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a b s t r a c t 

We are concerned with the problem of scheduling monotonic moldable tasks on identical processors 

to minimize the makespan. We focus on the natural case where the number m of processors as re- 

sources is fixed or relatively small compared with the number n of tasks. We present an efficient ( 3 / 2 )- 

approximation algorithm with time complexity O (nm log (nm )) (for m > n ) and O (n 2 log n ) (for m ≤ n ). To 

the best of our knowledge, the best relevant known results are: (a) a (3 / 2 + ε) -approximation algorithm 

with time complexity O (nm log (n/ε)) , (b) a fully polynomial-time approximation scheme for the case of 

m ≥ 16 n/ε, and (c) a polynomial-time approximation scheme with time complexity O (n g(1 /ε) ) when m is 

bounded by a polynomial in n , where g(·) is a super-exponential function. On the other hand, the novel 

general technique developed in this paper for removing the ε-term in the worst-case performance ratio 

can be applied to improving the performance guarantee of certain dual algorithms for other combinato- 

rial optimization problems. 

© 2022 The Author(s). Published by Elsevier B.V. 
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. Introduction 

A moldable task is one that can be executed on an arbitrary 

umber of processors simultaneously with execution time as a 

unction of the number of processors allotted to it. This task model 

aptures task parallelism in scheduling and allows the scheduler 

o decide on the degree of parallelism for each task by choos- 

ng the number of processors assigned to it. Due to these prop- 

rties, the model is used to describe some industrial applications 

 Fotakis, Matuschke, & Papadigenopoulos, 2021 ). For example, in 

orkforce assignment ( Delorme, Dolgui, Kovalev, & Kovalyov, 2019; 

olgui, Kovalev, Kovalyov, Malyutin, & Soukhal, 2018 ), workers with 

dentical skills need to perform operations. An operation can be 

erformed by one or more workers and the processing time of 

he operation depends on the number of workers performing it. 

lso, a berth and quay crane allocation problem, which is to de- 

ide the arrival and departure time of ships as well as the number 

f quay cranes assigned to each ship, was considered in Blazewicz, 

heng, Machowiak, & Oguz (2011) . They formulated this problem 

s scheduling moldable tasks, in which ships are considered as 

asks and quay cranes are considered as processors. For each ship, 
∗ Corresponding author. 
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he berthing duration is a function of the number of quay cranes 

llotted to it. The goal is to minimize the maximum departure time 

f the ships in berth and quay crane allocation, which is achieved 

y minimizing the makespan in the model of scheduling mold- 

ble tasks. Unsal (2021) considered some specific characteristics of 

 berth and quay crane allocation problem and developed an ex- 

ended formulation of moldable task scheduling. 

The moldable task model was also proposed by theoretical re- 

earchers in the fields of computer science. For example, Feitelson 

 Rudolph (1996) stated that programs written using the SPMD 

tyle, e.g., with the MPI library package, are often moldable. 

rozdowski (2009) discussed the practical motivation for moldable 

asks involved in parallel applications. Bleuse et al. (2017) consid- 

red scheduling independent moldable tasks on multi-cores with 

PUs. They assumed that those tasks are parallelizable on CPUs 

sing the moldable model. Also, in Fujiwara, Tanaka, Taura, & Tori- 

awa (2018) , deep learning tasks were treated as moldable tasks. 

herefore, efficient and sophisticated algorithms are then required 

or the implementation of these applications to ensure good per- 

ormance. 

.1. Problem description 

We are given a set T = { T 1 , . . . , T n } of n moldable tasks and a

et M = { 1 , 2 , . . . , m } of m identical processors. Each task T has
i 
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n associated execution time function t i : p → t i,p that gives the 

xecution time t i,p ∈ Q 

+ of task T i if p processors are allotted to 

xecuting task T i , where Q 

+ denotes the set of positive rational 

umbers ( Jansen & Porkolab, 2002; Jansen & Thöle, 2010 ). We de- 

ne the workload function w i of task T i as w i : p → w i,p = p × t i,p 

or p ≤ m , which gives the workload w i,p of task T i if p proces-

ors are allotted to it. As a key aspect of a moldable task, several

ypes of execution time functions have been introduced ( Turek, 

olf, & Yu, 1992; Wang & Cheng, 1991 ). In this paper, we study 

 commonly used type — monotonic : the execution time function 

 i is a non-increasing function while the corresponding workload 

unction w i is a non-decreasing function: t i,p ≥ t i,p ′ and w i,p ≤ w i,p ′ 
old for all i = 1 , . . . , n and for any pair p, p ′ ∈ { 1 , . . . , m } with

p < p ′ . The monotonicity assumption takes into account both the 

peedup in execution time and the slowdown due to commu- 

ication overhead ( Bleuse et al., 2017; Mounié, Rapine, & Trys- 

ram, 1999 ). Such an assumption can also be interpreted by the 

ell-known Brent’s lemma ( Brent, 1974 ), which states that run- 

ing tasks in parallel can reduce the overall processing time and 

eads to sublinear speedups. In addition, this assumption is rea- 

onable in practice as one can find the simulation results of the 

ourier Transform benchmark and Block Tridiagonal benchmark 

n Dutton, Mao, Chen, & Watson III (2008) . Note that the execu- 

ion function t i,p = t i, 1 /p + (p − 1) c used in Dutton et al. (2008) ,

here c is a positive constant, is a widely used function to 

odel execution times ( Ghosal, Serazzi, & Tripathi, 1991; Leuze, 

owdy, & Park, 1989 ), which implies monotonicity when c is small 

nough. 

