documentation [55], include

– the possibility to combine existing observables in arithmetic expressions at run time;
– the command line interface intended to use as part of massively parallelized batch jobs in grid or cluster environments;

and
– the addition of C++ code for new observables and processes.

Despite ongoing unit testing and development of the software, we are conscious that EOS is neither free of bugs nor
providing all the features the user could possibly need. We therefore encourage the users to report any and all bugs found and
to request additional features. We ask that any such reports or requests are communicated as issues within the EOS Github
repository [8]. We are very happy to discuss the addition of further observables and processes with interested parties from
the phenomenological and experimental communities.
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A Details on the models

A.1 The CKM model and parameters

When evaluating low-energy observables within the SM, the CKM matrix elements are evaluated using the Wolfenstein
parametrization [77] expanded to order λ8 [78]. The Wolfenstein parameters λ and A are used without modifications. The ρ

and η parameters are traded for ρ̄ and η̄ [78], the coordinates of the apex of the standard unitarity triangle. The two parameters
are defined to all orders in λ as [78]

ρ̄ = − Re
Vud V ∗

ub

Vcd V ∗
cb

, η̄ = − Im
Vud V ∗

ub

Vcd V ∗
cb

. (A.1)

These four parameter can be accessed via CKM::lambda, CKM::A, CKM::rhobar, and CKM::etabar, respectively.
A frequent physics use case involves inferring the absolute value or complex argument of a CKM matrix element from data.

Choosing the CKM model using'model': 'CKM' ensures that each complex-valued CKM matrix element is parametrized
in terms of its absolute value and complex argument. For example, the parametrization of the CKM matrix element Vub involves
the parameters CKM::abs(V_ub) and CKM::arg(V_ub). The names for the remaining CKM parameter follow the same
naming scheme.

A.2 The WET model, operator bases, and parameters

The observables for low-energy processes below the electroweak scale rely on a description in the WET, both within the SM
[79–81] and in BSM scenarios [82,83]. Observables can be evaluated within the WET by setting the model option to WET.
Within this model, WET Wilson coefficients are parametrized by individual EOS parameters, and CKM matrix elements are
treated as in the CKM model; see appendix A.1.

Within EOS, the WET is parametrized as

LWET =
∑
S

LS , (A.2)
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whereS denotes a sector of the WET, i.e., a set of operators with definite quantum numbers under global symmetries preserved
by the renormalization group evolution [84]. For each sector, EOS follows the WCxf convention [84]:

LS ≡
∑

OS
i �=OS,†

i

[
CSi OS

i + h.c.
]

+
∑

OS
i =OS,†

i

CSi OS
i . (A.3)

Here O denotes the dimension-six operators, and C is a dimensionless Wilson coefficient renormalized at an appropriate
low-energy scale μ. This scale is accessible as an eos.Parameter. The prefix part of its qualified name corresponds to
the sector and the name part of its qualified name is mu, i.e., for the sector sbsb this parameter is named sbsb::mu.

As of version 1.0, EOS supports the following sectors:

– sb
– sbee, sbmumu, sbtautau
– sbnunu
– sbsb
– cbenue, cbmunumu, cbtaunutau
– ubenue, ubmunumu, ubtaunutau

Changes to the parameters representing the Wilson coefficients only affect observables that are constructed with the model
option set to 'WET'. By convention the Wilson coefficients comprise both their SM value and potential BSM shifts, i.e.:

Ci (μ) = CSM
i (μ) + CBSM

i (μ). (A.4)

A complete list of the sectors and their operators supported by EOS is part of the WCxf basis file [85]. The parameters
describing the Wilson coefficients are listed as part of the EOS documentation [55, List of Parameters]. Using WCxf and the
wilson package [86], constraints on the WET can be readily interpreted as constraints at a different scale in the WET or as
constraints on Wilson coefficients in the Standard Model Effective Field Theory [87,88].

The SM values of the WET Wilson Coefficients up to mass dimension six are known to high precision in the SM. By
default, EOS evaluates observables with the model option set to 'SM'. This choice of option leads EOS to compute the WET
Wilson Coefficients at the electroweak scale μ0 and evolve them to the appropriate low-energy scale μ 4.

