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Abstract
Recent theoretical investigations on tomographic entanglement indicators have showcased the
advantages of the tomographic approach in the context of continuous-variable (CV), spin and
hybrid quantum systems. Direct estimation of entanglement using experimental data from the
IBM quantum computing platform and NMR experiments has also been carried out in earlier
work. A similar investigation in the context of CV systems is necessary to assess fully the
utility of the tomographic approach. In this paper, we highlight the advantages of this approach
in the context of experiments reported in the literature on two CV systems, namely, entangled
Talbot carpets and entangled biphoton frequency combs. We use the tomographic
entanglement indicator to estimate the degree of entanglement between a pair of Talbot
carpets, and demonstrate that this provides a simpler and more direct procedure as compared
to the one suggested in the experiment. We also establish that the tomograms corresponding to
two biphoton frequency combs carry clear entanglement signatures that distinguish between
the two states.

Keywords: quantum entanglement, tomograms, tomographic entanglement indicator, Talbot
carpet, biphoton frequency comb

(Some figures may appear in colour only in the online journal)

1. Introduction

The measurement of any observable in a quantum mechanical
system yields a histogram of the state of the system in the
eigenbasis of that observable. Measurements of a judiciously
chosen quorum of appropriate observables of a system that are
informationally complete yield a set of histograms called a
tomogram. Quantum state reconstruction seeks to obtain the
density matrix from the tomogram. However, the reconstruc-
tion of the state of a radiation field from the corresponding
optical tomogram could be both tedious and complex [1]. In
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many contexts, the reconstruction program is also limited by
the presence of inherent aberrations in the source [2, 3]. It is
worth noting that, even in the simple case of a two-level atom
interacting with a radiation field, the state of the field subsys-
tem was experimentally reconstructed from the corresponding
tomogram at various instants during temporal evolution only
as recently as 2017 [4]. With an increase in the number of
field modes interacting with an atomic system, the inevitable
entanglement that arises during dynamical evolution makes
state reconstruction an increasingly formidable task. It would
therefore be very helpful to read off information about a state,
wherever possible, directly from the experimentally accessible
histograms. In particular, estimating the extent of entangle-
ment through simple manipulations of the relevant tomograms
alone becomes an interesting and important exercise.

Entanglement is an essential resource in quantum infor-
mation processing, and quantifying the entanglement between
two subsystems of a bipartite system is necessary for this pur-
pose. One of the standard measures of entanglement between
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the two subsystems A and B of a bipartite system is the sub-
system von Neumann entropy ξSVNE = −Tr (ρi log2 ρi) where
ρi (i = A, B) is the reduced density matrix of the subsys-
tem concerned. The computation of ξSVNE, however, requires
a knowledge of the full density matrix, in contrast to the
tomographic approach. The advantage of the latter approach
has been illustrated in certain continuous-variable (CV) sys-
tems—for instance, in identifying qualitative signatures of
entanglement between the radiation fields in the output ports
of a quantum beam-splitter [5]. Further, a detailed analysis of
entanglement has been carried out theoretically using several
indicators obtained directly from tomograms in different con-
texts, e.g., close to avoided energy-level crossings [6]. The
efficacy of such indicators has been assessed by comparison
with standard entanglement measures [7, 8]. Further, these
indicators have also been examined using the IBM quantum
computing platform, by translating certain multipartite hybrid
quantum systems into suitable equivalent circuits [9]. It is to
be noted that, in these examples, measurements of multiple
observables corresponding to the rotated quadrature operators

Xθ = (ae−iθ + a†eiθ)/
√

2, (1)

(where (a, a†) are the photon annihilation and creation opera-
tors and θ ∈ [0, π)) are required, in principle.

In marked contrast, a different entanglement indicator has
been used in certain recent experiments reported in the liter-
ature. In an experiment [10] involving an entangled pair of
Talbot carpets generated from photons produced from sponta-
neous parametric down conversion (SPDC), an entanglement
indicator ID based on Bell-type inequalities has been used. The
Talbot effect itself has been observed in several experimen-
tal settings since its discovery in 1836 [11]. In the quantum
context, this effect has been demonstrated both with single
photons and with entangled photon pairs [12], and also with
single photons prepared in a lattice of angular momentum
states [13]. Using a four-level quantum dot molecule, the
re-formation of a plane wave into a periodic wave-form has
been demonstrated [14]. Single photon interference owing to
passage through a grating has been invoked to propose the
creation of D-dimensional quantum systems encoded in the
spatial degrees of freedom of light [15]. A proposal to realise
a class of entangled states to demonstrate nonlocality in phase
space using grating techniques [16], and the observation of the
optical spatiotemporal Talbot effect [17], are further instances
of continuing work on the Talbot effect for testing fundamental
concepts and implementing quantum information processing.