We assume all tasks are monotone. For any task T i ( 1 ≤ i ≤
 ), let P i be the set of processors allotted to the task. Then

hese | P i | processors have to execute task T i simultaneously with- 

ut preemption, i.e., they start executing task T i at some start- 

ng time s i and complete it at s i + t i, | P i | . Each processor can exe-

ute at most one task at a time. A feasible non-preemptive sched- 

le is an allotment of processors P i ⊆ M and a starting time s i 
or every task T i , such that for any time point τ it holds that
 

1 ≤i ≤n : τ∈ 
[ 

s i ,s i + t i, | P i | 
) | P i | ≤ m . Note that we do not require that a 

ask has to be executed by contiguously numbered processors. 

n other words, we study non-contiguous schedules. Our objec- 

ive is to find a feasible non-preemptive schedule that minimizes 

he makespan, which is defined as the maximum completion time 

 max = max 1 ≤i ≤n 

{
s i + t i, | P i | 

}
. Since processors are usually to model 

carce resources, we are concerned in this paper with the case 

here m is fixed or relatively small compared with n . 

Note that in the above problem description, the number | P i | 
f processors allotted to task T i is a constant during the execu- 

ion of the task, from s i to s i + t i, | P i | . Although moldable tasks are

alled malleable tasks in several studies ( Chen & Chu, 2013; Jansen 

 Porkolab, 2002; Jansen & Thöle, 2010; Mounié, Rapine, & Trys- 

ram, 2007; Turek et al., 1992 ), more recently the latter notion is 

eferred to the case where the number of processors allotted to a 

ask can be changed during the execution of the task ( Drozdowski, 

009; Marchal, Simon, Sinnen, & Vivien, 2018 ). 

Before reviewing the literature, let us introduce a few termi- 

ologies. A polynomial-time approximation scheme (PTAS) is a col- 

ection of (1 + ε) -approximation algorithms parameterized in arbi- 

rarily small ε > 0 with running time being a polynomial in the 

roblem size for any fixed ε. A fully polynomial-time approxi- 

ation scheme (FPTAS) is a collection of (1 + ε) -approximation 

lgorithms parameterized in arbitrarily small ε > 0 with running 

ime polynomial in both problem size and 1 /ε. An asymptotic fully 

olynomial-time approximation scheme (AFPTAS) is a collection of 

symptotic (1 + ε) -approximation algorithms parameterized in ar- 

itrarily small ε > 0 that runs in time polynomial both in the prob- 

em size and 1 /ε. 
m

568 
.2. Related work 

The problem of scheduling moldable tasks has been extensively 

tudied. The problem is known to be NP-hard ( Du & Leung, 1989 )

nd remains so even with monotonicity assumption ( Jansen & 

and, 2018 ). For non-monotonic tasks, there is no polynomial-time 

lgorithm with an approximation guarantee less than 3 / 2 unless 

 = NP ( Johannes, 2006 ). An overview of the known results for 

cheduling moldable tasks is given in Table 1 . In the table, “con- 

iguous” (resp., “non-contiguous”) indicates that contiguous (resp., 

on-contiguous) schedules are considered, where each task is re- 

uired to be executed by contiguously numbered processors (resp., 

o such requirement). 

Other two problems closely related to scheduling moldable 

asks are scheduling rigid tasks and strip packing. A rigid task is 

lso called non-malleable or non-moldable task in several studies 

 Jansen, 2012; Turek et al., 1992 ), for which the execution time and

he number of required processors are known a priori . In the prob- 

em of strip packing, given a strip with a fixed width and an in- 

nite height, we need to pack a set of rectangular items into the 

trip without rotation and overlapping. The objective is to find a 

easible packing with minimal packing height. The difference be- 

ween scheduling rigid tasks and strip packing is that processors 

llotted to a task need to be contiguous in the latter problem. 

