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Background. Even with good progress on vaccination, SARS-
CoV-2 infections in the UK may continue to impose a high
burden of disease and therefore pose substantial challenges
for health policy decision makers. Stringent government-
mandated physical distancing measures (lockdown) have
been demonstrated to be epidemiologically effective, but can
have both positive and negative economic consequences. The
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theory, be optimized to maximize economic benefits while achieving substantial reductions in disease.
Methods. Here, we use a pre-existing SARS-CoV-2 transmission model to assess the health and
economic implications of different strengths of control through time in order to identify optimal
approaches to non-pharmaceutical intervention stringency in the UK, considering the role of
vaccination in reducing the need for future physical distancing measures. The model is calibrated
to the COVID-19 epidemic in England and we carry out retrospective analysis of the optimal
timing of precautionary breaks in 2020 and the optimal relaxation policy from the January 2021
lockdown, considering the willingness to pay (WTP) for health improvement. Results. We find that
the precise timing and intensity of interventions is highly dependent upon the objective of control.
As intervention measures are relaxed, we predict a resurgence in cases, but the optimal
intervention policy can be established dependent upon the WTP per quality adjusted life year loss
avoided. Our results show that establishing an optimal level of control can result in a reduction in
net monetary loss of billions of pounds, dependent upon the precise WTP value. Conclusion. It is
vital, as the UK emerges from lockdown, but continues to face an on-going pandemic, to accurately
establish the overall health and economic costs when making policy decisions. We demonstrate how
some of these can be quantified, employing mechanistic infectious disease transmission models to
establish optimal levels of control for the ongoing COVID-19 pandemic.
i.9:211746
1. Introduction
In late 2019, the first cases of an unknown respiratory infection began to emerge in the city of Wuhan, in
Hubei province, China [1,2]. In order to attempt to control the spread of the virus, countries around the
world introduced a range of measures, including mandatory physical distancing, wearing of face
coverings, restrictions on large gatherings and, in situations where case numbers were increasing in an
uncontrolled manner, regional or nationwide policies that have included closure of schools, restrictions
on travel and in extreme cases, stay at home orders [3].

In the UK, the first cases of COVID-19 were reported in the city of York on 31st January 2020. Cases
began to rise in a concerning manner in March 2020 and on 12th March, the government policy moved
from ‘containment’ to ‘delay’, suggesting the imminent introduction of restrictions in order to flatten the
peak and avoid the National Health Service (NHS) potentially being overwhelmed in the following
weeks. On 20th March, a wave of restrictions were introduced, including the closing of all schools to
children other than the vulnerable and those with key worker parents, and the closing of all pubs,
restaurants and indoor leisure facilities. Finally, on 23rd March, the UK prime minister announced a
national lockdown, in which all individuals had to stay at home and were only allowed out for
essential shopping, healthcare, essential work if they could not work from home and one form of
exercise per day.

As cases continued to decline during April, May and June 2020, mandatory controls were gradually
relaxed in order to mitigate further economic harm in England, schools opened to certain year groups
from early June, while non-essential shops re-opened on 15th June and pubs and restaurants on 4th
July, albeit with physical distancing measures in place in an attempt to control the spread of the virus.
As society gradually opened up, cases began to rise again, slowly at first, but increasingly rapidly in
September and October. Given the potential for a significant second wave of infection, there was a call
from many stakeholders for a short ‘circuit breaker’ lockdown in England, in order to stem the rise in
cases and protect the NHS during the winter months. The UK government finally introduced a four-
week lockdown on 5th November in England, while Scotland, Wales and Northern Ireland introduced
similar, short-term mandatory control policies during October and November in an attempt to keep
the virus under control.