Another interesting example of interferometry [18] pertains
to biphoton frequency combs. Qubits are encoded in this CV
system using the time–frequency continuous degrees of free-
dom of photon pairs generated through the SPDC process.
In an attempt to provide higher capacity and increased noise
resilience in quantum communication and computations in CV
systems with time–frequency entanglement, a biphoton fre-
quency comb with the potential to create a large Hilbert space
(648 dimensions) has been investigated [19]. This approach
provides a good platform, in principle, for improved quantum
communication. The appearance of polarization-entangled
biphoton frequency combs with over 1400 frequency modes

has been demonstrated experimentally [20]. Such massive
mode-entangled biphoton frequency combs are expected to
increase the capacity and rate of quantum communication.
Protocols have been proposed, involving measurements of
appropriate modular variables, that facilitate a read-out of the
encoded discrete quantum information from the corresponding
logical states. Further, their experimental feasibility has also
been discussed [21]. In reference [22], the authors assess the
metrological power of different classes of biphoton states with
a non-Gaussian time–frequency spectral distribution. These
states could possibly be produced with atomic photon sources,
bulk nonlinear crystals and integrated photonic waveguide
devices. Further, new methods to characterize the spectral-
temporal distribution of single photons have been examined
in [23]. In reference [24], the authors investigate the interfer-
ometric signatures of different spectral symmetries of bipho-
ton states. A sizable literature exists on the generation and
manipulation of quantum states of light in nonlinear AlGaAs
chips and their use in quantum networks. In particular, the
control and the temporal delay between the photons compris-
ing a pair provides a means of switching from symmetric
to anti-symmetric quantum frequency states [25]. Quantum
state engineering with biphoton states produced by SPDC,
and the characterization of arbitrary states with frequency and
time degrees of freedom, have been carried out in [26]. A
second quantized description treating time and frequency as
operators that can be used to define a universal set of gates,
and to implement continuous variable quantum information
protocols, has been examined in detail [27]. The frequency
entanglement of biphoton states has been shown to simulate
anyonic particle statistics [28]. Such photon pairs have been
studied extensively to investigate entanglement properties and
potential logic gate operations [29, 30].

In some of these experiments (see, for instance, [10, 18]),
the tomographic approach mentioned earlier provides an effi-
cient, readily usable procedure for capturing signatures of
bipartite entanglement and understanding its qualitative fea-
tures. It has been demonstrated recently [31] that it is possi-
ble to implement single-qudit logic gate operations using the
Talbot effect. The next step would be to extend this investiga-
tion to the case of a pair of entangled Talbot carpets generated
using a suitable combination of two such experimental setups.
It is here that the tomographic approach comes into its own,
as it has the advantage of simplifying considerably the neces-
sary experimental arrangement. Further, we demonstrate the
convenience and usefulness of the tomographic indicators in
both the experimental situations under discussion, involving,
respectively, entangled Talbot carpets and biphoton frequency
combs. The versatility of the tomographic approach is brought
out by the fact that optical tomograms are useful in the exper-
iment on entangled Talbot carpets, while chronocyclic tomo-
grams display the features of entanglement in the experiment
on biphoton frequency combs.

The plan of the rest of this paper is as follows. In section 2,
we review the salient features of the relevant tomograms,
and describe the entanglement indicators that can be obtained
directly from these tomograms. In section 3, we apply our
procedure to assess the degree of entanglement between a
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pair of Talbot carpets. Whereas it has been suggested in [10]
that an experimental setup which uses Bell-type inequalities
could determine the degree of entanglement, we demonstrate
that tomograms provide a simpler and more direct procedure
for this purpose. Further, in section 4, we establish that the
respective chronocyclic tomograms corresponding to the two
biphoton states provide manifest entanglement signatures that
distinguish between the states. Relevant technical details about
the two biphoton states are presented in the appendices A
and B. We conclude with some brief remarks in the final
section.

