
European Journal of Operational Research 306 (2023) 567–578

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

An improved approximation algorithm for scheduling monotonic

moldable tasks

Fangfang Wu

a , Xiandong Zhang

a , Bo Chen

b , ∗

a School of Management, Fudan University, Shanghai 200433, China
b Warwick Business School, University of Warwick, Coventry CV4 7AL, UK

a r t i c l e i n f o

Article history:

Received 6 August 2021

Accepted 24 August 2022

Keywords:

Scheduling

Moldable tasks

Approximation algorithm

a b s t r a c t

We are concerned with the problem of scheduling monotonic moldable tasks on identical processors

to minimize the makespan. We focus on the natural case where the number m of processors as re-

sources is fixed or relatively small compared with the number n of tasks. We present an efficient (3 / 2)-

approximation algorithm with time complexity O (nm log (nm)) (for m > n) and O (n 2 log n) (for m ≤ n). To

the best of our knowledge, the best relevant known results are: (a) a (3 / 2 + ε) -approximation algorithm

with time complexity O (nm log (n/ε)) , (b) a fully polynomial-time approximation scheme for the case of

m ≥ 16 n/ε, and (c) a polynomial-time approximation scheme with time complexity O (n g(1 /ε)) when m is

bounded by a polynomial in n , where g(·) is a super-exponential function. On the other hand, the novel

general technique developed in this paper for removing the ε-term in the worst-case performance ratio

can be applied to improving the performance guarantee of certain dual algorithms for other combinato-

rial optimization problems.

© 2022 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

n

f

c

t

i

e

(

w

D

i

p

t

A

c

o

C

a

t

(

t

a

o

b

a

a

t

s

&

s

D

t

e

G

u

s

T

f

f

h

0

. Introduction

A moldable task is one that can be executed on an arbitrary

umber of processors simultaneously with execution time as a

unction of the number of processors allotted to it. This task model

aptures task parallelism in scheduling and allows the scheduler

o decide on the degree of parallelism for each task by choos-

ng the number of processors assigned to it. Due to these prop-

rties, the model is used to describe some industrial applications

 Fotakis, Matuschke, & Papadigenopoulos, 2021). For example, in

orkforce assignment (Delorme, Dolgui, Kovalev, & Kovalyov, 2019;

olgui, Kovalev, Kovalyov, Malyutin, & Soukhal, 2018), workers with

dentical skills need to perform operations. An operation can be

erformed by one or more workers and the processing time of

he operation depends on the number of workers performing it.

lso, a berth and quay crane allocation problem, which is to de-

ide the arrival and departure time of ships as well as the number

f quay cranes assigned to each ship, was considered in Blazewicz,

heng, Machowiak, & Oguz (2011) . They formulated this problem

s scheduling moldable tasks, in which ships are considered as

asks and quay cranes are considered as processors. For each ship,
∗ Corresponding author.

E-mail addresses: ffwu17@fudan.edu.cn (F. Wu), xiandongzhang@fudan.edu.cn

X. Zhang), b.chen@warwick.ac.uk (B. Chen).

1

s

ttps://doi.org/10.1016/j.ejor.2022.08.034

377-2217/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article
he berthing duration is a function of the number of quay cranes

llotted to it. The goal is to minimize the maximum departure time

f the ships in berth and quay crane allocation, which is achieved

y minimizing the makespan in the model of scheduling mold-

ble tasks. Unsal (2021) considered some specific characteristics of

 berth and quay crane allocation problem and developed an ex-

ended formulation of moldable task scheduling.

The moldable task model was also proposed by theoretical re-

earchers in the fields of computer science. For example, Feitelson

 Rudolph (1996) stated that programs written using the SPMD

tyle, e.g., with the MPI library package, are often moldable.

rozdowski (2009) discussed the practical motivation for moldable

asks involved in parallel applications. Bleuse et al. (2017) consid-

red scheduling independent moldable tasks on multi-cores with

PUs. They assumed that those tasks are parallelizable on CPUs

sing the moldable model. Also, in Fujiwara, Tanaka, Taura, & Tori-

awa (2018) , deep learning tasks were treated as moldable tasks.

herefore, efficient and sophisticated algorithms are then required

or the implementation of these applications to ensure good per-

ormance.

.1. Problem description

We are given a set T = { T 1 , . . . , T n } of n moldable tasks and a

et M = { 1 , 2 , . . . , m } of m identical processors. Each task T has
i

under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.ejor.2022.08.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.08.034&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ffwu17@fudan.edu.cn
mailto:xiandongzhang@fudan.edu.cn
mailto:b.chen@warwick.ac.uk
https://doi.org/10.1016/j.ejor.2022.08.034
http://creativecommons.org/licenses/by/4.0/

F. Wu, X. Zhang and B. Chen European Journal of Operational Research 306 (2023) 567–578

a

e

e

n

fi

f

s

t

W

a

t

f

h

s

n

t

w

n

l

s

F

i

t

w

m

D

e

n

t

o

i

c

u

f ∑
t

I

t

t

C

s

w

o

t

c

&

t

r

t

2

n

l

t

p

m

a

t

p

a

b

l

1

s

a

L

a

P

s

t

n

q

n

t

a

(

t

l

fi

s

f

t

a

t

&

&

a

2

2

B

(

e

n

r

p

v

s

r

1

s

l

(

G

S

i

n

t

a

G

T

a

k

h

r

1

m

t

e

t
n associated execution time function t i : p → t i,p that gives the

xecution time t i,p ∈ Q

+ of task T i if p processors are allotted to

xecuting task T i , where Q

+ denotes the set of positive rational

umbers (Jansen & Porkolab, 2002; Jansen & Thöle, 2010). We de-

ne the workload function w i of task T i as w i : p → w i,p = p × t i,p

or p ≤ m , which gives the workload w i,p of task T i if p proces-

ors are allotted to it. As a key aspect of a moldable task, several

ypes of execution time functions have been introduced (Turek,

olf, & Yu, 1992; Wang & Cheng, 1991). In this paper, we study

 commonly used type — monotonic : the execution time function

 i is a non-increasing function while the corresponding workload

unction w i is a non-decreasing function: t i,p ≥ t i,p ′ and w i,p ≤ w i,p ′
old for all i = 1 , . . . , n and for any pair p, p ′ ∈ { 1 , . . . , m } with

p < p ′ . The monotonicity assumption takes into account both the

peedup in execution time and the slowdown due to commu-

ication overhead (Bleuse et al., 2017; Mounié, Rapine, & Trys-

ram, 1999). Such an assumption can also be interpreted by the

ell-known Brent’s lemma (Brent, 1974), which states that run-

ing tasks in parallel can reduce the overall processing time and

eads to sublinear speedups. In addition, this assumption is rea-

onable in practice as one can find the simulation results of the

ourier Transform benchmark and Block Tridiagonal benchmark

n Dutton, Mao, Chen, & Watson III (2008) . Note that the execu-

ion function t i,p = t i, 1 /p + (p − 1) c used in Dutton et al. (2008) ,

here c is a positive constant, is a widely used function to

odel execution times (Ghosal, Serazzi, & Tripathi, 1991; Leuze,

owdy, & Park, 1989), which implies monotonicity when c is small

nough.

We assume all tasks are monotone. For any task T i (1 ≤ i ≤
), let P i be the set of processors allotted to the task. Then

hese | P i | processors have to execute task T i simultaneously with-

ut preemption, i.e., they start executing task T i at some start-

ng time s i and complete it at s i + t i, | P i | . Each processor can exe-

ute at most one task at a time. A feasible non-preemptive sched-

le is an allotment of processors P i ⊆ M and a starting time s i
or every task T i , such that for any time point τ it holds that

1 ≤i ≤n : τ∈
[

s i ,s i + t i, | P i |
) | P i | ≤ m . Note that we do not require that a

ask has to be executed by contiguously numbered processors.

n other words, we study non-contiguous schedules. Our objec-

ive is to find a feasible non-preemptive schedule that minimizes

he makespan, which is defined as the maximum completion time

 max = max 1 ≤i ≤n

{
s i + t i, | P i |

}
. Since processors are usually to model

carce resources, we are concerned in this paper with the case

here m is fixed or relatively small compared with n .

Note that in the above problem description, the number | P i |
f processors allotted to task T i is a constant during the execu-

ion of the task, from s i to s i + t i, | P i | . Although moldable tasks are

alled malleable tasks in several studies (Chen & Chu, 2013; Jansen

 Porkolab, 2002; Jansen & Thöle, 2010; Mounié, Rapine, & Trys-

ram, 2007; Turek et al., 1992), more recently the latter notion is

eferred to the case where the number of processors allotted to a

ask can be changed during the execution of the task (Drozdowski,

009; Marchal, Simon, Sinnen, & Vivien, 2018).

Before reviewing the literature, let us introduce a few termi-

ologies. A polynomial-time approximation scheme (PTAS) is a col-

ection of (1 + ε) -approximation algorithms parameterized in arbi-

rarily small ε > 0 with running time being a polynomial in the

roblem size for any fixed ε. A fully polynomial-time approxi-

ation scheme (FPTAS) is a collection of (1 + ε) -approximation

lgorithms parameterized in arbitrarily small ε > 0 with running

ime polynomial in both problem size and 1 /ε. An asymptotic fully

olynomial-time approximation scheme (AFPTAS) is a collection of

symptotic (1 + ε) -approximation algorithms parameterized in ar-

itrarily small ε > 0 that runs in time polynomial both in the prob-

em size and 1 /ε.
m

568
.2. Related work

The problem of scheduling moldable tasks has been extensively

tudied. The problem is known to be NP-hard (Du & Leung, 1989)

nd remains so even with monotonicity assumption (Jansen &

and, 2018). For non-monotonic tasks, there is no polynomial-time

lgorithm with an approximation guarantee less than 3 / 2 unless

 = NP (Johannes, 2006). An overview of the known results for

cheduling moldable tasks is given in Table 1 . In the table, “con-

iguous” (resp., “non-contiguous”) indicates that contiguous (resp.,

on-contiguous) schedules are considered, where each task is re-

uired to be executed by contiguously numbered processors (resp.,

o such requirement).

Other two problems closely related to scheduling moldable

asks are scheduling rigid tasks and strip packing. A rigid task is

lso called non-malleable or non-moldable task in several studies

 Jansen, 2012; Turek et al., 1992), for which the execution time and

he number of required processors are known a priori . In the prob-

em of strip packing, given a strip with a fixed width and an in-

nite height, we need to pack a set of rectangular items into the

trip without rotation and overlapping. The objective is to find a

easible packing with minimal packing height. The difference be-

ween scheduling rigid tasks and strip packing is that processors

llotted to a task need to be contiguous in the latter problem.