Scheduling rigid tasks . The problem is strongly NP-hard even if 

he number m of available processors is a constant at least 4 ( Du

 Leung, 1989; Henning, Jansen, Rau, & Schmarje, 2020 ). Garey 

 Graham (1975) provided a 2-approximation algorithm and the 

pproximation guarantee was later improved to 3 / 2 + ε ( Jansen, 

012 ), which is very close to the lower bound of 3 / 2 ( Johannes,

006 ). When m is a constant, a PTAS was presented by Amoura, 

ampis, Kenyon, & Manoussakis (2002) and Jansen & Porkolab 

2002) . Jansen & Thöle (2010) provided a PTAS for the more gen- 

ral case where the number m is bounded by a polynomial in the 

umber of tasks. An overview of the known results for scheduling 

igid tasks is given in Table 2 . 

Strip packing . One of the first results for strip packing was 

rovided by Coffman, Garey, Johnson, & Tarjan (1980) . They pro- 

ided two algorithms with approximation ratios of 3 and 2.7, re- 

pectively. The approximation ratio was later improved in a se- 

ies of studies ( Harren & Stee, 2009; Schiermeyer, 1994; Sleator, 

980; Steinberg, 1997 ) and the best approximation ratio achieved 

o far is 5 / 3 + ε ( Harren, Jansen, Prädel, & van Stee, 2011 ). Simi-

arly, the asymptotic approximation ratio has also been improved 

 Baker, Brown, & Katseff, 1981; Baker, Coffman, & Rivest, 1980; 

olan, 1981; Jansen & Solis-Oba, 2009; Kenyon & Rémila, 20 0 0; 

viridenko, 2012 ). When the width of the strip denoted by W 

s allowed to appear polynomially in the running time, there is 

o polynomial-time algorithm with approximation guarantee less 

han 5 / 4 unless P = NP ( Henning et al., 2020 ). On the other hand,

lgorithms with approximation ratio 4 / 3 + ε were presented by 

álvez, Grandoni, Ingala, & Khan (2016) and Jansen & Rau (2017) . 

he gap to the lower bound was later closed with a ( 5 / 4 + ε)-

pproximation algorithm ( Jansen & Rau, 2019 ). An overview of the 

nown results for scheduling rigid tasks is given in Table 3 , where 

 max and w max denote the largest height and width of rectangles, 

espectively, and W denotes the width of the strip. 

.3. Our contribution 

In this paper, we are concerned with scheduling monotonic 

oldable tasks when the number of processors is fixed or rela- 

ively small compared with the number of tasks. We present an 

fficient algorithm with performance guarantee of 3 / 2 and with 

ime complexity of O (nm log (nm )) (for m > n ) and O (n 2 log n ) (for

 ≤ n ). 
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Table 1 

Known results for scheduling moldable tasks. 

Tasks Processors Ratio Remarks 

Turek et al. (1992) non-monotonic non-contiguous 2 O (nm log n ) 

Turek et al. (1992) non-monotonic contiguous 5 / 2 O (n 2 m log n ) 

Ludwig & Tiwari (1994) non-monotonic non-contiguous 2 O (nm ) 

Ludwig & Tiwari (1994) non-monotonic contiguous 5 / 2 O (nm ) 

Jansen & Porkolab (2002) non-monotonic non-contiguous PTAS O (n ) with m being constant 

Jansen (2004) non-monotonic non-contiguous AFPTAS O (n (1 / ε2 + log n ) log (1 /ε) max (n log log (n/ε) , n/ ε4 ) + max ( log (1 /ε) / ε3 , 

M (ε−2 )) / ε4 + nm ) , where M (N) is the time to invert an (N × N) matrix 

Jansen & Thöle (2010) non-monotonic non-contiguous PTAS O (n f (1 /ε) ) for some exponential function f ; m is polynomially bounded by n 

Jansen (2012) non-monotonic non-contiguous 3 / 2 + ε O (n log n ) + f (1 /ε) for some exponential function f

Jansen & Rau (2019) non-monotonic contiguous 5 / 4 + ε O ((nm ) 1 / ε
2 O (1 /ε13 ) 

) 

Ludwig & Tiwari (1994) monotonic non-contiguous 2 O (n log 
2 

m ) 

Ludwig & Tiwari (1994) monotonic contiguous 5 / 2 O (n log 
2 

m ) 

Mounié et al. (1999) monotonic contiguous 
√ 

3 + ε O (( min { nm, n 3 } + n log m ) log (1 /ε) + n log 
2 

m ) 

Mounié et al. (2007) monotonic non-contiguous a 3 / 2 + ε O (nm log (n/ε)) 

Jansen & Land (2018) monotonic non-contiguous FPTAS O (n log 
2 

m ( log m + log (1 /ε))) ; m ≥ 16 n/ε for any ε > 0 

Jansen & Land (2018) b monotonic non-contiguous 3 / 2 + ε O (n log 
2 

m + log (T (n, m, ε) /ε)) , where T (n, m, ε) = O (n ( log m ) + n log (εm )) , 

O (n ( 1 
ε2 log m ( log m 

ε + log 
3 
(εm )) + log n )) and O (n 1 

ε2 log m ( log m 
ε + log 

3 
(εm ))) 

