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Abstract

Various graphical models have been utilised in reliability literature to express
the qualitative aspect embedded in certain hypotheses about how a system might
fail. There is a wide range of research that translates domain expert beliefs to
Bayesian networks (BNs), fault trees and so on [Bedford et al., 2001]. However,
many conventional tree-structured analyses designed to demonstrate how systems
can fail in reliability theory are not embellished with probabilities and conditional
independence statements. Here we apply the Chain Event Graph (CEG) which is
a probabilistic graphical model derived from an underlying event tree. This class
of model retains the advantages of both events trees and BNs. So a CEG can
chronologically represent sequences of events along the paths and model conditional
independence. In particular, the CEG model generalises the discrete BNs. A BN
can be transformed to an equivalent CEG. Compared with BNs, the class of tree-
based CEGs have richer semantics for representing context-specific dependencies.
For example, given non-extreme weather and temperature, the failure of a system
depends on the condition of sub-systems A and B. When having extreme weather,
the failure of this system depends only on the temperature. This can be easily
represented by a CEG, but it is non-trivial to capture the sample space structure of
this scenario by a BN. I show in this thesis that these semantics are rich enough to
represent the unfolding of the asymmetric failure processes or deteriorating processes
and also to provide a formal framework around which to define the intervention
calculus required for this domain.

Over the last 40 years statistical analyses which embed causal reasoning have
been shown to improve the predictive inference and the efficiency in decision making
in various fields, such as economics, medicine, public health and reliability [Langseth
and Portinale, 2007]. There is almost no research relevant to such analyses which use
probability trees – widely used in reliability – as the foundational structural frame-
work with which to explore putative causal hypotheses and to define appropriate
causal algebras.

Therefore, in Chapter 2, we demonstrate how an event tree can be customised
for modelling causes of system failures. A CEG derived from this tree is then con-
structed which faithfully represents typical classes of model found in reliability as
causal probability models. Causal algebras associated with different domains have
already been successfully developed for the CEG. However we find that these are

xi



not usually suitable for the types of causal interventions appropriate to reliability
theory. Our main contribution here is customising causal algebras for two types of
domain-specific interventions – the remedial intervention and the routine interven-
tion – with semantics of CEGs. The former is associated with maintenance per-
formed after observing failures which fixes the root causes of the observed failures.
The latter is associated with routine maintenance which is scheduled to prolong
the system’s lifetime and to prevent failures. We show that the manipulations in
response to these domain-specific interventions can be imported into CEGs in a sim-
ple and transparent way. We can then use the developed causal algebras to study
the effects of such interventions. In particular, we have been able to adapt the
algorithms originally developed by Pearl [2009] to determine when certain causal
effects are identifiable and produce explicit formulae for these effects as a function
of these interventions bespoke to this application and the CEG representing the
failure processes. Thwaites [2013] has shown that Pearl’s back-door theorem [Pearl,
2009] can be extended on CEGs to identify effects of controlling an event. Here,
under the two new types of intervention regime, we have more complicated types of
manipulations than controlling a single event. We show that the back-door theorem
can still be adapted to estimate effects of these new interventions even when data
are only partially observed.

Although there are confidentiality constraints that have precluded me sharing
fully its contents, this thesis is informed by a dataset based on engineer reports of
the failure and maintenance of electrical transformers. These documents consist
of well-structured ordinary data and free texts. The free texts are informative
about how engineers believe a system may fail and how the system can be repaired
or restored. So we have available to us documentation of how engineers reason
causally where this reasoning is encoded within the natural language descriptions.
In order to automate the process of causal discovery from these free texts onto a
CEG for this system, it is required to design algorithms which enable us to extract
and embed these causal hypotheses from the texts. In Chapter 3, we propose a
new sequence of algorithms that are able to perform this extraction and provide an
innovative hierarchical framework with two levels which can be used to embed them
on a CEG. The surface level registers the extracted causal events while the deeper
level can be described by a causal CEG. The complexity of the analysis is increased
when data is only partially observed or missing in embedding causal dependencies
and making predictive inference about causal effects in this domain. However, we
show in Chapter 4 that this issue can be successfully addressed with the bespoke
causal algebras within the proposed causal framework.

In Chapter 5, we show predictive inference can be improved by incorporat-
ing the causal algebras established for the remedial intervention and the routine
intervention. We also design an algorithm to map free texts onto a CEG using the
hierarchical framework developed in Chapter 3 and evaluate the performance of this
algorithm using synthetic experimental data. In the last chapter, we give a brief
discussion on possible extensions of the current work.
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Chapter 1

Introduction

In this chapter, we will give a literature review in reliability, Natural Language

Processing (NLP) and causal Bayesian networks (BNs), which are the foundations

of the established methodology and framework in this thesis. We will explain the

motivations in applying the tree-based Chain Event Graphs (CEGs) to model how a

system might fail and establishing a causal framework for studying system reliability

within this chapter that will then be used in later chapters.

1.1 Reliability models in engineering

1.1.1 Nature of data

Operational risk in system reliability refers to faults, failures, control, or crashes

[Fenton and Neil, 2018]. In industry, this forms an essential part of a company’s

risk management so that they can efficiently use machines and reduce costs.

The analyses developed in this thesis have been informed by defect data for

supergrid transformers (SGTs). These are used at substations to change voltage for

onward distribution [Nichols et al., 2017]. They are high volume transformers with

multiple components including the tap changer, which can change turns operated

on the coil, the bushing, which is a type of insulator, the winding temperature

indicators, which indicate the winding core temperature, and the noise enclosure,

which isolates sounds [Jeude et al., 2015]. The data was collected by a power supply

company. Due to commercial sensitivity, we cannot disclose this dataset. We only

use a subset of this dataset where there are no disclosure issues and explore the

informative and useful features which are enlightening for designing the intervention

regimes and building the framework for a causal analysis.

The data collected by engineers often has two types: ordinary data and

1



work order(WO) start date closed date FP.Equip.No person name total cost top-up units (kg/L)

00000001 2009-01-23 2009-02-20 000000000001 A.B. 5000 20
00000002 2009-02-15 2009-03-01 000000000002 C.D. 40 0

... ... ... ... ... ... ...

Table 1.1: Examples of ordinary data. Due to data confidentiality, the series num-
bers, names, dates and expenses are all artificial in this table.

subcomponent symptom cause WO extended desc. WO request desc.

conservator drycol breather de-
fect

missing or damaged
component

FDCS: drycol re-
placed

REPLACE
FAULTY DRYCOL
BREATHER

conservator breather defect missing or damaged
component

Transformer Abnor-
mal reflash. FDCS
: SGT 4A breather
supply faulty.

Transformer Abnor-
mal reflash. A.B.
informs breather flt
on SGT4A.

... ... ... ... ...

Table 1.2: Defect scripts. The first three columns are categorical data.

text data. Table 1.1 gives some examples of the ordinary data available in the

database. We can find the category of the defect asset, the asset number, the

supplier company, the service time, the site location, the field engineer who carried

out the maintenance, the equipment fitted date and so on. There are 42 fields in

the dataset for the SGTs which are in the form of the well-structured ordinary

data. Some of these are numerical, such as the cost of maintenance, while the

others are categorical, such as the component types. Such data can be useful in a

regression analysis for predicting machine’s reliability. On the other hand, text data

is in the form of engineer’s reports, also referred to as maintenance logs or defect

scripts in this thesis. The text data usually provides richer information about the

malfunction or failures and the maintenance which is not available from the ordinary

data. The field engineers inspect malfunctioned assets and then give a description of

the defects, failures or remedial work which has been planned or carried out at the

time of inspection. These free texts are, therefore, valuable for analysing reasons or

symptoms of different types of system failures. There are three fields in the dataset

filled with free texts: “work order description”, “work order extended description”,

“work order request description”. Some of these entries maybe empty and some

texts are just short phrases. There are spelling mistakes, grammatical mistakes,

abbreviations, repetitions, or other errors in these texts. Therefore, it is necessary

to clean and preprocess these texts.

Jeude et al. [2015] explored the ordinary data for SGTs. They designed

algorithms to group the similar defects and match the defects to the assets. They

also found that no correlation between the number of defects and the age of defects,
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which was inconsistent with the reliability literature. They therefore suggested that

a more detailed analysis of these defects was required. Nichols et al. [2017] carried

out this analysis for the SGT data. They cleaned the text data using existing

packages in R programme and devised a lookup table for mapping the defect script

to a failure mode, for example the dielectric failure.

Both of these pieces of research were motivated by improving the efficiency

of the maintenance policy through evaluating the risk of failure or defect for every

asset. One popular risk-based approach in reliability engineering is Failure Mode

and Effects Analysis (FMEA) [Bedford et al., 2001]. This programme explores the

causes and effects of potential failure modes in a system. This coincides with the

essence of this thesis – to exploit causal relationships between events that lead to

a system failure and to infer the causal effects of different types of maintenance.

Unlike FMEA and the analysis performed by Jeude et al. [2015] and Nichols et al.

[2017], this thesis focuses on applying a probabilistic graphical model for causal

analysis in this domain.

To fulfil this objective, we needed to extract the causally related events from

the data. But not all the information in the dataset was relevant. So we first selected

only the following 7 fields for constructing the causal framework: “Component”,

“Cause”, “Symptom”, “Subcomponent”, “Work order description” (WOD), “Work

order extended description” (WOED), “Work order requested extended description”

(WRED). Note here that WOD, WOED, WRED are in the form of free texts, some

of which are missing. Furthermore the content of these three fields for the same work

order maybe repetitive. For example, there may exist repeated sentences. The data

for the other four fields are ordinary data. However, some of the entries are missing.

These 7 fields provide information about the root causes of the failure, the observed

faults, the conditions of some components, and the maintenance. These events are

crucial for designing the intervention regimes for a causal framework in reliability.

Note that unlike local causes, which are usually symptoms, such as leak, the root

causes are the initial contributing factor of the failure which may not be routinely

recorded and tabulated within database. If the root causes are recorded, they are

usually in the form of free texts. Any standard statistical approach depending

only on the numerical data provided within these reports will necessarily miss this

intrinsic direct information. In Chapter 2, we will give a thorough discussion about

how to import this concept to the CEGs for customising the bespoke causal algebras.

Note that in reliability there are two main categories of maintenance com-

monly used in industry: corrective maintenance (CM), which is performed for an

observed failure, and preventive maintenance (PM), which refers to the main-
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tenance scheduled routinely for preventing system failure [Types of maintenance:

The 9 different strategies explained, n.d.]. For the maintenance logs which record

failures or the remedial work, for example, the free texts we have in the dataset, the

maintenance is carried out after observing the failure. Therefore, the maintenance

here is classified as the first type of maintenance. Notice that, instead of treatment,

which stems from medical science and is widely used in causation literature, the

terminology remedial work or remedy is used in reliability. It refers to a collec-

tion of acts designed to rectify the root cause of a failure incident and restore the

system to full working order. Potential remedies are especially useful objects in this

context because we find that they can often be extracted directly from the natural

language texts provided by engineers. So this new concept plays a crucial role in

the bespoke causal algebras designed for the associated intervention. In Section 2.3,

we will differentiate this concept from treatment and demonstrate qualitatively and

quantitatively for the intervention designed for this type of maintenance for remedial

purpose. In Section 2.4, we design another type of intervention, called the routine

intervention, for the routine maintenance for preventive purpose. Since the data

for the preventive maintenance is not available to us, we formulate the underlying

intervention regime based on the background knowledge in reliability theory. Some

of the material for the remedial intervention and the routine intervention has been

published in our papers [Yu et al., 2020] and [Yu and Smith, 2021a] respectively.

1.1.2 Graphical models in reliability literature

Graphical models provide an intuitive way to visualise and understand the process,

so they are not uncommon in reliability. Here, we review some popular reliability

graphical models.

In safety engineering and reliability engineering, domain experts often use a

fault tree. This is a structured top-down logic diagram, to analyse how a system

fails [Bedford et al., 2001; Lee et al., 1985]. This helps understand the failure pro-

cesses and optimise the maintenance policy. The fault tree starts with a top event,

which is the critical system event, for example, a type of system failure. This top

event is then decomposed successively into intermediate events whose composition

or intersection can cause the top event. These intermediate events could be failures

or non-failures of subcomponents. Subcomponents are usually defined no finer than

the smallest independently maintainable part of a system. In the final step the

failure events are - when appropriate - then linked at the final level of exogenous

driving events that might happen and so impact on the failure of these subcompo-

nents. The events forming the final level that partition what might happen at this
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most refined level, i.e. the lowest level of the identified causes, are called the basic

events. The events are connected by logic gates which represent the logical rela-

tionships between these events, for example AND/OR. Therefore, throughout the

recursive construction of the fault tree, the top event is re-expressed as an element

of the sigma algebra generated - through the operations of union, intersection and

complementation - by the basic events. These basic events form the atoms of the

probability space. We can read from the structure of the fault tree which particular

combination of failures or faults will cause the whole system to fail.

So basic events of the fault tree define the level of granularity within which

the top event is explained and any concept of causation can be embedded. Note

that this granularity is normally chosen to that it is sufficiently fine so that the

functionality of the system after all intervention events of interest - such as restoring

certain combinations of subcomponents to perfect working order - also lie in this

sigma algebra. On the other hand for the sake of simplicity and transparency the

system is described in no further detail than this.

The representation on the fault tree is simply logical. And unlike an event

tree, on which the events are usually ordered chronologically, there is no specific or

explicit partial order in the representation that describes any longitudinal informa-

tion [Shafer, 1996]. Everything is represented cross-sectionally as an instantaneous

picture. The description of a fault trees is often supplemented by further informa-

tion, but this is not formally represented in the tree itself.

Furthermore, all events, including the basic events, within this standard de-

piction need to be binary. They either have a failed state or not. Clearly, this limits

the representation of the failure process. For example, if we need to represent the

extent or type of failure, then we have to do this in a contrived way by choosing some

arbitrary binary decomposition using artificial constructions. The binary constraint

has the technical advantage that Boolean algebra can immediately be used to repre-

sent the explanation. In particular the top event binary variable can be represented

as a polynomial in the basic events. But this elegance is obtained at a cost. Recent

reliability theory has tried to address this shortcoming using multi-state generali-

sations [Natvig, 1985; Lisnianski et al., 2017], but the Boolean framework behind

these developments becomes much more cumbersome so that such methodologies

are much less transparent.

The limitation of the flat representation of what happens in a system on the

fault tree and the Boolean limitation can be overcome by the representation on the

event tree. This temporally orders the events from root to leaf and can be elaborated

for a statistical or probability analysis. The CEG - the main model discussed in this
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thesis - is derived from the event tree, so inherits the advantages of the event tree

representation that can embed a description of not only what happens but how

things happen – an intrinsic part of any causal model. In Section 2.1, we will give

a formal definition of the event trees and the CEGs.

Another traditional graphical representation in reliability theory is the Boolean

Decision Diagram (BDD) [Bryant, 1995; Bedford et al., 2001]. This represents the

Boolean function of the events, including the basic events and the intermediate

events. The BDD is a rather different but equivalent graphical representation of the

fault tree which exploits its Boolean structure more directly and compactly. The

events are ordered in the same way as the event tree, where the basic events come

first while the top events are the last components, but are not guided by the causal

partial order like the CEGs [Cowell et al., 2014]. Given the order of the binary

fault indicator variables, rules were proposed by Bryant [1995] to remove duplicate

and redundant nodes to obtain canonical and compact form of the BDD so that

the graph is simplified and can be asymmetric. The BDD can be generalised to

the Multiple-Valued Decision Diagram (MDD) which models multi-states systems

[Kostolny et al., 2014]. However, the MDDs are not populated with probabilities,

and the order of variables is arbitrary and is not designed for a causal inference.

By contrast, the richer semantics of the CEG are more flexible and transparent

in representing the causally ordered events. In particular, each path on the CEG

represent a causal story of a specific process, see Section 2.1 for details.

Neither a fault tree analysis nor a BDD systematically considers a statistical

analysis. Torres-Toledano and Sucar [1998] also criticised the traditional reliability

analysis that the deficiency of these models lies in the incapability of representing

dependencies between failures and complex systems and suggested instead the use

of a BN. The BN is a probabilistic graphical model whose topology is directed

acyclic and can characterize and analyse uncertainty in an effective way. Classical

fault trees can be transformed into BNs, so Fenton and Neil [2018] argued that

the BN provided a more powerful graphical representation. Previous work [Torres-

Toledano and Sucar, 1998; Cai et al., 2018] showed that BNs can well represent the

system faults and failures and the effects of maintenance. Each node corresponds

to a fault variable or a failure indicator, etc. And a conditional probability table

needs to be specified for each node. Importantly, the advantages of applying BNs in

reliability analysis lie in embedding probabilistic knowledge, managing probability

propagation, inference and causal reasoning. The dependencies between failures or

faults can be read from the structure of the underlying BN. The semantics of the

BNs are supportive for causal inference and intervention reasoning [Ruiz-Tagle et al.,
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2021]. Although BNs capture all these advantages, they lose things that might be

captured by CEGs. We will discuss these weaknesses of BNs later.

In fact, the role of causality in system reliability cannot be ignored. Under-

standing the causal structure of a system can improve the prediction of reliability

[Hund and Schroeder, 2020]. Further, causal reasoning through interventions in risk

and reliability analysis can inform the policy makers or the engineers about the

potential effects of new policies or actions so that the maintenance strategy can be

optimised in an efficient and effective way. Interestingly, causal reasoning is popular

in many domains, such as medical science [Mani and Cooper, 1999; Gillies, 2018]

and genetics [Krieger and Davey Smith, 2016]. However, not many researchers have

systematically studied formal causal analyses as they might be applied to reliability

or risk analysis from a causal perspective [Hund and Schroeder, 2020]. Hund and

Schroeder [2020] presented how to use the structural causal modeling (SCM) frame-

work for reliability estimation in an engineering application given a set of data and

assumptions. Nyberg [2013] described a systematic approach to construct causal

BNs for safety analysis. Instead of converting it from a fault tree, the proposed

method firstly elicited a failure propagation graph from the architecture of the sys-

tem and requirements engineering [Hull et al., 2010] which was used to determine

dependency between fault variables. Li and Shi [2007] established a method to

learn causal networks from observational data with domain knowledge applied for

manufacturing systems. However, no previous work has developed an application

of Pearl’s theory of causal reasoning in this domain. For example, the do−calculus

[Pearl, 1995, 2009] and the back-door theorem for identifying causal effects [Pearl,

2009]. In the later section of this chapter, we will give a brief review of these the-

ories on BNs and adapt them later in Chapter 2. In this thesis, we do not design

intervention calculus on BNs for machines failure data. Instead, we apply CEGs.

Despite the popularity of the BNs framework for exploring causal relation-

ships, the discrete joint probability distributions represented on the BNs are highly

symmetric. It is non-trivial to use BNs to represent models with non-symmetric

sample space structures [Thwaites, 2008; Freeman, 2010], for example, when the

state spaces of some of the random variables are radically different given the values

of some other random variables. So the semantics of BNs are not compelling for

representing context-specific independence.

Moreover, maintenance is highly likely to be context-specific in reliability

theory. For example, a manipulation may force the oil level to be normal but still

retain an oil leak when the pipe seal is replaced and the other components are

not maintained. Alternatively it may force the oil level to be normal with no oil
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leak when the pipe seal, the oil indicator and the breather are all replaced. When

modeling this intervention, the manipulation induced by it is likely to be asymmetric,

which means it might not simply force a variable to take a specific value like the

do−operator. Again such manipulations are not simply expressible by the semantics

of BNs which are variables based.

Many researchers [Shafer, 1996; Spirtes et al., 2000; Riccomagno and Smith,

2005] have argued that event tree based inference provides an even more flexible and

expressive graph than the BN from which to explore causal relationships. The un-

folding of the asymmetric failure process can be easily represented by the event trees.

The CEG groups the vertices and edges of the underlying event tree and has a sim-

pler structure. The context-specific conditional probabilities can be well-defined on

such tree graphs and the effects of asymmetric manipulations can be well-captured

by the CEGs. Every BN can be transformed to an equivalent CEG which expresses

the same conditional independence properties as the underlying BN [Barclay et al.,

2013; Collazo et al., 2018]. So in this sense the discrete BN is a special case of a

CEG. A CEG can provide a framework for directly expressing a probability model

faithful to an engineer’s hypotheses about what might have happened. It can be used

to answer and evaluate dependency queries about any malfunction quantitatively.

So CEGs are expressive tools for modeling system failures. However, no previous

work has exploited the advantages of applying the CEG for reliability analysis. In

this thesis, we will develop a causal framework with CEG semantics in this domain.

So this is completely novel to either the engineers or the statisticians familiar with

causality or CEGs. In particular, given the maintenance logs, our goal is to define a

direct mapping from the collections of features found by natural language processors

onto a probability model that faithfully represents their explanatory statements, i.e.

a CEG. We next review the natural language processors which have been devised in

literature.

1.2 Natural Language Processing

We have already mentioned when introducing information from a dataset for ma-

chines failure that the free texts are required to be cleaned and preprocessed and we

aim to extract the causally related events from these natural language descriptions.

The artificial intelligence-based computational techniques for processing and learn-

ing from texts are referred as Natural Language Processing (NLP). The formal

definition of it is given below.

Definition 1.2.1 (NLP [Liddy, 2001]). NLP is a theoretically motivated range of
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computational techniques for analysing and representing naturally occurring texts

at one or more levels of linguistic analysis for the purpose of achieving human-like

language processing for a range of tasks or applications.

NLP emerged in late 1940s as machine translation [Liddy, 2001]. It has

gradually gained popularity in a variety of fields, including information retrieval

[Nadkarni et al., 2011] and speech recognition [Collobert et al., 2011; Hirschberg

and Manning, 2015]. Linguists, machine learners and statisticians have all made

efforts to accelerate the development of this technology [Blei et al., 2003; Collobert

et al., 2011; Young et al., 2018].

Some common NLP tasks include: tokenization, stemming, part-of-speech

(POS) tagging, chunking, named entity recognition and so on [Liddy, 2001; Dud-

habaware and Madankar, 2014; Collazo and P.G., 2017]. Tokenization breaks the

texts into words, phrases or sentences which are defined as tokens [Gupta and Mal-

hotra, 2015]. This is usually the first step for processing texts. For example, the text

“The oil level was incorrect.” can be tokenized into “The”, “oil”, “level”, “was”,

“incorrect”, “.”, in which case the sentence is split into sequence of words and sym-

bols. Stemming finds the base form or stem of each word in the texts [Zitouni

et al., 2010; Dudhabaware and Madankar, 2014], which can reduce words difference.

POS tagging technique [Mohamed et al., 2011] was designed to annotate each

word in the document by its part of speech. The POS tag depends on the meaning

of the word and the context it lies in. With POS tags, one can further perform

chunking to the annotated texts, which labels segments of a sentence by syntactic

constituents [He et al., 2009; Collobert et al., 2011; Dudhabaware and Madankar,

2014]. In addition, the texts can be labelled by the predefined categories such as

“DATE”, “PERSON”, “LOCATION”. This is called named entity recognition

(NER). These techniques are useful in cleaning and preprocessing the free texts in

reliability data.

Software has been well developed in various platforms to perform these tasks.

The tm package [Feinerer et al., 2008] as an R programme provides tools for data

cleaning, e.g. removing stopwords, and tagging tasks. In Python, a variety of

libraries are available for NLP [Schmitt et al., 2019], such as NLTK [Bird, 2006]

and SpaCy [Honnibal and Montani, 2017]. Manning et al. [2014] also designed a

Java annotation pipeline framework called the stanford CoreNLP.

Some more complex text analyses have been established. For example, senti-

ment analysis aims to identify positive or negative orientation of texts [Dudhabaware

and Madankar, 2014; Hirschberg and Manning, 2015]. Blei et al. [2003] estab-

lished a three-level hierarchical Bayesian model called Latent Dirichlet Alloca-
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tion (LDA). Each word in the document has a latent topic and the documents are

random mixtures over latent topics. This model has been extended to a dynamic

version that models the time evolution of topics [Blei and Lafferty, 2006; Perrone

et al., 2017]. Further, Xun et al. [2017] and Blei and Lafferty [2007] considered

correlations between topics.

A wide range of research [Mirza and Tonelli, 2016; Pustejovsky et al., 2005]

has discovered the importance of the role of temporal information in natural lan-

guage texts. So algorithms have been designed to automate the process of recognis-

ing and extracting temporal and event expressions. For example, Pustejovsky et al.

[2005] devised a language called TimeML for capturing the temporal and event

features. It tags the time expressions, temporal events, and the relationships be-

tween these tags. TimeML has been extensively applied and developed [Chambers

et al., 2014; Mirza and Tonelli, 2016; Ning et al., 2019]. The temporal extraction is

not a simple task because in different domains there may exist temporal expressions

or events which are domain specific. For example, in medical science, to identify

medical events, medical concepts need to be imported into the corpora, and the

temporal expressions are the dates the patient accepts or experiences these events

[Tang et al., 2013].

Curating causal relations from texts have drawn more attention recently in

understanding the texts and improving predictive tasks. Many researchers [Sorgente

et al., 2013; Dasgupta et al., 2018; Hendrickx et al., 2019] have designed architec-

tures for automating the causal relationship extraction using linguistic rule based,

supervised and unsupervised machine learning approaches. Causal events extraction

can benefit from the temporal information extraction [Ning et al., 2019; Zhao et al.,

2017] since a cause happens before its effects. However, causality detection

is challenging, because some cause and effect events are marked with clear causal

connectives, such as “so”, while others are not; some documents explicitly state the

cause and the effect while some do not [Dasgupta et al., 2018].

Maintenance logs provide crucial information about causal explanations of

different failure events because these documents describe what engineers believe

might explain malfunction they observe. Therefore, extracting and embedding these

causal explanations is a critical aspect of this thesis. To extract the causal relation-

ships of particular interest, in Chapter 3, we will propose a sequence of algorithms

for extracting causally related events from maintenance logs. Our proposed method

is based on two previous works.

The first is the CAscading EVent Ordering architecture (CAEVO) [Cham-

bers et al., 2014]. This utilises rule-based and machine-learned classifiers to annotate
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automatically the temporal relation between event-event pair, event-time expression

pair, time-time pair, event-document record time pair, and time-document record

time pair. For every pair, there are six possible relations: BEFORE, AFTER,

INCLUDES, IS INCLUDED, SIMULTANEOUS, and VAGUE. Here the VAGUE

relation means that for the specified pair of events, no clear temporal relation be-

tween them is identified given the corpora. We give an example below to show how

CAEVO processes a document.

Example 1. Suppose we have the following raw texts.

“Oil leak - bleed valve to be replaced : bleed valve has been damaged in the

past when removed by the use of wrench. Bleed valve to be replaced.”

Inputting this document into CAEVO, the extracted events and temporal re-

lations are shown in Table 1.3. “Bleed valve to be replaced” is repeated twice in the

document, but CAEVO is unable to recognise them as the same event. This makes

the event “replaced” appear twice in the sequence of ordered events. From the de-

scription in the document, we can deduce the real temporal order of these events.

We highlight the events whose relations are incorrectly extracted in blue in the table.

event 1 event 2 relation
damaged the past IS INCLUDED

leak replaced BEFORE
removed replaced BEFORE

leak the past IS INCLUDED
removed the past BEFORE

leak removed AFTER
replaced removed AFTER
damaged replaced AFTER
removed use BEFORE

leak damaged AFTER
leak use BEFORE

replaced damaged AFTER

Table 1.3: Output from CAEVO.

Note that this programme treats verbs as events, so noun phrases cannot

be extracted. In this case, when processing “event A causes event B”, the causal

connective “causes” is recognised as an event by CAEVO. Moreover, for domain-

specific data, there may be many VAGUE relations asserted by this programme

because reliability concepts were not considered when building this architecture.

Therefore, we will not only just rely on the results given by CAEVO for a causal

analysis. In Section 3.2, we will explain in detail how we have applied this method

in this context and how the results of it are interpreted.

Other authors [Zhao et al., 2017] proposed a hierarchical framework for
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causality embedding. Here, linguistic patterns for extracting causally related events

were required to be pre-defined. These patterns consist of a set of rules for picking

pairs of events whose order are determined by the causal connectives. A causal

network can then be constructed using these extracted pairs of events whose nodes

correspond to the extracted events. This is then generalised to an abstract causal

network via replacing nouns and verbs by words with general meaning and picking

frequent events and relations. The causal relations are embedded into a continuous

vector space by using a dual cause-effect transition model.

It is important to note that this method was defined for the analysis of news,

which has fewer grammar and spelling mistakes than our data. Furthermore we

regularly find that our defect scripts do not have causal connectives. Therefore, the

free texts we have need to be cleaned and curated before they are inputted into

any existing programme. In addition, only some ideas of this model are adopted in

our algorithms. For example, we are not interested in using their dual causal-effect

transition model, see Section 3.2 for details.

1.3 Causal reasoning through interventions on BNs

In this chapter, we have reviewed the application of BNs in reliability theory and

emphasised the role of causality. This section exploits causal effects of interventions

with the semantics of BNs [Pearl, 1993, 1995, 2009]. The edges or dependence

statements that can be read from the DAGs of BNs are not necessarily causal.

However if the variables are ordered to respect their chronological and causal order,

and the structure of the BN can be seen as describing the data generating process,

then the DAG structure can be asserted as causal [Pearl, 2009]. When a causal

BN is not intervened upon we say the model describes the idle system, i.e. the

unmanipulated system.

The typical external intervention explicitly formulated on a causal DAG is

the atomic intervention. This forces a variable Xi to attain a specific value

xi, denoted by do(Xi = x′i). This is also called the do-operation. Let pa(Xi)

denote the parents of Xi in the causal diagram, and pai denote the values taken by

pa(Xi). Then under an atomic intervention, Pearl [2009] and others convincingly

argue that the post-intervention probability satisfies p(xi|pai) = 1 for xi = x′i and

p(xi|pai) = 0 for xi 6= x′i. The joint probability function p(x1, · · · , xn) is now

p(x1, · · · , xn|do(Xi = x′i)). Let x̂i denote the value of variable Xi being forced to
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attain a specific value x′i. Then p(x1, · · · , xn|do(Xi = x′i)) = p(x1, · · · , xn|x̂′i):

p(x1, ..., xn|x̂′i) =


p(x1,...,xn)
p(x′i|pai)

if xi = x′i,

0 if xi 6= x′i.
(1.3.1)

This intervention can be extended to force a subset X of variables to take

on fix values x. The causal BN is then formalised by the following definition based

on the formula of the atomic intervention.

Definition 1.3.1 (Causal Bayesian network [Pearl, 2009]). Let p(v) be a probability

distribution on a set V of variables. If there is an intervention do(X = x) that

sets X ⊆ V to constants x, then let px(v) denote the distribution resulting from

this intervention. Denote by P∗ the set of all interventional distributions px(v) =

p(v|x̂) = p(v|do(X = x)), including p(v), when X = ∅. A DAG G is said to be

a causal Bayesian network compatible with P∗ if and only if the following three

conditions hold for every px ∈ P∗:

1. the joint probability function can be decomposed as px(x1, · · · , xn) =
∏
j∈{1,··· ,n} px(xj |paj)

given G;

2. px(vi) = 1 for all Vi ∈ X whenever vi is consistent with X = x;

3. px(vi|pai) = p(vi|pai) for all Vi /∈ X whenever pa(vi) is consistent with X = x.

Suppose we are interested in the effect on a set of variables Y , then the causal

effect of X on Y is represented by p(y|x̂). Causal effects enable us to predict the

influence of a hypothetical intervention from the passive observations summarised

from p(v) and the causal graph G. When some variables are unobserved, we need

to show the identifiability of the causal effects, see definition below.

Definition 1.3.2 (Causal effect identifiability [Pearl, 2009]). The causal effect of

X on Y is identifiable from a graph G if the quantity p(y|do(X = x)) can be com-

puted uniquely from any positive probability of the observed variables - that is, if

pM1(y|do(X = x)) = pM2(y|do(X = x)) for every pair of models M1 and M2 with

pM1(v) = pM2(v) > 0 and G(M1) = G(M2) = G.

With partial observations, suppose the controlled variables X and the re-

sponse variables Y are both well-defined on the causal graph G, Pearl [1993] de-

signed the back-door criterion to examine if there is a set of variables Z ⊆ V

which is sufficient for identifying p(y|do(X = x)). The definition of the criterion is

given below.
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Definition 1.3.3 (Back-door criterion [Pearl, 1993, 2009]). A set of variables Z

satisfies the back-door criterion relative to an ordered pair of variables X,Y in a

DAG G if:

1. no node in Z is a descendant of X; and

2. Z blocks every path between X and Y that contains an arrow into X.

The first criterion requires that Z is a subset of non-descendant of X, denoted

by nd(X): Z ⊆ nd(X), which implies that

Z ⊥⊥ X|pa(X). (1.3.2)

Pearl [1993] augmented the DAG by adding an intervention indicator Fx taking

values in {do(x), idle} and linking it to the intervened variable by adding a directed

edge from Fx to X. In the augmented graph, let p′ denote the distribution over the

variables. The marginal probability of every non-descendant of X in the augmented

DAG remains the same as that in the original DAG. Since Fx is a parent of X, we

have

p′(z|Fx) = p′(z) = p(z). (1.3.3)

The second criterion ensures that all paths from Fx to Y traverse the children

of X and are blocked when conditioning on X. This implies that

p′(y|x, z, Fx = do(x)) = p′(y|x, z, Fx = idle) = p(y|x, z) (1.3.4)

and

Y ⊥⊥ pa(X)|(X,Z). (1.3.5)

Theorem 1.3.4 (Back-door adjustment [Pearl, 2009]). If a set of variables Z sat-

isfies the back-door criterion relative to X,Y , then the causal effect of X on Y is

identifiable and is given by the formula

p(y|do(X = x)) =
∑
z

p(y|x, z)p(z). (1.3.6)

Proof.

p(y|do(X = x)) =
∑
z

p(y|z, do(X = x))p(z|do(X = x)) (1.3.7)

=
∑
z

p(y|z, x, do(X = x))p(z|do(X = x)) (1.3.8)
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Applying equations 1.3.3 and 1.3.4, we therefore have the formula.

Apart from the atomic intervention, more complex situations may occur when

making policies. The stochastic intervention imposes a new conditional distribution

p∗(x|z) for the controlled variable X, which equivalently imposes a functional rela-

tionship do(X = g(z)). This can be treated as forcing do(X = x) with probability

p∗(x|z). The back-door theorem can be extended to test the identifiability in this

scenario.

Theorem 1.3.5 (Back-door adjustment for a stochastic intervention [Pearl, 2009]).

The effect on Y of a stochastic policy which imposes a new conditional distribution

p∗(x|z) is

p(y|p∗(x|z)) =
∑
x

∑
z

p(y|x̂, z)p∗(x|z)p(z). (1.3.9)

Pearl [2009] also assess whether a cause is genuine by the following definition.

Definition 1.3.6 (Genuine cause [Pearl, 2009]). A variable X has a genuine causal

influence on another variable Y if there exists a variable Z such that either:

1. X and Y are dependent in any context and there exists a context S satisfying

(a) Z is a potential cause of X,

(b) Z and Y are dependent given S, i.e. Z 6⊥⊥ Y |S, and

(c) Z and Y are independent given S ∪X, i.e. Z ⊥⊥ Y |S ∪X; or

2. X and Y are in the transitive closure of the relation defined in the above

criterion.

Note that a confounding variable or confounder is an unmeasured vari-

able which may distort or mask the effects of the predictors on outcome variables

[Pearl, 2009]. So far it has always been assumed that there are no unobserved

confounders when studying CEGs, see e.g. Cowell et al. [2014].

We can explore causal hypotheses with the semantics of CEGs in a similar

way with the semantics of the BNs [Cowell et al., 2014; Thwaites, 2008]. The atomic

intervention on BNs reviewed above has been extended to the CEG as the singular

intervention by Thwaites et al. [2010] and Thwaites [2013]. The identifiability of the

causal effects on CEG for the singular intervention is analogous to the identifiability

of the causal effects on the BN for the atomic intervention [Thwaites et al., 2010;

Thwaites, 2013], which is an extension of the back-door theorem.
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It also has been shown that context-specific manipulations, which may be

asymmetric, can be well captured by the CEG semantics. This is another over-

whelming advantage of the CEG to be applied in reliability engineering. The causal

algebras for the domain-specific interventions in reliability is built upon the foun-

dation of the singular intervention. In Chapter 2, we will demonstrate the formulae

for the new intervention regimes.

In addition to the causal BNs, we next introduce the framework developed

by Williamson and Gabbay [2005] and Casini et al. [2011] for recursive Bayesian

networks (RBNs). The conditional independence assumptions for the hierarchical

framework proposed in this thesis are made in light of this framework, details see

Chapter 3. So here we briefly review the definition of the RBN and the essential

terminologies within this model.

Definition 1.3.7 (The RBN [Williamson and Gabbay, 2005; Casini et al., 2011]).

The RBN is a special class of BN defined over N variables V = {V1, ..., VN} where

some variables can take BNs as values.

Within a RBN [Casini et al., 2011; Williamson and Gabbay, 2005], a variable

Vi ∈ V is a network variable if its values index a set of BNs, denoted by G(Vi).

Otherwise, it is a simple variable. The variables V ′ corresponding to the vertices

in G(Vi) are the direct inferiors of the network variable Vi and Vi is called the

direct superior of V ′.

Note here that G(Vi) and V are disjoint, where V is the set of variables lying

at the deepest level of the RBN so that Vj ∈ V is either a network variable who

has direct inferiors or a simple variable. Let N = {Vj1, · · · , Vjk} ⊆ V denote the

set of network variables in the RBN. Let Dsup(V ′) denote the direct superior of V ′,

Dinf(Vi) denote the direct inferiors of Vi, and NID(Vi) denote the non-inferiors or

descendents of Vi. Each edge is interpreted causally in the RBN.

Definition 1.3.8 (The flattening [Casini et al., 2011; Williamson and Gabbay,

2005]). Given an assignment of values n = {vj1, · · · , vjk} to the network variables

in the RBN, a non-recursive Bayes network called the flattening,denoted by n↓, can

be constructed.

The vertex set of the flattening consists of the vertices associated with simple

variables and the assignment vj1, · · · , vjk.

There is an edge evi,vj in the flattening if Vi is a direct superior or a parent

of Vj in the correponding RBN.

The flattening is defined so that the conditional probabilities and the joint

probability can be formally specified for the RBN.
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M S

(1) p(M), p(S|M)

D R

(2) pm0(D), pm0(R)

D R

(3) pm1(D), pm1(R|D)

Figure 1.1: An example of the RBN given by Casini et al. [2011]: (1) plots the
upper level BN; (2) plots the lower level BN corresponding to M = 0; (3) plots the
lower level BN corresponding to M = 1. The probability pmi(·) = p(·|M = i) for
i ∈ {0, 1}.

Williamson and Gabbay [2005] and Casini et al. [2011] made the following

assumptions to better understand the nested causal structure in the RBN.

ASSUMPTION 1.3.9 (Causal Markov Condition (CMC) [Casini et al., 2011;

Williamson and Gabbay, 2005]). At each level of the RBN, each variable is indepen-

dent of its non-descendants, conditional on its parents.

ASSUMPTION 1.3.10 (Recursive Markov Condition (RMC) [Casini et al., 2011;

Williamson and Gabbay, 2005]). Each variable is probabilistically independent of

those variables that are neither its inferiors nor peers, conditional on its direct su-

periors.

ASSUMPTION 1.3.11 (Recursive Causal Markov Condition (RCMC) [Casini

et al., 2011; Williamson and Gabbay, 2005]). For an RBN, every variable Vi ∈ V
is independent of those variables that are neither its descendants nor its inferiors

conditional on its parents and its direct superiors. So we have

Vi ⊥⊥ NID(Vi)|pa(Vi) ∪Dsup(Vi).

Figure 1.1 shows a simple example of the RBN given by Casini et al. [2011].

This is a two-layer RBN. The upper level of this toy RBN has two variables {M,S},
see Figure 1.1(1), where M is a network variable and S is a simple variable. Assume

M takes value 1 or 0. When M = 0, we have a net m0 in Figure 1.1(2) corresponding

to this value. When M = 1, the net m1 is shown in Figure 1.1(3), where the variable

R is dependent on D. Both D and R are direct inferiors of M , and M is the direct

superior of D and R.

1.4 Thesis outline

So far, in this chapter, we have introduced the background knowledge in reliability,

natural language processing, and statistical causal graphical models, and highlighted

the advantages of using CEGs in reliability analysis.
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The rest of the thesis is organised as follows. Chapter 2 will demonstrate how

to customise a CEG for a system in reliability. This will be followed by designing

domain-specific intervention regimes on CEGs for different types of maintenance.

The back-door theorem by Pearl [2009] reviewed in the previous section will be

adapted for identifying causal effects of these new interventions. Through our cus-

tomised causal algebras we are then able to make predictive inferences about the

effects of a variety of types of domain-specific interventions. Chapter 3 will propose

a hierarchical framework for embedding the causal reasoning which are encoded

within the maintenance logs. This consists of a sequence of text processing algo-

rithms to extract causally related events, which are informed by the NLP literature

we reviewed in Section 1.2, together with the formulation of the casual dependency

within the hierarchical model. Specifically, the framework has a causal network

called the Global Net (GN) at its surface level and a CEG at its deeper level. The

maintenance logs may not provide complete information about a failure or deteri-

orating process and its maintenance procedures. In Chapter 4, we will extend the

formulae for the domain-specific interventions and this hierarchical model to cap-

ture the types of missingness which can appear in the reliability data. Chapter 5

will evaluate the methodology by designing various comparative experiments. In

the last chapter, we will summarise potential extensions of the contribution made

in this thesis.
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Chapter 2

CEGs and Causal Algebras

This chapter will demonstrate how to construct a domain-specific tree to model

the deteriorating processes and the failure processes of a system and emphasise

the advantages of using CEGs in reliability engineering. The semantics of CEGs

are extremely expressive in representing the trajectory of events that lead to a

failure and the causal relations between events. This chapter will also demonstrate

how the CEG is able to accommodate the essential terminologies and concepts in

reliability engineering and to provide an inferential framework for a causal analysis.

More importantly, we will demonstrate how the novel intervention calculi can be

customised for various domain-specific interventions and show the effects of these

domain-specific interventions are identifiable on CEGs. By designing causal algebras

for different interventions, we can make predictive inferences about the effects of

various types of maintenance and so improve the prediction of system failures.

