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Abstract
We provide an account for the existence and uniqueness of solutions to rough differential

equations in infinite dimensions under the framework of controlled rough paths. The case
when the driving path is α-Hölder continuous for α > 1/3 is widely available in the literature.
In its extension to the case when α � 1/3, the main challenge and missing ingredient is to
show that controlled rough paths are closed under composition with Lipschitz transformations.
Establishing such a property precisely, which has a strong algebraic nature, is a main purpose
of the present article.

1. Introduction

1. Introduction
Multidimensional stochastic differential equations (SDEs) of the form

(1.1) dYt =

d∑
j=0

Vj(Yt)dX j
t , Y0 = y,

where X0
t = t, (X j

t )d
j=1 is a d-dimensional Brownian motion, and (Vj)d

j=0 are smooth vector
fields on Rn, has been frequently used for modelling in mathematical physics and finance (cf.
[13] and the references therein). The case when Vj = 0 for all j � 0 corresponds to ordinary
differential equations (ODEs). The SDE (1.1) also has applications in pure mathematics.
For instance, the distribution of its solution can be used to study some second order linear
parabolic and elliptic differential equations, leading to probabilistic proofs of celebrated
results in PDE theory such as Hörmander’s theorem (cf. Malliavin [11]).

When using Picard’s iteration to establish the existence and uniqueness of solutions to
(1.1), the convergence of the iteration is established under the L2-norm with respect to the
Wiener measure. Partly inspired by the conjectures of H. Fölmer, Lyons [8] developed a
pathwise approach to construct the integral against the “dX j

t ’s” and showed the pathwise
well-posedness of the SDE. Lyons’ pathwise estimates were performed through considering
the Brownian motion as an enhanced object by including the second order structure given
by an iterated integral process:

Xs,t =
(
Xt − Xs,

∫
s<u1<u2<t

dXu1 ⊗ dXu2

)
.

In fact, given any function (s, t)→ Xs,t satisfying certain algebraic and analytic conditions, a
unique solution Y to the equation (1.1) can be constructed in terms of X, so that the mapping
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X→ Y is continuous. Such functions X are known as weakly geometric rough paths.
Lyons defined the solution for (1.1) effectively as

Ys,t =
(
Yt − Ys,

∫
s<u1<u2<t

dYu1 ⊗ dYu2

)
so that the solution path Y, like X, is also a weakly geometric rough path. Lyons’ rough
path theory has an analytic nature and goes way beyond the framework of Brownian motion.
Later on, Gubinelli [5] proposed an alternative way to interpret the solution Y as a controlled
path, which we will elaborate below. The monograph of Friz and Hairer [2] contains an
excellent exposition of this approach. In contrast to weakly geometric rough paths, the
set of controlled paths has a nice linear structure making it into a Banach space and some
algebraic considerations are simplified accordingly. Both [5, 2] contain the complete theory
for the case when the Hölder exponent α of X is greater than 1/3.

While for most parts it is commonly believed that the extension to the case when α � 1/3
is standard, the proofs and precise quantitative estimates under the framework of controlled
paths do not seem to be readily available in the literature. There is an essential ingredient
whose extension to the case when α � 1/3 is not obvious at all. To be more specific, when
formulating the differential equation

(1.2) d = F()dX

in the sense of controlled paths, one needs to prove that if  is controlled by X and F is a
suitably regular function, then F() is also controlled by X. In the case when α � 1/3, such
a stability property was first established by Gubinelli [6] and more recently by Friz-Zhang
[4] in the context of branched rough paths. Correspondingly, existence and uniqueness
of solutions to differential equations driven by branched rough paths was also established
in these works. Since all finite dimensional geometric rough paths can be considered as
branched rough paths, [6] and [4] provide a natural generalisation of the controlled rough
path theory which also allow arbitrary regularity. However, the theory of branched rough
path is essentially finite dimensional since branched rough paths are indexed by rooted trees
over a finite set of labels. The combinatorial analysis of branched rough paths also reflects
its finite dimensionality in a crucial way.

The main goal of the present article is to develop a generalisation of controlled rough
path theory to the case α � 1/3 in infinite dimensions in an intrinsic way. In other words,
the underlying paths are assume to take values in Banach spaces and the current approach
does not rely on a choice of basis. As we will see, the main challenge in proving the afore-
mentioned stability property of controlled rough paths when α � 1/3 has a strong algebraic
nature that is not similar to the usual Hölder regularity estimates. The “geometric” feature
of X plays a critical role which is not needed in the case when α > 1/3. A major effort of
the present article is to develop this algebraic component precisely based on tools from free
Lie algebras (cf. Section 4 below). For completeness, we have also included a full proof to-
wards the well-posedness (existence, uniqueness and continuity) of the equation (1.2) under
the framework of controlled paths (cf. Theorem 6.1 in Section 6.2). In our modest opinion,
having the controlled rough path framework properly set-up in full generality along with the
key quantitative estimates might also be beneficial and convenient for the broader commu-
nity. We remark that the consideration of infinite dimensional equations is needed in many
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applications. A notable example is the recent work of Ohashi-Russo-Shamarova [12], in
which the authors established the existence and smoothness of density for path-dependent
SDEs from the perspective of controlled differential equations in infinite dimensions.

Apart from Lyons’ original approach and Gubinelli’s controlled path approach, there
are several other approaches to study differential equations driven by rough paths, some
of which further develops the idea of controlled paths (see for instance Davie [1], Hairer [7],
Lyons-Yang [10]).

Organization. The present article is organized as follows. In Section 2, we recall the basic
notions of geometric rough paths and controlled rough paths. In Section 3, we derive a
Hölder estimate for controlled rough paths in terms of the remainders. This estimate is
needed for later purposes. In Section 4, we prove the stability of controlled rough paths
under Lipschitz transformations. This part is a main ingredient of the present article. In
Sections 5 and 6, we study rough integration and rough differential equations.

2. Preliminary notions of rough paths

2. Preliminary notions of rough paths
We begin by recapturing some notions of geometric and controlled rough paths over Ba-

nach spaces. This provides the framework on which the present article is based.

2.1. Geometric rough paths.
2.1. Geometric rough paths. Let U and V denote Banach spaces. The spaces U and

V will represent the space in which the paths Y and X in (1.1) take values respectively. A
family of admissible tensor norms on

(
V⊗n)∞

n=1 (cf. Lyons-Qian [9]) is a family of norms,
one for each of V⊗n, such that:

For v ∈ V⊗n and w ∈ V⊗k,

‖v ⊗ w‖V⊗(n+k) � ‖v‖V⊗n‖w‖V⊗k ;

Given a permutation σ of order n, let Pσ denote a linear transformation on V⊗n such that

Pσ
(
v1 ⊗ · · · ⊗ vn) = vσ(1) ⊗ · · · ⊗ vσ(n).

Then for all v ∈ V⊗n,

‖Pσ(v)‖V⊗n = ‖v‖V⊗n .

Throughout the rest, whenever working with Banach tensor products, we always assume
that a family of admissible tensor norms is given fixed. For simplicity, we always use | · | to
denote norms of tensors, and use ‖ · ‖ to denote Hölder norms of paths.

Let (U; V) denotes the space of bounded linear operators from U to V . We frequently
identify spaces (U;(U; V)) and (U⊗2; V), and similarly for more general cases
(U⊗n; V).

Let 0 < α � 1/2 and set N � [1/α] to be the largest integer that does not exceed 1/α.
The number α is fixed throughout this article, and all constants in the article will, without
further comment, depend on α.

A continuous mapping Xi : ΔT � {(s, t) : 0 � s � t � T } → V⊗i is called α-Hölder
continuous if
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‖Xi‖iα � sup
0�s<t�T

|Xi
s,t|

(t − s)iα < ∞.

Let T (N)(V) denote the truncated tensor algebra 1 ⊕ V ⊕ · · · ⊕ V⊗N . A mapping X : ΔT →
T (N)(V) is called multiplicative if for any s � u � t,

Xs,u ⊗ Xu,t = Xs,t.

The following algebraic structure will be used in Section 4 in a crucial way. For each
k � 1, consider the algebra

T (N)(V)�k � T (N)(V) � · · · � T (N)(V)︸������������������������︷︷������������������������︸
k

.

Here � denotes the tensor product whose notation is used to distinguish from the one ⊗
defined over T (N)(V). The product structure ∗ over T (N)(V)�k is induced by

(ξ1 � · · · � ξk) ∗ (η1 � · · · � ηk) � (ξ1 ⊗ η1) � · · · � (ξk ⊗ ηk).

If f1, · · · , fk ∈ (T (N)(V); U), we denote

f1 � · · · � fk : T (N)(V)�k → U�k

as the mapping induced by

f1 � · · · � fk(ξ1 � · · · � ξk) � f1(ξ1) � · · · � fk(ξk).

There is an algebra homomorphism

δk : (T (N)(V),⊗)→ (
T (N)(V)�k, ∗)

induced by

δk(v) � v � 1 � · · · � 1 + · · · + 1 � · · · � 1 � v, v ∈ V,

where 1 � (1, 0, · · · , 0) denotes the unit element of T (N)(V). See [14], Section 1.4 for further
details about δk. Let ξ = v1 ⊗ · · · ⊗ vr ∈ V⊗r. Given I = {i1, · · · , im} with i1 < · · · < im, we
define

ξ|I � vi1 ⊗ · · · ⊗ vim
and we adopt the convention that ξ|∅ is the scalar 1. One useful property of δk is that

(2.1) δk
(
ξ
)
=

∑
(Iα)

v|I1 � · · · � v|Ik

where the above summation is taken over all partitions (Iα) of {1, · · · , r} into disjoint subsets
I1, · · · , Ik (some of them can be ∅).

Definition 2.1. The free nilpotent group of order N is the subset of T (N)(V) defined by

GN(V) =
{
ξ = (ξ0, · · · , ξN) ∈ T (N)(V) : δk(ξ) =

∑
0�l1+···+lk�N

ξl1 � · · · � ξlk , ∀k � 2
}
.(2.2)
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Remark 2.1. The above characterization of the free nilpotent group of order N is equiv-
alent to a common definition in terms of the exponential of Lie series. Indeed, according
to [14], Theorem 3.2, an element ξ ∈ T (∞)(V) (the algebra of infinite tensor series) is the
exponential of a formal Lie series if and only if

δ̃2(ξ) = ξ � ξ,

where δ̃2 is the canonical extension of δ2 onto T (∞)(V). By a similar proof, this is also
equivalent to

(2.3) δ̃k(ξ) = ξ�k, ∀k � 2.

To see the equivalence between (2.3) and (2.2), given r and k let us introduce the projection

Pr : T (∞)(V)�k →
⊕

l1+···+lk=r

V⊗l1 � · · · � V⊗lk ⊆ T (N)(V)�k.

