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Abstract
The class of quasi-chain graphs is an extension of the well-studied class of chain
graphs. This latter class enjoys many nice and important properties, such as bounded
clique-width, implicit representation, well-quasi-ordering by induced subgraphs, etc.
The class of quasi-chain graphs is substantially more complex. In particular, this class
is not well-quasi-ordered by induced subgraphs, and the clique-width is not bounded
in it. In the present paper, we show that the universe of quasi-chain graphs is at least as
complex as the universe of permutations by establishing a bijection between the class
of all permutations and a subclass of quasi-chain graphs. This implies, in particular, that
the induced subgraph isomorphism problem is NP-complete for quasi-chain graphs.
On the other hand, we propose a decomposition theorem for quasi-chain graphs that
implies an implicit representation for graphs in this class and efficient solutions for
some algorithmic problems that are generally intractable.
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1 Introduction

A chain graph is a bipartite graph such that the neighbourhoods of the vertices in each
part of its bipartition form a chain with respect to the inclusion relation. The class of
chain graphs appeared in the literature under various names such as difference graphs
[13] or half-graphs [8]. In model theory, half-graphs appear as an instance of the order
property [25]. The class of chain graphs is closely related to one more well-studied
class of graphs, known as threshold graphs, and together they share many nice and
important properties. In particular,

• chain graphs have bounded clique-width [23] (and even linear clique-width),which
implies polynomial-time solutions for a variety of algorithmic problems that are
generally NP-hard;

• chain graphs are well- (and even better-) quasi-ordered under induced subgraphs.
This is because another important parameter, graph lettericity, is bounded for chain
graphs [30];

• chain graphs admit an implicit representation, which in turn implies a small
induced-universal graph for the class. More specifically, there is a chain graph
with 2n vertices containing all n-vertex chain graphs as induced subgraphs [22].

In the terminology of forbidden induced subgraphs, the class of chain graphs is
precisely the class of 2P2-free bipartite graphs, i.e., bipartite graphs that do not contain
the disjoint union of two copies of P2 as an induced subgraph (Pn denotes the chordless
path on n vertices).

In the present paper, we study a class of bipartite graphs that forms an extension
of chain graphs defined by relaxing the chain property of the neighbourhoods in the
following way. We say that a linear ordering (a1, . . . , a�) of vertices is good if for
all i < j , the neighbourhood of a j contains at most 1 non-neighbour of ai . We call
a bipartite graph G a quasi-chain graph if the vertices in each part of its bipartition
admit a good ordering. Alternatively, quasi-chain graphs are bipartite graphs that do
not contain an “unbalanced” induced copy of 2P3. To explain what we mean by this,
we observe that 2P3 admits two bipartitions: one with parts of equal size (balanced)
and the other with parts of different sizes (unbalanced). In the unbalanced bipartition,
one of the parts does not admit a good ordering and hence quasi-chain graphs are
free of unbalanced 2P3. On the other hand, if a bipartite graph G does not contain an
unbalanced induced copy of 2P3, then by ordering the vertices in each part in a non-
increasing order of their degrees we obtain a good ordering, i.e., G is a quasi-chain
graph.

The class of quasi-chain graphs is substantially richer and more complex than the
class of chain graphs. In particular, it is not well-quasi-ordered by induced subgraphs
[19] and the clique-width is not bounded in this class [23]. To emphasize the complex
nature of this class, in Sect. 3 we establish a bijection f between the class of all per-
mutations and a subclass of quasi-chain graphs such that a permutation π contains a
permutation ρ as a pattern if and only if the graph f (π) contains the graph f (ρ) as
an induced subgraph. Together with the NP-completeness of the pattern matching
problem for permutations this implies the NP-completeness of the induced sub-
graph isomorphism problem for quasi-chain graphs.
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The relationship between permutations and quasi-chain graphs also implies the
existence of infinite antichains of quasi-chain graphs with respect to the induced sub-
graph relation and hence the unboundedness of lettericity in this class. In Sect. 5, we
identify the exact boundary separating hereditary subclasses of quasi-chain graphs
with bounded lettericity from those where this parameter is unbounded.

In spite of themore complex structure, the quasi-chain graphs inherit some attractive
properties of chain graphs. To show this, in Sect. 4 we propose a structural charac-
terisation that describes any quasi-chain graph as the symmetric difference of two
graphs Z and H , where Z is a chain graph and H is a graph of vertex degree at most
2. This characterisation allows us to prove that quasi-chain graphs admit an implicit
representation (Sect. 6) and that some algorithmic problems that are NP-complete for
general bipartite graphs admit polynomial-time solutions when restricted to quasi-
chain graphs (Sect. 7). All preliminary information related to the topic of the paper
can be found in Sect. 2. Section 8 concludes the paper with some open problems.

2 Preliminaries

All graphs in this paper are simple, i.e., undirected, with neither loops nor multiple
edges. The vertex set and the edge set of a graph G are denoted V (G) and E(G),
respectively. The neighbourhood of a vertex v ∈ V (G) is the set of vertices adjacent
to v.We denote the neighbourhood of v in the graphG by NG(v) and omit the subscript
if it is clear from the context.

In a graph, an independent set is a subset of pairwise non-adjacent vertices and a
clique is a subset of pairwise adjacent vertices. A graph is bipartite if its vertex set
can be partitioned into two independent sets, which we refer to as the parts or colour
classes of the graph. A bipartite graph G = (V , E) given together with a bipartition
V = A ∪ B is denoted G = (A, B, E). Once such a bipartition has been fixed, we
may define the bipartite complement ˜G = (A, B, E ′) of G, in which two vertices
a ∈ A and b ∈ B are adjacent if and only if they are not adjacent in G (that is,
E ′ = (A × B) − E).

As usual, Pn denotes a chordless path with n vertices and Kp,q denotes a complete
bipartite graph with parts of size p and q. The disjoint union of n copies of G is
denoted nG.

The subgraph of G induced by a setU ⊆ V (G) is denoted G[U ]. If G contains no
induced subgraphs isomorphic to a graph H , then we say that G is H -free and call
H a forbidden induced subgraph for G. A class of graphs is hereditary if it is closed
under taking induced subgraphs. It is well-known that a class is hereditary if and only
if it can be characterised by means of minimal forbidden induced subgraphs.

Of particular interest in this paper is the class of chain graphs. By definition, a
bipartite graph G = (A, B, E) is a chain graph if the vertices in each part can be
ordered A = (a1, . . . , a�) and B = (b1, . . . , bk) so that N (a1) ⊇ · · · ⊇ N (a�) and
N (b1) ⊆ · · · ⊆ N (bk). We call this ordering perfect. A typical example of a chain
graph is represented in Fig. 3a. We denote a graph of this form with n vertices in each
part by Zn . More precisely, Zn is a bipartite graph such that for each i = 1, 2, . . . , n
each part of the graph has exactly one vertex of degree i . The graph Zn is typical in
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Fig. 1 An unbalanced 2P3

the sense that it contains every chain graph with n vertices as an induced subgraph,
i.e., Zn is an n-universal chain graph [22].

Chain graphs are precisely 2P2-free bipartite graphs, i.e., 2P2 is the only min-
imal bipartite graph which is not a chain graph. This implies, in particular, that
G = (A, B, E) is a chain graph if the vertices in one of the parts can be ordered under
inclusion of their neighbourhoods, because two vertices with incomparable neigh-
bourhoods in one part give rise to two vertices with incomparable neighbourhoods in
the other part.