Scheduling rigid tasks . The problem is strongly NP-hard even if

he number m of available processors is a constant at least 4 (Du

 Leung, 1989; Henning, Jansen, Rau, & Schmarje, 2020). Garey

 Graham (1975) provided a 2-approximation algorithm and the

pproximation guarantee was later improved to 3 / 2 + ε (Jansen,

012), which is very close to the lower bound of 3 / 2 (Johannes,

006). When m is a constant, a PTAS was presented by Amoura,

ampis, Kenyon, & Manoussakis (2002) and Jansen & Porkolab

2002) . Jansen & Thöle (2010) provided a PTAS for the more gen-

ral case where the number m is bounded by a polynomial in the

umber of tasks. An overview of the known results for scheduling

igid tasks is given in Table 2 .

Strip packing . One of the first results for strip packing was

rovided by Coffman, Garey, Johnson, & Tarjan (1980) . They pro-

ided two algorithms with approximation ratios of 3 and 2.7, re-

pectively. The approximation ratio was later improved in a se-

ies of studies (Harren & Stee, 2009; Schiermeyer, 1994; Sleator,

980; Steinberg, 1997) and the best approximation ratio achieved

o far is 5 / 3 + ε (Harren, Jansen, Prädel, & van Stee, 2011). Simi-

arly, the asymptotic approximation ratio has also been improved

 Baker, Brown, & Katseff, 1981; Baker, Coffman, & Rivest, 1980;

olan, 1981; Jansen & Solis-Oba, 2009; Kenyon & Rémila, 20 0 0;

viridenko, 2012). When the width of the strip denoted by W

s allowed to appear polynomially in the running time, there is

o polynomial-time algorithm with approximation guarantee less

han 5 / 4 unless P = NP (Henning et al., 2020). On the other hand,

lgorithms with approximation ratio 4 / 3 + ε were presented by

álvez, Grandoni, Ingala, & Khan (2016) and Jansen & Rau (2017) .

he gap to the lower bound was later closed with a (5 / 4 + ε)-

pproximation algorithm (Jansen & Rau, 2019). An overview of the

nown results for scheduling rigid tasks is given in Table 3 , where

 max and w max denote the largest height and width of rectangles,

espectively, and W denotes the width of the strip.

.3. Our contribution

In this paper, we are concerned with scheduling monotonic

oldable tasks when the number of processors is fixed or rela-

ively small compared with the number of tasks. We present an

fficient algorithm with performance guarantee of 3 / 2 and with

ime complexity of O (nm log (nm)) (for m > n) and O (n 2 log n) (for

 ≤ n).

F. Wu, X. Zhang and B. Chen European Journal of Operational Research 306 (2023) 567–578

Table 1

Known results for scheduling moldable tasks.

Tasks Processors Ratio Remarks

Turek et al. (1992) non-monotonic non-contiguous 2 O (nm log n)

Turek et al. (1992) non-monotonic contiguous 5 / 2 O (n 2 m log n)

Ludwig & Tiwari (1994) non-monotonic non-contiguous 2 O (nm)

Ludwig & Tiwari (1994) non-monotonic contiguous 5 / 2 O (nm)

Jansen & Porkolab (2002) non-monotonic non-contiguous PTAS O (n) with m being constant

Jansen (2004) non-monotonic non-contiguous AFPTAS O (n (1 / ε2 + log n) log (1 /ε) max (n log log (n/ε) , n/ ε4) + max (log (1 /ε) / ε3 ,

M (ε−2)) / ε4 + nm) , where M (N) is the time to invert an (N × N) matrix

Jansen & Thöle (2010) non-monotonic non-contiguous PTAS O (n f (1 /ε)) for some exponential function f ; m is polynomially bounded by n

Jansen (2012) non-monotonic non-contiguous 3 / 2 + ε O (n log n) + f (1 /ε) for some exponential function f

Jansen & Rau (2019) non-monotonic contiguous 5 / 4 + ε O ((nm) 1 / ε
2 O (1 /ε13)

)

Ludwig & Tiwari (1994) monotonic non-contiguous 2 O (n log
2

m)

Ludwig & Tiwari (1994) monotonic contiguous 5 / 2 O (n log
2

m)

Mounié et al. (1999) monotonic contiguous
√

3 + ε O ((min { nm, n 3 } + n log m) log (1 /ε) + n log
2

m)

Mounié et al. (2007) monotonic non-contiguous a 3 / 2 + ε O (nm log (n/ε))

Jansen & Land (2018) monotonic non-contiguous FPTAS O (n log
2

m (log m + log (1 /ε))) ; m ≥ 16 n/ε for any ε > 0

Jansen & Land (2018) b monotonic non-contiguous 3 / 2 + ε O (n log
2

m + log (T (n, m, ε) /ε)) , where T (n, m, ε) = O (n (log m) + n log (εm)) ,

O (n (1
ε2 log m (log m

ε + log
3
(εm)) + log n)) and O (n 1

ε2 log m (log m
ε + log

3
(εm)))

Jansen & Rau (2019) monotonic contiguous 5 / 4 + ε O (n 1 / ε
2 O (1 /ε13)

) ; m < 8 n/ε

This paper monotonic non-contiguous 3 / 2 O (nm log (nm)) for m > n ; O (n 2 log (n)) for m ≤ n

a Mounié et al. (2007) claimed that they constructed a contiguous schedule, but the claim was unjustified. In their algorithm, if a task satisfies some rules, it will be split

into two parts. One part is allocated to a processor in a shelf, the other to a processor in another shelf. Since only one pair of contiguously numbered processors exists

between two shelves and it is possible to have more than one task satisfying the rule, this process results in a non-contiguous schedule.
b Jansen & Land (2018) provided three different approximation algorithms with the same approximation ratio of 3 / 2 + ε. Hence, three different time complexity estimations

are given in the remarks.

Table 2

Known results for scheduling rigid tasks.

Ratio Remarks

Garey & Graham (1975) 2 O (n) ; m constant

Amoura et al. (2002) PTAS O (n) ; m constant

Jansen & Porkolab (2002) PTAS O (n) ; m constant

Jansen & Thöle (2010) PTAS O (n f (1 /ε)) for some exponential function f ; m polynomially bounded by n

Jansen (2012) 3 / 2 + ε O (n log n) + f (1 /ε) for some exponential function f

Table 3

Known results for strip packing.

Ratio Time Complexity Remarks

Coffman et al. (1980) 3 O (n log n)

Coffman et al. (1980) 2.7 O (n log n)

Sleator (1980) 2.5 O (n log n)

Schiermeyer (1994) 2 O (n log n)

Steinberg (1997) 2 O ((n log
2

n) / log log n)

Harren & Stee (2009) 1.9369 O (T PTAS + (n log
2

n) / log log n) T PTAS is the running time of PTAS presented by Bansal,

Caprara, Jansen, Prädel, & Sviridenko (2009)

Harren et al. (2011) 5 / 3 + ε O (T PTAS + n log
2

n)

Baker et al. (1980) 3 O (n log n) asymptotic approximation ratio

Golan (1981) 4 / 3 O (n log n)

Baker et al. (1981) 5 / 4 O (n log n)

Kenyon & Rémila (2000) AFPTAS O (n log n + ε−6 log
3

n log
3
(1 ε))

Jansen & Solis-Oba (2009) APTAS O (n 1 /ε
O (1 /ε)

)

Sviridenko (2012) AFPTAS O (n log n + ε−6 log
3

n log
3
(1 ε))

Nadiradze & Wiese (2016) 7 / 5 + ε O ((max { w max , h max } n) O (1)) W is polynomially bounded by n

Gálvez et al. (2016) 4 / 3 + ε

Jansen & Rau (2017) 4 / 3 + ε O ((nW) 1 / ε
O (2 1 /ε)

)

Jansen & Rau (2019) 5 / 4 + ε O (n log (n)) W

1 / ε2 O (1 /ε13)

f

p

W

t

n

c

l

O

t

T

m

o

p

a

i

1

l

The best polynomial time algorithm before this paper has a per-

ormance guarantee of 3 / 2 + ε with running time a polynomial in

roblem size and 1 /ε (Jansen & Land, 2018; Mounié et al., 2007).

e develop a new technique in this paper to remove the ε-term in

he performance ratio as well as from the running time. The tech-

ique can be used in eliminating the ε-term in the running time of

ertain dual algorithms for other combinatorial optimization prob-

ems.

Although a PTAS exists for this problem, its time complexity

 (n h (1 /ε)) is prohibitively high for some super-exponential func-

ion h (Jansen & Thöle, 2010). On the other hand, while an FP-
569
AS can achieve an approximation ratio of 1 + ε, it requires that

 ≥ 16 n/ε (Jansen & Land, 2018; Mounié et al., 2007). Therefore,

ur (3 / 2) -approximation algorithm offers a much better time com-

lexity compared with the PTAS and a better approximation guar-

ntee compared with the FPTAS when m < 32 n , which is the case

f m is fixed or relatively small compared with n .

.4. Organization

This paper is organized as follows. We start with some pre-

iminaries in Section 2 , which include notation and some known

F. Wu, X. Zhang and B. Chen European Journal of Operational Research 306 (2023) 567–578

Table 4

Notation dashboard.

Variable Definition

n Number of tasks

m Number of processors

T Set of all n tasks

C ∗max Optimal makespan

W

∗ Workload of an optimal schedule

t i,p Execution time of task T i if p processors are allotted to task T i
w i,p Workload of task T i if p processors are allotted to task T i
γ (i, h) Minimal number of processors needed to execute task T i within h time units

X =

{
t j,p : j = 1 , . . . , n ; p = 1 , . . . , m

}
Y = X ∪

{
t i, 1 + t j, 1 , t i, 1 + t j, 2 : i, j = 1 , . . . , n

}
τ1 Largest value in X , but no more than C ∗max , used as estimate of C ∗max

τ2 Largest value in X ∪ { 0 } , but no more than 1
2

C ∗max , used as estimate of 1
2

C ∗max

τ3 Largest value in Y , but no more than 3
2

C ∗max , used as estimate of 3
2

C ∗max

T L Set of “large” tasks with t i, 1 > τ2

T S Set of “small” tasks with t i, 1 ≤ τ2

S 1 Set of m 1 processors with available period [0 , τ1] (see Fig. 3)

S 2 Set of m 1 processors with available period (τ1 , τ1 + τ2] (see Fig. 3)

S 0 Set of m 0 processors with available period [0 , τ3] (see Fig. 3)

q Number of idle processors in S 1
σ1 , σ2 , σ3 Partial schedules obtained in Procedure A (T , m, τ1 , τ2 , τ3) under different scenarios

σ0 Exactly one of σ1 , σ2 , σ3 .