This chapter is organised as follows: Section 2.1 begins with introducing

how to elicit a CEG from an event tree and build a domain-specific causal CEG for

analysing system failure. From Section 2.2 to Section 2.4, we focus on causal alge-

bras on CEGs. Specifically, Section 2.2 briefly reviews the analogous do-operation

on CEGs developed by Thwaites et al. [2010] and Thwaites [2013]. A simple example

is given to demonstrate how to apply this type of intervention for analysing system

failures. In Section 2.3, we define a new type of intervention in light of the “re-

medial work”. This is established by classifying different types of this intervention

and devising the bespoke causal algebras. Section 2.4 discusses another new type of

intervention designed for the preventive maintenance and demonstrates how to im-

port the corresponding manipulations into the idle (unmanipulated) CEG. On the

basis of the discussion in Section 2.3 and Section 2.4, Section 2.5 demonstrates how

to integrate the innovative causal algebras we customised for the domain-specific in-
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terventions to the learning algorithm. In Section 2.6, we give a concise discussion of

modelling the lifetime of the system on the CEG and how the lifetime distributions

are affected by the domain-specific interventions.

2.1 A CEG and its semantics

2.1.1 The construction of a CEG

A CEG is derived from an event tree T = (VT , ET ) with vertex set VT and edge

set ET [Smith and Anderson, 2008; Freeman, 2010; Collazo et al., 2018]. An event

tree is a directed tree that provides an intuitive way for visualising the unfolding of

a process over discrete event space. Here we only consider the tree to be finite. The

parents of a vertex v ∈ VT are the set of vertices in the tree whose emanating edges

are received by v. We denote the set of parents as pa(v) = {v′ ∈ VT : ev′,v ∈ ET }.
The children of v are then defined as the set of vertices that receive the outcoming

edges of v. We denote the set of children as ch(v) = {v′ ∈ VT : ev,v′ ∈ ET }. Let

E(v) = {ev,v′}v′∈ch(v) denote the set of edges emanating from v. The vertex v0 ∈ VT
with an empty parent set is called the root of the tree, while the vertices without

children are called the leaves of the tree.

The path starting from the root vertex and ending in a leaf of the tree is

composed of a sequence of edges in ET . We call such a path the root-to-leaf path.

Let ΛT denote the set of all root-to-leaf paths on the tree, and Eλ ∈ ET denote the

set of edges lying along the root-to-leaf path λ ∈ ΛT . Every root-to-leaf path depicts

a sequence of events with respect to the temporal order of these events. We denote

the set of root-to-leaf paths passing through vertices v, v′ ∈ VT by λ(v, v′) ∈ ΛT ,

and the subpath starting from v and sinking in v′ by µ(v, v′).

Following Smith and Anderson [2008] we shall call the non-leaf nodes of the

event tree situations, denoted by ST ⊂ VT . The set of leafs is VT \ ST . For every

situation v ∈ ST , we can define a floret, denoted by F(v) = (VF(v), EF(v)). This is

a subtree of the event tree T with vertex set consisting of v and its child vertices

VF(v) = {v} ∪ ch(v) and edge set connecting v and its children EF(v) = {ev,v′ : v′ ∈
ch(v), ev,v′ ∈ ET }. Let F(ST ) denote the set of florets that can be defined on the

event tree.

Let π(·) denote the path related probability so that π(λ) represents the prob-

ability of a unit passing along λ ∈ ΛT and π(v′|v) represents the probability of a

unit arrives v′ ∈ VT given its current position at v ∈ VT . The primitive prob-

ability vector of v ∈ ST is defined to be θv = (θv,v′)v′∈ch(v) = (θe)e∈E(v) where

θv,v′ = π(v′|v) can be thought of as the (conditional) transition probability along
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edge ev,v′ . Every θv satisfies
∑

v′∈ch(v) θv,v′ = 1 and θv,v′ ∈ (0, 1) for all v ∈ ST .

Let θT = (θv)v∈ST . Note the tree and the set of primitive probabilities fully specify

the probability model expressed by the tree. The pair (T ,θT ) is a probability

tree [Cowell et al., 2014; Collazo et al., 2018] associated with T . Such a tree can

embody the asymmetric unfolding of the process by removing the edges whose asso-

ciated events has probability zero. Note that the probability of a unit passing along

λ ∈ ΛT can be factorised as π(λ) =
∏
e∈Eλ θe.

The probability tree can then be embellished into a staged tree [Smith and

Anderson, 2008; Görgen and Smith, 2016]. The first step to construct a staged

tree is partitioning the situation set ST . A stage is a set of situations so that two

situations vi, vj ∈ ST are in the same stage if and only if F(vi) and F(vj) have the

same topology, i.e. there exists a one-to-one mapping ϕij between EF(vi) and EF(vj)

so that ϕij(evi,vk) = evj ,vl when evi,vk and evj ,vl represent the same event [Barclay

et al., 2013], and θvi = θvj up to a permutation [Collazo et al., 2018] so that when

the emanating edge evi,vk represents the same event as evj ,vl , θvi,vk = θvj ,vl . Let

UT = {u0, ..., unu} denote the set of stages of the situations on T , where nu ∈ N+.

Having the stages, we can colour the tree accordingly. For situations belonging to

the same stage, we assign the same unique colour. For edges evi,vk , evj ,vl ∈ ET and

vi, vj ∈ ur ∈ UT , if they have the same label and θvi,vk = θvj ,vl , then they have the

same unique colour. The staged tree has the same set of vertices and edges as the

event tree but are coloured according to UT .

The CEG is derived from the staged tree by further partitioning the stage

set and transforming the graph accordingly. For each situation v ∈ ST , let T (v)

denote a subtree of T that roots at v and sinks in the leaves of T , i.e. ΛT (v) =

{µ(v, v′)}v′∈VT \ST . We say situations vi, vj are in the same position if the subtrees

T (vi) and T (vj) are isomorphic, which means these two subtrees have the same

structure, i.e. VT (vi) = VT (vj) and ET (vi) = ET (vj), and colouring. This gives a finer

partition of situations than stages. If vi, vj are in the same position, then they are

in the same stage. However, vi, vj being in the same stage cannot imply that they

are in the same position. Let WT = {w0, ..., wnw} denote the collection of positions.

Then the definition of the CEG is formalised as following.

Definition 2.1.1. A Chain Event Graph (CEG) (C,θC) is a probabilistic graph-

ical model with topology C = (VC , EC) and primitive probability vectors θC.

The sink node of the CEG, denoted by w∞, is elicited from the underlying

staged tree by merging all the leaves of it. The vertex set is given by the sink node

and the set of positions VC = W
⋃
w∞. Every position inherits its colour from the

staged tree.
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For any two w,w′ ∈ VC, creating an edge for every v ∈ w and the child node

v′ ∈ ch(v) ∈ VT which belongs to the position w′, labelling it by the same value

as ev,v′ ∈ ET and inheriting the colour and the transition probability θv,v′ [Barclay

et al., 2015].

2.1.2 The causal CEGs for modelling and analysing system failure

In reliability engineering, the central task is to predict the probability of failure and

trace the reason of the failure to prevent it reoccurring. Therefore we aim to depict

the trajectories of equipment’s service life by an event tree and derive a CEG from

this event tree.

For a system reliability analysis, the event tree portrays the trajectory of

the events that a system would have experienced before maintenance. So it models

the failure processes and deteriorating processes of the system. The discrete process

being modelled here is represented by a sequence of events which describe how

the system gradually deteriorates and eventually fails or operates in a degraded

condition. A default order of this process usually starts with a cause, followed

by symptoms or faults and terminates with a failure or a worn-out status. The

symptoms or faults can be split into the primary fault, the secondary fault [Bedford

et al., 2001] and so on, depending on the system. The event tree for analysing

system failures is constructed with respect to this order so that the edges emanating

from the root node are usually labelled by root causes. In this way, the events are

chronologically ordered on the tree.

In causal analysis, a cause is defined to happen before its effects. Then by

asserting the order of events being causal in the idle system, we can further explore

putative causal hypotheses on the CEG. We explain the role a CEG plays for a

causal analysis later in Section 2.2.

Following this order, the last event modelled on the event tree is either a

failure or an operational condition. In other words, the floret F(v) satisfying ch(v) ⊆
VT \ST corresponds to a failure indicator. Then the leaves of the event tree represent

the status of the system just before maintenance. Under this setting, every root-to-

leaf path of the tree either sinks in a vertex representing a failed status or sinks in a

vertex representing an operational status. Accordingly, we can extend the structure

of a CEG defined in Definition 2.1.1 to better fit a machine’s failure data. Instead

of having a single sink node w∞, we replace it by two nodes: a failure sink node

wf∞ and a working sink node wn∞. All the leaves in the staged tree representing a

failure status are then merged into wf∞, while the rest of the leaves are then merged

into wn∞. The root-to-sink path now refers to the path that starts from the root node
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w0 ∈ W and ends at wf∞ or wn∞. Depending on whether a path λ ∈ ΛC terminates

at wf∞ or wn∞, we accordingly classify the set of root-to-sink paths into two disjoint

subsets. Let Wλ denote the set of nodes traversed by the root-to-sink path λ. If

a path λ ∈ ΛC satisfies wf∞ ∈ Wλ, i.e. wf∞ is traversed by λ, then it is called a

failure path and classified into λ ∈ ΛfC . If a path λ ∈ ΛC satisfies wn∞ ∈ Wλ, then

it is called a deteriorating path and classified into λ ∈ ΛnC . Then ΛfC ∪ ΛnC = ΛC

and ΛfC ∩ ΛnC = ∅. A failure path portrays a failure process of equipment while a

deteriorating path portrays a deteriorating process of equipment.

We next introduce a new concept into the CEGs – the d-events. A d-event

is the event that a particular unit in the population passes along a particular edge

on the tree. For example, if a CEG is constructed for modelling different types of

failures of a conservator, see Figure 2.3, then the population under study is a set

of conservators. Let a d-event be oil leak and alarm due to varying temperature

or breather defect. Every operational conservator may experience this d-event. For

any operational conservator under study, if this d-event happens, then the path

representing the deteriorating or failure process of the conservator passes along the

edge ew1,w3 associated with this d-event. Let XC denote the set of unique d-events

labelled on EC . For any x ∈ XC , let E(x) ⊆ EC denote the set of edges associated

with x. This means once the d-event x is observed, the unit must traverse an

edge e ∈ E(x). As for which edge in E(x) is traversed, it depends on the current

position of this unit. We represent the set of receiving vertices of the edges in E(x)

by W (x) ⊆ VC . Given an edge e ∈ EC , there must be a d-event associated with

it. Denote this by x(e) ∈ XC . This d-event is unique for every edge. If w is the

receiving node of e, then w is also associated with x(e). However, in a CEG there

could be more than one edge pointing to w, so there could be multiple d-events

associated to w. Let X(w) denote the set of d-events associated with w so that

X(w) = {x(ew′,w)}w′∈pa(w). The d-events can also be defined on the event tree in

the same way. Let XT denote the set of d-events that can be discovered on T .

Then XT = {x(e)}e∈ET . The concept of d-event is essential for constructing the

hierarchical causal model, we will explain this later in Chapter 3.
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Figure 2.1: The event tree for the conservator system. This structure is elicited
from engineers reports with assumptions.

Example 2. Figure 2.1 is an example of the event tree constructed for a conser-

vator system. This models the failure processes and the deteriorating processes that

can happen within the conservator system. The events are chronologically ordered

on the tree. In particular, on each root-to-leaf path, the initial event is the root

cause, which is followed by the symptom and the defect, and the last event is ei-

ther a failure or an operational condition. There are two root causes represented on
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the tree: {temperature/breather, pipe/seal}. So this event tree portrays failures or

degradation either caused by the temperature change or breather defect, or caused

by the faults in pipes or seals. The floret in Figure 2.1 associated with root causes

is F(v0). Three symptoms {oil leak and active alarm, oil leak or active alarm,no

oil leak and no alarm} are modelled by the event tree. Florets F(v1),F(v2) are

associated with symptoms. Here, to give an example of asymmetric processes, we

assume that a leakage or alarming is rendered to be unavoidable as long as tem-

perature changes. Then p(“no oil leak and no alarm”|µ(v0, v1)) = 0, i.e. F(v1)

only represents two categories: oil leak and active alarm, oil leak or active alarm.

This context-specific conditional probability can be translated onto the event tree.

Note however that to represent such information using BNs we need to first re-

construct the random variables, e.g. splitting the root cause variable with two levels

{temperature/breather, pipe/seal} into an indicator for temperature/breather and an

indicator for pipe/seal.

Whether there is a defect in the sight glass or the buchholz conditional on

different causes and symptoms are represented by the florets F(v3), ...,F(v7). The

florets F(v8), · · · ,F(v17) are associated with failure indicators.

To elicit a staged tree, we make the following assumptions on the context-

specific conditional independence. We assume:

1. whether the equipment fails or not depends only on the root causes;

2. whether there is a sight glass or buchholz defect is independent of the root

causes conditional on the symptoms.

Under these two assumptions we are able to define the stages for the underly-

ing event tree. Note that these assumptions are made to give a simple demonstration

of the stages and positions. More realistic assumptions are required for modelling

real data. The root node itself is a stage, denoted by u0 = {v0}. No hypotheses

have been made about the relationship between symptoms and root causes. Then

we have u1 = {v1} and u2 = {v2}. Following the second assumption, v3 and v5

are in the same stage, while v4 and v6 are in the same stage. Let u3 = {v3, v5},
u4 = {v4, v6} and u5 = {v7}. The first assumption implies that u6 = {v8, · · · , v11}
and u7 = {v12, · · · , v17}. Thus the set of stages on this tree is UT = {u0, u1, · · · , u7}.
Figure 2.2 depicts this hypothesised staged tree.
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Figure 2.2: The staged tree elicited for the conservator system. Vertices with the
same colour are in the same stage. Different stages are coloured differently. Each of
the uncoloured vertex constitutes a single stage.
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Figure 2.3: The CEG transformed from the staged tree in Figure 2.2

This staged tree can be transformed into a CEG by the method described

above, see Figure 2.3. This gives 10 positions exclusive of the sink nodes. If this

CEG is ordinal [Barclay et al., 2014], then w3, ..., w7 are ranked from top to bottom

so that p(defect in sight glass or buchholz |µ(w0, w)) for w ∈ {w3, · · · , w7} is ranked

in descending order. So the edge emanating from w3 is predicted to have the highest

conditional probability of observing a sight glass or buchholz defect.

The set of d-events for the CEG in Figure 2.3 is XC = {fail, not fail, temper-

ature/breather, pipe/seal, oil leak and active alarm, oil leak or active alarm, no oil

leak and no alarm, s/b defect, no s/b defect}. For simplicity, we can annotate the

d-event “fail” by xf,1, “not fail” by xf,0, “temperature change” by xc,1, “pipe/seal”

by xc,2, “oil leak and active alarm” by xs,1, “oil leak or active alarm” by xs,2, “no

oil leak and no alarm” by xs,3, “s/b defect” by xd,1, and “no s/b defect” by xd,0.

Then XC = {xf,1, xf,0, xc,1, xc,2, xs,1, xs,2, xs,3, xd,1, xd,0}. If we observe both oil leak

and alarming, then we can find the associated edges E(xs,1) = {ew1,w3 , ew2,w4} and

the associated positions W (xs,1) = {w3, w4}.
Note that the CEG introduced here is acyclic. It represents the deteriorating

processes and the failure processes which might happen before performing any main-

tenance. But the dynamic CEG (DCEG) established by Barclay et al. [2015] and

the reduced CEG (RDCEG) proposed by Shenvi and Smith [2018] for modelling the

dynamic process can be cyclic. We can model a dynamic process so that the deterio-

rating/failure process and the maintenance take place in turns with finite number of
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times by introducing new nodes to the CEG [Freeman and Smith, 2011b], for example

the seal failed for the fifth time. In this case, the CEG remains acyclic, although the

topology of it becomes bigger. However, if like a time homogeneous Markov process

an event keep happening indefinitely, then provided we have a Markov assumption

we can depict this too with a cycle [Barclay et al., 2015; Collazo and P.G., 2017].

We will discuss this in the final chapter of this thesis.

2.1.3 A conjugate analysis on a CEG

In a Bayesian setting, consider to estimate for a random sample of identically dis-

tributed units – units within a given population are modelled on the same CEG.

Conjugate inference is available for learning the CEG [Barclay et al., 2013; Collazo

et al., 2018], where Dirichlet distribution is usually used as the prior distribution

for each stage vector θu = (θu1, ..., θumu) and u ∈ UT . Let

θu ∼ Dirichlet(αu), (2.1.1)

where the concentration parameters are αu = (αu1, · · · , αumu) and αuj > 0 for

j ∈ {1, · · · ,mu}. The probability density function is:

f(θu) =

∏
j∈{1,··· ,mu} Γ(αuj)

Γ(
∑

j∈{1,··· ,mu} αuj)

∏
j∈{1,··· ,mu}

θ
αuj
uj , (2.1.2)

where Γ(·) is the Gamma function.

Then we write the prior over the staged tree as

f(θ|T ) =
∏
u∈UT

Γ(
∑mu

j=1 αuj)∏mu
j=1 Γ(αuj)

mu∏
j=1

θ
αuj
uj . (2.1.3)

Let αu =
∑mu

j=1 αuj so that the equivalent sample size is α =
∑

u∈UT
∑mu

j=1 αuj .

Given observations D,the posterior can be computed in a closed form due to

Dirichlet-multinomial conjugacy.

f(θ|D, T ) =
∏
u∈UC

f(θu|D, T ) =
∏
u∈UT

Γ(
∑mu

j=1 αuj+)∏mu
j=1 Γ(αuj+)

mu∏
j=1

θ
αuj+
uj , (2.1.4)

where αu+ = αu + nu is the updated parameter vector.
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2.2 Singular intervention

Given a causal CEG, we can derive causal hypotheses from the structure and es-

timate causal effects under different hypothesised underlying causal mechanisms.

The semantics of CEG represent causal hypotheses in an analogous fashion to the

semantics of a causal BN [Thwaites et al., 2010; Collazo et al., 2018]. So we can use

this graph to estimate the effects of different types of interventions by designing ex-

periments and collecting the underlying data. Since events are causally ordered on

the tree, we can explore the effect of an intervention on the events which lie down-

stream of the controlled events along the root-to-sink paths. To show this explicitly,

we begin with reviewing an external intervention on the CEG first established by

Thwaites et al. [2010] and Thwaites [2013]. This is analogous to Pearl’s do-operator

established for BNs [Pearl, 1993, 2009].

Since we defined the new concept “d-events”, here we demonstrate this causal

algebra in terms of d-events. Suppose there is a manipulation on a d-event x ∈ XC
so that x is forced to be observed. Importing this external intervention into the

CEG is equivalent to manipulating the associated edges E(x) ⊆ EC so that θe = 1

for e ∈ E(x) and θe′ = 0 for e′ ∈ E(pa(W (x))) \ E(x). This is called the singular

manipulation [Thwaites, 2013; Thwaites et al., 2010] on the CEG. In other words,

the edges representing the d-event x are forced to be passed along for any unit

arriving at w ∈ pa(W (x)) while the other edges emanating from the same vertex

set as E(x) are assigned probability 0. This is analogous to the atomic intervention

do(X = x) on the BN that forces a variable X to take value x.

Let Λx denote the set of root-to-sink paths passing along the edges represent-

ing x. We call this set of paths the manipulated paths. Then Λx = Λ(E(x)) =⋃
e∈E(x) Λ(e), where Λ(e) represents the collection of root-to-sink paths passing along

e ⊆ EC . A manipulated CEG, denoted by ĈΛx , can be constructed by removing

the root-to-sink paths which are not in Λx, i.e. ΛC \ Λx. Let π̂Λx denote the

post-intervention path related probability given the manipulation on Λx. Then for

λ ∈ Λx,

π̂Λx(wj |wi) =

∑
λ∈Λx

π(λ,Λ(ewi,wj ))∑
λ∈Λx

π(λ,Λ(wi))
. (2.2.1)

If we are interested in the effect of the singular intervention on the d-event

y, then on the CEG the associated path set is Λy = Λ(E(y)) =
⋃
e∈E(y) Λ(e). Let

π(Λy||Λx) denote the probability of a unit traversing any path in Λy given a singular

manipulation on Λx. Pearl [2009] designed a graphical test called the back-door

criterion to check whether observing the variable Z is sufficient for identifying

29



the causal effects of do(X = x) on Y = y. Thwaites et al. [2010] and Thwaites

[2013] extended this theorem onto the CEG to find the back-door partition Λz

which partitions ΛC that is sufficient to identify the causal effects of the singular

intervention π(Λy||Λx), see below.

Definition 2.2.1. The partition {Λz} of ΛC is a back-door partition if

π̂Λx(Λy) = π(Λy||Λx) =
∑
z

π(Λy|Λx,Λz)π(Λz), (2.2.2)

where

π̂Λx(Λy|Λz) = π(Λy|Λx,Λz), (2.2.3)

π̂Λx(Λz) = π(Λz). (2.2.4)

Theorem 2.2.2. For any w ∈ pa(W (x)), and ew,w∗ ∈ E(x), if

π(Λz|Λ(w)) = π(Λz|Λ(ew,w∗)) (2.2.5)

π(Λy|Λx,Λz) = π(Λy|Λ(w),Λx,Λz) = π(Λy|Λ(ew,w∗),Λz) (2.2.6)

holds for every element of {Λz}, then {Λz} is the back-door partition.

As demonstrated by Thwaites [2013], equation (2.2.5) is a direct result of

the analogue of the conditional independence property in BNs: Z ⊥⊥ X|pa(X).

Equation (2.2.6) is a direct result of the analogue of Y ⊥⊥ pa(X)|(X,Z).
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Figure 2.4: The manipulated CEG for Example 3.

Example 3. We give an example of a singular manipulation on the CEG in Figure

2.3 for a conservator system. If we are only interested in the failure after seeing oil
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leak and alarming, and there is some way to intervene the conservator system for

this purpose, then equivalently we force the d-event xs,1 to happen. The associated

edge which is forced to be traversed by the unit with probability 1 after this inter-

vention is E(xs,1) = {ew1,w3 , ew2,w4}. For the purpose of this intervention alone,

the probability of traversing either ew1,w5, or ew2,w6, or ew2,w7, is assumed to be 0.

The manipulated paths are Λxs,1. By removing ΛC \ Λxs,1 from the idle CEG, we

construct the manipulated CEG ĈΛxs,1 , see Figure 2.4.

If we are interested in how system failure would be affected by this inter-

vention, then we need to calculate π(Λxf,1 ||Λxs,1), where the d-event xf,1 indicates

a failure. The choice of the back-door partition {Λz} is flexible. In this exam-

ple, we partition ΛC by letting {Λz1 ,Λz2}, where Λz1 = Λ(w3) ∪ Λ(w5), Λz2 =

Λ(w4) ∪ Λ(w6) ∪ Λ(w7). Note that Λ(w5),Λ(w6),Λ(w7) are not included in the ma-

nipulated CEG. Since we estimate the effects of this intervention from the observable

data, which are not the intervened data, {z} should partition the whole dataset and

{Λz} should partition ΛC. Therefore although Λ(w5),Λ(w6),Λ(w7) are not part of

the manipulated CEG, these paths are still be included in {Λz}.
For Λz1, we have

π(Λz1 |Λ(w1)) = π(Λ(w3),Λ(w5)|Λ(w1)) = 1, (2.2.7)

and

π(Λz1 |Λ(ew1,w3)) = π(Λ(w3),Λ(w5)|Λ(ew1,w3)) = π(Λ(w3)|Λ(ew1,w3)) = 1, (2.2.8)

so

π(Λz1 |Λ(w1) = π(Λz1 |Λ(ew1,w3)). (2.2.9)

Similarly, we can check for Λz2.

π(Λz2 |Λ(w2)) = π(Λ(w4),Λ(w6),Λ(w7)|Λ(w2)) = 1, (2.2.10)

π(Λz2 |Λ(ew2,w4)) = π(Λ(w4),Λ(w6),Λ(w7)|Λ(ew2,w4)) = π(Λ(w4)|Λ(ew2,w4)),

(2.2.11)

therefore,

π(Λz2 |Λ(w2)) = π(Λz2 |Λ(ew2,w4)). (2.2.12)

Thus, the criterion stated in equation (2.2.5) is satisfied for both Λz1 and Λz2. From
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the graph, we can deduce that

π(Λxf,1 |Λxs,1 ,Λz1) = π(Λ(wf∞)|Λ(w1),Λxs,1 ,Λ(w3))

= π(Λxf,1 |Λ(ew0,w3),Λ(w3)),
(2.2.13)

and

π(Λxf,1 |Λxs,1 ,Λz2) = π(Λ(wf∞)|Λ(w2),Λxs,1 ,Λ(w4))

= π(Λxf,1 |Λ(ew2,w4),Λ(w3)).
(2.2.14)

So the second criterion in equation (2.2.6) is also satisfied. Therefore we can eval-

uate π(Λy||Λx) using the partition we defined.

2.3 Remedial intervention

Now we focus on formulating the domain-specific interventions on CEGs. The causal

algebras designed for the new interventions encapsulate the domain-specific concepts

in system engineering.

2.3.1 Remedy vs treatment

In a causal inferential framework, for either a graphical model or a functional causal

model [Pearl, 2009; Dawid, 2000; Pearl, 1995], the causality is tied to an action for

each unit in the population. This action is referred as treatment [Rubin, 2003].

This term stems from medical science and has been adopted in the literature of

causality. The unit being treated can be a person, or other objects. In engineering

reports, many use the term “remedial work” when recording the maintenance for

some defects or failures. And “remedy” is a more familiar terminology in reliability

engineering than “treatment”. Similarly to a treatment, a remedy is treated as an

intervention here and we are interested in evaluating its effects.

The unit upon which the remedy operates is the machine or the subsystem of

the machine. There is no heterogeneity in the units themselves. So here we assume

no covariate is added to the model which determines whether or not a remedial act

takes place. The engineer decides a remedial act when he has observed the failure.

So the unit has been failed before the remedy takes place. However, this is not the

case for a treatment. For example, the medicine is given to a patient when some

symptoms has appeared. This is to alleviate the symptoms and avoid death. The

treatment is not given to a dead patient who has been censored in the study.

The remedy depends on the observed failure and it strives to find and fix
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the root cause of the observed failure in a process driven by a mechanism which

is well understood [Bedford et al., 2001]. Unlike with the human body, where we

are unsure e.g. how a cancer comes about, here with the constructed system we

understand well how and where each failure might happen. The remedy could be a

single act or a sequence of actions. It normally forms a part of the data we consider

as a record of what has been done, which is usually in the form of defect reports or

failure reports. But it can also be missing. Whatever the remedial acts are, they all

intervene on the root cause of the failure. There is no mediating variable between

any pair of remedial acts and there is no confounding variable. In terms of the

effects of the remedy, the remedy perfectly corrects the underlying root cause, that

has happened prior to the remedy, and restores the faulty system to the status that

is the same as a completely new system. From the direct effect of the intervention

we can trace and deduce the underlying root cause.

By contrast, sequential treatments are regarded as a sequence of decisions.

Previous work augmented the DAG to an influence diagram by adding a regime

indicator [Dawid, 2002; Didelez et al., 2012; Dawid and Didelez, 2005] to each in-

tervened variable. Each regime indicator is a decision variable and it does not have

marginal distribution. The exact regime imposed on the system maybe conditional

on some covariates or mediating variables. The effect of the treatment conditional

on these covariates may vary.

In light of the concept of the remedy, we define a novel intervention cus-

tomised for reliability engineering, called the remedial intervention. This type

of external intervention is inspired by the concept of remedies and aims to prevent

the same defect or failure reoccurring by exploring the root cause of a fault that has

occurred and correcting it [Yu et al., 2020]. Importing the remedial intervention into

the idle CEG and analysing its effects from the CEG semantics provide an infer-

ential framework to improve the prediction of future failures. We devise novel and

bespoke causal algebras through the semantics of CEGs which capture the features

of different types of remedies.

2.3.2 Three types of remedial intervention

Next, we address how a system would response to an intervention as suggested by

Pearl [1993]. However, this is different from the one considered by Pearl [1993]

because of the particular demands of this setting. We explain this in detail below.

Consider a repairable system, if after the maintenance the status of the sys-

tem is returned to the status the same as a new one and the system has the same

failure rate as a new system, then the maintenance is perfect and the status after
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maintenance is called as good as new (AGAN) [Iung et al., 2005; Borgia et al.,

2009; Bedford et al., 2001]. If the status of the system returns to an operational

condition just prior to failure, then the maintenance is minimal and the status

after maintenance is called as bad as old (ABAO) [Iung et al., 2005; Borgia et al.,

2009]. If the status of the system after maintenance is somewhere between ABAO

and AGAN, then the maintenance is imperfect [Iung et al., 2005]. In light of these

classifications and the remedial work recorded in the engineers reports, we carefully

define three types of remedies for the remedial intervention.

Before formalising the concepts of the remedial intervention, we firstly make

the following assumptions.

ASSUMPTION 2.3.1. The underlying CEG or the event tree is faithfully con-

structed with respect to the domain knowledge of a particular system so that every

failure process or deteriorating process that may happen in this system can be identi-

fied on the tree and every root cause and symptom are well-captured by the semantics

of the tree.

ASSUMPTION 2.3.2. The system modelled by the CEG is repairable, and the

AGAN status is attained when the root cause of the failure is completely fixed.

For illustrative purpose, we augment the failure path to a new graphical

framework which integrates the failure process with the process of maintenance and

it is used to demonstrate the differences between various scenarios of the remedial

intervention. We call such a graph the status monitor.

Definition 2.3.3. The status monitor is a coloured cyclic tree-graph Υ = (VΥ, EΥ).

• The edge set EΥ = {Ef , Er} consists of the solid directed edges Ef and the

dashed directed edges Er.

• The directed path connected by the directed solid edges is the failure path.

• The directed path connected by the directed dashed edges is the recovery path;

the edges associated with unobserved events are coloured in red.

• For a vertex, if the outgoing edge is e ∈ Ef and the incoming edge is e ∈ Er,
then it is the AGAN vertex v0 representing an AGAN status of the system;

if the outgoing edge is e ∈ Ef and the incoming edge is e ∈ Er, then it is the

failed vertex vf representing a failed status of the system; the other vertices

are the interior nodes of either the failure path or the recovery path. The status

represented on the vertex degrades along the failure path.
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Figure 2.5: The status monitors for the three types of remedies.

The failure path in the status monitor can be any failure path defined on

the event tree or the CEG. The recovery path is absent in the CEG. Unlike the

augmented DAG or the influence diagram [Pearl, 1993, 2009; Dawid, 2000] which

adds a node corresponding to the intervention (regime) indicator to the graph rep-

resenting the idle system, the status monitor is not designed to be integrated to the

idle CEG and there is no conditional probability assigned to any edge or node of the

status monitor. If we are interested in the effects of a remedy on the status of the

failed system, we can use the recovery path as a reference. So the status monitor

only provides an intuitive way for distinguishing different remedies.

We define a remedy to be perfect if the root cause of the failure is identified

and successfully fixed by the observed maintenance so that the post-intervention

status of the component is AGAN [Yu et al., 2020; Yu and Smith, 2021c] by As-

sumption 2.3.2. Figure 2.5a shows a status monitor under the perfect remedy. Here

we simplify the failure path by using only two edges: the initial one represents a

root cause, the edge following it represents a symptom. The recovery path is fully

observed in this scenario. The observed maintenance returns a failed condition to

full working order.

If the observed maintenance that aims to fix a root cause only returns the

status of the failed system to somewhere between failure and AGAN, then we define

it as the imperfect remedy. The observed maintenance only fixed secondary or

intermediate faults [Bedford et al., 2001]. A graphical interpretation of the status

change under this maintenance is shown in Figure 2.5b. The observed recovery path

no longer terminates in the AGAN vertex but in the interior node of the failure path.

Then to fully restore or remedy the system, in addition to the observed maintenance,

more actions are required to be taken. The subsequent actions are unseen which

therefore give rise to the uncertainty associated with the imperfect remedy [Yu and

Smith, 2021c]. The purpose of implementing these subsequent actions is obvious:

perfectly fixing the root cause of the observed failure. So there is a recovery path

associated with these subsequent but unseen actions which rooting from the sink

node of the observed recovery path and terminating in the root node of the failure

path so that the system is AGAN after these actions.
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If no maintenance is recorded in maintenance logs, then this leads to an

uncertain remedy. We do not adopt the concept of the minimal maintenance

because no maintenance is observed in this scenario. The whole maintenance process

is unknown means there is no observed recovery path, see Figure 2.5c. However,

for remedial purpose, to restore the failed equipment, some maintenance should

be scheduled in the near future although this is not possible to retrieve from the

maintenance logs provided to us. So we depict the red dashed path from the failed

vertex to the AGAN vertex to represent the unobserved recovery process.

The events associated with maintenance can be extracted from engineers re-

ports using the natural language processing algorithms proposed in the next chapter.

Given these events, we can then deduce whether the root cause is fixed so that we

can classify the type of the remedial intervention accordingly. Let R denote a vari-

able with sample space UR = {r0, r1, · · · , rnR}. Each state ri ∈ UR represents an

observable maintenance event. Let r0 represent the special event “no observation”.

We also define a variable A with state space A = {a1, · · · , anA} to denote the un-

seen maintenance. Assume that A is a known and finite set. Each state ai ∈ A can

represent a single action or a sequence of actions. Both the observed maintenance

events and the unobserved actions are remedial acts because they are performed to

remedy the root causes.

Here we will assume that the root causes of a specific defect or failure may

not be unique and could be multiple, but are well-defined. Note that a remedial

intervention allows multiple root causes to be corrected simultaneously. Therefore

in causal jargon we are considering here interventions that need not be singular

[Thwaites, 2013].

To express the effects of different types of the remedial intervention, we next

introduce some new definitions and notations [Yu and Smith, 2021c].

Definition 2.3.4. A status indicator δ is a binary variable so that:

δ =

1, if the status is AGAN after maintenance,

0, otherwise.
(2.3.1)

For a CEG representing a repairable system, there are a set of edges labelled

by possible root causes. Let E∆ = {el1 , · · · , eln} denote such edges. Given a main-

tenance event, we are interested in which root causes are fixed by it and which edges

represent these fixed root causes. So we give the following definition.

Definition 2.3.5. For any edge representing a root cause eli ∈ E∆, the interven-

tion indicator of it, denoted by Ieli , is a binary variable indicating whether the
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Figure 2.6: Demonstration of the external force of the remedial intervention. The
variables lying in the black box are outside of the idle CEG.

labelled root cause is fixed by the observed maintenance events:

Ieli =

1, if the root cause represented on eli is fixed by the maintenance,

0, otherwise.

(2.3.2)

Then we can define a vector of intervention indicators over E∆: I = (Iel1 , · · · , Ieln ) =

IE∆ . We can now express this vector in terms of positions:

I = (Iwj1 , · · · , Iwjn ), (2.3.3)

where Iwjk = IE(wjk ) = (Iewjk 1 , · · · , Iewjkm). Each Iwjk is defined over the emanating

edges of wjk , i.e. E(wjk) = {ewjk1, · · · , ewjkm} and E(wjk) ⊆ E∆. Let W∆ =

{wj1 , · · · , wjn} denote the set of positions whose emanating edges are labelled by

various root causes.

When there is no remedy, I = 0. This refers to the observational or idle

regime when there is no intervention. In this case, the status indicator δ is undefined.

When a remedy is performed, we have an intervened regime so that I 6= 0.

There is at least one edge e ∈ E∆ so that Ie = 1 and there is at least one position

w ∈W∆ so that Iw 6= 0.

Unlike the regime indicator [Dawid, 2002] which is associated with a deci-

sion variable and has no marginal distribution, the intervention indicator and the

status indicator have a well-defined conditional probability distribution. Given an

observation r ∈ UR and the failure process, we are interested in inferring the value

of the intervention indicator vector from it. The failure process can be represented

by a failure path λ ∈ ΛfC on the CEG. This means the intervention indicators can
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be inferred from:

p(I|r, λ) =
∑

δ∈{0,1}

p(I, δ|r, λ)

= p(I|δ = 1, λ, r)p(δ = 1|r, λ) + p(I|δ = 0, λ, r)p(δ = 0|r, λ).

(2.3.4)

ASSUMPTION 2.3.6. The status indicator is independent of the failure process

given the observed maintenance.

Following this assumption, we can write

p(δ = 1|r, λ) = p(δ = 1|r) (2.3.5)

and

p(δ = 0|r, λ) = p(δ = 0|r). (2.3.6)

In a Bayesian setting, this is a posterior of δ given the observation r. To estimate

the posterior, we can define a prior p(δ) for δ.

Now we go back to equation (2.3.4) with a focus on p(I|δ, λ, r). We make

the following assumptions for the sequential remedial acts (r, a) that constitute a

remedy of an observed failure.

ASSUMPTION 2.3.7. There are no mediating variables between any two remedial

acts that are conducted for the same failure.

ASSUMPTION 2.3.8. Given a perfect remedy, the observed maintenance pro-

vides sufficient information about the root causes of the observed failure. Given an

imperfect remedy or an uncertain remedy, the observed maintenance r and the un-

observed maintenance a provide sufficient information about the root causes of the

failure.

Following this assumption, we have

I ⊥⊥ λ|(R,A). (2.3.7)

When δ = 1, the remedy is perfect. The observed maintenance r is perfect if

and only if the root causes are correctly identified and fixed. Therefore, in this case,

the value of I is known and we denote it by I(r). So the probability p(I|δ = 1, λ, r)

is deterministic.

p(I|δ = 1, λ, r) = p(I|r, δ = 1) =

1, I = I(r),

0, I 6= I(r).
(2.3.8)
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When δ = 0, the remedy is imperfect or uncertain and there will be uncer-

tainty associated with the unobserved additional remedial acts. We make one more

assumption about the unobserved maintenance A.

ASSUMPTION 2.3.9. The unseen additional maintenance depends only on the

observed failure process and the observed maintenance.

Thus,

A ⊥⊥ δ|(λ,R). (2.3.9)

Given assumptions 2.3.7-2.3.9, we can write

p(I|δ = 0, λ, r) =
∑
a∈A

p(I|r, a, λ, δ = 0)p(a|r, λ, δ = 0)

=
∑
a∈A

p(I|r, a)p(a|r, λ).
(2.3.10)

Equation (2.3.4) can now be simplified as:

p(I|r, λ) = p(I|r)p(δ = 1|r) +
∑
a∈A

p(I|r, a)p(a|r, λ)p(δ = 0|r). (2.3.11)

Based on all the assumptions made in this section, we draw a DAG repre-

senting the relationships between the variables we mentioned above, see Figure 2.6.

Note that λ is read from the CEG while the other variables lying in the plate are

external to the CEG.

2.3.3 Manipulations on CEGs

With the essential domain-specific concepts, such as root causes and remedial work,

and the definitions of different remedies, we next accommodate all this information

into the causal analysis on CEGs and design the bespoke causal algebras for the

remedial intervention corresponding to the remedies. In this section, we define a

map transforming the idle system to the manipulated system given the intervention

indicator vector I.

The objective behind correcting a root cause is to prevent the fault or failure

caused by it reoccurring. This implies that after a remedial intervention, the proba-

bility distribution over root causes needs to be transformed from what it was in the

idle system. In particular, if the maintenance remedied a root cause, then it is less

likely that the next defect is still caused by it. Therefore, when importing this idea

into the idle CEG system, this equivalently forces the probability distributions over
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some of the florets representing root causes to be reassigned. We call such manipu-

lations the stochastic manipulations on the CEG. We give a formal definition of

this type of manipulation below.

Note that not all florets representing root causes are affected if the asym-

metric structure exists for florets representing root causes. Let w∗ denote the set of

vertices whose corresponding florets F(w∗) are assigned new probability distribu-

tions under a given remedial intervention. The intervened positions w∗ can be

formally identified by the following rule. We have defined W∆ = {wk1 , · · · , wkm}
to denote the set of positions whose florets represent root causes. For w ∈ W∆, if

Iw = {Iew,w′}w′∈ch(w) and there exists at least one edge emanating from w satisfying

Iew,w′ = 1, then w ∈ w∗.
The set of root-to-sink paths on the CEG passing through any position in

the intervened positions w ∈ w∗ are the manipulated paths. We denote this

set of paths Λ(w∗). The probability of traversing any of the manipulated paths

λ ∈ Λ(w∗) is manipulated under the remedial intervention. We will specify the post-

intervention path probabilities after giving the formal definition of the stochastic

manipulation.

Definition 2.3.10. A manipulation on a CEG C is stochastic if there exists a set

of positions w∗ ⊆W such that,

1. for each w ∈ w∗, there is a well-defined map z updating the primitive proba-

bilities vector θw = (θw,w′)w′∈ch(w)

z : (θw, Iw) 7→ θ̂w, (2.3.12)

where θ̂w = (θ̂w,w′)w′∈ch(w) denotes the post-intervention primitive probabilities

vector,

2. the new primitive probabilities vector θ̂w satisfies θ̂w 6= θw,
∑

w′∈ch(w) θ̂w,w′ =

1 and θ̂w,w′ ∈ (0, 1) for w′ ∈ ch(w),

3. for position w ∈ WΛ(w∗) \ w∗, i.e. the position that lies on any of the paths

passing through w∗ and is not an intervened position, the corresponding prim-

itive probabilities vector remains the same as the pre-intervention: θ̂w = θw,

4. for position w′ ∈ ch(pa(w∗)) \ w∗, i.e. the position which shares the same

parents with w∗ but is not an intervened position, θ̂pa(w′),w′ = 0.

According to the second condition in the definition, we distinguish the stochas-

tic manipulation from the singular manipulation since the former does not include
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the special case that forces an edge to be passed with probability 1. This is anal-

ogous to the stochastic policy defined by Pearl [2009] on BNs but is more flexible.

Wilkerson [2020] has defined a set of vertices W ′ to be a fine cut if and only if⋃
w∈W ′

Λ(w) = ΛC . (2.3.13)

The set of targeted positions w∗ defined above is not necessarily a fine cut because⋃
w∈w∗ Λ(w) is not force to equal to the whole collection of the root-to-sink paths

ΛC . The stages of the CEG may be changed by a stochastic manipulation. This is

because for w,w′ being in the same stage it is allowed that F(w) is stochastically

manipulated while F(w′) is not affected by the intervention.