In this paper, we consider an extension of the class of chain graphs which can be
described by forbidding an unbalanced induced copy of 2P3 (see Fig. 1). We call these
graphs quasi-chain graphs.

The name quasi-chain reflects the fact that the neighbourhoods of vertices in each
part create “nearly” a chain. More formally, a linear ordering (a1, . . . , a�) of vertices
is good if |N (a j ) − N (ai )| ≤ 1 for all j > i . Then a bipartite graph is a quasi-chain
graph if and only if the vertices in each part of its bipartition admit a good ordering.

Quasi-chain graphs appeared in the literature,without this name, in various contexts.
In particular, [2] studies the number of n-vertex labelled graphs in this class, [23]
proves that the clique-width of quasi-chain graphs is unbounded, while [19] shows that
graphs in this class are not well-quasi-ordered by induced subgraphs by establishing an
intriguing relation between quasi-chain graphs and permutations. In the next section,
we elaborate on this topic and show that, with some reservation, this relation can be
developed into a bijection.

3 Quasi-Chain Graphs and Permutations

Given two permutations π = (π(1), π(2), . . . , π(k)) and ρ = (ρ(1), ρ(2), . . . ,
ρ(n)), we will write π ⊆ ρ to indicate that π is contained in ρ as a pattern, i.e.,
there is an order-preserving injection e : {1, 2, . . . , k} → {1, 2, . . . , n} such that
π(i) < π( j) if and only if ρ(e(i)) < ρ(e( j)) for all 1 ≤ i < j ≤ k. The pattern
containment relation on permutations is the subject of a vast literature, see, e.g., the
book [21] and the references therein. By mapping each permutation to its permuta-
tion graph, we transform the pattern containment relation on permutations into the
induced subgraph relation on graphs. This mapping, however, is not injective, as it can
map different permutations to the same (up to an isomorphism) graph. In the present
section, we propose an alternative mapping from permutations to graphs: we map per-
mutations to quasi-chain graphs, in such a way that two permutations are comparable
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if and only if their images are comparable. To make this mapping injective, we require
the quasi-chain graphs to be coloured. That is, we will assume that every quasi-chain
graph is given together with a partition of its vertex set into an independent set A of
white vertices and an independent set B of black vertices and we will write G ⊆ H to
indicate that G is a coloured induced subgraph of H , i.e., there is an induced subgraph
embedding of G into H that respects the colours. The distinction between coloured
and uncoloured graphs matters, for instance, in the assignment problem.

We denote our mapping from permutations to graphs by f and define it as follows.
If π = (π(1), π(2), . . . , π(n)) is an n-entry permutation, then f (π) is a bipartite
graph with parts A = {a1, a2, . . . , a2n} and B = {b1, b2, . . . , b2n} and the following
edges:

(i) for any 1 ≤ i ≤ j ≤ 2n, we have aib j ∈ E(G),
(ii) for any 1 ≤ i ≤ n, we have an+i bπ(i) ∈ E(G).

We write Gπ := f (π) and say that Gπ is the quasi-permutation graph of π . Any
graph G isomorphic to Gπ for some π will be called a quasi-permutation graph. It
follows easily from the definition that f is order-preserving, in that π ⊆ ρ implies
f (π) ⊆ f (ρ).

Claim 1 Any quasi-permutation graph G is a quasi-chain graph.

Proof We observe that the edges of type (i) define a chain subgraph of G in which
N (a j ) ⊆ N (ai ) for all 1 ≤ i < j ≤ 2n. The edges of type (ii) form a matching and
therefore in the graph G we have |N (a j ) − N (ai )| ≤ 1 for all 1 ≤ i < j ≤ 2n.
Similarly, |N (bi ) − N (b j )| ≤ 1 for all 1 ≤ i < j ≤ 2n in G. This shows that A and
B have good orderings, and so any quasi-permutation graph G is a quasi-chain graph.

	

Claim 2 The mapping f is a bijection from the class of all permutations to the (non-
hereditary) class of quasi-permutation graphs.

Proof The mapping f is surjective by the definition of quasi-permutation graphs.
Now notice that in the graph f (π) the degree sequence of vertices in both A and B
is (2, 3, 4, . . . , n + 1, n + 1, n + 2, . . . , 2n). In particular, f (π) uniquely determines
the size of π .

The unique vertex of A with degree 2 is adjacent to vertices b2n and bπ(n) in part B.
Vertex b2n has degree 2n and vertex bπ(n) has degree k, for some k ≤ n+1. Inspecting
the value of k allows us to determine the value of π(n), which is k − 1. Similarly,
the unique vertex of degree 3 has three neighbours: b2n, b2n−1 and bπ(n−1), which
allows us to determine the value of π(n − 1). In this way, we see that f (π) uniquely
determines π(i) for all 2 ≤ i ≤ n. But two permutations with the same number
of elements cannot disagree in exactly one entry, hence the graph f (π) uniquely
determines the permutation π . Therefore, f is injective. 	

Claim 3 Let π and ρ be two permutations with n and m entries, respectively, with
n ≤ m and π(1) �= n. If f (π) ⊆ f (ρ), then π ⊆ ρ.
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Proof Assume f (π) ⊆ f (ρ).Wedenote thevertices of f (ρ) as A = {a1, a2, . . . , a2m}
and B = {b1, b2, . . . , b2m} and edges aib j if either 1 ≤ i ≤ j ≤ 2m or
m + 1 ≤ i ≤ 2m and j = ρ(i − m). Also, we denote the vertices of f (π)

as A′ = (a′
1, a

′
2, . . . , a

′
2n), and B ′ = (b′

1, b
′
2, . . . , b

′
2n) with edges a′

i b
′
j if either

1 ≤ i ≤ j ≤ 2n or n + 1 ≤ i ≤ 2n and j = π(i − n). The mapping that embeds
f (π) into f (ρ) as an induced subgraph will be denoted by a′

i �→ ae(i), b′
i �→ bw(i).

Firstly, observe that all but at most one entry from the set {w(1), w(2), . . . , w(n)}
are less than or equal to m. Indeed, the vertices b′

1, b
′
2, . . . , b

′
n have pairwise incom-

parable neighbourhoods, and this must also be the case for their images; however,
if i, j > m, the neighbourhoods of bi and b j are comparable. Moreover, since b′

i+1
has two private neighbours with respect to b′

i for any i ≤ n − 1, we must have
w(i) < w(i + 1) for any i ≤ n − 1, and hence we must have w(1) < w(2) <

· · · < w(n − 1) ≤ m and w(n − 1) < w(n). Similarly, we can deduce that
m + 1 ≤ e(n + 2) < e(n + 3) < · · · < e(2n) with e(n + 1) < e(n + 2).

Now, a′
1, a

′
2, . . . , a

′
n−2 are adjacent to two vertices b′

n−2, b
′
n−1 with w(n − 2) <

w(n − 1) ≤ m. Therefore, we conclude that {e(1), e(2), . . . , e(n − 2)} must all be
smaller than or equal to m. As a1, a2, . . . , am form a chain graph together with the
vertices in B, in order to have N (ae(i)) � N (ae( j)) for 1 ≤ i < j ≤ n − 2, we
conclude that we must have 1 ≤ e(1) < e(2) < · · · < e(n − 2) ≤ m. To preserve
correct adjacencies between {a′

1, . . . , a
′
n−2} and {b′

1, . . . , b
′
n−1}, we must have

e(1) ≤ w(1) < e(2) ≤ w(2) < · · · < e(n − 2) ≤ w(n − 2) < w(n − 1) ≤ m.