˜ σ Possible full schedule output of Procedure F (T , m)

σ Full schedule output of Procedure A (T , m, τ1 , τ2 , τ3)

r

o

i

p

i

2

w

2

t

w

n

g

a

i

p

F

(

w

t

c

g

w

o

n

t

w

i

f

a

b

n

t

p

e

L

fi ∑
W

s

O

m

t

d

A

a

L

+

h

I

2

a

2

t

i

s

t

T

w

&

c

w

r

m

esults in the literature that our work is built on. An outline of

ur approximation algorithm, followed by its detailed description

s provided in Section 3 . The theoretical analysis of the algorithm is

rovided in Sections 4 and 5 . We make some concluding remarks

n Section 6 .

. Preliminaries

We summarize our notations in the following Table 4 , most of

hich will appear afterwards.

.1. Dual algorithm

A λ-dual approximation algorithm (Hochbaum & Shmoys, 1987)

akes a number d as an input, and either delivers a schedule

ith makespan at most λd or answers correctly that there exists

o schedule whose makespan is at most d . Hence d is called a

uess of the makespan. For scheduling monotonic moldable tasks,

 (3 / 2) -dual approximation algorithm with time complexity O (nm)

s proposed in Mounié et al. (2007) . For the convenience of our ex-

osition, we denote this dual algorithm by Algorithm D (T , m, d) .

or a makespan-minimization problem, an estimation algorithm

 Jansen & Land, 2018) with estimation ratio ρ computes a value

 that estimates the optimal makespan within an estimation ra-

io ρ , i.e., w ≤ C ∗max ≤ ρw . Given an estimation algorithm with time

omplexity f (n, m) and a λ-dual algorithm with time complexity

(n, m) , using binary search for a correct guess of the makespan

ithin any specified precision ε > 0 , from these two algorithms

ne can develop a λ(1 + ε) -approximation algorithm with run-

ing time O (f (n, m) + g(n, m) log (1 /ε)) . For scheduling monotonic

asks, as mentioned before, we have a 2-approximation algorithm

ith time complexity O (n log
2

m) (Ludwig & Tiwari, 1994), which

s actually an estimation algorithm with estimation ratio 2. There-

ore, the dual algorithm D (T , m, d) can be converted to a (3 / 2 + ε)-

pproximation algorithm with time complexity O (nm log (n/ε)) .

Given a number h , we define for each task T i its canonical num-

er of processors , γ (i, h) , as the minimal number of processors

eeded to execute task T i in time at most h . We set by conven-

ion γ (i, h) = + ∞ if T i cannot be executed in time at most h on m

rocessors. Two important technical results established in Mounié

t al. (2007) are stated in the following two lemmas.
570
emma 1 (Mounié et al., 2007) . Given any fixed number d, de-

ne T S (d) = { T i ∈ T : t i, 1 ≤ d} and T L (d) = T \T S (d) . Let W S (d) =

T i ∈T S (d) t i, 1 . Define knapsack problem KP (T L (d) , m, d) as follows:

 (d) = min

T 1 ⊆T L (d)

(∑

T i ∈T 1 w i,γ (i,d) +

∑

T i ∈T L (d) \T 1 w i,γ (i,d/ 2)

)
ubject to

∑

T i ∈T 1 γ (i, d) ≤ m . If W (d) + W S (d) > md, then d < C ∗max .

therwise, Algorithm D (T , m, d) constructs a feasible schedule with

akespan at most 3 d/ 2 .

Lemma 1 helps us to determine whether a guess d is smaller

han C ∗max . This is frequently used in the first part of our algorithm

efined as Algorithm F (T , m) (see Section 3.1). The details of how

lgorithm D (T , m, d) constructs a feasible schedule of makespan

t most 3 d/ 2 can be found in Mounié et al. (2007) .

emma 2 (Mounié et al., 2007) . Given any number h , if γ (i, h) <

 ∞ , then

 ≥ t i,γ (i,h) >

γ (i, h) − 1

γ (i, h)
h.

f γ (i, h) ∈ [2 , m] , then

 t i,γ (i,h) ≥ t i,γ (i,h) −1 > h ≥ t i,γ (i,h) >

1

2

h.

Lemma 2 will be used in analyzing one part of our (3 / 2) -

pproximation algorithm in Section 5 .

.2. Algorithm outline

Before we indulge into the algorithmic details, let us outline

he main intuitions and ideas behind our algorithm. As concluded

n the abstract and related works, the best relevant known re-

ults are: (a) an efficient (3 / 2 + ε) -approximation algorithm with

ime complexity O (nm log (n/ε)) (Mounié et al., 2007), (b) an FP-

AS for the case of m ≥ 16 n/ε (Jansen & Land, 2018), and (c) a PTAS

ith time complexity O (n g(1 /ε)) (Jansen & Porkolab, 2002; Jansen

 Thöle, 2010), where g(·) is a super-exponential function. Con-

entrated on the case that m is fixed or relatively small compared

ith n , we are looking for fast and direct algorithms since the PTAS

equires high running time. As we target at an efficient approxi-

ation algorithm with approximation ratio less than 3 / 2 + ε, it is

F. Wu, X. Zhang and B. Chen European Journal of Operational Research 306 (2023) 567–578

Fig. 1. (a) a schedule in a processor-time diagram; (b) a shelf-based schedule.

n

e

s

r

a

i

t

u

c

o

fi

t

b

m

c

m

3

c

r

t

a

u

t

w

t

a

h

t

S

F

a

i

a

a

o

τ

c

m

l

r

X

Y

a

τ

τ

τ

I

x

c

a

h

(

c

fi

p

s

T

E

3

t

p

v

W

t

W

c 1 2 3
atural to consider whether we can remove the ε-term in Mounié

t al. (2007) .

In Mounié et al. (2007) , the ε-term comes from the binary

earch of the optimal makespan. Unfortunately, there is no way to

emove ε in Algorithm D (T , m, d) since only an input d = C ∗max + ε
lways guarantees a feasible schedule with makespan

3
2 d, while an

nput d = C ∗max − ε cannot for any ε > 0 .

Motivated by the study in Ludwig & Tiwari (1994) , which takes

he largest task execution time as the makespan of their sched-

le, we construct a schedule of a makespan represented by exe-

ution times of some tasks. Rather than guessing the exact value

f C ∗max as Algorithm D (T , m, d) does, our novel strategy here is to

nd approximate values for C ∗max from some discrete sets of execu-

ion times of some tasks, each having a cardinality polynomially

ounded by n and m . We first construct three sub-schedules of

akespans bounded by these approximate values, and then con-

atenate these three sub-schedules into a full schedule with a

akespan of a desired bound.

. Algorithm description

As shown in Fig. 1 (a), a schedule to moldable task scheduling

an be depicted in a processor-time diagram. Each rectangle rep-

esents a task T i , with the height corresponding to the execution

ime t i,p of the task and the width to the number of p processors

llotted to it. Recall that the workload w i,p of a task is the prod-

ct of p and t i,p , which corresponds to the area of the rectangle in

he diagram. We define the workload of a schedule as the total of

orkloads of all tasks in the schedule, which corresponds to the

otal area of all rectangles.

Our algorithm uses a shelf-based approach: Define a shelf as

 set of processors with available processing period. Define the

eight of a shelf as the length of available processing period and

he width as the number of processors. We construct three shelves

 1 , S 2 and S 0 of respective heights τ1 , τ2 and τ3 , as illustrated in

ig. 1 (b). More specifically, define shelf S 1 with m 1 processors and

vailable in period [0 , τ1] , shelf S 2 with m 1 processors and available

n period (τ1 , τ1 + τ2] , and shelf S 0 with m 0 processors and avail-

ble in period [0 , τ3] . We then try to determine a good processor

llotment of all tasks and pack them into these shelves. All values

f τ1 , τ2 , τ3 and m 0 , m 1 will be defined and computed accordingly.

Suppose such a shelf-based schedule with makespan max { τ1 +

2 , τ3 } exists. As we target for a 3 / 2 approximation, it is natural to

onsider setting the values of τ1 , τ2 and τ3 in such a way that the

akespan of the schedule is no more than

3
2 C

∗
max . To this end, we

et τ1 , τ2 and τ3 be approximate values of C ∗max ,
1 C ∗max and

3 C ∗max ,
2 2

571
espectively. More specifically, let

 =

{
t j,p : j = 1 , . . . , n ; p = 1 , . . . , m

}
,

 = X ∪

{
t i, 1 + t j, 1 , t i, 1 + t j, 2 : i, j = 1 , . . . , n

}
.

nd define

1 = max { x : x ≤ C ∗max , x ∈ X } , (1)

2 = max
{

x : x ≤ 1
2
C ∗max , x ∈ X ∪ { 0 } }, (2)

3 = max
{

y : y ≤ 3
2
C ∗max , y ∈ Y

}
, (3)

t is clear that | X| ≤ nm and | Y | ≤ nm + 2 n 2 . Since C ∗max ≥ min { x :
 ∈ X} , values of (τ1 , τ2 , τ3) always exist.

Then the following questions arise: As C ∗max is unknown, how

an we find the values of τ1 , τ2 and τ3 ? Even if τ1 , τ2 and τ3

re found, does there exist such a shelf-based schedule? If yes,

ow can we construct it? These questions are answered by our

3 / 2) -approximation algorithm, which we call FA Algorithm and

onsists of two parts: the first part, written as Procedure F (T , m) ,

nds the values of τ1 , τ2 and τ3 (see Section 3.1), while the second

art, written as Procedure A (T , m, τ1 , τ2 , τ3) , constructs a feasible

chedule dependent on the values of τ1 , τ2 and τ3 (see Section 3.2).

he FA Algorithm

1. Run Procedure F (T , m) to obtain the values of τ1 , τ2 and τ3

and, possibly, to output a feasible schedule ˜ σ of makespan at

most 3
2 τ0 (see Section 3.1).

2. Given input (τ1 , τ2 , τ3) , run Procedure A (T , m, τ1 , τ2 , τ3) to

output a feasible schedule σ of makespan C(τ1 , τ2 , τ3) (see

Section 3.2).

nd of the FA Algorithm

.1. Procedure F (T , m)

The main idea behind this procedure is that one can iden-

ify whether a value is smaller than C ∗max by solving a knapsack

roblem. Take τ1 as an example. As we know, τ1 is the largest

alue no more than C ∗max in X . According to Lemma 1 , if W (d) +
 S (d) > md, we then obtain d < C ∗max . Then Procedure F (T , m) sets

he value of τ1 as the largest among all those x i ∈ X satisfying

 (x i) + W S (x i) > mx i . We discuss and confirm that F (T , m) suc-

eeds in finding the right values of τ , τ and τ in Section 4 .

F. Wu, X. Zhang and B. Chen European Journal of Operational Research 306 (2023) 567–578

Fig. 2. Possible schedules resulted from Step 2.

P

E

3

T

i

t

s

s

s

t

l

h

a

S

p

m

P

rocedure F (T , m)

Step 1. Reindex the elements in X = { x 1 , . . . , x | X| } and in Y =
{ y 1 , . . . , y | Y | } in ascending order of their values. Let x̄ =
max { x : x ∈ X} and ȳ = max { y : y ∈ Y } .