2. Tomograms

2.1. Quadrature histograms

We begin by describing the salient features of optical tomo-
grams. In a two-mode CV system, the infinite set of rotated
quadrature operators [32–34] given by

XθA = (a†eiθA + ae−iθA)/
√

2, and

XθB = (b†eiθB + be−iθB)/
√

2, (2)

(where θa, θb ∈ [0, π)) constitute the quorum of observables
that carries complete information about the state. Here (a, a†)
and (b, b†) are the annihilation and creation operators corre-
sponding respectively to subsystems A and B of the bipar-
tite system, so that [a, a†] = 1 and [b, b†] = 1. The bipartite
tomogram is

w(XθA , θA; XθB , θB) = 〈XθA , θA; XθB , θB|ρAB|XθA , θA; XθB , θB〉,
(3)

where ρAB is the bipartite density matrix and Xθi |Xθi , θi〉 =
Xθi |Xθi , θi〉 (i = A, B). Here, |XθA , θA; XθB , θB〉 stands for
|XθA , θA〉 ⊗ |XθB , θB〉. The normalisation condition is given by

∫ ∞

−∞
dXθA

∫ ∞

−∞
dXθBw(XθA , θA; XθB , θB) = 1 (4)

for each θa and θb. We note that θa = θb = 0 corresponds to the
position quadrature. Since the investigation of entanglement
in reference [10] only pertains to the intensity pattern on the
screen, we have treated the screen as the tomographic slice.
This sets the specific values of θa and θb equal to zero. As we
are only interested in the corresponding slice of the tomogram,
we adopt the following simplified notation. A slice of the
tomogram (equivalently, the histogram in the position basis)
for a bipartite state |ψAB〉 is given by

w(xA; xB) = |〈xA; xB|ψAB〉|2. (5)

Here, {|xi〉} (i = a, b) are the position eigenstates in the two
subsystems, and |xA; xB〉 denotes the corresponding prod-
uct state. The marginal distributions obtained from the joint
distribution above yield the corresponding slices wA(xA) and
wB(xB) of the subsystem (or reduced) tomograms.

2.2. Chronocyclic tomogram

The analogy between an ultrashort light pulse and a quantum
mechanical wave function leads [35] to a chronocyclic rep-
resentation for the study of ultrashort pulses, where the time
t and frequency ω are the conjugate observables. The state
of a single photon of frequency ω is denoted in a spectral
representation of infinitely narrow-band pulses by |ω〉. The
superposed state of a photon that has a frequency ω with a
probability amplitude S(ω) is given by

∫
dω S(ω)|ω〉. In an

equivalent temporal representation of infinitely short-duration
pulses {|t〉}, this one-photon state is

∫
dt S̃(t)|t〉, where S̃(t) is

the Fourier transform of S(ω). A family of rotated observables
(ω cos θ + t sin θ) can then be defined [36], where ω and t have
been scaled by a natural time scale of the system to make them
dimensionless. Measurements of these rotated observables
form the basis of chronocyclic tomography, in which the set of
histograms corresponding to these observables gives the tomo-
gram of the state of a one-photon system. In this chronocyclic
representation, a one-photon state can also be described in
the time–frequency ‘phase space’ by a corresponding Wigner
function [35]. Extension to multipartite states corresponding
to two or more photons is straightforward. For instance, two
photons of frequenciesω and ω′ are given by the biphoton CV
bipartite state |ω〉 ⊗ |ω′〉.

In reference [18], the experiment on biphoton frequency
combs is carried out in the time–frequency domain. It fol-
lows naturally that, in the tomographic approach, chronocyclic
tomograms need to be examined. This allows for four choices
of tomographic slices, namely, frequency–frequency, fre-
quency–time, time–frequency, and time–time. We have exam-
ined the various possibilities and found that the time–time
tomographic slice corresponding to each biphoton entangled
state is optimal for distinguishing between them. We note
that a priori there is no set procedure in general for choos-
ing the optimal slice (i.e., the analogues of θA and θB in
quadrature tomograms). However, the physical quantities in
the present instance are only frequency and time, and hence
only four possibilities exist. The time–time slice of the bipar-
tite chronocylic tomogram corresponding to state |ψ〉, is
given by,

w(t; t′) = |〈t; t′ |ψ〉|2, (6)

where |t; t′〉 stands for |t〉 ⊗ |t′〉 in the temporal representa-
tion. This is the chronocyclic analogue of (5). The marginal
distributions are obtained from (6) as described before.