If ξ = (ξ0, ξ1, ξ2, · · · ) with ξi ∈ V⊗i, then

Pr(δ̃k(ξ)) =
∑

l1+···+lk=r

ξl1 � · · · � ξlk .

As (2.1) implies that δk sends V⊗r to
⊕

l1+···+lk=r V⊗l1 � · · · � V⊗lk , we see that

δk(ξr) = Pr(δ̃k(ξ)) =
∑

l1+···+lk=r

ξl1 � · · · � ξlk .

Therefore, if (ξ0, ξ1, · · · , ξN) is the exponential of a Lie series on T (N)(V), we have

δk((ξ0, · · · , ξN)) =
∑

0�l1+···+lk�N

ξl1 � · · · � ξlk .

Remark 2.2. Technically, we should assume that the algebraic tensor product T (N)(V)�k

has been completed with respect to some admissible tensor norm (e.g. the projective tensor
norm). But this is not an essential point since we will only work with elements in the
algebraic tensor product (i.e. linear combinations of tensors of the form ξ1 � · · · � ξk).

Definition 2.2. A α-Hölder geometric rough path X is a multiplicative functional

X = (1, X1, · · · , XN) : ΔT → T (N)(V)

such that Xs,t ∈G(N)(V) for any (s, t) ∈ ΔT and Xi is α-Hölder continuous for each 1 � i � N.

Remark 2.3. Here we follow the convention in [2] and call such rough paths geometric.
In the earlier rough path literature (e.g. [3]), such paths are often called weakly geometric.

Given two α-Hölder geometric rough paths X, X̃, we define their “distance” by

(2.4) ρα(X, X̃) �
N∑

i=1

‖Xi − X̃i‖iα.

We also denote ‖X‖α � ρα(X, 1).
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Remark 2.4. A typical way of constructing geometric rough paths is as follows. Let
{X(m) : m � 1} be a sequence of Lipschitz continuous paths in V . Then the limit

(2.5) Xs,t = lim
m→∞

(
1,

∫
s<u1<t

dX(m)
u1
, · · · ,

∫
s<u1<···<uN<t

dX(m)
u1
⊗ · · · ⊗ dX(m)

uN

)
yields a α-Hölder geometric rough path provided that the convergence holds under the α-
Hölder metric (2.4). When V is finite dimensional, the union over {α : α < α′} of all
functionals ΔT → T (N)(V) that can be constructed through the procedure of (2.5) is precisely
the set of α′-Hölder geometric rough paths (cf. [3], Corollary 8.24).

According to [8], when X is a geometric rough path, the solution to the differential equa-
tion (1.1) can be constructed in the sense of geometric rough paths.

2.2. Controlled rough paths.
2.2. Controlled rough paths. In this article, we take the perspective of controlled rough

paths introduced by Gubinelli [5]. A benefit of this viewpoint is that the underlying path
space is a Banach space which simplifies algebraic considerations to some extent. Heuristi-
cally, the solution to the rough differential equation dYt = F(Yt)dXt can be formulated as the
fixed point of the mapping  : Y· →

∫ ·
0 F (Yt) dXt, provided that  is a contraction on a

suitable space of controlled rough paths. We first define the notion of controlled rough paths
precisely.

Definition 2.3. A collection of continuous paths t = (Y0
t , Y

1
t , · · · , YN−1

t ), where Y0
t ∈ U

and Yi
t ∈ (V⊗i; U) for 1 � i � N − 1, is called an α-Hölder controlled rough path over U

with respect to X, if the “remainder” defined by


i
s,t �

⎧⎪⎪⎨⎪⎪⎩Yi
t − Yi

s −
∑N−1−i

j=1 Yi+ j
s X j

s,t, if 0 � i � N − 2,

YN−1
t − YN−1

s , if i = N − 1,

satisfies for each 0 � i � N − 1,

‖
i‖(N−i)α � sup

0�s<t�T

| i
s,t|

|t − s|(N−i)α < ∞.

The space of controlled rough paths over U with respect to X is denoted as X;α(U). We
define a semi-norm ‖ · ‖X;α on X;α(U) by

‖‖X;α �
N−1∑
i=0

‖
i‖(N−i)α.

Remark 2.5. We often use the shorthanded notation Yi
s,t � Yi

t − Yi
s.

Let X, X̃ be two α-Hölder rough paths. To measure the distance between  ∈ X;α(U)
and ̃ ∈ X̃;α(U), we define the functional

dX,X̃;α( , ̃) �
N−1∑
i=0

‖
i −̃

i‖(N−i)α.



Lipschitz-Stability of Controlled Rough Paths 659

3. Hölder estimates for controlled rough paths

3. Hölder estimates for controlled rough paths
The following lemma tells us how to estimate ‖Yi − Ỹ i‖α in terms of dX,X̃;α( , ̃) and the

difference of the initial data. This estimate is useful in the next section when we study the
stability of controlled paths under Lipschitz transformations. For simplicity, we introduce
the notation

δXi � Xi − X̃i, δYi � Yi − Ỹ i, δi � 
i −̃

i
.

Lemma 3.1. For each 2 � i � N, there exists a universal function Mi : [0,∞)5 → [0,∞)
which is continuous and increasing in each variable, such that

‖δYN−i‖α � Mi
(
T, ‖X‖α, ‖X̃‖α, max

1� j�i−1
|YN− j

0 |, max
1� j�i−1

‖
N− j‖ jα

)

× [
ρα(X, X̃) + ‖δN−i‖iα +

i−1∑
j=1

(|δYN− j
0 | + ‖δN− j‖ jα

)]
.

Remark 3.1. If i = 1, δYN−i = δN−1 and hence

(3.1) ‖δYN−i‖α = ‖δN−1‖α.
Proof. We prove the lemma by induction. When i = 2, we have

YN−2
s,t − ỸN−2

s,t =
(
YN−1

s X1
s,t − ỸN−1

s X̃1
s,t
)
+

(


N−2
s,t −̃

N−2
s,t

)
= YN−1

s (X1
s,t − X̃1

s,t) + (YN−1
s − ỸN−1

s )X̃1
s,t +

(


N−2
s,t −̃

N−2
s,t

)
.

It follows from (3.1) that

‖δYN−2‖α � (1 + Tα)
(|YN−1

0 | + ‖YN−1‖α)‖δX1‖α
+ (1 + Tα)

[(|δYN−1
0 | + ‖δYN−1‖α)‖X̃1‖α + ‖δN−2‖2αTα]

� (1 + Tα)
(
Tα + ‖X̃‖α + |YN−1

0 | + ‖
N−1‖α)

× [‖δX1‖α + |δYN−1
0 | + ‖δN−1‖α + ‖δN−2‖2α].

Therefore, the claim holds in this case.
Suppose that the claim holds for δYN−1, · · · , δYN−i. Using that

δYN−(i+1)
s,t =

i∑
j=1

YN− j
s Xi+1− j

s,t −
i∑

j=1

ỸN− j
s X̃i+1− j

s,t + δN−(i+1),

we have

‖δYN−(i+1)‖α(3.2)

�
(
1 + T (i+1)α)[ i∑

j=1

(|YN− j
0 | + ‖YN− j‖α)‖δXi+1− j‖(i+1− j)α

+

i∑
j=1

(|δYN− j
0 | + ‖δYN− j‖α)‖X̃i+ j‖(i+ j)α + ‖δN−(i+1)‖(i+1)α

]

�
(
1 + T (i+1)α)(1 +max

1� j�i

(|YN− j
0 | + ‖YN− j‖α) + ‖X̃‖α)
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[
ρα(X, X̃) +

i∑
j=1

(|δYN− j
0 | + ‖δYN− j‖α) + ‖δN−(i+1)‖(i+1)α

]
.

By the induction hypothesis with X = X̃ and taking Ỹ = 0, there is a universal function Mj

that is continuous and increasing in every variable, such that

(3.3) ‖YN− j‖α � Mj
(
T, ‖X‖α, max

1�l� j−1
|YN−l

0 |,max
1�l� j
‖

N−l‖α)
and similarly for each 1 � j � i we have

‖δYN− j‖α � M̃ j
(
T, ‖X‖α, ‖X̃‖α, max

1�l� j−1

∣∣∣YN−l
0

∣∣∣, max
1�l� j−1

‖
N−l‖α)(3.4)

× [
ρα(X, X̃) + ‖δN− j‖ jα +

j−1∑
l=1

(∣∣∣δYN−l
0

∣∣∣ + ‖δN−l‖lα)].
The induction step follows by substituting (3.3) and (3.4) into (3.2). �

Remark 3.2. An immediate consequence of Lemma 3.1 is that X;α(U) is a Banach space
under the norm

(3.5) ��X;α � ‖‖X;α +

N−1∑
i=0

|Yi
0|.

4. Stability of controlled rough paths under Lipschitz transformations

4. Stability of controlled rough paths under Lipschitz transformations
Under the framework of controlled rough paths, an essential ingredient for solving an

RDE d = F()dX (with Lipschitz vector field F) is to show that F() is also a controlled
rough path. We would like to point out that the extension of this property from the case
of 1/3 < α � 1/2 (which is the common setting in most of the literature) to the general
case of α < 1/3 is non-trivial. As we will see, the main challenge has an algebraic nature
rather than just being standard regularity estimates. To point this out concisely, the Taylor
expansion of F for the 0-th level function (i.e. equation (4.1) below when j = 0) allows us
to motivate the construction of F() = (F()0, · · · , F()N−1) as a controlled rough path
in one go. However, justifying the remainder regularity for all the derivative paths requires
deeper algebraic considerations and the geometric nature of X plays an essential role. For
this purpose, we take the viewpoint of Reutenauer [14] and rely on the coproduct structure
δk introduced in Section 2.1 in a crucial way.

We begin by recalling the notion of Lipschitz functions in the sense to Stein [15]. Let
sym(V� j; W) denote the set of bounded linear operators T from V� j to W such that for all
permutations σ over {1, · · · , j},

T (vσ(1) � · · · � vσ(n)) = T (v1 � · · · � vn).

Definition 4.1. Let W,U be two Banach spaces and let K be a closed subset of W. Sup-
pose that γ ∈ (N,N + 1] where N is a non-negative integer. A collection of functions
F = (F0, F1, · · · , FN) is said to be γ-Lipschitz over K, if:

(i) the functions F0 : K → U and F j : K → sym(W� j; U) (1 � j � N) are bounded on K;
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(ii) for each 0 � j � N, the following Taylor expansion holds:

(4.1) F j(y)(ξ) =
N− j∑
l=0

1
l!

F j+l(x)((y − x)�l � ξ) + Rj(x, y)(ξ), x, y ∈ K, ξ ∈ W� j,

where the remainder Rj : K × K → sym(W� j; U) satisfies

sup
x�y∈K

|Rj(x, y)|
|x − y|γ− j < ∞ for all 0 � j � N.