Step 2. Solve knapsack problem KP (T L (d) , m, d) with d = x̄ .

If W (̄x) + W S (̄x) > m ̄x , set τ1 := x̄ . Otherwise, identify

x j ∈ X such that W (x j) + W S (x j) > mx j and W (x j+1) +
W S (x j+1) ≤ mx j+1 . (NB: This can be done with binary

search, where for each searched value x i , solve knapsack

problem KP (T L (d) , m, d) with d = x i . Similar comment ap-

plies to the second part of Steps 3 and 4.) Set τ1 := x j and

run Algorithm D (T , m, d) with d = x j+1 to obtain a feasi-

ble schedule ˜ σ1 .

Step 3. Solve knapsack problem KP (T L (d) , m, d) with d = 2 ̄x .

If W (2 ̄x) + W S (2 ̄x) > m 2 ̄x , set τ2 := x̄ . Otherwise, iden-

tify x k ∈ X such that W (2 x k) + W S (2 x k) > 2 mx k and

W (2 x k +1) + W S (2 x k +1) ≤ 2 mx k +1 . Set τ2 := x k and run Al-

gorithm D (T , m, d) with d = 2 x k +1 to obtain a feasible

schedule ˜ σ2 .

Step 4. Solve knapsack problem KP (T L (d) , m, d) with d =

2
3 ̄y . If

W (2 3 ̄y) + W S (
2
3 ̄y) > m (2 3 ̄y) , set τ3 := ȳ . Otherwise, iden-

tify y i ∈ Y such that W (2 3 y i) + W S (
2
3 y i) > m (2 3 y i) and

W (2 3 y i +1) + W S (
2
3 y i +1) ≤ m (2 3 y i +1) . Set τ3 := y i and run

Algorithm D (T , m, d) with d =

2
3 y i +1 to obtain a feasible

schedule ˜ σ3 .

Step 5. If { ̃ σ1 , ˜ σ2 , ˜ σ3 } � = ∅ , then let τ0 = min { x j+1 , 2 x k +1 ,
2
3 y i +1 }

(NB: some element(s) may not be applicable) and let

˜ σ ∈ { ̃ σ1 , ˜ σ2 , ˜ σ3 } be the feasible schedule of the minimum

makespan.

nd of Procedure F (T , m)

.2. Procedure A (T , m, τ1 , τ2 , τ3)

The main steps of Procedure A (T , m, τ1 , τ2 , τ3) are as follows.

he first step divides tasks into large and small. The latter tasks are

gnored temporarily until the last step, in which they are added to

he schedule. In the second step, large tasks are divided into two

ubsets T 1 and T 2 by solving a knapsack problem. Tasks in sub-

et T 1 are scheduled in shelf S 1 with height τ1 and the others are

cheduled in shelf S 2 with height τ2 . This is illustrated in Fig. 2 . If

asks of subset T 2 use more than m processors in shelf S 2 , we se-

ect some large tasks in T 1 and T 2 to be reallocated to shelf S 0 with

eight τ3 . This is done in Step 3 and is illustrated in Fig. 3 . Finally,

ll small tasks identified in Step 1 are added into the schedule in

tep 4, which is illustrated in Fig. 4 .
572
We refer the sum of execution times of the tasks allotted to a

rocessor as the load of the processor. Initially, set m 1 := m and

 0 := 0 .

rocedure A (T , m, τ1 , τ2 , τ3)

Step 1. Partition the task set T into two subsets:

T S = { T i ∈ T : t i, 1 ≤ τ2 } (small tasks), (4)

T L = { T i ∈ T : t i, 1 > τ2 } (large tasks). (5)

If T L = ∅ , then let σ1 be the empty schedule and go to

Step 4; otherwise, go to Step 2.

Step 2. Solve the knapsack problem KP (T L , m, τ1 , τ2) below for an

allotment of tasks in T L :

W (τ1 , τ2) = min

T ′ ⊆T L

(∑

T i ∈T ′ w i,γ (i,τ1) +

∑

T i ∈T L \T ′ w i,γ (i,τ2)

)
subject to

∑

T i ∈T ′ γ (i, τ1) ≤ m . Let T ′ = T 1 be an optimal

solution to the above problem KP (T L , m, τ1 , τ2) . Then allot

γ (i, τ1) processors to any task T i ∈ T 1 and γ (i, τ2) proces-

sors to any task T i ∈ T 2 ≡ T L \T 1 . Schedule all tasks in T 1 in
shelf S 1 and all tasks in T 2 in shelf S 2 . If

∑

T i ∈T 2 γ (i, τ2) ≤
m (as illustrated in Fig. 2 (a)), let S 1 and S 2 use the same

m processors. The resulting schedule is denoted by σ2

and go to Step 4. If
∑

T i ∈T 2 γ (i, τ2) > m (as illustrated in

Fig. 2 (b)), go to Step 3.

Step 3. Transform tasks in S 1 and S 2 to S 0 or S 1 in the following

ways.

Step 3.1. For any task T i in S 1 with γ (i, τ1) > 1

and t i,γ (i,τ1) −1 ≤ τ3 , let m 0 := m 0 + γ (i, τ1) − 1 ,

m 1 := m 1 − γ (i, τ1) + 1 , and reallocate T i to the

γ (i, τ1) − 1 processors in shelf S 0 .

Step 3.2. While there exists at least one pair of { T i , T j }
in S 1 such that γ (i, τ1) = γ (j, τ1) = 1 and t i, 1 +
t j, 1 ≤ τ3 , pick such a pair { T i , T j } and do the fol-

lowing transformation: Let m 0 := m 0 + 1 , m 1 :=

m 1 − 1 , and reschedule T i and T j sequentially

on the newly added processor in S 0 .

Repeat Step 3.2 if after transforming the pair

{ T i , T j } there still exists at least one such pair.

Step 3.3. While there exists at least one pair of { T i , T j } in
S 1 such that γ (i, τ1) = 1 and γ (j, τ1) = 2 and

t i,γ (i,τ1)
+ t j,γ (j,τ1)

≤ τ3 , pick such a pair { T i , T j }
and do the following transformation: Change

one processor used by T j from S 1 to S 0 and

reschedule T i after T j on this processor and

let m := m + 1 and m := m − 1 .(NB: In this
0 0 1 1

F. Wu, X. Zhang and B. Chen European Journal of Operational Research 306 (2023) 567–578

Fig. 3. Possible schedules resulted from Step 3.

Fig. 4. Schedule σ obtained after Step 4.

E

4

c

u

o

τ

case, T j uses one processor in S 0 and one pro-

cessor in S 1 .)

Repeat Step 3.3 if after transforming the pair

{ T i , T j } there still exists at least one such pair.

Step 3.4. Let q be the number of idle processors in S 1 .

For each task T i in S 2 with γ (i, τ3) ≤ q , reallo-

cate T i to γ (i, τ3) processors in S 0 if t i,γ (i,τ3)
>

τ1 and to S 1 otherwise. Let m 0 := m 0 + γ (i, τ3)

and m 1 := m 1 − γ (i, τ3) , if T i is reallocated to

S 0 .

Step 3.5. If some task was reallocated to S 1 from S 2 in

Step 3.4, then go back to Step 3.2.

Step 3.6. Regardless of whether shelf S 2 uses more than

m 1 processors or not, let S 1 and S 2 use the

same m 1 processors, which together with S 0
form a schedule denoted by σ3 . If S 2 uses more

than m 1 processors (as illustrated in Fig. 3 (b)),

then terminate with output “exit ” (due to in-

feasibility of σ3). Otherwise (as illustrated in

Fig. 3 (a)), go to Step 4 (with feasible σ3).

Step 4. On the basis of partial schedule σ1 , σ2 , or σ3 of large tasks

only, add small tasks in T S (if any) to the schedule in the

following ways to produce a full schedule σ of makespan

C(τ1 , τ2 , τ3) < + ∞ .

Step 4.1. Reindex tasks T i ∈ T S in the order of non-

increasing execution time of t i, 1 .

Step 4.2. For i = 1 , . . . , |T S | , iteratively allocate task T i in

T S to the least loaded processor and update the

processor load after each job allocation.

Step 4.3. Compute the total load C(τ1 , τ2 , τ3) of the most

loaded processor.

Step 4.4. Postpone all tasks in S 2 (if any), so that their

completion times are equal to C(τ1 , τ2 , τ3) .

Small tasks allocated to a processor can be
l

573
scheduled in any order between tasks in S 1 and

S 2 (if any) or after tasks in S 0 (if any) scheduled

in the processor. (See Fig. 4 for illustration.)

nd of Procedure A (T , m, τ1 , τ2 , τ3)

. Analysis of procedure F(T , m)

Now let us discuss and confirm that Procedure F (T , m) suc-

eeds in identifying the right values of τ1 , τ2 and τ3 , unless sched-

le ˜ σ has a makespan at most 3
2 C

∗
max . Let us first focus on Step 2

f the procedure, which aims at finding the value of τ1 .

Case (a). Suppose W (̄x) + W S (̄x) > m ̄x . According to Lemma 1 , we

obtain C ∗max > x̄ . Then by the definition of τ1 given in

(1) and x̄ , we have τ1 = x̄ , which implies Procedure

F (T , m) succeeds in finding τ1 .

Case (b). Suppose W (̄x) + W S (̄x) ≤ m ̄x . Then there exists a

pair (x j , x j+1) such that W (x j) + W S (x j) > mx j and

W (x j+1) + W S (x j+1) ≤ mx j+1 . According to Lemma 1 ,

we have x j < C ∗max and the schedule ˜ σ1 constructed

in Step 2 of Procedure F (T , m) is a feasible schedule

with makespan at most 3
2 x j+1 . Then we discuss the

relationship between x j+1 and C ∗max .

(i) If x j+1 ≤ C ∗max , by the definition of τ1 it is not correct

to set τ1 := x j , which implies Procedure F (T , m) fails to

find τ1 . However, the makespan of the feasible schedule

is at most 3
2 x j+1 ≤ 3

2 C
∗
max . (ii) If x j+1 > C ∗max , by the def-

inition of τ1 and the fact that x j < C ∗max , it is correct to

set τ1 := x j , which implies Procedure F (T , m) succeeds

in finding τ1 .

In conclusion, Procedure F (T , m) either finds the right value of

1 or a feasible schedule with makespan at most 3
2 C

∗
max . The fol-

owing lemma hence follows.