Now bw(n−1) is already adjacent to ae(1), ae(2), . . . , ae(n−2), but it has to be adjacent to
twomore vertices, ae(n−1) and ae(n+π−1(n−1)). Clearly, at least one of e(n+π−1(n−1))
and e(n − 1) must be at most w(n − 1). Hence there are two cases: either both
e(n + π−1(n − 1)) and e(n − 1) are at most w(n − 1), or one of them is at most
w(n − 1) and the other is at least m + 1, in which case e(n − 1) is the one that is at
most w(n − 1), as a′

n−1 has a private neighbour with respect to a
′
n+π−1(n−1)

. In either

case, we must have e(n − 1) ≤ w(n − 1). As a′
n−1 is non-adjacent to b′

n−2, we must
also have w(n − 2) < e(n − 1), implying that

e(1) ≤ w(1) < e(2) ≤ w(2) < · · · < e(n − 2) ≤ w(n − 2)

< e(n − 1) ≤ w(n − 1) ≤ m.

By symmetry, we derive that

m + 1 ≤ e(n + 2) ≤ w(n + 2) < e(n + 3) ≤ · · · < e(2n) ≤ w(2n).

Weare only left with determining the location of the embeddings of the four vertices
a′
n, b

′
n, a

′
n+1, b

′
n+1. Since π(1) �= n, we have that a′

n+1 is not connected to b′
n , but

connected to b′
π(1) (with π(1) < n). It follows that e(n + 1) ≥ m + 1. Clearly,

for a′
n+1 to have two private neighbours with respect to a′

n+2 we must also have
e(n + 1) < e(n + 2). The two private neighbours of a′

n+1 are b
′
π(1) and b′

n+1; since
ae(n+1) only has one neighbour bi with i < e(n + 1) (namely bπ(1)), the embedding
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of b′
n+1 must satisfy e(n + 1) ≤ w(n + 1) < e(n + 2). Now b′

n , which is not adjacent
to a′

n+1 but adjacent to a′
n+π−1(n)

(note e(n + π−1(n)) ≥ m + 1 since π−1(n) > 1)

must therefore satisfy w(n) ≤ m. As b′
n has two private neighbours with respect to

b′
n−1, we must have w(n − 1) < w(n), and as above, the private neighbour a′

n of b′
n

must satisfy w(n − 1) < e(n) ≤ w(n). Summarizing, we conclude that

e(1) ≤ w(1) < · · · < e(n) ≤ w(n) ≤ m < m + 1

≤ e(n + 1) ≤ w(n + 1) < · · · < e(2n) ≤ w(2n).

Wemay now alter this embedding of f (π) into f (ρ) if necessary to guarantee that
e(i) = w(i) for all i = 1, 2, . . . , 2n. Indeed, it follows from the above inequalities that,
for 1 ≤ i ≤ n, ae(i) and aw(i) have the same set of neighbours among the embedded
b-vertices, and similarly, for n + 1 ≤ i ≤ 2n, bw(i) and be(i) have the same set of
neighbours among the embedded a-vertices. We may thus keep the embeddings of
b′
1, . . . , b

′
n, a

′
n+1, . . . , a

′
2n where they are, and move the embeddings of the remaining

vertices as appropriate to ensure e(i) = w(i) for 1 ≤ i ≤ 2n. From this altered
embedding, it is easy to see that π ⊆ ρ as claimed (for instance, interpret the matching
between b1, . . . , bm and am+1, . . . , a2m as a line segment intersection model (also
known as matching diagram [12]) for ρ, and note that the intersection of this matching
with the embedded graph f (π) gives a line segment intersection model for π ). 	


Claim 3 cannot, in general, be extended to permutations π with π(1) = n (except
trivially, when n = 1 or m = n). For example, if π = (2, 1) and ρ = (1, 2, 3, 4), then
one can easily see that f (ρ) ⊇ f (π), but ρ does not contain π . One underlying reason
for this phenomenon is that whenever π(1) = n, the vertices an and an+1 have exactly
the same neighbourhoods, whichmakes it possible for the graphs to be embedded with
more flexibility, not necessarily forcing embedding of permutations. For this reason,
we introduce a slight modification of the embedding, which allows us to always avoid
the case π(1) = n.

Definition 1 Given a permutation π = (π(1), π(2), . . . , π(n)), define π∗ =
(1, π(1) + 1, π(2) + 1, . . . , π(n) + 1). Define f ∗(π) = f (π∗), where f is the
map from permutations to quasi-permutation graphs.

Theorem 1 The mapping f ∗ is an injection from the class of permutations to the class
of quasi-permutation graphs such that for any two permutations π and ρ we have
f ∗(π) ⊆ f ∗(ρ) if and only if π ⊆ ρ.

Proof The mapping f ∗ is a composition of two injective maps π �→ π∗ and π∗ �→
f (π∗), with the image of the second map being a quasi-permutation graph. Therefore,
f ∗ is an injection from the class of permutations to the class of quasi-permutation
graphs. Further, f ∗(π) ⊆ f ∗(ρ) means, by definition, that f (π∗) ⊆ f (ρ∗), which
happens if and only if π∗ ⊆ ρ∗ (this follows fromClaim 3 as π∗(1) = 1 �= n). Finally,
it is easy to see that π∗ ⊆ ρ∗ if and only if π ⊆ ρ, from which the second part of the
theorem follows. 	
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4 The Structure of Quasi-Chain Graphs

For two graphs G1 = (V , E1) and G2 = (V , E2) on the same vertex set we denote
by G1 ⊗G2 the graph G = (V , E1 ⊗ E2), where ⊗ denotes the symmetric difference
of two sets. The main result in this section is the following theorem.

Theorem 2 If a bipartite graph G = (A, B, E) is a quasi-chain graph, then G =
Z ⊗ H for a chain graph Z and a graph H of vertex degree at most two such that
E(H) ∩ E(Z) and E(H) − E(Z) are matchings. Such a decomposition G = Z ⊗ H
can be obtained in polynomial time.

In the proof of this result, we use a word representation for our graphs, which builds
on a special case of letter graph representations, introduced in [30] (see Sect. 5 for
more details). The starting point is as follows: there is a bijective, order-preserving
mapping between words over the alphabet {a, b} (under the subword relation) and
coloured chain graphs (under the coloured induced subgraph relation). This mapping
sends a word w to the graph whose vertices are the entries of w, and we have edges
between each a and each b appearing after it in w. See Fig. 2 for an example (the
indices of the letters indicate the order of their appearance in w).

We would like to extend this representation to graphs with the structure claimed
in Theorem 2. To do so, we enhance the letter representation by equipping a word w

with edges connecting some pairs {a, b} of letters. We call an edge connecting a letter
a to a letter b a bottom edge if a appears before b in w and a top edge otherwise. We
say that a word w equipped with a (possibly empty) set of edges is an enhanced word.
For instance, w′ = aababbab is an enhanced word obtained from w = aababbab by
adding the bottom edge connecting the first a to the first b and the top edge connecting
the second b to the last a.

We require that the set of top edges forms a matching and the set of bottom edges
forms a matching, and interpret the bottom edges as an instruction to remove the
corresponding matching from the chain graph represented by w, and the top edges
as an instruction to add the corresponding matching to the graph. If G is the graph
described by an enhanced word w, we say w is an enhanced letter representation for
G. In particular, w′ = aababbab is an enhanced letter representation of the graph

Fig. 2 The graph corresponding to the word w = aababbab

123



Algorithmica

obtained from the graph in Fig. 2 by removing the edge a1b1 and adding the edge
b2a4.

