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The application of machine learning (ML) methods has proven to be promising in dealing with a wide
range of geotechnical engineering problems in recent years. ML methods have already been used for
the prediction of soil water retention curves (SWRC) and estimation of air-entry values (AEV).
However, the reported works in the literature are generally based on limited data and conventional, less
accurate approaches for AEV estimation. In this paper, a large database, known as UNsaturated SOil
hydraulic DAtabase (UNSODA), is studied and the conventional and true AEVs of 790 soil samples are esti-
mated based on determination methods reported in the literature. A ML approach is then employed for
the development of a predictive model for the estimation of true AEV fromwater content-based SWRCs of
a wide range of soil types taking into account the impact of bulk density and grain size distribution
parameters. The obtained results reveal an enhanced accuracy in AEV determination, featuring R2 values
of 0.964, 0.901 and 0.851 for training, validation, and testing data, respectively, which confirm the high-
level performance of the developed ML model. Based on the results of a sensitivity analysis, the particle
sizes of 50 and 250 lm are found to have the highest impact on the AEV estimation.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of International Association for Gondwana

Research. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/
4.0/).
1. Introduction

In unsaturated soil mechanics, the relationship between the
amount of water held by the soil and the pore-water tension (suc-
tion) is generally presented in the form of water content (w) versus
suction (s), or degree of saturation (Sr) versus suction in a semi-
logarithmic graph known as soil water retention curve (SWRC).
Generally, three distinct parts are recognized on a SWRC (Fig. 1).
Initially, with the soil undergoing drying, the curve remains a rel-
atively flat line until the air-entry value (AEV); during this stage,
with an increase of suction, the pores remain saturated
(Sr = 100%) with pore-water being under tension (saturated state
or boundary effect zone). As suction exceeds the AEV, air breaks
into the larger pores, and a continuous network of air-filled and
water-filled pores is formed. During this stage, the degree of satu-
ration (or water content) is progressively decreased as more water
evaporates or leaves the pores (partially saturated state or transi-
tion effect zone). Finally, with an increase in suction, a state is
reached where water only remains at the particle contacts and is
no longer continuous with the pore space. At this stage, the SWRC
almost flattens meaning that much less water will be expelled with
an increase in suction, and the soil dries without significant vol-
ume changes (residual state). The two inflection points, namely
AEV and residual suction (srs), are considered as fundamental
parameters for the determination of soils’ water retention proper-
ties, with the former being a key input parameter in several unsat-
urated constitutive models (e.g., Alonso et al. 1990; Russell and
Khalili 2006), hence, highlighting the importance of its accurate
estimation from SWRCs.

On a degree of saturation-based SWRC, the AEV is graphically
determined as the intersection point of a horizontal tangent line
drawn to the saturated portion, with a tangent line drawn to the
transition portion of the curve (see Fig. 1). Pasha et al. (2016)
showed that using the same method to derive AEV from water
content-based SWRCs can produce highly erroneous results. They
proposed a simple method for estimation of true AEV from water
content-based SWRC. This method was based on plotting the data
on both semi–log and log–log scales on the same graph. In this
way, the saturated part of the curve is identified by a linear or
curves,
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Nomenclature

P particle size
ṕc preconsolidation pressure
R2 coefficient of determination
s soil suction
sae suction at air-entry
srs residual soil suction
Sr degree of saturation
w gravimetric water content
h volumetric water content
AEV air-entry value
AI artificial intelligence
ANN artificial neural network
EPR evolutionary polynomial regression

GSD grain size distribution
GP genetic programming
HCT high-capacity tensiometer
MEP multi-expression programming
ML machine learning
MLP multilayer perceptron
RF random forest
RMSE root mean square error
SVM support vector machine
SWRC soil water retention curve
UNSODA UNsaturated SOil hydraulic DAtabase
USDA United States Department of Agriculture

Fig. 1. Typical SWRC in Sr – s plane: (a) boundary effect zone; (b) transition zone;
(c) residual zone.
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bilinear behavior in a semi–log plot, and the unsaturated part of
the curve is represented by a straight line (linear behavior) on
the log–log plot. Therefore, by drawing these two complementary
curves on a single graph, the AEV as the boundary between satu-
rated and transition (unsaturated) zones can be readily identified.
This graphical technique can be used for the evaluation of true AEV
from SWRC data where the information on the volume change of
the sample during testing is not available.