The Lip-γ norm of F, denoted as ‖F‖Lip-γ, is defined to be the smallest number M > 0 such
that for all x, y ∈ K,

|F j(x)| � M, |Rj(x, y)| � M|x − y|γ− j

for all 0 � j � N. The Banach space of all γ-Lipschitz functions F = (F0, · · · , FN) is
denoted as Lip(γ,K).

Now let X be a given α-Hölder geometric rough path over a Banach space V . Our aim in
this section is to show that, if  is an α-Hölder controlled rough path over W with respect
to X and if F = (F0, · · · , FN) is γ-Lipschitz over W taking values in U, then F() is an
α-Hölder controlled rough path over U. In addition, given another controlled rough path
̃ , we shall establish a quantitative continuity estimate of dX,X̃;α(F(), F(̃)) in terms of
dX,X̃;α( , ̃).

In the first place, we need to elaborate the meaning of F() as a controlled rough path,
which consists of the actual path in U along with its N − 1 derivative paths. The actual path,
denoted as Z0

t , should apparently be given by Z0
t � F0(Y0

t ). To motivate the derivative paths,
we use the Taylor expansion of F0 :

F0(Y0
t ) − F0(Y0

s )=̇
N−1∑
j=1

1
j!

F j(Y0
s )

(
(Y0

s,t)
� j),

where =̇ means being equal up to a term of regularity |t − s|Nα. Note that a term of such
regularity is regarded as a remainder in the expansion of Z0. To proceed further, we adopt
the convention that Yi

t ∈ (V⊗i; W) is extended to a linear mapping from T (N)(V) to T (N)(W)
by setting Yi

t (ξ) � 0 if ξ ∈ V⊗ j with j � i. Using the expansion of Y0, we have

(Y0
s,t)
� j=̇

(( N−1∑
i=1

Yi
s
)
Xs,t

)� j
=

( N−1∑
i=1

Yi
s
)� j(X� j

s,t
)
.

Since X is a geometric rough path, Xs,t takes values in the free nilpotent group G(N)(V).
By using (2.2), it is not hard to see that

δ j(Xs,t)=̇Xs,t � · · · � Xs,t.

As a result, we have

F0(Y0
t ) ·=

N−1∑
j=0

1
j!

F j(Y0
s )

(( N−1∑
i=1

Yi
s
)� j(
δ j

(
Xs,t

)))
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= F0(Y0
s ) +

N−1∑
r=1

N−1∑
j=1

1
j!

F j(Y0
s )

( ∑
i1+···+i j=r

(
Yi1

s � · · · � Yij
s
)(
δ j(Xr

s,t)
))
,

where the summation
∑

i1+···+i j=r is taken over all 1 � i1, · · · , i j � N − 1. It is then clear that
the derivative paths Z1, · · · , ZN−1 should be defined by

(4.2) Zr
s �

N−1∑
j=1

1
j!

F j(Y0
s )

( ∑
i1+···+i j=r

(Yi1
s � · · · � Yij

s ) ◦ δ j|V⊗ j
)
.

Note that the requirement i1+· · ·+i j = r together with i1, · · · , i j � 1 mean that the sum
∑N−1

j=1
is in reality a sum

∑r
j=1 as the terms from j = r + 1 to j = N − 1 are zero. We have left it as∑N−1

j=1 for the convenience of interchanging summations later on. Note that Zr
s ∈ (V⊗r; U).

To prove that  =
(
Z0, · · · , ZN−1

)
is controlled by X, by Definition 2.3 we need to show

that

(4.3) Zr
s,t=̇Zr+1

s X1
s,t + · · · + ZN−1

s XN−1−r
s,t

for each 1 � r � N −1, where in this case =̇means being equal up to a term of regularity |t−
s|(N−r)α. The main challenge (and essence) of proving (4.3) is algebraic rather than analytic.
In particular, this relies on a key algebraic lemma which we now motivate.

First of all, there is nothing to prove when r = 0, since the definition of Zr guarantees the
desired regularity property in this case. For 1 � r � N − 1, let ξ ∈ V⊗r be a generic element.
To simplify the notation in the computation below, we set

(4.4) η
j
t �

∑
i1+···+i j=r

(Yi1
t � · · · � Yij

t ) ◦ δ j (ξ) ∈ W� j.

Then we can write

Zr
t (ξ) =

N−1∑
j=1

1
j!

F j(Y0
t )

(
η

j
t
)

(4.5)

=̇

N−1∑
j=1

1
j!
( N−1− j∑

l=0

1
l!

F j+l(Y0
s )

(
(Y0

s,t)
�l � η j

t
))

=

N−1∑
j=1

1
j!

N−1∑
k= j

1
(k − j)!

Fk(Y0
s )

((
Y0

s,t
)�(k− j) � η j

t
)

=

N−1∑
k=1

k∑
j=1

1
j!(k − j)!

Fk(Y0
s )

((
Y0

s,t
)�(k− j) � η j

t
)
.

Let us define

η̂
j
t =

∑
i1+···+i j=r

( ∑
l1�i1,··· ,l j�i j

Yl1
s Xl1−i1

s,t � · · · � Ylj
s Xl j−i j

s,t

)
◦ δ j (ξ)(4.6)

and

(4.7) Ŷ0
s,t =

N−1∑
m=1

Ym
s Xm

s,t,
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respectively. It follows that

Zr
t (ξ)=̇

N−1∑
k=1

k∑
j=1

1
j!(k − j)!

Fk(Y0
s )

((
Y0

s,t
)�(k− j) � η j

t
)

(4.8)

=̇

N−1∑
k=1

k∑
j=1

1
j!(k − j)!

Fk(Y0
s )

((
Ŷ0

s,t
)�(k− j) � η̂ j

t
)
.

On the other hand, we have

(Zr
s + Zr+1

s X1
s,t + · · · + ZN−1

s XN−1−r
s,t )(ξ)

=

N−1∑
l=r

( N−1∑
k=1

∑
i1+···+ik=l

1
k!

Fk(Y0
s )

(
Yi1

s � · · · � Yik
s
) ◦ δk(Xs,t ⊗ ξ)).

Consequently, to prove  is a controlled path, it boils down to showing that

N−1∑
k=1

k∑
j=1

1
j!(k − j)!

Fk(Y0
s )

((
Ŷ0

s,t
)�(k− j) � η̂ j

t
)

(4.9)

=̇

N−1∑
k=1

N−1∑
l=1

Fk(Y0
s )

k!
( ∑

i1+···+ik=l

(
Yi1

s � · · · � Yik
s
) ◦ δk(Xs,t ⊗ ξ)).

Here an important point is that Fk(Y0
s ) is a symmetric functional over W�k. To respect the

underlying symmetry, let Sk : W�k → W�k be the symmetrization operator on homogeneous
k-tensors, and let K be its kernel. We introduce the notation ξ s

= η to mean that ξ − η ∈ K.
Using the symmetry of Fk(Y0

s ), it remains to establish the following algebraic lemma.

Lemma 4.1. For each 1 � k � N − 1, we have
k∑

j=1

1
j!(k − j)!

(
Ŷ0

s,t

)�(k− j)
� η̂ j

t(4.10)

s
=

1
k!

N−1∑
l=r

∑
i1+···+ik=l

(
Yi1

s � · · · � Yik
s

)
◦ δk (

Xs,t ⊗ ξ) + Δk
3;s,t,

where we recall that η̂ j
t is defined in (4.6), Ŷ0

s,t is defined in (4.7) and

(4.11) Δk
3;s,t �

1
k!

∑
1�i1,··· ,ik�N−1

i1+···+ik�N

Yi1
s � · · · � Yik

s
((

Xs,t � · · · � Xs,t
) ∗ δk(ξ)).

Remark 4.1. The role of the term Δk
3;s,t is to compensate the difference between δk(Xs,t)

and X�k
s,t (cf. (2.2)), which arises from tensor truncation.

Proof. By the linearity for both sides of (4.10), it is enough to consider the case ξ =
v1 ⊗ · · · ⊗ vr when vi ∈ V for all 1 � i � r. Recall that

(4.12) η̂
j
t =

∑
i1+···+i j=r

( ∑
l1�i1,··· ,l j�i j

Yl1
s Xl1−i1

s,t � · · · � Ylj
s Xl j−i j

s,t

)
◦ δ j (v1 ⊗ · · · ⊗ vr) ,

and
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(4.13) δ j
(
v1 ⊗ · · · ⊗ vr) =∑

(Iα)

ξ|I1 � · · · � ξ|I j ,

where the summation is taken over all disjoint subsets I1, · · · , I j such that ∪ j
α=1Iα = {1, · · · ,

r}. Using the above formula for δ j, equation (4.12) becomes∑
i1+···+i j=r

( ∑
l1�i1,··· ,l j�i j

Yl1
s Xl1−i1

s,t � · · · � Ylj
s Xl j−i j

s,t
)∑

(Iα)

ξ|I1 � · · · � ξ|I j(4.14)

=
∑

i1+···+i j=r

∑
(Iα)

∑
l1�i1,··· ,l j�i j

Yl1
s
(
Xl1−i1

s,t ⊗ ξ|I1

)
� · · · � Ylj

s
(
Xlj−i j

s,t ⊗ ξ|I j

)
.

Since Yl
s acts on V⊗l and sends on all other elements to zero, we know that

Yl
s
(
Xl−i

s,t ⊗ ξ|I
)
= 0 if |I| � i.

Therefore, the summation
∑

(Iα) in (4.14) becomes a summation over all partitions (Iα)
j
α=1 of

{1, · · · r} such that |Iα| = iα for all α. As a result, we can write∑
i1+···+i j=r

∑
(Iα)

j
α=1:|Iα |=iα ∀α

=
∑

(Iα)
j
α=1:|Iα |�1 ∀α

,

where the right hand side denotes the summation over all partitions (Iα)
j
α=1 of {1, · · · , r} such

that |Iα| � 1 for each α. Moreover, as Yl
s(X

q
s,t ⊗ ξ|I) = 0 unless q = l − |I|, we have

Yl
s
(
Xq

s,t ⊗ ξ|I
)
= Yl

s
(
Xs,t ⊗ ξ|I).

Note finally that as Xs,t ⊗ ξ|I has degree at least |I|,
Yl

s
(
Xs,t ⊗ ξ|I) = 0 if l < |I| .

Therefore, for each 1 � α � j the summation
∑

lα�|Iα | can be replaced by the unrestricted
sum

∑N−1
lα=1.

Taking into account the above considerations, equation (4.14) now becomes

η̂
j
t =

∑
(Iα)

j
α=1:Iα�∅∀α

N−1∑
l1,··· ,l j=1

Yl1
s
(
Xs,t ⊗ ξ|I1

)
� · · · � Ylj

s
(
Xs,t ⊗ ξ|I j

)
.

It follows that
k∑

j=1

1
j!(k − j)!