It is immediate from our discussion that Theorem 2 can be restated as follows.

Theorem 3 Any quasi-chain graph admits an enhanced letter representation that can
be found in polynomial time.

Proof At the core of our proof is an induction on the number of vertices of the quasi-
chain graph G. The base case of the induction is trivial. To develop an inductive step,
we prove the following claim.

Claim 4 Let G = (A, B, E) be a quasi-chain graph. Then either G or its bipartite
complement has a vertex of degree at most 1.

Proof Let a1, . . . , at be the vertices of A in a non-increasing order of their degrees.
If a1 has fewer than 2 non-neighbours, we are done (since a1 then has degree at most
one in the bipartite complement). Otherwise, let b, b′ be two non-neighbours of a1.
Note that b and b′ have no common neighbour: if a was a common neighbour, then it
would have two private neighbours with respect to a1; since induced unbalanced 2P3s
are forbidden, a would be adjacent to all but at most one of the neighbours of a1, from
which deg(a) > deg(a1), contradicting our premise. But then at least one of b and b′
has degree at most one, since otherwise an unbalanced induced 2P3 appears. 	


Since the existence of enhanced letter representations is invariant under bipartite
complementation and reflection (swapping the parts), we may assume, by reflecting
and complementing if necessary, that G = (A, B, E) has a vertex y of degree at most
1, and that y ∈ B.

Nowour induction hypothesis says thatG ′ := G[A∪(B−{y})] admits an enhanced
letter representation w′. If y is isolated in G, we may always produce a representation
w for G by adding b as a prefix to w′. The difficult case is when y has degree 1 in G.
Even then, we may easily produce a representation for G by adding b as a prefix to
w′ and linking it with a top edge to (the letter corresponding to) the vertex x that y is
pendant to, provided that x does not already have an incident top edge in w′. In the
rest of the proof we show that G ′ admits an enhanced letter representation in which x
is not incident to a top edge.

To show this, we first observe that themapping from enhanced letter representations
to graphs is not injective. As a very simple example, the enhanced words ab and ba
both represent the complete graph on two vertices, while ba and ab both represent
the edgeless graph on two vertices. In general, we may swap the above pairs when
the two letters appear next to each other. We may also swap consecutive instances of
the same letter, carrying over the top/bottom edges incident to them, e.g., we may go
from baaaab to baaaaab and vice-versa.

To prove the result, we assume, by contradiction, that in any enhanced letter rep-
resentation of G ′ vertex x is incident to a top edge. Among all representations of G ′,
look at the ones that minimise the distance between x and its top-matched neigh-
bour. Among those representations, pick one where the interval between x and its
top-matched neighbour has the minimum number of bottom edges. Write w∗ for this
representation, and denote by y′ the vertex top-matched to x . Given two letters α and
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β in w∗ (two vertices in G ′), we write α < β to indicate that α appears before β in the
word, and denote by α −β the interval of letters (vertices) that appear strictly between
α and β in w∗. In particular, y′ < x , since y′ ∈ B, x ∈ A and they are top-matched.
We now derive a number of conclusions about the interval y′ − x .

(1) The interval y′ − x is not empty, since otherwise we could remove the top edge by
swapping y′ and x , and due to its minimality, this interval starts with an a, which
we denote a∗, and ends with a b, which we denote b∗.

(2) The interval y′ − x does not contain abb as an enhanced subword, since otherwise
the vertices corresponding to the abb together with the vertices x, y and y′ induce
a 2P3 in G.

(3) The interval y′ − x contains at most two bs, which follows directly from (1) and
(2).

To obtain a contradiction, we analyze the following two cases.
Case 1: a∗ and b∗ are not bottom-matched.Then there is no b in the interval a∗−b∗.

Indeed, if b′ belongs to this interval, then, according to (2), a∗ is bottom-matched to
b′. However, this contradicts the choice of w∗, because, according to (3), this bottom
edge can be removed by bringing a∗ next to b′ and swapping them. In a similar way, in
the absence of a second b, any bottom edge can be removed from the interval y′ − x ,
implying that this interval has no bottom edges.

We note that at least one of b∗ and x must have a bottom-matched neighbour,
since otherwise we could reduce the interval by swapping b∗ and x and introducing
the bottom edge between them. If x has a bottom-matched neighbour, then x, y, y′
together with a∗, b∗ and the bottom-matched neighbour of x induce a 2P3. Therefore,
b∗ has a bottom-matched neighbour a′ with a′ < y′.

We also note that at least one of a∗ and b∗ must have a top-matched neighbour, since
otherwise we could bring a∗ next to b∗, swap them by introducing a top edge, and then
reduce the interval by swapping a∗ and x . If b∗ has a top-matched neighbour, then
y′, a′, x together with b∗, a∗ and the top-matched neighbour of b∗ induce a 2P3. If a∗
is has a top-matched neighbour, then x, y, y′ together with a∗, b∗ and the top-matched
neighbour of a∗ induce another 2P3.

Case 2: a∗ and b∗ are bottom-matched. Clearly, the interval a∗ − b∗ is not empty,
since otherwise we could remove the bottom edge by swapping a∗ and b∗. Also, to
avoid an easy reduction to Case 1, we conclude that the letter to the right of a∗ is a b
(we denote it by b◦), and the letter to the left of b∗ is an a (we denote it by a◦).

We note that either a∗ or b◦ is incident to a top edge, since otherwise we could
swap them by introducing the top edge b◦a∗ and then reduce the interval y′ − x by
swapping y′ and b◦. Similarly, at least one of a◦ and b∗ is incident to a top edge.

If a∗ is incident to a top edge, then x, y, y′ together with a∗, b◦ and a top-matched
neighbour of a∗ induce a 2P3. If a◦ is incident to a top edge, then x, y, y′ together with
a◦, b∗ and a top-matched neighbour of a◦ induce a 2P3. Therefore, b◦ is top-matched
with a vertex a′ and b∗ is incident to a top edge. We can assume that x < a′, since
otherwise we could remove the top edge between b◦ and a′ by bringing them next to
each other and swapping. But then a∗, b◦, a′ together with a◦, b∗ and a top-matched
neighbour of b∗ induce a 2P3.
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A contradiction in all cases shows that G ′ admits an enhanced letter representation
in which x is not incident to a top edge and completes the inductive step.

Our case analysis leads to a polynomial-time procedure for removing, if necessary,
the top edge incident to x , which can be outlined as follows. The contradictions
involving the appearance of an induced unbalanced 2P3 concern cases that do not
actually occur when we apply our procedure, so we ignore them.When a contradiction
to the minimality in the construction ofw∗ appears in the case analysis, we repeatedly
execute the operation that lead to the contradiction—we only need to iterate a linear
number of times. We invariably arrive at the situation where y′ and x appear next to
each other, and we simply swap them to remove the top edge. 	


To conclude the section, we observe that the converse to Theorem3 does not hold. In
particular, 2P3 has 8 different enhanced letter graph representations (4 per colouring),
up to moving the top/bottom edges between twin vertices.

5 Well-Quasi-Orderability and Lettericity in the Class of Quasi-Chain
Graphs

Let (X ,≤) be a poset. As a quick refresher, a chain is a set of pairwise comparable
elements, and an antichain is a set of pairwise incomparable elements. X is said to be
well-quasi-ordered by ≤ (“wqo” for short) if there are no infinite strictly descending
chains, and no infinite antichains in (X ,≤).1 Well-quasi-orderability in the universe of
graphs has received much attention, culminating in the celebrated result of Robertson
and Seymour that graphs are wqo by the minor relation [31]. When considering the
induced subgraph relation instead, finding infinite antichains is easy (the cycles are an
example). However, the story is far from over: a challenging problem is to characterise
those hereditary classes that are wqo. The last few decades have witnessed a slow but
steady effort in this direction (see, for instance, [9, 19, 20, 30]).