SWRCs are generally developed based on experimental methods
such as axis translation (Bagheri et al., 2019a), negative water col-
umn (Pagano et al. 2016) and pressure plate (Tarantino et al. 2011).
Such methods are generally time-consuming and expensive, and in
most cases produce discontinuous measurements, bringing diffi-
culties in the accurate determination of the AEV. For suchmeasure-
ments, the method proposed by Pasha et al. (2016) appears
promising. Bagheri (2018), Bagheri et al. (2018), and Bagheri and
Rezania (2022) later showed that direct measurement of soil suc-
tion changes using high-capacity tensiometers (HCT) can rectify
the need for such approximation methods, as an accurate estima-
tion of AEV can be readily obtained from continuous measure-
ments of suction variations with water content. However, this
method is also limited to the maximum capacity of HCTs which
is typically in the range of 1.5–2.0 MPa. Other methods including
estimation of SWRC based on the soils’ grain size distribution
2

(GSD) curve (Alves et al. 2020; Zhai et al. 2020), statistical methods
(Saxton et al. 1986; Chiu et al. 2012), and artificial intelligence (AI)
-based methods (Schaap and Leij 1998) are also available. How-
ever, it is apparent that accurate estimation of AEV is profoundly
subordinate to the accuracy of predicted SWRCs. Furthermore,
the reported works on statistical and AI methods generally utilized
databases that were not large enough to include a variety of soil
types. It is therefore imperative to consider a relatively large data-
base to directly estimate true AEV from common soil parameters.

Recently, machine learning (ML) approaches have proven to be
promising in solving nonlinear and complicated problems using
large databases (Rezania 2008; Javadi and Rezania 2009a; Zhang
et al. 2020; Zhang et al. 2021; Wang et al., 2020b; Zhang et al.
2022; Wang et al., 2020c). In geotechnical engineering, the ML
algorithms have been favorably employed for predicting various
phenomena such as the settlement of shallow foundations on
cohesionless soils (Rezania and Javadi 2007), thermo-hydro-
mechanical behavior of hydrate reservoirs (Zhou et al. 2020),
non-stationary and non-Gaussian geotechnical properties (Shi
and Wang 2021), soil constitutive modeling (Javadi and Rezania
2009b; Rezania and Ma 2019) and suction distribution in shallow
soil layers (Cheng et al. 2020). In these studies, various ML algo-
rithms including support vector machine (SVM), multi-
expression programming (MEP), genetic programming (GP), evolu-
tionary polynomial regression (EPR), and random forest (RF) have
been used. The effectiveness of ML methods has led to their
employment in the estimation of SWRCs (Jain et al. 2004;
Moreira de Melo and Pedrollo 2015). A few works have been also
reported in the literature on the estimation of the SWRC from
GSD curves employing ML methods (D’Emilio et al. 2018;
Amanabadi et al. 2019; Li and Vanapalli, 2022). However, estima-
tion of the AEV by ML algorithms has been rarely studied. Recently,
Wang et al. (2020a) utilized ML algorithms for the prediction of
AEV of compacted soils based on some physical properties. The
authors have used the parameters of sand content, fines content,
plasticity index, initial water content and initial void ratio as input
variables. In addition, they consider the conventional and less
accurate method of estimating AEV from water content-based
SWRC which can be considered as the shortcoming of their study.
With these explanations, a thorough understanding of ML algo-
rithms in the prediction of the true AEV is worth investigating.

In this paper, the UNsaturated SOil hydraulic DAtabase
(UNSODA) (Leij et al. 1996) has been thoroughly reviewed and
for a considerable number of soil samples, the true AEVs are esti-
mated from the water content-based SWRCs using the method
proposed by Pasha et al. (2016) and compared to those obtained
from the conventional method for AEV determination. Further-
more, the influence of physical soil parameters (e.g., bulk density,
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grain size, etc.) on AEV is investigated. Finally, a neural network
model is employed to estimate the true AEVs. Sensitivity analysis
is also performed in order to determine the consideration of which
parameters are more significant for theAEV prediction.
2. UNSODA

UNSODA is a collection of data for unsaturated hydraulic soil
properties in Microsoft Access-97 format. The data for 790 soil
samples have been categorized in 36 tables, arranging them in
rational groups with relevant information. A 4-digit code has been
allocated to each soil sample. Fig. 2 shows the frequency histogram
of soil classification of the 790 samples according to USDA (United
States Department of Agriculture) system and the summary of
their geographical distribution represented in UNSODA. Most of
the samples of the database are from Europe and North America.
The majority of the soil samples are coarse-textured although there
is an acceptable number of fine soil samples.