Jansen & Rau (2019) monotonic contiguous 5 / 4 + ε O (n 1 / ε
2 O (1 /ε13 ) 

) ; m < 8 n/ε

This paper monotonic non-contiguous 3 / 2 O (nm log (nm )) for m > n ; O (n 2 log (n )) for m ≤ n 

a Mounié et al. (2007) claimed that they constructed a contiguous schedule, but the claim was unjustified. In their algorithm, if a task satisfies some rules, it will be split 

into two parts. One part is allocated to a processor in a shelf, the other to a processor in another shelf. Since only one pair of contiguously numbered processors exists 

between two shelves and it is possible to have more than one task satisfying the rule, this process results in a non-contiguous schedule. 
b Jansen & Land (2018) provided three different approximation algorithms with the same approximation ratio of 3 / 2 + ε. Hence, three different time complexity estimations 

are given in the remarks. 

Table 2 

Known results for scheduling rigid tasks. 

Ratio Remarks 

Garey & Graham (1975) 2 O (n ) ; m constant 

Amoura et al. (2002) PTAS O (n ) ; m constant 

Jansen & Porkolab (2002) PTAS O (n ) ; m constant 

Jansen & Thöle (2010) PTAS O (n f (1 /ε) ) for some exponential function f ; m polynomially bounded by n 

Jansen (2012) 3 / 2 + ε O (n log n ) + f (1 /ε) for some exponential function f

Table 3 

Known results for strip packing. 

Ratio Time Complexity Remarks 

Coffman et al. (1980) 3 O (n log n ) 

Coffman et al. (1980) 2.7 O (n log n ) 

Sleator (1980) 2.5 O (n log n ) 

Schiermeyer (1994) 2 O (n log n ) 

Steinberg (1997) 2 O ((n log 
2 

n ) / log log n ) 

Harren & Stee (2009) 1.9369 O (T PTAS + (n log 
2 

n ) / log log n ) T PTAS is the running time of PTAS presented by Bansal, 

Caprara, Jansen, Prädel, & Sviridenko (2009) 

Harren et al. (2011) 5 / 3 + ε O (T PTAS + n log 
2 

n ) 

Baker et al. (1980) 3 O (n log n ) asymptotic approximation ratio 

Golan (1981) 4 / 3 O (n log n ) 

Baker et al. (1981) 5 / 4 O (n log n ) 

Kenyon & Rémila (2000) AFPTAS O (n log n + ε−6 log 
3 

n log 
3 
( 1 ε )) 

Jansen & Solis-Oba (2009) APTAS O (n 1 /ε
O (1 /ε) 

) 

Sviridenko (2012) AFPTAS O (n log n + ε−6 log 
3 

n log 
3 
( 1 ε )) 

Nadiradze & Wiese (2016) 7 / 5 + ε O (( max { w max , h max } n ) O (1) ) W is polynomially bounded by n 

Gálvez et al. (2016) 4 / 3 + ε

Jansen & Rau (2017) 4 / 3 + ε O ((nW ) 1 / ε
O (2 1 /ε ) 

) 

Jansen & Rau (2019) 5 / 4 + ε O (n log (n )) W 

1 / ε2 O (1 /ε13 ) 

f

p

W

t

n

c

l

O

t  

T

m

o

p

a  

i

1

l

The best polynomial time algorithm before this paper has a per- 

ormance guarantee of 3 / 2 + ε with running time a polynomial in 

roblem size and 1 /ε ( Jansen & Land, 2018; Mounié et al., 2007 ). 

e develop a new technique in this paper to remove the ε-term in 

he performance ratio as well as from the running time. The tech- 

ique can be used in eliminating the ε-term in the running time of 

ertain dual algorithms for other combinatorial optimization prob- 

ems. 

Although a PTAS exists for this problem, its time complexity 

 (n h (1 /ε) ) is prohibitively high for some super-exponential func- 

ion h ( Jansen & Thöle, 2010 ). On the other hand, while an FP-
569 
AS can achieve an approximation ratio of 1 + ε, it requires that 

 ≥ 16 n/ε ( Jansen & Land, 2018; Mounié et al., 2007 ). Therefore, 

ur (3 / 2) -approximation algorithm offers a much better time com- 

lexity compared with the PTAS and a better approximation guar- 

ntee compared with the FPTAS when m < 32 n , which is the case

f m is fixed or relatively small compared with n . 

.4. Organization 

This paper is organized as follows. We start with some pre- 

iminaries in Section 2 , which include notation and some known 
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Table 4 

Notation dashboard. 