(
Ŷ0

s,t
)�(k− j) � η̂ j

t(4.15)

=

k∑
j=1

1
j!(k − j)!

N−1∑
m1,··· ,mk− j=1

Ym1
s Xs,t � · · · � Ymk− j

s Xs,t

�
∑

(Iα)
j
α=1:Iα�∅∀α

N−1∑
l1,··· ,l j=1

Yl1
s
(
Xs,t ⊗ ξ|I1

)
� · · · � Ylj

s
(
Xs,t ⊗ ξ|I j

)

=

k∑
j=1

1
j!(k − j)!

N−1∑
h1,··· ,hk=1

Yh1
s Xs,t � · · · � Yhk− j

s Xs,t
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�
∑

(Iα)
j
α=1:Iα�∅∀α

Yhk− j+1
s

(
Xs,t ⊗ ξ|I1

)
� · · · � Yhk

s
(
Xs,t ⊗ ξ|I j

)
.

As the next observation, let (Hi)k
i=1 be a partition of {1, · · · , r}. If there exist β1 < · · · < β j

such that Hβi = Ii for 1 � i � j and Hi = ∅ for i � {β1, · · · , βr}, then

N−1∑
h1,··· ,hk=1

Yh1
s Xs,t � · · · � Yhk− j

s Xs,t � Yhk− j+1
s

(
Xs,t ⊗ ξ|I1

)
� · · · � Yhk

s
(
Xs,t ⊗ ξ|I j

)

s
=

N−1∑
h1,··· ,hk=1

Yh1
s
(
Xs,t ⊗ ξ|H1

)
� · · · � Yhk

s
(
Xs,t ⊗ ξ|Hk

)
.

There are a total of
(

k
j

)
such partitions (Hi)k

i=1 for each given j-tuple (I1, · · · , I j). As a result,
we have

N−1∑
h1,··· ,hk=1

∑
(Hi):∃β1<···<β j,Hβi=Ii ∀i

Yh1
s
(
Xs,t ⊗ ξ|H1

)
� · · · � Yhk

s

(
Xs,t ⊗ ξ|Hk

)

s
=

N−1∑
h1,··· ,hk=1

(
k
j

)
Yh1

s Xs,t � · · · � Yhk− j
s Xs,t � Yhk− j+1

s
(
Xs,t ⊗ ξ|I1 )

� · · · � Yhk
s
(
Xs,t ⊗ ξ|I j

)
.

Since the summation
k∑

j=1

∑
(Iα)

j
α=1:Iα�∅∀α

∑
(Hi):∃β1<···<β j,Hβi=Ii ∀i

is equivalent to summing over all partitions (Hi)k
j=1 of {1, · · · , r}, the expression in (4.15)

becomes (up to permutation symmetry with respect to �)

1
k!

N−1∑
h1,··· ,hk=1

∑
(Hi)k

i=1:partition of {1,··· ,r}
Yh1

s
(
Xs,t ⊗ ξ|H1

)
� · · · � Yhk

s
(
Xs,t ⊗ ξ|Hk

)
(4.16)

=
1
k!

N−1∑
h1,··· ,hk=1

Yh1
s � · · · � Yhk

s
((

Xs,t � · · · � Xs,t
) ∗ ( ∑

(Hi)k
i=1

ξ|H1 � · · · � ξ|Hk

))
.

By using the formula (4.13) for δk again, the expression in (4.16) becomes

1
k!

N−1∑
h1,··· ,hk=1

Yh1
s � · · · � Yhk

s
((

Xs,t � · · · � Xs,t
) ∗ δk(v1 ⊗ · · · ⊗ vr))(4.17)

=
1
k!

N−1∑
l=r

N−1∑
h1+···+hk=l

Yh1
s � · · · � Yhk

s
((

Xs,t � · · · � Xs,t
) ∗ δk(v1 ⊗ · · · ⊗ vr)) + Δk

3;s,t,

where Δk
3;s,t is defined to be the difference of the two expressions in (4.17).

Note that when h1 + · · · + hk � N, the operator Yh1
s � · · · � Yhk

s only acts non-trivially on
elements of ⊕l1+···+lk�NV⊗l1� · · ·�V⊗lk . Since Xs,t ∈ G(N)(V), according to the shuffle product
formula (2.2), for such hi’s we have
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Yh1
s � · · · � Yhk

s
((

Xs,t � · · · � Xs,t
) ∗ δk(v1 ⊗ · · · ⊗ vr))

= Yh1
s � · · · � Yhk

s
( ∑

l1+···+lk�N

(
Xl1

s,t � · · · � Xlk
s,t
) ∗ δk(v1 ⊗ · · · ⊗ vr))

= Yh1
s � · · · � Yhk

s
(
δk

(
Xs,t

) ∗ δk(v1 ⊗ · · · ⊗ vr)).
Since δk is a ∗-homomorphism, the expression in (4.17) becomes

1
k!

N−1∑
l=r

N−1∑
h1+···+hk=l

Yh1
s � · · · � Yhk

s
(
δk

(
Xs,t ⊗ v1 ⊗ · · · ⊗ vr)) + Δk

3;s,t,

which is precisely the right hand side of (4.10). �

Having the above algebraic considerations, we can now prove the main result of this
section. For the need in the study of RDEs in the next section, we also establish a continuity
estimate for Lipschitz transformations.

Theorem 4.1. (i) [Stability] Let  be a controlled rough path over [0, T ] with respect to
X. Let F = (F0, F1, · · · , FN) be a γ-Lipschitz function with γ ∈ (N,N + 1]. Then the path
 = F() as defined in (4.2) is a path controlled by X in the sense of Definition 2.3. In
addition, we have

(4.18) ‖F () ‖X;α � ‖F‖Lip-N · M(
T, max

1�i�N−1
|Yi

0|,
∥∥∥∥∥∥X;α, ‖X‖α)

(ii) [Continuity estimate] Let  and ̃ be paths over [0, T ] controlled by X and X̃ respec-
tively, and let F be (N + 1)-Lipschitz. Then we have

dX,X̃;α
(
F
(


)
, F

(
̃

))
(4.19)

� ‖F‖Lip-(N+1) · M(
T, max

1�i�N−1
|Yi

0|, max
1�i�N−1

|Ỹ i
0|,

∥∥∥∥∥∥X;α,
∥∥∥̃∥∥∥X̃;α, ‖X‖α, ‖X̃‖α

)
× (

max
0�i�N−1

|Yi
0 − Ỹ i

0| + dX,X̃;α
(
 , ̃

)
+ ρα(X, X̃)

)
.

In both parts, M(· · · ) denotes a universal function that is continuous and increasing in every
variable.

Proof. To ease our discussion, we use the notation “�” to denote an estimate up to a
continuous increasing function M in T , max1�i�N−1 |Yi

0|, max1�i�N−1 |Ỹ i
0|, || ||X;α, ||̃ ||X̃;α,

‖X‖α, ‖X̃‖α, which may differ from line to line. We closely follow the notation used earlier
in the algebraic considerations. In particular, in order to prove the theorem, essentially we
need to keep track of the remainder from each of the notions “=̇” appearing earlier.

First of all, as seen before, we can write

Zr
t (ξ) =

N−1∑
k=0

Fk(Y0
s )(Ck + Δ

k
2;s,t) + Δ1;s,t, EZr

s,t(ξ) =
N−1∑
k=0

Fk(Y0
s )(Dk − Δk

3;s,t),

Here

EZr
s,t(ξ) � (Zr

s + Zr+1
s X1

s,t + · · · + ZN−1
s XN−1−r

s,t )(ξ),

Ck, Dk are defined by the left and right hand sides of the algebraic identity (4.10) respec-
tively. The remainders Δ1;s,t,Δ

k
2;s,t are associated with the notions “=̇” appearing earlier and
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Δk
3;,s,t is defined by (4.11). To be precise, they are defined by the following equations.

(i) (cf. (4.5) and Taylor’s theorem with integral form remainder)

Δ1;s,t �
r∑

j=1

∫ 1

0

(1 − θ)N−1− j

j!(N − 1 − j)!
FN(Y0

s + θY
0
s,t)

(
(Y0

s,t)
�(N− j) � η j

t
)
dθ,(4.20)

where we recall that
∑r

j=1 =
∑N−1

j=1 .

(ii) (cf. (4.8))

Δk
2;s,t �

r∑
j=1

1
j!(k − j)!

∑
i1+···+i j=r

(
(Y0

s,t)
�(k− j) �

(
Yi1

t � · · · � Yij
t (δ j(ξ))

)

− (
Y1

s X1
s,t + · · · + YN−1

s XN−1
s,t

)�(k− j) �
(
EYi1

s,t � · · · � EYij
s,t(δ j(ξ))

))
,

where

EYi
s,t � Yi

s + Yi+1
s X1

s,t + · · · + YN−1
s XN−1−i

s,t .

According to Lemma 4.1, we have

Fk(Y0
s )(Ck) = Fk(Y0

s )(Dk).

It follows that

(4.21) 
r
s,t =

N−1∑
k=1

Fk(Y0
s )

(
Δk

2;s,t + Δ
k
3;s,t

)
+ Δ1;s,t.

Similar definitions and identities hold for the tilde-quantities. We need to estimate the regu-
larity of the Δ’s.

As a standard way, we frequently use the simple inequality

(4.22) |ab − ãb̃| � |a − ã| · |b| + |ã| · |b − b̃|.
Also note that |Fk(Y0

s )| � ‖F‖Lip-N . As a consequence of Lemma 3.1 (without the presence
of ̃), we have

(4.23) |Y0
s,t| � |t − s|α , |Yi

t | � 1, ∀i � 1.

From these considerations and the expression (4.20) of Δ1; s, t, we see that

(4.24) |Δ1;s,t| � ‖F‖Lip-N · |t − s|(N−r)α.

For the term Δk
2;s,t, by forming a telescoping sum it boils down to estimating

(
(Y0

s,t)
�(k− j)) � (

Yi1
t � · · · � Yij

t (δ j(ξ)) − (
Y1

s X1
s,t + · · · + YN−1

s XN−1
s,t

)�(k− j)(4.25)

�
(
EYi1

s,t � · · · � EYij
s,t(δ j(ξ))

))
= (Y0

s,t − Y1
s X1

s,t + · · · + YN−1
s XN−1

s,t ) � (Y0
s,t)
�(k− j−1) � Yi1

t · · · � Yij
t (δ j(ξ)) + · · ·

+
(
Y1

s X1
s,t + · · · + YN−1

s XN−1
s,t

)�(k− j)
�

(
EYi1

s,t � · · · � (Yij
t − EYij

s,t)(δ j(ξ))
)
.