UNSODA provides a wide range of soil properties as shown in
Table 1. It must be noted here that bulk density, particle density,
porosity, saturated conductivity, and saturated water content are
the only parameters required for the estimation of true AEV in
the present study. In addition, UNSODA provides appropriate infor-
mation about the grain size distribution of samples; however,
there is no uniform set of particle sizes in the UNSODA, and the
reported values of particle fraction are presented for different sizes
in different samples due to the differences in experimental meth-
ods. For instance, in soil sample 1090, particle fractions for the par-
ticle sizes of 2, 50, 125, 250, 500, 1000, and 2000 lm have been
determined; however, in the soil sample 1087 only the particle size
of 2, 50, and 2000 lm have been considered.

In this study, the particle size fractions of 2, 20, 50, 250, 500,
1000, and 2000 lm, which have the most frequency in the data-
base are used. Fig. 3 presents the frequency of particle sizes in
the UNSODA database.

Table 2 presents the number of hydraulic curves and the num-
ber of data pairs partitioned into drying and wetting parts, as well
as curves obtained from laboratory or field measurements. In this
study, the water retention curves (a total of 902 curves) which
have the most data are used. From the 902 water retention (h-h)
curves, the drying curves, with a total number of 867 curves from
both laboratory and field measurements, are considered for the
analysis.

Fig. 4 presents the scatter plot of the main drying branch of
SWRCs reported in the UNSODA database for both field and lab
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measurements. In this Figure, the range of changes and how suction
and water content data are distributed for the lab and field data are
well illustrated. As it turns out, in the lab-based works, the results
involve a wider range of suction and water content values.
3. True air entry value

Although many researchers recognize the first break in the dry-
ing branch of the water content-based SWRC as evidence of air-
entry point (Fredlund and Xing 1994; Zhai and Rahardjo 2012;
Bagheri et al., 2019b, Rezania et al., 2020), this may not be true
for some deformable soils, depending on factors such as the
mechanical characteristics of the soil, pore-size distribution index,
and the stress history of the soil. In the graphical method presented
by Pasha et al. (2016), estimation of the true AEV was carried out
based on the stress history of the soil, and consideration of three
stress states, namely normally consolidated, overconsolidated with
sae > p

0
c , and overconsolidated with sae < p

0
c , where sae is the suction

at the air-entry and p
0
c is the preconsolidation pressure of the soil.

From the 867 SWRCs in the UNSODA database, 221 curves could
not be used for the analysis for various reasons, such as an insuffi-
cient number of data points or soil samples not entering the transi-
tion zone. Therefore, only SWRCs that would allow for appropriate
graphical estimation of the AEV are selected and considered in his
study. Of the remaining 644 curves, 212 curves are related to the
normally consolidated state, 182 curves are related to the
overconsolidated state with sae > p0

c , and 250 curves are related to
the overconsolidated state with sae < p0

c. As shown in Fig. 5, for all
these 644 curves, the AEVs are obtained following the graphical
approach proposed by Pasha et al. (2016) (denoted as true AEV)
and also according to the conventional method of finding the inter-
section of the tangent lines to the boundary effect zone and the
transition zone (denoted as AEV). In this figure, the horizontal axis
represents the codes allocated to the samples, which can be traced
in the UNSODA database. With some examples, Fig. 6 illustrates the
differences between the evaluated AEVs from the two methods. In
addition, Fig. 7 presents the frequency of variations between the
true AEVs and the conventional AEVs which for the majority of
cases appear to be in the range of 30 to 300 kPa.
4. Preparing the database

The recorded data in the UNSODA database is presented in a
way that is not convenient for training the ML model. On the other
scL cL sicL sC siC C N/D
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Table 1
Soil properties provided in UNSODA database.