2.3. Tomographic entanglement indicators

The extent of correlation between the subsystems can be
deduced from the tomographic entropies. For instance, for
the slice defined in (5), the bipartite tomographic entropy is
given by

SAB = −
∫ ∞

−∞
dxa

∫ ∞

−∞
dxBw(xA; xB) log2 w(xA; xB). (7)

The subsystem tomographic entropy is given by

Si = −
∫ ∞

−∞
dxi wi(xi)log2 wi(xi) (i = A,B). (8)
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Signatures of the extent of entanglement can be gleaned from
the mutual information [7],

εTEI = SA + SB − SAB. (9)

In the chronocyclic case, analogous definitions of entropies
and mutual information hold for any tomographic slice given
by (6).

3. Entangled Talbot carpets

For our purposes, we will largely be concerned with the experi-
mental setup proposed in [10] except for the phase shifter used
to calculate ID. We note that while [10] and the present paper
are both concerned with the extent of entanglement of two
Talbot carpets, the procedures used are very different. In
marked contrast to the procedure for entanglement assessment
in [10], we use the tomographic approach to compute the
entanglement indicator, namely, εtei. This can be obtained
directly from a single slice of the tomogram provided by
the screen in the experimental setup. This approach neither
requires a phase shifter in the experimental setup, nor is it
concerned with calculating Bell-type inequalities. The purpose
of the present work, of course, is to compare the trends in ID

reported in [10] with trends in εTEI, the latter being a very
different entanglement indicator.

In the proposed experiment (figure 1), light from a laser
source passes through a nonlinear crystal (NLC). Entangled
SPDC photon pairs are produced, with a spatial correlation
given by

R =
κ2
+ − κ2

−
κ2
+ + κ2

−
= −Δ2

+

Δ2
−
. (10)

Here κ+ is the width of the pump field frequency profile, κ− is
the standard deviation in the phase matching of the two output
photons, and

1

Δ2
±
=

1
κ2
+

± 1
κ2
−
. (11)

The light is then guided along two different paths A and B
using appropriate mirrors. Along path i (i = A, B), a D-slit
aperture Di, a lens L1i, a grating Gi, a lens L2i and a screen Sci

are placed as shown on the figure. Talbot carpets are seen on
each screen, and the extent of entanglement between the two
is to be assessed. The slit width in each aperture is δ, and the
inter-slit spacing is s. Each grating has slit width σ and period
�. The screens are in the x–y plane.

The entangled Talbot state is of the form

|Ψ〉 =
D−1∑

d1,d2=0

Cd1,d2 |d1〉A ⊗ |d2〉B, (12)

where

Cd1,d2 = N exp

{
− s2

4Δ2
+

(
d2

1 − 2Rd1d2 + d2
2

)}
, (13)

Figure 1. Experimental setup: a pump photon from the laser source
is incident on a NLC producing two SPDC photons, each of which
passes through a D-slit aperture (Di), a lens (L1i), a grating (Gi), and
another lens (L2i). Sci is the detection screen (i = a, b).

where N is the normalization constant such that∑
d1,d2

|Cd1,d2 |2 = 1. The basis states are now given by

〈xi|d〉i = Td(xi) = Ad

∞∑
m=−∞

× exp

{
− (2πmσ)2

2�2
− (xi − ds − m�)2

4δ2

}
,

(14)

where i = A, B and Ad is the normalisation constant. It is
straightforward to measure the intensity distribution at differ-
ent points (xA, xB) along the x-axis on the two screens. The
expression for this distribution can be obtained fromΨ(xA, xB)
by using (14).