Note that ∣∣∣Y0
s,t − Y1

s X1
s,t + · · · + YN−1

s XN−1
s,t

∣∣∣ � |t − s|Nα
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and ∣∣∣Y1
s X1

s,t + · · · + YN−1
s XN−1

s,t

∣∣∣ = ∣∣∣Y0
s,t −

0
s,t

∣∣∣ � |t − s|α .
In addition, for each i � 1 we have∣∣∣EYi

s,t

∣∣∣ = ∣∣∣Yi
s + Yi+1

s X1
s,t + · · · + YN−1

s XN−1−i
s,t

∣∣∣ = ∣∣∣Yi
t −

i
s,t

∣∣∣ � 1,

and for each i � r we have ∣∣∣Yi
t − EYi

s,t

∣∣∣ � |t − s|(N−r)α .

Consequently, we see that

(4.26) |Δk
2;s,t| � |t − s|(N−r)α.

We now estimate

Δk
3;s,t =

1
k!

∑
h1+···+hk�N

Yh1
s � · · · � Yhk

s
((

Xs,t � · · · � Xs,t
) ∗ δk(ξ))

=
1
k!

∑
h1+···+hk�N

Yh1
s � · · · � Yhk

s
(( N∑

l1,··· ,lk=1

Xl1
s,t � · · · � Xlk

s,t
) ∗ δk(ξ)).

Since h1+ · · ·+hk � N and ξ ∈ V⊗r, the only non-zero terms are the ones when l1+ · · ·+ lk �
N − r. In this case, we see that

|Xl1
s,t � · · · � Xlk

s,t| � (t − s)(N−r)α.

Therefore,

|Δk
3;s,t| �

∑
h1+···+hk�N

|Yh1
s | · · · |Yhk

s | · (t − s)(N−r)α � (t − s)(N−r)α.

We particularly point out that the constant hidden within “�” is independent of Y0
0 . This

will be important for RDE considerations later on. From (4.21), (4.24) and (4.26) we con-
clude that  is controlled by X and the estimate (4.18) follows.

To prove the second part the theorem, we need to estimate


r
s,t −̃

r
s,t =

N−1∑
k=1

(
Fk(Y0

s )
(
Δk

2;s,t
) − Fk(Ỹ0

s )
(
Δ̃k

2;s,t
))

+

N−1∑
k=1

(
Fk(Y0

s )
(
Δk

3;s,t
) − Fk(Ỹ0

s )
(
Δ̃k

3;s,t
))
+

(
Δ1;s,t − Δ̃1;s,t

)
.

For this purpose, let us introduce

D(X, ; X̃, ̃) � ρα(X, X̃) + dX,X̃;α( , ̃) +
N−1∑
i=0

|Yi
0 − Ỹ i

0|.

Now it remains to establish the following set of estimates (for 1 � k � N − 1):

|Fk(Y0
s ) − Fk(Ỹ0

s )| � ‖F‖Lip-N · D(X, ; X̃, ̃),
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|Δ1;s,t − Δ̃1;s,t| � ‖F‖Lip-(N+1) · D(X, ; X̃, ̃) · |t − s|(N−r)α,(4.27)

|Δk
2;s,t − Δ̃k

2;s,t| � D(X, ; X̃, ̃) · |t − s|(N−r)α,(4.28)

|Δk
3;s,t − Δ̃k

3;s,t| � D(X, ; X̃, ̃) · |t − s|(N−r)α.(4.29)

To see the first inequality, first note that

|Fk(Y0
s ) − Fk(Ỹ0

s )| = ∣∣∣ ∫ 1

0
Fk+1(Y0

s + θ
(
Y0

s − Ỹ0
s
))(

Y0
s − Ỹ0

s
)
dθ

∣∣∣
� ‖F‖Lip-N · (∣∣∣Y0

0 − Ỹ0
0

∣∣∣ + ∥∥∥Y0 − Ỹ0
∥∥∥
α

)
.

The inequality then follows from Lemma 3.1.
For the inequality (4.27), according to its expression (4.20), it suffices to estimate

FN(Y0
s + θY

0
s,t)(η

j
t � (Y0

s,t)
�(N− j)) − FN(Ỹ0

s + θỸ
0
s,t)(η̃

j
t � (Ỹ0

s,t)
�(N− j)),

Recall from the definition (4.4) of η j
t that

η
j
t − η̃ j

t =
∑

i1+···+i j=r

(Yi1
t � · · · � Yij

t − Ỹ i1
t � · · · � Ỹ i j

t ) ◦ δ j (ξ) .

For each 1 � i � N − 1, we have∣∣∣Yi
t − Ỹ i

t

∣∣∣ � ∣∣∣Yi
0 − Ỹ i

0

∣∣∣ + ∣∣∣(Yi
t − Yi

0
) − (

Ỹ i
t − Ỹ i

0
)∣∣∣(4.30)

�
∣∣∣Yi

0 − Ỹ i
0

∣∣∣ + ‖Yi − Ỹ i‖αTα
� D(X, ; X̃, ̃).

Since |Yi
t | � 1, |Ỹ i

t | � 1, it follows that∣∣∣η j
t − η̃ j

t

∣∣∣ � D(X, ; X̃, ̃).

On the other hand, according to Lemma 3.1 we have∣∣∣Y0
s,t − Ỹ0

s,t

∣∣∣ � ‖Y0 − Ỹ0‖α (t − s)α � D(X, ; X̃, ̃) (t − s)α .

Therefore, we see that∣∣∣FN(Y0
s + θY

0
s,t) − FN(Ỹ0

s + θỸ
0
s,t)

∣∣∣ � ‖F‖Lip-(N+1)
∣∣∣Y0

s + θY
0
s,t −

(
Ỹ0

s + θỸ
0
s,t
)∣∣∣

� ‖F‖Lip-(N+1)
∣∣∣Y0

s + θY
0
s,t −

(
Ỹ0

s + θỸ
0
s,t
)∣∣∣

� ‖F‖Lip-(N+1)
(∣∣∣Y0

0 − Ỹ0
0

∣∣∣ + ∣∣∣Y0
s,t − Ỹ0

s,t

∣∣∣ + ∣∣∣Y0
0,s − Ỹ0

0,s

∣∣∣)
� ‖F‖Lip-(N+1)

(∣∣∣Y0
0 − Ỹ0

0

∣∣∣ + 2‖Y0 − Ỹ0‖αTα)
� ‖F‖Lip-(N+1)D(X, ; X̃, ̃).

The inequality (4.27) thus follows (the regularity |t − s|(N−r)α comes from the fact that j � r
in the summation (4.20)).

For the inequality (4.28), to estimate Δk
2;s,t − Δ̃k

2;s,t we write this difference in the form of
a telescoping sum that is similar to (4.25) but also with the tilde-quantities. We already have
the required estimates for Y0

s,t − Ỹ0
s,t and Yi

t − Ỹ i
t when analyzing Δ1;s,t. We also have∣∣∣(Y1

s X1
s,t + · · · + YN−1

s XN−1
s,t

) − (
Ỹ1

s X̃1
s,t + · · · + ỸN−1

s X̃N−1
s,t

)∣∣∣ � ∣∣∣Y0
s,t − Ỹ0

s,t

∣∣∣ + ∣∣∣
0
s,t −̃

0
s,t

∣∣∣
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� D(X, ; X̃, ̃)
∣∣∣t − s

∣∣∣α,
and ∣∣∣EYi

s,t − EỸi
s,t

∣∣∣ �∣∣∣Yi
t − EYi

s,t −
(
Ỹ i

t − EỸi
s,t
)∣∣∣ + ∣∣∣Yi

t − Ỹ i
t

∣∣∣
=
∣∣∣

i
s,t −̃

i
s,t

∣∣∣ + ∣∣∣Yi
t − Ỹ i

t

∣∣∣
�D(X, ; X̃, ̃).

As a result, the desired estimate for Δk
2;s,t − Δ̃k

2;s,t follows.
For the last inequality (4.29), we have

Δk
3;s,t − Δ̃k

3;s,t =
1
k!

∑
h1+···+hk�N

Yh1
s � · · · � Yhk

s
(( N∑

l1,··· ,lk=1

Xl1
s,t � · · · � Xlk

s,t
) ∗ δk(ξ))

− Ỹh1
s � · · · � Ỹhk

s
(( N∑

l1,··· ,lk=1

X̃l1
s,t � · · · � X̃lk

s,t
) ∗ δk(ξ)).

Note that
∣∣∣Yi

t

∣∣∣ � 1,
∣∣∣Ỹ i

t

∣∣∣ � 1 and
∣∣∣Yi

t − Ỹ i
t

∣∣∣ � D(X, ; X̃, ̃). We also have |Xl
s,t| � (t − s)lα,

|X̃l
s,t| � (t − s)lα and |Xl

s,t − X̃l
s,t| � D(X, ; X̃, ̃)(t − s)lα. Therefore, we obtain the desired

inequality (4.29).
Now the proof of the theorem is complete. �

5. Continuity of rough integrals

5. Continuity of rough integrals
In this section, we study the integral

∫
dX as a controlled rough path and establish a

continuity estimate. Recall that α ∈ (0, 1/2] and N � [α], so that 1
N+1 < α �

1
N . Given a

partition  : s = t0 < t1 < · · · < tn = t, we set

| | � max
0�i�n−1

(ti+1 − ti).

All paths below are defined on [0, T ].

Proposition 5.1. (i) Let X be an α-Hölder geometric rough path over V, and let  be an
α-Hölder controlled rough path over (V; U) with respect to X. Then the following limit
exists:

(5.1)
∫ t

s
ZdX � lim

| |→0

∑
ti∈

N∑
k=1

Zk−1
ti Xk

ti,ti+1
.

In addition, if we define  �
∫ ·

0 dX � (I0, I1, · · · , IN−1) by

(5.2) I0
t �

∫ t

0
ZdX, I1

t � Z0
t , · · · , IN−1

t � ZN−2
t ,

then  is an α-Hölder controlled rough path with respect to X and the following estimate
holds:

(5.3) ‖‖X;α � Cα
(
Tα(1 + ‖X‖α)‖‖X;α + |ZN−1

0 |‖X‖α).
(ii) (Continuity estimates) Let X, X̃ be α-Hölder geometric rough paths and let , ̃ be
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paths controlled by X, X̃ respectively. We use  =
∫ ·

0 dX and ̃ =
∫ ·

0 ̃dX̃ to denote the
controlled paths obtained by integrating  and ̃ respectively. Then the following estimate
holds:

dX,X̃;α(, ̃) � Cα
(
Tαmax(1 + ‖X‖α, ‖̃‖X̃;α) ·

(
dX,X̃;α(, ̃) + ρα(X, X̃)

)
(5.4)

+max
(‖X‖α, ∣∣∣Z̃N−1

0

∣∣∣) · (∣∣∣ZN−1
0 − Z̃N−1

0

∣∣∣ + ρα(X, X̃)
))
.