Parameter Definition Available Values Missing Values Considered in this study?

bulk density Bulk density as a mass of solids per bulk volume 762 28 Yes
particle density Mass of solids per volume of solids 339 391 Yes
porosity Volume of voids per bulk volume 270 420 Yes
OM content Organic Matter Content. The mass of organic matter content as a

percentage of the total solid mass.
388 402 No

ksat Saturated Conductivity. The measured saturated hydraulic conductivity 429 361 Yes
thetasat Saturated Water Content. The experimental water content of a water-

saturated sample
305 485 Yes

CEC Cation Exchange Capacity. in cmol of charge per kg of dry soil
(i.e., meq/100 g soil)

150 640 No

pH Measured soil pH 300 490 No
electrolyte level The approximate total solute concentration of the soil solution during

the experiments
26 764 No

SAR Sodium Adsorption Ratio 80 710 No
ESP Exchangeable Sodium Percentage 19 771 No
EC Electrical conductivity of the saturation extract 62 728 No
free Fe Al oxide The mass fraction of the Fe and Al oxides as a percentage of the total

solid phase
14 776 No
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Fig. 3. Frequency of the particle size in the UNSODA database.

Table 2
Summary of the number of hydraulic curves.

Hydraulic Curves Number of Curves Total Number of Data Pairs Average Number of Data
Pairs in each Curve

Field Lab Field Lab Field Lab

Water Retention (h-h) Drying 137 730 2621 8066 19.1 11.0
Wetting 2 33 8 528 4.0 16.0
Total 902 11,223 12.4

Hydr. Conductivity (h-K) Drying 133 730 2826 6187 21.2 8.5
Wetting 0 8 0 71 – 8.9
Total 871 9084 10.4

Hydr. Conductivity (h-K) Drying 294 293 5391 5177 18.3 17.7
Wetting 0 20 0 216 – 10.8
Total 607 10,784 17.8

Soil Water Diffusivity (h-D) Drying 56 92 1282 1456 22.9 15.8
Wetting 0 2 0 13 – 6.5
Total 150 2751 18.3
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hand, as shown in Table 1, in this database some of the parameters
are not reported for all samples. For instance, the data points of the
GSD curves are presented in different particle sizes (see Fig. 3).
Therefore, at first, to extract suitable information from the data-
base and arrange it in the way that is useful to train the neural net-
works, a sorting code is developed in MATLAB software. The
developed code also allows for extrapolation of the missing data
and formation of the complete database required for the ML.
4

As shown in Fig. 3, the most common particle size values in
UNSODA are P2l, P20l, P50l, P250l, P500l, P1000l, and P2000l. As a
result, the fraction corresponding to these values are selected from
the GSD curve as part of the ML inputs, and for samples that do not
have these particle sizes, the corresponding values are estimated
using the method proposed in Vaz et al. (2020). To overcome the
common limitation of the GSD curves, which is the lack of stan-
dardization for granulometric fractions collected from various soil



Fig. 4. Main drying branch of SWRCs in UNSODA database (S: Sand, lS: loamy Sand, sL: sandy Loam, L: Loam, SiL: silty Loam, Si: Silt, scL: sandy clay Loam, cL: clay Loam, sicL:
silty clay Loam, sC: sandy Clay, siC: silty Clay, C: Clay, N/D: Not Determined).
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analysis methods, Vaz et al. (2020) evaluated and compared the
performance of several GSD equations and showed that the
three-parameter Eq. (1) has an acceptable performance with root
mean square error (RMSE) of 0.463, 0.205, and 0.013, respectively
for sand, silt, and clay. Therefore, this equation is adopted in this
study:
F dð Þ ¼ 1þ a
d

� �b� ��c

ð1Þ

In the above equation, a, b, and c are equation parameters, d
is the particle size and F(d) is the fraction corresponding to the
particle size of d. Thus, for each sample, the parameters of Eq.
(1) are extracted and the fraction values in the required particle
size (if not present) are calculated. For instance, in Fig. 8, the fit-
ted curve for sample 3340 in the database is presented and the
values of P20l and P50l for this sample are estimated. This pro-
cess is repeated for all samples in order to complete the
database.

The detailed statistics of all variables in the database, with the
values of minimum, maximum, median, mean, and standard devi-
ation are summarized in Table 3 and their descriptive frequency
histograms are shown in Fig. 9. Bulk density and porosity have
the highest frequency at 1.4–1.6 and 0.4–0.5 respectively and fol-
low an approximately normal distribution (Fig. 9a and b). Regard-
ing mass fractions (Fig. 9c–j), it is observed that the highest
frequency of P2l is between 0.0 and 0.1 for 279 soils (Fig. 9c), while
the highest frequency of P2000l is between 0.9 and 1.0 for 641 soils
(Fig. 9j). In terms of the true and conventional AEVs, most of the
values are in the range between 0 and 50 kPa (Fig. 9k and l), while
the true AEV distribution is slightly more uniform than the conven-
tional AEV distribution. Since the values of P2000l and P1000l do not
change across different samples, they are not considered in the
subsequent analyses.