If the manipulated probabilities θ̂w∗ are known, then the post-intervention

path related probabilities can be revised accordingly. Let π̂(·) denote the post-

intervention path related probability. Then, for λ ∈ ΛC ,

π̂(λ) =


∏
e∈Eλ

θe∏
e′∈E(w∗)∩Eλ

θe′
×
∏
e′∈E(w∗)∩Eλ θ̂e′ if λ ∈ Λ(w∗),

0 otherwise,
(2.3.14)

where E(w∗) denotes the set of emanating edges of all positions w ∈ w∗, and Eλ

denotes the set of edges traversed by λ.

Let ĈΛ(w∗) denote the topology of the conditioned CEG (after intervention)

[Thwaites, 2013] constructed with respect to Λ(w∗). We can evaluate the post-

intervention probability of traversing a root-to-sink path conditional on Λ(w∗). Let

π̂Λ(w∗)(·) denote the path related probability of ĈΛ(w∗). Then, for position wi ∈
WΛ(w∗) and wj ∈ ch(wi),

π̂Λ(w∗)(wj |wi) =

∑
λ∈Λ(w∗) π̂(λ,Λ(ewi,wj ))∑
λ∈Λ(w∗) π̂(λ,Λ(wi))

. (2.3.15)

Therefore the probability of a unit traversing a root-to-sink path on the conditioned

CEG CΛ(w∗) is given by the factorisation of the revised conditional probabilities:

π̂Λ(w∗)(λ) =
∏

wi,wj∈Wλ,wi=pa(wj)

π̂Λ(w∗)(wj |wi). (2.3.16)

Definition 2.3.11. The manipulated CEG of a remedial intervention with respect

to Λ(w∗) has a topology Ĉ = ĈΛ(w∗) = (V̂ , Ê) and transition probabilities θ̂.
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• The vertex set is V̂ = WΛ(w∗);

• The edge set is Ê = EΛ(w∗);

• The primitive probabilities are evaluated via equation (2.3.14), equation (2.3.15)

and the specification in Definition 2.3.10.

We can formalise a stochastic manipulation on the CEG by specifying this

by a map:

ζ : (C,θ) 7→ (Ĉ, θ̂). (2.3.17)

The domain of this map is the topology and primitive probabilities of the CEG:

V
⊗
E
⊗

Θ. This map is well-defined if and only if the transformation of the

primitive probabilities in equation (2.3.12) is well-defined for all w ∈ w∗.
What we have discussed so far assumes θw is known, so given z that we

can define the components θ̂w. However, we can also consider an inferential set-

ting, where these parameters need to be estimated from observations. Thus, within

a Bayesian model, let f(θw;αw) denote the prior distribution of θw with parame-

ters vector αw. Let f̂(·) denote the post-intervention prior of θw and G(·) denote

the transformation that updates the distribution over the florets F(w∗) under the

remedial intervention so that

f̂(θw) = G[f(θw)] (2.3.18)

for w ∈ w∗. There is no default way to define G for a remedial intervention.

However, we propose an approach that transforms the distribution by updating the

hyperparameters. Let α̂w denote the post-intervention hyperparameters of f̂ . Then

we define a generic function κ to transform αw for w ∈ w∗ [Yu and Smith, 2021c]:

κ : (αw, Iw) 7→ α̂w. (2.3.19)

The map κ can take different forms, such as a linear transformation, and domain

experts could play an important role here to decide to what extent the root causes

are affected.

In Section 2.1.3, we give an example of Dirichlet priors for the primitive

probabilities vectors. Thus we can update the concentration parameters αw via κ.

For example,

α̂w = κ(αw, Iw) = αw + ωw(1− Iw), (2.3.20)

where ωw = (ωew,w′ )w∈ch(w), and ωew,w′ > 0, is introduced to control the effect

of the remedial intervention on the root causes. In particular, if Iew,w′ = 1, then
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the corresponding αew,w′ is unchanged. When Iew,w′ = 0, the corresponding αew,w′

rises by ωew,w′ and so the average weight of the remedied root cause is reduced

by this transformation. The value of ωw can be advised by the domain experts

in order to better measure and adjust the possibility of root causes for prediction

purpose. Note that such transformations have been proposed elsewhere, albeit in

rather different contexts. For example, Eaton and Murphy [2007] introduced a

similar idea of assuming a deterministic linear function to increase the likelihood of

entering a state of a variable and called it a “soft” intervention on BNs.
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Figure 2.7: The causal CEG constructed for a bushing system. This structure is
elicited from the description in [Al Abri et al., 2017] with appropriate conditional
independence assumptions. Some of the labelled d-events are simplified to fit the
figure.

Example 4. Now we demonstrate the manipulation imported to the idle CEG in

response to a remedial intervention using a example of a bushing1 system. From

the investigation report provided by Al Abri et al. [2017] which performed different

diagnostic tests to check the root causes of a bushing’s failure, we construct a simple

but transparent event tree for this system and elicit a hypothesised idle CEG for

causal analysis, see Figure 2.7.

This first component modelled on this tree classifies the root causes into en-

dogenous or exogenous causes. The d-events xen, xexo are associated with these two

classes respectively. Following the root causes classifier, the root causes, symptoms

and failure indicators are modelled. There are 6 root causes considered here, and

we represent the associated d-events by xc,1, · · · , xc,6. The d-events xs,1, · · · , xs,6 are

1Bushing is an insulator in the transformer.
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associated with the six types of symptoms.

d-event notation exact d-event associated edges
xen endogenous cause ew0,w1

xexo exogenous cause ew0,w2

xc,1 failed or aging gasket e1w1,w3

xc,2 seal/axial movement of porcelain e2w1,w3

xc,3 cracked insulator ew1,w4

xc,4 other endogenous reasons ew1,w5

xc,5 corrosive sulphur e2w1,w9

xc,6 lightening and other exogenous reasons e1w1,w9

xs,1 oil leak ew3,w6

xs,2 no oil leak and no other faults ew3,w6

xs,3 loss of oil e1w4,w8

xs,4 mix of oil e2w4,w8

xs,5 thermal runaway e1w4,w9

xs,6 electrical discharge e2w4,w9

xf,1 fail e
w6,w

f
∞
, e
w7,w

f
∞
, e
w8,w

f
∞
, e
w9,w

f
∞

xf,2 no fail ew6,wn
∞ , ew7,wn

∞ , ew8,wn
∞ , ew9,wn

∞

Table 2.1: The d-events for the CEG in Figure 2.7 for Example 4.

From Figure 2.7, we can see that root causes are represented on the set of

edges E∆ = {e1
w1,w3

, e2
w1,w3

, ew1,w4 , ew1,w5 , e
1
w2,w9

, e2
w2,w9

}. There are two edges be-

tween w1 and w3 and two edges between w2 and w9. The superscripts index the

order of the two edges appearing in the CEG from top to bottom. Here e1
w1,w3

rep-

resents the d-event “aging gasket” and e1
w1,w3

represents “seal/axial movement of

porcelain”.

If the root cause xc,1 is perfectly remedied, for example when the gasket used to

seal and prevent oil leak is replaced by a new one, then we can find the corresponding

edge on the tree, which is e(xc,1) = e1
w1,w3

. Under this intervention, the intervention

indicator vector defined over E∆ is I = {1, 0, 0, 0, 0, 0} and w∗ = {w1}. So only the

floret F(w1) is directly affected by the remedial intervention. The floret F(w2) also

represents root causes but stays unaffected. So we see here the semantics of CEG

are expressive in representing the context-specific manipulations.

The remedy fully restores the gasket to AGAN. But this does not mean that

this gasket will not deteriorate and not cause a failure again. Instead what we mean

specifically here is that this intervention could reduce the probability of observing

failure or a defect caused by the gasket at the next maintenance. This is why we

say the conditional probability mass functions defined over F(w1) are stochastically

manipulated. This yields a manipulated CEG whose topology is plotted in Figure

2.8.

The underlying staged tree of the CEG is depicted in Figure 2.9. The po-

sition w9 in the idle system contains a single stage u7 that consists of situations

{v7, v8, v15, v16}. However in the manipulated CEG, only {v15, v16} are still in this
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Figure 2.8: The manipulated CEG for Example 4.

position since v7, v8 lie downstream of the paths passing along the edge represent-

ing exogenous causes. Therefore, although the topology of the CEG conditional on

Λ(w∗) retains the topology of the subtree consisting of Λ(w∗), the composition of the

stages or positions may change.

In this example, the conditional probability π̂Λ(w1)(w1|w0) = 1 in the manip-

ulated CEG because in this case exogenous causes are forced to be ruled out.

Here, the root floret F(w0) is associated with the root cause classifier, and the

following florets F(w1) and F(w2) are associated with root causes. The positions w1

and w2 are not in the same stage. For system reliability, only the florets representing

root causes are manipulated as a result of the remedial intervention. Note that the

concept of a direct remedy is not usually appropriately applied to an exogenous root

cause, such as lightening. So we still adopt the singular intervention established

by Thwaites et al. [2010] to estimate the effects of the exogenous root cause with

observational data from the partially observed system.

2.3.4 A back-door criterion

For a singular intervention with respect to Λx, Thwaites [2013] denotes its effect on

the probability of observing event y by π(Λy||Λx) on a CEG. Here we encounter a

more complicated situation. Instead of starting with the manipulated paths Λx, we

start with the observed maintenance (remedy).

When observing maintenance r, it is equivalently to impose externally a do-

operator do(R = r) onto the idle CEG. To examine the effects of r on y, we estimate

π(Λy|do(R = r)).
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Figure 2.9: The staged tree for Example 4. Some of the labelled d-events are
simplified to fit the figure.

Note that π(Λy) is defined on the CEG while the operator do(R = r) is

external to the CEG. So we may decide to rewrite this expression by transforming

the external control onto the CEG so that the controlled events are also represented

on the CEG.

As discussed in the previous section, given the observed maintenance, we

can infer the value of the intervention indicators, from which we can deduce the

intervened positions and edges. When the remedial intervention is perfect, then

I(r) is known and so w∗ is known. Assume z is known. We can then express the

causal query in terms of Iw∗(r) = (Ie(r))e∈E(w∗), which is the intervention indicator

vector defined over edges emanating from w∗. Therefore, we can write the causal

query as:

π(Λy|do(r), δ = 1) = π(Λy||z(θw∗ , Iw∗(r))) = π(Λy||θ̂w∗). (2.3.21)

The right hand side expression is the probability of a unit traversing Λy when
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intervening on w∗ by forcing a change of probability distributions over F(w∗) to

θ̂w∗ .

Otherwise, when δ = 0, the intervention indicators vector I cannot be per-

fectly informed from the observed maintenance r. Following equation (2.3.4), we

estimate the stochastic effects of r using the formulae as follows.

π(Λy|do(r), δ = 0) =
∑
a

π(Λy, a|do(r), δ = 0)

=
∑
a

π(Λy|do(r), a)p(a|do(r), δ = 0)

=
∑
I

∑
a

π(Λy||θ̂w∗)p(I|a, r)p(a|r, δ = 0)

(2.3.22)

where the intervened positions w∗ is determined by the value of I.

Thus, we have an immediate proposition as follows.

PROPOSITION 2.3.12. Given w∗ and θ̂w∗, a necessary and sufficient condition

for the effects of the remedial intervention r to be identified is that π(Λy||θ̂w∗) is

identifiable on the causal CEG C.

We have mentioned that the intervened positions w∗ may not form a fine

cut [Wilkerson, 2020], especially when the manipulations are asymmetric and the

processes modelled on the idle CEG are asymmetric. For example, the intervention

we specified in Example 4 only directly manipulated endogenous root causes, in

which case Λ(w∗) = Λ(w1) cannot partition ΛC . So w∗ cannot “cut” the CEG

fully. So here we construct a corresponding conditioned CEG from the idle CEG

with respect to the intervened paths for identifying the underlying effects. This is

similar to how we define the manipulated CEG but here we use the pre-intervention

conditional probabilities since we aim to estimate the causal effects from the partially

observed system.

Definition 2.3.13. Let CΛ(w∗) = (V ∗, E∗) denote the topology of the idle CEG

conditional on Λ(w∗), then

• the vertex set is V ∗ = WΛ(w∗);

• the edge set is E∗ = EΛ(w∗);

• the primitive probabilities are θ∗ = {θ∗w}w∈WΛ(w∗), where θ∗w,w′ = πΛ(w∗)(wj |wi)is
evaluated as:

πΛ(w∗)(wj |wi) =

∑
λ∈Λ(w∗) π(λ,Λ(ewi,wj ))∑
λ∈Λ(w∗) π(λ,Λ(wi))

. (2.3.23)
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For a remedial intervention, the stochastic manipulation θ̂w∗ directly affects

the paths Λ(w∗) and the stochastically controlled d-events are x(E(w∗)), which are

the d-events labelled on the emanating edges of the intervened positions E(w∗).

Under a remedial intervention, the controlled event x ∈ x(E(w∗)) is either a

root cause fixed by the remedy or a root cause represented in the same floret as the

fixed root cause. Then the probability of a unit passing along the paths Λx needs

to be revised given a stochastic manipulation on θ̂w∗ since Λx ⊆ Λ(w∗). The post-

intervention probability on the manipulated CEG is evaluated by equation (2.3.16)

which combines the results of equation (2.3.14) and equation (2.3.15). Thus,

π(Λx||θ̂w∗) = π̂Λ(w∗)(Λx). (2.3.24)

Enlightened by how Pearl [2009] proved the identifiability of the effects of

a stochastic policy on BNs, here we adopt the similar idea to import the manipu-

lated conditional probabilities θ̂w∗ into the idle system. Specifically, on the CEG,

we force each event x ∈ x(E(w∗)) to be controlled with probability π(Λx||θ̂w∗).
Unlike the stochastic policy defined by Pearl [2009], the imposed new probabilities

are determined externally by domain experts to reflect impacts of maintenance on

root causes and not dependent on other observations. Here we only discuss the

case that the imposed new probabilities are known. When we are uncertain about

how to update the probability distribution, we may use time series model or other

approaches to predict the change of probabilities from historic data.

Since x ∈ x(E(w∗)) and w∗ may not form a fine cut as discussed earlier,∑
x∈x(E(w∗)) π(Λx) may not be equal to 1 unless conditional on Λ(w∗). Therefore,

we rewrite the causal query as:

π(Λy||θ̂w∗) =
∑

x∈x(E(w∗))

π(Λy||Λx, θ̂w∗)π(Λx||θ̂w∗)

=
∑

x∈x(E(w∗))

πΛ(w∗)(Λy||Λx)π̂Λ(w∗)(Λx).
(2.3.25)

The manipulated CEG is defined to be conditional on Λ(w∗) and the conditioned

idle CEG is also defined with respect to Λ(w∗) in Definition 2.3.13. So estimation

of this causal query is well supported by the semantics of these graphs.

Now we only need to show that πΛ(w∗)(Λy||Λx) can be estimated. For this,

we have the following proposition.

PROPOSITION 2.3.14. For a remedial intervention that reshapes the probabil-

ity distributions over florets F(w∗), the effects of this intervention are identified
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if and only if πΛ(w∗)(Λy||Λx) can be estimated for every x ∈ x(E(w∗)) given the

observations and the CEG.

Proof. From equation (2.3.25), it is straightforward to see that if πΛ(w∗)(Λy||Λx) is

identifiable for all x ∈ x(E(w∗)), then π(Λy||θ̂w∗) can be estimated, since π̂Λ(w∗)(Λx)

is determined externally. So it is a sufficient condition for the identifiability of

π(Λy||θ̂w∗).
If there exist a d-event x ∈ x(E(w∗)) so that πΛ(w∗)(Λy||Λx) cannot be

estimated uniquely from the observable events, then the effects of the manipulation

of θ̂w,w(x) are not identifiable. Since ew,w(x) ∈ E(w∗) and w ∈ w∗, so θ̂w,w(x) ∈ θ̂w∗ .
This means the effects of θ̂w∗ are not fully identifiable so that π(Λy||θ̂w∗) cannot be

estimated. Therefore, the identifiability of πΛ(w∗)(Λy||Λx) for every x ∈ x(E(w∗))

is a necessary condition for the identifiability of π(Λy||θ̂w∗).

The causal query πΛ(w∗)(Λy||Λx) refers to identifying the effects of a singu-

lar manipulation on Λx within the conditioned CEG CΛ(w∗) whose topology is a

subgraph of C. This means we need to check whether the effects of this singular

intervention are identifiable on the subtree constructed with respect to Λ(w∗).

Two criteria are specified for choosing the back-door partition [Thwaites,

2013], see equation (2.2.5) and equation (2.2.6). These criteria can be simply

adapted for the conditioned CEG so that for all x ∈ x(E(w∗)), the effects of the

manipulation on Λx on Λy can be identified. The intervened edges ew,w′ ∈ e(x)

are the edges emanating from the intervened positions w ∈ w∗. The intervened

positions w∗ form a fine cut of Λ(w∗). Their children ch(w∗) also form a fine cut

of Λ(w∗). The following theorem is a restricted version of Theorem 2.2.2 on the

conditioned idle CEG CΛ(w∗).

Theorem 2.3.15. For any w ∈ w∗, for all x ∈ x(E(w∗)) and any ew,w′ ∈ e(x) if

πΛ(w∗)(Λz|Λ(w)) = πΛ(w∗)(Λz|Λ(ew,w′)) (2.3.26)

and

πΛ(w∗)(Λy|Λ(w),Λx,Λz) = πΛ(w∗)(Λy|Λ(ew,w′),Λz). (2.3.27)

hold for every element of {Λz}, then {Λz} is the back-door partition for identifying

the effects of a remedial intervention.

When the root floret of the CEG represents a root cause variable, then the

manipulated paths Λ(w∗) = Λ(w0) = ΛC are the whole set of root-to-sink paths of
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the idle CEG. This is a special case, where the back-door partition in this case only

need to satisfy Theorem 2.2.2.

Finding a back-door partition satisfying Theorem 2.2.2 is sufficient for it

being a back-door partition in our case. However, it is not a necessary condition for

find a back-door partition for the conditioned CEG.

When a back-door partition can be identified, we can estimate πΛ(w∗)(Λy||Λx)

from the partially observed system. We can then decompose the expression in

equation (2.3.25) as follows.

Theorem 2.3.16. The effects of a stochastic manipulation are identifiable whenever

a back-door partition {Λz} can be found so that

π(Λy||θ̂w∗) =
∑

x∈x(E(w∗))

∑
z

πΛ(w∗)(Λy|Λx,Λz)πΛ(w∗)(Λz)π̂
Λ(w∗)(Λx). (2.3.28)

This holds when

πΛ(w∗)(Λy|Λ̂x,Λz) = πΛ(w∗)(Λy|Λx,Λz), (2.3.29)

here Λ̂x denotes that the singular intervention acts on Λx only, not on Λz, and

πΛ(w∗)(Λz||Λx) = πΛ(w∗)(Λz). (2.3.30)

Proof. If we can find a partition {Λz} of Λ(w∗) then the singular intervention causal

query conditional on Λ(w∗) can be written as:

πΛ(w∗)(Λy||Λx) =
∑
z

πΛ(w∗)(Λy|Λ̂x,Λz)πΛ(w∗)(Λz||Λx). (2.3.31)

If we estimate this intervened quantity from the partially observed system, then

πΛ(w∗)(Λy||Λx) =
∑
w∈w∗

e(w,w′)∈e(x)

πΛ(w∗)(Λ(w))πΛ(w∗)(Λy|Λ(w′))

=
∑
w∈w∗

e(w,w′)∈e(x)

πΛ(w∗)(Λ(w))πΛ(w∗)(Λy|Λ(ew,w′))

=
∑
w∈w∗

e(w,w′)∈e(x)

πΛ(w∗)(Λ(w))
∑
z

πΛ(w∗)(Λy|Λ(ew,w′),Λz)π
Λ(w∗)(Λz|Λ(ew,w′))

(2.3.32)

By the two criteria specified in Theorem 2.3.15 for the back-door partition {Λz}, we
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can replace the last two terms in the last step by the following:

πΛ(w∗)(Λy||Λx) =
∑
w∈w∗

e(w,w′)∈e(x)

πΛ(w∗)(Λ(w))
∑
z

πΛ(w∗)(Λy|Λ(w),Λx,Λz)π
Λ(w∗)(Λz|Λ(w))

=
∑
z

πΛ(w∗)(Λy|Λx,Λz)πΛ(w∗)(Λz).

(2.3.33)

Comparing with equation (2.3.31), we therefore have the following two equivalent

expressions.

πΛ(w∗)(Λy|Λ̂x,Λz) = πΛ(w∗)(Λy|Λx,Λz), (2.3.34)

πΛ(w∗)(Λz||Λx) = πΛ(w∗)(Λz). (2.3.35)

Note that though {Λz} is only required to partition Λ(w∗), the partition

must satisfy the criteria in Theorem 2.3.15 for all controlled events x. Similar to

previous work [Thwaites, 2013], z can be chosen flexibly, for example a set of stages,

positions or edges. Let Λz = {Λz1 , · · · ,Λzl}. Each Λzi is a collection of root-to-

sink paths passing through the edges E(zi) or positions W (zi), where W (zi) are the

receiving nodes of E(zi). Note that for different w ∈ w∗, the emanating edges of w

may represent different set of d-events.

Each controlled event x may correspond to more than one edges or just

exactly one edge. Then to find {Λz} for each of x, we can let each set W (zi) include

at least one position traversed by the path λ ∈ Λ(E(x)) for every x. Otherwise,

if we consider edges E(zi), then each set of edges E(zi) contains at least one edge

traversed by the path λ ∈ Λ(E(x)) for every x. We give an example below.

Example 5. Continue with the manipulation we discussed in Example 4 with the

manipulated CEG in Figure 2.8. Suppose that the effect event is “fail”. Then

Λy = Λ(E(xf,1))) = Λ(wf∞) is the set of failure paths sinking in wf∞. The stochastic

manipulation is forced on F(w∗) = F(w1). We have plotted the manipulated CEG

in Figure 2.8, whose topology is constructed with respect to Λ(w1). The controlled

events are x(E(w1)) = {xc,1, xc,2, xc,3, xc,4} = {failed or aging gasket, seal/axial

movement of porcelain, cracked insulator, other endogenous reasons}. The associ-

ated edges are e1
w1,w3

, e2
w1,w3

, ew1,w4 , ew1,w5.

We can create a partition {Λz1 ,Λz2} so that E(z1) = {ew3,w6 , e
1
w4,w8

, e1
w5,w9

}
and E(z2) = {ew3,w7 , e

2
w4,w8

, e2
w5,w9

}. Here, z1 refers to the d-events: oil leak, loss of
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oil, thermal runaway; z2 refers the d-events: no oil leak and no other faults, mix of

oil, electrical discharge. By this partition, when forcing a singular manipulation on

xc,1, the edges ew3,w6 ∈ E(z1) and ew3,w7 ∈ E(z2) lie along the paths Λxc,1. These two

edges are also passed along by the paths Λxc,2. When forcing a singular manipulation

on xc,3, e1
w4,w8

∈ E(z1) and e2
w4,w8

∈ E(z2) lie along Λxc,3. When forcing a singular

manipulation on xc,4, the edges e1
w5,w9

∈ E(z1) and e2
w5,w9

∈ E(z2) are traversed

by the paths in Λxc,4. Note that these events partition the paths Λ(w1) but do not

partition all the root-to-sink paths in the idle CEG ΛC. This is because none of the

edges E(z1), E(z2) lies along any path in Λ(w2).

We can now check whether the criteria specified in Theorem 2.3.15 are sat-

isfied. When the controlled event is xc,1, for example,

πΛ(w1)(Λ(wf∞)|Λ(ew3,w6),Λxc,1) = πΛ(w1)(Λ(wf∞)|Λ(ew3,w6),Λ(e1
w1,w3

)) (2.3.36)

is obviously true, so

πΛ(w1)(Λ(wf∞)|Λ(E(z1)),Λxc,1) = πΛ(w1)(Λ(wf∞)|Λ(E(z1)) ∩ Λxc,1)

= πΛ(w1)(Λ(wf∞)|Λ(ew3,w6) ∩ Λxc,1)

= πΛ(w1)(Λ(wf∞)|Λ(ew3,w6),Λ(e1
w1,w3

))

= πΛ(w1)(Λ(wf∞)|Λ(E(z1)),Λ(e1
w1,w3

)).

(2.3.37)

Thus the first criterion in equation (2.3.26) is satisfied for E(z1). It is straight-

forward to check this condition for E(z2) and all the controlled events in the same

way.

Now we check the second criterion. Since the edges e1
w4,w8

, e1
w5,w9

are not

traversed by any path in Λxc,1,

πΛ(w1)(Λ(E(z1))|Λxc,1) = πΛ(w1)(Λ(ew3,w6)|Λ(e1
w1,w3

)). (2.3.38)

This conditional path probability can be easily evaluated from the conditional idle

CEG:

πΛ(w1)(Λ(ew3,w6)|Λ(e1
w1,w3

)) =
θ∗w0,w1

θ1∗
w1,w3

θ∗w3,w6

θ∗w0,w1
θ1∗
w1,w3

= θ∗w3,w6
. (2.3.39)
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We can also compute:

πΛ(w1)(Λ(e(z1))|Λ(w1)) =
θ∗w0,w1

(θ1∗
w1,w3

+ θ2∗
w1,w3

)θ∗w3,w6
+ θ∗w0,w1

θ∗w1,w4
θ1∗
w4,w8

+ θ∗w0,w1
θ∗w1,w5

θ1∗
w5,w9

θ∗w0,w1

= (θ1∗
w1,w3

+ θ2∗
w1,w3

)θ∗w3,w6
+ θ∗w1,w4

θ1∗
w4,w8

+ θ∗w1,w5
θ1∗
w5,w9

.

(2.3.40)

In our example, ew3,w6 , e
1
w4,w8

, e1
w5,w9

are coloured the same, so they have the same

transition probabilities. We also have E(w1) = {e1
w1,w3

, e2
w1,w3

, ew1,w4 , ew1,w5} so

θ1∗
w1,w3

+ θ2∗
w1,w3

+ θ∗w1,w4
+ θ∗w1,w5

= 1. Thus, the above equation can be simplified to

πΛ(w1)(Λ(E(z1))|Λ(w1)) = θ∗w3,w6
. (2.3.41)

So,

πΛ(w1)(Λ(ew3,w6)|Λ(e1
w1,w3

)) = πΛ(w1)(Λ(ew3,w6)|Λ(w1)). (2.3.42)

The second criterion is satisfied. Using the same method, it is easy to validate that

the second criterion is satisfied for all x ∈ x(E(w1)) and {Λ(E(z1)),Λ(E(z2))}.

Example 6. The remedial intervention we described in Example 4 and Example 5

imposed a special case of stochastic manipulation where ew0,w1 is forced to be passed

with probability 1. So there is a singular manipulation underlying this stochastic ma-

nipulation. The causal query πΛ(w∗)(Λy||Λx) in this example is πΛxen (Λxf,1 ||Λx) for

every x ∈ x(E(w1)). This expression can be rewritten as π(Λxf,1 ||Λx∗r ) where x∗r =

(xen, xr) for xr ∈ x(E(w1)). Then the stochastic manipulation can be treated as forc-

ing a composite singular manipulations of xen and xr with probability π(Λxr ||θ̂w∗).
The manipulated CEG in this case is still the tree plotted in Figure 2.8.

However, we do not estimate the causal effects from the CEG conditioned on Λ(w1).

Instead, we estimate π(Λxf,1 ||Λx∗r ) for all xr ∈ x(E(w1)) from the non-intervened C
depicted in Figure 2.7. Then the back-door partition {Λz1 ,Λz1} must partition the

whole set of the root-to-sink paths ΛC.

Now we redefine Λz1 and Λz2. We add one more edge to the edge set associ-

ated with z1 compared to Example 5 so that E(z1) = {ew3,w6 , e
1
w4,w8

, e1
w5,w9

, e2
w2,w9

}.
We also add one more edge to E(z2) so that E(z2) = {ew3,w7 , e

2
w4,w8

, e2
w5,w9

, e1
w2,w9

}.
Then it is easy to check that the criteria defined in Theorem 2.2.2 for the singular

manipulation are all satisfied.
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2.4 Routine intervention

In this section, we focus on another type of domain-specific intervention which is

designed for the preventive maintenance (PM). The PM often refers to scheduled

maintenance that identifies defects, replaces worn-out components, and aims to pre-

vent fatal problems during the routine inspection before any failure happens [Bed-

ford et al., 2001]. The main advantages of conducting such scheduled maintenance

are reducing the chance of breakdown and extending the lifetime and reliability of

a particular component of the system. In light of this definition, we call such a new

intervention scheme a routine intervention.

There are different forms of maintenance and tests that can be arranged on

a regular basis, such as cleaning, lubrication, replacing, repairing parts, partial or

complete overhauls [What is Preventive Maintenance?, n.d.]. Therefore, the manip-

ulation on the CEG given a routine intervention could vary for different maintenance

actions.

Note that the difference between a routine intervention and a remedial in-

tervention is that the remedial intervention is devised based on remedies and root

causes, so the remedial intervention is essential for analysing equipment failures or

breakdowns. On the other hand, the routine intervention is designed for PM, which

is not restricted by fixing root causes of failures that have already happened. The

maintenance discussed in this section is scheduled to prevent failures and is not de-

pendent on the observed deterioration or failure. The target of the maintenance is

not to rectify any defect, but to extend the lifetime of the repairable system. Some

of the material we present in this section has appeared in our recent publication [Yu

and Smith, 2021a].

2.4.1 The stochastic manipulation under the routine intervention

There are many types of checks or work practices that may be performed for PM.

For example, the routine inspection and repair of transformers include monitoring

the operating conditions, cleaning, checking the oil level in the conservator tank and

oil gauge, checking for loose connection, checking pipe cracks and leakage, sealing

leakage, checking the Buchholz relay for gas collection, and replacing the silica gel

etc [Maintenance Tips for Electrical Transformers, 2020; Gautam, 2021]. For the

conservator system we give in Example 3, if the routine maintenance controls oil leak,

then we can simply identify its effects by treating it as a singular manipulation on

ew2,w7 . When repairing or replacing a piece of equipment, however, the maintenance

may affect a set of d-events, all of which are related to the maintained equipment.
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This cannot simply be formalised as a singular manipulation.

Depending on the repaired part and the degree of repair, multiple florets can

be influenced separately at the same time. Consider a floret F(w) which contains

events being affected by the routine intervention, denoted by x(E(w)). Then some

of the d-events in x(E(w)) or all d-events in x(E(w)) are faults or symptoms of the

maintained part. Unlike for a remedial intervention, no specific event x ∈ x(E(w))

is targeted to be fixed which therefore induces a reduction in the corresponding

transition probability.

Another feature of a routine intervention that differentiates it from a reme-

dial intervention is that we assume that the result of inspections should be perfectly

known since such maintenance is scheduled and should be well-documented. In

comparison, the remedy can be uncertain. The root cause then need to be inferred

when the remedy is not perfect, so the intervention indicator vector in this case is

uncertain and needs to be drawn from a distribution conditional on the observed

failure path and the partially observed remedy. However, given a routine interven-

tion, the controlled events x are assumed to be perfectly informed from the observed

and scheduled action. Here, for consistency, we still use F(w∗) to denote the set of

florets that are manipulated, where w∗ = pa(W (x)).

The status of the maintained part depends on the degree of repair. There-

fore, a routine intervention brings more uncertainty to the probability distribution

over the events being affected by the maintenance. The post-intervened probability

distribution assigned to F ∈ F(w∗) is required to be updated accordingly. This is

a stochastic manipulation, although the distributions are manipulated in a different

way from that for a remedial intervention. For w /∈ w∗, the distributions of the

primitive probabilities retain the original distribution.

We define a new parameter φ ∈ (0, 1] to measure the effect of the routine

intervention. Assume that the value of the discount parameter φ can be assessed

and informed by the domain experts. The post-intervention distribution for every

affected florets is assumed to be a function of the pre-intervention distribution and

the discount parameter. Here we still use f̂(·) to denote the post-intervened distri-

bution, G(·) to denote the transformation that updates the distributions over the

affected florets under a routine intervention. Then for w ∈ w∗,

f̂(θw) = G[f(θw)]. (2.4.1)

The transformation G preserves the properties of the primitive probabilities so that∑
e∈e(w) θe = 1 and θe > 0, and embodies the features of the manipulation we have
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discussed above.

Smith [1990, 1992] have shown various ways to model the drift of information,

i.e. an increasing uncertainty. One can map distributions to distributions through

non-linear state space models. A possible transformation is the power steady trans-

formation [Attwell and Smith, 1991; Smith, 1979] which takes the form:

f̂(θw) ∝ f(θw)φ. (2.4.2)

The information is lost up to a proportionality that depends on the extent to which

the equipment is repaired:

E[log f̂(θw)] = φE[log f(θw)] + c, (2.4.3)

for some constant c. Note that Freeman and Smith [2011b] also adopted this trans-

formation explicitly for florets in CEGs for a different purpose from us. Instead of

using it in a causal setting, the power steady transformation to model increasing

entropy over time rather than because of an intervention.

Smith [1979] gave an example of this drift of information as applied to Beta

distributions. Here we extend it to Dirichlet distribution. If the pre-intervention

prior of θw is Dirichlet(αw), then we can update each concentration parameter by

α̂w,w′ − 1 = φ(αw,w′ − 1), (2.4.4)

where w′ ∈ ch(w) and α̂w,w′ denotes the post-intervention hyperparameter so that

α̂w = (α̂w,w′)w′∈ch(w). By this transformation, the mode of the distribution, denoted

by ϑ̂w = (ϑ̂w,w′)w′(w), remains the same:

ϑ̂w,w′ =
φ(αw,w′ − 1)∑

wi∈ch(w) φ(αw,wi − 1)
=

αw,w′ − 1∑
wi∈ch(w)(αw,wi − 1)

= ϑw,w′ . (2.4.5)

The information drifts in a way so that equation (2.4.3) is satisfied.

The collection of root-to-sink paths that are affected under such intervention

is the set of paths passing through the manipulated florets F(w∗). The collection

of the controlled d-events of a routine intervention is the set of d-events labelled on

the edges lying in F(w∗), which is x(E(w∗)). Then Λ(w∗) is the set of root-to-sink

paths that contains edges whose transition probabilities are manipulated. When

the post-intervention probabilities θ̂w∗ are known, we can estimate the effects of it

through π(Λy||θ̂w∗). The identifiability of the stochastic manipulation is the same

as that discussed for the remedial intervention.
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2.4.2 Composite manipulations on CEGs and identifiability

We have discussed in the previous section that the routine intervention can import

singular manipulations or stochastic manipulations to system depending on what

actions have been taken during the scheduled maintenance. Interestingly, if the

field engineer detects a failure during the scheduled maintenance, then he need to

fix this problem through diagnosing root causes. In this case we have both a remedial

intervention and a routine intervention.

Here we discuss different scenarios in terms of the manipulations imported

to the idle system by the intervention. We list the possibilities below:

1. a singular manipulation;

2. stochastic manipulations on F(w∗), where the intervened positions w∗ can

contain only one position or a set of positions;

3. composite singular manipulations;

4. composite singular and stochastic manipulations.

We have shown that the identifiability of the effects for the first two scenarios. We

next extend the formulae of the back-door theorem for the last two scenarios.

Composite singular manipulations. When the PM perfectly repairs

some parts of some equipment, suppose this external intervention forces the d-events

xr1 and xr2 to occur. Then each of the controlled d-event can be identified on a set

of edges on the tree, denoted by E(xr1) ⊆ EC and E(xr2) ⊆ EC respectively. In this

case, every edge in the set e ∈ E(xr1) or e ∈ E(xr2) is directly intervened by the

routine PM and is forced to be passed through with probability 1: θ̂e = 1. Then this

routine intervention combines two singular manipulations simultaneously. If during

the maintenance, more perfect repairs have been attained so that more d-events are

directly intervened, then we force multiple separate singular manipulations simulta-

neously. We now give a general definition for this type of manipulations.

Definition 2.4.1. Given the idle CEG C, if there is a composition of multiple

separate singular manipulations with controlled events x = {x1, ..., xn} im-

ported into the idle system, then the controlled paths on the CEG can be identified

as follows:

Λx = Λ(e(x)) =
⋂
xi∈x

Λxi =
⋂
xi∈x

Λ(e(xi)), (2.4.6)

where Λx ⊆ ΛC. The manipulated CEG of these composite manipulations is the

conditioned CEG [Thwaites, 2013] CΛx where the transition probabilities along the
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edges take value:

πΛx
e (wj |wi) =

∑
λ∈Λx

π(λ,Λ(ewi,wj ))∑
λ∈Λx

π(λ,Λ(wi))
. (2.4.7)

When there are two d-events singularly manipulated, this is the simplest case

of this type of composite manipulations. We continue with the example given above,

where the composite d-events that are controlled under the routine intervention

are x = {xf,0, xr}. On the idle CEG, the controlled collection of paths are Λx =

Λxf,0∩Λxr = Λ(E(xf,0))∩Λ(E(xr)). The manipulated CEG is the CEG conditioned

on Λx. The path probability on the manipulated CEG can be evaluated using the

formula

π̂(λ) =


∏
e∈Eλ

θe

θe(xf,0)θe′
if λ ∈ Λ(E(xf,0)) ∩ Λ(e′), for e′ ∈ E(xr),

0 otherwise,
(2.4.8)

Extending the back-door theorem for singular manipulations on the CEG

that discussed in Section 2.2, we can show the effects of the composite singular

manipulations are identifiable. Through finding the appropriate back-door partition

Λz, we can estimate the effect on Λy from the partially observed system

π(Λy||Λx) =
∑
z

π(Λy|Λx,Λz)π(Λz). (2.4.9)

The partition Λz must satisfy the following criterion. For any w1 ∈ pa(W (xr1)),

w2 ∈ pa(W (xr2)), the manipulated edges are ew1,w∗1
∈ E(xr1) and ew2,w∗2

∈ E(xr2).

If

π(Λz|Λ(w1),Λ(w2)) = π(Λz|Λ(ew1,w∗1
),Λ(ew2,w∗2

))) (2.4.10)

π(Λy|Λx,Λz) = π(Λy|Λ(w1),Λ(w2),Λx,Λz) = π(Λy|Λ(ew1,w∗1
),Λ(ew2,w∗2

),Λz)

(2.4.11)

hold for every element of {Λz}, then {Λz} is the back-door partition.

Composite singular and stochastic manipulations. Suppose the rou-

tine intervention leads to a combination of a singular manipulation on xr1 and

a stochastic manipulation on x(E(w∗)) with new probabilities θ̂w∗ . The con-

trolled d-events are x = {xr1, x(E(w∗))}. The manipulated paths on the CEG

are Λx = Λxr1 ∩Λx(E(w∗)) = Λxr1 ∩Λ(w∗). The manipulated CEG here is the CEG

conditional on Λxr1 ∩ Λ(w∗), denoted by CΛx . The causal effects of a routine inter-

vention with a singular manipulation and a stochastic manipulation can be shown

to be identifiable on the CEG by adapting the back-door theorems for the singular

manipulation and the stochastic manipulation. By forcing Λxr1 to be passed along
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and importing new probabilities θ̂w∗ , we aim to estimate its effect on Λy by:

π(Λy||θ̂w∗ ,Λxr1) =
∑

x′∈x(E(w∗))

π(Λy||Λxr1 ,Λx′ , θ̂w∗)π(Λx′ ||Λxr1 , θ̂w∗)

=
∑

x′∈x(E(w∗))

πΛ(w∗)(Λy||Λx′ ,Λxr1)π̂Λ(w∗)(Λx′ ||Λxr1)

=
∑

x′∈x(E(w∗))

∑
z

πΛ(w∗)(Λy|Λx′ ,Λxr1 ,Λz)πΛ(w∗)(Λz)π̂
Λ(w∗)(Λx′ ||Λxr1).

(2.4.12)

The back-door partition Λz must satisfy the following criteria. For any w1 ∈
pa(W (xr1)), w2 ∈ w∗, the manipulated edges are ew1,w∗1

∈ E(xr1) and ew2,w∗2
∈

E(w∗). For any w1, w2 lying along the same path, if

πΛ(w∗)(Λz|Λ(w1),Λ(w2))) = πΛ(w∗)(Λz|Λ(ew1,w∗1
),Λ(ew2,w∗2

)) (2.4.13)

and

πΛ(w∗)(Λy|Λ(w1),Λ(w2),Λx′ ,Λxf,0 ,Λz) = πΛ(w∗)(Λy|Λ(ew1,w∗1
),Λ(ew2,w∗2

),Λz)

(2.4.14)

hold for every element of {Λz} and for all x = {xf,0, x(E(w∗))}, then {Λz} is the

back-door partition.

We also need to ensure the probability π̂Λ(w∗)(Λx′ ||Λxr1) can be estimated

given the newly assigned probablities θ̂w∗ which is assumed to be known. This is

equivalent to imposing a singular manipulation on xr1 on the conditioned CEG

CΛ(w∗) with θ̂w∗ . Therefore we also need a back-door theorem for identifying

π̂Λ(w∗)(Λx′ ||Λxr1). Let {Λu} denote the back-door partition that partitions Λ(w∗).

Then {Λu} must satisfy:

πΛ(w∗)(Λu|Λ(w1)) = πΛ(w∗)(Λu|Λ(ew1,w∗1
)) (2.4.15)

and

πΛ(w∗)(Λx′ |Λ(w1),Λxr1 ,Λu) = πΛ(w∗)(Λx′ |Λ(ew1,w∗1
),Λu) (2.4.16)

for w1 ∈ pa(W (xr1)) and ew1,w∗1
∈ E(xr1).

Thus, to identify the effects of the routine intervention which leads to a

singular manipulation and a stochastic manipulation from the partially observed

system, it is necessary to find the back-door partitions {Λz} and {Λu} separately

satisfying the criteria specified above.
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2.5 Learning the CEG from the intervened data

So far we have customised the intervention regimes and the bespoke intervention

calculi for different types of maintenance. All these development can be applied in

real data analysis so that the estimated effects are credible and consistent with the

enormous amount of domain knowledge extant in this research area. In this section,

we demonstrate an application of these causal algebras within the reliability domain.

A model selection algorithm can be designed to learn from data about the

structure of the CEG that is most consistent with the data. The maximum a

posterior (MAP) model selection is the most used Bayesian model selection method,

although it may not necessarily be considered the best model. Barclay et al. [2013]

and Cowell et al. [2014] formulated a MAP selection of CEGs analogously to that

of BNs [Jaeger et al., 2006].