F. Wu, X. Zhang and B. Chen European Journal of Operational Research 306 (2023) 567–578

L

t

P

b

s

o

D

t

f

L

t

L

t

a

T

a

τ

f

5

s

c

v

fi

v

f

t

u

o

τ
t

a

P

m

i

F

s

s

f

fi

t

a

t

i

p

l

a

5

L

m

P

e

o

t

u

n

s

w

o

w

t

m

u

p

c

T

g

t

A

t

h

σ
o

5

b

a

σ
s

L

γ

P

C

T

t

τ

C

t

h

w

5

i

c

W

u

l

Lemma 8. If there is no large task in T , then mC − W ≥ 0 . �
emma 3. In O (nm log (nm)) time, Procedure F (T , m) either finds

he right value of τ1 or a feasible schedule with makespan at most
3
2 C

∗
max .

roof. Sorting elements in X needs O (nm log (nm)) time. The num-

er of binary searches is bounded by log (nm) and for each binary

earch we need to solve a knapsack problem in O (nm) . On the

ther hand, the feasible schedule can be generated by Algorithm

 (T , m, d) in O (nm) time, from which the lemma follows. �

Similar arguments to those in the proof of Lemma 3 apply to

he analysis of Steps 3 and 4 of Procedure F (T , m) and lead to the

ollowing two lemmas.

emma 4. In O (nm log (nm)) time, Procedure F (T , m) either finds

he value of τ2 or a feasible (full) schedule with makespan at most
3
2 C

∗
max . �

emma 5. In O (nm + n 2) log (nm + n 2)) time, Procedure F (T , m) ei-

her finds the value of τ3 or a (full) feasible schedule with makespan

t most 3
2 C

∗
max . �

Combining Lemmas 3 –5 , we obtain our first theorem.

heorem 1. Procedure F (T , m) either finds a feasible schedule within

 factor 3 / 2 of optimum, or outputs the correct values of τ1 , τ2 and

3 . It runs in O (nm log (nm)) time for m > n and in O (n 2 log n) time

or m ≤ n .

. Analysis of procedure A(T , m, τ1 , τ2 , τ3)

In this section we analyze Procedure A (T , m, τ1 , τ2 , τ3) pre-

ented in Section 3.2 . As one can see in our FA Algorithm, Pro-

edure A (T , m, τ1 , τ2 , τ3) constructs a schedule dependent on the

alues of τ1 , τ2 and τ3 given by Procedure F (·) . Note that F (·) may

nd wrong values for parameters τ1 , τ2 and τ3 . Taken incorrect

alues as input, Procedure A (T , m, τ1 , τ2 , τ3) may deliver an in-

easible schedule, or may exit at Step 3.6, and the makespan of

he final schedule may exceed

3
2 C

∗
max . However, Theorem 1 allows

s either (a) to use the schedule produced by procedure F (·) as

ur final output or (b) to assume that F (·) computes the values

1 , τ2 and τ3 correctly. Therefore, in this section, we assume that

he values of τ1 , τ2 and τ3 used in Procedure A (T , m, τ1 , τ2 , τ3)

re correct as defined. With this assumption, we establish that

rocedure A (T , m, τ1 , τ2 , τ3) delivers a feasible schedule σ with

akespan C(τ1 , τ2 , τ3) ≤ 3
2 C

∗
max .

As one can easily see from Procedure A (T , m, τ1 , τ2 , τ3) , there

s exactly one of σ1 , σ2 and σ3 when the procedure enters Step 4.

or convenience of our exposition, we denote the only one partial

chedule by σ0 . We first establish in Section 5.1 that if the partial

chedule σ0 satisfies the following three conditions, then the final

ull schedule σ is feasible and its makespan C(τ1 , τ2 , τ3) is at most
3
2 C

∗
max . Then we show in Sections 5.2.1 –5.2.3 that σ0 indeed satis-

es the following three conditions, where W S =

∑

T i ∈T S t i, 1 denotes

he sum of the workloads of tasks in T S when each task in T S is

llotted to one processor:

• Feasibility: Each processor executes at most one task at a

time; all the processors allotted to a task execute the task

simultaneously without preemption; at any time point, the

number of non-idle processors does not exceed m .
• Workload: The schedule workload is at most mC ∗max − W S .
• Makespan: The makespan is at most 3

2 C
∗
max .

For convenience, a (partial) schedule that satisfies the above

hree conditions will be called a good schedule.

According to the monotonicity assumption, workload of a task

s minimum when it is allocated to a single processor, which im-

lies that in any schedule the total workload of small tasks is at
574
east W S . Let W

∗ denote the workload of an optimal schedule for

ll tasks of T . It follows that W S ≤ W

∗ ≤ mC ∗max .

.1. Quality of full schedule σ

Let us establish the following result as our starting point.

emma 6. If σ0 is a good schedule, then schedule σ is feasible with

akespan at most 3
2 C

∗
max .

roof. Note that in schedule σ0 each processor is scheduled to ex-

cute at most two tasks, each of which may use one or more than

ne processor. The two tasks (if any) are executed as the first and

he last task in the processor. In Step 4, each small task is sched-

led to a single existing processor between two tasks (if any). No

ew processor is added. Therefore, Step 4 always generates a fea-

ible schedule σ if σ0 is feasible.

Notice that in Lemma 6 σ0 is a good schedule and hence the

orkload of σ0 is at most mC ∗max − W S according to the definition

f “goodness”. Adding small tasks into σ0 forms σ . Since the total

orkload of small tasks added by Procedure A (·) is exactly W S , the

otal workload of σ is at most mC ∗max .

On the makespan of σ , suppose to the contrary that its

akespan is more than

3
2 C

∗
max . Consider a processor that is loaded

ntil the makespan point. Then the last task scheduled onto the

rocessor denoted by T p must be a small task defined in (4) , be-

ause σ0 satisfies the makespan condition. Note that the small task

 p has a processing time at most 1
2 C

∗
max due to the definition of τ2

iven in (2) and its completion time is 3
2 C

∗
max . Then the load of

he processor before scheduling task T p must be larger than C ∗max .

ccording to Step 4.2, the processor was the least loaded before

he task T p is scheduled. Therefore, we conclude that all processors

ave their loads greater than C ∗max . In other words, the workload of

is greater than mC ∗max , which contradicts that the total workload

f σ is at most mC ∗max . �

.2. Goodness of partial schedule σ0

Given that exactly one of σ1 , σ2 and σ3 exists, which we denote

y partial schedule σ0 , we consider that σ0 is respectively σ1 , σ2

nd σ3 in Sections 5.2.1 –5.2.3 , and then show the goodness of σ1 ,

2 and σ3 , respectively. Before we show the goodness of partial

chedule σ0 , let us first establish some properties for tasks.

emma 7. For any task T i , we have γ (i, τ1) = γ (i, C ∗max) , γ (i, τ2) =
(i, 1 2 C

∗
max) , and γ (i, τ3) = γ (i, 3 2 C

∗
max) .

roof. For any task T i , we have γ (i, C ∗max) ≤ γ (i, τ1) since τ1 ≤

∗
max . Suppose there exists a task T j such that γ (j, C ∗max) < γ (j, τ1) .

his implies C ∗max ≥ t j,γ (j,C ∗max)
≥ t j,γ (j,τ1) −1 > τ1 , which contradicts

he definition of τ1 . The same argument can be applied on τ2 and

3 . �

orollary 1. For any task T i , we have t i,γ (i,τ1)
= t i,γ (i,C ∗max)

, t i,γ (i,τ2)
=

i,γ (i, 1
2

C ∗max)
, and t i,γ (i,τ3)

= t
i,γ (i, 3

2
C ∗max)

; on the other hand, we also

ave w i,γ (i,τ1)
= w i,γ (i,C ∗max)

, w i,γ (i,τ2)
= w

i,γ (i, 1
2

C ∗max)
and w i,γ (i,τ3)

=

i,γ (i, 3
2

C ∗max)
. �

.2.1. Schedule σ0 = σ1

Let us show in this subsection that schedule σ1 is good. Accord-

ng to the algorithm, schedule σ1 is empty. Hence we only need to

heck the workload condition. As we already have mC ∗max ≥ W

∗ ≥
 S , the workload condition is then satisfied by the empty sched-

le σ1 with zero workload. Consequently, we have the following

emma.

∗

max S

F. Wu, X. Zhang and B. Chen European Journal of Operational Research 306 (2023) 567–578

5

l

m

s

σ
c

K

t

W

W

s

u

T

m

f ∑
s

W

i

F

w

a

W∑
b

W

t

W

T

L

K

W

fi

5

t

i

t

a

m

c

t

t

w

i

p

c

m

I

u

l

s

t

S

a

L

m

P

s

a

a

t

t

a

t

n

n

t

t

n

C

C

i

g

l

s

S

L

P

S

t

τ

t

w

r

τ
.2.2. Schedule σ0 = σ2

Now let us consider the goodness of schedule σ2 , which is de-

ivered by the algorithm in its Step 2 for large tasks T L with a

akespan at most τ1 + τ2 . Since τ1 ≤ C ∗max and τ2 ≤ 1
2 C

∗
max , the

chedule satisfies makespan condition. According to the algorithm,

2 satisfies the feasibility condition. Now consider the workload

ondition.

According to Lemma 7 and Corollary 1 , problem

P (T L , m, τ1 , τ2) in Step 2 of the procedure is equivalent to

he following knapsack problem KP (T L , m, C ∗max ,
1
2 C

∗
max) , i.e.,

 (τ1 , τ2) = W (C ∗max ,
1
2 C

∗
max) :

(
C ∗max ,

1

2

C ∗max

)
= min

T ′ ⊆T L

(∑

T i ∈T ′
w i,γ (i,C ∗max)

+

∑

T i ∈T L \T ′
w i,γ (i, 1 2 C

∗
max)

)

ubject to
∑

T i ∈T ′ γ (i, C ∗max) ≤ m .

Fix any optimal schedule of our problem. In an optimal sched-

le, let p i denote the number of processors allotted to task

 i . Let T ∗
1

= { T i ∈ T L : t i,p i
>

1
2 C

∗
max } . Clearly, we have

∑

T i ∈T ∗1 p i ≤
 as the optimal schedule is first feasible. Since p i ≥ γ (i, C ∗max)

or T i ∈ T ∗1 according to the definition of γ (i, C ∗max) , we have

T i ∈T ∗1 γ (i, C ∗max) ≤ m . Therefore, T ∗
1

is a feasible solution of knap-

ack problem KP (T L , m, C ∗max ,
1
2 C

∗
max) .