The extent of entanglement has been assessed from ID for
different values of the spatial correlation R and the number
of slits D [10]. For this purpose, two pairs of local measure-
ments A1, A2 (respectively, B1, B2) are performed on both
A and B. Each of these four measurements has D outcomes
with projective operators {| f α1〉A A〈 f α1 |}, {| f α2〉A A〈 f α2 |},
{|gβ1〉B B〈gβ1 |}, and {|gβ2〉B B〈gβ2 |} corresponding to A1, A2,
B1, and B2 respectively. Here

| f α j〉A =
1√
D

D−1∑
d=0

e2πid( f+α j)/D|d〉A, (15)

|gβ j〉B =
1√
D

D−1∑
d=0

e2πid(−g+β j)/D|d〉B ( j = 1, 2) (16)

with α1 = 0, α2 = 0.5, β1 = 0.25, β2 = −0.25 and f , g = 0,
1, . . . , D − 1. In what follows, we shall denote the factored
product basis {| f αi〉A ⊗ |gβ j〉B} by {| f αiA; gβ jB〉}. (In the
tomographic approach that will be outlined later, these phase
shifts α j, β j ( j = 1, 2) need not be implemented, and the
entanglement indicator can be deduced solely from the original
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Figure 2. εTEI computed in the {|xA; xB〉} basis (top left), ξSVNE (top right), εtei computed in the {| f α1A; gβ1B〉} basis (bottom left), and ID
(bottom right) vs D for 0.9998 (red), 0.999 98 (orange), and 1 (black). The black and orange curves lie on top of each other. (Color online).

intensity patterns on the screens). It can be seen [37] that for
ID � 2, the states are unentangled. Here,

ID =

[D/2]−1∑
k=0

(
1 − 2k

D − 1

)
Jk, (17)

where

Jk = P(A1 = B1 + k) − P(A1 = B1 − k − 1)

+ P(B2 = A1 + k) − P(B2 = A1 − k − 1)

+ P(B1 = A2 + k + 1) − P(B1 = A2 − k)

+ P(A2 = B2 + k) − P(A2 = B2 − k − 1)

and

P(Ai = B j + k) =
D−1∑
p=0

P(Ai = (p+ k) mod D, B j = p).

(18)
The joint probability distribution of the outcomes being Ai = p
and B j = q is denoted by P(Ai = p, B j = q).

In the tomographic approach (as in the case of ID), we
set σ = 0.05�, δ = 0.025s, � = 1, s = 1/D, and κ+ = 9� to
facilitate comparison. As outlined in section 2, we compute
εTEI (see (9)) from the optical tomogram (5). In figure 2, εTEI,
ξSVNE, and ID are plotted versus D for various values of R.
These values are chosen so as to facilitate comparison with
[10]. It is clear that εTEI agrees well with ξSVNE. Further,
εTEI captures the gross features of ID. From figure 2, we see
that when εTEI is computed from tomograms corresponding
to other basis sets, the results do not change, and that the
extent of entanglement significantly increases even with very
small changes in R. (For D = 10, εTEI ∼ 0.3 for R = 0.998,
and ∼ 3.32 for R = 1 correct to two decimal places).

This feature can be understood by examining the manner in
which the subsystem density matrix (in terms of which stan-
dard entanglement measures are computed) responds to small
changes in R. This is presented in figure 3. We first compare the
top left and the bottom left panels in figure 3. These show the
subsystem density matrix for R = 0.998 and 1 respectively, in
the basis set comprising the slits (i.e., where each slit is treated
as a basis state). It is evident that the subsystem density matrix
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Figure 3. Density matrix corresponding to subsystem A for R = 0.998 (top) and R = 1 (bottom) in two different basis sets: (left) each slit is
treated as a basis state, and (right) {| f α1 〉A} basis. (Color online).

corresponding to the top left panel has non-zero off-diagonal
contributions. In contrast, corresponding to the bottom left
panel, the subsystem density matrix is diagonal. For R = 1,
it is clear from the figure that only the diagonal elements
survive, leading to a maximally mixed state. This therefore
indicates that the bipartite pure state is maximally entangled
for R = 1. This is clearly not the case in the top left panel,
where the off-diagonal contribution is substantial. We now
point out another feature that follows by comparing the top
right and the bottom right panels. In both these panels, the
subsystem density matrix is given in a different basis which is
phase shifted relative to that corresponding to the left panels.
(We choose this basis also because it connects with that used in
[10] where a phase shifter creates the necessary shift of basis).
It is clear from these two panels that a small change in R from
0.998 (top right) to 1 (bottom right) produces a maximally
mixed subsystem state. This follows as in the earlier discussion
from the diagonal form of the density matrix. A compari-
son between the bottom right and left panels establishes the
basis-independence of the maximally mixed subsystem state
for R = 1.