Much of the existing modelling literature on the pandemic has focused explicitly on the impacts of
interventions that minimize the direct health impact of the COVID-19 pandemic, such as the number
of individuals being admitted to hospital and/or dying from the disease [4–6]. Modelling early in the
pandemic indicated the effectiveness of lockdown policies in Wuhan in terms of reducing the overall
number of infections [7], though it was noted that the precise timing of such a lockdown could have a
significant influence upon the effectiveness of the policy [7,8]. In general, early findings concluded
that the earlier a control policy was introduced, the more effective it would be at reducing the total
number of cases occurring [8,9].
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However, it is important to note that there are non-health benefits and harms that can arise as a
result of lockdown. From an economic perspective, long-term closures of the hospitality sector
and non-essential shops could lead to wholesale closure of businesses, which will in turn lead to
increased unemployment. There are additional effects on tourism, transport and productivity. These
disruptions can in turn lead to indirect health harms, such as potential delays in elective hospital
procedures, mental health harm and reduced fiscal space for healthcare spending as a result of
economic contractions. On the other hand, voluntary physical distancing in response to increases in
COVID-19 cases and deaths plays a role that is at least as important as government-mandated
controls in driving economic losses, particularly in high-income countries [10,11]. As a result,
judicious use of lockdown measures may ultimately hasten economic recovery [12,13]. It is therefore
important to consider the effect of any control policy on the overall economic cost of an outbreak,
taking into account both positive and negative health and economic effects.

There is significant debate around enhanced physical distancing in both the UK and around the world
with a focus on a perceived trade-off between averting COVID-19 cases and avoiding non-COVID loss of
welfare [14,15]. However, there has only been a limited exploration of this perceived trade-off in analysing
the economic valuation of vaccines [15]. To date no paper has explicitly explored the optimal level of
physical distancing in the UK context using a mechanistic model of disease transmission, that can be
used to estimate the impact of interventions on cases, hospitalizations and deaths, incorporating
economic impact, though previous work has investigated potential health and economic impacts of
vaccination [15]. In this paper, we analyse the effectiveness of different control scenarios (including
more intensive long-term control or intermittent periods of fixed-term control) taking into account the
positive impact on public health and the negative impact on the economy. We aim to inform optimal
physical distancing policies that minimize a given mixed objective function of social welfare (that
combines economic and public health losses) to inform policy in the UK, and provide an example of an
analytical approach to assessing the COVID policies more broadly.

We focus here on two scenarios. We first evaluate past UK policy, to illustrate the potential trade-offs
between two physical distancing policies during the second wave in late 2020. We then extend this
analysis to appraise different future approaches to physical distancing as vaccination is rolled out.
In the first scenario, we explore the impact introducing multiple ‘precautionary breaks’—short-term
lockdowns of up to four weeks duration—would have had during 2020 and investigate the
predictions of the cost of such a policy, dependent upon the intensity of control both within and
outside these lockdown periods. We consider different lockdown period durations, intensity and
timings, and calculate an overall cost for each measure. In the second scenario, we investigate the
optimal relaxation policy to exit the 2021 lockdown, as dependent upon the pace of the vaccination
campaign and the acceptable level of cost of the intervention policy.

To establish the COVID-related health impacts, we calculate the quality adjusted life year (QALY) loss
for each scenario. Additionally, we calculate the estimated gross domestic product (GDP) loss across this
period and, by combining these measures, we determine an optimal scenario that is based upon
monetizing QALY losses using a societal willingness to pay (WTP) conversion factor. We apply the
WTP concept which can be used to evaluate direct costs incurred by healthcare services from a
demand-side perspective. This provides a way to measure the overall societal valuation of disease
control, with an optimal policy determined based upon the policy maker’s WTP for health
improvement. Our work provides a framework to facilitate decision-making that takes into account
the negative impacts that mandatory controls may have on economic productivity, as well as the value
of positive health impacts that occur as a result of the reduction in the spread of disease.
2. Methods
2.1. The epidemiological model
In this paper, we used a previously developed deterministic, age-structured compartmental model,
stratified into 5-year age bands [16]. It is important for age-structure to be incorporated into a model
of this type, given that the risk of hospitalization and death is highly dependent upon age.
Transmission was governed through age-dependent mixing matrices based on UK social mixing
patterns [17,18]. The population was further stratified according to current disease status, following a
susceptible–exposed–infectious–recovered paradigm, as well as differentiating by symptoms,
quarantine and household status. We assumed therefore that susceptibles infected by SARS-CoV-2
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would enter a latent state before becoming infectious. Given that only a proportion of individuals who
are infected are tested and subsequently identified, the infectious class in our model was partitioned into
symptomatic (and hence potentially detectable), and asymptomatic (and likely to remain undetected)
infections. We assumed both susceptibility and disease detection were dependent upon age. We
modelled the UK population aggregated to 10 regions (Wales, Scotland, Northern Ireland, East of
England, London, Midlands, North East and Yorkshire, North West England, South East England,
South West England), with each region modelled independently (i.e. we assumed no interactions
occurred between regions).