In an optimal schedule, the total workload of T S is at least

 S , which implies that the total workload of the remain-

ng large tasks is at most W

∗ − W S :
∑

T i ∈T L w i,p i
≤ W

∗ − W S .

or any task T i ∈ T ∗
1

, we have p i ≥ γ (i, C ∗max) and hence

 i,p i
≥ w i,γ (i,C ∗max)

. For any task T i ∈ T L \T ∗1 , we have t i,p i
≤ 1

2 C
∗
max

nd hence p i ≥ γ (i, 1 2 C
∗
max) , which implies w i,p i

≥ w

i,γ (i, 1
2

C ∗max)
.

e then have
∑

T i ∈T L w i,p i
=

∑

T i ∈T ∗1 w i,p i
+

∑

T i ∈T L \T ∗1 w i,p i
≥

T i ∈T ∗1 w i,γ (i,C ∗max)
+

∑

T i ∈T L \T ∗1 w

i,γ (i, 1
2

C ∗max)
. As T ∗

1
is a feasi-

le solution of knapsack problem KP (T L , m, C ∗max ,
1
2 C

∗
max) and

 (C ∗max ,
1
2 C

∗
max) is the optimal value of the knapsack problem, we

hen have

(
C ∗max ,

1

2

C ∗max

)
≤

∑

T i ∈T ∗1
w i,γ (i,C ∗max)

+

∑

T i ∈T L \T ∗1
w i,γ (i, 1 2 C

∗
max)

≤
∑

T i ∈T ∗1
w i,p i +

∑

T i ∈T L \T ∗1
w i,p i =

∑

T i ∈T L
w i,p i ≤ W

∗ − W S .

hen, we have the following lemma with W

∗ ≤ mC ∗max .

emma 9. Any optimal solution to knapsack problem

P (T L , m, τ1 , τ2) satisfies W (τ1 , τ2) ≤ mC ∗max − W S . �

The total workload of any schedule constructed at Step 2 is

 (τ1 , τ2) . As a direct consequence of Lemma 9 , schedule σ2 satis-

es the workload condition.

.2.3. Schedule σ0 = σ3

It is clear that schedule σ3 , which is constructed in Step 3 of

he algorithm, has a makespan at most max { τ1 + τ2 , τ3 } , which

mplies that the makespan condition is satisfied by σ according

o the definition of τ1 , τ2 and τ3 . We know the total workload of

ny schedule constructed in Step 2 is W (τ1 , τ2) , which is at most

C ∗max − W S according to Lemma 9. Note in Step 3, the algorithm

an only decrease the number of processors of some tasks, and

he total workload of the schedule decreases accordingly due to

he monotonicity assumption. Therefore, schedule σ3 satisfies the

orkload condition.

In schedule σ3 , m 0 is the number of processors allotted to tasks

n S 0 and m 1 = m − m 0 . Notice that in Step 3, the number of used

rocessors in S 1 does not exceed m 1 , but the number of used pro-

essors in S can exceed m . Then if tasks in shelf S use at most
2 1 2

575
 1 processors, schedule σ3 is feasible (as illustrated in Fig. 3 (a)).

n what follows, we show that this is indeed the case.

The idea of our proof is by contradiction. Assume tasks in S 2
se more than m 1 processors in schedule σ3 . First, we obtain a

ower bound on the workload of tasks in S 0 . Then we establish

ome properties of tasks in S 1 and S 2 . These properties help us

o find some lower bounds on the workloads of tasks in S 1 and

 2 . Using the workload condition for schedule σ3 , we then obtain

 contradiction.

emma 10. In schedule σ3 , the total workload in S 0 is greater than

 0 C
∗
max .

roof. Since all processors in S 0 are scheduled in Step 3, we con-

ider tasks scheduled in those processors in different cases.

For task T i in Step 3.1, we have t i,γ (i,τ1) −1 = t i,γ (i,C ∗max) −1 > C ∗max

ccording to the definition of the canonical number of processors

nd Lemma 7 .

For tasks T i and T j in Step 3.2, we have t i,γ (i,τ1)
= t i, 1 and

 j,γ (j,τ1)
= t j, 1 . As T i ∈ T L and T j ∈ T L , we then have t i, 1 > τ2 and

 j, 1 > τ2 according to the definition of T L given in (5) . Since t i, 1 ∈ X

nd τ2 is the largest value in X but no more than

1
2 C

∗
max , then t i, 1 >

1
2 C

∗
max . Similarly, we can obtain t j, 1 >

1
2 C

∗
max . Hence, t i, 1 + t j, 1 >

1
2 C

∗
max +

1
2 C

∗
max = C ∗max .

For tasks T i and T j in Step 3.3, we have t i,γ (i,τ1)
= t i, 1 and

 j,γ (j,τ1)
= t j, 2 . Since T i ∈ T L , then t i, 1 > τ2 according to the defi-

ition of T L . Since t i, 1 ∈ X and τ2 is the largest value in X but

o more than

1
2 C

∗
max , then t i, 1 >

1
2 C

∗
max . Also, we have t j,γ (j,τ1)

=
 j,γ (j,C ∗max)

>

1
2 C

∗
max by Corollary 1 and Lemma 2 . Hence, t i, 1 + t j, 2 >

1
2 C

∗
max +

1
2 C

∗
max = C ∗max .

For task T i in Step 3.4, because of the test in Step 3.4, we have

 i,γ (i,τ3)
> τ1 . Since t i,γ (i,τ3)

∈ X and τ1 is the largest value in X but

o more than C ∗max , we then have t i,γ (i,τ3)
> C ∗max .

Therefore, the workload of any processor in S 0 is larger than

∗
max , which implies the workload in S 0 is greater than m 0 C

∗
max . �

orollary 2. In schedule σ3 , the total workload of tasks in S 1 and S 2
s bounded by m 1 C

∗
max − W S . �

According to Lemma 10 , the total workload of tasks in S 0 is

reater than mC ∗max if m 1 = 0 , which is a contradiction to the work-

oad constraint. We then assume m 1 ≥ 1 in the remainder of this

ubsection. Let us establish more properties of tasks scheduled in

 1 and S 2 .

emma 11. Schedule σ3 has the following properties:

(a) Any task in S 1 uses at most two processors, i.e., γ (i, τ1) ∈

{ 1 , 2 } for T i in shelf S 1 .

(b) Any task T i with γ (i, τ1) = 2 in S 1 has t i,γ (i,τ1)
>

3
4 C

∗
max .

(c) Among all the tasks T i with γ (i, τ1) = 1 in S 1 , there exists at

most one task with execution time less than or equal to 3
4 C

∗
max .

(d) Any task in S 2 uses at least two processors and its execution

time is larger than 1
4 C

∗
max .

(e) The workload of any task in S 2 is larger than 3
2 qC ∗max , where q

is the number of idle processors in S 1 .

roof. (a) Suppose to the contrary that there exists a task T i in

 1 such that γ (i, τ1) ≥ 3 . According to the monotonicity assump-

ion and the definition of τ1 , we have w i,γ (i,τ1) −1 ≤ w i,γ (i,τ1)
≤

1 γ (i, τ1) ≤ C ∗max γ (i, τ1) . Therefore,

 i,γ (i,τ1) −1 =

w i,γ (i,τ1) −1

γ (i, τ1) − 1

≤ C ∗max γ (i, τ1)

γ (i, τ1) − 1

,

hich is at most 3
2 C

∗
max when γ (i, τ1) ≥ 3 . Hence, task T i can be

escheduled to S 0 in Step 3.1.

(b) Since T i cannot be rescheduled to S 0 , we have t i,γ (i,τ1) −1 >

3 . As t i,γ (i,τ) −1 ∈ Y and τ3 is the largest value in Y but no more

1

F. Wu, X. Zhang and B. Chen European Journal of Operational Research 306 (2023) 567–578

t

w

H

s

c

a

a

h

w

W

a

m

C

t

i

o

l

L

σ

w

P

e

S

h

i

L

e

s

w

W

C

(

a

a

L

t

p

T

h

e

s

T

L

u

P

W

s

(

C

w

(

W

L

P

p

m

m

W

s

t

6

C

2

B

3

H

S

T

n

P

a

O

i

2

n

=
t

(

s

q

s

a

T

c

c

t

s

T

b

t

T

a
han

3
2 C

∗
max , we must have t i,γ (i,τ1) −1 >

3
2 C

∗
max . Then,

 i,γ (i,τ1) = γ (i, τ1) t i,γ (i,τ1) = 2 t i,γ (i,τ1)

≥ w i,γ (i,τ1) −1 = (γ (i, τ1) − 1) t i,γ (i,τ1) −1 >

3
2
C ∗max .

ence, t i,γ (i,τ1)
>

3
4 C

∗
max .

(c) If there exist two tasks T i and T j with t i, 1 ≤ 3
4 C

∗
max and t j, 1 ≤

3
4 C

∗
max , then these two tasks can be scheduled in S 0 in Step 3.2

ince t i, 1 + t j, 1 ≤ τ3 ≤ 3
2 C

∗
max by the definition of τ3 .

(d) According to the definition of large tasks and Lemma 2 , the

laim holds.

(e) Since any task in S 2 can not be rescheduled to S 0 or S 1 ,

ny task T i in S 2 has γ (i, τ3) > q , which implies t i,q > τ3 . As t i,q ∈ Y

nd τ3 is the largest value in Y but no more than

3
2 C

∗
max , we must

ave t i,q >

3
2 C

∗
max . Due to monotony, we have w i,γ (i,τ2)

≥ w i,γ (i,τ3)
≥

 i,q = qt i,q >

3
2 qC ∗max . �

In schedule σ3 , let W 1 denote the workload of tasks in S 1 and

 2 denote the workload of tasks in S 2 . If m 1 = q , we have W 1 = 0

nd W 2 >

3
2 m 1 C

∗
max by (e) of Lemma 11 , which implies W 1 + W 2 >

 1 C
∗
max . This contradicts that W 1 + W 2 ≤ m 1 C

∗
max − W S according to

orollary 2 . Therefore, we assume m 1 − q ≥ 1 in the remainder of

his subsection.

If schedule σ3 is not feasible, number of processors used in S 2
s more than m 1 . Lemmas 12 and 13 deliver some lower bounds

f the workload of tasks in S 1 and S 2 . Lemma 14 shows that this

eads to a contradiction.

emma 12. If tasks in S 2 use at least m 1 + 1 processors in schedule

3 , then the workload W 1 of tasks in S 1 is larger than 3
4 (m 1 − q) C ∗max ,

hile the workload W 2 of tasks in S 2 is larger than 1
4 (m 1 + 1) C ∗max .

roof. We have W 2 >

1
4 (m 1 + 1) C ∗max since any task in S 2 has an

xecution time larger than

1
4 C

∗
max by (d) in Lemma 11 and tasks in

 2 use at least m 1 + 1 processors.

In S 1 , if all tasks have execution times larger than

3
4 C

∗
max , we

ave W 1 >

3
4 (m 1 − q) C ∗max .

Then we concentrate on the case that there exists one task T i
n S 1 such that t i,γ (i,τ1)

≤ 3
4 C

∗
max . According to (a), (b) and (c) of

emma 11 , T i is the only task in S 1 with execution time less than or

qual to 3
4 C

∗
max . And we have γ (i, τ1) = 1 . We branch into several

ubcases. Recall that m 1 − q ≥ 1 .