Proof. Let s < t be fixed. Given any partition  of [s, t], we denote
∫


ZdX �
∑
ti∈

N∑
k=1

Zk−1
ti Xk

ti,ti+1

Then ∫


ZdX −
∫
\{t j}

ZdX =
N∑

k=1

Zk−1
t j−1

Xk
t j−1,t j
+

N∑
k=1

Zk−1
t j

Xk
t j,t j+1
−

N∑
k=1

Zk−1
t j−1

Xk
t j−1,t j+1

=

N∑
k=1

Zk−1
t j−1

Xk
t j−1,t j
+

N∑
k=1

Zk−1
t j

Xk
t j,t j+1
−

N∑
k=1

k∑
l=0

Zk−1
t j−1

Xk−l
t j−1,t j
⊗ Xl

t j,t j+1

=

N∑
k=1

Zk−1
t j

Xk
t j,t j+1
−

N∑
k=1

k∑
l=1

Zk−1
t j−1

Xk−l
t j−1,t j
⊗ Xl

t j,t j+1
.

We claim that the last expression is equal to
∑N

k=1 k−1
t j−1,t j
⊗ Xk

t j,t j+1
. Indeed, by writing

Zk−1
t j
= Zk−1

t j−1
+

N−k∑
r=1

Zk+r−1
t j−1

Xr
t j−1,t j
+

k−1
t j−1,t j
,

it is equivalent to seeing that

N∑
k=1

Zk−1
t j−1

Xk
t j,t j+1
+

N∑
k=1

N−k∑
r=1

Zk+r−1
t j−1

Xr
t j−1,t j
⊗ Xk

t j,t j+1
−

N∑
k=1

k∑
l=1

Zk−1
t j−1

Xk−l
t j−1,t j
⊗ Xl

t j,t j+1
= 0.

The above equation follows by interchanging the order of summation in the middle term.
Consequently, we arrive at

(5.5)
∫


ZdX −
∫
\{t j}

ZdX =
N∑

k=1


k−1
t j−1,t j
⊗ Xk

t j,t j+1
.

In the following argument, we directly consider the continuity estimate. The case of a
single  is easier and only requires minor modification in the argument. Using (5.5), we
have ∣∣∣ ∫



ZdX −
∫
\{t j}

ZdX − ( ∫


Z̃dX̃ −
∫
\{t j}

Z̃dX̃
)∣∣∣

=
∣∣∣ N∑

k=1


k−1
t j−1,t j
⊗ Xk

t j,t j+1
−̃

k−1
t j−1,t j
⊗ X̃k

t j,t j+1

∣∣∣
�

(
dX,X̃;α(, ̃)

∥∥∥X
∥∥∥
α
+

∥∥∥̃∥∥∥
X̃;αρα(X, X̃)

) · (t j+1 − t j−1
)(N+1)α

.

As
∑n−1

j=1

(
t j+1 − t j−1

)
� 2(t − s), we may choose a j such that
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t j+1 − t j−1 �
2 (t − s)

n − 1
.

It follows that∣∣∣ ∫


ZdX −
∫
\{t j}

ZdX − ( ∫


Z̃dX̃ −
∫
\{t j}

Z̃dX̃
)∣∣∣

�
( 2
n − 1

)(N+1)α (t − s)(N+1)α (dX,X̃;α(, ̃) ‖X‖α +
∥∥∥̃∥∥∥

X̃;αρα(X, X̃)
)
.

By successively removing partition points from  , we arrive at
∣∣∣ ∫



ZdX −
∫
{s,t}

ZdX − ( ∫


Z̃dX̃ −
∫
{s,t}

Z̃dX̃
)∣∣∣(5.6)

� Cα (t − s)(N+1)α (dX,X̃;α(, ̃) ‖X‖α +
∥∥∥̃∥∥∥

X̃;αρα(X, X̃)
)
,

where

Cα �
∞∑

n=3

( 2
n − 1

)(N+1)α
.

The version of the inequality (5.6) without the tilde-paths is easily seen to be

(5.7)
∣∣∣ ∫



ZdX −
∫
{s,t}

ZdX
∣∣∣ � Cα‖‖X;α‖X‖α(t − s)(N+1)α.

We now use the inequality (5.7) to show that the limit

lim
| |→0

∫


ZdX

exists. Let ̂ and ̃ be partitions over [s, t], and let ̂ ∨ ̃ be the partition obtained by taking
a union of the partition points from ̂ and ̃ . For each pair (sl, sl+1) of adjacent points in ̂ ,
by applying the estimate (5.7) to the partition ̂ ∨ ̃ ∩ [sl, sl+1], we obtain that

∣∣∣ ∫
̂∨̃∩[sl,sl+1]

ZdX −
∫
{sl,sl+1}

ZdX
∣∣∣ � Cα

(
sl+1 − sl

)(N+1)α ‖‖X;α ‖X‖α .

By summing over l, we have
∣∣∣ ∫

̂∨̃
ZdX −

∫
̂

ZdX
∣∣∣ �∑

l

∣∣∣ ∫
̂∨̃∩[sl,sl+1]

ZdX −
∫
{sl,sl+1}

ZdX
∣∣∣

� Cα|̂ |(N+1)α−1 ‖‖X;α ‖X‖α (t − s).

A similar inequality holds with ̂ replaced by ̃ . Using the triangle inequality, we end up
with an estimate for

∫
̂

ZdX − ∫
̃

ZdX, from which we can deduce the convergence of (5.1)
using the Cauchy criterion.

Next, we establish the continuity estimate (5.4). By taking | | → 0 in (5.6) and using the
definition of , ̃, we have

∣∣∣ ∫ t

s
ZdX −

N∑
k=1

Zk−1
s Xk

s,t −
∫ t

s
Z̃dX̃ −

N∑
k=1

Z̃k−1
s X̃k

s,t

∣∣∣
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=
∣∣∣I0

t −
N−1∑
k=1

Ik
s Xk

s,t −
(
Ĩ0
t −

N−1∑
k=1

Ĩk
s X̃k

s,t
) − (

ZN−1
s XN

s,t − Z̃N−1
s X̃N

s,t
)∣∣∣

� Cα (t − s)(N+1)α (dX,X̃;α(, ̃) ‖X‖α +
∥∥∥̃∥∥∥

X̃;αρα(X, X̃)
)
.

In addition, note that∣∣∣ZN−1
s − Z̃N−1

s

∣∣∣ · ∣∣∣XN
s,t

∣∣∣ + ∣∣∣Z̃N−1
s

∣∣∣ · ∣∣∣XN
s,t − X̃N

s,t

∣∣∣
�

∥∥∥
N−1 −̃

N−1∥∥∥
α
‖X‖α (t − s)Nα Tα +

∣∣∣ZN−1
0 − Z̃N−1

0

∣∣∣ ‖X‖α (t − s)Nα

+
∥∥∥̃∥∥∥

X̃;αρα(X, X̃) (t − s)Nα Tα +
∣∣∣Z̃N−1

0

∣∣∣ρα(X, X̃) (t − s)Nα .

Therefore, we obtain that
∣∣∣

0
s,t −̃

0
s,t

∣∣∣ = ∣∣∣(I0
s,t −

N−1∑
k=1

Ik
s Xk

s,t
) − (

Ĩ0
s,t −

N−1∑
k=1

Ĩk
s X̃k

s,t
)∣∣∣

� 2Cα (t − s)Nα Tα
(
dX,X̃;α(, ̃) ‖X‖α +

∥∥∥̃∥∥∥
X̃;αρα(X, X̃)

)
+

∣∣∣ZN−1
0 − Z̃N−1

0

∣∣∣ ‖X‖α (t − s)Nα +
∣∣∣Z̃N−1

0

∣∣∣ρα(X, X̃) (t − s)Nα .

In a similar way, the difference  i
s,t −̃ i

s,t (1 � i � N − 1) is estimated as

|
i
s,t −̃

i
s,t| � |

i−1
s,t −̃

i−1
s,t | + |ZN−1

s XN−i
s,t − Z̃N−1

s X̃N−i
s,t |

�
(
Tα

(
(1 + ‖X‖α)dX,X̃;α(, ̃) + ‖̃‖X̃;αρα(X, X̃)

)
+

∣∣∣ZN−1
0 − Z̃N−1

0

∣∣∣‖X‖α + ∣∣∣Z̃N−1
0

∣∣∣ρα(X, X̃)
) · |t − s|(N−i)α.

The desired continuity estimate (5.4) thus follows. The estimate (5.3) is a special case with
̃ = 0 and X̃ = X, from which it is also clear that  is a controlled rough path (i.e. the
remainders all have the required regularity). �

6. Rough differential equations

6. Rough differential equations
We now proceed to establish existence, uniqueness and continuity of solutions for the

RDE

(6.1) dt = F(t)dXt

in the space of controlled rough paths. As a standard idea, the RDE (6.1) is formulated as a
fixed point problem for the transformation

 :  �→ Y0 +

∫
F()dX.

We first derive a continuity estimate for . Using such continuity estimate, we then show
that  is a contraction on a small time interval. The general case follows from a patching
argument.

Throughout the rest, let 1
N+1 � α <

1
N �

1
2 be fixed (N = [1/α]). Let F = (F0, · · · , FN) be

a given (N + 1)-Lipschitz function defined on U and taking values in (V; U). We always
use M(· · · ) to denote a universal function that is continuous and increasing in every variable.
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6.1. Composition of Lipschitz transformation and rough integration.
6.1. Composition of Lipschitz transformation and rough integration. The following

lemma is a direct application of Proposition 5.1 and Theorem 4.1. All paths are assumed to
be defined on [0, τ] with τ > 0 given fixed.

Lemma 6.1. Let X and X̃ be α-Hölder geometric rough paths over V. Let  and ̃

be U-valued paths controlled by X and X̃ respectively. Define the controlled rough path
 = (J0, · · · , JN−1) with respect to X in the following way

(6.2) J0
t � Y0

0 +
( ∫ ·

0
F()dX

)0
t , Ji

t =
( ∫ ·

0
F () dX

)i
t for i � 1.

Define ̃ controlled by X̃ in a similar way. Then the following estimates hold true:

(6.3) ‖ ‖X;α � Cα
(
ταM

(
τ, ‖F‖Lip-N , ‖X‖α, max

1�i�N−1
|Yi

0|, ‖‖X;α
)
+

∣∣∣F()N−1
0

∣∣∣ · ‖X‖α)
and

dX,X̃;α( , ̃ ) � CαM
(
τ, ‖F‖Lip-(N+1), max

1�i�N−1
(|Yi

0| ∨ |Ỹ i
0|), ‖‖X;α, ‖̃‖X̃;α, ‖X‖α,

‖X̃‖α) × (
ταdX,X̃;α( , ̃) +

∣∣∣F()N−1
0 − F(̃)N−1

0

∣∣∣ + ρα(X, X̃)
)
.(6.4)

Remark 6.1. The factor τα and the independence of Y0
0 in the function M are both impor-

tant for the patching argument in the RDE context.