The model selected by the MAP algorithm best explains data. But there

is no way simply from the observation we can deduce that this is a causal graph

in the sense of Pearl [2009] and Thwaites [2013]. In our case, unless we assume a

ground truth CEG perfectly informed by the domain experts, there is no exhaustive

dataset from which to estimate probabilities with almost certainty. So we still need

to learn the structure of CEGs. Following previous work [Cooper and Yoo, 2013;

Cowell et al., 2014; Pensar et al., 2020], causal discovery could be cast as a Bayesian

model selection problem and the MAP algorithm is one of the tool which has been

well-developed and is easy to implement. Assuming that there are no unobserved

confounders [Cowell et al., 2014], then we can make a further assumption that the

best scoring model selected by the MAP algorithm is the CEG in idle mode when

the system is not intervened and is causal. This then enables us to further perform

causal analysis on the causal CEG.

If we let the prior of the primitive probability vector be Dirichlet, see equation

(2.1.3). The log-likelihood score for a CEG can be computed explicitly in a closed

form due to Dirichlet-Multinomial conjugacy.

logQ(θ; C) =
∑
u∈UT

logQu(θ; C) =
∑
u∈UT

(log Γ(αu)−log Γ(αu+)−
mu∑
j=1

(log Γ(αuj)−log Γ(αuj+))).

(2.5.1)

We then use the log-posterior Bayes factor to compare any two candidate

CEGs to find a better CEG structure with higher score. For any pair of candidate

structure Ci, Cj , the log-posterior Bayes factor is [Collazo et al., 2018]:

lpBF (Ci, Cj) = log q(Ci)− log q(Cj) + logQ(Ci)− logQ(Cj), (2.5.2)
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where log q(Ci) denotes the log prior.

In Section 2.3 and Section 2.4, we gave examples of transforming prior dis-

tributions of primitive probabilities as a result of either the remedial intervention

or the routine intervention. We can accommodate these ideas when learning the

best topology of a CEG and estimating the parameters using a Bayesian conjugate

analysis when we have the intervened data.

We still compute the log-posterior Bayes factor using equation (2.5.2) to

compare different models. We only need to incorporate the stochastic manipula-

tions induced by either remedial interventions or routine interventions for model

selection. When using the Dirichlet-Multinomial conjugacy, we first identify the set

of situations v∗ ∈ ST in the intervened position w∗. Recall that the distributions

over the florets F(w∗) are manipulated in response to either a remedial or a routine

intervention. We replace the priors of the manipulated primitive probabilities by

the post-intervention priors. For example, we transform the hyperparameters of

the Dirichlet priors as specified in equation (2.3.19) for a remedial intervention or

equation (2.4.4) for a routine intervention. Then we recompute the posteriors using

equation (2.1.4). The post-intervention posterior over the tree can be expressed as:

f̂(θ) =
∏
u∈UT

Γ(
∑mu

j=1 α̂uj+)∏mu
j=1 Γ(α̂uj+)

mu∏
j=1

θ
α̂uj+
uj

=
∏
u∈U∗

Γ(
∑mu

j=1 α̂uj+)∏mu
j=1 Γ(α̂uj+)

mu∏
j=1

θ
α̂uj+
uj ×

∏
u∈U

Γ(
∑mu

j=1 αuj+)∏mu
j=1 Γ(αuj+)

mu∏
j=1

θ
αuj+
uj .

(2.5.3)

Here v∗ are in the stages denoted by U∗ and we let U = UT \U∗. The log-likelihood

score is revised by:

log Q̂(θ; C) =
∑
u∈U∗

(log Γ(α̂u)− log Γ(α̂u+)−
mu∑
j=1

(log Γ(α̂uj)− log Γ(α̂uj+)))+

∑
u∈U

(log Γ(αu)− log Γ(αu+)−
mu∑
j=1

(log Γ(αuj)− log Γ(αuj+))).

(2.5.4)

2.6 Modelling time to failure

In this context, it is essential for various reliability specific modelling features to

be included before the calculus we define above could be made practically imple-

mentable. The analysis of failure and maintenance data also concerns about mod-
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Figure 2.10: The bathtub curve [Bicen, 2015]

elling failure rates or lifetime [Bedford et al., 2001]. So we next demonstrate how the

semantics of CEGs can be applied for this purpose and how the lifetime is affected

by various interventions.

2.6.1 The semi-Markov process

The CEG is flexible in modelling the failure time of the machine. Barclay et al.

[2015] introduced holding time distributions to the CEG so that the holding time

depends only on the current and the receiving positions. In an event tree, let hwm

denote the holding time for situation w ∈ ST just before transitioning to a child

vertex of it along the mth emanating edge of w. Note that not every edge in the

tree has an associated transitioning time. Some florets represent classifications,

such as component names, then the associated edges are not assigned holding time

distribution. If the mth emanating edge of w has holding time, denoted by ewm ∈
E†, then we assume that this is drawn from a distribution with parameters ρwm:

hwm ∼ fwm(h;ρwm).

Under the assumption of the holding time being dependent only on the cur-

rent and the next state, the CEG links directly to a semi-Markov process [Barclay

et al., 2015]. Let Qwm(h) represent the renewal kernel by with transition probabili-

ties θwm and holding times distribution fwm(h,ρwm):

Qwm(h) = θwmfwm(h;ρwm). (2.6.1)

There are various choices for holding time distributions. Previous work

[Shenvi and Smith, 2018; Shenvi et al., 2018] used Weibull holding time and consid-

ered Weibull-Inverse-Gamma conjugacy in a Bayesian setting. Then for e ∈ E†, let

he ∼Weibull(βe, ηe), where βe is the shape parameter and ηe is the scale parameter.

According to Bedford et al. [2001], the bathtub effect should be taken
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care of when modelling the failure time. This theory divides the life of equipment

into three periods depending on the characteristics of the failure rate: early failures,

random failures, and worn-out failures [Lienig and Bruemmer, 2017]. The first phase

is the early life of new equipment. New equipment usually starts with a very high

failure rate associated with poor manufacture or poor installation. The random

failures refer to the period with constant failure rate. The failure rate then starts

to rise again when the equipment suffers significantly from aging and degradation

when approaching the end of service life. The failure rate of equipment during its

service life can then be plotted, see Figure 2.10, which has a shape like a bathtub.

The Weibull distribution is flexible for modelling a varying hazard [Bedford

et al., 2001]. Lienig and Bruemmer [2017] also indicated that the summation of three

Weibull functions for the three periods respectively can approximate the bathtub

curve. We can let βe < 1 for early failures, βe = 1 for random failures and βe > 1 for

worn-out failures. In contrast, an exponential distribution can only model constant

failure rate for equipment that does not experience wearing out until long after the

expected life [Lienig and Bruemmer, 2017].

In reliability engineering, however, we are more interested in time-to-failure.

From engineers reports, we can only observe the time between two consecutive

failures, time between two consecutive maintenance and the maintenance time. We

do not learn directly about the time spent in each phase of lifetime. If the CEG

portrays the system of a single piece of equipment, then the total holding time

assigned to the edges along a failure path represents the time-to-failure for the

equipment. If the root node represents age zero, then the total holding time modelled

on λ is the lifetime of the equipment. For any deteriorating path λ ∈ ΛnC , the total

holding time modelled on this path is the time-to-maintenance. Let E†λ ⊆ Eλ denote

the set of edges lying along λ with holding time. Then the total time along path λ

is hλ =
∑

e∈E†λ
he.

However, the distribution of the sum of Weibull random variables does not

have a closed form. So if we assign each edge a Weibull holding time, then it is hard

to compute the probability density function of the holding time of a whole path.

Here we have two alternative ways to solve this problem:

1. assign a Weibull density to each root-to-leaf path instead of a single edge,

where we set hλ ∼Weibull(βλ, ηλ);

2. use a Gamma holding time for each edge for computation simplicity so that

the sum of the holding time along a path has a closed-form density.
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For the first proposal, the probability density function is

f(hλ) =
βλ
ηλ
hβλ−1
λ exp(−

hβλλ
ηλ

). (2.6.2)

To perform a conjugate analysis, we adopt the assumption made by [Shenvi and

Smith, 2018] to fix the shape parameter βλ and assign an Inverse-Gamma prior to

the scale parameter ηλ so that ηλ ∼ InverseGamma(ζλ, µλ), where the µλ is the

scale parameter and ζλ is the shape parameter,

f(ηλ) =
µζλλ

Γ(ζλ)η
ζλ+1

λ

exp(−µλ
ηλ

). (2.6.3)

It then follows that the posterior of ηλ is InverseGamma(ζλ+, µλ+). The hyper-

parameters are updated by ζλ+ = ζλ + nλ, where nλ is the number of units whose

failure or deteriorating processes are modeled on λ, and µλ+ = µλ+
∑nλ

l=1 h
βλ
λl , where

hλl is the time-to-failure or time-to-maintenance of the lth unit in the nλ units.

For the second proposal, a Gamma distribution is popular in modelling the

lifetime in either reliability engineering or health sciences. We can assign a Gamma

holding time to e ∈ E†λ for λ ∈ ΛC with shape parameter ξe and rate parameter

ρλ, he ∼ Gamma(ξe, ρλ). The sum of Gamma variables is still Gamma, then hλ ∼
Gamma(ξλ, ρλ) where ξλ =

∑
e∈E†λ

ξe. A Gamma-Gamma conjugate inference can

be employed here to estimate the parameters. Assume that ξe is known for every e ∈
E† and ρλ has a Gamma prior ρλ ∼ Gamma(g1, g2). Then the posterior of it is still

Gamma. Let g1+, g2+ denote the hyperparameters. Then g1+ = g1 +
∑

λ∈ΛC
nλξλ

and g2+ = g2 +
∑nλ

l=1 hλl. In this case, we can still focus on any edge’s holding time

and could manipulate its distribution easily. Note that ξe > 1 models a increasing

failure rate, while ξe < 1 models a decreasing failure rate and ξe = 1 models a

constant failure rate. Therefore we can still approximate the bathtub curve by

assigning appropriate shape parameters of edges along the root-to-sink paths. In

this case, we should have the sum of the shape parameters ξλ > 1.

Shenvi and Smith [2018] revised the definition of position when holding time

distributions are assigned to edges. Two edges are defined to be in the same cluster

c ∈ C if the two edges have the same holding time distribution, where C denotes

the set of clusters. Edges in the same cluster are coloured the same. Then for

situations vi, vj ∈ ST in the same stage, if T (vi) and T (vj) are isomorphic in terms

of structure and colouring of both edges and vertices. We can simply adopt this

idea whilst modeling holding times with a Gamma distribution instead. When we

only model the time along the whole root-to-sink path on the tree by the Weibull,
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the paths that share the same Weibull time distribution can be coloured the same.

The definition of positions by Shenvi and Smith [2018] can then be directly used to

determine the topology of the CEG.

2.6.2 Effects of an intervention on time to failure

For a repairable system, Kijima [1989] and Guessoum and Aupied [2010] have shown

that the PM impacts equipment’s aging. In particular, the maintained equipment is

“rejuvenated”. When modelling the lifetime of a repairable system by the bathtub

curve, we can directly visualise the effect of such maintenance on the failure rate

and lifetime. This is shown in Figure 2.10 [Bicen, 2015]. The curve representing

the worn-out period is shifted towards right as a result of the PM so that the rising

failure rate is decelerated and the worn-out period before failure is extended. This

plot shows that the scheduled inspection often takes place before wearing out to

prevent accelerated failure rate.

Here we have adapted the Arithmetic Reduction of Age (ARA) model

[Doyen and Gaudoin, 2004] for modelling the residual lifetime of the system after

maintenance. This class of model is designed to evaluate the efficiency of the main-

tenance in terms of the virtual age of the system, which is a positive function of

the observed real age [Kijima, 1989; Doyen and Gaudoin, 2004]. The ARA model

assumes that the virtual age of the maintained equipment is discounted due to the

PM.

Let Ts represent the failure time of an equipment with observed age s. Let

the cumulative distribution function of the failure time of an AGAN equipment be

F (t) = P (T0 ≤ t). (2.6.4)

Then the survival function is

P (Ts > t) =
1− F (s+ t)

1− F (s)
. (2.6.5)

In an idle CEG system, when there is no intervention and the machine is AGAN and

not degraded, the real age of the machine is 0. The failure time for the idle system

is then T0. The total holding time Hλ of a root-to-sink path λ ∈ ΛC associated to

the equipment has the same distribution as T0 conditional on the particular failure

process represented by λ, denote it by T λ0 . This means Hλ
d
= T λ0 , or equivalently,

P (Hλ > t) = P (T λ0 > t) = 1− Fλ(t), (2.6.6)
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where Fλ(t) is the reliability distribution given failure process λ. In this section, we

simply explain the effect on Weibull lifetime.

Suppose the routine maintenance is scheduled to take place at times {m1,m2, ....}
for an equipment. Assume that at each time, a set of units of this equipment are

inspected and maintained. Suppose at time mi when the ith maintenance is con-

ducted, the age of the targeted equipment is τ . We introduce a new parameter

ξ ∈ [0, 1] for the system to represent the degree of repair after the routine interven-

tion [Kijima, 1989; Guessoum and Aupied, 2010]. Kijima [1989] defined the degree

of repair so that ξ = 1 corresponding to a minimal repair while ξ = 0 correspond-

ing to a perfect repair. The former returns the status of the maintained part to

a functioning condition just prior to the repair while the latter returns the status

of the maintained part to AGAN [Barlow and Proschan, 1996]. If the equipment

is remedied, the status of the equipment is returned to AGAN. So after the reme-

dial intervention, ξ = 0. If the equipment is worn-out but not maintained, then

ξ = 1. If there is a routine intervention, then ξ could be any value between 0 and

1. For the sequence of maintenance, we can define the degree of repair ξi ∈ [0, 1] for

the maintenance taking place at mi. In this thesis, we only focus on the one-time

maintenance and its corresponding ξ. In the last chapter, we will briefly discuss the

extension to dynamic process.

The preventive maintenance aims to extend the lifetime of the equipment

instead of fixing the defect of the equipment and it is scheduled in advance. We

assume that the degree of repair does not depend on the observed process, i.e. ξ is

independent of λ. Kijima [1989] and Guessoum and Aupied [2010] defined the virtual

age after the maintenance to be a function of the real age τ and ξ. Specifically, after

the maintenance, the equipment is rejuvenated with a virtual age ξτ . The post-

intervened time to failure distribution, i.e the residual lifetime distribution, is:

P (T λξτ > t) = P (Hλ > t|Hλ > ξτ). (2.6.7)

Let Ĥλ denote the post-intervened time to failure for failure process λ. It then has

the same distribution as T λξτ : Ĥλ
d
= T λξτ . We can evaluate the reliability of the

maintained equipment by:

P (Ĥλ > t) = P (T λξτ > t) =
1− Fλ(t+ τξ)

1− Fλ(τξ)
. (2.6.8)
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Figure 2.11: Comparing failure time density between idle system and the intervened
system on a Weibull toy example.

If we use a Weibull lifetime for each path, then the reliability is

P (Ĥλ > t) = exp(−(t+ ξτ)βλ

ηλ
+

(ξτ)βλ

ηλ
). (2.6.9)

The post-intervened density of failure time is then

f̂λ(t) =
βλ
ηλ

(t+ τξ)βλ−1exp(−(t+ τξ)βλ

ηλ
+

(ξτ)βλ

ηλ
). (2.6.10)

This is still conjugate to the InverseGamma distribution so that the hyperparameters

in posterior are ζλ+ = ζλ + nλ and µλ+ = µλ +
∑nλ

l=1(hλl + ξτ)βλ − (ξτ)βλ .

Figure 2.11 gives a toy example on time-to-failure modelled by Weibull(2, 1).

The red line plots the density of holding time for idle system. Assume the engineer

arranges a routine repair on this equipment when it is 1 year old. Let the degree

of repairing be ξ = 0.5. The virtual age is shortened to 0.5 after the repair. The

residual lifetime density using formula in equation (2.6.2) is plotted by the blue

curve. If no intervention takes place, then the residual reliability is conditional on

the real age 1, whose density is plotted in green in the figure. Due to the gain of

life from the routine intervention, the residual life density curve shifts towards right

compared to the no-intervention curve and the failure rate is decelerated by the

routine intervention.
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2.6.3 Learning the CEG taking account of lifetime

The log-likelihood score for a CEG C can be decomposed into the score of transitions

along the paths and the score of holding time:

logQ(C) =
∑
u∈UT

logQui(θ; C)︸ ︷︷ ︸
score of transition

+
∑
λ∈ΛC

logQλi(h; C)︸ ︷︷ ︸
score of time

. (2.6.11)

If we have Weibull time assigned to the whole path, then the log-likelihood score

of a CEG has a closed form due to Weibull-InverseGamma conjugacy. The score of

time has the expression:∑
λ∈ΛC

logQλi(h; C) =
∑
λ∈ΛC

ζλ logµλ − ζλ+ logµλ+ + log Γ(ζλ+)− log Γ(ζλ). (2.6.12)

We can learn the CEG from the intervened data with log-likelihood score:

log Q̂(C) = log Q̂(θ; C) + log Q̂(h; C), (2.6.13)

We have demonstrated how to take into account the stochastic manipulations

in Section 2.5. We can also use the residual lifetime distribution after intervention

introduced in Section 2.6.2 when learning the CEG with holding times. For the

example of the Weibull lifetime, we have

log Q̂(h; C) =
∑
λ∈ΛC

ζ̂λ log µ̂λ − ζ̂λ+ log µ̂λ+ + log Γ(ζ̂λ+)− log Γ(ζ̂λ), (2.6.14)

where µ̂λ = µλ, µ̂λ = µλ, ζ̂λ+ = ζ̂λ + nλ, µ̂λ+ = µ̂λ +
∑nλ

l=1(hλl + ξτ)βλ − (ξτ)βλ .

In summary, so far we have developed causal algebras for two novel types of

interventions in the domain of reliability: the remedial intervention and the routine

intervention. We have demonstrated how the lifetime of the machine is modelled on

the CEG and how it is affected by the domain-specific interventions. On the basis

of these developments, we have shown how to incorporating the causal algebras of

the domain-specific intervention and the casual effects on lifetime to improve the

learning algorithm of the CEGs. Next, we will focus on the text data and work on

applying the CEG for embedding the causal relationships which can be extracted

from the free texts.
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Chapter 3

A Hierarchical Causal Model

This chapter will provide a fruitful discussion on the application of the CEG to sys-

tem reliability. In Chapter 1, we gave an example of the engineering reports. The

insights gained from data exploration provoked us into designing generic method-

ology to systematically extract and embed the causal dependencies which are im-

plicitly encoded within the engineering reports. In this chapter, we will develop an

innovative hierarchical model, called the Global net-Chain Event Graph (GN-CEG)

model, to fulfil this task. This framework has a causal network called the Global

Net (GN) at its surface level and a causal CEG at the deepest level.

This research focuses on one time maintenance activities which were demon-

strated in the previous chapter. However the proposed model can be extended to

model the dynamic process of maintenance and failures by having a reduced dy-

namic CEG [Shenvi and Smith, 2018] at the deepest level. We will briefly discuss

this in the last chapter of this thesis.

Section 3.1 draws up a blueprint for projecting natural language texts onto

a causal CEG and gives an overview of the two steps required for building up the

proposed GN-CEG model: preprocessing and causality embedding. We also estab-

lish the new concepts that are essential in this theoretical framework to transform

the text embeddings for causal inference. Section 3.2 decomposes the preprocessing

step to show how the causally related events can be extracted from each document.

We introduce a transparent and simple way to construct the GN and formalise the

link between the GN and the documents. In Section 3.3, we explain how a CEG

can be applied to provide a platform for further embedding the causal relationships

from the GN.

In this chapter, we restrict the discussion to the data in absence of missing-

ness. This equivalently assumes that every event or variable is observable.
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3.1 The GN-CEG model

In Chapter 2, we emphasised the advantages of using CEGs in representing the

unfolding of failure processes and deteriorating processes for system reliability. Here

we proceed to design a new framework to automate the process of causal discovery

from maintenance logs on a CEG so that the domain-specific interventions defined

in the previous chapter can be well supported [Yu and Smith, 2021c]. This consists

of a hierarchical model with two layers which we call it the GN-CEG model.

Figure 3.1 demonstrates the architecture of this framework. Given the text

descriptions in the maintenance logs, we first construct the surface layer of the model

by the preprocessing step. This is a causal network called the Global Net (GN).

The deeper layer of the model is a causal CEG.

Engineers
reports

Core events

Global Net

CEG

σ

ψ

χ

1. Phrase parsing

2. Causality mention extraction

3. Causal phrase extraction

4. Abstract causal event extraction

5. Temporally ordered event extraction

6. Core event extraction

Shallow causal
dependency

Deeper causal
dependency

Step 1. Preprocessing

Step 2. Causality embedding

NLP

Figure 3.1: The proposed hierarchical causal framework.

Let D0 represent all documents we pick for a specific context, for example

the faults related to a specific system. We select documents from D0 that have

implicit or explicit causal patterns and implement basic text cleaning on them to

obtain a dataset D, such as removing grammar mistakes, replacing abbreviations

and spelling mistakes etc. Let ND denote the number of documents in D. If the

dth document consists of a sequence of Nd words, then we denote this document

by ωd = (ωd1, ..., ωdNd) ∈ D, where ωdj denotes a word in this document. For each

selected document, we make the following assumption for the model we built.

ASSUMPTION 3.1.1. Each document describes a single failure process or dete-

riorating process of equipment. Each document may have more than one sentence.
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We have defined in the previous chapter that each root-to-sink path on

the CEG portrays either a failure process or a deteriorating process depending on

whether it terminates in wf∞ or wn∞. Therefore, on the basis of this feature and As-

sumption 3.1.1, we can expect each document ωd to be associated with a root-to-sink

path λ ∈ ΛC on the CEG. We express this as a map

∆ : (ωd,Ω) 7→ λ. (3.1.1)

The required parameters set Ω will be carefully defined in the next section. First,

in what follows, we give an overview of how to decompose this map according to

the procedures depicted in Figure 3.1.

We first propose a new natural language processing (NLP) algorithm to pre-

process the text descriptions in the engineering reports. Section 3.2 will explain

this NLP algorithm step by step. By employing this text mining technique, we

aim to extract the causally related events from texts using linguistic patterns. The

extracted events here are called the core events, denoted by ud = {ud,1, ..., ud,nud}
for document d and nud ∈ Z+, nu > 1. Let πud denote the partial ordering of the

extracted core events. Note that the core events include both the events that have

happened and eventually led to a failure and the maintenance that is undertaken.

Let UD denote the set of all core events for dataset D and ΠD denote all possible

orderings over these core events. Using the proposed NLP algorithm, we can ex-

tract a set of ordered core events for the dth document, denoted by (ud, πud). This

procedure can be represented by a function:

σ : (ωd,ΩNL) 7→ (ud, πud), (3.1.2)

where ΩNL ⊂ Ω is a subset of parameters that are required for core events extraction.

The codomain of σ is UD ×ΠD.

To order these core events in a consistent way, we design a new causal

graphical framework, the GN, to register the partial orderings. The structure of

the GN is assumed to be a directed acyclic graph (DAG) in this thesis, denoted

by G∗ = (V ∗, E∗). The vertex set V ∗ corresponds a set of variables constructed

from the core events. We call these variables the core event variables, and de-

note them by L = {L1, · · · , LnL}. Each directed edge e ∈ E∗ connects a cause

Vi ∈ V ∗ to its effect Vj ∈ V ∗. The causal relationships embedded within a GN are

based on linguistic patterns. We therefore call such causal relations the shallow

causal dependency. We will establish a systematic way to match each docu-

ment ωd to ld = {ld1, · · · , ldm}, which are the values of the core event variables
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Ld = {Ld1, · · · , Ldm} ⊆ L. We can find the vertices on the GN corresponding to

Ld, denoted by Vd. Let Gd = (Vd, Ed) denote a subgraph of the GN. The edge ev,v′

is in Ed if v, v′ ∈ Vd and ev,v′ ∈ E∗. From this graph we can read the order of the

core event variables Ld from Gd. Let

Γ : (ωd,ΩNL) 7→ ld. (3.1.3)

To properly define this map, given the map σ, we need to formally define a map

from (ud, πud) to ld:

ψ : (ud, πud) 7→ ld. (3.1.4)

Then the map Γ can be written as a composition Γ = ψ ◦ σ.

Though causal semantics represented on the GN embed the shallow causal

relations, some more complex relations between events raised in reliability cannot

be well-modelled by a GN alone. Therefore in our proposed framework we have one

more layer to embed the causally related core events further onto a more refined CEG

in order to better understand the causal dependency beyond the causal relations

deduced from syntactic or semantic patterns. We call the causal dependency that

can be read from the CEG the deeper causal dependency to distinguish these

from the shallow causal dependency represented on the GN. In Section 3.3, we will

specify a method to transform the shallow causal dependency to the deeper causal

dependency. In particular, we aim to match every ld to a root-to-sink path on the

CEG by

χ : (ld,ΩNC) 7→ λ, (3.1.5)

where ΩNC denotes the set of parameters required here for projecting a subgraph

G on the GN onto a path on the CEG. Then Ω = {ΩNL,ΩNC} and the function to

map a document onto a latent path is ∆ = χ ◦ Γ.

Note that the GN is constructed and extracted from observations so it is ob-

servations based and therefore explicitly acknowledged as a pre-processing step. The

conditional independence relationships between core event variables are extracted

from engineers texts. By contrast, at the deepest layer, according to how much

domain knowledge is provided, we may have

1. a CEG whose topology is completely known,

2. a set of candidate structures of the CEG, but which best fits the data needs

to be inferred,

3. an event tree and we need to design an algorithm to select the best structure
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of the CEG.

Suppose we need to learn the path λ on the CEG for ld by designing an algorithm

given the hierarchical architecture, then the first case is the simplest because we can

skip the steps to compare structures, which is required by the second case, or to

search over all possible structures, which is required by the third case. This thesis

only focuses on the simplest scenario to lay the foundation for the future research.

The first scenario assumes the full topology of the CEG is completely known, so the

following information is required to be informed from background knowledge or be

provided by domain experts:

1. the sequences of d-events that might lead to a system failure or happen before

maintenance when the failure has not been observed yet,

2. the conditional independence relationships between these d-events.

The first piece of information allows us to build the event tree and we assume this is

the ground truth event tree for the selected system. The second piece of information

listed above allows us to elicit the stages and so the CEG can be constructed.

Then we assume a priori that this elicited CEG is causal through which the causal

relations between conditional events are given by the structure. Having a ground

truth structure lying at the deeper layer of the model enables us to avoid the model

being completely dependent on the observations, especially when the dataset is

insufficient for providing the information about every possible failure or deteriorating

process of the selected system. So in this case, unlike the GN, the conditional

independence relationships defined on the CEG are not extracted from engineers

reports. Note here that the ground truth tree can encapsulate those unobserved

events and the events have not happened yet when collecting the dataset D which

are known to domain experts. Therefore, the use of CEG cannot only provide richer

semantics for representing the causal relationships but also fill the gap between what

we observe and what could happen. This is one of the reasons that this proposal is

supported by two layers.

In Section 3.2, we shows how to transform each document wd to ld. In

Section 3.3, we formalise the probability p(ld|λ) where ld is treated as observations

while the edges or the positions traversed by the root-to-sink path λ are treated as

hidden states.
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Table 3.1: Notations for embedding shallow causal dependency

ωd the dth document
ud the core events extracted for the dth document
πu the partial causal order of the core events u
L the core event variables constructed from the core events

extracted from D
∆ the map projecting from a document onto a root-to-sink

path on the CEG
Ω the set of parameters required for learning latent paths on

the CEG for documents
ΩNL the set of parameters required for extracting causally or-

dered core events from documents
Ωr the set of grammar rules for phrase parsing
Ωs the set of linguistic patterns for extracting causality men-

tions
ΩNC the set of parameters required for learning latent paths on

the CEG for subgraphs on the GN
σ the map projecting from a document onto a set of ordered

core events
Γ the map projecting from a document onto a set of values of

the core event variables represented on the GN
ψ the map projecting from each document’s ordered core

events onto a set of values of the core event variables repre-
sented on the GN

χ the map projecting from a a set of values of the core event
variables represented on the GN onto a root-to-sink path on
the CEG

α the map implementing phrase parsing
β the map implementing causality mention extraction
γ the map implementing causal phrase extraction
ι the map implementing abstract causal events extraction
µ the map implementing temporally ordered events extraction
φ the map implementing core events extraction
Ξ the map that finds a core event variable for each core event
A word indices of phrases
B word indices of causality mentions
C word indices of causality phrases
K word indices of abstract causal events
ξ word indices of temporally ordered events
Σ word indices of core events
s sentence indices
τ part-of-speech tags
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3.2 Shallow causal dependency

In this section, we decompose the map Γ to show how to match a document to the

values of a set of core event variables depicted on the GN. Beginning with defining

the NLP algorithm devised for core events extraction using the function σ in Section

3.2.1, we then give an example of the GN and demonstrate how to construct this

in Section 3.2.2. This is followed by formulating the function φ that maps the core

events of each document to a set of ordered core event variables. The notations used

in this section are listed in Table 3.1.

3.2.1 Core events extraction

We first specify the parameters ΩNL required for the functions Γ and σ for text

processing. Let ΩNL = {Ωr,Ωs}, where Ωr denotes the grammar rules and Ωs

denotes a set of linguistic causal patterns. Specifically, Ωr is a set of grammar

rules defined in order to parse a sentence into noun phrases or verb phrases. For

example, a noun phrase can be define as “determinator (if exists) + adjective

+ noun(s)”. The linguistic causal patterns Ωs are defined as a set of R tuples

{(ωC , < ωA,ωB >, rωC (ωA,ωB))}. Here ωC = (ωC1 , · · · , ωCnC ) is a vector of words

that represents a causal connective, where the subscript C is a set of word indices

C = {C1, · · · , CnC}. The pair < ωA,ωB > is a pair of events in a sentence that are

connected by ωC , where ωA = (ωA1 , · · · , ωAnA ) with index set A = {A1, · · · , AnA},
and ωB = (ωB1 , · · · , ωBnB ) with index set B = {B1, · · · , BnB}. The causal relation-

ship between ωA and ωB is determined by rωC (ωA,ωB). For example, the causal

connective ωC is the word “after” in a sentence “After leakage, the system is out-of

service.” Then ωA is “leakage” and ωB is “the system is out-of service”. In this

case we can let rωC (ωA, sB) be the rule that ωA is a cause of ωB as long as ωA does

not start with a number and express the ordered events as ωA ≺ ωB. Note that we

always assume that a cause happens before its effects. This assumption is also

critical in our proposed NLP algorithm.

Now we establish an innovative algorithm, represented by the function σ,

for extracting causally ordered core events. This algorithm has developed from two

established methods [Chambers et al., 2014; Zhao et al., 2017] for extracting ordered

events that have been briefly reviewed in Section 1.2. Our algorithm adapts some

ideas of Zhao et al. [2017] to parse a sentence into events depending on simple

causal patterns and combines these ideas with the CAEVO programming developed

by Chambers et al. [2014] to extract temporally ordered events. The innovation of

our algorithm lies in supplementing the causal relations encoded within a sentence
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with the temporal relations that are implicitly causal [Yu and Smith, 2021c]. The

algorithm can be decomposed into a sequence of steps:

1. phrase parsing,

2. causality mention extraction,

3. causal phrase extraction,

4. abstract causal event extraction,

5. temporally ordered event extraction,

6. core event extraction.

Now we demonstrate each step in detail.

Step 1. Phrase parsing. Given the predefined grammar rules Ωr, for each

ωd = (ωd1, · · · , ωdNd), we split the document into sentences. Then we tokenize each

sentence into word tokens and find the part-of-speech of each word token in each

sentence. Next we check whether there is a match between the parts of speech and

the grammar rules. Let ωAd = {ωAd1 , ...,ωAdn} denote the set of n noun phrases or

verb phrases extracted from each document. Each phrase ωAdj
, j ∈ {1, · · · , n}, is a

subvector of ωd. The subscript Adj is a subset of consecutive word indices in the dth

document so that Adj = {aj1, · · · , ajm} ⊆ {d1, · · · , dNd}. Then Ad = {Ad1, ..., Adn}
is a set of phrases indices.Our next step is to define a map α to parse a document

into phrases:

α : (ωd,Ωr) 7→ (ωAd , sAd , τAd). (3.2.1)

The output of this map sAd = {sAd1 , · · · , sAdn} is a set of sentence indices, where

sAdj
is the sentence index for the phrase wAdj

. This function also returns the part-

of-speech (POS) tag for each word in each extracted phrase. Denote the set of POS

tags for the dth document by τAd = {τAd1 , · · · , τAdn}, where τAdj
= {τj1, · · · , τjm} is

the set of POS tags of word tokens in ωAdj
. The pseudo-code for this step is given

in Algorithm 1.
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Algorithm 1 Phrase parsing using α

Input: wd, Ωr

Output: ωAd , sAd , τAd

1: Split the document ωd into sentences (ωd1, ...,ωdJ)

2: ν = 1

3: for i = 1 to J do

4: Tokenize ωdi into words sequence (ωi1, ..., ωini)

5: Find the part-of-speech tags associated with ωdi, denoted by (τi1, · · · , τini)
6: l = 1

7: while l ≤ ni do

8: if the consecutive tags (τl, τl+1, ..., τl+u) ⊆ (τi1, · · · , τini) match a rule in

Ωr, then

9: (ωl, ..., ωl+u) is a chunk of words that compose a noun/verb phrase

10: Adν = (l, ..., l + u), sAdν = i, τAdν = (τl, τl+1, ..., τl+u)

11: end if

12: l← l + u+ 1

13: ν ← ν + 1

14: end while

15: end for

16: Ad = {Ad1, ..., Adn}, where n = ν − 1

17: ωAd = {ωAd1 , ...,ωAdn}
18: sAd = {sAd1 , ..., sAdn}, τAd = {τAd1 , ..., τAdn}

Example 7. Here we give an example of extracting the core events from a single doc-

ument that has one sentence: ω =“Environment or pollution caused coating

defect in the low-voltage bushing showing blue phase - low-voltage bushing

and high-voltage bushing requires painting.”

The phrases parsed from ω by the function α are: ωA = {environment,
pollution, coating defect, the low-voltage bushing with blue phase, low-voltage

bushing, high-voltage bushing requires painting}. There are 5 phrases ex-

tracted from this document, where A1 = {1}, A2 = {3}, A3 = {5, 6}, A4 = {8, 9, 10, 11, 12, 13}, A5 =

{14, 15}, A6 = {17, 18, 19, 20}.

Step 2. Causality mention extraction. Inspired by Zhao et al. [2017],

we next use the predefined linguistic patterns Ωs to extract cause-effect event pairs.

We call such causally related events the causality mentions [Zhao et al., 2017]. If
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there is more than one pattern in Ωs satisfied within a sentence, then multiple pairs

of causality mentions are extracted for this sentence.

Let ωBd = {(ωBd1,1 ,ωBd1,2), · · · , (ωBdm,1 ,ωBdm,2)} denote the set of paired causal-

ity mentions extracted from the dth document, whereBd = {(Bd
1,1, B

d
1,2), · · · , (Bd

m,1, B
d
m,2)}

is the set of word indices of the extracted causality mentions. The causality men-

tions within a parenthesis are ordered as (cause,effect). Each causality men-

tion ωBdj,k
, j ∈ {1, · · · ,m} and k ∈ {1, 2}, is a subvector of ωd with word indices

Bd
j,k = {bj , · · · , bjl} ⊆ {d1, · · · , dNd}. Let β be a map implementing this procedure.

We then have that

β : (ωd,Ωs) 7→ (ωBd , sBd , τBd). (3.2.2)

As for α, this map also outputs the sentence index for each causality mention,

denoted by sBd = {(sBd1,1 , sBd1,2), · · · , (sBdm,1 , sBdm,2)}, and the corresponding POS

tags τBd = {(τBd1,1 , τBd1,2), · · · , (τBdm,1 , τBdm,2)}. Algorithm 2 below gives the pseudo-

code for β.

78



Algorithm 2 Causality mention extraction using β

Input: ωd, Ωs

Output: ωBd , sBd , τBd

1: Split the document ωd into sentences (ωd1, ...,ωdJ)

2: ν = 1

3: for j = 1 to J do

4: Tokenize ωdj to (ωj1, · · · , ωjmj )
5: Tag the parts of speech by (τj1, · · · , τjnj )
6: for l = 1 to R do

7: if the lth pattern (ωC,l, < ωA,l,ωB,l >, rωC,l(ωA,l,ωB,l)) in Ωs is matched

then

8: Extract the two events: ωA,l = (ωjl1 , · · · , ωjlA) with POS tags τA,l =

(τjl1 , · · · , τjlA) and ωB,l = (ωjl1 , · · · , ωjlB ) with POS tags τB,l = (τjl1 , · · · , τjlB )

9: if rωC,l(ωA,l,ωB,l) = ωA,l ≺ ωB,l then

10: ωBdν,1
= ωA,l,ωBdν,2

= ωB,l, τBdν,1
= τA,l,τBdν,2

= τB,l

11: else

12: ωBdν,1
= ωB,l,ωBdν,2

= ωA,l, τBdν,1
= τB,l,τBdν,2

= τA,l

13: end if

14: sBdν,1
= sBdν,2

= j

15: ν ← ν + 1

16: end if

17: end for

18: end for

19: ωBd = {(ωBd1,1 ,ωBd1,2), · · · , (ωBdm,1 ,ωBdm,2)}, where m = ν − 1

20: τBd = {(τBd1,1 , τBd1,2), · · · , (τBdm,1 , τBdm,2)}
21: sBd = {(sBd1,1 , sBd1,2), · · · , (sBdm,1 , sBdm,2)}

Example 8. Continue with the document in Example 7, ω =“Environment or

pollution caused coating defect in the low-voltage bushing showing blue

phase - low-voltage bushing and high-voltage bushing requires painting.”

The causal connectives in this sentence are “caused”, the dash, and “requires”.

The linguistic causal patterns that should be defined are {(caused,< ωA,ωB >,ωA ≺
ωB if “caused” is a past tense), (−, < ωA,ωB >,ωA ≺ ωB), (requires,< ωA,ωB >

,ωA ≺ ωB)}.
Applying the above algorithm gives paired causality mentions ωB = {(Environment

or pollution, coating defect in the low-voltage bushing showing blue phase

- low-voltage bushing and high-voltage bushing requires painting),(Environment
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or pollution caused coating defect in the low-voltage bushing showing blue

phase - low voltage bushing and high-voltage bushing, painting),(Environment

or pollution caused coating defect in the low-voltage bushing showing blue

phase,low voltage bushing and high-voltage bushing requires painting)}.

Step 3. Causal phrase extraction. In this step, we extract causal

phrases by combining the results from the previous two steps and refining the

causality mentions by the extracted noun/verb phrases. These causal phrases are re-

fined pairs of cause-effect events, denoted by ωCd = {(ωCd1,1 ,ωCd1,2), ..., (ωCdw,1
,ωCdw,2

)}
with word indices Cd = {(Cd1,1, Cd1,2), · · · , (Cdw,1, Cdw,2)}. Let γ be the map that re-

turns the causal phrases:

γ : (ωAd , sAd , τAd ,ωBd , sBd , τBd) 7→ (ωCd , τCd). (3.2.3)

The POS tags of the causal phrases are denoted by τCd . By this step, if a causal-

ity mention ωBdj,1
consists of phrases in ωAd so that there exist {Adj1, ..., Adjν} ⊆

Bd
j , then we collect causal phrases with indices {(Cdl1,1, Cdl1,1)..., (Cdlν,1, C

d
lν,2)} =

{(Adj1, Bd
j,2), ..., (Adjν , B

d
j,2)}. If there exists no phrase in ωAd that can be used to

refine a causality mention ωBdj,1
, then the corresponding causal phrase is just ωBdj,1

.

The implementation of this map is explained in Algorithm 3.

Algorithm 3 Causal phrase extraction using γ

Input: ωAd , sAd , τAd ,ωBd , sBd , τBd

Output: ωCd , τCd

1: p=1

2: for sentence j = 1 to J do

3: if sBdi,1
= sBdi,1

= j for some i ∈ {1, ...,m} then

4: Let As=j = {Adjl, ..., Adjν} be the sets of word indices of phrases in the jth

sentence

5: Let Bs=j = {(Bd
jk,1, B

d
jk,2), ..., (Bd

jι,1, B
d
jι,2)} be the sets of word indices of

causality mentions in the jth sentence

6: for (Bd
o,1, B

d
o,2) ∈ Bs=j do

7: Aj,o,1 = ∅,Aj,o,2 = ∅
8: for Al ∈ As=j do

9: if Al ∈ Bd
o,1 then

10: Aj,o,1 ← {Aj,o,1, Al}
11: end if
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12: if Al ∈ Bd
o,2 then

13: Aj,o,2 ← {Aj,o,2, Al}
14: end if

15: end for

16: if Aj,o,1 = ∅,Aj,o,2 = ∅ then

17: (Cdp,1, C
d
p,2) = (Bd

o,1, B
d
o,2)

18: p← p+ 1

19: end if

20: if Aj,o,1 6= ∅,Aj,o,2 = ∅ then

21: for A ∈ Aj,o,1 do

22: (Cdp,1, C
d
p,2) = (A,Bd

o,2)

23: p← p+ 1

24: end for

25: end if

26: if Aj,o,1 = ∅,Aj,o,2 6= ∅ then

27: for A ∈ Aj,o,2 do

28: (Cdp,1, C
d
p,2) = (Bd

o,1, A)

29: p← p+ 1

30: end for

31: end if

32: end for

33: end if

34: end for

35: ωCd = {(ωCd1,1 ,ωCd1,2), ..., (ωCdw,1
,ωCdw,2

)}, w = p− 1

36: τCd = {(τCd1,1 , τCd1,2), · · · , (τCdw,1 , τCdw,2)}

Some examples of the causal phrases extracted from the phrases given in

Example 7 and the causality mentions given in Example 8 are shown in the table in

Figure 3.2.

Figure 3.2: Some causal phrases extracted by the map γ.

Step 4. Abstract causal event extraction. Following the idea pro-
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posed by Zhao et al. [2017], we discover more general expressions of the paired

causal phrases by using the existing lexical database WordNet (WN) [Miller, 1995]

and VerbNet (VN) [Schuler, 2005] via the established natural language toolkit

NLTK [Loper and Bird, 2002]. The nouns or verbs in causal phrases obtained from

the previous step are picked and replaced by words with a more general meaning.

Specifically the nouns are replaced by their hypernyms in WN and the verbs are

replaced by their classes in VN respectively. The other words are removed when

constructing the abstract causal events.