Fig. 10 presents a comparison of the AEVs and true AEVs
obtained for different soil classifications. As can be seen, the range
of the true AEVs has shifted to larger values compared to their cor-
responding conventional AEVs.
5

The variations of the AEV and the true AEV with each input soil
property are shown in graphs of Fig. 11. Also shown in the figure
are the linear trend lines fitted to the data along with the coeffi-
cient of determination (COD), R2. The COD allows for the assess-
ment of the fitting accuracy and it is expressed as:

R2 ¼ 1�
XN
i¼1

Yi � bY i

� �2
=
XN
i¼1

Yi � Y
�
i

� �2" #
ð2Þ

Y
�
i ¼ 1

N

XN
i¼1

Yi ð3Þ

where Yi and bY i are real and predicted output values for the ith out-

put, N is the number of outputs, and Y
�
i is the average value of the

real outputs. Overall, a comparatively low fitting accuracy
(R2 < 0.177) is obtained for variations of both AEV and true AEV with
input soil properties. The parameters P50l, P250l, P500l, P20l, P2l,
P1000l, and bulk density, having the highest R2 values are selected
for developing the ML model and the parameters P2000l and poros-
ity, having the lowest R2 values, are omitted. This is done to avoid
the complexity associated with developing the ML model.

5. Results of analysis

According to Fig. 11, the database is described by seven input
parameters namely, bulk density, P2l, P20l, P50l, P250l, P500l, and
P1000l, and one output parameter namely, true AEV. In order to
accurately generate the predictive model, the ML method of multi-
layer perceptron (MLP), which is a feedforward class of artificial
neural networks (ANNs), is selected because of its simplicity and
availability (comparing different ML methods is out of the scope
of the current study).

ANNs are commonly used to develop practical AI frameworks to
deal with complex pattern-oriented engineering problems. The
nonparametric nature of ANNs permits models to be established
without any prior knowledge of the distribution of the input values
or presumed interactions between variables of a model as required
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Fig. 5 (continued)
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by frequently used statistical methods (Rezania, 2008; Walczak,
2019).

ANN can be described as a multivariate and multi-dimensional
function f : Rn ! Rm It consists of an input layer of n neurons (in-
put values), an output layer of m neurons (output values) and an
arbitrary number of interior layers with a variable number of neu-
rons, called hidden layers. The neurons are storage cells for scalar
values obtained by an activation function applied to the neuron
values in the previous layer (Fig. 12). To each neuron in the output
8

and the hidden layers, a vector of weights and a scalar bias are
associated, and the value ul

k stored by the kth neuron in the lth layer
can be written in the form (Krenker et al. 2011):

ul
k ¼ rl

X
j

xl
kju

l�1
j þ bl

k

 !
ð4Þ

where rl is the activation function for the l th layer, and xl
kj and bl

k

are the weights and biases respectively. Typical activation functions



Fig. 8. Example fitted GSD curve for sample 3340.

Table 3
Descriptive statistics of all variables in the database.

Variable Min Max

Inputs Bulk Density (g/cm3) 0.459 1.9
Porosity 0.264 0.9
P2l 0.000 0.6
P20l 0.000 0.9
P50l 0.000 1.0
P250l 0.000 1.0
P500l 0.200 1.0
P1000l 0.651 1.0
P2000l 0.776 1.0

Outputs AEV (kPa) 3.548 1621.8
True AEV (kPa) 4.898 3890.4
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Fig. 9. Frequency histograms of the variables: (a) Bulk density, (b) Porosity, (c) P2l,
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used can be linear (i.e., r xð Þ ¼ x), or non-linear (e.g., r xð Þ ¼ tanh xð Þ).
Under mild assumptions on the activation functions, it can be
shown that a neural network with even a single hidden layer is a
universal function approximator, as given enough neurons, any con-
tinuous function on a compact domain can be approximated with
arbitrary precision (Csáji, 2001). In case where more than one hid-
den layer is used (a so-called deep neural network), very efficient
approximations can be achieved with a relatively small number of
network parameters, i.e., weights and biases (Huang, 2003).