6.2. Existence, uniqueness and continuity of RDE solutions.
6.2. Existence, uniqueness and continuity of RDE solutions. We first define the notion

of solution for the RDE (6.1). The paths are now assumed to be defined on [0, T ] (T > 0 is
given fixed).

Definition 6.1. Let X be a α-Hölder geometric rough path over V , and let Y0 ∈ U. We
say that  ∈ x;α(U) is a solution to the RDE (6.1) with initial condition Y0, if

Y0
t = Y0 +

( ∫ ·

0
F () dX

)0
t , Yi

t =
( ∫ ·

0
F () dX

)i
t for 1 � i � N − 1.

The main theorem in this part is stated as follows.

Theorem 6.1. (i) [Existence and uniqueness] Let X be a given α-Hölder geometric rough
path over V. For each Y0 ∈ U, there exists a unique solution  ∈ X;α(U) to the RDE (6.1)
in the sense of Definition 6.1.
(ii) [Continuity estimate] Let X and X̃ be α-Hölder geometric rough paths over V, and let
Y0, Ỹ0 ∈ U. Suppose that

‖X‖α ∨ ‖X̃‖α ∨ |Y0| ∨ |Ỹ0| � B

with some constant B > 0. Let  and ̃ be the solutions to (6.1) driven by X and X̃ with
initial conditions Y0 and Ỹ0 respectively. Then the following estimate holds true:

(6.5) dX,X̃;α
(
 , ̃

)
� M(T, ‖F‖Lip-(N+1), B)

(
ρα(X, X̃) +

∣∣∣Y0 − Ỹ0
∣∣∣).

The rest of this subsection is devoted to the proof of Theorem 6.1.

6.2.1. Local contraction.
6.2.1. Local contraction. We prove existence and uniqueness by using the Banach fixed

point theorem. Note that the “constants” appearing in the rough integration and Lipschitz
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transformation estimates depend on ‖‖X;α. As a result, the mapping  :  �→ Y0 +∫
F()dX can only be a contraction if we restrict  on a bounded subset, say a metric ball.

To determine the center  (as a controlled rough path) of such a ball, it is natural to require
W0

0 = Y0 as this is the given initial condition. The higher order terms Wi (i � 1) are chosen
such that  i

s,t = 0. This is formulated precisely in the following lemma.

Lemma 6.2. Let Y0 ∈ U be given. We set

W0
0 � Y0, W1

0 � F0(Y0),

and inductively

(6.6) Wr+1
0 �

N−1∑
j=0

F j(Y0)
j!

( ∑
i1+···+i j=r

(
Wi1

0 � · · · �Wij

0
) ◦ δ j

) ∈ (
V⊗(r+1); U

)
.

Define the path  = (W0,W1,W2, · · · ,WN−1) by

Wi
t (ξ) = Wi

0(ξ) +Wi+1
0

(
X1

0,t ⊗ ξ
)
+ · · · +WN−1

0
(
XN−1−i

0,t ⊗ ξ).
Then  is a controlled rough path with respect to X. More specifically, we have  i ≡ 0
for each 0 � i � N − 1.

Remark 6.2. The initial value 0 is canonically determined by Y0 and F.

Proof. Note that

Wi
t (ξ) =

N−1∑
j=i

W j
0
(
X j−i

0,t ⊗ ξ
)
=

N−1∑
j=i

W j
0
( j−i∑

k=0

X j−i−k
0,s ⊗ Xk

s,t ⊗ ξ
)

=

N−1−i∑
k=0

N−1∑
j=i+k

W j
0
(
X j−i−k

0,s ⊗ Xk
s,t ⊗ ξ

)
=

N−1−i∑
k=0

Wi+k
s

(
Xk

s,t ⊗ ξ
)

As a result, we have  i
s,t = 0 for all s � t and 0 � i � N − 1. �

The definition (4.2) of F()N−1
0 together with the inductive definition (6.6) of Wi

0 (1 � i �
N − 1) imply the existence of a continuous, increasing function M such that∣∣∣F()N−1

0

∣∣∣ � M
(‖F‖Lip-(N−1)

)
.

Therefore, for any controlled path  with 0 =0, we have

(6.7) Cα
∣∣∣F()N−1

0

∣∣∣‖X‖α � M
(‖F‖Lip-(N−1)

)‖X‖α =: Λ.

where Cα is the constant appearing in the estimate (6.3). The following lemma gives the
local existence and uniqueness for the RDE (6.1).

Lemma 6.3. For each τ > 0, we set

τ �
{
 ∈ X;α(U) : ‖ −‖X;α � 2Λ,0 =0

}
.

Then there exists a small τ > 0, which is independent of Y0 and depends only on α,X and
‖F‖Lip-(N+1), such that:

(i) the mapping  :  �→  sends τ to τ, where  is the controlled rough path defined
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by (6.2);
(ii) the mapping  is a contraction on τ with respect to the norm � ·�X;α defined by (3.5).
(iii) The RDE (6.1) has a unique solution  on [0, τ] that satisfies

(6.8) ‖‖X;α � 2Λ.

Proof. (i) We first prove by induction that Wi
0 = Ji

0 for all i. The i = 0, 1 cases follow
directly from the definition of  and  . For the induction step, note that by the definition
of  , if ξ ∈ V⊗(r+1), then

Jr+1
0 (ξ) = (F ())r

0 (ξ)

=

N−1∑
j=0

F j(Y0)
j!

∑
i1+···+i j=r

(
Yi1

0 � · · · � Yij

0
) ◦ δ j(ξ)

=

N−1∑
j=0

F j(Y0)
j!

∑
i1+···+i j=r

(
Wi1

0 � · · · �Wij

0
) ◦ δ j(ξ) (since 0 =0)

= Wr+1
0 (by definition of Wr+1

0 ).

Therefore, 0 = 0.

Next, we recall from (6.3) that

‖ ‖X;α � CαταM
(
τ, ‖F‖Lip-N , ‖X‖α, max

1�i�N−1
|Yi

0|, ‖‖X;α
)
+ Λ.

Since  i
s,t = 0 by Lemma 6.2 and  ∈ τ, we know that

‖‖X;α = dX,X;α
(
 ,

)
� 2Λ.

The inductive definition of 0 in (6.6) implies that there is a continuous increasing function
M such that

(6.9)
∣∣∣Yi

0

∣∣∣ = ∣∣∣Wi
0

∣∣∣ � M
(‖F‖Lip-(N−1)

)
, 1 � i � N − 1.

As a consequence, we can choose τ to be sufficiently small (depending on ‖X‖α and
‖F‖Lip-N), such that

(6.10) CαταM
(
τ, ‖F‖Lip-N , ‖X‖α, max

1�i�N−1
|Yi

0|, ‖‖X;α
)
< Λ.

This ensures that  =() ∈ τ. Note that the choice of τ is independent of Y0
0 .

(ii) Let  , ̃ ∈ τ. Note that 0 = ̃0 and thus F()N−1
0 = F(̃)N−1

0 . By applying (6.4)
with X̃ = X, we have

dX,X;α
(
(),(̃)

)
� CαταM

(
τ, ‖F‖Lip-(N+1), max

1�i�N−1
|Yi

0|,
‖‖X;α, ‖̃‖X;α, ‖X‖α)dX,X;α( , ̃).

According to (6.9) and the fact that  , ̃ ∈ τ, we may further reduce τ (independent of Y0
0 )

such that

CαταM
(
τ, ‖F‖Lip-(N+1), max

1�i�N−1
|Yi

0|, ‖‖X;α, ‖̃‖X;α, ‖X‖α) < 1
2
.

In this way, we arrive at
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�() −(̃)�X;α �
1
2

�  − ̃�X;α,

which shows that the mapping  : τ → τ is a contraction for such a choice of τ.

(iii) Let τ be chosen as in Part (ii). Note that a solution to the RDE (6.1) is a fixed point
of the mapping . Since τ is a closed subset of the Banach space (X,α(U),� · �X;α),
according to Part (ii) and the Banach fixed point theorem, we conclude that the RDE (6.1)
admits a unique solution  ∈ τ as a controlled rough path on [0, τ]. The inequality (6.8) is
just a consequence of  ∈ τ. �

Remark 6.3. It is interesting to point out that, if  = (Y0, · · · , YN−1) is a solution to the
RDE (6.1), then at each t the values Yi

t (1 � i � N − 1) are all canonically determined by the
value Y0

t of the 0-th level path. Indeed, by Definition 6.1 we have Yi
t = F()i−1

t for all i � 1.
The determination of Yi

t from Y0
t is through the same relation as (6.6). This observation is

used in the later patching argument.

6.2.2. A patching lemma.
6.2.2. A patching lemma. In order to obtain global existence, we need to patch local

solutions in the sense of controlled rough paths. The lemma below justifies the patching of
controlled rough paths in general.

Lemma 6.4. (i) Let X be an α-Hölder geometric rough path on [a, b] and let u ∈ (a, b) be
fixed. Let  be a continuous path on [a, b] such that  |[a,u] (respectively,  |[u,b]) is controlled
by X|[a,u] (respectively, by X|[u,b]). Then  is controlled by X on [a, b].
(ii) Let X, X̃ be α-Hölder geometric rough paths on [a, b] and let  , ̃ be controlled by X,
X̃ respectively. Let u ∈ (a, b) be fixed. Then we have

dX,X̃;α
(
 , ̃

)
� dX,X̃;α

(
 |[u,b], ̃ |[u,b]

)
+ dX,X̃;α

(
 |[a,u], ̃ |[a,u]

)(
1 + ‖X‖α)(6.11)

+ ‖̃ |[a,u]‖X̃;αρα(X, X̃).

Proof. (i) It is enough to consider the remainder k
s,t when s < u < t. Note that

N−1∑
i=k

Yi
sX

i−k
s,t =

N−1∑
i=k

Yi
s

i−k∑
j=0

Xi−k− j
s,u X j

u,t =

N−1∑
i=k

Yi
s

i∑
j=k

Xi− j
s,u X j−k

u,t

=

N−1∑
j=k

( N−1∑
i= j

Yi
sX

i− j
s,u

)
X j−k

u,t

=

N−1∑
j=k

Y j
uX j−k

u,t −
N−1∑
j=k

(
Y j

u −
N−1∑
i= j

Yi
sX

i− j
s,u

)
X j−k

u,t .

Therefore,

Yk
t −

N−1∑
i=k

Yi
sX

i−k
s,t = Yk

t −
N−1∑
j=k

Y j
uX j−k

u,t +

N−1∑
j=k

(
Y j

u −
N−1∑
i= j

Yi
sX

i− j
s,u

)
X j−k

u,t ,

or equivalently
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(6.12) 
k
s,t = 

k
u,t +

N−1∑
j=k


j
s,uX j−k

u,t .

From (6.12), it is clear that the Hölder regularity of k
s,t is |t − s|(N−k)α.