Assume here that the corpus WN or VN are rich enough for our dataset

so that we can always find a replacement for a noun or a verb. Let vKd =

{(vKd
1,1
,vKd

1,2
), · · · , (vKd

w,1
,vKd

w,2
)} denote the set of paired abstract causal events

so that the word indices are Kd = {(Kd
1,1,K

d
1,2), · · · , (Kd

w,1,K
d
w,2)}, where Kd

i,j =

{kl1, · · · , klb} ⊆ Cdi,j for any i ∈ {1, · · · , w} and j ∈ {1, 2}. We represent this step

by the map

ι : (ωCd , τCd) 7→ vKd (3.2.4)

See Algorithm 4 for the pseudo-code.

Algorithm 4 Abstract causal event extraction using ι

Input: ωCd , τCd

Output: ωKd

1: for i ∈ {1, · · · , w} do

2: for j ∈ {1, 2} do

3: Let ω∗j denote the words in ωCi,j that are nouns or verbs. Let Ki,j denote

the word indices of ω∗j and Ki,j ⊆ Ci,j
4: for k ∈ Ki,j do

5: if τk = {noun} then

6: vk = hypernym(ωk) // this is to find the hypernym of the noun from WN

7: else

8: vk = class(ωk) // this is to find the class of the verb from VN

9: end if

10: end for

11: end for

12: end for

13: vK = {(vK1,1 ,vK1,2), · · · , (vKw,1 ,vKw,2)}

Some examples of the abstract causal events are displayed in Figure 3.3.

These are extracted from the causal phrases examples in Figure 3.2 by picking
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nouns and verbs and replacing them by their hypernyms and classes respectively.

Figure 3.3: Some abstract causal phrases extracted by the map ι.

Step 5. Temporally ordered event extraction. Chambers et al. [2014]

developed a methodology CAEVO to extract temporally ordered events. As re-

viewed in the first chapter, this programme returns pairs of verbs together with

labels of the temporal relation between each pair. Note here that we refine its

results by only selecting those pairs whose relations are either annotated as “BE-

FORE” or “AFTER”. We also replace these verbs by their corresponding classes

in VN as we did in the previous step. We define a map to perform this step that

outputs the temporally ordered pairs of events vξd = {(vξd1,1 , vξd1,2), · · · , (vξdr,1 , vξdr,2)}
where ξdi,j ∈ {d1, · · · , dNd} for i ∈ {1, · · · , r} and j ∈ {1, 2}:

µ : ωd 7→ vξd . (3.2.5)

Algorithm 5 describes the construction of this map.

Algorithm 5 Temporally ordered event extraction using CAEVO

Input: ωd

Output: vξd

1: Run CAEV O(ωd) = {(ωfdi,1 , ωfdi,2), εi, si}i∈{1,...,q}, where ωfdi,1
, ωfdi,2

are a pair of

events with word indices (fdi,1, f
d
i,2) whose relation is given by εi. The sentence

index of this pair of events is si.

2: r = 0

3: for i = 1, · · · , q do

4: if εi = BEFORE then

5: r ← r + 1

6: ξdr,1 = fdi,1, ξ
d
r,2 = fdi,2, (vξdr,1

, vξdr,2
) = (class(ωξdr,1

), class(ωξdr,2
))

7: end if

8: if εi = AFTER then
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9: r ← r + 1

10: ξdr,1 = fdi,2, ξ
d
r,2 = fdi,1, (vξdr,1

, vξdr,2
) = (class(ωξdr,1

), class(ωξdr,2
))

11: end if

12: end for

13: vξd = {(vξd1,1 , vξd1,2), · · · , (vξdr,1 , vξdr,2)}

Step 6. Core events extraction. The final step is to refine the causally or-

dered events vKd by the temporally ordered event pairs vξd . Let vΣd = {(vΣ1,1 ,vΣ1,2),

· · · , (vΣg,1 ,vΣg,2)} denote the output of this step. So the set vΣd represents the

set of pairs of core events, where each pair of core events are causally ordered.

Given any (vξdi,1
, vξdi,2

) ∈ vξd , if this temporal relation does not contradict any ex-

tracted causal relation in vKd , then we assert (vξdi,1
, vξdi,2

) are causally ordered and

(vξdi,1
, vξdi,2

) ∈ vΣd . Here we assume the transitivity of causation is valid so that if A

causes B and B causes C, then A is an indirect cause of C. Note that there may

exist a pair of events (vξdi,1
, vξdi,2

) ∈ vξd whose temporal ordering given by CAEV O

contradicts their causal ordering given by Step 4. In this case, (vξdi,1
, vξdi,2

) /∈ vΣd ,

i.e. this temporal relation will not be output as a causal relation. This is because a

temporal ordering does not necessarily imply a causal relation between two events.

The core events for the dth document are ud = {ud,i}i={1,··· ,nud}, where each core

event ud,i simply corresponds to a sequence of word tokens vΣj,k ∈ vΣd and ud

denotes the set of the unique core events which can be define from vΣd . The set of

partial orderings of these core events is denoted by πud . This can be directly read

from vΣd . Then vΣd = (ud, πud). We let

φ : (vKd ,vξd) 7→ (ud, πud). (3.2.6)

Details of how to extract the causally ordered core events from the abstract causal

events and the temporally ordered events are clarified in Algorithm 6.

Algorithm 6 Core event extraction using φ

Input: vKd ,vξd

Output: ud, πud
1: vΣd = vKd

2: for i = 1, · · · , r do

3: if (ξi,1 ∈ Kj,1)&(ξi,2 ∈ Kj,2) = FALSE for every j ∈ {1, · · · , w} then

4: if there does not exist (ξi,1 ∈ Kj,1) and ξi,2 ∈ Kl,2 so that Kj,2 ≺ Kl,1 or

Kl,1 ≺ Kj,2 by transitivity for j, l ∈ {1, · · · , w} then
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5: vΣd 7→ {vΣd , (vξi,1 , vξi,2)}
6: end if

7: end if

8: end for

9: vΣd = {(vΣ1,1 ,vΣ1,2), · · · , (vΣg,1 ,vΣg,2)}
10: i = 1, ud,1 = vΣ1,1

11: for v′ ∈ vΣd do

12: i← i+ 1

13: if v′ 6= ud,j , for all j < i then

14: ud,i = v′

15: end if

16: end for

17: πud is the set of paired relations given in vΣd

Example 9. For the document given in Example 7, the CAEVO software only out-

putted one pair of events: (caused,requires). The relation between these events

was “VAGUE”. So this pair of events were not added to the abstract causal phrases

as a cause-effect pair and were not treated as a pair of core events. The core events

u were just defined from the abstract causal events.

Recall that the map σ is defined for extracting causally ordered core events

from a document. We can now write this map as a composition of the functions

defined above:

σ(ωd,ΩNL) = φ(ι(γ(α(ωd,Ωr), β(ωd,Ωs))), µ(ωd)). (3.2.7)

PROPOSITION 3.2.1. The mapping σ is well-defined but not invertible.

Proof. (1) To prove σ is well-defined, we need to show that:

• there exists a set of causally ordered core events associated with every docu-

ment,

• this set of causally ordered core events is unique.

To validate the first condition, we show that for any document ωd ∈ D, there

exists u ∈ UD and πu ∈ ΠD so that (ωd,u, πu) ∈ σ.

We first consider the first three steps described above. The causal phrases

are the ordered noun phrases or verb phrases, which are extracted from the paired

causality mentions. So as long as the phrases ωAd can be parsed from the document
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and the set of causality mentions ωBd are not empty, then the causal phrases ωCd

are always identifiable. Thus,

Ad 6= ∅,Bd 6= ∅ =⇒ Cd 6= ∅. (3.2.8)

Every selected document has causal patterns, so Bd 6= ∅. And each document

contains at least one full sentence, so Ad 6= ∅. Then Cd 6= ∅ for every document.

Therefore, we can always extract causal phrases from each document.

Any extracted causal phrase is either a noun phrase or a verb phrase. So by

reading the POS tags, we can always identify the nouns and verbs from the extracted

causal phrases. Since we assume that the corpus of WN and VN are sufficiently large

for our dataset so that the nouns and verbs appearing in the extracted causal phrases

can be identified in these two databases, the abstract causal events ωKd can always

be extracted using Algorithm 4 . Hence,

Cd 6= ∅ =⇒ Kd 6= ∅.

When no temporally ordered events are returned by Algorithm 5, then the

index set ξd is empty. In this case, by Algorithm 6, the causally ordered core events

are the ordered abstract causal events vΣd = vKd . So Σd is not empty as long as

Kd is not empty. When the index set ξd is non-empty, then the ordered events

obtained from CAEVO might be added to the abstract causal events vKd to form

vΣd . Following Algorithm 6, the extracted core events ud and the order πud can be

well defined from vΣd . Since ΠD is the space of all possible relations of the core

events that can be extracted from D, we have πu ∈ ΠD. Therefore, (ωd,u, πu) ∈ σ
and the first condition is satisfied.

We next validate the second condition by showing that for any document

ωd ∈ D, if the mapping σ returns two sets of casually ordered core events (u′, πu′)

and (u′′, πu′′), then u′ = u′′, πu′ = πu′′ . Let vK′ and vK′′ denote the associated

abstract causal events. Note that the following functions are deterministic: α for

phrase parsing, β for causality mention extraction, γ for causal phrase extraction,

and ι for abstract causal event extraction. In particular, α, β, γ are injective and ι is

a multiple-to-one map. So for the same document ωd, the extracted set of ordered

abstract causal events is unique. Thus,

vK′ = vK′′ . (3.2.9)

The sequence of classifiers in CAEVO give coherent temporal relations for
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the input dataset. Therefore, CAEVO outputs the same temporal relations when

inputting the same sentencewd. It follows that the temporally ordered events vξd are

unique for wd. Now we only need to check whether in the core event extraction step

φ(vK′ ,vξd) = φ(vK′′ ,vξd) is true. When vK′ = vK′′ , if there exists (vξi , vξj ) ∈ vξd
satisfying the rules set up in Algorithm 6 so that this pair of events can be treated as

a pair of causally ordered core events in addition to vK′ , then this pair should also

added to vK′′ . If (vξi , vξj ) ∈ vξd contradicts an existing causal relationship given by

vK′ , then it also contradicts the same causal relationship given by vK′′ . Therefore,

we also have φ(vK′ ,vξd) = φ(vK′′ ,vξd) and u′ = u′′, πu′ = πu′′ as required. Hence

σ is well defined.

(2) Now we show σ is non-invertible. Suppose σ is invertible, then the inverse

function ι−1(vKd) must exist. Recall that ι is defined for extracting abstract causal

events. For a noun, ι−1 maps a hypernym to its hyponyms1. This is a one-to-

multiple correspondence, which is not a well-defined function. For a noun, it maps a

class to its class members, which also makes ι−1 a one-to-multiple map. This gives

a contradiction. Hence, σ is not invertible.

3.2.2 The construction of a GN

Having extracted the core events for all the documents, we aim to match these

events and the associated partial order to a corresponding CEG so as not to lose

any extracted causal relationships. It is not easy to implement when the size of

the output of the NLP algorithm is large. We are aware of no automised way of

performing this matching extant in the literature. What we propose here is to first

refine the causal relationships that are extracted based on linguistic patterns before

embedding these causal dependencies into a CEG. So we add an extra but necessary

preprocessing step that groups the extracted core events and registers an implicit

partial order of these core events. This is done by constructing a Global Net (GN).

This step helps us find more concise and general shallow causal patterns through

the GN than can be read directly from {(ud, πud)}d∈ND
In Section 3.1, we defined the GN to be a DAG to embed the shallow causal

dependencies without restricting the choices of this DAG. One can build an event

tree or derive a CEG to embed the shallow causal dependency at this level as a

GN where the core events can be simply labelled on the edges or vertices. Then we

would have two levels of CEGs, where the upper level tree is more dense. However

when there are a large number of core events, it is computational expensive to build

such a tree. This is especially so when some data is missing, the problem is scaled

1Hyponyms have more specific meaning compared to its hypernym.
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up and the complexity of computation cannot be ignored. An alternative choice is

to build the GN with BN semantics. We have discussed the weakness of BNs in

the previous two chapters. However, here we are not using the BN alone so these

problems can be simply addressed by the CEG introduced at the deeper layer.

Learning a BN is transparent and easy to implement with the current avail-

able software [Scutari, 2009; Scutari and Ness, 2012; Scutari, 2014]. So in this thesis

we focus on using the BN semantics as the GN. However, the best scoring BN may

not be causal, which would then mean that the definition of the GN is not satisfied.

Therefore, we need to elicit genuine causal relations from the BN to construct a

proper GN.

The vertices of the GN V ∗ are associated with a set of variables L =

{L1, · · · , LnL}, which are called the core event variables. We have defined the GN

to be a causal network. It therefore follows that there is an edge evi,vj ∈ E∗ point-

ing from vi ∈ V ∗ to vj ∈ V ∗ whenever the associated variable of vi, denoted by

Li, is a genuine cause [Pearl, 2009] of the associated variable of vj , denoted by Lj .

Accordingly, the two essential steps to construct such a GN are

1. the construction of core event variables,

2. the extraction of genuine cause-effect relationships.

We next explain how to attain these two tasks in detail.

Firstly, the core event variables are constructed by clustering the extracted

core events u so that each core event variable corresponds to a set of core events.

In particular, we group the core events excluding the maintenance events. This

is because maintenance corresponds to an external intervention whose effects are

identifiable on the CEG as shown in the previous chapter. If we represent the

maintenance variable on the GN, then it cannot be matched to any position or edge

of the CEG lying at the deeper layer. In other words, the GN is constructed with

respect to the idle CEG alone. We therefore construct the core event variable only

from the extracted core events representing various causes, symptoms or failures.

Expert judgements or assumptions are required to determine how to con-

struct the core event variables. For example, we can group the core events that

which have similar meanings and treat each of them as a state of a categorical vari-

able Li. We can also group the core events with the same attribute, such as the

core events describing the symptom of a specific defect. We can also create a binary

variable for a core event to indicate whether it is present or absent. For example,

we create a binary variable to indicate whether oil leak has been observed.
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Let Ξ : u 7→ L denote the correspondence between a core event and a core

event variable. To ensure that core event variables are identifiable for each docu-

ment, we restrict the construction of core event variables by the following assump-

tions.

ASSUMPTION 3.2.2. When constructing a set of core event variables from the

core events UD extracted from a dataset D, we assert,

1. each core event u ∈ UD can only correspond to a state of a single core event

variable;

2. any core event variable Li ∈ L taking values in Li = {li1, · · · , lini} can corre-

spond to more than one core event; the state of it lij ∈ Li can correspond to

multiple core events;

3. the value of any core event variable Li ∈ L is observable in at least one docu-

ment of the whole dataset.

4. any two core events udk1
, udk2

of a document cannot be associated with two

different values of the same core event variable.

Following these assumptions, Ξ : u 7→ L is a multiple-to-one correspondence.

It is well-defined, surjective but not injective. We therefore can always find a unique

core event variable for each core event by Ξ.

Now we turn to the second task to discover the genuine causal relationships

between the core event variables and embed them within the topology of the GN.

Pearl [2009] implicitly brought the idea of the genuine cause that there might be

some relationships that have a clear causal direction if indeed this exists. This step

is carried out by applying a well-developed package called bnlearn [Scutari, 2009]

to fit a best scoring BN with respect to L. Let G† = (V †, E†) denote the best scoring

topology. This DAG has the same vertex set as the vertex set of the GN, V † = V ∗,

so that each vertex of it corresponds to a core event variable. The edges in the edge

set E† are not necessarily causal since the structural learning algorithm of the BNs

alone cannot ensure that every edge represents a putative causal dependency. We

add two further steps to elicit the desired GN G∗ from the selected BN.

We first create a list of directed edges that must be present in the GN and a

list of directed edges that should never appear in the GN. The bnlearn package pro-

vides a facility to add these constraints when learning the best structure. To form

the first list, we summarise the likely causal relationships between the constructed

variables from the causally ordered core events and collect the frequent ones. Specif-

ically, we set a number n? so that if a cause-effect pair appears more than n? times
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in the extracted pairs of core events from all documents then we add the edge con-

necting the corresponding variables to the list. The second list includes only the

edges violating the cause-before-effect temporal relations. Expert judgement can be

helpful when creating this list. Given the core event variables, if we provide a list of

potential cause-effect pairs to the domain experts and ask them to annotate those

whose causal relations are invalid in the selected system, then we can use their an-

notated pairs to form the second list. When inputting this two lists into the bnlearn,

the output DAG may have a different structure from G† which is learned without

these constraints. Let G‡ = (V ‡, E‡) denote the revised DAG, where the vertex set

satisfies V ‡ = V ∗ = V †. This step enables us to preserve the putative cause-effect

relations extracted from the sequence of text processing algorithms based on naive

linguistic causal patterns which are valid for the given domain conditioning on the

causal hypotheses being plausible or meaningful to domain expert judgements.

We have mentioned above that not every edge in E† is causal, so we wish

to remove the edges which may not represent causal relationships. In order to

do this, we first find the essential graph [Smith, 2010] of G‡ and then remove the

undirected eges in the essential graph. An essential graph is a mixed graph with

undirected edges. To derive an essential graph, the pattern [Smith, 2010] should

be constructed from G‡ by keeping the directionality of the edges that connect

the unmarried parents to the common child. Specifically, by the definition [Smith,

2010], suppose e ∈ E‡ points from vi ∈ V ‡ to vj ∈ V ‡, the directionality of e

is removed if and only if there does not exist vk ∈ pa(vj) satisfying evi,vk /∈ E‡.

The essential graph is obtained from the pattern by keeping the configuration of

the unmarried parents unchanged. The undirected edges in the essential graph can

be given multiple equally well supported interpretations of causal directionality.

This is because adding either direction to the undirected edge does not change the

equivalence class of the DAG. Since we have defined every edge of the GN to be

causal, the final GN topology G∗ is obtained from the essential graph by removing

the undirected edges.

For example, Figure 3.4 is the structure extracted from bnlearn with the

constraints on causal edges. Then the pattern of it can be derived using the above-

mentioned method, see Figure 3.5. Figure 3.6 plots the essential graph of G‡. By

removing the undirected edges, we can draw G∗ in Figure 3.7.
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Figure 3.4: The extracted DAG G‡.
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Figure 3.5: The pattern derived from the extracted G† in Figure 3.4

environmentcorrosionloose fix
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Figure 3.6: The essential graph derived from Figure 3.5

environmentcorrosionloose fix
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connection phase

Figure 3.7: The GN derived from Figure 3.6

To summarise, for each document d with extracted core events ud, we can

find a set of core event variables corresponding to this document by Ξ. This is

guaranteed by the assumptions we made for the construction of core event variables.
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In the beginning of this chapter, we let Ld = {Ld1, · · · , Ldm} denote the set of

core event variables whose values ld = {ld1, · · · , ldm} are determined by the core

events ud. The relations between variables in Ld can be directly read from the

GN. Then the subgraph Gd = (Vd, Ed) associated with ud can be simply identified.

The vertex set Vd is a subset of V ∗ consisting of vertices correspond to Ld. The

edge set Ed ⊆ E∗ consists of the edges in the GN connecting vertices in Vd. Since

Assumption 3.2.2 ensures a unique set ld associated with the core events ud, the

mapping ψ : (ud, πd) 7→ ld can be well-defined. This function is non-injective since

Ξ : u 7→ L is non-injective.

An immediate implication of this property and Proposition 3.2.1 is that the

mapping Γ : (wd,ΩNL) 7→ ld which returns a unique set ld for a document is well-

defined but not injective. In this case, if we can further show that we can find a

unique path on the CEG associated with ld by making proper assumptions, then

with the GN-CEG model we can map each document to a unique root-to-sink path

on the CEG for a causal analysis. In the following section, we will show how this is

possible.

3.3 Causality embedding

In this section, we establish the theory that validates the mapping from the GN to

the CEG. This shall explain how the shallow causal dependency can be translated to

the deeper causal dependency. Note that within our model, every edge in the GN has

a causal interpretation and every edge in the CEG represents a causal dependency.

This, therefore, forms a two-level causality structure. And importantly the causal

relations are nested. In the domain of natural language understanding, causality

is often expressed using a nested structure [Chen et al., 2020]. In our hierarchical

model, the nested structure can be understood in a similar way: a cause-effect pair

on the GN could be associated with a d-event labelled on some edges on the CEG,

which is the cause of another d-event labelled on some other edges on the CEG.

In the introduction chapter, we have reviewed the definition of the recur-

sive Bayes nets (RBNs) [Williamson and Gabbay, 2005; Casini et al., 2011] and

the essential terminologies within this framework. In light of this framework, we de-

fine new concepts and make appropriate assumptions within our hierarchical causal

model in an analogous fashion. This will make the transformation of causal rela-

tionships between the GN and the CEG possible. In the end of this section, the

method of learning a root-to-sink path λ ∈ ΛC for ld, i.e. the map χ, should have

been clarified.

92



3.3.1 Linking the GN to the CEG

Each set of values ld are associated with a set of vertices Vd on the GN. If we

treat the values of the core event variables as the observations, then given Gd we

have a sequence or multiple sequences of ordered observations. In contrast to these

observations, the root-to-sink path on the CEG associated with ld is hidden, we call

it the latent path of document d. Then the positions along the path can be treated

as latent (hidden) states of the observed core event variables. These latent states

cannot be directly observed but can be inferred. This motivates us to find a generic

approach to group the core event variables given their causal order so that each

group associates with a latent state on the CEG.

We can treat the GN as the observation layer and the CEG as the latent

layer. Although our model is similar to the Hidden semi-Markov model (HSMM)

[Yu, 2010] in a way that the semi-Markov process can be embedded within the CEG

and we trace the process by finding the latent states, our model focuses more on

the causal interpretation on both the observation layer and the latent layer. But

following the ideas of the HSMM, we can formulate the relationship between every

latent state and its corresponding observations in our hierarchical model. In order

to do this, we first introduce some new terminologies for the latent layer and the

observation layer separately.

The latent states on the deeper level. For each w ∈ VC , we can define

an incident variable Iλ(w) to indicate whether a path λ ∈ ΛC passes through w

[Wilkerson, 2020]. Note that an incident variable can be defined on the sink nodes

of the CEG. Let

Iλ(w) =

 1, if w ∈ λ,

0, if w /∈ λ.
(3.3.1)

The value of the variable depends on the path λ.

We can always define a measurable variable over each floret on a CEG [Wilk-

erson, 2020]. This is called a floret variable. For each position w ∈ W , we con-

struct the floret variable Y λ(w) for the underlying floret F(w) given a root-to-sink

path λ ∈ ΛC . Let ew,w′ ∈ E(w) be an emanating edge of w so that w′ ∈ ch(w).

Then given a path λ ∈ ΛC ,

Y λ(w) =

 yw,w′ , if ew,w′ ∈ λ,

0, if ew,w′ /∈ λ.
(3.3.2)

This means each edge corresponds to a state of the floret variable. The floret variable
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takes value 0 when the unit traverses a path not passing through w, i.e. Iλ(w) = 0.

If Y λ(w) is instantiated, i.e. Iλ(w) = 1, then its value depends on which child of w

which is traversed through by λ.

Given the values of floret variables or incident variables we can identify which

edges or vertices are traversed by the latent path.

The observations corresponding to a latent state. On the GN layer,

i.e. the observation layer, suppose that we can find a latent path on the CEG for

the observed core events variables lying in the subgraph Gd. Then each latent state

can be associated with a subset of these variables causally ordered in Gd. Following

this idea, each floret variable Y λ(wi), wi ∈W , is the latent variable of a set of core

event variables. We call this set of core event variables the community of Y λ(wi)

and denote it by Li. This is a subset of the core event variables, Li ⊆ L. We say

a set of variables are instantiated when every variable in this set takes some value

in its state space which is known from observations. When Iλ(wi) = 0, i.e. wi is

not passed through by the latent path, then Y λ(wi) is not instantiated [Wilkerson,

2020], and so the community Li is not instantiated. This does not mean no core

event variable in Li is observed. For example, if a core event variable L′ lies in

two communities Li and Lj for i 6= j and wj is traversed by the latent path, then

the value of L′ is still observed. In this case, instead of Li, the community Lj is

instantiated.

The causal relationships between every pair of core event variables in Li have

already been determined by the GN. Let Gi = (Vi, Ei) be a subgraph of the GN

which is associated with Li. We call it the area of the community Li. The vertex

set Vi consists of vertices corresponding to the core event variables Li. An edge

ew,w′ is included in the edge set Ei if and only if w,w′ ∈ Vi and ew,w′ ∈ E∗.
Since we have a fixed and known topology of the GN from the preprocessing

step, the value of the latent floret variable only determines the members in the

community but not the relations between the members. This means the area of a

community is only determined by the variables in the community given the GN.

This is different from the idea of the network variable in the RBN [Williamson and

Gabbay, 2005], though the floret variable plays a role similar to the network variable.

If Y λ(wi) = ywi,wk 6= 0, then there is a sub-community corresponding

to this value, denoted by Li,k ⊆ Li. The sub-area of this sub-community is a

subgraph of the area Gi, denoted by Gi,k = (Vi,k, Ei,k), where the vertex set Vi,k ⊆ Vi
corresponds to Li,k and the edge set satisfies Ei,k ⊆ Ei.

Link between a floret variable and its community. Now a question

arises: how to specify the community of a floret variable? Return to the definition

94



of a floret variable. Each non-zero value of a floret variable can be associated with

an edge that is traversed by the latent path. Note that as defined in the previous

chapter, each edge is labelled by a d-event x(ewi,wk) for ewi,wk ∈ EC . Therefore, once

the d-event x(ewi,wk) is observed, the corresponding path on the CEG must pass

along an edge labelled by this d-event. This means the floret variable takes value

Y λ(wi) = ywi,wk . It follows that the d-event x(ewi,wk) will be associated with the

corresponding sub-community Li,k. Assume that the association between a d-event

and the core event variables is known from domain knowledge or learning through

algorithms, which will be discussed later in Section 5.2, we then know the sub-

community of this d-event. In this case we assume that it is legitimate to conjecture

that x(ewi,wk) happens if the core event variables in Li,k have been observed to be

li,k with respect to their causal ordering.

However, not every floret variable has an associated community. Given a

path λ ∈ ΛC , for any position traversed by this path w ∈ Wλ, we have defined the

floret variable indexed by this path, denoted by Y λ(w), in equation (3.3.2). Note

that the last floret variable along any path for a system designed for causal analysis

in the domain of system reliability corresponds to a failure indicator. If our data is

extracted from failure reports, then the value of this floret variable is known. This

is because all the observations recorded in the texts are conditional on a failure has

occurred. We denote the set of positions whose floret variables are associated with

failure indicators by W ? so that ch(w?) = {wf∞, wn∞} for w? ∈ W ?. Then for any

path, Y λ(w?) is not associated with any core event variable, i.e. it does not have an

underlying community. For other positions w ∈W \W ?, Y λ(w) has a corresponding

community.

For all paths, every core event variable is in at least one community of a

floret variable. But for a given path, not every core event variable is assigned to a

community associated with the floret variables instantiated by this path. So to be

clear, under our setting, not every subset of the core event variables can constitute

a community and it is not necessary to have a one-to-one correspondence between

a floret variable and a core event variable given a root-to-sink path.

Then is it possible to identify communities for floret variables? There are

two possible scenarios here.

1. When the number of core event variables L is not huge, the CEG does not

have a complicated topology and we have sufficient domain knowledge so that

the association between a floret variable and its community is known, then we

do not need to infer the latent variables for the observations. Note that this

first setting necessarily requires human involvement.
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2. Alternatively, in any situation where we would like to minimise the amount of

human interaction with the inference. Further, in a more complicated scenario,

we may not know which set of core event variables are associated with a floret

variable. In this second setting, we need to design algorithms to automatically

learn the relations between floret variables and the core event variables. If we

are able to do this then we may treat this process as a semi-supervised learning

problem. In this second case we observe the values of the core event variables

for each document and through the algorithm we learn the latent states. This

may need us to specify the potential d-events for each core event variable and

split each ld into a potential set of sub-communities. In Section 5.2, we will

provide more details about the general process for learning the associations

between the observations and the latent states.

Apart from the florets associated with failure indicator, there could also exist

a set of florets which are associated with classifications, for example, classifying root

causes to be endogenous or exogenous, or classifying the categories of components.

We assume that when modelling transition times on the CEG, the edges associated

with such classification are not assigned with holding time. We have given a brief

discussion of this in the previous chapter. It is also non-trivial to chronologically

order the variables associated with classifications with other variables such as root

causes or symptoms. Let W † denote the set of positions so that for any w† ∈ W †

and any path λ, Y λ(w†) is a variable for classification. Let W � = W \ (W † ∪W ?).

When formalising the ordering of communities, we only consider the communities

associated with floret variables defined over w ∈W �.
We next formalise the ordering of communities and sub-communities. When

a unit traverses a root-to-sink path on the CEG, a sequence of floret variables are

instantiated and so the corresponding communities are instantiated. We first make

the following assumption.

ASSUMPTION 3.3.1. The instantiated communities for Y λ(w), where w ∈W �,
are disjoint with each other and they are ordered consistently with their floret vari-

ables. Given the values of the instantiated floret variables, the corresponding sub-

communities are ordered consistently with their floret variables.

This assumption gives us an intuition of how the causal order modelled on

the deeper layer CEG is translated to the causal order of the core event variables

modelled on the upper layer GN. Specifically, given a root-to-sink path λ, for any two

positions traversed by this path, denoted by wi, wj ∈Wλ, if the corresponding floret

variables Y λ(wi) and Y λ(wj) have the associated communities, i.e. wi, wj ∈ W �,
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then the partial order between communities is inherited from the corresponding

partial order between Y λ(wi) and Y λ(wj). For example, if Y λ(wi) ≺ Y λ(wj), then

we say the community of Y λ(wi), denoted by Li, precedes the community of Y λ(wj),

denoted by Lj . This relation is indexed by the path λ, so we represent the order

by Li ≺λ Lj . If Y λ(wi) = ywi,wk and Y λ(wj) = ywj ,wl , then we can also order

the corresponding sub-communities accordingly. Let Li,k and Lj,l denote the sub-

communities corresponding to Y λ(wi) and Y λ(wj) respectively, and we represent

such an order between sub-communities by Li,k ≺λ Lj,l. Note that the ordering

of core event variables within each community or sub-community is fixed by the

topology of the GN. To ensure a consistent ordering of the communities and the

core event variables, the following assumption must be satisfied in our setting.

ASSUMPTION 3.3.2. If the core event variables and the communities satisfy

L′ ∈ Li, L′′ ∈ Lj and Li ≺λ Lj, then L′′ ⊀ L′, i.e. L′′ cannot precede L′ on the

GN.

Example 10. Figure 3.8 gives a hypothesised GN corresponding to the CEG plotted

in Figure 2.7 which is assumed to be causal. It is assumed to be constructed from

the core events extracted from the failure reports of a bushing system. So the GN is

constructed conditional on the event that a failure has been observed.

The state spaces of the core event variables are: L1 = {failed gasket, aging

gasket}, L2 = {seal crack, axial crack}, L3 = {crack, no crack}, L4 = {oil level low,

leak, normal oil level, loss of oil, transformer oil and bushing oil}, L5 = {loose con-

nection, connection ok}, L6 = { oxidant contact, contact resistance}, L7 = {thermal,

electrical}, L8 = {lightening, weather}, L9 = {temperature, nitrogen blanketed}.
Based on the d-events and the core events which are grouped as the val-

ues for the core event variables, we can define a reasonable assignment of com-

munities to the latent states. The community of the floret variable Y λ(w0) is

L0 = {L1, L2, L3, L5, L6, L8, L9, L10}, which consists of all possible root causes. The

floret variable Y λ(w1) is associated with endogenous root causes, so its community

is defined to be L1 = {L1, L2, L3, L5, L6}. The floret variable Y λ(w2) is associated

with exogenous root causes, so its community is L2 = {L8, L9, L10}. The floret

variable Y λ(w3) is associated with oil leak, so its community is L3 = {L4}. The

community of Y λ(w4) is L4 = {L4}. The community of Y λ(w5) is L5 = {L7}.
When Y λ(w1) = yw1,w5, i.e. when the failure is caused by an endogenous

fault which is not related to gasket, porcelain or insulation, then we can determine

the sub-community associated with this value to be L1,5 = {L5, L6}. We can find

the sub-area of L1,5 from the GN. We denote this sub-area by G1,5 = (V1,5, E1,5).
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Figure 3.8: The hypothesised GN for Example 10.

As defined above, the vertices of the sub-area, V1,5, correspond to L1,5. So V1,5 are

associated with L5 and L6. And the edge set E1,5 satisfies that ev,v′ ∈ E1,5 if and

only if v, v′ ∈ V1,5 and ev,v′ lies in the GN. There is one edge connecting from L5

to L6, so E1,5 = eL5,L6. Similarly, we can find the area of Y λ(w5), denoted by

G5 = (V5, E5) where V5 is associated with L7 because L5 = {L7} and E5 is empty.

The positions W † = {w6, w7, w8, w9} do not have associated communities

because the associated floret variables correspond to failure indicators, see Figure

2.7. However, the values of their corresponding floret variables are known: Y λ(w) =

y
w,wf∞

for w ∈W †, where λ is a failure path.

3.3.2 Conditional independence assumptions

Here we borrow the terminologies in the RBN to demonstrate the conditional inde-

pendence relationships within the GN-CEG model. Recall that a variable Vj is a

direct inferior of another variable Vi if the value of Vi indexes a set of BNs and Vj

lies in any of these BNs [Williamson and Gabbay, 2005; Casini et al., 2011]. And

in this case Vi is called the direct superior of Vj . For each floret variable Y λ(wi),

the core event variables in its community Li are treated as the direct inferiors of it.

For each Lj ∈ Li, Y λ(wi) is treated as the direct superior of Lj . The definitions

given in the previous section allow one core event variable to lie in more than one
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communities. If this is the case, then there is more than one floret variable which

can be treated as its direct superiors. This means there is more than one position

on the CEG corresponding to Lj as its latent state. Denote this set of positions by

Wj and

Y λ(Wj) = {Y λ(wjl)}wjl∈Wj = Dsup(Lj). (3.3.3)

A position satisfies wjl ∈Wj if the community of the floret variable Y λ(wjl) includes

Lj , Lj ∈ Ljl .
Here we not only need to specify the conditional independence relations on

the CEG, but also the conditional independence relations between the core event

variables defined on the GN and the floret or incident variables defined on the CEG.

Smith and Anderson [2008] showed that different conditional independence prop-

erties can be read from the CEG. Furthermore, Wilkerson [2020] proved analogous

d-separation theorem on the CEG. Let nd(Y λ(w)) denote the floret variables defined

over the florets that do not lie downstream of the position w ∈W . Then this set of

variables can be treated as the non-descendants of Y λ(w) on the CEG. Note that

the non-descendants and the parents of a variable in our model only refer to the

non-descendants and the parents lying in the same layer of this variable.

The constitution of the observation layer varies depending on which path is

traversed by the unit. Consider an assignment of values to the floret variables and

the incident variables defined over the CEG,

H = {y(w)}w∈W ∪ {i(w)}w∈VC . (3.3.4)

We call H a consistent assignment with respect to the GN-CEG model if it corre-

sponds to a unit traversing a single root-to-sink path on the CEG. Given a consistent

assignment H, an ordered sequence of the corresponding communities are instanti-

ated. Let LH denote the instantiated communities, then LH = {Li}wi∈λH , where

λH denotes the root-to-sink path traversed by the unit given H. Then the instan-

tiated areas of the instantiated communities can be discovered and well-defined on

the GN. Let GH = (V H, EH) denote the instantiated areas. The vertex set V H

is associated with LH. The edge ew,w′ is included EH if ew,w′ ∈ E∗ points from

w ∈ V H to w′ ∈ V H. Note that the edge set EH includes the edges lying in the in-

stantiated areas and the edges connecting variables which lie in different instantiated

communities if they exist in the GN. Therefore,
⋃
wi∈λH Ei ⊆ E

H.

PROPOSITION 3.3.3. Given a consistent assignment H to the floret variables

and the incident variables, the areas of the instantiated communities on the GN are

causally consistent.
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Proof. Consider a path λ ∈ ΛC , if there exist positions wi, wj , wk ∈Wλ and the cor-

responding edges satisfy ewi,wj , ewj ,wk ∈ EC , then the floret variables Y λ(wi), Y
λ(wj), Y

λ(wk)

are instantiated and the corresponding communities are instantiated. In particular,

since Y λ(wi) = ywi,wj , Y
λ(wj) = ywj ,wk , the sub-communities Li,j and Lj,k are

instantiated with sub-areas Gi,j = (Vi,j , Ei,j) and Gj,k = (Vj,k, Ej,k) respectively.

We first construct a causal graph denoted by Gi,j,k = (Vi,j,k, Ei,j,k). The

vertices are constructed with respect to Li,j and Lj,k. If e ∈ Ei,j or e ∈ Ej,k, then

e ∈ Ei,j,k. Following Williamson and Gabbay [2005], we need to show Gi,j,k is a

causal supergraph of Gi,j and Gj,k.

Let G�Li,j = (V�Li,j , E�Li,j ) be a restricted graph of Gi,j,k with respect to

Li,j so that the vertex set V�Li,j corresponds to Li,j . There is an edge between two

vertices v, v′ ∈ V�Li,j if and only if ev,v′ ∈ Gi,j,k or there is a directed path from v

to v′ in Gi,j,k while the interior node on this path lies in Vi,j,k \ V�Li,j . The latter

case should never happen by the assumptions and rules we asserted when defining

the communities. Then the edge set E�Li,j should be exactly the same as the edge

set Ei,j . Thus, this restricted graph is simply the area of the community Li,j , i.e.

G�Li,j = Gi,j . Similarly, we can construct another restricted graph with respect

to Lj,k, denoted by G�Lj,k = (V�Lj,k , E�Lj,k). And this graph is the same as Gj,k.

Therefore, following the definition of the causal supergraph given by Williamson

and Gabbay [2005], Gi,j,k is a causal supergraph of Gi,j and Gj,k. Based on the

definition of causal consistency given in the previous work for the RBN [Williamson

and Gabbay, 2005], we can conclude that the existence of such a graph implies that

the instantiated areas are causally consistent.

Given a consistent assignment H, for every core event variable Li ∈ LH,

let ndH(Li) denote the non-descendants of Li that lying on the same level of Li,

paH(Li) denote the parent variables of Li represented on the GN, and DsupH(Li)

denote the direct superiors of Li. Here we add the superscript H to the notations we

defined earlier to annotate that these variables are instantiated given the assignment

H.

The analogous d-separation theorem on CEGs [Wilkerson, 2020] implies that:

Y H(w) ⊥⊥ nd(Y H(w))|IH(w). (3.3.5)

Here nd(Y H(w)) denotes the floret variables and incident variables which are defined

for the positions not lying downstream of w on the root-to-sink path λH. This

conditional independence relation is valid for any assignment H.
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In a BN, we always assume that a variable is conditionally independent of its

non-descendants given its parents. This, however, can not be simply applied on the

GN since the value of each core event variable is dependent on its direct superior

which is defined on the deeper level CEG. But we can extend this assumption and

the causal Markov condition (CMC) assumption that has been made for RBNs by

Williamson and Gabbay [2005].

Here we are interested in answering the following two questions : (1) what is

the conditional independence relation between a core event variable and the other

core event variables lying at the same level as it? (2) what is the conditional in-

dependence relation between a core event variable and the variables defined on the

deeper level CEG?

To answer the first question, we assume an analogous causal Markov condi-

tion for the GN-CEG model. Assume that given a consistent H, the core event

variable Li is conditionally independent of its non-descendants which lie

on the GN given its direct superior on the CEG and its parents on the

GN. This assumption can be written as

Li ⊥⊥ ndH(Li)|paH(Li), Y
H(Wi). (3.3.6)

Now we turn to the second question. Williamson and Gabbay [2005] defined

the recursive Markov condition (RMC) to link a variable to its non-inferiors and

the variables not lying on the same layer as it. This can be mirrored to our setting

as follows. We assume that given a consistent assignment H, the core event

variable is conditionally independent of the instantiated variables defined

on the CEG excluding its direct superior given its parents which lie on

the GN and its direct superior. We express this assumption as follows.

Li ⊥⊥ (Y H(Wi), I
H(VC))|Y H(Wi), pa

H(Li), (3.3.7)

where Wi = W/Wi.

On straightforward implication of the conditional independence statements

3.3.6 and 3.3.7 is the following proposition.

PROPOSITION 3.3.4. Given a consistent assignment H and the conditional in-

dependence assumptions in statements (3.3.6) and (3.3.7), the following conditional

independence statement is true within the GN-CEG model:

Li ⊥⊥ (ndH(Li), Y
H(Wi), I

H(VC))|Y H(Wi), pa
H(Li). (3.3.8)
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Given the conditional independence assumptions, we now move to specify the

probability distributions over the GN-CEG model. Within the CEG, the primitive

probabilities have been specified for each floret in the previous chapter. Here we

specify the conditional probabilities and the joint probability distribution for the

whole model.

It is useful next to define a set called a flattened parent set analogous

to the sets defined by other authors. As reviewed in Chapter 1, Williamson and

Gabbay [2005] and Casini et al. [2011] constructed a non-recursive BN from the

RBN given an assignment which was called the flattening, see Section 1.3 for the

definition. Recall that the vertex set in the flattening is equal to the vertex set of

the underlying RBN and edges are added to connect from a direct superior to its

inferior or from a parent to its child.

For a core event variable Li which is instantiated given a consistent assign-

ment H, it has a direct superior DsupH(Li) and a set of parents lying on the GN

paH(Li) which can be found from the instantiated area GH. Following the con-

ditional independence statement given in Proposition 3.3.8, we define the set of

flattened parents for Li, denoted by paH↓(Li). This is the set of “new” parents of

Li when considering both layers. The flattened parents of Li consist of the parents

of Li and its direct superior:

paH
↓
(Li) = {paH(Li), Dsup

H(Li)}. (3.3.9)

For every Li ∈ L, we should specify a distribution for

p(li|paH
↓
(li)) = p(li|paH(li), y

H(Wi)) (3.3.10)

for learning the structure and the parameters of the model. In a Hidden Markov

model (HMM)[Eddy, 2004] or a Hidden semi-Markov model (HSMM) [Yu, 2010],

the probability that a hidden state generates a single or a sequence of observations

is called the emission probability. We can treat li as an observation emitted from

its latent state paH
↓
(li), so we borrow the terminology and call p(li|paH

↓
(li)) the

emission probability. In a Bayesian setting, one possibility is to assume a Dirichlet

prior to be defined over all states of Li for each possible value of the flattened parents

paH
↓
(Li). Then we can perform a Dirichlet-Multinomial conjugate inference. The
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joint distribution over the model can be factorised as follows:

pH(l,y, i) =
∏
lj∈l

p(lj |paH(lj), Dsup
H(lj))

∏
w∈λH

p(Λ(ew,w′)|Λ(w))

=
∏
lj∈l

p(lj |paH
↓
(lj))

∏
w∈λH

πH(w′|w),
(3.3.11)

where pH(·) and πH(·) denote the probabilities defined given the assignment H.