It is shown in [19] that quasi-chain graphs are not wqo under the induced subgraph
relation (and indeed, this also follows directly from Theorem 1, since permutations are
not wqo—see, e.g., [5]). We start this section by providing a simple, explicit example
of an infinite antichain in this class, which is independent of the relationship between
quasi-chain graphs and permutations.

Let Zn be the universal chain graph on 2n vertices with the following labelling: we
denote the vertices in one part of the graph by a1, a2, . . . , an , where ai is the unique
vertex of degree n − i + 1 in this part, and we denote the vertices in the other part by
b1, b2, . . . , bn , where bi is the unique vertex of degree i in this part (Fig. 3a illustrates
the labelling for n = 6). Now let Qn be the graph obtained from Zn by deleting all
edges of the form (ai , bi+1) (those edges form a matching), then adding a pendant
vertex to each of a1 and bn , as shown in Fig. 3b.

Lemma 1 (Qk)k≥4 is an infinite antichain of quasi-chain graphs with respect to the
induced subgraph relation.

1 We note that the condition on strictly descending chains is trivially satisfied for finite graphs, so it suffices
to investigate the presence of infinite antichains.
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(a)

(b)

Fig. 3 An infinite antichain of quasi-chain graphs

Proof First, note that the graphs are indeed quasi-chain. This follows from the fact that
the ordering a1, a2, . . . , an, a′

n is good (and, by symmetry, so is bn, bn−1, . . . , b1, b′
1).

Indeed, for i < j , a j has at most one private neighbour with respect to ai , namely b j .
To see that the sequence (Qk)k≥4 is an antichain, let 4 ≤ m ≤ n, and label the

vertices of Qm as in Fig. 3b, and the vertices of Qn by replacing as with αs and bs
with βs. Suppose ι : Qm → Qn is an induced subgraph embedding. By symmetry and
connectedness of Qm , we may assume ι maps a-vertices to α-vertices and b-vertices
to β-vertices, respectively.

Among ordered pairs of α-vertices with incomparable neighbourhoods, (α1, α2) is
the only one where the first vertex has 3 private neighbours with respect to the second.
This fact immediately forces ι(a1) = α1 and ι(a2) = α2. But then

ι(b2) = β2, since β2 is the only β-vertex non-adjacent to α1, implying that
ι(b3) = β3, since otherwise the image of b3 has no candidate neighbour for the
image of a3, implying that b1, b′

1 are mapped to β1, β
′
1, implying that

ι(a3) = α3, since α3 is the only neighbour of β3 among not yet mapped vertices,
implying that
ι(b4) = β4, since β4 is the only β-vertex non-adjacent to α3 among not yet mapped
vertices, etc.

Proceeding in this way, we conclude that ι(ai ) = αi and ι(bi ) = βi for all i ≤ m,
which is possible only if m = n. 	


Knowing that the full class of quasi-chain graphs is not wqo, a natural question is
to determine exactly what the obstacles to wqo are in this class. This is a challenging
problem and as a first step towards its solution we analyze the lettericity of quasi-chain
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Fig. 4 The double-chain graph D3

graphs. In the context of wqo, the importance of this parameter is due to the fact that
bounded lettericity implies wqo by induced subgraphs [30]. The parameter is defined
as follows.

Let � be a finite alphabet and P ⊆ �2 a set of ordered pairs of symbols from �,
called the decoder. To eachwordw = w1w2 · · ·wn withwi ∈ � for all i we associate a
graphG(P, w), called the letter graph ofw, by defining V (G(P, w)) = {1, 2, . . . , n}
with i being adjacent to j > i if and only if the ordered pair (wi , w j ) belongs to the
decoder P .

It is not difficult to see that every graph G is a letter graph in an alphabet of size at
most |V (G)| over an appropriate decoder P . The minimum k such that G is a letter
graph in an alphabet of k letters is the lettericity of G and is denoted let(G). A graph
is a k-letter graph if its lettericity is at most k.

In what follows, the class of graphs of vertex degree at most 1 (that is, induced
matchings with isolated vertices) plays an important role, and so does the class of
their bipartite complements. We denote those classes byM and ˜M respectively.

We will need a few basic facts about lettericity that we summarise here without
proof (all of those facts are shown in [30], except the minimality in Fact 4—can be
easily shown directly).

Fact 1 Any class of graphs of bounded lettericity is wqo.

Fact 2 For any graph G and vertex x of G, let(G) ≤ 2 let(G − x) + 1.

Fact 3 Chain graphs have lettericity at most 2 (see Sect. 4).

Fact 4 The classesM and ˜M are minimal hereditary classes of unbounded lettericity.

We claim that, in addition to the classesM and ˜M, there is only one more minimal
class of unbounded lettericity amongquasi-chain graphs, defined as follows.As before,
let Zn be the universal chain graph on 2n vertices illustrated in Fig. 3a. We construct
double-chain graphs Dn as follows: start with Z3n , then like in the construction of
Q3n , delete all edges of the form (ai , bi+1). Finally, delete all vertices whose index is
divisible by 3. Dn can be thought of as Zn , where we replace each vertical edge with
a 2P2—see Fig. 4 for an illustration.

Let D be the class containing, for each value of n, the graph Dn and all of their
induced subgraphs. We note that the chain ordering inherited from the starting graph
Z3n is good in Dn , so that D is indeed a subclass of quasi-chain graphs.

Lemma 2 D is a minimal hereditary class of unbounded lettericity.
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Proof We first show that any proper hereditary subclass of D has bounded lettericity.
Indeed, such a subclass is Dn-free for an appropriately large n, and any Dn-free graph
G contains at most n copies of induced 2P2s. This means we may remove at most
4n vertices from G to obtain a chain graph. Fact 3 and repeated application of Fact 2
gives a bound on let(G) that only depends on n.

It remains to show that lettericity is unbounded in D. To see this, suppose for a
contradiction that the lettericity is bounded by k. The graph Dn consists of n copies of
induced 2P2s connected in a chainlike manner. Given a k-letter word w representing
Dn , we consider the subwords ofw representing each of the 2P2s. In particular, by the
pigeonhole principle, for any t ∈ N, we may find an N large enough such that t of the
2P2s in DN are represented by the same subword. Those t copies of 2P2s induce a copy
of Dt in DN whose letter graph representation only uses 4 letters; in particular, since
any Dt has such a representation, we may assume k ≤ 4. A similar argument shows
that for each Dn there must exist a representation with letters a, b, c, d, where the four
respective letter classes are (using the indexing from Fig. 4) A := {ai : i = 1 mod 3},
B := {bi : i = 1 mod 3}, C := {ai : i = 2 mod 3} and D := {bi : i = 2 mod 3}.
Standard arguments show that, up to symmetry, the decoder for this representation
must be {(a, b), (a, d), (c, b), (c, d)}. But even a single 2P2 cannot be expressed in
this way—a contradiction. 	


We are ready for the main result of this section, which characterises classes of
bounded lettericity among quasi-chain graphs. In the proof, given two vertex-disjoint
bipartite graphs G1 = (A1, B1, E1) and G2 = (A2, B2, E2), we define the skew-join
of G1 with G2 as the graph (A1 ∪ A2, B1 ∪ B2, E1 ∪ E2 ∪ (A1 × B2)).