(ii) According to (6.12), for s < u < t we also have

∣∣∣
k
s,t −̃

k
s,t

∣∣∣ � ∣∣∣
k
u,t −̃

k
u,t

∣∣∣ + N−1∑
j=k

∣∣∣
j
s,u −̃

j
s,u

∣∣∣‖X j−k‖α (t − u)( j−k)α

+

N−1∑
j=k

∣∣∣̃
j
s,u

∣∣∣‖X j−k − X̃ j−k‖α(t − u)( j−k)α

� dX,X̃;α
(
 |[u,b], ̃ |[u,b]

)
(t − u)(N−k)α

+

N−1∑
j=k

‖
j|[a,u] −̃

j|[a,u]‖(N− j)α(u − s)(N− j)α‖X‖α(t − u)( j−k)α

+

N−1∑
j=k

‖̃
j|[a,u]‖(N− j)αρα(X, X̃)(u − s)(N− j)α(t − u)( j−k)α.

The inequality (6.11) thus follows. �

6.2.3. Global existence, uniqueness and continuity.
6.2.3. Global existence, uniqueness and continuity. By patching local solutions and

local estimates, we are now able to establish the global well-posedness of the RDE (6.1) in
the space of controlled rough paths. Let α,N, F be given as before.

Proof of Theorem 6.1. Existence. Let τ be given by Lemma 6.3. According to that lemma,
we have a solution [1] on [0, τ] satisfying

Y[1]0
t = Y0 +

∫ t

0
F(Y[1])dX, Y[1]i

t =
[
F([1])

]i−1
t ∀t ∈ [0, τ].

We define a sequence of controlled paths {[n] : n � 1} on [0, τ] inductively in the following
way. By applying Lemma 6.3 with Y0 = [n−1]τ and Xt = X(n−1)τ+t, we obtain a controlled
rough path [n] on [0, τ] satisfying

Y[n]0
t = Y[n − 1]0

τ +

∫ t

0
F(Y[n])dX, Y[n]i

t =
[
F([n])

]i−1
t ∀t ∈ [0, τ].

We now define  = (Y0, · · · , YN−1) as a path on [0,∞) by concatenating all the [n]’s,
namely

(n−1)τ+t = [n]t, t ∈ [0, τ].

Note from Remark 6.3 that  is well defined. By Lemma 6.4,  is a controlled rough path
with respect to X.

For any t � 0, if t ∈ [(n − 1)τ, nτ] we have

Yi
t = Y[n]i

t−(n−1)τ = F([n])i−1
t−(n−1)τ = F()i−1

t .

It remains to show that,
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(6.13) Y0
t = Y0 +

∫ t

0
F(Y)dX, ∀t � 0.

We use induction on n. If t ∈ [(n − 1)τ, nτ], then

Y0
t = Y[n − 1]0

t−(n−1)T

= Y[n − 1]0
0 +

∫ t−(n−1)τ

0
F(Y[n − 1]·)dX·+(n−1)τ

= Y0 +

∫ (n−1)τ

0
F(Y)dX +

∫ t−(n−1)τ

0
F(Y[n − 1]·)dX·+(n−1)τ

= Y0 +

∫ (n−1)τ

0
F(Y)dX +

∫ t

(n−1)τ
F(Y)dX

= Y0 +

∫ t

0
F(Y)dX,

where the third equality follows from induction hypothesis. Therefore, (6.13) holds. We
have thus obtained the existence of solution on [0,∞).

Uniqueness. Let ̃ be another solution to the RDE (6.1). Suppose that

σ � sup{t ∈ [0,∞) : ̃s = s for all s ∈ [0, t]} < ∞.
Then ̃σ = σ. According to Lemma 6.1 with X = X̃, for all τ sufficiently small we have

dX,X;α
(
̃ |[σ,σ+τ], |[σ,σ+τ]) � CαταM

(
τ, ‖F‖Lip-(N+1), max

1�i�N−1
|Yi
σ|, ‖‖X;α,

‖̃‖X;α, ‖X‖α) · dX,X;α
(
̃ |[σ,σ+τ], |[σ,σ+τ]).

If we choose τ to be such that

CαταM
(
τ, ‖F‖Lip-(N+1), max

1�i�N−1
|Yi
σ|, ‖‖X;α, ‖̃‖X;α, ‖X‖α) < 1,

then

dX,X;α
(
̃ |[σ,σ+τ], |[σ,σ+τ]) = 0.

This implies that ̃ |[σ,σ+τ] =  |[σ,σ+τ] as ̃σ = σ, which contradicts the definition of σ.
Therefore, ̃ =  on [0,∞).

Continuity estimate. We now assume that all the underlying paths are defined on a given
fixed interval [0, T ]. According to Lemma 6.1 and the fact that  , ̃ are RDE solutions,
when restricted on any sub-interval [0, τ] we have

dX,X̃;α( , ̃) � CαM · (ταdX,X̃;α( , ̃) + |Y0 − Ỹ0| + ρα(X, X̃)
)
,

where we have set

M � M(τ, ‖F‖Lip-(N+1), ‖‖X;α, ‖̃‖X̃;α, ‖X‖α, ‖X̃‖α)
and used the observation that (cf. (6.9))

(6.14) max
1�i�N−1

∣∣∣Yi
0

∣∣∣ ∨ ∣∣∣Ỹ i
0

∣∣∣ � M
(‖F‖Lip-(N−1)

)
.

Let Λ be defined in (6.7) with ‖X‖α replaced by B. By choosing τ to be small enough, as a
result of (6.8) we can ensure that
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(6.15) ‖ |[0,τ]‖X;α ∨ ‖̃ |[0,τ]‖X;α � 2Λ

and also that

CαταM′ � CαταM
(
τ, ‖F‖Lip-(N+1), 2Λ, 2Λ, B, B

)
=

1
2
.

It follows that

(6.16) dX,X̃;α( , ̃) � 2CαM′ · (|Y0 − Ỹ0| + ρα(X, X̃)
)
.

on [0, τ]. It is important to note that the choice of τ is independent of Y0 and Ỹ0. By applying
(6.16) on each sub-interval [(n − 1)τ, nτ] (1 � n � T/τ), we arrive at

(6.17) dX,X̃;α
(
 , ̃

)
� 2CαM′ · (∣∣∣Y0

(n−1)τ − Ỹ0
(n−1)τ

∣∣∣ + ρα(X, X̃)
)

when restricted on [(n − 1)τ, nτ].
From (6.15) it is clear that

‖ |[(n−1)τ,nτ]‖X;α ∨ ‖̃ |[(n−1)τ,nτ]‖X̃;α � 2Λ ∀n.

In addition, according to Lemma 3.1, when restricted on [0, τ] we have∣∣∣Yi
τ − Ỹ i

τ

∣∣∣ �∣∣∣Yi
0 − Ỹ i

0

∣∣∣ + τα‖Yi − Ỹ i‖α
�ταM

(
τ, ‖X‖α, ‖X̃‖α, max

i+1� j�N−1

∣∣∣Y j
0

∣∣∣, max
i+1� j�N−1

‖
N− j‖ jα

)

× (
ρα(X, X̃) +

N−1∑
i=0

∣∣∣Yi
0 − Ỹ i

0

∣∣∣ + dX,X̃;α
(
 , ̃

))
, 0 � i � N − 2.

Observe that
N−1∑
i=0

∣∣∣Yi
0 − Ỹ i

0

∣∣∣ � M(‖F‖Lip-N)
∣∣∣Y0 − Ỹ0

∣∣∣,
which is clear since all the Yi

0’s and Ỹ i
0’s are canonically determined by Y0

0 and Ỹ0
0 via the

relation (6.6). In view of (6.15) and (6.16), we can further write

(6.18)
∣∣∣Yi
τ − Ỹ i

τ

∣∣∣ � M
(
τ, ‖F‖Lip-(N+1), B

)(∣∣∣Y0 − Ỹ0
∣∣∣ + ρα(X, X̃)

)
.

By applying (6.18) iteratively, we obtain that

(6.19)
∣∣∣Yi

nτ − Ỹ i
nτ

∣∣∣ � Mn
(
τ, ‖F‖Lip-(N+1), B

)(∣∣∣Y0 − Ỹ0
∣∣∣ + ρα(X, X̃)

)
for all n, where the increasing function Mn can depend on n.

To proceed further, we show by induction that

(6.20) dX,X̃;α
(
 |[0,nτ], ̃ |[0,nτ]) � Mn

(
τ, ‖F‖Lip-(N+1), B

)(∣∣∣Y0 − Ỹ0
∣∣∣ + ρα(X, X̃)

)
for each 1 � n � T/τ. Suppose that (6.20) is true on [0, (n − 1)τ]. According to (6.17) and
(6.19), we have

dX,X̃;α
(
 |[(n−1)τ,nτ], ̃ |[(n−1)τ,nτ]

)
� M

(
τ, ‖F‖Lip-(N+1), B

)
ρα(X, X̃)(6.21)

+ Mn−1
(
τ, ‖F‖Lip-(N+1), B

)(∣∣∣Y0 − Ỹ0
∣∣∣ + ρα(X, X̃)

)
� Mn

(
τ, ‖F‖Lip-(N+1), B

)(∣∣∣Y0 − Ỹ0
∣∣∣ + ρα(X, X̃)

)
.
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We can then apply Lemma 6.4 to patch the estimate on [0, (n − 1)τ] with the one on [(n −
1)τ, nτ] given by (6.21). This completes the induction step. The desired continuity estimate
(6.5) follows by taking n = T/τ.

Now the proof of Theorem 6.1 is complete. �

To conclude the discussion, we give a few remarks on several possible extensions.
In the first place, if the vector field F and its derivatives are not uniformly bounded, the

solution to the RDE (6.1) may explode in finite time. Similar discussion gives existence and
uniqueness up to the explosion time.

In addition, in the continuity estimate (6.5), one can also take into account the perturba-
tion of the vector field F. In this case, an extra term of ‖F − F̃‖Lip-(N+1) will appear on the
right hand side of (6.5).

Finally, it is possible to reduce the Lipschitz condition F ∈ Lip(N + 1) to F ∈ Lip(γ) with
γ > α−1 by sacrificing the Hölder regularity of the remainders of the controlled rough path
F(). More specifically, F()i

s,t should have regularity |t− s|(γ−1−i)α instead of |t− s|(N−i)α.
Correspondingly, the definition of control rough paths needs to be relaxed to allow more
flexible Hölder exponents for the remainders. This point is essentially clear in [5] for the
case of α > 1/3 and the extension to the general case is only a technical matter. Nonetheless,
we should point out that proving existence of solutions under the optimal assumption of
F ∈ Lip(γ) with γ > α−1 − 1 seems to be only possible in finite dimensions, as one has to
rely on the Leray-Schauder fixed point theorem in that case, which requires the compactness
of  and it is only true in finite dimensions.
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