If m 1 − q = 1 and q = 0 , i.e., task T i is the only task in S 1 ,

e have W 1 >

1
2 C

∗
max and W 2 >

1
4 (m 1 + 1) C ∗max =

1
2 C

∗
max . Hence,

 1 + W 2 > C ∗max , which contradicts W 1 + W 2 ≤ m 1 C
∗
max − W S by

orollary 2 .

If m 1 − q = 1 and q ≥ 1 , we have W 1 >

1
2 C

∗
max and W 2 >

3
2 qC ∗max =

3
2 (m 1 − 1) C ∗max by (e) of Lemma 11 . Then, W 1 + W 2 >

3
2 m 1 − 1) C ∗max = (m 1 +

1
2 m 1 − 1) C ∗max ≥ m 1 C

∗
max as m 1 ≥ 2 . This

lso contradicts W 1 + W 2 ≤ m 1 C
∗
max − W S .

Therefore, we must have m 1 − q ≥ 2 , i.e., there exists at least

nother task T j scheduled in S 1 with T i . According to (a) in

emma 11 , we have γ (j, τ1) = 1 or 2. If γ (j, τ1) = 1 , we have

 i, 1 + t j, 1 > τ3 . By the definition of τ3 , t i, 1 + t j, 1 >

3
2 C

∗
max , which im-

lies that the average load of the two processors executing T i and

 j is larger than

3
4 C

∗
max . If γ (j, τ1) = 2 , then t i, 1 + t j, 2 > τ3 . We also

ave t i, 1 + t j, 2 >

3
2 C

∗
max . Then the average load of the processors ex-

cuting T i and T j is also larger than

3
4 C

∗
max . And all non-idle proces-

or(s) in S 1 execute task(s) with execution time larger than

3
4 C

∗
max .

hen, we obtain W 1 >

3
4 (m 1 − q) C ∗max . �

emma 13. If tasks in S 2 use at least m 1 + 1 processors in sched-

le σ3 , the workload W 2 of tasks in S 2 is greater than 3
2 qkC ∗max and

1 (m 1 + 1 − k) C ∗max , where k is the number of tasks in S 2 .
2

576
roof. We have

 2 >

3

2

qkC ∗max , (6)

ince any task in S 2 has a work area larger than

3
2 qC ∗max by

e) in Lemma 11 . Due to the monotonicity assumption and

orollary 1 , task T i in S 2 has a workload w i,γ (i,τ2)
= w

i,γ (i, 1
2

C ∗max)
≥

i,γ (i, 1
2

C ∗max) −1
>

1
2 C

∗
max (γ (i, 1 2 C

∗
max) − 1) , since γ (i, 1 2 C

∗
max) ≥ 2 by

d) in Lemma 11 . Then we have

 2 >

1

2

C ∗max

(∑

T i ∈ S 2
γ
(

i,
1

2

C ∗max

)
− k

)

≥ 1

2

C ∗max (m 1 + 1 − k) . (7)

�

emma 14. In schedule σ3 , tasks in S 2 use at most m 1 processors.

roof. By contradiction. Assume that tasks in S 2 use more than m 1

rocessors.

If q = 0 , we have W 1 + W 2 >

3
4 (m 1 − q) C ∗max +

1
4 (m 1 + 1) C ∗max =

 1 C
∗
max according to Lemma 12 , which contradicts W 1 + W 2 ≤

 1 C
∗
max − W S by Corollary 2 .

If q ≥ 1 . We have

 2 <

1

4

m 1 C
∗
max +

3

4

qC ∗max , (8)

ince W 1 + W 2 ≤ m 1 C
∗
max − W S and W 1 >

3
4 (m 1 − q) C ∗max according

o Lemma 12 . Combining (6) and (8) , we obtain

 qk < m 1 + 3 q ⇔ 3 q (2 k − 1) < m 1 .

ombining (7) and (8) , we obtain

(m 1 + 1 − k) < m 1 + 3 q ⇔ m 1 < 3 q + (2 k − 2) .

y transitivity we have the following inequality:

 q (2 k − 1) < 3 q + (2 k − 2) ⇔ (3 q − 1)(k − 1) < 0 .

owever, we have k ≥ 1 and q ≥ 1 , which is a contradiction. �

From Lemma 6 and the goodness of schedule σ0 established in

ections 5.2.1 –5.2.3 , we obtain the following theorem.

heorem 2. Procedure A (T , m, τ1 , τ2 , τ3) outputs in time O (nm +
 log n) a feasible schedule that is (3 / 2) -approximate.

roof. We are left to analyze the time complexity. Initially, for

ny task T i , γ (i, τ1) , γ (i, τ2) and γ (i, τ3) can be computed in time

 (log m) by a binary search since tasks are monotonic. For n tasks,

t requires O (n log m) time. Step 1 requires O (n) steps. In Step

, it is well known that knapsack problem is NP-hard and can-

ot be solved in a time bounded by a polynomial in n unless P

 NP. However, it admits a pseudo-polynomial algorithm whose

ime complexity is bounded by a polynomial in n and capacity m

 Martello & Toth, 1990). In fact, dynamic programming recursions

olve the knapsack problem exactly in O (nm) . Hence, Step 2 re-

uires O (nm) steps.

In Step 3.1, we check at most n tasks. In Step 3.2, we need to

ort at most n tasks in the nondecreasing order of t i, 1 for T i ∈ S 1
nd γ (i, τ1) = 1 , and check first two of them at most n/ 2 times.

he time complexity is O (n log n) . In Step 3.3, the analysis of time

omplexity is similar to that of Step 3.2. In Step 3.4, we need to

heck at most n tasks in S 2 and reallocate it to S 0 or S 1 . If the

asks is reallocated to S 1 , we add the task into the list of tasks

orted on t i, 1 or t i, 2 according to γ (i, τ1) . This takes O (log n) time.

hen, the time complexity is O (n log n) . In Step 3.5, we need to go

ack to Steps 3.2, 3.3 and 3.4. But the maximum times we need

o run Steps 3.2, 3.3 and 3.4 are already counted in those steps.

herefore, Step 3 requires O (n log n) steps.

In Step 4.1, the time complexity is O (n log n) . In Step 4.2, there

re at most n steps. In Step 4.4, we need to modify at most m

F. Wu, X. Zhang and B. Chen European Journal of Operational Research 306 (2023) 567–578

e

s

O

q

R

s

t

t

i

f

K

p

w

3

6

F

a

(

t

T

t

n

i

l

t

p

t

a

t

s

A

N

a

f

R

A

B

B

B

B

B

B

C

C

D

D

D

D

D

F

F

F

G

G

G

G

H

H

H

H

J

J

J

J

J

J

J

J

J

K

L

L

M

M

M

nding times of all tasks and decide at most n starting times for

mall tasks. The greedy algorithm in Step 4 can be computed in

 (m + n log n) .

Therefore, for a given input (T , m, τ1 , τ2 , τ3) , the algorithm re-

uires O (nm + n log n) steps to deliver a schedule. �

emarks. The performance ratio 3/2 in Theorem 2 is tight as

hown in the following example. Let n = 3 , m = 4 . t 1 , 1 = t 1 , 2 =
 1 , 3 = t 1 , 4 = 1 ; t 2 , 1 = 1 , t 2 , 2 =

1
2 , t 2 , 3 = t 2 , 4 =

1
3 ; t 3 , 1 = 2 , t 3 , 2 = 1 ,

 3 , 3 = t 3 , 4 =

2
3 . Clearly, the optimal makespan is C ∗max = 1 . Accord-

ng to our algorithm, we have τ1 = 1 , τ2 =

1
2 and τ3 =

3
2 . There-

ore, all three tasks are large tasks. One optimal solution to

P (T L , m, τ1 , τ2) may lead to the assignment of task T 1 with one

rocessor and task T 3 with two processors in shelf S 1 and task T 2
ith two processors in shelf S 2 , which results in a makespan of

 / 2 .

. Conclusions and remarks

To summarize, our FA Algorithm, which combines procedures

 (T , m) and A (T , m, τ1 , τ2 , τ3) , outputs schedule ˜ σ of makespan

t most 3
2 τ0 if τ0 ≤ C ∗max . Otherwise, by correctly computing

τ1 , τ2 , τ3) , it outputs schedule σ of makespan C(τ1 , τ2 , τ3) ≤
3
2 C

∗
max . Combining Theorems 1 and 2 , we obtain the following main

heorem.

heorem 3. The FA Algorithm for scheduling monotonic modable

asks is 3
2 -approximate. Its time complexity is O (nm log (nm)) (if m >

) and O (n 2 log n) (if m ≤ n). �

For non-monotonic moldable tasks, it is known that no approx-

mation algorithm has an approximation ratio smaller than

3
2 un-

ess P = NP. For monotonic moldable tasks, we believe it is also

he case although a formal proof is still unavailable.

We remark that the novel general technique developed in the

aper for removing the ε-term in the worst-case performance ra-

io can be applied to improving the performance guarantee of dual

lgorithms for other combinatorial optimization problems. In fact,

he technique has already been applied successfully in another

tudy (Wu, Jiang, Zhang, & Zhang, 2022).

cknowledgments

This work is supported to the first two authors in part by the

ational Natural Science Foundation of China (Grant nos. 71971065

nd 71531005), and to the third author in part by a Visiting Pro-

essorship of the School of Management, Fudan University.

eferences

moura, A. K. , Bampis, E. , Kenyon, C. , & Manoussakis, Y. (2002). Scheduling inde-

pendent multiprocessor tasks. Algorithmica, 32 (2), 247–261 .

aker, B. , Brown, D. , & Katseff, H. (1981). A 5/4 algorithm for two-dimensional pack-
ing. Journal of algorithms, 2 , 34 8–36 8 .

aker, B. S. , Coffman, E. G., Jr. , & Rivest, R. L. (1980). Orthogonal packings in two
dimensions. SIAM Journal on Computing, 9 (4), 846–855 .

ansal, N. , Caprara, A. , Jansen, K. , Prädel, L. , & Sviridenko, M. (2009). A structural
lemma in 2-dimensional packing, and its implications on approximability. In In-

ternational symposium on algorithms and computation (pp. 77–86). Springer .

lazewicz, J. , Cheng, T. E. , Machowiak, M. , & Oguz, C. (2011). Berth and quay crane
allocation: A moldable task scheduling model. Journal of the Operational Research

Society, 62 (7), 1189–1197 .
leuse, R. , Hunold, S. , Kedad-Sidhoum, S. , Monna, F. , Mounié, G. , & Trys-

tram, D. (2017). Scheduling independent moldable tasks on multi-cores with
GPUs. IEEE Transactions on Parallel and Distributed Systems, 28 (9), 2689–2702 .

rent, R. P. (1974). The parallel evaluation of general arithmetic expressions. Journal
of the ACM (JACM), 21 (2), 201–206 .