A drawback of the standard SEIR ordinary differential equation (ODE) formulation in which all
individuals mix randomly in the population is that it cannot readily account for the isolation of
households. For example, if all transmission outside the household is set to zero in a standard ODE
model, then an outbreak can still occur as within-household transmission allows infection between
age-groups and does not account for local depletion of susceptibles within the household
environment. We addressed this limitation by extending the standard SEIR models such that first
infections within a household are treated differently from subsequent infections. To account for the
depletion of susceptibles in the household, we made the approximation that all within household
transmission was generated by the first infection within the household (see electronic supplementary
material for further details).
i.9:211746
2.2. Model solutions

2.2.1. Scenario 1: retrospective analysis

For our retrospective analysis, we used the transmission model to simulate the spread of SARS-CoV-2
infection in the UK in the presence of none, one or two precautionary breaks. We ran a suite of
simulations, varying the timing of the initial and the subsequent precautionary break, as well as the
levels of control both within the precautionary break and during the intrinsic (inter-break) period;
although we included a constraint that the level of control within a precautionary break must be at
least as severe as the level of control outside the precautionary break. The earliest date we assumed
the first precautionary break could occur was 1st July 2020. The minimum delay between the onset
date of the first and second precautionary break was set to four weeks, based on the practical
assumption that the UK government would be unlikely to implement two consecutive precautionary
breaks within a short time period. We assumed each precautionary break was in place for one, two,
three or four weeks. All simulations spanned February 2020 until the end of June 2021, although we
calculated economic and health costs from June 2020 through to January 2021 (corresponding to the
time period during which precautionary breaks could be enacted). Overall, we explored a wide set of
potential future scenarios (approx. 50 000) where the placement of precautionary breaks and strength
of controls were tunable parameters.

In our model, we considered the following variables when determining the optimal level and type
of control:

(i) The intensity of controls both within precautionary break periods and outside these periods.
We measured this by a single parameter (ϕ, between zero and one) that combined the scale of
any measures, public adherence and reactive public behaviour, in other words both mandated
and voluntary distancing. When this parameter is zero, there are no restrictions or voluntary
distancing, and thus additional impact on the economy, but transmission is maximal. When
this parameter is one, there is very strong extent of physical distancing, comparable with the
situation in the UK in early April 2020. Our constraint that the level of control within a
precautionary break must be at least as severe as the level of control outside the break was
enforced by ensuring the intensity of controls within break periods, ϕPB, had a value equal to
or greater than the intensity of controls outside of break periods, ϕO (i.e. ϕPB≥ ϕO). More details
of the effect of ϕ upon transmission are given in the electronic supplementary material.

(ii) The duration of precautionary breaks. This was modelled as a fixed time interval (one, two, three
or four weeks), during which more severe intervention policies were introduced, compared to the
intrinsic control measures. The duration of the break period(s) for a given simulation could be
varied to establish the optimal duration of a fixed-term precautionary break.

(iii) The frequency and timing of precautionary breaks. We considered the impact of single and
multiple breaks. We assumed that the intensity of each break was the same in a multi-phase
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strategy (though we acknowledge that, in practice, adherence could wane through time given
repeated precautionary breaks).

(iv) Limits on hospital occupancy. Given that the choice of policy may be influenced by the current
number of individuals in hospital with COVID, we investigate the impact of a hospital occupancy
threshold upon our choice of policy. We therefore consider hospital occupancy limits of 10 000 and
20 000 individuals and an alternate scenario where there is no limit on hospital occupancy.

2.2.2. Scenario 2: prospective scenario

For the prospective scenario, we simulate the model forward from January 2021 and investigate a range
of schedules of relaxation from lockdown. Prior to January 2021, the model assumes the same levels of
control that took place in England. In this scenario, we introduce vaccination into the population at a rate
of either 2 million or 4 million individuals per week. We assume a vaccine efficacy of 70% after the first
dose and 88% after the second dose against disease (and 48% and 60% against infection), with immunity
taking effect two weeks after vaccination. We investigate the optimal policy to emerge from lockdown
and how that policy is dependent upon assumptions around the acceptable cost of control.