Variable Definition 

n Number of tasks 

m Number of processors 

T Set of all n tasks 

C ∗max Optimal makespan 

W 

∗ Workload of an optimal schedule 

t i,p Execution time of task T i if p processors are allotted to task T i 
w i,p Workload of task T i if p processors are allotted to task T i 
γ (i, h ) Minimal number of processors needed to execute task T i within h time units 

X = 

{
t j,p : j = 1 , . . . , n ; p = 1 , . . . , m 

}
Y = X ∪ 

{
t i, 1 + t j, 1 , t i, 1 + t j, 2 : i, j = 1 , . . . , n 

}
τ1 Largest value in X , but no more than C ∗max , used as estimate of C ∗max 

τ2 Largest value in X ∪ { 0 } , but no more than 1 
2 

C ∗max , used as estimate of 1 
2 

C ∗max 

τ3 Largest value in Y , but no more than 3 
2 

C ∗max , used as estimate of 3 
2 

C ∗max 

T L Set of “large” tasks with t i, 1 > τ2 

T S Set of “small” tasks with t i, 1 ≤ τ2 

S 1 Set of m 1 processors with available period [0 , τ1 ] (see Fig. 3 ) 

S 2 Set of m 1 processors with available period (τ1 , τ1 + τ2 ] (see Fig. 3 ) 

S 0 Set of m 0 processors with available period [0 , τ3 ] (see Fig. 3 ) 

q Number of idle processors in S 1 
σ1 , σ2 , σ3 Partial schedules obtained in Procedure A (T , m, τ1 , τ2 , τ3 ) under different scenarios 

σ0 Exactly one of σ1 , σ2 , σ3 . 

˜ σ Possible full schedule output of Procedure F (T , m ) 

σ Full schedule output of Procedure A (T , m, τ1 , τ2 , τ3 ) 
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esults in the literature that our work is built on. An outline of 

ur approximation algorithm, followed by its detailed description 

s provided in Section 3 . The theoretical analysis of the algorithm is 

rovided in Sections 4 and 5 . We make some concluding remarks 

n Section 6 . 

. Preliminaries 

We summarize our notations in the following Table 4 , most of 

hich will appear afterwards. 

.1. Dual algorithm 

A λ-dual approximation algorithm ( Hochbaum & Shmoys, 1987 ) 

akes a number d as an input, and either delivers a schedule 

ith makespan at most λd or answers correctly that there exists 

o schedule whose makespan is at most d . Hence d is called a 

uess of the makespan. For scheduling monotonic moldable tasks, 

 (3 / 2) -dual approximation algorithm with time complexity O (nm ) 

s proposed in Mounié et al. (2007) . For the convenience of our ex- 

osition, we denote this dual algorithm by Algorithm D (T , m, d) . 

or a makespan-minimization problem, an estimation algorithm 

 Jansen & Land, 2018 ) with estimation ratio ρ computes a value 

 that estimates the optimal makespan within an estimation ra- 

io ρ , i.e., w ≤ C ∗max ≤ ρw . Given an estimation algorithm with time 

omplexity f (n, m ) and a λ-dual algorithm with time complexity 

(n, m ) , using binary search for a correct guess of the makespan

ithin any specified precision ε > 0 , from these two algorithms 

ne can develop a λ(1 + ε) -approximation algorithm with run- 

ing time O ( f (n, m ) + g(n, m ) log (1 /ε) ) . For scheduling monotonic 

asks, as mentioned before, we have a 2-approximation algorithm 

ith time complexity O (n log 
2 

m ) ( Ludwig & Tiwari, 1994 ), which

s actually an estimation algorithm with estimation ratio 2. There- 

ore, the dual algorithm D (T , m, d) can be converted to a ( 3 / 2 + ε)-

pproximation algorithm with time complexity O (nm log ( n/ε)) . 

Given a number h , we define for each task T i its canonical num-

er of processors , γ (i, h ) , as the minimal number of processors

eeded to execute task T i in time at most h . We set by conven-

ion γ (i, h ) = + ∞ if T i cannot be executed in time at most h on m

rocessors. Two important technical results established in Mounié

t al. (2007) are stated in the following two lemmas. 
570 
emma 1 ( Mounié et al., 2007 ) . Given any fixed number d, de- 

ne T S (d) = { T i ∈ T : t i, 1 ≤ d} and T L (d) = T \T S (d) . Let W S (d) =
 

T i ∈T S (d) t i, 1 . Define knapsack problem KP (T L (d) , m, d) as follows: 

 (d) = min 

T 1 ⊆T L (d) 

(∑ 

T i ∈T 1 w i,γ (i,d) + 

∑ 

T i ∈T L (d) \T 1 w i,γ (i,d/ 2) 

)
ubject to 

∑ 

T i ∈T 1 γ (i, d) ≤ m . If W (d) + W S (d) > md, then d < C ∗max .

therwise, Algorithm D (T , m, d) constructs a feasible schedule with 

akespan at most 3 d/ 2 . 