Both p(lj |paH
↓
(lj)) and πH(w′|w) have Dirichlet priors.

The map χ : (ld,ΩNC) 7→ λ defined earlier in this chapter returns a latent

path for a set of core event variables whose values are observed. This is to learn

the latent states of the observations and we can achieve this goal as long as the

conditional probabilities in equation (3.3.11) can be well-specified. In particular, we

need to infer the posterior probability p(λ|ld) for the dth document. By Bayes rule,

p(λ|ld) ∝ π(λ)p(ld|λ). (3.3.12)

The first component can be factorised as π(λ) = Πe∈λθe, where the primitive proba-

bilities can be estimated by a Dirichlet-Multinomial conjugate analysis as explained

in the previous chapter. For the likelihood p(ld|λ), notice that given a path λ to be

traversed by the unit, we have an underlying consistent assignment Hλ. Then,

p(ld|λ) =
∏
ldj∈ld

p(ldj |pa
Hλ(ldj ), Dsup

Hλ(ldj )). (3.3.13)

This actually is the first term on the right hand side of equation (3.3.11). By

specifying each p(ldj |paHλ(ldj ), Dsup
Hλ(ldj )), the probability p(ld|λ) can be uniquely

estimated and p(λ|ld) can be inferred by Bayes rule. Therefore, the function χ is

well-defined if we input the estimated mean posterior probabilities to the function.

These parameters are denoted by ΩNC . Under this setting, we could learn a unique

latent path for ld. This immediately implies the following proposition.

PROPOSITION 3.3.5. When there is no core event variable that is unobservable,

then the mapping ∆ : (ωd,Ω) 7→ λ returns a unique latent path for each document.

Proof. Suppose that the latent path returned by ∆ is not unique for document

ωd ∈ D. Since the mapping Γ returns a unique set ld for ωd, this means for the

same set of observations ld, there exists a path λ1 ∈ ΛC and another path λ2 ∈ ΛC

corresponding to ld and λ1 6= λ2. This is not possible since χ uniquely determines

a latent path for ld. We have a contradiction. So ∆ uniquely determines a latent

path for a document.
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Given the hierarchical framework specified earlier in this chapter, in this sec-

tion, we have clarified how the core event variables lying on a GN and the floret

or incident variables lying on a CEG can be associated and made conditional inde-

pendence assumptions about the relationships between the core event variables and

the floret or incident variables. This enables us to transform the causal dependency

between the two layers. The connection between the two layers makes it possible

to find a unique path for the set of core events extracted from each document. So

a unique latent path for each document can be identified on the CEG. Detailed

specifications of the conditional probabilities required for learning a latent path for

the set of core events associated to a document will be given in the experimental

chapter with an example of an implementable algorithm, see Chapter 5.
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Chapter 4

Missingness in the GN-CEG

In this chapter, we discuss two types of missingness: floret-dependent missingness

and event-dependent missingness. The former requires a reconstruction of CEG

while the latter requires a reconstruction of GN.

The floret-dependent missingness refers to the missingness of the informa-

tion represented within some florets on the CEG. This is also called the informed

missingness [Barclay et al., 2014]. Different arbitrary types of missingness mecha-

nisms can be read from the CEG with informed missingness, including missing at

random (MAR), missing completely at random (MCAR) and missing not at random

(MNAR) [Rubin, 1976]. In a similar way, from a given M-CEG, we can analyse how

an event depends on the missingness of another event that precedes it. In this case,

the CEG we defined in Chapter 2 is no longer sufficient for modelling the missing

data. Instead, we construct a new event tree with informed missingness and derive

a CEG from this tree. In Section 4.1, we will formalise this type of missingness

and demonstrate how to construct the corresponding tree. The CEG with this new

topology embeds the floret-dependent missingness. We aim to estimate the effects

of the remedial intervention and the routine intervention on this new topology. We

therefore extend the back-door theorem to identify the causal effects on the CEG

with informed missingness. The adapted back-door criterion for different types of

manipulations will be given in Section 4.2.

The event-dependent missingness refers to the missing values of core event

variables. The floret-dependent missingness is a special type of the event-dependent

missingness when the values of the core event variables lying in the community

of a floret variable are all missing. In Section 4.3, we will provide guidelines for

embedding this type of missingness on the GN.
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4.1 Floret-dependent missingness

When a community Li is unobservable, i.e. all the sub-communities Lij can be

completely missing, then the associated floret variable Y (wi) is an unobservable

variable. Specifically, when the value of every core event variable in the community

L ∈ Li is missing, then the value of the corresponding floret variable Y (wi) is

missing. In this case, if we still use the CEG formalised in Chapter 3, we might not be

able to determine which root-to-sink path is associated with the observations. This

is why we do not index the floret variable by a path here. For this partially observed

document, let W
′

denote the set of positions whose corresponding incident variables

are instantiated. There might be multiple root-to-sink paths on the CEG traversing

the positions W
′
, which are associated with the partially observed document. Then

the map ∆, which is defined to identify a latent path on the CEG, is not well-

defined since there might be multiple latent paths matched to a single document.

Furthermore, the assignment H is not consistent any more because λH is a set of

more than one path. Therefore, in presence of this type of missingness, some setups

and assumptions made in Chapter 3 are violated. Therefore, this motivates us to

augment the CEG so that the rules defined for the hierarchical model can still be

followed. This augmented CEG is similar to the CEG with informed missingness

introduced by Barclay et al. [2014], but the missingness is modelled in a more general

way. The augmented CEG is still derived from the underlying event tree. Thus, we

need to first augment the underlying event tree for the missing data.

4.1.1 The m-tree

First of all, we classify the d-events into XMT and XOT , representing the unobservable

d-events and the d-events that are always observed respectively. These two subsets

satisfy X = XMT ∪ XOT and XMT ∩ XOT = ∅. A d-event x is an element in XMT if the

associated core events are all missing at least once in any data set, otherwise x ∈ XOT .

Knowing which d-events are unobservable, we can find which floret variables defined

on the even tree or the CEG are unobservable.

For a floret F(v) ∈ F(ST ) and v ∈ ST , if every emanating edge of v, e ∈ E(v),

is labelled by an unobservable d-event x(e) ∈ XMT , then this floret is classified into

F(v) ∈ FM and the corresponding floret variable Y (v) is an unobservable floret

variable. Otherwise, this floret variable is always observed and the corresponding

floret is classified into F(v) ∈ FO. Then FM and FO are collections of florets corre-

sponding to the unobservable floret variables and the fully observed floret variables

respectively. The set of florets defined on the event tree is F(ST ). The two subsets
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FM and FO satisfy F(ST ) = FM ∪ FO and FM ∩ FO = ∅.
Note here that we do not consider the case that for a situation v, the d-event

x(e) is missing for some emanating edge e ∈ E(v) but not all the emanating edges

of v. This may complicate the problem by inducing dependencies between edges in

E(v). This scenario is beyond the scope of this thesis but could be studied in the

future.

For every floret F(vi) ∈ FM , we define a missingness indicator for it. We call

this type of missingness the floret-dependent missingness and the missingness

indicator the missing floret indicator. The missing floret indicator for F(v) ∈ FM

is defined as:

BF(vi) =

1 if the value of Y (vi) is missing,

0 otherwise.
(4.1.1)

Then BF(vi) represents the conditional missingness so that

p(BF(vi) = 1) = p(F(vi) missing) = p(Y (vi) missing|µ(v0, vi)). (4.1.2)

Let p(BF(vi) = 1) ∈ (0, 1). Let B = {BF}F∈FM denote the set of missing floret

indicators. For each BF(vi), we construct a floret representing this indicator, denoted

by F(BF(vi)). We call it the missingness indicator floret. We import such florets

onto the original event tree T . To distinguish the original event tree and the event

tree with missingness indicator florets, we call the former the fact event tree and

the latter the missingness event tree (m-tree). Let T M denote the topology of

the m-tree. The missingness indicator florets compose a new class of florets on the

m-tree, denoted by FMI . Then FMI = F(B).

When importing each missing floret indicator BF(vi) to the event tree, we

create a set of situations V (BF(vi)) whose florets F(V (BF(vi))) = F(BF(vi)) are

missingness indicator florets. For each of the new situation vj ∈ V (BF(vi)), there

are two edges emanating from it E(vj) = {evj1, evj2}. One represents bF(vi) = 1. Let

the d-event labelled on this edge be bF(vi),1, then x(evj1) = bF(vi),1. The other edge

evj2 represents bF(vi) = 0. Let the d-event labelled on this edge be x(evj2) = bF(vi),0.

The state space of d-events is enlarged by adding bF(vi),1 and bF(vi),0 to XT for all

F(vi) ∈ FM . Let XTM denote the state space of d-events labelled on the m-tree.

Assume BF(vi) precedes Y (vi), denoted by BF(vi) ≺ Y (vi). On the m-tree,

the edge evj1 emanates from vj ∈ V (BF(vi)) is received by a vertex vk ∈ VTM whose

emanating edges E(vk) are labelled by the d-events x(E(vk)). Since evj1 represents

F(vi) is missing, the floret appended to vk cannot represent the same information

as F(vi). Specifically, F(vk) should represent the same information as F(ch(vi)),
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which is the set of florets of the children of vi on the fact event tree. On the fact

event tree, the edges of the children of vi, i.e. E(ch(vi)), are labelled by the d-

events x(E(ch(vi))). Here let x(E(ch(vi))) =
⋃
e∈E(ch(vi))

x(e) be the set of unique

d-events labelled on edges E(ch(vi)). Then x(E(ch(vi))) should be labelled on the

edges emanating from vk so that x(E(vk)) = x(E(ch(vi))). Let vl ∈ VTM be the

receiving node of evj2. Then the edges emanating from this node, denoted by E(vl),

are labelled by same d-events as E(vi) on the fact event tree. Therefore, by following

the order BF(vi) ≺ Y (vi), we are informed by F(BF(vi)) about whether the d-events

x(E(vi)) are missing. This is called the informed missingness [Barclay et al.,

2014].
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Figure 4.1: The m-tree elicited from the fact tree in Figure 2.1 for Example 11.

Example 11. We give an example of an m-tree constructed from the fact event

tree in Figure 2.1. Assume that the sight glass or buchholz defect are unobserv-
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able conditional on the root cause being temperature change or breather defect. The

“conditional” missingness can be easily represented by the semantics of the event

tree which shows the advantage of using tree graphs to represent such asymmet-

ric processes. In the fact tree, FM = {F(v3),F(v4)}. Accordingly, missing floret

indicators {BF(v3), BF(v4)} are created for the unobservable floret variables. Then

we construct the corresponding m-tree in Figure 4.1 following the rules we specified

above. The missingness indicator florets on the m-tree are FMI = {F(v3),F(v4)},
where v3, v4 ∈ VTM .

4.1.2 The M-CEG

Having constructed a m-tree, we can elicit or learn a CEG from it in the same way as

deriving a CEG from a fact event tree. We call such a CEG the missingness CEG

(M-CEG). Let CM = (VCM , ECM ) denote the topology of the M-CEG. The vertex

set is VCM = SCM∪w
f
∞∪wn∞, where the non-sink vertices are SCM = VM∪V O∪VMI .

A position w is in V O if there is no missingness indicator associated with it. Then

we classify its floret as F(w) ∈ FO. For w ∈ VM , there is a missing floret indicator

associated with it and we let F(w) ∈ FM . For w ∈ VMI , the floret F(w) is

associated with the missing floret indicator. So we let F(w) ∈ FMI .
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Figure 4.2: A M-CEG for the conservator data.

Example 12. Figure 4.2 depicts an example of the M-CEG which can be derived

from the m-tree in Figure 4.1. Assume it is an ordinal M-CEG[Barclay et al., 2014].

We see the position w10 is aligned higher than w11 and w12 on the tree. So we can

deduce that given the missing s/b defect, the probability of failure is predicted to be
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higher than the probability of failure when s/b defect is not missing. We can also

conclude that the missingness indicators depend on the observed symptoms since w3

and w4 are not in the same stage.

Notice that Heckerman [2008] indicated that the conjugacy of Dirichlet-

Multinomial no longer tends to hold in the absence of some data when learning

a BN. This leads to an intractable posterior so that the MAP scores do not have

a closed form and are not separable. However the scores can still be numerically

estimated although the whole search process then becomes much slower. On an

m-tree, we assume that, for any floret, the parameters of primitive probability vec-

tor are independent, and the vectors of primitive probabilities associated with each

stage are mutually independent. This ensures a model search based on product of

independent Dirichlet priors over the model parameters and a closed-form conjugate

analysis [Freeman and Smith, 2011a]. We reassign the priors to θv for all v ∈ STM .

Barclay et al. [2014] have shown that the standard Bayesian selection algorithm can

then be employed with scores in a closed form in order to search for a best CEG with

informed missingness. This, however, has not been established formally in previous

work. Here we specify it for selecting the M-CEG from a given m-tree.

In Chapter 2, we have illustrated how conjugate inference can be performed

on a CEG and shown the MAP algorithm for model selection [Freeman and Smith,

2011a]. We next specify the two perspectives which should be considered and added

to the MAP algorithm for learning the M-CEG.

First of all, for situations vi, vj ∈ ST and their florets satisfy F(vi),F(vj) ∈
FM , if F(vi) and F(vj) represent the same information, i.e. x(E(vi)) = x(E(vj)),

then the situations in V (BF(vi)) and V (BF(vj)) on the m-tree can be grouped into

the same stage. If va, vb ∈ V (BF(vi)) ∪ V (BF(vj)), and θva = θvb so that the edges

eva,vk and evb,vl with the same label have the same primitive probability, then va, vb

are in the same stage.

Secondly, the log-likelihood score for a M-CEG CM can be decomposed into

local scores associated with the stages corresponding to missing floret indicators

B, denoted by UMI , and local scores associated with the stages corresponding to

observable events, denoted by UMI
. Let UTM denote the collection of stages of T M .

Then UTM = UMI ∪ UMI
and UMI ∩ UMI

= ∅.

logQ(θ; CM ) =
∑

ui∈U
MI

logQui(θ; CM ) +
∑

uj∈UMI

logQuj (θ; CM ). (4.1.3)

The log-likelihood can be computed explicitly in a closed form as shown in equation

(2.5.1).
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4.2 Identifying causal effects on the M-CEG

Suppose we have the M-CEG for a causal analysis instead of the CEG without the

informed missingness, and we aim to show that the effects of the domain-specific

interventions specified in Chapter 2 can be estimated given the M-CEG when data

are corrupted by missing values. In this section, we establish an adapted back-door

criterion for identifying effects on the M-CEGs for different types of manipulations

and interventions we have formulated. This extends the adjustment criterion pro-

posed by Saadati and Tian [2019] for “recovering” p(y|do(x)). Now we begin with

a review of these authors’ work.

4.2.1 A review of m-graphs

Mohan et al. [2013]; Mohan and Pearl [2014]; Mohan [2017]; Mohan and Pearl [2021]

have augmented a DAG to a missingness graph, called an m-graph, to explicitly in-

dicate the missingness mechanisms that exist in a given dataset. The m-graph has

topology G = (V,E). The vertex set V consists of V O ∪ VM ∪ VMI ∪ V ∗. The

vertices V O correspond to variables RO which are always observed; VM correspond

to variables RM which are partially observed; VMI correspond to missingness in-

dicators B; V ∗ correspond to proxy variables. Previous work [Mohan et al., 2013;

Mohan and Pearl, 2014; Mohan, 2017; Mohan and Pearl, 2021; Saadati and Tian,

2019] have demonstrated the recoverability of the conditional probabilities, the

joint probability, and the casual query of a do-operator p(y|do(x)) on the m-graph.

A joint probability distribution is recoverable whenever it can be consistently

estimated for any missingness process. As shown by Mohan et al. [2013], the joint

distribution is always recoverable on the m-graph when data are missing completely

at random (MCAR) or missing at random (MAR). The recoverability of the joint

distribution is complicated to analyse when data are missing not at random (MNAR)

because the missingness indicators are not independent of RO and RM . However,

Mohan and Pearl [2014] have shown that the probability p(y|do(x)) is always es-

timable from the dataset with missing data given the m-graph. The recoverability

of this probability on the m-graph is a sufficient condition for the identifiability of

the causal query on the graph whose vertex set consists of the vertices corresponding

to RO and RM [Mohan and Pearl, 2021].

Saadati and Tian [2019] have developed an adjustment criterion for identify-

ing and recovering causal effects of a do-operator from missing data on an m-graph.

The definition is given below.

Definition 4.2.1 (M-Adjustment Formula [Saadati and Tian, 2019]). Given an m-
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graph G over R and B, a set Z ⊂ R is called an m-adjustment (adjustment under

missing data) set for estimating the causal effect of X on Y , if, for every model

compatible with G, and W = RM ∩ (X ∪ Y ∪Z), then

P (y|do(x)) =
∑
z

P (y|x, z,BW = 0)P (z|BW = 0). (4.2.1)

Definition 4.2.2. A set of variables Z is a m-adjustment set for estimating the

causal effect of X on Y ) if, letting W = Vm ∩ (X ∪ Y ∪Z),

1. no element of Z is a descendant in GX of any W ∈X which lies on a proper

causal path from X to Y ,

2. all non-causal paths between X and Y in G are blocked by Z,

3. BW is d-separated from Y given X,Z, i.e. Y ⊥⊥ BW |X,Z,

4. Z is d-separated from BW , i.e.,Z ⊥⊥ BW .

Definition 4.2.2 provides the sufficient conditions for a set Z to be an m-

adjustment set. Note that the adjustment criterion generalises the back-door crite-

rion to the complete graph. As pointed out by Shpitser et al. [2012], if Z satisfies

the back-door criterion with respect to (X,Y ) in G, then Z satisfies the adjustment

criterion with respect to (X,Y ) in G.

4.2.2 Recoverability of probabilities from the M-CEG

Recall that the d-event bF(v),0 refers to the missing information represented by the

floret F(v). Let F(x) denote the set of florets so that one of the edge in the floret

F ∈ F(x) is labelled by the d-event x. Let π̃(·) denote the path related probability

on the M-CEG.

Let W (bF(x),0) denote the set of positions on the M-CEG which are the

receiving nodes of the edges labelled by bF(x),0, i.e. F(x) is not missing. Then, for

w ∈ W (bF(x),0), the edges emanating from w, denoted by E(w), contain one edge

labelled by x.

We next give a general case for defining the recoverability of causal query. Let

xo and zo denote the two d-events which are always observed, xm and zm denote the

unobservable events. We firstly find the florets associated with xm and zm. Denote

it by Fxm∪zm , and

Fxm∪zm = {F : F ∈ F(xm) ∪ F(zm) and F ∈ FM}. (4.2.2)
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The associated missing floret indicators are BFxm∪zm = {BF}F∈Fxm∪zm . Let the

collection of paths associated with observing F(xm) and F(zm) be denoted by

ΛbFxm∪zm,0
= ΛbF(xm),0

∩ ΛbF(zm),0
= Λ(E(bF(xm),0)) ∩ Λ(E(bF(zm),0)), (4.2.3)

and let

Λ(W (bFxm∪zm ,0)) = Λ(W (bF(xm),0) ∩ Λ(W (bF(zm),0). (4.2.4)

The M-CEG enables us to visualise the unfolded events including the missing-

ness information. So it is straightforward to find the collection of paths Λ(W (bFxm∪zm ,0)).

Definition 4.2.3. The set of manifest paths for xm, zm ∈ XMCM is the largest set

of the root-to-sink paths on the M-CEG CM traversing the florets F(xm) and F(zm),

i.e. Λ(W (bFxm∪zm ,0)).

If we estimate π(Λxo ,Λxm |Λzo ,Λzm) on the CEG, it is nontrivial to identify

the proper set of the root-to-sink paths associated with these d-events when xm or zm

is missing, while the semantics of the M-CEG can solve this problem. The M-CEGs

allows us to estimate π(Λxo ,Λxm |Λzo ,Λzm) by conditioning on the corresponding

manifest paths. In this case, we say that the probability π(Λxo ,Λxm |Λzo ,Λzm) can

be recovered [Mohan et al., 2013; Mohan and Pearl, 2014; Saadati and Tian, 2019]

on the M-CEG. We formalise this in the following lemma.

Lemma 4.2.4. The probability π(Λxo ,Λxm |Λzo ,Λzm) on the CEG is recoverable

from the partially observed data if we can estimate π̃(Λxo ,Λxm |Λzo ,Λzm ,Λ(W (bFxm∪zm,0)))

on the M-CEG.

We next show that when data are corrupted by missing values, the M-CEG

is a simple and intuitive vehicle for identifying the effects of a singular manipulation

or a stochastic manipulation or a composite of manipulations.

4.2.3 Recover causal queries on the M-CEG

Singular manipulations. For a singular manipulation on the d-event x, if we

are interested in exploring its effects on the d-event y, as defined in Chapter 2, we

need to estimate π(Λy||Λx) on the CEG. Given a M-CEG, we aim to recover this

probability. Note that y and x might always be observed or unobserved. On a CEG,

we find appropriate events z so that Λz partitions ΛC . Here we also need to define

such a partition in order to identify the effects on y via the back-door theorem. The

restriction we impose here is that z ∈ z is not a missingness indicator. Then for

z ∈ z, z ∈ XMCM or z ∈ XOCM .
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We first define the manifest paths for the controlled d-event x and the effect

d-event y on the M-CEG. According to Lemma 4.2.4, we recover a probability by

conditioning on the corresponding events being observed. Therefore to recover the

effect of x on y we also condition on them being observed. Accordingly, the back-

door partition is required to partition the manifest paths of x and y. Let

Fx∪y = {F : F ∈ F(x) ∪ F(y) and F /∈ FMI}. (4.2.5)

When x ∈ XMCM , y ∈ XOCM , since x is unobservable, the manifest paths for x and y

are

Λ(W (bFx∪y,0)) = Λ(W (bF(x),0)). (4.2.6)

When x ∈ XOCM , y ∈ XMCM , the manifest paths for x and y are

Λ(W (bFx∪y,0)) = Λ(W (bF(y),0)). (4.2.7)

When x, y ∈ XMCM , then the manifest paths for x and y are

Λ(W (bFx∪y,0)) = Λ(W (bF(x),0)) ∩ Λ(W (bF(y),0)). (4.2.8)

When x, y ∈ XOCM , then the manifest paths are the whole collection of the root-to-

sink paths on the M-CEG, Λ(W (bFx∪y,0)) = ΛCM .

We next construct a sub-M-CEG by the manifest paths defined on the M-

CEG CM . We call this the manifest M-CEG and denote its topology by CM∗.
The root-to-sink paths of the manifest M-CEG are then the manifest paths ΛCM∗ =

Λ(W (bFx∪y,0)). In fact, Λz is only required to partition ΛCM∗ .

We next pick the subset of root-to-sink paths of the manifest M-CEG which

pass along the edges representing the controlled event x. These paths are called the

manipulated paths. Let Λ̂ denote the manipulated paths so that

Λ̂ = Λ(W (bFx∪y,0)) ∩ Λx. (4.2.9)

The manipulated M-CEG is constructed from the manipulated paths. We denote

the manipulated M-CEG by ĈM , then ΛĈM = Λ̂.

By Lemma 4.2.4, we then recover π(Λy||Λx) from the manifest M-CEG. De-

note this causal query by

π̃Λ̂(Λy) = π̃ΛCM∗ (Λy||Λx). (4.2.10)

Theorem 4.2.5 (The m-back-door theorem for singular manipulation). When there
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are missing values in datasets, the effect of a singular manipulation on x on y is

identifiable on the M-CEG if we can find a partition Λz of ΛCM∗, z ∈ XMC or z ∈ XOC
for any z ∈ z, so that

π̃Λ̂(Λy) =
∑
z

π̃(Λy|Λx,Λz,Λ(W (bFx∪y,0)))π̃(Λz|Λ(W (bFx∪y,0))) (4.2.11)

can be estimated uniquely from the observable events.

We next specify the criteria for {Λz} so that the m-back-door theorem defined

above is valid. This is analogous to the criteria given in Theorem 2.2.2 which was

proved by Thwaites [2013]. For w′ ∈ pa(W (x)) such that ew′,w′′ ∈ E(x), we can

simply validate the following given a singular manipulation on Λx.

π̃(Λy|Λx,Λz,Λ(W (bFx∪y,0))) = π̃(Λy|Λ(w′),Λx,Λz,Λ(W (bFx∪y,0)))

= π̃(Λy|Λ(w′),
⋃

e∈E(x)

Λ(e),Λz,Λ(W (bFx∪y,0)))

= π̃(Λy|Λ(ew′,w′′),Λz,Λ(W (bFx∪y,0)))

(4.2.12)

When there exists a BN equivalent to this M-CEG, then equation (4.2.12) can be

translated as Y ⊥⊥ pa(X)|X,Z,BW , where W = X ∪ Y .

Note that if Λx ∩ Λy 6= ∅, then Λ(W (bFx∪y,0)) ⊂ Λ(E(y)). We also have

Λ(W (bFx∪y,0)) ⊂ Λ(E(x)). Then interestingly the following always holds on the

M-CEG.

π̃(Λy|Λx,Λz,Λ(W (bFx∪y,0)))

= π̃(
⋃

ewy,w′y
∈E(y)

Λ(ewy ,w′y)|
⋃

ewx,w′x
∈E(x)

Λ(ewx,w′x),Λz,Λ(W (bFx∪y,0)))

= π̃(
⋃

ewy,w′y
∈E(y)

Λ(ewy ,w′y)|
⋃

ewx,w′x
∈E(x)

Λ(ewx,w′x),Λz)

= π̃(Λy|Λx,Λz)

(4.2.13)

When there exists a BN equivalent to this M-CEG, then this equation can be trans-

lated as Y ⊥⊥ BW |X,Z. This coincides with the third condition given in the

definition of the m-adjustment set, see Definition 4.2.2.

Y ⊥⊥ pa(X)|X,Z,BW
Y ⊥⊥ BW |X,Z

=⇒ Y ⊥⊥ (pa(X),BW )|X,Z =⇒ Y ⊥⊥ pa(X)|X,Z.
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Note that the last statement is the criterion for the back-door partition when working

on the BN or the CEG without missingness indicators.

For w′ ∈ pa(W (x)) such that ew′,w′′ ∈ E(x), we also need {Λz} to satisfy

π̃(Λz|Λ(w′),Λ(W (bFx∪y,0))) = π̃(Λz|Λ(ew′,w′′),Λ(W (bFx∪y,0))). (4.2.14)

When there exists a BN equivalent to this M-CEG, this is analogous to the statement

Z ⊥⊥ X|pa(X),BW on the BN.

Theorem 4.2.6. The m-back-door partition {Λz} for recovering the singular ma-

nipulation must satisfy equation (4.2.12) and equation (4.2.14).

Equation (4.2.12) and equation (4.2.14) are sufficient conditions for the man-

ifest recovery of π(Λy||Λx) and are called the m-back-door criteria. We can now

prove Theorem 4.2.5 in the same way as the proof of the back-door theorem for the

singular manipulation on CEGs [Thwaites, 2013].

Proof of Theorem 4.2.5.

π̃Λ̂(Λy) =
∑

w′∈pa(W (x))

π̃Λ̂(Λ(w′))π̃Λ̂(Λy|Λ(w′))

=
∑

w′∈pa(W (x)),ew′,w′′∈E(x)

π̃ΛCM∗ (Λ(w′))π̃Λ̂(Λy|Λ(w′),Λ(w′′))

=
∑

w′∈pa(W (x)),ew′,w′′∈E(x)

π̃ΛCM∗ (Λ(w′))π̃ΛCM∗ (Λy|Λ(w′′))

=
∑

w′∈pa(W (x)),ew′,w′′∈E(x)

π̃ΛCM∗ (Λ(w′))π̃ΛCM∗ (Λy|Λ(ew′,w′′),Λ(w′′))

=
∑

w′∈pa(W (x)),Ew′,w′′∈e(x)

π̃ΛCM∗ (Λ(w′))π̃ΛCM∗ (Λy|Λ(ew′,w′′))

=
∑

w′∈pa(W (x)),ew′,w′′∈E(x)

π̃ΛCM∗ (Λ(w′))
∑
z

π̃ΛCM∗ (Λz,Λy|Λ(ew′,w′′))

=
∑

w′∈pa(W (x)),ew′,w′′∈E(x)

π̃ΛCM∗ (Λ(w′))
∑
z

π̃ΛCM∗ (Λy|Λz,Λ(ew′,w′′))π̃
ΛCM∗ (Λz|Λ(ew′,w′′))

=
∑

w′∈pa(W (x)),ew′,w′′∈E(x)

π̃(Λ(w′)|Λ(W (bFx∪y,0)))
∑
z

π̃(Λy|Λz,Λ(ew′,w′′),Λ(W (bFx∪y,0)))

× π̃(Λz|Λ(ew′,w′′),Λ(W (bFx∪y,0)))

(4.2.15)
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Applying equation (4.2.12) and equation (4.2.14) gives

π̃Λ̂(Λy) =
∑

w′∈pa(W (x)),Ew′,w′′∈E(x)

π̃(Λ(w′)|Λ(W (bFx∪y,0)))
∑
z

π̃(Λy|Λx,Λz,Λ(W (bFx∪y,0)))

× π̃(Λz|Λ(w′),Λ(W (bFx∪y,0)))

=
∑
z

π̃(Λy|Λx,Λz,Λ(W (bFx∪y,0)))π̃(Λz|Λ(W (bFx∪y,0))).

(4.2.16)

w0

cause

w1

symptoms

w2

w3

w4

missing s/b

w5s/b

w6

w7

w8

w9

w11

fail

w12

wf∞

wn∞

tem
pera

ture/

brea
ther

pipe/seal

lea
k

an
d

ala
rm

leak or alarm

no

no

leak and alarm

no leak no alarm

leak or alarm

yes

no

ye
s

no

yes
no

yesno

yes

no

yes

no
yes

no

Figure 4.3: The manifest M-CEG for Example 13.
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Figure 4.4: The manipulated M-CEG for Example 13.

Example 13. We continue with Example 12. The M-CEG is shown in Figure

4.2. Suppose we are interested in the effect on system failure from forcing xs/b,0,

i.e. there is no sight glass or buchholz defect. The edges associated with the con-

trolled d-event are E(xs/b,0) = {e2
w5,w11

, e2
w6,w12

, e2
w7,w11

, e2
w8,w12

, e2
w9,w12

}. Note that

xs/b,0 is unobservable. We have W (bFxs/b ,0) = {w5, w6, w7, w8, w9}. The effect

event xf,1 is always observed. Then the manifest paths are Λ(W (bFxs/b,0∪xf,1 ,0)) =⋃
w∈{w5,··· ,w9} Λ(w). We can construct the corresponding manifest M-CEG by the

manifest paths, see Figure 4.3. By forcing e ∈ E(xs/b,0) to be passed with probability

1, from the manifest M-CEG we can further construct the manipulated M-CEG, see

Figure 4.4.

Here we let the partition be Λz1 = Λ(ew1,w3)∪Λ(ew1,w4) and Λz2 = Λ(ew2,w6)∪
Λ(ew2,w8)∪Λ(ew2,w9). So that z1 refers to the symptoms conditional on temperature

change/breather defect, while z2 refers to the symptoms conditional on pipe/seal

defect. Both z1 and z2 are d-events which are always observed.

We can check whether the criteria in equation (4.2.12) and equation (4.2.14)

are satisfied by the chosen partition set. For example, considering Λz1 and Λ(e2
w5,w11

) ⊂
Λxs/b,0,

π̃(Λxf,1 |Λ(w5),Λxs/b,0 ,Λz1 ,Λ(W (bFxs/b,0∪xf,1 ,0)))

= π̃(Λ(e
w11,w

f
∞

)|Λ(w5),Λ(e2
w5,w11

),Λ(ew1,w3) ∪ Λ(ew1,w4),Λ(W (bFxs/b,0∪xf,1 ,0)))

= π̃(Λ(e
w11,w

f
∞

)|Λ(e2
w5,w11

),Λ(W (bFxs/b,0∪xf,1 ,0))).

(4.2.17)
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So equation (4.2.12) is satisfied.

π̃(Λz1 |Λ(w5),Λ(W (bFxs/b,0∪xf,1 ,0))) = π̃(Λ(ew1,w3) ∪ Λ(ew1,w4)|Λ(w5),Λ(W (bFxs/b,0∪xf,1 ,0)))

= π̃(Λ(ew1,w3)|Λ(w5),Λ(W (bFxs/b,0∪xf,1 ,0)))

= 1.

(4.2.18)

π̃(Λz1 |Λ(e2
w5,w11

),Λ(W (bFxs/b,0∪xf,1 ,0))) = 1 (4.2.19)

Therefore,

π̃(Λz1 |Λ(w5),Λ(W (bFxs/b,0∪xf,1,0))) = π̃(Λz1 |Λ(e2
w5,w11

),Λ(W (bFxs/b,0∪xf,1 ,0))).

(4.2.20)

So equation (4.2.14) is satisfied.

Therefore, there exists {Λz} satisfying the m-back-door criterion so that we

can recover the effect of intervening xs/b,0 on xf,1 from the M-CEG.

Stochastic manipulations. The recoverability of the effects of stochastic

manipulations that are imported to the idle system by the remedia intervention

is an extension of the recoverability of the effects of the singular manipulation.

Here, we employ the same notations as we defined in Section 2.3 for the remedial

intervention. Assume the probabilities θ̂w∗ which are assigned after the intervention

are known. Then for every controlled event x ∈ x(E(w∗)), let ˆ̃π(Λx) = π̃(Λx||θ̂w∗) =

ˆ̃πΛ(w∗)(Λx). This probability can be computed in the same way as we demonstrated

in Chapter 2. Let

Fx(E(w∗))∪y = {F : F ∈ F(w∗) ∪ F(y) and F /∈ FMI}. (4.2.21)

When x(E(w∗)) ∈ XMCM and y ∈ XOCM , the manifest paths for x(E(w∗)) and y are

Λ(W (bFx(E(w∗))∪y ,0)) = Λ(W (bF(w∗),0)) = Λ(w∗). (4.2.22)

When x(E(w∗)) ∈ XOCM and y ∈ XMCM , the manifest paths for x(E(w∗)) and y are

Λ(W (bFx(E(w∗))∪y ,0)) = Λ(W (bF(y)),0)). (4.2.23)

When x(E(w∗)) ∈ XMCM and y ∈ XMCM , the manifest paths for x(E(w∗)) and y are

Λ(W (bFx(E(w∗))∪y ,0)) = Λ(W (bF(w∗),0))∩Λ(W (bF(y)),0)) = Λ(w∗)∩Λ(W (bF(y)),0)).

(4.2.24)
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Then we construct the manifest M-CEG CM∗ by these manifest paths so that

ΛCM∗ = Λ(W (bFx(E(w∗))∪y ,0)).

For the CEG without informed missingness, we have demonstrated that for

the remedial intervention, the manipulated paths are Λ(w∗). For the M-CEG, anal-

ogous to how we define the manipulated paths for the singular manipulation, here

the manipulated paths are Λ(w∗) ∩ ΛCM∗ . This is a subset of the manifest paths

and can be found on the manifest M-CEG.

To recover the effect of the stochastic manipulation on F(w∗), we estimate

π̃ΛCM∗ (Λy||θ̂w∗):

π̃ΛCM∗ (Λy||θ̂w∗) =
∑

x∈x(E(w∗))

∑
z

π̃(Λy|Λx,Λz,Λ(W (bFx(E(w∗))∪y ,0)))π̃(Λz|Λ(W (bFx(E(w∗))∪y ,0)))

× ˆ̃π(Λx|Λ(W (bFx(E(w∗))∪y ,0))).

(4.2.25)

The m-back-door partition {Λz} needs to satisfy the following criteria. For every

x ∈ x(E(w∗)), for w′ ∈ pa(W (x)) such that ew′,w′′ ∈ E(x),

π̃(Λy|Λ(w′),Λx,Λz,Λ(W (bFx(E(w∗))∪y ,0))) = π̃(Λy|Λ(ew′,w′′),Λz,Λ(W (bFx(E(w∗))∪y ,0))),

(4.2.26)

π̃(Λz|Λ(w′),Λ(W (bFx(E(w∗))∪y ,0))) = π̃(Λz|Λ(ew′,w′′),Λ(W (bFx(E(w∗))∪y ,0))).

(4.2.27)

These are analogous to the criteria specified in equation (4.2.12) and equation

(4.2.14) for the singular manipulation on the M-CEG.

Example 14. Here we continue with the bushing example given in Chapter 2. Sup-

pose the endogenous root causes are likely to be missing. We plot a hypothesised

M-CEG for this system in Figure 4.5. Note that when the endogenous causes are

missing, the observed symptoms could be oil leak, no leak, loss of oil, mix of oil,

thermal runaway and electrical discharge. Interestingly, in this case, we can deduce

the missing root cause from the observed symptoms. For example, if we observe loss

of oil, then the cause of the failure comes from the insulator; if we observe thermal

runaway, then the root cause is not gasket, porcelain or insulator. However, if we

observe oil leak, then we cannot distinguish whether the missing cause is gasket or

porcelain because they can yield the same set of symptoms.

When there is a stochastic manipulation over the endogenous root causes,

w∗ = {w2}. If we are interested in the failure of the system, then the effect d-event

should always be observed. Therefore, the manifest paths are Λ(w∗) = Λ(w2) and

the underlying manifest M-CEG is plotted in Figure 4.6. The manipulated paths are
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Figure 4.5: The M-CEG constructed for the bushing system. Some of the labelled
d-events are simplified to fit the figure.

also Λ(w∗). So the topology of the manipulated M-CEG is the same as the topology

of the manifest M-CEG in this example.

Let the partition of Λ(w∗) be {Λz1 ,Λz2} so that E(z1) = {ew5,w10 , e
1
w6,w12

, e1
w7,w13

}
and E(z2) = {ew5,w11 , e

2
w6,w12

, e2
w7,w13

}. The events z1 and z2 represent symptoms

which are always observable. The criteria stated in equation (4.2.26) and equa-

tion (4.2.27) are obviously satisfied by {Λz1 ,Λz2}. This is because by replacing

Λ(W (bFx(E(w∗))∪y ,0)) by Λ(w∗), these are just the criteria we specified for the stochas-

tic manipulation in Chapter 2.

Routine intervention. In Section 2.4, we explained that the routine inter-

vention can lead to a singular manipulation, a stochastic manipulation, composite

singular manipulations, and composite singular and stochastic manipulations. We

have shown the causal identifiability on the M-CEG for the former two scenarios.

Here we simply extend the theorem to the last two scenarios.

When there are composite singular manipulations on x, we estimate the

effects from the M-CEG by recovering π(Λy||Λx). Let

Fx∪y = {F : F ∈ (∪xi∈xF(xi)) ∪ F(y) and F /∈ FMI}. (4.2.28)

Let x∗ be a subset of x so that x∗ ⊂ XMCM are unobservable. If the set x∗ is not
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Figure 4.6: The manifest M-CEG for Example 14. Some of the labelled d-events
are simplified to fit the figure.

empty, and y ∈ XOCM , then the manifest paths for x and y are

Λ(W (bFx∪y ,0)) = ∩xi∈x∗Λ(W (bF(xi),0)). (4.2.29)

If y ∈ XMCM , then

Λ(W (bFx∪y ,0)) = (∩xi∈x∗Λ(W (bF(xi),0))) ∩ Λ(W (bF(y),0)). (4.2.30)

When x∗ is empty, if y ∈ XOCM the manifest paths are Λ(W (bF(y),0)). Otherwise,

the manifest paths are ΛCM .

In equation (2.4.9), we have shown how to use the back-door partition Λz

to identify such causal effects on the CEG. Here, given the M-CEG, we extend this

expression to

π̃ΛCM∗ (Λy||Λx) =
∑
z

π̃(Λy|Λx,Λz,Λ(W (bFx∪y ,0)))π̃(Λz|Λ(W (bFx∪y ,0))). (4.2.31)

In Section 2.4, we demonstrated the back-door criteria for a composite of two sin-

gular manipulations on xr1 and xr2. Here we still demonstrate the criteria for

the m-back-door partition {Λz} on these two singular manipulations. For any

w1 ∈ pa(W (xr1)), w2 ∈ pa(W (xr2)), let ew1,w∗1
∈ E(xr1) and ew2,w∗2

∈ E(xr2).
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Then the criteria are

π(Λy|Λ(w1),Λ(w2),Λx,Λz,Λ(w(bFx∪y ,0))) = π(Λy|Λ(ew1,w∗1
),Λ(ew2,w∗2

),Λz,Λ(w(bFx∪y ,0))),

(4.2.32)

π(Λz|Λ(w1),Λ(w2),Λ(w(bFx∪y ,0))) = π(Λz|Λ(ew1,w∗1
),Λ(ew2,w∗2

)),Λ(w(bFx∪y ,0))).