2.2.3. Defining the counterfactual scenarios

In order to understand the health and economic impact of any level of control, for each scenario, we must
outline the counterfactual against which all other strategies are judged. For analytical purposes, we
compare all levels of control against an unmitigated outbreak (i.e. zero control, or ϕ = 0) without
vaccination as our null model for the first scenario and a scenario where we stay in full lockdown
(phi=) for the duration of the simulations, until the end of 2021. While this is unlikely in reality, as
populations are likely to change behaviours as the risk of infection changes, it provides the base to
assess different increasing levels of control (through either voluntary or mandatory distancing). In
addition, throughout our analyses for simplicity, we assumed that there are no economic losses as a
result of reduced productivity from sickness and death. This means that any increase in the level of
control always leads to an economic loss but a health benefit.

2.3. Calculating costs and willingness to pay
For each simulation of the model, we calculated the total number of deaths by age and used this to
establish a total QALY loss as a direct result of severe infection, taking into account mortality,
hospitalization and admission into intensive care (see electronic supplementary material). No discount
rate was applied to future costs and QALYs given the limited timeframe of the analysis. We estimate
economic loss as a result of a given set of potential control measures by investigating the total GDP
loss related to the level of control. We approximated daily GDP by a polynomial function of the level
of control, ϕ (figure 1, red line), derived from data on GDP from the period January to December
2020. Hence, we made a pessimistic assumption about the economic impact of control measures.
Given the volatility in GDP in the months following the first national lockdown in March 2020, we
make two assumptions, one in which we fit to the whole of 2020 (figure 1, red line) and one in which
we fit from June 2020 to December 2020 (figure 1, blue line), with the GDP per month shown in bars.
We conjecture that the model fitted from June 2020 may be representative of the true long-term
impact of the pandemic and the underlying intervention measures upon GDP. We recognize using
productivity as our measure of economic loss and using the blunt relationship between control and
GDP excludes the economic value of non-monetary elements of social welfare. Moreover, using an
empirically derived relationship between control and GDP from the past limits the policy inference, as
observed levels of control are likely to be driven by both voluntary control (in response to levels of
risk of illness) and mandatory lockdown measures.

To inform the temporal strength of controls, we used the temporally varying level of control inferred
by the SARS-CoV-2 transmission model being fit to multiple epidemiological data streams as outlined in
previous work [16]. Using our estimates of strength of controls, given a level of control at a particular
point in time, we determined the polynomial function that provided the best fit to reported monthly
GDP. We translated this value to total GDP loss by summing across the intervention duration and
comparing to the unmitigated scenario.

To produce an optimal level of control from a societal perspective, we combined the value of health
and economic loss estimates into a single monetary quantity. We achieved this by placing a monetary
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value (W) on each QALY and minimizing the net monetary loss i.e. W ×QALY loss + GDP loss. W
represents the societal willingness to pay per QALY loss avoided. We model this for different levels of
W. WTP is determined by decision authorities and may reflect different values. For example, the
National Institute for Health and Care Excellence currently uses a cost-effectiveness threshold where
W is in the range of £20 000 to 30 000 for reimbursing new drugs in the National Health Service [19];
however, this is for policy decisions that considered trade-offs between new and current health sector
services and in the context of the ongoing COVID-19 pandemic, we may expect a different value of W
to be appropriate. We therefore consider a range of values of W from £20 000 to 200 000 throughout
this paper.
3. Results
3.1. Analysis of the impact of precautionary breaks in 2020
We firstly investigated the effect that multiple precautionary break policies could have had on the
epidemic from June 2020. For this set of results, we do not consider the effect of vaccination and we
excluded simulations in which hospital occupancy across the entire country exceeded a specified
threshold (set at either 10 000 or 20 000 individuals at any one time and we also include a scenario
with no limit on hospital occupancy) to ensure that the optimal strategy did not result in the health
service being overwhelmed. While we imposed a health service-related constraint here, our model
framework can be extended to include other exclusionary constraints; for example, simulations that
result in daily economic costs exceeding a given threshold or those that exceed specific hospitalization
thresholds by local area.