Lemma 1 helps us to determine whether a guess d is smaller 

han C ∗max . This is frequently used in the first part of our algorithm 

efined as Algorithm F (T , m ) (see Section 3.1 ). The details of how

lgorithm D (T , m, d) constructs a feasible schedule of makespan 

t most 3 d/ 2 can be found in Mounié et al. (2007) . 

emma 2 ( Mounié et al., 2007 ) . Given any number h , if γ (i, h ) <

 ∞ , then 

 ≥ t i,γ (i,h ) > 

γ (i, h ) − 1 

γ (i, h ) 
h. 

f γ (i, h ) ∈ [2 , m ] , then 

 t i,γ (i,h ) ≥ t i,γ (i,h ) −1 > h ≥ t i,γ (i,h ) > 

1 

2 

h. 

Lemma 2 will be used in analyzing one part of our (3 / 2) -

pproximation algorithm in Section 5 . 

.2. Algorithm outline 

Before we indulge into the algorithmic details, let us outline 

he main intuitions and ideas behind our algorithm. As concluded 

n the abstract and related works, the best relevant known re- 

ults are: (a) an efficient (3 / 2 + ε) -approximation algorithm with 

ime complexity O (nm log (n/ε)) ( Mounié et al., 2007 ), (b) an FP- 

AS for the case of m ≥ 16 n/ε ( Jansen & Land, 2018 ), and (c) a PTAS

ith time complexity O (n g(1 /ε) ) ( Jansen & Porkolab, 2002; Jansen 

 Thöle, 2010 ), where g(·) is a super-exponential function. Con- 

entrated on the case that m is fixed or relatively small compared 

ith n , we are looking for fast and direct algorithms since the PTAS 

equires high running time. As we target at an efficient approxi- 

ation algorithm with approximation ratio less than 3 / 2 + ε, it is 
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Fig. 1. (a) a schedule in a processor-time diagram; (b) a shelf-based schedule. 

n

e

s

r

a

i

t

u

c

o  

fi

t

b

m

c

m

3

c

r

t

a  

u  

t

w

t

a

h

t

S  

F

a  

i  

a  

a

o

τ  

c

m  

l

r

X

Y

a

τ

τ

τ

I  

x

c

a

h

(

c  

fi

p  

s

T

 

E

3

t

p

v  

W  

t

W  

c 1 2 3 
atural to consider whether we can remove the ε-term in Mounié

t al. (2007) . 

In Mounié et al. (2007) , the ε-term comes from the binary 

earch of the optimal makespan. Unfortunately, there is no way to 

emove ε in Algorithm D (T , m, d) since only an input d = C ∗max + ε
lways guarantees a feasible schedule with makespan 

3 
2 d, while an 

nput d = C ∗max − ε cannot for any ε > 0 . 

Motivated by the study in Ludwig & Tiwari (1994) , which takes 

he largest task execution time as the makespan of their sched- 

le, we construct a schedule of a makespan represented by exe- 

ution times of some tasks. Rather than guessing the exact value 

f C ∗max as Algorithm D (T , m, d) does, our novel strategy here is to

nd approximate values for C ∗max from some discrete sets of execu- 

ion times of some tasks, each having a cardinality polynomially 

ounded by n and m . We first construct three sub-schedules of 

akespans bounded by these approximate values, and then con- 

atenate these three sub-schedules into a full schedule with a 

akespan of a desired bound. 

. Algorithm description 

As shown in Fig. 1 (a), a schedule to moldable task scheduling 

an be depicted in a processor-time diagram. Each rectangle rep- 

esents a task T i , with the height corresponding to the execution 

ime t i,p of the task and the width to the number of p processors 

llotted to it. Recall that the workload w i,p of a task is the prod-

ct of p and t i,p , which corresponds to the area of the rectangle in

he diagram. We define the workload of a schedule as the total of 

orkloads of all tasks in the schedule, which corresponds to the 

otal area of all rectangles. 

Our algorithm uses a shelf-based approach: Define a shelf as 

 set of processors with available processing period. Define the 

eight of a shelf as the length of available processing period and 

he width as the number of processors. We construct three shelves 

 1 , S 2 and S 0 of respective heights τ1 , τ2 and τ3 , as illustrated in

ig. 1 (b). More specifically, define shelf S 1 with m 1 processors and 

vailable in period [0 , τ1 ] , shelf S 2 with m 1 processors and available

n period (τ1 , τ1 + τ2 ] , and shelf S 0 with m 0 processors and avail-

ble in period [0 , τ3 ] . We then try to determine a good processor

llotment of all tasks and pack them into these shelves. All values 

f τ1 , τ2 , τ3 and m 0 , m 1 will be defined and computed accordingly. 