Theorem 4 LetX be ahereditary subclass of quasi-chain graphs. ThenX has bounded
lettericity if and only if X excludes at least one graph from each of M, ˜M and D.

Proof The “only if” direction is clear, sinceM, ˜M andD all have unbounded letteric-
ity. For the “if” direction, letX be ahereditary subclass of quasi-chain graphs excluding
a graph from each of the three classes. It suffices to show that the classes Xs,t,n of
(sP2, ˜t P2, Dn)-free quasi-chain graphs have bounded lettericity for all s, t, n ∈ N,
since X is contained in such a class.

We prove the statement by induction on n. The statement is clearly true if n = 1
for all s, t , since Xs,t,1 is a subclass of chain graphs, which have lettericity 2.

Nowsupposen ≥ 1, and letG = (A, B, E) ∈ Xs,t,n+1.ByTheorem2,G = Z⊗H ,
where Z is a chain graph, and E(H) ∩ E(Z), E(H) − E(Z) are both matchings.

Let a1, . . . , ak be the vertices of A listed in non-increasing order with respect to
their neighbourhoods in Z . Each vertex ai gives a partition of A into a “left” part
Al
i = {a1, . . . , ai } and a “right” part Ar

i = {ai+1, . . . , ak}, and a partition of B into
Bl
i = B − N (ai ) and Br

i = N (ai ). This produces a cut of Z into two smaller chain
graphs Zl

i := Z [Al
i ∪ Bl

i ] and Zr
i := Z [Ar

i ∪ Br
i ], and it is not difficult to see Z is the

skew-join of Zl
i with Zr

i , since Al
i is complete to Br

i , while Ar
i is anticomplete to Bl

i .
Similarly, we obtain a cut of G into quasi-chain graphs Gl

i and Gr
i . We will refer to

those cuts as the cuts induced by ai .
These cuts are very neat in the chain graph Z , but how do they look in the original

quasi-chain graph G? Specifically, where do induced 2P2s in G appear with respect to
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these cuts? The first thing to note is that, for any given cut, the edges between Ar
i and

Bl
i in G belong to E(H) − E(Z), and thus induce a matching. Since G is sP2-free,

there are at most s − 1 of them. Similarly, there are at most t − 1 non-edges in G
between Al

i and Br
i . We call the (at most 2s + 2t − 4) vertices incident to those edges

or non-edges i-dirty. We call an induced 2P2 in G i-bad if it does not contain any
i-dirty vertex (the reasoning being that the bad 2P2s do not simply disappear when
removing dirty vertices). We now claim that any i-bad 2P2 lies completely in Gl

i or in
Gr

i (we call it left i-bad or right i-bad accordingly). To see that this is indeed the case,
we simply note that any 2P2 with vertices in both Gl

i and Gr
i needs to have either a

crossing edge between Ar and Bl , or a crossing non-edge between Al and Br . Finally,
we call the cut induced by ai perfect if there are no i-bad 2P2s, good if there is both a
left i-bad 2P2 and a right i-bad 2P2, and bad if it neither good nor perfect. There are
three possible cases:

i) There is an i such that the cut induced by ai is perfect. In this case, we note that
“cleaning the cut” by removing all i-dirty vertices from G yields a chain graph G ′.
But we have removed a bounded number of vertices, hence Fact 3 and repeated
application of Fact 2 give an upper bound on the lettericity of G that only depends
on s and t .

ii) There is an i such that the cut induced by ai is good. Then like before, cleaning the
cut yields a quasi-chain graphG ′ which is a skew-join of the graphsG ′l := G ′∩Gl

andG ′r := G ′ ∩Gr . By construction,G ′l andG ′r each have an induced 2P2; since
G (and hence G ′) is Dn+1-free, it follows that G ′l and G ′r are both Dn-free, and
the inductive hypothesis applies. From the representations of G ′l and G ′r with a
bounded number of letters, it is easy to construct one for their skew-join G ′, then
use that representation to construct one for G like in the previous case.

iii) Every cut is bad. This means that each ai has either a left or a right i-bad 2P2 (but
not both). We note that a1 must have a right 1-bad 2P2, while ak must have a left
k-bad 2P2. Moreover, if a 2P2 is left, respectively right i-bad, then it is left j-bad
for any j ≥ i , respectively right j-bad for any j ≤ i . This implies that there is
one specific i0 such that a1, . . . , ai0 all have right bad 2P2s, while ai0+1, . . . , ak
all have left bad 2P2s. We claim that no 2P2 can be simultaneously i0- and i0 + 1-
bad. Indeed, both vertices ai1 , ai2 ∈ A of such a 2P2 would simultaneously need
i1, i2 > i0 and i1, i2 ≤ i0 + 1, which is impossible. It follows that cleaning both
of the cuts induced by ai0 and ai0+1 leaves us with a chain graph, and we proceed
as in the first case.

	

Theorem 4 gives us a characterisation of subclasses of quasi-chain graphs of

bounded lettericity. All of those subclasses are wqo, but a wqo class need not have
bounded lettericity—for instance, the minimal classes M, ˜M and D themselves are
wqo. For M and ˜M, this is a special case of Theorem 2 from [20]. Let us now show
the claim for D.

Theorem 5 D is wqo by induced subgraphs.
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Proof It suffices to produce an order-preserving surjection from a wqo poset (X ,≤)

to D ordered by the induced subgraph relation (this fact is standard—see, e.g., [32],
Proposition 3.1).

Our poset X will be the set of words over a finite alphabet of incomparable letters,
ordered under the subword relation—wqo of this poset is a special case of Hig-
man’s Lemma [16]. Note that a coloured 2P2 has, up to isomorphism, 9 distinct
non-empty induced subgraphs. Consider an alphabet � consisting of incomparable
letters A1, . . . , A9, where each letter corresponds (arbitrarily) to one of those induced
subgraphs. We define a map ϕ from the set �∗ of words over � to graphs inductively,
by defining ϕ(Ai ) to be the corresponding induced subgraph of 2P2, and ϕ(Aiw

′) to
be the skew-join of ϕ(Ai ) with ϕ(w′) (where Aiw

′ denotes the concatenation of Ai

with the word w′).
We note that the image of any word of length n is an induced subgraph of Dn (see

Fig. 4), hence ϕ(�∗) ⊆ D. Since any induced subgraph of Dn can be obtained in this
way, ϕ is surjective. Finally, it is straightforward to check that ϕ is order-preserving.

	


6 Implicit Representation of Quasi-Chain Graphs

The idea of implicit representation of graphs (also known in the literature as adjacency
labelling scheme) was introduced in [18] and can be described as follows. A repre-
sentation of an n-vertex graph G is said to be implicit if it assigns to each vertex of G
a binary code of length O(log n) so that the adjacency of two vertices is a function of
their codes.

Not every class of graphs admits an implicit representation, since a bound on the
length of a vertex code implies a bound on the number of graphs admitting such a
representation. More precisely, only classes containing 2O(n log n) labelled graphs with
n vertices can admit an implicit representation. In the terminology of [4], hereditary
classes containing 2O(n log n) labelled graphs on n vertices are at most factorial, i.e.,
they have at most factorial speed of growth. Whether all hereditary classes with at
most factorial speed admit an implicit representation was a big open question known
as the implicit representation conjecture. The conjecture was verified for a variety
of factorial classes such as interval graphs, permutation graphs (which include chain
graphs), line graphs, planar graphs, etc. It also holds for all graph classes of bounded
vertex degree, of bounded clique-width, of bounded arboricity (including all proper
minor-closed classes), etc.; see [3] for more information on this topic.