4. Biphoton frequency combs

We first recapitulate the salient features of the experiment [18]
on two pairs of entangled biphoton states, denoted by |Ψα〉
and |Ψβ〉, which are frequency combs comprising finite-width

peaks. The entangled photons were generated using SPDC. In
the setup, the resonant frequency of the cavity is denoted by ω,
and the pump photons have frequency ωp. If ωS and ωI denote
the signal and idler frequencies, respectively, and Ω is their
difference, it can be seen (appendix A) that |Ψα〉 and |Ψβ〉 can
be expressed as given below.

|Ψα〉 = N−1/2
α

∫
dωS

∫
dωI f +(ωS + ωI) f −(Ω)

× f cav(ωs) f cav(ωi)|ωs〉 ⊗ |ωi〉. (19)

Here,
f −(Ω) = e−(Ω−Ω0)2/4(ΔΩ)2

, (20)

where Ω0 and ΔΩ are the mean and standard deviation of Ω.
fcav is the Gaussian comb

f cav(ω) =
∑

n

e−(ω−nω̄)2/2(Δω)2
, (21)

whereΔω is the standard deviation of each Gaussian,Nα is the
normalisation constant, and f+(ωS + ωI) = δ(ωp − ωS − ωI).
We note that (19) features the product fcav(ωS) fcav(ωI), where
fcav(ω) is a superposition of Gaussians corresponding to odd
and even values of n such that the two are in phase with each
other.
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Figure 4. Tomographic time–time slice (a) wα(tS; tI) and (b) wβ(tS; tI) vs ts and ti in seconds. (c) Difference |wα(tS; tI) −wβ(tS; tI)| vs tS
and tI in seconds. (Color online).

The second biphoton state is given by

|Ψβ〉 = N−1/2
β

∫
dωS

∫
dωI f +(ωS + ωI) f −(Ω)

× gcav(ωS) f cav(ωI)|ωs〉 ⊗ |ωi〉, (22)

where
gcav(ω) =

∑
n

(−1)ne−(ω−nω)2/2(Δω)2
. (23)

Here, Nβ is the normalisation constant. In contrast to |Ψα〉,
(22) features the product gcav(ωs) fcav(ωi), where gcav(ω) is a
superposition of Gaussians corresponding to odd and even n
such that the two are out of phase with each other. In [18],
the authors address several related issues pertaining to these
biphoton frequency combs. The focus is primarily on distin-
guishing between these entangled states, and further, manipu-
lating them with quantum logic gate operations. Our interest
in the present case is only in the former aspect. Whereas
in [18] an interferometric setup is used for this purpose, in
what follows, we will use the tomographic approach to dis-
tinguish between the two biphoton states. Since photon coinci-
dence counts were used to experimentally distinguish between
the two states, it is reasonable to expect that the time–time
slices of the tomograms corresponding to the two biphoton
states will capture the difference. The time–time slices are
denoted by

wx(tS; tI) = 〈tS; tI|Ψx〉〈Ψx|tS; tI〉, (24)

where (x = α, β), and |ts; tI〉 stands for |ts〉 ⊗ |tI〉 in the
time–time basis.

We work with the parameter values used in refer-
ence [18], namely, ωp/(2π) = 391.8856 THz, ω/(2π) =
19.2 GHz, Δω/(2π) = 1.92 GHz, Ω0/(2π) = 10.9 THz, and
ΔΩ/(2π) = 6 THz. The time–time slices of the tomograms
of |Ψα〉 and |Ψβ〉 have been obtained by substituting (19) and
(22) in turn in (24) and simplifying the resulting expressions
(see appendix B).

As expected,wα(tS; tI) andwβ(tS; tI) are distinctly different
from each other, as seen in figures 4(a)–(c). This difference
arises because |Ψα〉 and |Ψβ〉 correspond to combs that are
clearly displaced with respect to each other, when expressed
in the time–time basis.