To exemplify the dynamics, we fixed the willingness to pay per QALY (W) at 50 000 and examined the
net loss across a range of scenarios (figure 2) with no limit on hospital occupancy initially. As the level of
control increases, the total QALY loss decreases (figure 2, top row), while the total GDP also decreases
(figure 2, second row). We therefore observe that the net loss is minimized at an intermediate background
level of control (figure 2, third row)—a value of 0.7 for the given value of W when we fit GDP to all 2020
and 0.8 when we fit from June to December 2020. It is also optimal in this instance for two precautionary
breaks to be introduced, in July/August 2020 and September 2020 (figure 2, bottom row). We explored
sensitivity to these findings by considering alternative fixed W values of £20 000, £30 000, £100 000 and
200 000. The results are summarized in electronic supplementary material, figures S1–S4. When
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considering 200 000 as a willingness to pay per QALY, we observe a slight increase in the optimal level of
control, while if our willingness to pay per QALY is only 20 000, then the level of control that minimizes
loss is reduced.

We extended this approach across a range of W values, finding the strategy that minimized the net
loss. Our results are summarized in figure 3 when we fit GDP from June to December 2020 (results
when we fit to all 2020 are given in the electronic supplementary material, figure S5), with particular
realizations at the optimal level of control shown in electronic supplementary material, figures S6–S11.
We observe that, if the willingness to pay per QALY (W) was low and our restriction on daily hospital
admissions was unlimited (blue curves), the optimal strategy was to have low levels of control outside
the precautionary breaks and a relatively low control level within a precautionary break (figure 3;
electronic supplementary material, figure S5, second row, right panel and third row, right panel,
respectively). As the WTP increases, there is a preference for higher levels of control both within and
outside the precautionary break and a preference for a slightly delayed introduction of the second
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Figure 3. Outcomes over a range of willingness to pay per QALY (W) values. (Top row) Net monetary loss (W × QALY loss + GDP
loss) against different values of W as the daily hospitalization threshold varies (different colours). In rows 2–4, we display the
following measures for the optimal control strategy as the willingness to pay per QALY increases: (second row, left panel)
maximum number of hospital admissions per day; (second row, right panel) the optimal level of intrinsic control outside
lockdown; (third row, left panel) the optimal level of control within a precautionary break; (third row, right panel) the optimal
duration of the lockdown in days; ( fourth row, left panel) the optimal date of the first precautionary break; ( fourth row, right
panel) the optimal date of the second precautionary break. In this figure, we fit to GDP from June to December 2020.
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precautionary break, but regardless of the WTP, the tendency is for both the first and second
precautionary break to be introduced early (figure 3, bottom row). We note that for almost all
scenarios investigated, the optimal duration of a precautionary break was the maximum length
investigated of four weeks (figure 3; electronic supplementary material, figure S5, third row, right-
hand panel), while multiple rather than single breaks were generally preferred. This suggests that
there may be a need for either longer duration or more frequent breaks to be investigated. We also
note that the limit on hospital occupancy only has a significant effect upon the optimal policy when
the WTP is low—at higher values WTP the preferred timing and intensity of the precautionary break
is found to be independent of the hospital occupancy threshold.

In the electronic supplementary material, we used the same three hospitalization thresholds and
show the dynamics of deaths and hospitalizations at the optimal set of controls that minimizes the net
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monetary loss for particular values of W(W = £20 000, £30 000, £50 000, £100 000 and 200 000). Across all
WTP values, we find that the optimal policy is for two precautionary breaks to be introduced early, with
a lower value of WTP generally resulting in a slightly early date of introduction for the precautionary
breaks. As the WTP increases, the optimal intensity of control both within and outside the
precautionary break periods increases and results in fewer daily hospitalizations and deaths
(electronic supplementary material, figures S6–S11). We also note that increasing the maximum
number of hospitalizations per day threshold does not significantly affect the optimal timing of
precautionary breaks but allows for lower background levels of control.