– For the sectors sb, sbee, sbmumu, and sbtautau, the SM values are computed to NNLO in QCD [89–91]. The RG
evolution to the low-energy scale ∼ mb crucially requires the resummation of radiative QCD and partially also QED
corrections [92–96].

– For the sector sbnunu, the SM values are computed to NLO in QCD [97,98].
– For the sectors cbenue through ubtaunutau, the SM values are computed to next-to-leading order in QED [99].
– For the sector sbsb, the SM values are computed to NLO in QCD [100] and NLO in EW [101]. The RG evolution to the

low scale ∼ mb crucially requires the resummation of radiative QCD corrections [102].

B Collection of examples

Here we collect a number of code examples that are used in the main text to produce a variety of plots. They have been moved
to this appendix to ease legibility of the main text.

Listing B.1 Histogram samples of the 1D-marginal posterior for |Vcb| and plot their kernel density estimate. This code is used to produce output 3
(left).
� �

plot_args = {
    'plot': {
        'x': { 'label': r'$|V_{cb}|$', 'range': [38e-3, 47e-3] },
        'legend': { 'location': 'upper left' }
    },
    'contents': [

4 The choice of μ0 should, in general, not be changed, and for some sectors there is more than one high scale involved.
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        {
            'type': 'histogram',
            'data': { 'samples': parameter_samples[:, 0] }
        },
        {
            'type': 'kde', 'color': 'C0', 'label': 'posterior', 'bandwidth': 2,
            'range': [38e-3, 47e-3],
            'data': { 'samples': parameter_samples[:, 0] }
        }
    ]
}
eos.plot.Plotter(plot_args).plot()

� �

Listing B.2 Plot contours of the joint 2D-marginal posterior of the parameters |Vcb| and f+(0) at 68% and 95% probability using a kernel density
estimate. This code is used to produce output 3 (right).
� �

plot_args = {
    'plot': {
        'x': { 'label': r'$|V_{cb}|$', 'range': [38e-3, 47e-3] },
        'y': { 'label': r'$f_+(0)$',   'range': [0.6, 0.75] },
    },
    'contents': [
        {
            'type': 'kde2D', 'color': 'C1', 'label': 'posterior',
            'levels': [68, 95], 'contours': ['lines', 'areas'], 'bandwidth': 3,
            'data': { 'samples': parameter_samples[:, (0,1)] }
        }
    ]
}
eos.plot.Plotter(plot_args).plot()

� �

Listing B.3 Plot the analytical 1D PDFs and 1D-marginal histograms of pseudo events for the decays B̄ → D{μ−, τ−}ν̄. The pseudo events for
the semimuonic decay are obtained from listing 12. The result is shown in the left plot of output 5.
� �

plot_args = {
    'plot': {
        'x': {'label': r'$qˆ2$', 'unit': r'$\textnormal{GeV}ˆ2$', 'range': [0.0, 11.60]},
        'y': {'label': r'$P(qˆ2)$', 'range': [0.0,  0.30]},
        'legend': {'location': 'upper left'}
    },
    'contents': [
        {
            'label': r'samples ($\ell=\mu$)',
            'type': 'histogram',
            'data': {'samples': mu_samples},
            'color': 'C0'
        },
        {
            'label': r'samples ($\ell=\tau$)',
            'type': 'histogram',
            'data': {'samples': tau_samples},
            'color': 'C1'
        },
        {
            'label': r'PDF ($\ell=\mu$)',
            'type': 'signal-pdf',
            'pdf': 'B->Dlnu::dGamma/dq2;l=mu',
            'kinematic': 'q2',
            'range': [0.02, 11.60],
            'kinematics': {'q2_min':  0.02, 'q2_max': 11.60},
            'color': 'C0'
        },
        {
            'label': r'PDF ($\ell=\tau$)',
            'type': 'signal-pdf',
            'pdf': 'B->Dlnu::dGamma/dq2;l=tau',
            'kinematic': 'q2',
            'range': [3.17, 11.60],
            'kinematics': {'q2_min':  3.17, 'q2_max': 11.60},
            'color': 'C1'
        },
    ]
}
eos.plot.Plotter(plot_args).plot()