hen, C., & Chu, C. (2013). A 3.42-approximation algorithm for scheduling malleable

tasks under precedence constraints. IEEE Transactions on Parallel and Distributed
Systems, 24 (8), 1479–1488. https://doi.org/10.1109/TPDS.2012.258 .

offman, E. G., Jr. , Garey, M. R. , Johnson, D. S. , & Tarjan, R. E. (1980). Performance
bounds for level-oriented two-dimensional packing algorithms. SIAM Journal on

Computing, 9 (4), 808–826 .
577
elorme, X., Dolgui, A., Kovalev, S., & Kovalyov, M. Y. (2019). Minimizing the
number of workers in a paced mixed-model assembly line. European Journal

of Operational Research, 272 (1), 188–194. https://doi.org/10.1016/j.ejor.2018.05.
072 .

olgui, A., Kovalev, S., Kovalyov, M. Y., Malyutin, S., & Soukhal, A. (2018). Optimal
workforce assignment to operations of a paced assembly line. European Jour-

nal of Operational Research, 264 (1), 200–211. https://doi.org/10.1016/j.ejor.2017.
06.017 .

rozdowski, M. (2009). Scheduling for parallel processing : vol. 18. Springer .

u, J. , & Leung, J. Y.-T. (1989). Complexity of scheduling parallel task systems. SIAM
Journal on Discrete Mathematics, 2 (4), 473–487 .

utton, R. A. , Mao, W. , Chen, J. , & Watson III, W. (2008). Parallel job scheduling with
overhead: A benchmark study. In 2008 international conference on networking,

architecture, and storage (pp. 326–333). IEEE .
eitelson, D. G. , & Rudolph, L. (1996). Toward convergence in job schedulers for par-

allel supercomputers. In Workshop on job scheduling strategies for parallel pro-

cessing (pp. 1–26). Springer .
otakis, D., Matuschke, J., & Papadigenopoulos, O. (2021). Assigning and scheduling

generalized malleable jobs under subadditive or submodular processing speeds.
10.48550/arXiv.2111.06225.

ujiwara, I., Tanaka, M., Taura, K., & Torisawa, K. (2018). Effectiveness of moldable
and malleable scheduling in deep learning tasks. In 2018 ieee 24th international

conference on parallel and distributed systems (ICPADS) (pp. 389–398). https://doi.

org/10.1109/PADSW.2018.8644536 .
álvez, W. , Grandoni, F. , Ingala, S. , & Khan, A. (2016). Improved pseudo-polynomial–

time approximation for strip packing. In 36th IARCS annual conference on foun-
dations of software technology and theoretical computer science (FSTTCS 2016):

vol. 65 (pp. 9:1–9:14). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik . Leibniz International Proceedings in Informatics (LIPIcs)

arey, M. R. , & Graham, R. L. (1975). Bounds for multiprocessor scheduling with

resource constraints. SIAM Journal on Computing, 4 (2), 187–200 .
hosal, D. , Serazzi, G. , & Tripathi, S. K. (1991). The processor working set and its use

in scheduling multiprocessor systems. IEEE Transactions on Software Engineering,
17 (5), 443 .

olan, I. (1981). Performance bounds for orthogonal oriented two-dimensional
packing algorithms. SIAM Journal on Computing, 10 (3), 571–582 .

arren, R. , Jansen, K. , Prädel, L. , & van Stee, R. (2011). A (5/3 + ε)-approximation

for strip packing. In Algorithms and data structures (pp. 475–487). Berlin, Hei-
delberg: Springer Berlin Heidelberg .

arren, R. , & Stee, R. (2009). Improved absolute approximation ratios for two-di-
mensional packing problems. In 12th international workshop on approximation

algorithms for combinatorial optimization problems (pp. 177–189) .
enning, S. , Jansen, K. , Rau, M. , & Schmarje, L. (2020). Complexity and inapproxima-

bility results for parallel task scheduling and strip packing. Theory of Computing

Systems, 64 (1), 120–140 .
ochbaum, D. S. , & Shmoys, D. B. (1987). Using dual approximation algorithms for

scheduling problems theoretical and practical results. Journal of the ACM (JACM),
34 (1), 144–162 .

ansen, K. (2004). Scheduling malleable parallel tasks: An asymptotic fully polyno-
mial time approximation scheme. Algorithmica, PP (39), 187–200 .

ansen, K. (2012). A (3/2+ ε) approximation algorithm for scheduling moldable
and non-moldable parallel tasks. In Proceedings of the twenty-fourth annual

ACM symposium on parallelism in algorithms and architectures, SPAA 2012

(pp. 224–235). New York, NY, USA: Association for Computing Machinery .
ansen, K. , & Land, F. (2018). Scheduling monotone moldable jobs in linear time.

In 2018 ieee international parallel and distributed processing symposium (IPDPS)
(pp. 172–181) .

ansen, K. , & Porkolab, L. (2002). Linear-time approximation schemes for scheduling
malleable parallel tasks. Algorithmica, 32 (3), 507–520 .

ansen, K. , & Rau, M. (2017). Improved approximation for two dimensional strip

packing with polynomial bounded width. In International workshop on algo-
rithms and computation (pp. 409–420). Springer .

ansen, K. , & Rau, M. (2019). Closing the gap for pseudo-polynomial strip pack-
ing. In 27th annual european symposium on algorithms (ESA 2019): vol. 144

(pp. 62:1–62:14). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik . Leibniz International Proceedings in Informatics (LIPIcs)

ansen, K. , & Solis-Oba, R. (2009). Rectangle packing with one-dimensional resource

augmentation. Discrete Optimization, 6 (3), 310–323 .
ansen, K. , & Thöle, R. (2010). Approximation algorithms for scheduling parallel jobs.

SIAM Journal on Computing, 39 (8), 3571–3615 .
ohannes, B. (2006). Scheduling parallel jobs to minimize the makespan. Journal of

Scheduling, 9 (5), 433–452 .
enyon, C. , & Rémila, E. (20 0 0). A near-optimal solution to a two-dimensional cut-

ting stock problem. Mathematics of Operations Research, 25 (4), 645–656 .

euze, M. R. , Dowdy, L. W. , & Park, K. H. (1989). Multiprogramming a distribut-
ed-memory multiprocessor. Concurrency: Practice and Experience, 1 (1), 19–33 .

udwig, W. , & Tiwari, P. (1994). Scheduling malleable and nonmalleable parallel
tasks. In Proceedings of the fifth annual ACM-SIAM symposium on discrete algo-

rithms (pp. 167–176). Society for Industrial and Applied Mathematics .
archal, L., Simon, B., Sinnen, O., & Vivien, F. (2018). Malleable task-graph schedul-

ing with a practical speed-up model. IEEE Transactions on Parallel and Distributed

Systems, 29 (6), 1357–1370. https://doi.org/10.1109/TPDS.2018.2793886 .
artello, S. , & Toth, P. (1990). Knapsack problems: Algorithms and computer imple-

mentations . Wiley .
ounié, G. , Rapine, C. , & Trystram, D. (1999). Efficient approximation algorithms for

scheduling malleable tasks. In Proceedings of the eleventh annual ACM symposium

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0005
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0005
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0005
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0005
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0005
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0005
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0007
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0007
https://doi.org/10.1109/TPDS.2012.258
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0009
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0009
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0009
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0009
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0009
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0009
https://doi.org/10.1016/j.ejor.2018.05.penalty -@M 072
https://doi.org/10.1016/j.ejor.2017.06.017
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0012
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0012
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0013
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0013
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0013
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0013
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0015
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0015
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0015
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0015
https://doi.org/10.1109/PADSW.2018.8644536
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0019
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0019
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0019
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0019
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0020
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0020
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0020
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0020
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0020
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0026
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0026
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0027
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0027
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0028
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0028
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0028
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0028
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0037
https://doi.org/10.1109/TPDS.2018.2793886
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0039
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0039
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0039
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0039
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0040

F. Wu, X. Zhang and B. Chen European Journal of Operational Research 306 (2023) 567–578

M

N

S

S

S

S

T

U

W

W

on parallel algorithms and architectures, SPAA 1999 (pp. 23–32). New York, NY,
USA: Association for Computing Machinery .

ounié, G. , Rapine, C. , & Trystram, D. (2007). A 3
2

-approximation algorithm for
scheduling independent monotonic malleable tasks. SIAM Journal on Computing,

37 (2), 401–412 .
adiradze, G. , & Wiese, A. (2016). On approximating strip packing with a better

ratio than 3/2. In Proceedings of the twenty-seventh annual ACM-SIAM symposium

on discrete algorithms (pp. 1491–1510). SIAM .

chiermeyer, I. (1994). Reverse-fit: A 2-optimal algorithm for packing rectangles. In

European symposium on algorithms (pp. 290–299) .
leator, D. D. (1980). A 2.5 times optimal algorithm for packing in two dimensions.

Information Processing Letters, 10 (1), 37–40 .
teinberg, A. (1997). A strip-packing algorithm with absolute performance bound 2.

SIAM Journal on Computing, 26 (2), 401–409 .
578
viridenko, M. (2012). A note on the Kenyon–Remila strip-packing algorithm. Infor-
mation Processing Letters, 112 (1–2), 10–12 .

urek, J. , Wolf, J. L. , & Yu, P. S. (1992). Approximate algorithms for scheduling par-
allelizable tasks. In Proceedings of the fourth annual ACM symposium on parallel

algorithms and architectures (pp. 323–332) .
nsal, O. (2021). An extended formulation of moldable task scheduling problem and

its application to quay crane assignments. Expert Systems with Applications, 185 ,
115617 .

ang, Q. , & Cheng, K. H. (1991). List scheduling of parallel tasks. Information Pro-

cessing Letters, 37 (5), 291–297 .
u, F., Jiang, Z., Zhang, R., & Zhang, X. (2022). Approximation algorithms for

scheduling monotonic moldable tasks on multiple platforms. Submitted for
journal publication.

http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0041
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0041
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0041
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0041
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0041
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0042
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0042
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0042
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0042
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0043
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0043
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0044
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0044
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0045
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0045
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0046
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0046
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0047
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0047
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0047
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0047
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0047
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0048
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0048
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0049
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0049
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0049
http://refhub.elsevier.com/S0377-2217(22)00676-2/sbref0049

	An improved approximation algorithm for scheduling monotonic moldable tasks
	1 Introduction
	1.1 Problem description
	1.2 Related work
	1.3 Our contribution
	1.4 Organization

	2 Preliminaries
	2.1 Dual algorithm
	2.2 Algorithm outline

	3 Algorithm description
	3.1 Procedure
	3.2 Procedure

	4 Analysis of procedure
	5 Analysis of procedure
	5.1 Quality of full schedule
	5.2 Goodness of partial schedule
	5.2.1 Schedule
	5.2.2 Schedule
	5.2.3 Schedule

	6 Conclusions and remarks
	Acknowledgments
	References