3.2. Optimal relaxation strategies for the January 2021 national lockdown
We now investigate how the optimal pace of relaxation of lockdown may be dependent upon our societal
WTP for repeated lockdowns to avoid QALY losses due to COVID. The results are summarized in
figure 4. Here, we can see that, if the WTP is at the low end of our range and 4 million individuals
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are vaccinated per week (dark colours in figures), our model recommends a relatively rapid relaxation
policy, with all interventions removed by September 2021 (figure 4, top row). However, this results in
a significant wave of deaths occurring. As the WTP increases (figure 4, second row to bottom row), it
is preferable to ease out of lockdown much more gradually, as this results in a much lower peak in
deaths as non-pharmaceutical interventions are relaxed. If we only have the capacity to vaccinate
2 million individuals per week, we note that this results in a slightly slower easing of lockdown being
optimal and as a result of this, we observe a reduced peak in deaths for a given WTP when compared
with a scenario with a higher vaccine capacity. These results highlight that the WTP has a significant
influence upon the optimal strategy for both introducing and easing interventions.
/journal/rsos
R.Soc.Open

Sci.9:211746
4. Discussion
This work highlights a central tenet of disease control—that the optimal timing and level of any physical
distancing policy is highly dependent upon the scope of the objective that is trying to be achieved [20,21].
Combining economic and health outcomes in COVID-19 policy analysis using infectious diseasemodelling
is potentially complex. Similar work has been carried out focusing upon both health and non-health
impacts of controls for the COVID-19 pandemic (e.g. [22–25]). Previous work indicates that in some
settings, short-term lockdowns may be effective at mitigating the economic harms of lockdown while
reducing the risks to health [24] and that the rate of relaxation from lockdown can have a significant
impact upon the effectiveness of a policy from both a health and an economic perspective [22].
Similarly, research has been carried out to investigate optimal prioritization of vaccination, taking into
account health and economic outcomes, with evidence indicating that the effectiveness of age-
prioritized vaccination strategies is conditional upon country characteristics and roll out speed [25].

Our methods build upon previous work in this field and illustrate that where a multi-phase
precautionary break strategy is under consideration, the exact time scale and intensity of such a policy
is highly dependent upon the WTP of the UK population to averted health loss. For example, in our
retrospective scenario, if WTP is £50 000 per QALY loss avoided, increasing the level of control from 0
to 0.7 would result in a reduction in net monetary loss of over 150 billion. If the WTP is £100 000 then
this change in control level would result in a increased reduction in net monetary loss to over
400 billion. Even where the exact WTP is unknown, our analysis illustrates that it is possible to develop
an approach for arriving at optimal control that incorporates both health and economic losses, for
different levels of WTP, with the aim to inform the transparent assessment of the trade-offs involved.

There are important caveats to the findings in this work that should be discussed, and can inform
those who wish to develop this approach further. First, we have examined the relationship between
levels of control and economic and health impact. The level of control is driven by both voluntary
and mandated distancing, and the former is likely to be driven at least in part by economic and
health risk. These feedbacks may result in underestimating the optimal level of control, since strong
controls can reduce disease incidence and hence minimize economic damage from voluntary
distancing. We also note that our economic approach, using current GDP loss as a proxy for overall
economic loss, is unlikely to capture the dynamics of economic impact and wider societal welfare and
long-term economic impacts of control, particularly given government borrowing to mitigate costs in
the short term. There will be a range of lagged impacts, and longer-term impacts on GDP of any set
of controls. We also note that GDP loss is not the only important economic indicator. Fiscal impact or
increases in unemployment are other important factors, and wider impacts such as educational losses
could be considered. It is therefore possible that the findings represented here may overestimate the
short-term economic impact of lockdown, while not capturing the social and long-term economic
impact. These aspects should also be considered when determining the optimal strength of control
implemented within lockdown periods. A more complete economic analysis would use approaches
such as computable general equilibrium models [26] and the need to consider which sectors of society
would be restricted to arrive at a particular level of control, and how this would lead to a loss in
GDP. Our findings do suggest, however, that governments should consider setting acceptable
thresholds for a loss of productivity per QALY before the next pandemic in order to establish optimal
intervention policies at pandemic onset.