Next, we calculate the reduced tomograms wx
i (ti) corre-

sponding to subsystem i (where i = S, I and x = α, β) by

integrating out the other subsystem. (For instance, wx
s (ts) =∫

dtiwx(ts; ti).) Using these full-system and subsystem chrono-
cyclic tomograms in (7)–(9), we obtain the entanglement indi-
cator εTEI corresponding to any chosen slice of the chrono-
cyclic tomogram. (For ease of notation, we have dropped the
explicit dependence of εTEI on the choice of both the tomogram
slice and the specific state.) In the case of the time–time slice
of the tomograms we get, finally, the values εTEI = 6.50 for
the state |Ψα〉, and εTEI = 5.44 for the state |Ψβ〉. Thus, εTEI

clearly distinguishes between these two biphoton states. We
emphasize that the methods used by us could, in principle,
provide an alternative approach to the procedure adopted in
the experiment.

5. Concluding remarks

The tomographic entanglement indicator εTEI proves to be
a very useful tool which is also easily computed from the
histogram of a relevant measured observable. In the case
of the entangled Talbot states, εTEI computed from the his-
togram in the position basis, closely mimics the standard
entanglement measure ξSVNE. We emphasize that a single
slice suffices to estimate the extent of entanglement, and we
do not require the rotated quadratures in this case. In fact,
we have shown that εTEI is better than ID, the Bell-like-
inequality-based indicator. Further, we have unambiguously
distinguished between a pair of biphoton states using the
entanglement indicator εTEI. This paper demonstrates alter-
native procedures using the tomographic approach that are
useful and efficient in a variety of experimentally relevant CV
systems.

Acknowledgments

We acknowledge useful discussions with P Milman, Labo-
ratoire Matériaux et Phénomènes Quantiques, Université de
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Appendix A. The biphoton frequency comb states

In section 4, the expressions for the two biphoton states |Ψα〉
and |Ψβ〉 which are distinguished from each other using tomo-
grams are given in (19) and (22) respectively. For convenience,
we give the expressions below.

|Ψα〉 = N−1/2
α

∫
dωS

∫
dωI f +(ωS + ωI)

× f −(Ω) f cav(ωS) f cav(ωI)|ωS〉 ⊗ |ωI〉,

where Nα is the normalisation constant. Here, f−(Ω) and
fcav(ω) are defined in (20) and (21) respectively. The other
biphoton state

|Ψβ〉 = N−1/2
β

∫
dωS

∫
dωI f +(ωS + ωI)

× f −(Ω)gcav(ωS) f cav(ωI)|ωS〉 ⊗ |ωI〉,

where gcav(ω) is defined in (23), and Nβ is the normalisation
constant.

In what follows, we outline the procedure to show that
these two states are indeed the two states which were shown
to be distinguishable using photon coincidence counts, in the
experiment reported in reference [18].

In the experimental setup, the sum of the frequencies of the
signal and the idler photons matches the pump frequency, i.e.,
(ωS + ωI = ωP). Hence, as stated in the supplementary mate-
rial (https://stacks.iop.org/JPB/55/185501/mmedia) of [18],
f+(ωS + ωI) can be replaced by δ(ωS + ωI − ωP). Integrating
over the variable Ω+(= ωs + ωi), appropriately changing the
integration variables, noting that Ω = ωs − ωi, and dropping
the normalisation constant, we get

|Ψα〉 =
∫

dΩ f −(Ω) f cav(ωS) f cav(ωI)|ωS〉 ⊗ |ωI〉. (A.1)

This can be identified as one of the states considered in the
experiment, namely, the expression (B19) in [18], on chang-
ing the notation from Ω, ωS, ωI in (A.1) to ω−, ωS, ωI

respectively.
We now proceed to establish that the other biphoton

state |Ψβ〉 considered by us, is the same as the state
|ψ’〉 (= C’ZtS |+̃〉ωS ⊗ |+̃〉ωI ) defined in [18]. Here, C′|tS; tI〉 =
|tS + tI; tS − tI〉 where, for instance, |tS〉 ⊗ |tI〉 is denoted
by |tS; tI〉 with tS and tI being the time variables asso-
ciated with the signal and the idler photons respectively,
and Zts |+̃〉ωs = |−̃〉ωs . It is convenient to express |+̃〉ωx and
|−̃〉ωx (x = S,I) as

|+̃〉ωx =

∫
dωx

∫
dtx exp

(
− t2

x

2κ2
x
− ω2

x

2(Δω)2

)
∑

n

ei(ωx+nω)tx |ωx + nω〉, (A.2)

and

|−̃〉ωx =

∫
dωx

∫
dtx exp

(
− t2

x

2κ2
x
− ω2

x

2(Δω)2

)
∑

n

(−1)n ei(ωx+nω)tx |ωx + nω〉. (A.3)