Recently, the implicit representation conjecture was disproved in [14], where the
authors have shown the existence of a factorial class of bipartite graphs that does not
admit an implicit representation. However, the question of which hereditary classes
with at most factorial speed admit an implicit representation remains widely open. In
particular, this question is open for the class of quasi-chain graphs for which a factorial
bound on the speed of growth was shown in [2]. In the present section, we answer
this question for quasi-chain graphs in the affirmative. To this end, we introduce the
following general tool.
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For a graph G = (V , E), let AG denote the adjacency matrix of G, and for two
vertices x, y ∈ V , let AG(x, y) be the element of the matrix corresponding to x and
y. Given a Boolean function f of k variables and graphs H1 = (V , E1), . . . , Hk =
(V , Ek), we will write G = f (H1, . . . , Hk) if

AG(x, y) = f (AH1(x, y), . . . , AHk (x, y))

for all distinct vertices x, y ∈ V . If G = f (H1, . . . , Hk), we say that G is an f -
function of H1, . . . , Hk .

Theorem 6 Let X be a class of graphs, k a natural number, f a Boolean function of
k variables, and Y1, . . . ,Yk classes of graphs admitting an implicit representation.
If every graph in X is an f -function of graphs H1 ∈ Y1, . . . , Hk ∈ Yk, then X also
admits an implicit representation.

Proof To represent a graphG = f (H1, . . . , Hk) in X implicitly, we assign to each ver-
tex ofG k labels, each of which represents this vertex in one of the graphs H1, . . . , Hk .
Given the labels of two vertices x, y ∈ V (G), we can compute the adjacency of these
vertices in each of the k graphs and hence, using the function f (which wemay encode
in each label with a constant number of bits), we can compute the adjacency of x and
y in the graph G. 	


According to Theorem 2, any quasi-chain graph is a ⊕-function of a chain graph
and a graph of vertex degree at most 2, where ⊕ is addition modulo 2. As we men-
tioned earlier, chain graphs and graphs of vertex degree at most 2 admit an implicit
representation. Together with Theorem 6 this implies the following conclusion.

Corollary 1 The class of quasi-chain graphs admits an implicit representation.

The same conclusion can be derived in an alternative way, which is of independent
interest, because it deals with a parameter motivated by some biological applications.
This parameter was introduced in [11] under the name contiguity and it can be defined
as follows.

Graphs of contiguity 1 are graphs that admit a linear order of the vertices in which
the neighbourhood of each vertex forms an interval. Not every graph admits such an
ordering, in which case one can relax this requirement by looking for an ordering
in which the neighbourhood of each vertex can be split into at most k intervals. The
minimum value of k which allows a graph G to be represented in this way is the
contiguity of G.

Theorem 7 Contiguity of quasi-chain graphs is at most 3.

Proof It is not difficult to see that chain graphs have contiguity 1. Let G be a quasi-
chain graph, and use Theorem 2 to obtain a decomposition G = Z ⊗ H . Consider
a linear order of the vertices of G such that their neighbourhoods in Z are intervals.
Z can be transformed into G by adding at most one edge and at most one non-edge
incident to each vertex. By adding a non-edge, we split the interval of neighbours of
v into at most two intervals, and by adding a neighbour to v, its neighbourhood spans
at most one additional interval consisting of a single vertex. 	
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It is not difficult to see that graphs of bounded contiguity admit an implicit repre-
sentation. Therefore, Corollary 1 follows from Theorem 7 as well.

7 Optimisation in Quasi-Chain Graphs

Many algorithmic problems that are NP-complete for general graphs remain com-
putationally intractable for bipartite graphs, which is the case, for instance, for
hamiltonian cycle [28], maximum induced matching [24], alternating
cycle- free matching [27], balanced biclique [17],maximum edge biclique
[29], dominating set, steiner tree [26], independent domination [10],
induced subgraph isomorphism [15].

The simple structure of chain graphs implies bounded clique-width and therefore
polynomial-time solvability of all these and many other problems. However, in quasi-
chain graphs the clique-width is unbounded and hence no solution comes for free in this
class. Moreover, induced subgraph isomorphism remains intractable, as we show
in Sect. 7.1 based on the relationship between quasi-chain graphs and permutations
revealed in Theorem 1.

On the other hand, the structure of quasi-chain graphs revealed in Theorem 2 allows
us to prove polynomial-time solvability of three problems in the above list, which we
do in Sect. 7.2.

7.1 NP-Completeness of induced subgraph isomorphisminduced subgraph isomorphisminduced subgraph isomorphism in Quasi-Chain
Graphs

The induced subgraph isomorphism problem can be stated as follows: given two
graphs H and G, decide whether H is an induced subgraph of G or not. This problem
is known to be NP-complete even when both graphs are bipartite permutation graphs
[15]. A related problem on permutations is known as pattern matching: given two
permutations π and ρ, it asks whether π contains ρ as a pattern. This problem is also
NP-complete [7]. Together with Theorem 1 this immediately implies that coloured
induced subgraph isomorphism is NP-complete for quasi-chain graphs. Below
we extend this conclusion to uncoloured graphs.

Theorem 8 The induced subgraph isomorphism problem is NP-complete for
quasi-chain graphs.

Proof Let H and G be two coloured connected quasi-chain graphs. The NP-
completeness of pattern matching togetherwith Theorem1 imply that determining
whether there is an embedding of H into G as an induced subgraph that respects the
colours is an NP-complete problem. To reduce the problem to uncoloured graphs, we
modify the instance of the problem as follows.

Let p be a natural number greater than the maximum vertex degree in G, and let
K1,p be a star with the center x . We add this star to G, connect x to all the black
vertices of G and denote the resulting graph by G∗. Similarly, we add this star to H ,
connect x to all the black vertices of H and denote the resulting graph by H∗. Clearly,
G∗ and H∗ are quasi-chain graphs.
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Nowwe ignore the colours and askwhetherG∗ contains H∗ as an induced subgraph.
If G∗ contains H∗, then vertex x in H∗ must map to vertex x in G∗ (due to the
degree condition), and the vertices of H in H∗ are mapped to the vertices of G in
G∗ in a colour-preserving way (due to the connectedness of G and H ). Therefore,
G contains H as a coloured induced subgraph if and only if G∗ contains H∗ as an
induced subgraph. Since G∗ and H∗ are quasi-chain graphs and these graphs can be
obtained from G and H in polynomial time, we conclude that induced subgraph
isomorphism is NP-complete for quasi-chain graphs. 	


7.2 Polynomial-Time Algorithms for Quasi-Chain Graphs

In this section,we use Theorem2 to prove polynomial-time solvability of the following
problems in quasi-chain graphs: balanced biclique, maximum edge biclique,
and independent domination. We emphasize that Theorem 2 not only provides
a structural characterisation of quasi-chain graphs, it also proves that a quasi-chain
graph can be transformed into a chain graph by removing a matching and adding a
matching in polynomial time, which is an important ingredient in all three solutions.
We start with an auxiliary lemma.

Lemma 3 A quasi-chain graph G with n vertices contains a collection I of O(n)

subsets of vertices that can be found in polynomial time such that every subset I ∈ I
induces a graph of vertex degree at most 1, and every independent set in G is contained
in one of these subsets.

Proof First, we observe that there are O(n) inclusion-wise maximal independent sets
in a chain graph, and that all of them can be found in polynomial time.