� �
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C Constraints data format

Constraints are stored as YAML [103] files within the EOS source repository in the directory eos/constraints/. Each
constraint file is an associative array, with the top-level keys corresponding to the constraint’s qualified name, and the value
describing the constraint data. The constraint data itself is also an associative array. The type key determines the type of the
likelihood, and therefore which other keys must be present. EOS supports the following types of likelihood:

Gaussian The likelihood is a univariate Gaussian density. It requires the following keys:

observable The name of the observable that appears in this likelihood, as an eos.QualifiedName.
kinematics The kinematic variables and their values that underlay the likelihood’s observable, as an associative
array.
options The option keys and values that underlay the likelihood’s observable, as an associative array.
mean The mean of the likelihood, as a floating point value.
sigma-stat The statistical uncertainty of the likelihood, as an associative array with keys hi and lo. For a
completely symmetric uncertainty, set both keys to the same value.
sigma-sys The systematic uncertainty of the likelihood, as an associative array with keys hi and lo. For a
completely symmetric uncertainty, set both keys to the same value.
dof The degrees of freedom, as a floating point value. Must be set to 1 to be backward compatible.

MultivariateGaussian(Covariance) The likelihood is a multivariate Gaussian density, and correlations and
total uncertainties are specified through the covariance matrix. It requires the following keys:

dim The dimension of the covariance matrix, as an integer. Denoted below as D.
dof The degrees of freedom, as an integer.
observables The names of the observables that appear in this likelihood, as an ordered list of
eos.QualifiedName of length P . Denoted below as o.
kinematics The kinematic configuration for each of the observables, as an ordered list of length P of associative
arrays.
options The options for each of the observables, as an ordered list of length P of associative arrays.
means The mean values of the likelihood, as an ordered list of floating point values. Denoted below as μ.
covariance The D × D-dimensional covariance matrix of the likelihood, as an ordered list of ordered lists of
floating point values (row-first ordering). Denoted below as Σ .
response The optional D × P-dimensional response matrix that converts a P dimensional theory prediction into
a D dimension measurement. If not specified, EOS assumes that P = D and that the response matrix is the identity
matrix. Specified as an ordered list of ordered lists of floating point values (row-first ordering). The response matrix is
used to fold the theory predictions. This enables fits involving experimental results that have not or cannot be unfolded.
Denoted below as R.

The logarithm of the likelihood L reads

− 2 ln L = −2 lnND(Ro | μ,Σ) ∼ (μ − Ro)T Σ−1 (μ − Ro) . (C.5)

In the above, ND(· | μ,Σ) denotes a D-variate Gaussian PDF centered at μ with covariance Σ .

Mixture The likelihood is a mixture density, with all mixture components being multivariate Gaussian densities. Their
correlations and total uncertainties are specified through their respective covariance matrices. It requires the following
keys:
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dim The dimension of each covariance matrix, as an integer. Denoted below as D.
observables The names of the observables that appear in this likelihood, as an ordered list of eos.
QualifiedName of length D. Denoted below as o.
kinematics The kinematic configuration for each of the observables, as an ordered list of length D of associative
arrays.
options The options for each of the observables, as an ordered list of length D of associative arrays.
components The description of the mixture components as a list of length N . Each list element is an associative
array that requires the following keys:

means The mean values of this component, as a list of floats of length D. Denoted below as μn .
covariance The covariance of this component, as a list of lists of floats. Denoted below as Σn .

weights The weights of the mixture components as a list of length N . Denoted below as αn .