(4.2.33)

When there is a singular manipulation on x† and a stochastic manipulation

on θw∗ so that the new probabilities are θ̂w∗ . Let x = {x†, x(E(w∗))} and

Fx∪y = {F : F ∈ F(x†) ∪ F(w∗) ∪ F(y) and F /∈ FMI}. (4.2.34)

When x† ∈ XMCM and x(E(w∗)) ⊂ XOCM , if y ∈ XOCM then the manifest paths for x

and y are:

Λ(W (bFx∪y ,0)) = Λ(W (bF(x†),0)). (4.2.35)

If y ∈ XMCM then the manifest paths for x and y are:

Λ(W (bFx∪y ,0)) = Λ(W (bF(x†),0)) ∩ Λ(W (bF(y),0)). (4.2.36)

When x† ∈ XOCM and x(E(w∗)) ⊂ XMCM , if y ∈ XOCM , then the manifest paths for x

and y are:

Λ(W (bFx∪y ,0)) = Λ(w∗). (4.2.37)

If y ∈ XMCM then the manifest paths for x and y are:

Λ(W (bFx∪y ,0)) = Λ(w∗) ∩ Λ(W (bF(y),0)). (4.2.38)

When x† ∈ XMCM and x(E(w∗)) ⊂ XMCM , if y ∈ XOCM , then the manifest paths for x

and y are:

Λ(W (bFx∪y ,0)) = Λ(W (bF(x†),0)) ∩ Λ(w∗). (4.2.39)

If y ∈ XMCM then the manifest paths for x and y are:

Λ(W (bFx∪y ,0)) = Λ(W (bF(x†),0)) ∩ Λ(w∗) ∩ Λ(W (bF(y),0)). (4.2.40)

When x† ∈ XOCM and x(E(w∗)) ⊂ XOCM , if y ∈ XOCM , then the manifest paths for x

and y are ΛCM . If y ∈ XMCM then the manifest paths are

Λ(W (bFx∪y ,0)) = Λ(W (bF(y),0)). (4.2.41)

The manipulated paths are Λ(W (bFx∪y ,0)) ∩ Λx† ∩ Λ(w∗).
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Then we estimate π̃ΛCM∗ (Λy||θ̂w∗ ,Λx†) from the manifest M-CEG by finding

the m-back-door partition {Λz} so that

π̃ΛCM∗ (Λy||θ̂w∗ ,Λx†) =
∑
x∈x

∑
z

π̃(Λy|Λx,Λz,Λ(w(bFx∪y ,0)))π̃(Λz|Λx,Λ(w(bFx∪y)))

× ˆ̃π(Λx|Λ(w(bFx∪y∪,0))).

(4.2.42)

Then for any w1 ∈ pa(W (x†)), w2 ∈ w∗, when ew1,w∗1
∈ E(x†) and ew2,w∗2

∈ E(w∗),

the criteria in equation (4.2.32) and equation (4.2.33) will be satisfied by {Λz}.

4.3 Event-dependent missingness

In this section, we discuss another type of missingness which is represented on the

Global Net (GN). Suppose given a consistent assignment H, the floret variable takes

value Y H(wi) = ywi,wj 6= 0 so that there is a transition on the M-CEG along ewi,wj .

Let Li,j = {L1,ij , ..., Ln,ij}, n > 0, denote the sub-community of core event variables

associated with ywi,wj . In the previous section, we focused on the scenario when the

value of Y (wi) was missing. Here we assume the value of the floret variable can still

be inferred when the core event variables in the sub-community associated with the

value of the floret variable are not completely missing. In other words, we observe

Li,j partially.

We do not assume that every core event variable is unobservable. Instead we

assume there exist some core event variables that are always observed. Let L‡i,j =

{Li,j,k1, · · · , Li,j,km} ⊆ Li,j denote the subset of core event variables associated with

ywi,wj which are unobservable. Then we define the missingness indicators for these

unobservable core event variables as follows.

Definition 4.3.1. For every core event variable Li,j,k ∈ L‡i,j, we define a missing

event indicator Bi,j,k so that

Bi,j,k =

1, if Li,j,k is missing,

0, otherwise.
(4.3.1)

The set of missing event indicators associated with L‡i,j is

B‡i,j = {Bi,j,k1, · · · , Bi,j,km}. (4.3.2)

We call this type of missingness the event-dependent missingness. We
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next represent these missing event indicators on the GN by adding the correspond-

ing vertices and edges. First of all, we make assumptions about the relationships

between the missing event indicators and other variables.

ASSUMPTION 4.3.2. Given a consistent assignment H,

1. the parent variables of a missing event indicator Bi,j,k on the GN consist of the

N core event variables preceding Li,j,k, where N > 0. We denote this parent set

by paH(Bi,j,k). We call this missingness the N-event-dependent missingness;

2. the core event variable Li,j,k depends on Bi,j,k;

3. the missing event indicator Bi,j,k shares the same direct superior as Li,j,k.

Under Assumption 4.3.2, the set of parent variables of Bi,j,k that lie on the

GN is

paH(Bi,j,k) = {LHi,j,k−1, ..., L
H
i,j,k−N}. (4.3.3)

The direct superior of Bi,j,k is

DsupH(Bi,j,k) = Y H(wi). (4.3.4)

The flattened parents are

paH
↓
(Bk,ij) = {Y H(wi), L

H
i,j,k−1, ..., L

H
i,j,k−N}. (4.3.5)

By the conditional independence assumption made in statement (3.3.8), we have

Bi,j,k ⊥⊥ ndH(Bi,j,k)|Y H(wi), pa
H(Bi,j,k). (4.3.6)

By adding vertices corresponding to the missing event indicators and adding

edges to the GN based on Assumption 4.3.2, we have a new graph lying at the

surface level of the hierarchical model. We call this the missingness GN (M-GN).

In Figure 4.7 we give an example of the M-GN for the 1-event-dependent missingness.

We call the hierarchical model that embeds the event-dependent missingness

and the floret-dependent missingness the missingness GN-CEG (M-GN-CEG)

model. In order to learn a root-to-sink path for each document, we must specify the

conditional probabilities p(bi,j,k|paH
↓
(Bi,j,k)) and p(li,j,k|paH

↓
(Li,j,k), bi,j,k). Given

these conditional probabilities, the joint distribution in equation (3.3.11) can be
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revised for the M-GN-CEG model as follows.

pH(l, b,y, i) =
∏
lj∈l

(
p(bj |paH

↓
(bj))p(lj |bj , paH(lj), Dsup

H(lj))
)I
lj∈l‡ ×

p(lj |paH(lj), Dsup
H(lj))

I
lj /∈l‡ ×

∏
w∈λH

πH(w′|w).

(4.3.7)

L1 L2 L3

B1 B2 B3

· · ·

Figure 4.7: An example of the M-GN.

In summary, this chapter has explored the possibility to model missingness

in the GN-CEG model. We have focused on the informed missingness, specifically

MNAR, by extending the framework proposed in Chapter 2 and Chapter 3. This

allows us to have a more realistic model for analysing the real-world data. Future

work can make effort to extend the current model to fit other types of missingness

that may appear in reliability data.
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Chapter 5

Generative Process and

Experiments

In this chapter, we will design experiments to support the methods we have de-

veloped and demonstrated in previous chapters. This includes the causal algebras

for the remedial intervention and the routine intervention, see Chapter 2, and the

GN-CEG model for embedding the causal dependencies, see Chapter 3.

We have explained how the effects of these domain-specific interventions can

be incorporated into the conjugate learning algorithm of CEGs in Section 2.5. In

Section 5.1, we will show with examples how the causal structure and parameter

estimation can be improved by learning with causal algebras.

This is followed by a detailed demonstration of the general process for learn-

ing the parameters in the GN-CEG model in Section 5.2. This is accompanied by a

proposal of a simple Gibbs sampler for estimating the posterior distributions.

In Section 5.3, we will run the proposed algorithm for the GN-CEG model on

a synthetic dataset for a bushing system and a real dataset for a selected conservator

system. We will also briefly discuss the evaluation of the text processing algorithms

proposed in Section 3.2 for the selected real dataset. Sensitivity analyses and the

evaluation of the Gibbs algorithm are then performed for these examples to show

that this algorithm provides an effective way to estimate the parameters.

5.1 Learning a CEG with bespoke causal algebras

5.1.1 Learning effects from a remedial intervention

In previous chapters, we implicitly assumed a causal order of events modelled on

the tree. Such order arranges the failure indicator as the last variable. With this
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order, we interpret the conditional relationships causally and examine the effects of

different interventions on machine’s failure. When the events are ordered temporally

along the root-to-leaf paths on the tree and this order can be interpreted causally,

the event tree can be assumed to be a causal tree and the CEG derived from it is a

causal CEG.

In the domain of reliability engineering, there are various types of data. Het-

erogeneity of data may affect the way we construct the event tree and the CEG. In

terms of the maintenance logs of a system, the engineers wrote down the texts when

a failure had happened or been observed. So the recorded events are conditioned

on a failure. Therefore, if we aim to learn the best structure of a CEG that is most

consistent with the data extracted from the maintenance logs, then the events mod-

elled on the tree should start with the failure indicator and then followed by root

causes and symptoms. We call such a tree the learning tree and the best scoring

CEG derived from the learning tree the learning CEG.

X Y Z

(a)

X Y Z

(b)

X Y Z

(c)

X Z Y

(d)

Figure 5.1: Some candidate BNs associated with the CEGs to be searched across.

Note that when using the MAP algorithm to select the best scoring CEG

which introduces the failure indicator as the first component, we search over a class

of models that is not equivalent to the class of models which introduces the failure

indicator as the last component. We give a simple example to explain this point.

Suppose we search over the CEGs associated with BNs with three variables X,Y, Z.

Let X be the failure indicator. The BNs in Figures 5.1a-5.1c are in the equivalence

class [Smith, 2010] and the corresponding staged trees are statistically equivalent

[Görgen and Smith, 2018]. Figure 5.1d has a collider structure and belongs to a

different class from the first three BNs. In this case, X and Y are not arranged

as the last component on the associated CEGs. So if we fix the order so that the

failure indicator X is the last component, then the CEGs associated with Figure

5.1d will not be considered. However, this class of models will be considered as

candidate models if X is assumed to be the first component. Therefore, the MAP

algorithm searches across two different classes of models for the two different order-

ings, although the two classes of models share many equivalent models. The class

of CEGs that provide the most interpretable descriptions of what might happen are

the ones where the failure event comes last. The best scoring learning CEG is not

chosen from the optimal class of models for causal interpretation but as explained

above our data is conditioned on a failure has been observed. Therefore, in our
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case the CEGs starting with failure indicators are the easiest class of CEGs to learn

about and score without considering the missingness mentioned in Chapter 4. We

can estimate the best CEG within this class simply in a conjugate way.

v0

cause class

v1

root causes

v2

v4

v3

symptoms

v5

v6

v7

v8

v11

v10

v9

v12

v13

fail

v14

v15

v16

no leak 0.2
oil leak 0.8

fail 0.65
not fail. 0.35

fail 0.65

not fail 0.35

fail 0.8
not fail 0.2

fail 0.6

not fail. 0.4

fail 0.8

not fail 0.2

mix of oil 0.4

thermal. 0.5

electrical 0.5

endogenous 0.7

exogenous. 0.3

insulator 0.1
other 0.1

ga
sk

et
0.4

other 0.6corrosive sulphur 0.4

oil leak 0.8

no leak 0.2
fail 0.6

not fail 0.4

fail 0.7

not fail 0.3

fail 0.7

not fail 0.3

fail 0.65

not fail 0.35

fail 0.65

not fail 0.35

porcelain 0.4

loss of oil 0.6

Figure 5.2: The causal staged tree for a bushing system.
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Figure 5.3: The causal CEG elicited from the staged tree in Figure 5.2. The label
“f” refers to fail, “nf” refers to not fail.

We use a bushing example to demonstrate the difference between a learning

tree and a causal tree. Suppose we have a staged tree for a bushing system in Figure

5.2 whose corresponding CEG is depicted in Figure 5.3. This CEG is similar to the

one we plotted in Example 4 which was used to explain the stochastic manipulations

on root causes in response to the remedial intervention. The events are arranged

on the tree following the temporal order. We assume that Figure 5.2 is the causal

staged tree for the selected bushing system, and Figure 5.3 is the idle CEG for

causal inference. In order to design experiment for simulating synthetic data, we

make further assumptions about the ground truth transition probabilities and label

them on the corresponding edges in Figure 5.2. We can simply transform these

probabilities onto the learning tree. The learning tree of this causal tree is plotted

in Figure 5.4, where we move the failure indicator from the leaves of the tree to

the root of the tree. The order of other events remains unchanged. The conditional

probability associated with each edge in the learning tree can be evaluated from the

underlying causal tree by simply applying the Bayes rule. For example, for edge

ev1,v3 in the learning tree, we need to compute

p(endogenous cause|fail) =
p(endogenous cause, fail)

p(fail)

=
p(fail|endogenous cause)× p(endogenous cause)

p(fail)
,

(5.1.1)

where p(fail|endogenous cause) and p(endogenous cause) can be directly read from
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Figure 5.4: The staged tree transformed from Figure 5.2 for learning purpose.

the causal tree. Having all these conditional probabilities, we then check the stages

in the learning tree. Note that the colours of the stages are reassigned in the

learning tree and the colouring is not inherited by stages of the causal tree since

stages will often be defined conditioning on variables taken in a different order. To

keep the same paintbox we use the same sets of colours to distinguish the different

stages within each of the models. For example, v7, v8, v15, v16 in the causal staged

tree in Figure 5.2 are coloured in yellow, whose florets represent conditional failure

indicators. However, v4, v6 in the learning staged tree in Figure 5.4, which are also

coloured in yellow, represent conditional symptoms caused by exogenous reasons.

The learning CEG elicited from Figure 5.4 is depicted in Figure 5.5.
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Figure 5.5: The CEG for the learning staged tree in Figure 5.4.

We next design experiments to show that when there is a remedial interven-

tion, we can integrate its causal effects into the learning algorithm of the CEG and

this can improve the parameter estimation. Suppose there is a stochastic manipu-

lation on the endogenous root causes when the faulty gasket is replaced by a new

one. We then reweigh the transitions along ev1,v3 , ev1,v4 , ev1,v5 , ev1,v6 in the causal

tree so that each edge is expected to be traversed with a new probability. Let the

post-intervened conditional probabilities be 0.2, 8
15 ,

2
15 ,

2
15 respectively. We can then

compute the corresponding conditional probabilities for florets F(v3) and F(v5) for

the ground truth learning tree.

We simulated a synthetic dataset D0 from the ground truth tree in Figure 5.4

with 5000 cases. This dataset is composed of the processes conditional on failures. It

can therefore be used to emulate the information extracted from the failure reports,

and the processes conditional on the system being operational, which can be used to

emulate the information collected from other sources. By selecting the cases which

are conditioned on failures from D0, we constructed a new dataset D1. It consists

of 3587 cases.

Following an established method first proposed by Heckerman et al. [1995] for

learning BNs, Collazo et al. [2018] suggested treating each Dirichlet hyperparamter

αuj as the number of phantom units, which is believed to arrive at jth child of stage

u. Let the number of phantom units entering the root vertex be α = 1. We usually

weigh the edges emanating from the same node equally likely. For example, there

are 0.5 phantom units entering v1 and 0.5 phantom units entering v2. Let α0 denote

the set of Dirichlet hyperparameters for this system, which is unmanipulated. For
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the intervened system, we manipulated the prior hyperparameters as suggested in

Section 2.3 so that the weights assigned to the endogenous root causes are 3 : 8 : 2 : 2.

Let α1 denote the set of Dirichlet hyperparaemters for the intervened system.

We ran a model search algorithm with respect to D1 for α0 and α1 re-

spectively. The best scoring CEG learned without considering the manipulations,

denoted by C1, is scored -7123.106. The best scoring CEG learned with the inter-

vened priors, denoted by C2, is scored -7118.292. The latter is scored higher which

means the data are better learned by the corresponding structure and the param-

eters are better estimated. To further compare C1 and C2, we computed the total

situational error Ξ(T ):

Ξ(T ) =
∑
v∈VT

||θ∗v − θ̃v||2. (5.1.2)

This is a sum of the Euclidean distance between the true conditional probabilities

θ∗v and the mean posterior probabilities θ̃v estimated on the best scoring model for

all stages. The total situational error for the model learned from the intervened

prior is 1.8× 10−5 lower than the total situational error for the model learned from

α0. So the parameter learning is improved, but to a small extent in this example.
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Figure 5.6: Leave-one-out stage monitor.The blue points are observed means of the
situation labelled on the x-axis. The black points are the posterior means of the
corresponding stages. The black lines are the two standard deviations from the
posterior means when leaving the situation out. Each red dashed line split the
situations by stages.

We further examined the selected model C2 by performing the leave-one-out

diagnosis on stages [Wilkerson and Smith, 2019]. Figure 5.6a plots the leave-one-

out diagnostic results. This plot checks whether the observed mean of the left out

situation lies within the standard deviations of the posterior mean of the stage after

leaving it out of this stage. The red dashed vertical lines split the situations into

different stages according to the model selection result so that situations in the same

133



block are in the same stage. We can see that the empirical mean for situations v2,

v5, v6, v11, v12, v13, v14 fall out of the range bounded by standard deviations. And the

stages for v2, v5, v11, v12 are misspecified. This means the staging of these situations

are not well supported by the data. This is not surprising because D1 only provides

data conditional on failures so there is no observed path passing through v2. We

can instead run the algorithm with the intervened prior for the full dataset D0. The

diagnosis from leave-one-out stage monitor is shown in Figure 5.6b. The stages are

correctly learned and no blue vertex fall out of the black lines. The total situational

error for this scenario is 0.175 and the score of the best model is −13198.56. If we

perform the learning algorithm with the unmanipulated prior, then the total situa-

tion error is 0.244 and score is −13201.92 for the best scoring model. This reveals

the advantage of integrating the manipulations for predictive inference. Having the

estimated mean posterior probabilities on the learning tree, we can then transform

these conditional probabilities back onto the causal tree for a causal analysis.

Furthermore, we can check whether incorporating the effect of the interven-

tion on time-to-failure gives a more accurate prediction of the residual lifetime of

the maintained equipment. Suppose the equipment had been used for τ = 10 weeks

before the maintenance and the maintenance prolonged the lifetime of the equip-

ment. In particular, let ξ = 0.5 so that the virtual age of the equipment after the

maintenance was ξτ = 5 weeks.

We first simulated the “real” residual lifetime for each case in D1. Assume

Weibull(0.7, 3) is the idle lifetime sampling distribution, i.e. the lifetime for a new

system. After carrying out the maintenance described above, the residual lifetime

should then be sampled from the left-truncated Weibull(0.7, 3) so that the sampled

lifetime is greater than 5 weeks.

Using conjugate inference with respect to the lifetime for the idle system so

that:

Hλ ∼Weibull(0.7, ηλ) and ηλ ∼ InverseGamma(2, 3). (5.1.3)

For the intervened system, the likelihood is the conditional Weibull as specified in

equation (2.6.10).

The log-likelihood score associated with lifetime using equation (5.1.3) is

-14288.02 while the score associated with the left-truncated lifetime is -12856.21

for this dataset. The proposed conditional Weibull distribution better captures the

feature of the residual lifetime of the equipment after maintenance. We can measure
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the prediction error of the total path time by

ι(T ) =

√∑
λ∈ΛT

(Ĥλ −H∗λ)2, (5.1.4)

where Ĥλ is the empirical mean of the lifetime of equipment whose associated path

is λ while H∗λ denotes the estimated mean of the lifetime using the posterior mean

probabilities. The prediction error ι(T ) is 17.5 for using the lifetime distribution in

equation (2.6.10), while the error is larger when using the idle lifetime distribution,

which is 21.14. Thus, considering the effects of the intervention on the path time

can improve the estimation of the posterior distribution of lifetime of the system.

5.1.2 Learning with effects from a routine intervention

In our recent work [Yu and Smith, 2021b], we designed a comparative study to

examine how integrating the stochastic manipulation induced by the routine inter-

vention can improve the prediction of failure. Here we summarise the result of this

comparative study. We used an example of a conservator system. This was similar

to Example 2, except that the symptom variable here was split into two indicator

variables for oil leak and alarm respectively.

Suppose there was a routine intervention which cleaned oil leak, checked oil

level and toppled up the oil but still did not fully prevent the oil leak. We made the

following assumptions for this example. Assume that

1. the tree in Figure 5.7 is the ground truth staged tree with informed missingness

2. Dirichlet priors are independent,see Section 4.1.2,

3. all pieces of equipment in the dataset were intervened by the same routine

maintenance,

4. a complete and unique root-to-sink path on the tree can be identified for each

case in the synthetic dataset,

5. we were given the estimated posteriors from the past failure data before main-

tenance, these were then used as priors to generate the data that would be

observed after the routine maintenance, where the florets F(w2),F(w3),F(w4)

are stochastically manipulated in response to the routine maintenance.
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Figure 5.7: A missingness staged tree.
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Figure 5.8: Comparing situational errors and MAP scores for the best scoring models
selected to fit D2 [Yu and Smith, 2021a]. The x-axis of each plot is labelled by
different values of φ, where φ = 1 refers to the case when no manipulation is imported
to the prior. Each plot displays results for a specified total phantom number α.

Based on these assumptions we simulated 5000 cases to construct another

dataset for the intervened system, denoted by D2. For a sensitivity analysis, we

set different sizes of the total phantom units which enters the root vertex v0: α =

0.001, α = 0.01, α = 0.1, α = 1, α = 3, α = 5.

In Section 2.4, we defined φ to add uncertainties to the intervened floret

distributions in response to the routine intervention. We set different values of φ

to compare the estimates on the best scoring M-CEG: φ = 0.1, φ = 0.3, φ = 0.5,

φ = 0.7, φ = 0.9, and φ = 1. When φ = 1, the priors were unmanipulated.

We ran the MAP structural learning algorithm for each scenario and assessed

the selected structures and the estimated parameters by comparing MAP model

scores and total situational errors Ξ(T ).

The diagnostic results were given in Figure 5.8. The total situational errors

were displayed in the upper panel of each plot. The MAP scores for the best scoring

models for different values of φ were displayed in the lower panel of each plot. When

φ = 0.1, the total situational error was the smallest compared to other values of
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φ for all α we chose. By contrast, φ = 1 gave the largest total situational error.

So incorporating the effects of the routine intervention into the learning algorithm

can improve the estimation of transition probabilities which can then be used for

prediction. The results of model scores were consistent with this conclusion, where

φ = 0.1 gave the highest model score while φ = 1 gave the lowest.

5.2 A model demonstration of learning the GN-CEG

Given the framework of the GN-CEG model defined in Section 3.3, in this section, we

give an example of the algorithm for learning the latent paths and the parameters.

This algorithm needs to be applied only after having extracted the core events and

constructed the core event variables on the GN. So in this sense we only focus on

learning the latent paths for the observed ordered core event variables lying on the

observation layer, i.e. the GN.

In this case, the observations are the core event variables and the time-to-

failures. Recall that in Chapter 3, we let ld = {ld1 , · · · , ldm} denote the observed

values of the m core event variables for the dth document and hd > 0 denote the

observed lifetime for the process recorded in this document. So the observations are

denoted by OD = {ld, hd}d∈{1,··· ,D} for D documents.

Next we list the hidden variables or parameters in the hierarchical model

and specify the corresponding prior distributions. Firstly, the values of the floret

variables are latent, i.e. the positions on the tree are latent states. Let wd =

(wdj )wdj∈Wλd
denote the sequence of positions traversed by the latent path λd ∈ ΛC

for the dth document. There could be two edges emanating from the same position

and received by the same position. So we can also use the edges to represent the

latent states. Let ed = (ew,w′)ew,w′∈Eλd denote the sequence of edges along the latent

path λd. Then for the whole dataset, {wd}d∈{1,··· ,D} and {ed}d∈{1,··· ,D} are latent.

The transition probability along each edge on the tree is also unknown. We

can let all documents share the same set of transition probabilities, denoted by

{θw}w∈W . An alternative hypothesis is to assume that each document is associated

with a unique system so that each system has its own set of transition probabilities,

denoted by {θdw}w∈W,d∈{1,··· ,D}. By assuming Dirichlet prior independence, we can

define a Dirichlet prior for each θdw with hyperparameters αw so that

θdw ∼ Dirichlet(αw). (5.2.1)

Given the ordered core event variables Ld = {Ld1 , · · · , Ldm} for the dth

document, unless the size of set of core event variables is not big and we have
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other prior information knowledge, we may not know which of them are in the same

community. Then we introduce a vector ad = {aLd1 , · · · , aLdm} for each Ldj ∈ Ld
as the boundary indicators. Then aLdj = 1 means wdj 6= wdj−1

and there is a

transition from wdj−1
to wdj along the edge ewdj−1

,wdj
∈ EC on the tree. Otherwise,

when aLdj = 0, wdj = wdj−1
so that ldj lies in the same sub-community as ldj−1

.

So each aLdj is a binary variable. When the value of this indicator is unknown, we

assume that it is drawn from a Bernoulli distribution:

aLdj ∼ Bernoulli(γLdj ). (5.2.2)

This gives a new set of parameters γ = {γL}L∈LD , where LD is the whole set of

core event variables on the GN. Since Bernoulli is conjugate to Beta distribution,

we simply assign a Beta prior to each γL by

γL ∼ Beta(r1, r2), (5.2.3)

where the hyperparameters are r1, r2 > 0.

The emission probability p(l|paH(l), DsupH(l)) also needs to be specified.

Recall that paH↓(L) = {paH(L), DsupH(L)} is the flattened parent of L. The direct

superior DsupH(L), i.e. the latent state of the observed core event, depends on

the assignment H. Given different H, the flattened parent may differ. If L takes

values in L = {l1, · · · , ln}, and the flattened parent is paH↓(L), then let φ
paH↓(L)
L =

{φpa
H↓(L)

l1
, · · · , φpa

H↓(L)
ln

} so that

p(L = li|paH↓(L), DsupH↓(L)) = φ
paH↓(L)
li

. (5.2.4)

Let
∑n

i=1 φ
paH↓(L)
li

= 1 and φ
paH↓(L)
li

> 0. If the emission probabilities are unknown,

we then assume they are drawn from a Multinomial distribution with a Dirichlet

prior. Thus,

li|paH↓(L) ∼ Multinomial(φ
paH↓(L)
L ), (5.2.5)

and

φ
paH↓(L)
L ∼ Dirichlet(ν

paH↓(L)
L ), (5.2.6)

where the hyperparameters are ν
paH↓(L)
L = {νpa

H↓(L)
l1

, · · · , νpa
H↓(L)

ln
}. Let φ =

{φpa
H↓(L)

L }L∈LD,H denote the set of emission probabilities for all core event vari-

ables and the corresponding flattened parents. Let ν = {νpa
H↓(L)

L }L∈LD,H denote

the set of corresponding Dirichlet hyperparameters which need to be specified.

Here for modelling the lifetime, we use the Weibull path time as an example.
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This can be replaced by the gamma distributed path time as discussed in Section

2.6. For the dth document with latent path λd, let

hd ∼Weibull(βλd , ηλd), (5.2.7)

where βλd > 0 is the shape parameter which needs to be specified for each path and

ηλd > 0 is the scale parameter with an inverse-Gamma prior. Let

ηλd ∼ InverseGamma(ζλd , µλd), (5.2.8)

where µλd is the scale parameter and ζλd is the shape parameter.

To summarise, we have

• a set of observations:

OD = {ld, hd}d∈{1,··· ,D}; (5.2.9)

• a set of hidden variables or parameters:

Z = {{ed}d∈{1,··· ,D}, {θdw}w∈W,d∈{1,··· ,D}, {ad}d∈{1,··· ,D},γ,φ,η}; (5.2.10)

• a collection of hyperparameters:

Ω = {α, r1, r2,ν, ζ,µ,β}. (5.2.11)

5.2.1 The general process

Given the parameters and distributions specified above, we now set out a general

process for learning a latent path on the CEG.

1. For every core event variable L ∈ LD,

(a) sample the parameter for the boundary indicator by

γL ∼ Beta(r1, r2), (5.2.12)

(b) for every possible flattened parent of L, paH↓(L), sample the emission

probabilities by

φ
paH↓(L)
L ∼ Dirichlet(ν

paH↓(L)
L ). (5.2.13)

2. For every path λ ∈ ΛC , sample

ηλ ∼ InverseGamma(ζλ, µλ). (5.2.14)
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3. For every document d ∈ {1, · · · , D},

(a) for each position w ∈W , sample the transition probabilities by

θdw ∼ Dirichlet(αw). (5.2.15)

(b) for each observed core event variable in this document ldj ∈ ld,

i. sample the boundary indicator from

aLdj ∼ Bernoulli(γLdj ), (5.2.16)

if aLdj = 0, then no transition is made, thus

wdj = wdj−1
, edj = edj−1

; (5.2.17)

otherwise, aLdj = 1 and sample a new transition by

edj ∼ Multinomial(θwdj−1
), (5.2.18)

where the receiving node of edj is wdj ;

ii. given edj , aLdj , sample the observed value of the core event variable

from

ldj ∼ Multinomial(φ
paH↓(Ldj )

Ldj
). (5.2.19)

(c) given the sampled edges ed, let ẽd be the unique edges in ed, the path λd

for this document satisfies Eλd = ẽd. Draw the total time from

hd ∼Weibull(βλd , ηλd). (5.2.20)

5.2.2 The parameter learning algorithm

For the dth document, the complete data likelihood is

p(ld, hd, ed,θ
d,ad,γ,φ,η|α, r1, r2,ν, ζ,µ,β)

= p(ld, hd|ed,θd,ad,γ,φ,η,β)× p(ed,θd,ad,γ,φ,η|α, r1, r2,ν, ζ,µ,β)

= p(hd|ed,η,β)× p(ld|ed,φ)× p(ed|θd,ad)× p(θd|α)× p(ad|γ)×

p(γ|r1, r2)× p(φ|ν)× p(η|ζ,µ)

= p(hd|ed,η,β)× p(η|ζ,µ)× p(φ|ν)× p(γ|r1, r2)× p(θd|α)×
md∏
j=1

{p(ldj |φ
paH↓(Ldj )

Ldj
)× p(ewdj−1

,wdj
|θdwdj−1

, adj )× p(aLdj |γLdj )}.

(5.2.21)
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Marginalising out ed and ad, then we have

p(ld, hd|θd,φ,η,β,γ)

=
∑
λd

p(ld, hd, λd|θd,φ,η,β,γ)

=
∑
λd

p(hd|ηλd , βλd)× p(ld, λd|θ
d,φ,γ)

=
∑
λd

p(hd|ηλd , βλd)×
md∏
j=1

∑
aLdj

∈{0,1}

p(ldj |φ
paH↓(Ldj )

Ldj
)× p(ewdj−1

,wdj
|θdwdj−1

, aLdj )× p(aLdj |γLdj ).

(5.2.22)

The joint distribution has the following expression.

p({ld, hd}d∈{1,··· ,D}, {ed}d∈{1,··· ,D}, {ad}d∈{1,··· ,D}|α, r1, r2,ν, ζ,µ,β)

= p({ld, hd}d∈{1,··· ,D}|{ed}d∈{1,··· ,D},ν, r1, r2, ζ,µ,β)︸ ︷︷ ︸
(1)

× p({ed}d∈{1,··· ,D}, {ad}d∈{1,··· ,D}|α, r1, r2)︸ ︷︷ ︸
(2)

.

(5.2.23)

The component labelled by (1) in this expression can be written as:

p({ld, hd}d∈{1,··· ,D}|{ed}d∈{1,··· ,D},ν, r1, r2, ζ,µ,β)

=

∫
p({ld, hd}d∈{1,··· ,D}|{ed}d∈{1,··· ,D},φ,η,β)p(φ|ν)p(η|ζ,µ) dφdη

=

∫
p({ld}d∈{1,··· ,D}|{ed}d∈{1,··· ,D},φ)p(φ|ν) dφ︸ ︷︷ ︸

(I)

∫
p({hd}d∈{1,··· ,D}|η,β)p(η|ζ,µ) dη︸ ︷︷ ︸

(II)

.

(5.2.24)

We next compute the components (I) and (II) separately. Beginning with the

probability p({ld, hd}d∈{1,··· ,D}|{ed}d∈{1,··· ,D},φ,η,β).
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p({ld, hd}d∈{1,··· ,D}|{ed}d∈{1,··· ,D},φ,η,β)

=
D∏
d=1

p(ld, hd|ed,φ,η,β)

=

D∏
d=1

p(ld|ed,φ)p(hd|ed,η,β)

=

D∏
d=1

 m∏
j=1

p(ldj |φ
paH↓(Ldj )

Ldj
)

× p(hd|ηλẽd , βλẽd )

=

D∏
d=1

md∏
j=1

φ
paH↓(Ldj )

ldj

× βλd
ηλd

h
βλd−1

d exp(−
h
βλd
d

ηλd
),

(5.2.25)

where ẽd are the unique edges in ed, λẽd denotes the root-to-sink path which is

composed of ẽd, and λd = λẽd . Let n
paH↓(Ldj )

ldj
denote the number of times ldj is

observed given the flattened parent paH↓(Ldj ). Let nλd denote the number of doc-

uments whose latent paths are λd. Then the above probability can be re-expressed

as

p({ld, hd}d∈{1,··· ,D}|{ed}d∈{1,··· ,D,φ,η,β)

=

 ∏
lj∈LD

∏
paj∈paH↓(Lj)

(φ
paj
lj

)
n
paj
lj


︸ ︷︷ ︸
p({ld}d∈{1,··· ,D}|{ed}d∈{1,··· ,D},φ)

×
∏
λ∈ΛC

(βλ
ηλ

)nλ ∏
d:λd=λ

hβλ−1
d exp(−

hβλd
ηλ

)


︸ ︷︷ ︸

p({hd}d∈{1,··· ,D}|η,β)

.

(5.2.26)

Thus, the probability (I) can be written as:

(I) =

∫  ∏
lj∈LD

∏
paj∈paH↓(Lj)

(φ
paj
lj

)
n
paj
lj

×
 ∏
paj∈paH↓(Lj),Lj∈LD

1

B(ν
paj
Lj

)

∏
lj∈Lj

(φ
paj
lj

)
ν
paj
lj
−1

 dφ

=

∫ ∏
paj∈paH↓(Lj),Lj∈LD

1

B(ν
paj
Lj

)

∏
lj∈Lj

(φ
paj
lj

)
n
paj
lj

+ν
paj
lj
−1
dφ

=
∏

paj∈paH↓(Lj),Lj∈LD

B(n
paj
Lj

+ ν
paj
Lj

)

B(ν
paj
Lj

)
,

(5.2.27)
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where n
paj
Lj

= {npajlj
}lj∈Lj with state space Lj for the core event variable Lj , and

LD = {Ld}d∈{1,··· ,D}. Here B(ν
paj
Lj

) =

∏
lj∈Lj

Γ(ν
paj
lj

)

Γ(
∑
lj∈Lj

ν
paj
lj

)
is the beta function.

The probability (II) can be written as:

(II) =

∫ ∏
λ∈ΛC

(βλ
ηλ

)nλ ∏
d:λd=λ

hβλ−1
d exp(−

hβλd
ηλ

)

 ∏
λ∈ΛC

µζλλ

Γ(ζλ)ηζλ+1
λ

exp(−µλ
ηλ

) dη

=

∫  ∏
λ∈ΛC

βnλλ µζλλ
Γ(ζλ)

∏
d:λd=λ

hβλ−1
d

 ∏
λ∈ΛC

1

ηζλ+nλ+1
λ

exp(−
µλ +

∑
d:λd=λ h

βλ
d

ηλ
)

 dη

=
∏
λ∈ΛC

βnλλ µζλλ Γ(ζλ + nλ)

Γ(ζλ)(µλ +
∑

d:λd=λ h
βλ
d )ζλ+nλ

∏
d:λd=λ

hβλ−1
d ×

∫ ∏
λ∈ΛC

(µλ +
∑

d:λd=λ h
βλ
d )ζλ+nλ

Γ(ζλ + nλ)ηζλ+nλ+1
λ

exp(−
µλ +

∑
d:λd=λ h

βλ
d

ηλ
) dη

=
∏
λ∈ΛC

βnλλ µζλλ

(µλ +
∑

d:λd=λ h
βλ
d )ζλ+nλ

Γ(ζλ + nλ)

Γ(ζλ)

∏
d:λd=λ

hβλ−1
d .

(5.2.28)

Combining this expression and equation (5.2.27), the probability in equation (5.2.24)

can therefore be evaluated by:

p({ld, hd}d∈{1,··· ,D}|{ed}d∈{1,··· ,D},ν, r1, r2, ζ,µ,β)

=
∏

paj∈paH↓(Lj),Lj∈LD

B(n
paj
Lj

+ ν
paj
Lj

)

B(ν
paj
Lj

)

∏
λ∈ΛC

βnλλ µζλλ

(µλ +
∑

d:λd=λ h
βλ
d )ζλ+nλ

Γ(ζλ + nλ)

Γ(ζλ)

∏
d:λd=λ

hβλ−1
d .

(5.2.29)

So far we have shown how to compute the first component in equation (5.2.23). Now

we expand the expression of component (2).
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p({ed}d∈{1,··· ,D}, {ad}d∈{1,··· ,D}|α, r1, r2)

=

∫
p({ed}d∈{1,··· ,D}, {ad}d∈{1,··· ,D}, {θd}d∈{1,··· ,D}|α, r1, r2) dθ

=

∫
p({ed}d∈{1,··· ,D}|{ad}d∈{1,··· ,D}, {θd}d∈{1,··· ,D})p({θd}d∈{1,··· ,D}|α)×

p({ad}d∈{1,··· ,D}|γ)p(γ|r1, r2) dθdγ

=

∫
p({ed}d∈{1,··· ,D}|{ad}d∈{1,··· ,D}, {θd}d∈{1,··· ,D})p({θd}d∈{1,··· ,D}|α) dθ×∫
p({ad}d∈{1,··· ,D}|γ)p(γ|r1, r2) dγ

=

∫ D∏
d=1

∏
w∈W

1

B(αw)

∏
e∈E(w)

(θde)
αe+Ie∈Eλd

−1
dθ×

∫ ∏
Lj∈Ld

1

B(r1, r2)
γ
nLj,1+r1−1

Lj
(1− γLj )

NLj−nLj,1+r2−1
dγ,

(5.2.30)

where NLj denotes the total number of observations for the core event variable Lj

in the dataset, nLj ,1 denotes the number of observations for the core event variable

Lj satisfying aLj = 1. Then nLj ,0 = NLj − nLj ,1 is the number of observations for

the core event variable Lj satisfying aLj = 0. For the dth document, let nd,E(w) =

{nd,ew,w′}ew,w′∈E(w), where nd,ew,w′ denotes the number of times the edge ew,w′ ∈
E(w) is traversed by λd. In our case, nd,ew,w′ = 0 or 1.

The above expression can be further simplified as follows.

p({ed}d∈{1,··· ,D}, {ad}d∈{1,··· ,D}|α, r1, r2)

=
D∏
d=1

∏
w∈W

B(αw + nd,E(w))

B(αw)
×

∏
Lj∈LD

B(nLj ,1 + r1, nLj ,0 + r2)

B(r1, r2)
.

(5.2.31)

Combining the expressions in equation (5.2.29) and equation (5.2.31), the joint
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distribution in equation (5.2.23) can now be expanded as:

p({ld, hd}d∈{1,··· ,D}, {ed}d∈{1,··· ,D}, {ad}d∈{1,··· ,D}|α, r1, r2,ν, ζ,µ,β)

=

 ∏
paj∈paH↓(Lj),Lj∈LD

B(n
paj
Lj

+ ν
paj
Lj

)

B(ν
paj
Lj

)

×
 ∏
λ∈ΛC

βnλλ µζλλ

(µλ +
∑

d:λd=λ h
βλ
d )ζλ+nλ

Γ(ζλ + nλ)

Γ(ζλ)

∏
d:λd=λ

hβλ−1
d


×

(
D∏
d=1

∏
w∈W

B(αw + nd,E(w))

B(αw)

)
×

 ∏
Lj∈Ld

B(nLj ,1 + r1, nLj ,0 + r2)

B(r1, r2)

 .

(5.2.32)

We next apply blocked Gibbs sampler by grouping {ed,ad} and sampling

them conditioned on all other variables. Equivalently, we sample the block {λd,ad}.
Let e−d denote the edges sampled for documents except the dth document, and a−d

denote the boundary indicators sampled for documents except the dth document.

p(ed,ad|e−d,a−d, {ln, hn}n∈{1,··· ,D})

=
p({en}n∈{1,··· ,D}, {an}n∈{1,··· ,D}, {ln, hn}n∈{1,··· ,D})

p(e−d,a−d, {ln, hn}n∈{1,··· ,D})

=
p({ln, hn}n∈{1,··· ,D}|{en}n∈{1,··· ,D}, {an}n∈{1,··· ,D})

p({ln, hn}n∈{1,··· ,D}\d|e−d,a−d)p(ld, hd)
×
p({en}n∈{1,··· ,D}, {an}n∈{1,··· ,D})

p(e−d,a−d)

(5.2.33)

Let n
paj
lj ,−d

denotes the number of the observed core event lj whose flattened parent is

paj excluding the observations from the dth document. Let n
paj
Lj ,−d

= {npaj
lj ,−d
}lj∈Lj .

Let n
−d
Lj ,1

denote the number of the observations for the core vent variable Lj satis-

fying aLj = 1 excluding the observations from the dth document.

p(ed,ad|e−d,a−d, {ln, hn}n∈{1,··· ,D})

=

 ∏
paj∈paH↓(Lj),Lj∈LD

B(n
paj
Lj

+ ν
paj
Lj

)

B(n
paj
Lj ,−d

+ ν
paj
Lj

)

×
 βλdµ

ζλd
λd

(µλd +
∑

n:λn=λd
h
βλd
n )

ζλd + nλd − 1

ζλd − 1
× hβλd−1

d

×
 ∏
w∈Wλd

B(αw + nd,E(w))

B(αw)

×
 ∏
Lj∈LD

B(nLj ,1 + r1, nLj ,0 + r2)

B(n
−d
Lj ,1

+ r1, n
−d
Lj ,0

+ r2)

 .

(5.2.34)

Given the counts and the hyperparameters, we can estimate the parameters as
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follows. The estimated transition probability for edge e and document d is

θ̂de =
nd,e + αe∑

e∈E(w) nd,e + αe
. (5.2.35)

Let θ̂d = {θ̂e}e∈EC . The estimated emission probability for lj and the flattened

parent paj is

φ̂
paj
lj

=
n
paj
lj

+ ν
paj
lj∑

lji∈Lj n
paj
lji

+ ν
paj
lji

. (5.2.36)

Let φ̂
paH↓(Lj)
Lj

= {φ̂pa
H↓(Lj)

lji
}lji∈Lj and φ̂ = {φ̂pa

H↓(Lj)
Lj

}Lj∈LD,H. The probability of

a transition along an edge when the core event variable is Lj is estimated to be

γ̂Lj =
nLj ,1 + r1

nLj ,1 + r1 + nLj ,0 + r2
. (5.2.37)

Let γ̂ = {γ̂Lj}Lj∈LD . For each path λ, the hyperparamters for the path time are

updated by

ζ̂λ = ζλ + nλ (5.2.38)

µ̂λ = µλ +
∑

d:λd=λ

hβλd . (5.2.39)

Let ζ̂ = {ζλ}λ∈ΛC and µ̂ = {µλ}λ∈ΛC .