On measuring cost to health, we currently estimate health harms by calculating QALY loss from
hospitalization, admission to intensive care and death as a result of COVID-19 infection. However, a
more complete analysis would account for a range of other factors beyond the scope of this
preliminary work, including: non-COVID health impacts of COVID-19 itself and of interventions to
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control COVID-19 (both positive, such as the likely decline in other infections due to social distancing,
and negative, such as excess all-cause mortality, cancelled elective procedures due to hospital bed
pressures, and reduction in hospital attendance and screening), the mental health and social impacts
of COVID-19 and its control [27], long-term health impacts of economic harm [28] and the lasting
health implications of long COVID [29,30]. It is also important to note that public health costs as a
result of infection and the economic impact owing to the intervention are likely to be highly
disproportionate across demographic groups, with those from most deprived backgrounds likely to be
more severely affected [31]. Our work focuses upon determining an optimal policy at a regional level
and more research should be carried out to explore the variability in impact at a local level as a result
of large-scale optimal policies.

We also note that our results are highly dependent upon the precise value of the WTP,W. When faced
with the scale of the SARS-CoV-2 outbreak and associated COVID-19 disease burden, trade-offs may
consider a rule of rescue and the value of W could be higher than values typically used by the NHS
[32]. Alternative approaches, using measures of W that value health according to the opportunity
costs within current spending on health are likely to be lower. Finally, depending on the way in
which W is determined, there may be some double counting between economic loss and health loss
as, when valuing QALYs, the value of reduced productivity may be implicitly considered in QALY
valuations. Given this complexity around valuing health improvement, we present our results for a
range of different values of W.

It is also important to note that our models assumed a fixed rate of adherence to intervention
measures, a fixed level of control across all lockdown periods and similarly a fixed (but lower) level of
control across non-lockdown periods. It is possible that such a policy of repeated lockdowns could
result in waning adherence over time, and this may in turn influence the overall economic and health
impact of any lockdown period. With this in mind, further work may be needed in order to establish
the optimal adaptive policy when there is uncertainty regarding future intensities of lockdown and
adherence to intervention measures. Finally, economic cost is proportional to the total duration and
intensity of a lockdown. We have not considered any additional economic cost of multiple short
precautionary breaks (owing to stopping and starting of businesses) or longer term lockdowns (in
which businesses may be more likely to become insolvent). As such, in our model, the optimal policy
to minimize economic losses (without consideration for health) would be for all interventions to be
removed, with a large number of cases and hospital admissions occurring as a result. In reality, there
would be an associated economic cost to such a strategy that is not currently accounted for in this
framework and further research is required in order for these costs to be appropriately accounted for.

Finally, for the restrospective analysis presented here, the model is parameterized to fit to the data
during the course of the epidemic (see electronic supplementary material for more information).
However, as this work was carried out in December 2020, the model used the data that were available
at that time. Had this analysis been carried out in real time during the course of an epidemic, the
underlying uncertainty regarding data may result in uncertainty in parameter estimates which in turn
could affect model predictions of the optimal intervention policy. Previous research has been carried
out in this area for the 2001 foot-and-mouth disease epidemic, which indicates that the uncertainty
associated with parameterization of models in ‘real time’ during outbreaks may impact model
predictions of the spread of disease and the impact of intervention policies [33]. Future research
should be carried out to investigate the impact of this uncertainty for real time decision-making in the
event of human disease outbreaks.

Despite the caveats presented above, there are some important lessons that we can learn from this
research. During any infectious disease outbreak, policy makers must rapidly evaluate the state of the
system and introduce an intervention policy that is deemed most appropriate at that point in time.
For human diseases, the key focus is typically (and understandably) on health, with policies often
selected that will minimize the risk of severe disease or death over a short period of time. However, a
policy that focuses purely upon minimizing health losses can have a very high macro-economic cost
and result in long-term harm. Here, we present a more nuanced approach, whereby we consider both
the economic costs of lockdown and the health costs of the pandemic, linked to a dynamic model of
infectious disease. Our results highlight the necessity for decision makers to identify their overarching
objective in the event of an infectious disease outbreak. We concede it may be challenging to do this
during a pandemic when there are multiple competing priorities facing decision makers, and
population preferences are unclear. However, clearly defining the objective and the trade-offs that
need to be considered should be an essential component of the contingency planning process going
forward, and can help ensure that optimal policies can be defined to minimize the impact of a future
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epidemic rapidly. Once an appropriate objective is decided upon, the research presented here provides
the start of a framework for decision makers to evaluate the effectiveness from a societal perspective.
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