Suppose such a shelf-based schedule with makespan max { τ1 + 

2 , τ3 } exists. As we target for a 3 / 2 approximation, it is natural to

onsider setting the values of τ1 , τ2 and τ3 in such a way that the 

akespan of the schedule is no more than 

3 
2 C 

∗
max . To this end, we

et τ1 , τ2 and τ3 be approximate values of C ∗max , 
1 C ∗max and 

3 C ∗max , 
2 2 

571 
espectively. More specifically, let 

 = 

{
t j,p : j = 1 , . . . , n ; p = 1 , . . . , m 

}
, 

 = X ∪ 

{
t i, 1 + t j, 1 , t i, 1 + t j, 2 : i, j = 1 , . . . , n 

}
. 

nd define 

1 = max { x : x ≤ C ∗max , x ∈ X } , (1) 

2 = max 
{

x : x ≤ 1 
2 
C ∗max , x ∈ X ∪ { 0 } }, (2) 

3 = max 
{

y : y ≤ 3 
2 
C ∗max , y ∈ Y 

}
, (3) 

t is clear that | X| ≤ nm and | Y | ≤ nm + 2 n 2 . Since C ∗max ≥ min { x :
 ∈ X} , values of (τ1 , τ2 , τ3 ) always exist. 

Then the following questions arise: As C ∗max is unknown, how 

an we find the values of τ1 , τ2 and τ3 ? Even if τ1 , τ2 and τ3 

re found, does there exist such a shelf-based schedule? If yes, 

ow can we construct it? These questions are answered by our 

3 / 2) -approximation algorithm, which we call FA Algorithm and 

onsists of two parts: the first part, written as Procedure F (T , m ) ,

nds the values of τ1 , τ2 and τ3 (see Section 3.1 ), while the second 

art, written as Procedure A (T , m, τ1 , τ2 , τ3 ) , constructs a feasible

chedule dependent on the values of τ1 , τ2 and τ3 (see Section 3.2 ). 

he FA Algorithm 

1. Run Procedure F (T , m ) to obtain the values of τ1 , τ2 and τ3 

and, possibly, to output a feasible schedule ˜ σ of makespan at 

most 3 
2 τ0 (see Section 3.1 ). 

2. Given input (τ1 , τ2 , τ3 ) , run Procedure A (T , m, τ1 , τ2 , τ3 ) to

output a feasible schedule σ of makespan C(τ1 , τ2 , τ3 ) (see 

Section 3.2 ). 

nd of the FA Algorithm 

.1. Procedure F (T , m ) 

The main idea behind this procedure is that one can iden- 

ify whether a value is smaller than C ∗max by solving a knapsack 

roblem. Take τ1 as an example. As we know, τ1 is the largest 

alue no more than C ∗max in X . According to Lemma 1 , if W (d) +
 S (d) > md, we then obtain d < C ∗max . Then Procedure F (T , m ) sets

he value of τ1 as the largest among all those x i ∈ X satisfying 

 (x i ) + W S (x i ) > mx i . We discuss and confirm that F (T , m ) suc-

eeds in finding the right values of τ , τ and τ in Section 4 . 
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Fig. 2. Possible schedules resulted from Step 2. 
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rocedure F (T , m ) 

Step 1. Reindex the elements in X = { x 1 , . . . , x | X| } and in Y =
{ y 1 , . . . , y | Y | } in ascending order of their values. Let x̄ =
max { x : x ∈ X} and ȳ = max { y : y ∈ Y } . 

Step 2. Solve knapsack problem KP (T L (d) , m, d) with d = x̄ . 

If W ( ̄x ) + W S ( ̄x ) > m ̄x , set τ1 := x̄ . Otherwise, identify

x j ∈ X such that W (x j ) + W S (x j ) > mx j and W (x j+1 ) +
W S (x j+1 ) ≤ mx j+1 . (NB: This can be done with binary 

search, where for each searched value x i , solve knapsack 

problem KP (T L (d) , m, d) with d = x i . Similar comment ap-

plies to the second part of Steps 3 and 4.) Set τ1 := x j and

run Algorithm D (T , m, d) with d = x j+1 to obtain a feasi-

ble schedule ˜ σ1 . 

Step 3. Solve knapsack problem KP (T L (d) , m, d) with d = 2 ̄x . 

If W (2 ̄x ) + W S (2 ̄x ) > m 2 ̄x , set τ2 := x̄ . Otherwise, iden-

tify x k ∈ X such that W (2 x k ) + W S (2 x k ) > 2 mx k and

W (2 x k +1 ) + W S (2 x k +1 ) ≤ 2 mx k +1 . Set τ2 := x k and run Al-

gorithm D (T , m, d) with d = 2 x k +1 to obtain a feasible

schedule ˜ σ2 . 

Step 4. Solve knapsack problem KP (T L (d) , m, d) with d = 

2 
3 ̄y . If 

W ( 2 3 ̄y ) + W S ( 
2 
3 ̄y ) > m ( 2 3 ̄y ) , set τ3 := ȳ . Otherwise, iden-

tify y i ∈ Y such that W ( 2 3 y i ) + W S ( 
2 
3 y i ) > m ( 2 3 y i ) and

W ( 2 3 y i +1 ) + W S ( 
2 
3 y i +1 ) ≤ m ( 2 3 y i +1 ) . Set τ3 := y i and run

Algorithm D (T , m, d) with d = 

2 
3 y i +1 to obtain a feasible

schedule ˜ σ3 . 