Now let G = Z ⊗ H be a quasi-chain graph as in Theorem 2 and let S be an
independent set inG. Then in the graph Z , the vertices of S either form an independent
set, or induce some bottom edges, i.e., some edges of E(H) ∩ E(Z). Since bottom
edges form a matching and Z is 2P2-free, we conclude that S contains at most one
bottom edge in the graph Z .

If S is an independent set in Z , then it is contained in a maximal independent set
I in Z . For each maximal independent set I in the graph Z , the vertices of I induce
in G a subgraph G[I ] of vertex degree at most 1, because all edges of G[I ] are top
edges and therefore they form a matching.

Assume now that S contains an edge aib j in the graph Z . We denote the set of
non-neighbours of ai in G by Ai and the set of non-neighbours of b j in G by Bj , and
let I = Ai ∪ Bj . In particular, S ⊆ I . In Z , the vertices of I induce a subgraph Z [I ]
containing exactly one edge aib j . Indeed, no edge e �= aib j in Z [I ] can be incident
to ai or b j , because otherwise both e and aib j are bottom edges, which is impossible,
and if e is not incident to ai and b j , then e and aib j create an induced 2P2 in Z , which
is not possible either. Since aib j is the only edge in Z [I ] and this edge is not present
in G[I ], we conclude that all edges of G[I ] are top edges and hence G[I ] is a graph
of vertex degree at most one.

Putting everything together, our collection I consists of two types of sets: the
maximal independent sets from Z , and the sets constructed as above from each of the
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bottom edges. This collection thus has O(n) sets, and can be found in polynomial time
as claimed. 	


7.2.1 Bicliques in Quasi-Chain Bipartite Graphs

A biclique is a complete bipartite graph Kp,q for some p and q. In a bipartite graph,
the problem of finding a biclique with the maximum number of vertices can be solved
in polynomial time. However, the problem of finding a biclique with the maximum
number of edges, known as the maximum edge biclique problem, is NP-complete
for bipartite graphs [29]. Additionally, the problem of finding a biclique Kp,p with the
maximum value of p, known as the balanced biclique problem, is NP-complete
for bipartite graphs [17]. We show that both problems can be solved in polynomial
time when restricted to quasi-chain graphs.

Theorem 9 The maximum edge biclique and balanced biclique problems can
be solved in polynomial time for quasi-chain graphs.

Proof Let G = (A, B, E) be a quasi-chain graph. A biclique in G becomes an
independent set in the bipartite complement ˜G of G. Since an unbalanced 2P3 is
self-complementary in the bipartite sense, we note that ˜G is a quasi-chain graph too.

Let I be as in Lemma 3 for ˜G. Every independent set in ˜G is contained in amaximal
independent set, which in turn is contained in one of the subsets of I.

In G, those subsets induce almost complete bipartite graphs, i.e., graphs in which
every vertex has at most one non-neighbour in the opposite part. Therefore, to solve
both problems for G, it suffices to solve them for this collection of O(n) almost
complete bipartite graphs.

But those problems are both easy for almost complete bipartite graphs: suppose
a graph is obtained from Ks,t by deleting a matching of size m ≤ s ≤ t . It is not
difficult to see that the number of edges in a maximum edge biclique in this graph
equals max

0≤i≤m
(t−m+ i) ·(s− i). As for the balanced biclique problem, the optimal

solution is given by p = s if t − s ≥ m, and by
⌊ t−m+s

2

⌋

if t − s < m. 	


7.2.2 Independent Domination in Quasi-Chain Graphs

The independent dominating set problem asks to find in a graph G an inclusion-
wise maximal independent set of minimum cardinality. This problem is NP-complete
for general graphs and remains intractable in many restricted graph families. In par-
ticular, it is NP-complete both for 2P3-free graphs [33] and for bipartite graphs [10].
In the following theorem, we prove polynomial-time solvability of the problem for
quasi-chain graphs.

Theorem 10 The independent dominating set problem can be solved for quasi-
chain graphs in polynomial time.

Proof Let G = (A, B, E) be a quasi-chain graph and S an optimal solution to the
problem in G, and let I be as in Lemma 3. Note that S is contained in at least one of
the elements of I. Moreover, crucially, for any I ∈ I, all maximal independent sets
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in G[I ] have the same size. This suggests the following way of finding an optimal
solution:

1. For each I ∈ I, determine if I contains an independent set that dominates G, and
if yes, find such a set.

2. Among the sets we found, pick one with minimum size.

We claim that this produces an optimal solution to the problem. Indeed, this pro-
cedure is guaranteed to produce a set S, since any optimal solution to the problem
dominates G and is contained in some I ∈ I. Moreover, since all maximal indepen-
dent sets in G[I ] have the same size (and S dominates G, so it is maximal in both G
and G[I ]), S must be an optimal solution.

It thus suffices to show that Step 1 can be done efficiently. To do this, let I ∈ I. Let
I ′ ⊆ I be the subset of I of vertices that have degree 1 in G[I ], and put I ′′ := I − I ′.
We note that any independent subset of I dominating G must contain all vertices of
I ′′, and exactly one vertex from each edge of G[I ′]. Let A′′ and B ′′ be the sets of
vertices in A, respectively B that have at least one neighbour in I ′′. We also denote
I ′
A := I ′∩A and I ′

B := I ′∩B, and let A′ and B ′ be the sets of vertices in A−(A′′∪ I ′
A),

respectively B − (B ′′ ∪ I ′
B) that have at least one neighbour in I ′.

If I does not dominate G, then no subset of I dominates G; we may thus assume
I dominates G, that is, A − I = A′ ∪ A′′ and B − I = B ′ ∪ B ′′. Since G does not
contain an unbalanced 2P3, the graphs G[I ′

A ∪ B ′] and G[I ′
B ∪ A′] are 2P2-free, i.e.,

chain graphs. It follows that I ′
A and I ′

B each have vertices that dominate B ′ and A′
respectively. If there exists such a pair x ∈ I ′

A and y ∈ I ′
B that is non-adjacent, then

we are done: we pick x and y in their respective edges, and arbitrarily choose vertices
from each other edge of I ′ to complete our independent dominating set. Otherwise,
the unique vertices x ∈ I ′

A and y ∈ I ′
B that dominate B ′ and A′ respectively belong to

the same edge of I ′. In this case, no independent set of I dominates G, since vertices
A′ and B ′ have no neighbours in I ′′ by construction, and (using 2P2-freeness) I ′

A−{x}
does not dominate A′, and I ′

B −{y} does not dominate B ′. This proves the theorem. 	


8 Conclusion

In this paper, we proposed a structural characterization for the class of quasi-chain
graphs and derived a number of interesting conclusions from this characterization.
Still, many questions remain unanswered. In particular, it would be interesting to
find a boundary separating well-quasi-ordered subclasses of quasi-chain graphs from
those that contain infinite antichains with respect to the induced subgraph relation.
Also, complexity of several important algorithmic problems in the class of quasi-
chain graphs remain unknown, including hamiltonian cycle, maximum induced
matching, alternating cycle- free matching, dominating set, steiner
tree.

One more important direction of research is analyzing the extension of quasi-chain
graphs, where a “one-sided” copy of an unbalanced 2P3 is forbidden, i.e. the class of
coloured bipartite graphs that do not contain an unbalanced induced copy of 2P3 with,
say, white centres. We observe that if the white vertices in such a graph have pairwise
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different neighbourhoods, then these neighbourhoods create a 1-Sperner hypergraph,
in which case the graph has bounded clique-width [6] and hence admits an implicit
representation. However, in general, the structure of graphs in this extension remains
an open problem.
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