To identify the best structure of the ML model, an initial analy-
sis is carried out to determine the optimal number of layers and
neurons that can suitably represent the relationship between the
inputs and output of the database. To speed up the optimization
procedure, only 25% of the database is considered for this step.
Fig. 13 presents a comparison of the performance of all the exam-
ined structures for one-hidden-layer and two-hidden-layer
Median Mean Standard deviation
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Fig. 12. A sample artificial neural network.
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networks, at the end of the training process. The various architec-
tures of ANNs are compared in terms of the RMSE given by:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

Yi � bY i
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(c) testing dataset; (d) validation dataset.

11
In Fig. 13, the continuous line describes the result of the one-
hidden-layer ANN, which is obviously uniquely determined by
the number of neurons in the hidden layer itself. The dashed lines
in this figure show the solutions for the two-hidden-layer ANNs.
Each point of this graph has been calculated as the average of ten
repetitions of the training process, to guarantee robustness against
stochastic impacts. As shown in Fig. 13, the two-hidden-layer ANN
with 5 and 23 neurons in the first and second layers provides the
best performance. For cases with total number of neurons larger
than the abovementioned values, there are no considerable
changes in the RMSE. Therefore, the 7–5–23–1 ANN architecture
is selected as the optimum ML model in this study.

In order to ensure the capabilities of the trained model to gen-
eralize its learning to unseen cases, and to prevent overfitting, only
70% of the database is used for the training process, 15% is kept for
validation, and 15% is used for testing. Therefore, out of the total
644 data, 450 are used for training, 96 for validation, and 96 for
testing.

Fig. 14 presents the comparison between the measured true
AEVs with the ML predicted ones. It can be seen that not only
the ML model exhibits a very high prediction accuracy for the
training dataset, but also high-level prediction accuracies are
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achieved for testing and validation datasets, with the R2 values
ranging from 0.851 to 0.964 across the three datasets.

Fig. 15 presents a comparison between the measured true AEVs
for all cases in the UNSODA database and the predicted true AEVs
using the developed ML model. It is seen that the true AEVs esti-
mated by the ML model match relatively well with their UNSODA
counterparts; the insignificant scattering around the actual mea-
sured values are clearly in accordance with the results illustrated
in Fig. 14.
6. Sensitivity analysis

To evaluate the effects of different soil parameters on soil’s AEV,
using the developed model a sensitivity analysis is also performed
according to the method proposed by Vu-Bac et al. (2016). A
sensitivity, or uncertainty, analysis quantifies the impact of all
input parameters with respect to the specific output of interest,
which in this study are the AEV and the true AEV. Therefore, the
graphically determined AEVs from cases in the UNSODA database
have been assessed for this purpose. The sensitivities of the AEV
and true AEV against different independent input parameters are
presented in Fig. 16 confirming that the AEV is most sensitive to
P50l and P250l, respectively, and the true AEV is most sensitive to
P250l and P50l, respectively; therefore, these 2 parameters seem
to have the most effect on soil’s air entry value. On the other hand,
the bulk density and P1000l appear to be the less influential param-
eters in terms of their effect on soil’s AEV.
7. Conclusions

In this paper, drawbacks in interpretation of water content-
based SWRC and estimation of the AEV for a significant number
of soil samples were investigated. The UNSODA database was used
12
and thoroughly examined for this purpose. It was shown that there
are 644 SWRCs in this database that possess the required informa-
tion for the targeted analysis. For these SWRCs the AEVs were
obtained using the conventional method and compared with the
corresponding true AEVs obtained using a consistent graphical
approach proposed by Pasha et al. (2016) which considers the
stress history of the samples. For the cases in the database, the dif-
ferences between the conventional AEVs and their corresponding
true AEVs were found to be generally in the range of 30–300 kPa,
although this could reach as high as 1500 kPa. A ML model was
developed to estimate the true AEVs, with the bulk density and
grain size distribution factors as input parameters. The obtained
results revealed that the developed ML model operates with excel-
lent accuracy and provides practical estimations of the true AEVs
with R2 values of 0.964, 0.901 and 0.851 for the training, validation
and testing datasets, respectively. Furthermore, the sensitivity
analysis showed that P250l and P50l are the most influential
parameters on soil’s AEV. The study shows that the methodically
trained ML approaches can be readily used for derivation of the
true AEVs for a wide range of soils, provided appropriate informa-
tion regarding the GSDs are available.
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