Based on the general process described in Section 5.2.1 and the probability

expressions given in this section, we now devise a blocked Gibbs sampler for esti-

mating the parameters and learning hidden variables. We call this the HcaGibbs

Algorithm, see Algorithm 7. The inputs of the algorithm are OD = {ld, hd}d∈{1,··· ,D}
and Ω = {α, r1, r2,ν, ζ,µ,β}, and the outputs are {ed}d∈{1,··· ,D}, or equivalently

{λd}d∈{1,··· ,D}, {θdw}w∈W,d∈{1,··· ,D},φ,η,γ,η,γ,φ.
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Algorithm 7 HcaGibbs

Input: {ld, hd}d∈{1,··· ,D},α, r1, r2,ν, ζ,µ,β

Output: {λd}d∈{1,··· ,D}, {θdw}w∈W,d∈{1,··· ,D},φ,η,γ,η,γ,φ
1: set the count statistics {npajlj

}, nd,e, nLj ,1, nLj ,0, nλ to 0 // Initialisation

2: for document d ∈ {1, · · · , D} do
3: ad1 = 1, sample ed1 ∼ Multinomial( 1

NE(w0)
) // NE(w0): number of edges emanating from w0

4: update nd,ed1 += 1, n
paH↓(Ld1 )

ld1
+= 1, nld1 ,1 += 1

5: for j ∈ {2, · · · ,md} do // md: number of observed events for the dth document

6: sample aLdj ∼ Bernoulli(1
2)

7: if aLdj = 0 then
8: edj = edj−1

9: update n
paH↓(Ldj )

ldj
+= 1, nLdj ,0 += 1

10: else
11: sample edj ∼ Multinomial( 1

NE(wdj−1
)
)

12: update nd,edj += 1, n
paH↓(Ldj )

ldj
+= 1, nLdj ,1 += 1

13: end if
14: end for
15: end for
16: λd = λẽd , update nλd += 1
17: while run do // blocked Gibbs sampling

18: for document d ∈ {1, · · · , D} do
19: nλed −= 1 // decrement counts

20: for j ∈ {1, · · · ,md} do

21: n
paH↓(Ldj )

ldj
−= 1, nLdj ,aLdj

−= 1

22: for e ∈ ẽd do
23: nd,e −= 1
24: end for
25: end for
26: sample ed,ad ∼ p(ed,ad|e−d,a−d, {ln, hn}n∈{1,··· ,D}) // resample

27: λd = λẽd , update nλd += 1 // increment counts

28: for j ∈ {1, · · · ,md} do

29: n
paH↓(Ldj )

ldj
+= 1, nldj ,aLdj

+= 1

30: for e ∈ ẽd do
31: nd,e += 1
32: end for
33: end for
34: end for
35: end while
36: Estimate parameters from the count statistics and the hyperparameters using

equations (5.2.35) to (5.2.39).
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5.3 Experiments for the GN-CEG model

Having specified the learning algorithm, we next design experiments to examine

how it performs. In this section, we first evaluate the algorithm on synthetic data

generated from a GN-CEG model of known structure and parameters, and then

apply it on a real dataset for the conservator of a transformer.

5.3.1 Analysis using synthetic data

Here we still use the bushing system mentioned in Section 5.1 as an example. Assume

the ground truth causal CEG lying at the bottom level of the hierarchical model

has the structure plotted in Figure 5.3. The learning staged tree of this causal

CEG is shown in Figure 5.4. For learning purpose, this tree or equivalently the

corresponding CEG in Figure 5.5 lies at the deeper level of the hierarchical model

instead of the causal tree since we learn from failure reports. For simplicity we here

assume Figure 3.8 is the GN for this example.

p(l1,1|xc,1) 0.6 p(l1,2|xc,1) 0.4

p(l2,1|xc,2) 0.5 p(l2,2|xc,2) 0.5

p(l3,1|xc,3) 0.4 p(l3,2|xc,3) 0.6

p(l5,1|xc,4) 0.8 p(l5,2|xc,4) 0.2

p(l6,1|l5,1, xc,4) 0.5 p(l6,2|l5,1, xc,4) 0.5

p(l6,1|l5,2, xc,4) 0.5 p(l6,2|l5,2, xc,4) 0.5

p(l8,1|xc,6) 0.7 p(l8,2|xc,6) 0.3

p(l9,1|xc,5) 0.4 p(l9,2|xc,5) 0.6

p(l10,1|l9,1, xc,5) 0.5 p(l10,2|l9,1, xc,5) 0.5

p(l10,1|l9,2, xc,5) 1/6 p(l10,2|l9,2, xc,5) 5/6

p(l4,1|xs,1, l1, l2, l3) 0.5 p(l4,2|xs,1, l1, l2, l3) 0.5

p(l4,3|xs,2, l1, l2, l3) 1 p(l4,1|xs,3, l1, l2, l3) 0.1

p(l4,4|xs,3, l1, l2, l3) 0.9 p(l4,5|xs,4, l1, l2, l3) 1

p(l7,1|xs,5) 1 p(l7,2|xs,6) 1

Table 5.1: The ground truth emission probabilities. The core event variables
take values l1,1 = {failed gasket}, l1,2 = {aging gasket},l2,1 = {seal crack}, l2,2 =
{axial crack},l3,1 = {crack}, l3,2 = {no crack},l5,1 = {yes}, l5,2 = {no},l6,1 =
{oxidant contact}, l6,2 = {contact resistance},l8,1 = {lightening}, l8,2 =
{weather},l9,1 = {temperature}, l9,2 = {nitrogen blanket},l10,1 =
{oil corrosion}, l10,2 = {sulphur corrosion},l4,1 = {oil level low}, l4,2 = {leak}, l4,3 =
{normal oil level}, l4,4 = {loss of oil}, l4,5 = {transformer oil and bushing oil},l7,1 =
{thermal runaway}, l7,2 = {electrical discharge}.

Firstly, we simulated synthetic data from the deeper level CEG to the GN

to emulate what we could extract from maintenance logs. We have assumed the

ground truth transition probabilities on the CEG in Section 5.1 so that we could
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generate path for each document. We still used D1 with 3587 cases as the set of

synthetic paths. For each path, we simulated observed core event variables using

the hypothesised ground truth emission probabilities in Table 5.1. In this table, we

condition the probability on the d-event, which can be replaced by the edge labelled

by it. In this way we have constructed the set of observed core event variables for

each document. Let F1 denote the 3587 sets of the synthetic observations associated

with D1.

As for the analyses in the previous sections in this chapter, we ran the al-

gorithm for different values of the phantom number α. Specifically, we ran the

HcaGibbs algorithm for 10000 iterations for α = 0.01, 0.1, 1, 5, 10 respectively. Let

J1, · · · , J5 denote the output of the algorithm for each experiment. There are only

have 10 core event variables and the boundaries of the potential communities are

obvious. So we simply assumed {ad}d∈{1,··· ,D} were known for these experiments.

Moreover, the hyperparameters for the emission probabilities were fixed to be the

same in these five experiment. In particular, for each Lj and the corresponding

flattened parent paH↓(Lj), let ν
paH↓(Lj)
lji

= ν
paH↓(Lj)
ljk

= ν0 for any lji, ljk ∈ Lj unless

we have prior knowledge about the weights of the possible values of Lj . Here we

have chosen to let ν0 = 1 to check the performance of the algorithm for different

values of α. We will check the performance of the algorithm for other values of ν0

in the later experiments.

We assessed the performance of the algorithm in each experiment from two

perspectives: (1) visualising the samples; (2) examining the precision of parameter

estimations.

Visualising the samples. We first checked the traceplots of some statis-

tics to ensure that the Gibbs samples were “mixed well” and not stuck anywhere.

Specifically, we examined how the following three statistics behaved.

1. The situational difference δ(T ) measures the distance between the tran-

sitional probabilities estimated from the samples of the tth iteration and the

(t+ 1)th iteration. We employ the idea of the total situational error, see equa-

tion (5.1.2). Let θv(t) denote the transition probabilities estimated from the

tth iteration for situation v ∈ ST . Then, the situational difference is measured

by

δ(T ) =
∑
v∈ST

||θv(t+ 1)− θv(t)||2. (5.3.1)

2. The emission difference ε(G∗, T ) measures the distance between the emis-

sion probabilities estimated from the samples of the tth iteration and the

(t+ 1)th iteration. As for the definition of the situational difference, we define
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Figure 5.9: Traceplots for the experiment with synthetic data for different values of
α.
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this as follows. Let φ
paH↓(Lj)
Lj

(t) denote the emission probabilities estimated

from the tth iteration for Lj with flattened parent paH↓(Lj). Then,

ε(G∗, T ) =
∑

Lj∈LD,paj∈paH↓(Lj)

||φpajLj
(t+ 1)− φpajLj

(t)||2. (5.3.2)

3. The paths matching precision κ(T ): this is the proportion of the accurately

estimated latent paths for the whole dataset for each iteration t. Let λd(t)

denote the path index for the dth document sampled at the tth iteration. Then,

κ(T ) =

∑D
d=1 Iλd(t)=λ∗d

D
. (5.3.3)

Traceplots provide simple and transparent visualisations of the performance

of the sampler which allow us to check the performance of the samples straight-

forwardly. Figure 5.9 displays the traceplots for these three statistics for α =

0.01, 0.1, 1, 5, 10 respectively. From Figure 5.9a to Figure 5.9c, we can see that

the sampler does not perform well between 2000 and 4000 iterations. For α = 0.1,

see Figure 5.9d to Figure 5.9f, between 2500 and 3500 iterations, the traceplots fluc-

tuate within a narrow range but are not stuck within this interval. For α = 1, 5, 10,

see Figure 5.9g to Figure 5.9o, the chains of the estimated statistics behave well.

Precision of parameter estimations. Since we have assumed the ground

truth transition probabilities, emission probabilities and latent paths for all the

documents in the dataset, we can examine how well these parameters are estimated

from the algorithm. Specifically, we evaluated the following four types of errors.

1. The mean path matching precision. This is the average of the paths

matching precision κ(T ) for all the iterations.

κ(T ) =

∑N
t=1

∑D
d=1 Iλd(t)=λ∗d

D ×N
. (5.3.4)

2. The total situational error, see Ξ(T ) equation (5.1.2).

3. The total emission error is the sum of the Euclidean distance between the

true emission probabilities φ∗ and the mean posterior probabilities φ̃ estimated

from the samples.

$(G∗, T ) =
∑

Lj∈LD,paj∈paH↓(Lj)

||φ∗pajLj
− φ̃pajLj

||2. (5.3.5)
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Figure 5.10: Comparing the estimated path probabilities: “alpha” in the figure
refers to α.

From the sampled results for different values of α, the mean path matching

precision κ(T ) is 0.781 when α = 0.01, 0.797 when α = 0.1, 0.801 when α = 1,

0.861 when α = 5 and 0.867 when α = 10. The highest precision appears when

α = 10. We can further check the mean posterior path probability and the standard

errors for each sampled result. Figure 5.10 compares the estimates with the ground

truth path probabilities. As mentioned before, only the failure paths are likely

to be the latent paths for the failure reports. There are 10 candidate paths here.

The indices of the paths have been labelled in Figure 5.4. Then we estimated the

path probability for each of the 10 paths by computing the mean posterior path

probability from the 10000 samples for the 3587 synthetic documents. In the figure,

different colours are assigned for the results of different experiments with different

phantom numbers α. The dots represent the mean posterior probability while the

bar cross each dot represents the interval of the mean plus or minus two standard

deviations. In this figure, we can see that for each path, the real path probability

is inclusive in the bar when α = 5 or 10. The estimates given by α = 0.01 and

α = 0.1 are less accurate. For α = 0.01, only the bars for path 9 and path 10

include the corresponding real path probabilities. This is not surprising because

the mean path matching precision estimated from the corresponding two chains are

lower than others. We can also check the corresponding traceplots in Figure 5.9c

and Figure 5.9f. As we have mentioned earlier, part of the chain does not behave

well for both cases. This may cause low precision of path matching.

For α = 0.01, 0.1, 1, 5, 10, the total situational errors are 2.724, 2.742, 1.868,

1.535, 1.175 respectively. The transition probabilities are most accurately estimated

in the experiment with α = 10. In addition, we computed the total emission errors
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for these experiments, which are 3.256, 4.200, 3.057,1.727, 1.967 respectively. The

last two samplers give the emission errors lower than 2.

From these experiments, we can see that the mixing of the samples is not

bad and the paths can be well estimated. But we may need to carefully determine

α to avoid setting this value too small in this example otherwise the sampler will

not mix properly.
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Figure 5.11: Traceplots for the experiment with synthetic data for different ν0.

Next we fixed α = 10 and ran the algorithm for different values of ν0. We

already had the output for ν0 = 1. Here, let ν0 = 0.1, 5, 10 and the outputs of the

HcaGibbs algorithm for these scenarios be denoted by J6, J7, J8 respectively. The

corresponding traceplots are shown in Figure 5.11. The chains for ν0 = 0.1 behave

not as well as the others. It is likely only a small proportion of latent paths are

updated at each iteration in intervals 1000-4000, 6000-8000, 8500-10000.
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Figure 5.12: Comparing the estimated path probabilities for different ν0.

The path probability estimates for the first four paths are badly estimated by

J6 when ν0 = 0.1, see the red bars in Figure 5.12. Though the estimates from J7 and

J8, see the blue and the green bars, are also worse than the estimates from J5, the

mean path matching precision evaluated from these samples indicates that around

83.7% and 82.7% latent paths for the 3587 documents are correctly estimated by

these two experiments respectively. This is close to 86.7%, the mean path matching

precision of J5 when ν0 = 1. Only 77.9% of the documents have their latent paths

correctly estimated by J6. The total situational errors computed from J6, J7, J8 are

1.674,1.740,1.996 respectively. The difference between these errors is small. There

is also no big difference between the total emission errors for these three sets of

samples. The total emission errors computed from J6, J7, J8 are 2.008,2.172,2.162

respectively.
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Figure 5.13: Traceplots for the experiment with synthetic failure time.

Assume we have observed the failure time for each process. Then we can use

the designed algorithm for learning the model parameters with total path time. Let

the shape parameter of the InverseGamma prior be 2 for every path, and the scale

parameter be 5 for every path. Let the shape parameter for the Weibull path time
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be 2 for every path. Taking α = 10, ν0 = 1 and running the algorithm for 10000

iterations, the traceplots of the three statistics specified above are shown in Figure

5.13. The traceplots show that although the chains mix well, the precision of path

matching is very low. The situational error is 4.214 and the emission error is 3.347,

both of which are high. This is likely to be caused by the imprecise path matching.

We can also evaluate the prediction error of the total path time, see equation (5.1.4)

and it is 5.440. There are 10 failure paths in this example, so the mean prediction

error of the total path time is 0.544.

All the above experiments assume a ground truth CEG. When we do not

know the stages, and so the positions, but only know the ground truth event tree,

then we may need to redesign the algorithm so that the stages and the parameters are

learned simultaneously. However, due to the length of this thesis and the complexity

of learning the CEG structure and the GN-CEG parameters at the same time, we

will not propose a new algorithm for this. Instead, here we simply try to perform

the paths matching task by Algorithm 7 and then apply the MAP algorithm to

find the best CEG topology from the learned paths. This is obvious not ideal but

here we only show an insight of learning from the GN on the tree graph and the

development of such algorithms would constitute a thesis on its own.

Assume that we have a ground truth event tree for the selected bushing

system whose structure is shown in Figure 5.14. Here for simplicity we ignored the

failure time. Now we ran the algorithm for α = 1, 5, 10 when ν0 = 1 and ν0 = 5, 10

when α = 10. Each experiment was implemented with 10000 iterations. The MAP

scores and the situational errors estimated from the best scoring structures are

shown in Table 5.2.

For the best models selected for J9 and J10, v1 and v2 are in the same stage,

while in the ground truth staged tree they are in different stages. The situations

v11 and v12 are in different stages in the selected model, despite them being in the

same stage in the ground truth staged tree. For the best models selected for J11, J12

and J13, v11 is misclassified into the same stage as v7 and v8. Apart from this

misassignment, all other stages are correctly learned.
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Figure 5.14: The learning event tree for the selected bushing system.

ν0 α outputs MAP scores situational errors

1 1 J9 -6206.506 1.550
1 5 J10 -6214.010 1.547
1 10 J11 -7163.873 1.110365
5 10 J12 -6122.471 2.211
10 10 J13 -6122.471 2.211

Table 5.2: The MAP scores and the total situational errors of the best scoring
models.

We next considered the synthetic failure time with the synthetic documents,

and took α = 10, ν0 = 1. We ran the algorithm again for 10000 iterations and

checked the selected best structure of the CEG. We have shown above that when

learning the parameters for the failure time distribution, the mean path matching

precision is low. So compared to the model learned from J11, which are the output

from the algorithm when setting α = 10 and ν0 = 1, there are more stages misspec-

ified. Specifically, in the selected model, v4 and v6 are not in the same stage, v11
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and v12 are not in the same stage, v9 and v13 are not in the same stage, v10 and v14

are not in the same stage. These pairs are in the same stage in the ground truth

staged tree. Due to the imprecise staging result, it is not unexpected that the total

situational error is high, which is 4.769 in this experiment.

5.3.2 Conservator system data

Core event extraction assessment

Since devising the NLP algorithms is not our essential task in this thesis, and we only

propose a method that combines existing ideas, we here only evaluate the extracted

core events using one of the popular assessment in NLP. To measure the accuracy

of the proposed algorithms 1-6, we compute the F-score from the precision and

the recall [Björne et al., 2010]. In information retrieval, two popular performance

metrics are [Powers, 2020]:

precision =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|
, (5.3.6)

recall =
|{relevant documents} ∩ {retrieved documents}|

|{relevant documents}|
. (5.3.7)

Given the precision and the recall, one can compute the F-measure, i.e. the F-score,

as the harmonic mean of the precision and the recall:

F1 =
2× precision×recall

precision + recall
. (5.3.8)

Here we follow the steps in Algorithm 1 to Algorithm 6 to extract the partially

ordered core events and then apply these metrics to measure the accuracy of the

extracted cause-effect pairs of core events. If our dataset is not large, we can read

through the texts to annotate causally related events. We call these the annotated

causal pairs. Now let

precision =
|{extracted causal pairs} ∩ {annotated causal pairs}|

|{extracted causal pairs|
(5.3.9)

and

recall =
|{extracted causal pairs} ∩ {annotated causal pairs}|

|{annotated causal pairs|
. (5.3.10)

In this case, {extracted causal pairs} ∩ {annotated causal pairs} gives the true pos-

itives.
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Figure 5.15: The conservator system in a transformer [Reclamation, 2005].

We can now pick all the documents whose entries for “component” are

“SGT”, and entries for “subcomponent” are “Conservator”, so that these records

are related to defects of a conservator system in a transformer. Figure 5.15 plots

the subcomponents in this system. Running algorithms 1-6, we have 1023 pairs of

the extracted core events with repetitions. There are 496 unique cause-effect pairs

in this extracted dataset. We picked the unique pairs of these core events and com-

pared them with a set of 296 cause-effect pairs which were assumed to be true given

the documents and the background knowledge about the transformer [Reclamation,

2005]. We were then able to compute the scores using the formulas given above.

There are 195 correctly selected cause-effect pairs, i.e.

|{extracted causal pairs} ∩ {annotated causal pairs}| = 195. (5.3.11)

The precision is 0.39 and the recall is 0.66. The precision is low because there

are many non-causal patterns picked up by our algorithm. These non-causal pairs

may include the pairs of an indirect cause and the effect event, the pairs whose

causal order is wrongly extracted, and the pairs whose order is non-causal but only

temporal. From the value of the recall, we conclude that approximately 66% of the

real causal relations are extracted by the proposed algorithms. This percentage is

acceptable since many contemporary cutting-edge event extraction algorithms have

the recall score around 60% [Björne et al., 2010]. Note that since the “true” causal

pairs were not annotated by domain experts, the precision and the recall can only

be used as a reference for evaluating the algorithms. Due to the low precision, when

we balance the precision and the recall, the f-score is not high, 0.49. However, this is

not very problematic because after this step we cluster the core events to construct

the core event variables before embedding them on the CEG.
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Learning within the GN-CEG model

We constructed 13 core event variables L1, · · · , L13 from the extracted core events.

Table 5.3 displays the core event variables and the corresponding state spaces. The

extracted GN is shown in Figure 5.16.

variable state space

L1 l1,1 = {low temperatures}, l1,2 = {high humidity}, l1,3 = {no change}
L2 l2,1 = {gauge defect}, l2,2 = {glass dirty}, l2,3 = {sight glass}, l2,4 = {indicator ok}
L3 l3,1 = {damaged component}, l3,2 = {seal integrity defect}, l3,3 = {crack}, l3,4 =

{seal deterioration}, l3,5 = {loose fixing}, l3,6 = {gasket}, l3,7 = {contact fault}, l3,8 =

{ferrule}, l3,9 = {terminal cover}, l3,10 = {contact ok}
L4 l4,1 = {float chamber mechanism defect}, l4,2 = {mercury switch defective}, l4,3 =

{magnet or reed switch}, l4,4 = {mechanism ok}
L5 l5,1 = {fuse or mcb}, l5,2 = {high resistance connection}, l5,3 =

{mechanical indicator defect}, l5,4 = {power supply}, l5,5 = {calibration}, l5,6 =

{conservator operated}, l5,7 = {defrost defect}, l5,8 = {dessicant abnormal}, l5,9 =

{pipework defect}, l5,10 = {component failure}, l5,11 = {ir}, l5,12 = {out of service}, l5,13 =

{incorrect air purge}, l5,14 = {tank defect}, l5,15 = {no fault}
L6 l6,1 = {oil leak}, l6,2 = {no leak}
L7 l7,1 = {oil level low}, l7,2 = {normal}
L8 l8,1 = {oil level incorrect}, l8,2 = {normal}
L9 l9,1 = {buchholz}, l9,2 = {buchholz trip}, l9,3 = {relay defect}, l9,4 = {buchholz ok}
L10 l10,1 = {drycol control unit defect}, l10,2 = {control box}, l10,3 = {control ok}
L11 l11,1 = {drycol breather}, l11,2 = {breather blocked}, l11,3 = {bag defect}, l11,4 = {breather ok}
L12 l12,1 = {low oil alarm}, l12,2 = {alarm}, l12,3 = {drycol alarm}, l12,4 = {no alarm}
L13 l13,1 = {transformer abnormal or reflash}, l13,2 = {transformer other}, l13,3 = {transformer ok}

Table 5.3: The core event variables.
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Figure 5.16: The extracted GN for the conservator system.
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Figure 5.17: The learning event tree for the conservator system.

161



Reclamation [2005] briefly introduced the conservator system and the other

systems in the transformer. On the basis of this information, we constructed a

ground truth learning event tree, see Figure 5.17. It starts with the failure indica-

tor, followed by the root causes: temperature low, contact or connection fault, oil

indicator fault, float mechanism fault, other fault. The following d-events describe

the oil condition which has two states: oil level low and leak, oil level low or leak

or oil condition ok. These are followed by the condition of the buchholz, the drycol

dontrol unit and the drycol breather. It has two states: buchholz fault and drycol

fault, buchholz fault or drycol fault or both ok. The last component modelled by the

tree represents the condition of the transformer and the alarm. It has two states:

transformer defect and active alarm, otherwise.

The boundaries of communities can easily be found in this example, so we do

not sample {ad}d∈{1,··· ,D}. We also do not consider the failure time here since the

data we collected may contain multiple documents for the same machine and these

documents correspond to the consecutive failures that happened to this machine. In

the future we plan to investigate a dynamic version of the GN-CEG model with the

adapted algorithm for this dataset. If we only pick the initial failures for different

machines, then the size of the data is too small for the analysis. Therefore, we do

not predict the failure time here.

We ran the HcaGibbs for 10000 iterations and then found the best scoring

CEG structure. It is not easy to assess the Gibbs results in a rigorous way in

this experiment because the ground truth is unknown. Therefore, we only checked

the mixture of the samples by computing the situational difference δ(T ) and the

emission difference ε(G∗, T ) at each iteration. Figure 5.18 shows that the chains of

these two statistics behaved well and did not become stuck anywhere.
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Figure 5.18: Traceplots for the conservator experiment.
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Figure 5.19: The learning event tree for the conservator system.
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The estimated staged tree that best explains the observed core events is

plotted in Figure 5.19 and the corresponding CEG is plotted in Figure 5.20. Con-

ditioned on failure, oil level low and oil leak are more likely to happen as a result

of the low temperature or high humidity or the float mechanism fault than other

root causes that can lead to system failure. The estimated conditional probability

for the former is 0.0825, which is approximately 0.072 higher that the probability

of oil level low and leak conditioned on any of other root causes. There are three

stages for the situations whose emanating edges representing the condition of the

buchholz and the drycol unit, coloured in green, red and orange respectively in the

figures. There is no evidence showing that the buchholz fault and the drycol fault

depend on the condition of oil given a failed system. The mean posterior probabil-

ity of having both components faulted given position w13 is 0.990. This is higher

than the estimation of this probability conditional on any of w14, w15, w16, which is

0.588. It is also higher than that conditional on either w17 or w18, which is 0.355.

There are three stages for the situations whose emanating edges represent the con-

dition of the transformer and the alarm. There are three positions associated with

these stages, w19, w20, w21 respectively. The estimated mean posterior probability of

transformer fault and active alarm is 0.574, 0.065, 0.001 conditional on these three

stages respectively.
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Figure 5.20: The CEG for the conservator system.

Conditioned on a system failure, the condition of the buchholz and the drycol
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unit does not affect the probability of having transformer defect and active alarm

when the failure is caused by temperature low or oil indicator fault with low oil

level and leak. By learning from the conservator dataset, we also find that “other

fault” is mostly likely to contribute to the conservator system failure, with transition

probability estimate 0.586. This makes sense since we summarised 14 different types

of causes for this category. Apart from this category, the contact or connection fault

should be paid attention by the engineers, with estimated transition probability

0.293. More importantly, from our results, we find that the damaged component is

commonly a contact or connection fault. This is followed by the seal deterioration

and the seal integrity defect. The emission probability of observing a damaged

component or observing a seal fault when having a contact or connection fault is

estimated to be 0.692 and 0.158 respectively. Furthermore, the oil indicator fault is

most likely to be led by the gauge defect, with probability 0.88; the float mechanism

fault is most likely to be led by the float chamber defect, with probability 0.423.
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Chapter 6

Discussion

In this chapter, I will first summarise the contributions of this thesis in Section

6.1. This will be followed by a brief discussion of the extension of the methodology

introduced in this thesis. Specifically, Section 6.2 considers a type of missingness

which is not covered in Chapter 4 – missing subpaths on the tree. In this case, the

ground truth tree we assumed for the selected system is not realistic. In Section

6.3, we will discuss the potential of developing a dynamic extension of the GN-CEG

framework which can better capture the features of longitudinal data. In Section

6.4, we list the other potential extensions of the current work.

6.1 Summary

The main contributions of this thesis are threefold. First of all, in Chapter 2, I

have introduced a general approach to customise a CEG for a selected system in the

domain of system engineering. This is a novel application of CEGs. On the basis of

the context-specific CEG which is assumed to be causal, I have devised two domain-

specific interventions: the remedial intervention and the routine intervention. The

causal algebras for the former have been informed by exploring the features of the

remedial work recorded in the maintenance logs by the field engineers. The causal

algebras for the latter have been informed by background knowledge, especially the

features of scheduled maintenance for preventive purpose. These are the central

development in this thesis. I have demonstrated how to import the direct effects of

these two types of interventions onto CEGs and shown that the semantics of CEGs

are expressive in representing various types of asymmetric manipulations imposed

by these interventions. The identifiability of the causal effects through the remedial

or routine intervention has been proved by adapting the back-door theorem.
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The second contribution of this thesis is the hierarchical model proposed

for embedding causal relationships from texts. This is innovative as an application

of CEG and as a causality embedding method. In Chapter 3, I have proposed a

sequence of algorithms to extract the partially ordered core events from maintenance

logs based on naive linguistic patterns. The shallow causal dependencies of these

core events are then embedded into the GN. For a probabilistic analysis, these causal

relations are further mapped to the semantics of a causal CEG.

In Chapter 4, I have given a concise discussion of missingness that can be cap-

tured in the hierarchical model. I have explicitly demonstrated this new missingness

technology on the CEG and the GN respectively. I have defined the floret-dependent

missingness and shown how to transform the original event tree to the m-tree with

this type of missingness so that the M-CEG can then be derived from it. The back-

door theorems for identifying effects of the remedial intervention and the routine

intervention have been extended to the M-CEG. Another type of missingness that

has been specified is event-dependent missingness. The M-GN is constructed from

the underlying GN by accommodating this type of missingness.

Based on these innovations, examples have been given in Chapter 5 to illus-

trate the extent by which predictive inference can be improved when incorporating

the customised causal algebras to the learning algorithm. In addition, an example

of modelling the general process for the GN-CEG model and a simple version of

the Gibbs algorithm for inferring the latent states and estimating parameters from

this process have been given. This has helped to validate the applicability of the

proposed model for causality embedding.

6.2 Missing subpaths

When constructing the event tree for the real-world data, a problem could emerge:

there exist unknown failure processes or deteriorating processes to the domain ex-

perts. Then the event tree we construct is not “faithful” to reflect all the possible

processes. In this case, we may have multiple or single full/partial root-to-leaf path

missing.

If there exist core event variables taking values ld ∈ L for some document

d, such that there does not exist a root-to-sink path on the CEG associated with

ld, then the mapping χ : (ld,ΩNC) 7→ λ is not well-defined any more. Let lk1:kd
d =

{ld,k1 , · · · , ld,kd} ⊆ ld denote the set of values taken by some core event variables

that do not have the associated d-events labelled on any edge on the event tree or

the CEG. This means the d-event space is also not complete. New d-events need to
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be defined for lk1:kd
d . Denote this set of missing d-events as x

[l
k1:kd
d ]

. Note that this

set of missing d-events are likely to be unidentified yet. Then the space of d-events is

extended to XT ∪x[l
k1:kd
d ]

. Accordingly, on the event tree, the new set of root-to-leaf

paths associated with the d-events x
[l
k1:kd
d ]

are Λx
[l
k1:kd
d

]
. The primitive probabilities

still need to satisfy
∑

v′∈ch(v) θv,v′ = 1 and θv,v′ > 0 after adding the new paths.

If lk1:kd
d are associated with symptoms or sequence of faults, it is easy to

determine the corresponding missing d-events when we know the root cause or ob-

serve the root cause from ld \ lk1:kd
d . Suppose x?rc is the root cause of these missing

symptoms. Then x
[l
k1:kd
d ]

should be added to the set of d-events associated with

the symptoms conditioned on x?rc. On the tree, new paths Λx
[l
k1:kd
d

]
also need to be

added to Λx?rc . Specifically, new subpaths rooted at W (x?rc) and terminating in the

leaves of the tree, denoted by µ(W (x?rc)), are added to the tree.

If the root cause of the observations lk1:kd
d is unknown, then various tests are

required to be performed to diagnose this new category of failure. Alternatively,

random maintenance can be conducted so that we deduce the cause from the status

of the system after maintenance according to the discussion of different types of

remedies we defined in Chapter 2. Let x̃rc denote the d-event associated with the

new root cause. Then the edges associated with this d-event, denoted by E(x̃rc),

must be added to the florets representing root causes and E(x
[l
k1:kd
d ]

) should be

added to the florets following E(x̃rc).

If lk1:kd
d are associated with root causes, then the new d-event x

l
k1:kd
d

repre-

sents a root cause. The set of edges E(x
l
k1:kd
d

) are added to the florets represent-

ing root causes and the florets associated with symptoms are attached to each of

E(x
l
k1:kd
d

). Then new subpaths are created which end in failure indicators.

The difficulty lies in automating this process given a dataset. Future work

could develop algorithms for the paths matching from the GN to the event tree

whilst adding vertices and edges when detecting the core event variables that are

not associated with any existing d-event.

6.3 Dynamic processes

We can also extend the CEG to apply our methodology within a dynamic analysis

to model the recovery process and the post-intervention deteriorating or failure

process. This would provide statistical analyses not dissimilar to those of the reduced

dynamic CEG (RDCEG) proposed by Shenvi and Smith [2018] but now applied and

adjusted to this new domain.
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Figure 6.1: The RDCEG constructed for a bushing system.

We use the bushing system example to explain how this dynamic process can

be modelled. The original CEG is plotted in Figure 5.3. The RDCEG devised for

this system is shown in Figure 6.1. First, we add an absorbing node to represent

that the machine has dropped out from the analysis. In this context this would

correspond to the machine being scrapped. This information is provided by the

engineers’ report, so it is observable. This absorbing node is now the sink node and

the failure and working sink nodes, wf∞ and wn∞, are relabelled as positions w10 and

w11. Here we simply assume that whether the machine is scrapped depends only on

whether the machine has failed.

We next add edges to represent the transitions of the status of the machine

after maintenance. We call such edges the retroactive edges (retro-edges). To

distinguish the original edges and the retro edges, we change the colour of all the

original edges to black and colour the retro-edges red. The vertices w1, w2 whose

emanating edges representing root causes represent the AGAN status. The root

floret classifies endogenous and exogenous root causes, so we assume the status at

w0 is also AGAN. This is because, when maintenance is carried out at w3, and if

the gasket/porcelain fault is fixed, then it make more sense to return to w0 instead

of w1 because what happens next could be an exogenous event.

Here we assume that there is no maintenance scheduled for completely new

systems. In other words, the maintenance only takes place when the system is

worn-out or failed. Therefore, there is no intervention at w0, w1, w2. On the other

hand, if wi, wj do not correspond to the AGAN status, and there is an edge ewi,wj
in the original CEG, then we add the retro-edge ewj ,wi to the tree structure. If wj
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is associated with the AGAN status and wi 6= w0, then we add ewj ,w0 . There could

also be self-loops for some positions. If the maintenance does not improve or worsen

the current status, then a self-loop is added. For example, if the insulator is faulty,

then we are at position w4. If there is preventive maintenance scheduled here, which

fails to renew the status of the insulator, then the status cannot transit to w1. If

there is also no loss of oil or mix of oil after the maintenance, then it cannot transit

to w8. In this case, it stays at w4 after maintenance, so we add an edge emanating

from w4 and received by w4. The self-loop can happen at w3, w4, w5, w10. There

is no self loop at any of w6, w7, w8, w9 because their emanating edges correspond

to failure indicators, which already represent status change. If the status is not

reversed by the maintenance, then there is a transition to w11. So there is no need

to add more edges for these positions.
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Figure 6.2: The RDCEG constructed for a non-intervened bushing system.

Most importantly, the transitions along retro-edges are only triggered after

any intervention because they correspond to the immediate status change caused

by the maintenance before the deterioration starts again. When the system is dete-

riorating between two consecutive interventions, the transition probability assigned

to any retro-edge e is 0. In particular, deteriorations are analysed on the tree in

Figure 6.2. However, when an intervention is imported to the system, a retro-edge

is traversed as an immediate effect of the intervention. We depict this recovery

process on Figure 6.1. In this case, the transition probabilities of all the edges on

this tree should be redefined for this revised topology so that
∑

v′∈ch(v) θ̃v,v′ = 1

and θ̃v,v′ > 0 are still satisfied. For example, if a system is deteriorating and has

problems with the insulator so that its status arrives at w4, then the status can only

transit from w4 to w8 either along e1
w4,w8

or e2
w4,w8

. The corresponding primitive
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probabilities are therefore defined on these two edges as θe1w4,w8
and θe2w4,w8

so that

θe1w4,w8
+ θe2w4,w8

= 1 and θe1w4,w8
, θe2w4,w8

> 0. If there is an intervention being car-

ried out at w4, then we turn to Figure 6.1. After the maintenance, the condition of

the system may be improved then the unit transits along ew0,w4 ; or the condition

stays the same then the unit transits along ew4,w4 ; or the condition gets worse if

the maintenance did not stop the deteriorating process, then the unit transits along

e1
w4,w8

or e2
w4,w8

. Then

Ẽ(w4) = {ew0,w4 , ew4,w4 , e
1
w4,w8

, e2
w4,w8

}. (6.3.1)

Correspondingly, the primitive probabilities θ̃ew0,w4
, θ̃ew4,w4

, θ̃ew4,w8
, θ̃e1w4,w8

and θ̃e2w4,w8

need to be specified so that

θ̃ew0,w4
+ θ̃ew4,w4

+ θ̃ew4,w8
+ θ̃e1w4,w8

+ θ̃e2w4,w8
= 1 (6.3.2)

and θ̃e > 0 for e ∈ Ẽ(w4).

We can also extend the causal algebras customised for the remedial inter-

vention and the routine intervention on the RDCEG. Given a failure, the ma-

chine arrived at the position w10. A perfect remedial intervention will brings back

the status to w0 whatever the type of failure is. However, which retro-subpath

µ(w10, w0) is traversed depends on the observed failure process. For example, if

the failure process passes through w1, w4, w8, w10, then the retro-subpath traverses

ew10,w8 , ew8,w4 , ew4,w0 . The manipulation of the distribution over F(w1) imposed by

the remedial intervention are then imported into the idle system in the same way

as we discussed in Section 2.3. Then the transition probabilities θw1 are updated.

For a routine intervention, one might intervene at any position in {w3, w4, · · · , w11}.
For example, if the scheduled maintenance fixed the oil leak at position w6 to some

extent, then the status maybe returned to w3 by transitioning along ew6,w3 or re-

turned to w0 by transitioning ew6,w3 and ew3,w0 . There can also be a stochastic

manipulation on F(w3) depending on the extent to which the oil leak is fixed. Note

that only transition probabilities along E(w3) = {ew3,w6 , ew3,w7} are manipulated.

No retro-edges are involved. This is because the effect on the intervened florets for

predictive inference instead of the immediate effect on the status.

On the surface layer, what could happen is more complex. The definition

of the topology of the GN as a DAG is not necessary anymore. To model the

dynamic process with intervention, the structure could be cyclic. We can then add

a maintenance variable R to the GN. There are edges pointing from other core

event variables, representing root causes or faults or failure, to R because if the
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maintenance is remedial then these events could be the cause of R. At the same

time, the maintenance may affect the events related to cause or faults or failure.

When this is the case there are edges pointing from R to the affected faults. This,

therefore, may make the directed graph cyclic. The dynamic GN is also likely to

evolve with time so that each time interval may have a unique GN.

6.4 Other potential future work

Apart from the two aspects of future research given above, we next briefly discuss a

few other perspectives of extensions of the methodology demonstrated in this thesis.

Firstly, since designing NLP algorithms was not the primary development

within this thesis, we only adopted and adapted existing software to process the

texts. And we only evaluated the algorithms in the simplest way by assessing its

accuracy. However, although this is only the preprocessing stage, the accuracy

of text processing is actually not unimportant especially because we register the

output on the GN for further analysis. It is obviously desirable if faster and more

accurate NLP algorithms can be developed to extract the causally ordered events.

Specifically, our methods involve much human work, for example, designing rules to

classify the core events into core event variables. If the advanced methods can be

proposed to reduce the human involvement, tuning of parameters and to automate

the process, then the preprocessing step can be simplified and accelerated. The

evaluation of the preprocessing step can also be improved to check how robust the

proposed algorithms are.

Secondly, as we mentioned in Chapter 3 when defining the GN, we allow

flexibility in choosing this causal network. So future work can explore alternative

causal graphs. One possibility is to use a causal CEG. We have highlighted the

advantages of a tree graph throughout this thesis. If the core events can be registered

on the edges of the tree, then we can construct an event tree which is highly likely to

be asymmetric lying at the surface layer of the model. However, as we mentioned in

Chapter 3, it could be more complicated than using the causal DAG as we proposed

in the thesis. Below we list the main challenges which maybe encountered if the

GN is a tree. Firstly, how to automate the process of constructing the tree and

then deriving the CEG? We definitely hope to avoid much human involvement here.

Secondly, if the event tree is not too large, we maybe able to use the existing model

search algorithms for CEGs [Collazo and P.G., 2017] and assert the best scoring

model causal. If we have large size of the extracted core events and large size of

the underlying partial orderings, then it could be challenging to score all of the
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massive number of alternative models in a feasible time. Thirdly, the missingness

of the events may not be that easy to be embraced. Fourthly, translating the causal

relations from one tree to another tree is a completely novel aspect of research. It

is also worth working on advanced algorithms to directly map the core events and

their partial orderings to the deeper layer CEG, then the surface layer GN is not

required.

In the experiment chapter, we use a Gibbs sampler, which is not easy to

converge and is not fast, as is the case for any Markov chain Monte Carlo (MCMC)

method. Especially, if we have a real world example, the tree topology is large

and the dataset has large size, then the drawbacks of Gibbs sampler become more

obvious. Alternative algorithms can be designed for learning and predicting for

the GN-CEG model. Either the Expectation-Maximisation (EM) algorithm or the

variational inference [Blei et al., 2003] is a popular method for approximation. So

future work can focus on developing algorithms to elaborate the Gibbs algorithm

proposed in this thesis for faster and more accurate estimation. In addition to this,

we also mentioned in Chapter 5 that an algorithm to learn the latent paths and the

structure of the CEG still needs to be designed.

The fourth aspect of extension is to elaborate the model by considering co-

variates such as the amount of oil topped-up each time, the expense of maintenance,

the engineers who carry out the maintenance and so on. These can all be taken into

account when inferring the causal effects.

A numeric perspective of the future research is an exploration of the miss-

ingness in the model. Consider the case when in the presence of missing values, for

a floret, only a subset of the events labelled on the edges in this floret are likely to

be missing. Then the events which are always observed represented by this florets

are correlated. This may induce correlations between different florets too. Then

the Dirichlet prior independence assumption made on the tree is not valid anymore.

This is a very important area when dealing with real word data where the miss-

ing events can also be correlated. Moreover, there are existing methods for dealing

with missing data, such as multiple imputation and bootstrapping [Efron, 1994;

Schomaker and Heumann, 2018]. If we use these methods to re-estimate the prim-

itive probabilities, we may keep the CEG without reconstructing it. Experiments

can be designed to compare it with the M-CEG.

Lastly, although the framework proposed in this thesis is customised for

system reliability, many of the concepts and algorithms can be transformed to other

domains. For example, in the domain of medication, the electronic health records

(EHR) provides the trajectory of patients condition and treatments. These function
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as maintenance logs. We can extract the partially ordered core events from these

records and project them on a causal CEG. The effects of medical interventions can

be analysed by paralleling the intervention calculus introduced in this thesis on the

CEG.

Although there is therefore considerable amount of methodological develop-

ment to complete this rich research programme, I hope I have demonstrated the

promise of using CEG based methods to explore latent causal mechanisms embed-

ded in reliability systems.
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