The likelihood L reads

L =
N∑

n=1

αn ND(o | μn,Σn) with
N∑

n=1

αn = 1. (C.6)

Listing C.1 Example of a multivariate Gaussian constraint as recorded in the EOS source code repository, representing binned measurements of
the B̄0 → D+e−ν̄ branching ratio by the Belle experiment [66].
� �

B^0->D^+e^-nu::BRs@Belle:2015A:
type: MultivariateGaussian(Covariance)
dim: 10
observables:

[ B->Dlnu::BR, B->Dlnu::BR, B->Dlnu::BR, B->Dlnu::BR, B->Dlnu::BR,
B->Dlnu::BR, B->Dlnu::BR, B->Dlnu::BR, B->Dlnu::BR, B->Dlnu::BR ]

options:
[ { l: e, q: d }, { l: e, q: d }, { l: e, q: d }, { l: e, q: d }, { l: e, q: d },

{ l: e, q: d }, { l: e, q: d }, { l: e, q: d }, { l: e, q: d }, { l: e, q: d } ]
kinematics:

- { q2_min: 10.44, q2_max: 11.63 }
- { q2_min: 9.26, q2_max: 10.44 }
- { q2_min: 8.07, q2_max: 9.26 }
- { q2_min: 6.89, q2_max: 8.07 }
- { q2_min: 5.71, q2_max: 6.89 }
- { q2_min: 4.52, q2_max: 5.71 }
- { q2_min: 3.34, q2_max: 4.52 }
- { q2_min: 2.15, q2_max: 3.34 }
- { q2_min: 0.97, q2_max: 2.15 }
- { q2_min: 0.01, q2_max: 0.97 }

means:
[ 4.154e-05, 6.106e-04, 1.255e-03, 1.635e-03, 1.901e-03, 2.758e-03, 3.524e-03, 4.216e-03, 4.371e-03, 4.050e-03 ]

covariance:
- [1.912e-09, 1.726e-10, 3.427e-10, 4.424e-10, 5.041e-10, 7.320e-10, 9.624e-10, 1.096e-09, 1.049e-09, 8.840e-10]
- [1.726e-10, 1.478e-08, 1.811e-09, 2.383e-09, 2.738e-09, 3.977e-09, 5.166e-09, 5.959e-09, 5.903e-09, 5.209e-09]
- [3.427e-10, 1.811e-09, 2.863e-08, 4.849e-09, 5.579e-09, 8.101e-09, 1.051e-08, 1.215e-08, 1.214e-08, 1.075e-08]
- [4.424e-10, 2.383e-09, 4.849e-09, 3.786e-08, 7.398e-09, 1.071e-08, 1.387e-08, 1.602e-08, 1.603e-08, 1.425e-08]
- [5.041e-10, 2.738e-09, 5.579e-09, 7.398e-09, 4.355e-08, 1.241e-08, 1.606e-08, 1.860e-08, 1.873e-08, 1.678e-08]
- [7.320e-10, 3.977e-09, 8.101e-09, 1.071e-08, 1.241e-08, 6.176e-08, 2.334e-08, 2.709e-08, 2.731e-08, 2.440e-08]
- [9.624e-10, 5.166e-09, 1.051e-08, 1.387e-08, 1.606e-08, 2.334e-08, 8.585e-08, 3.533e-08, 3.555e-08, 3.156e-08]
- [1.096e-09, 5.959e-09, 1.215e-08, 1.602e-08, 1.860e-08, 2.709e-08, 3.533e-08, 1.022e-07, 4.194e-08, 3.744e-08]
- [1.049e-09, 5.903e-09, 1.214e-08, 1.603e-08, 1.873e-08, 2.731e-08, 3.555e-08, 4.194e-08, 1.005e-07, 3.887e-08]
- [8.840e-10, 5.209e-09, 1.075e-08, 1.425e-08, 1.678e-08, 2.440e-08, 3.156e-08, 3.744e-08, 3.887e-08, 8.132e-08]

dof: 10
� �
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D Glossary of EOS classes
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sample . . . . . . . . 11, 15, 16, 18
sample_pmc . . . . . . . . . . 11, 19

eos.Constraint 4, 5, 9, 13, 15
eos.Constraints . . . . . .5, 9, 10
eos.Kinematics. . . . . . . .5–8, 10
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5–7, 10, 14
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