These expressions follow from the properties of the displace-
ment operator, and the expressions (B1), (B2) and (B7) given
in [18]. Here, κx(x = S, I) is the standard deviation in tx . It
follows from (A.2) and (A.3) that

|ψ′〉 =
∫

dt
∫

dt′
∫

dω
∫

dω′

× exp

(
− t2(Δωp)2 + t′2(ΔΩ)2

2
− ω2 + ω′2

2(Δω)2

)
∑
n,m

(−1)nei(nω+ω)(t+t′)ei(mω+ω′)(t−t′)|nω + ω〉

× ⊗ |mω + ω′〉, (A.4)

whereΔωP is the standard deviation in ωP. Integrating over the
time variables t and t′, writing (ωS = nω̄ + ω), (ωI = mω̄ +
ω′) where n, m are integers, and using the fact that f+ is a
Gaussian function with a standard deviation ΔωP (ΔωP �
ΔΩ), it is straightforward to see that (A.4) can be expressed
as |Ψβ〉 in (22), unnormalised.

Appendix B. Expressions for the chronocyclic
tomograms

We are interested in the time–time slice of the tomograms
corresponding to |Ψα〉 (19) and |Ψβ〉 (22). As a first step,
we calculate the explicit expressions for the states |Ψα〉 and
|Ψβ〉 in the Fourier transform basis (i.e., time–time basis)
using f+(ωS + ωI) = δ(ωS + ωI − ωP) in (19) and (22). The
biphoton state |Ψα〉 in the time–time basis is given by

|Ψα〉 =
1√

MατP

∫
dtS

∫
dtI

× exp

(
− (tI − tS)2 (Δω)2 (ΔΩ)2

4 ((Δω)2 + (ΔΩ)2)

)

× [F (tI − tS)]2|ts; tI〉, (B.5)

and the time–time slice wα(tS; tI) corresponding to |Ψα〉 is

wα(tS; tI) =
1

MατP

× exp

(
− (tI − tS)2 (Δω)2 (ΔΩ)2

2 ((Δω)2 + (ΔΩ)2)

)
|F (tI − tS)|4,

where τ p = 1 s (introduced for dimensional purposes),

F (tI − tS) =
∑

n

exp

(
i(tI − tS) n ω̄(ΔΩ)2

2((Δω)2 + (ΔΩ)2)

)
,
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and the normalisation constant is

Mα =
π

μ0

∑
m,n,m′ ,n′

exp

(
− (n − n′ + m′ − m)2 ω2 (ΔΩ)2

2 (Δω)2 ((Δω)2 + (ΔΩ)2)

)
,

(B.6)

where μ0 =
(

π(ΔΩ)2(Δω)2

2((ΔΩ)2+(Δω)2)

)1/2
.

Similarly, the other biphoton state |Ψβ〉 in the time–time
basis is given by

|Ψβ〉 =
1√

MβτP

∫
dtS

∫
dtI

× exp

(
− (tI − tS)2 (Δω)2 (ΔΩ)2

4 ((Δω)2 + (ΔΩ)2)

)

× G(tI − tS)F (tI − tS)|tS; tI〉, (B.7)

and the time–time slice corresponding to |Ψβ〉 is

wβ (tS; tI) =
1

MβτP
exp

(
− (tI − tS)2 (Δω)2 (ΔΩ)2

2 ((Δω)2 + (ΔΩ)2)

)

× |G(tI − tS)F (tI − tS)|2,

where,

G(tI − tS) =
∑

n

(−1)n exp

(
i(tI − tS) n ω̄(ΔΩ)2

2((Δω)2 + (ΔΩ)2)

)
,

and the normalisation constant Mβ is essentially the same as
Mα with an extra factor of (−1)n+n′ within the summation in
(B.6).
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