Step 5. If { ̃  σ1 , ˜ σ2 , ˜ σ3 } � = ∅ , then let τ0 = min { x j+1 , 2 x k +1 , 
2 
3 y i +1 }

(NB: some element(s) may not be applicable) and let 

˜ σ ∈ { ̃  σ1 , ˜ σ2 , ˜ σ3 } be the feasible schedule of the minimum 

makespan. 

nd of Procedure F (T , m ) 

.2. Procedure A (T , m, τ1 , τ2 , τ3 ) 

The main steps of Procedure A (T , m, τ1 , τ2 , τ3 ) are as follows.

he first step divides tasks into large and small. The latter tasks are 

gnored temporarily until the last step, in which they are added to 

he schedule. In the second step, large tasks are divided into two 

ubsets T 1 and T 2 by solving a knapsack problem. Tasks in sub- 

et T 1 are scheduled in shelf S 1 with height τ1 and the others are 

cheduled in shelf S 2 with height τ2 . This is illustrated in Fig. 2 . If

asks of subset T 2 use more than m processors in shelf S 2 , we se-

ect some large tasks in T 1 and T 2 to be reallocated to shelf S 0 with

eight τ3 . This is done in Step 3 and is illustrated in Fig. 3 . Finally,

ll small tasks identified in Step 1 are added into the schedule in 

tep 4, which is illustrated in Fig. 4 . 
572 
We refer the sum of execution times of the tasks allotted to a 

rocessor as the load of the processor. Initially, set m 1 := m and 

 0 := 0 . 

rocedure A (T , m, τ1 , τ2 , τ3 ) 

Step 1. Partition the task set T into two subsets: 

T S = { T i ∈ T : t i, 1 ≤ τ2 } (small tasks), (4) 

T L = { T i ∈ T : t i, 1 > τ2 } (large tasks). (5) 

If T L = ∅ , then let σ1 be the empty schedule and go to 

Step 4; otherwise, go to Step 2. 

Step 2. Solve the knapsack problem KP (T L , m, τ1 , τ2 ) below for an 

allotment of tasks in T L : 

W (τ1 , τ2 ) = min 

T ′ ⊆T L 

(∑ 

T i ∈T ′ w i,γ (i,τ1 ) + 

∑ 

T i ∈T L \T ′ w i,γ (i,τ2 ) 

)
subject to 

∑ 

T i ∈T ′ γ (i, τ1 ) ≤ m . Let T ′ = T 1 be an optimal 

solution to the above problem KP (T L , m, τ1 , τ2 ) . Then allot 

γ (i, τ1 ) processors to any task T i ∈ T 1 and γ (i, τ2 ) proces- 

sors to any task T i ∈ T 2 ≡ T L \T 1 . Schedule all tasks in T 1 in
shelf S 1 and all tasks in T 2 in shelf S 2 . If 

∑ 

T i ∈T 2 γ (i, τ2 ) ≤
m (as illustrated in Fig. 2 (a)), let S 1 and S 2 use the same

m processors. The resulting schedule is denoted by σ2 

and go to Step 4. If 
∑ 

T i ∈T 2 γ (i, τ2 ) > m (as illustrated in 

Fig. 2 (b)), go to Step 3. 

Step 3. Transform tasks in S 1 and S 2 to S 0 or S 1 in the following 

ways. 

Step 3.1. For any task T i in S 1 with γ (i, τ1 ) > 1 

and t i,γ (i,τ1 ) −1 ≤ τ3 , let m 0 := m 0 + γ (i, τ1 ) − 1 , 

m 1 := m 1 − γ (i, τ1 ) + 1 , and reallocate T i to the 

γ (i, τ1 ) − 1 processors in shelf S 0 . 

Step 3.2. While there exists at least one pair of { T i , T j } 
in S 1 such that γ (i, τ1 ) = γ ( j, τ1 ) = 1 and t i, 1 +
t j, 1 ≤ τ3 , pick such a pair { T i , T j } and do the fol-

lowing transformation: Let m 0 := m 0 + 1 , m 1 := 

m 1 − 1 , and reschedule T i and T j sequentially 

on the newly added processor in S 0 . 

Repeat Step 3.2 if after transforming the pair 

{ T i , T j } there still exists at least one such pair. 

Step 3.3. While there exists at least one pair of { T i , T j } in
S 1 such that γ (i, τ1 ) = 1 and γ ( j, τ1 ) = 2 and 

t i,γ (i,τ1 ) 
+ t j,γ ( j,τ1 ) 

≤ τ3 , pick such a pair { T i , T j } 
and do the following transformation: Change 

one processor used by T j from S 1 to S 0 and 

reschedule T i after T j on this processor and 

let m := m + 1 and m := m − 1 .(NB: In this 
0 0 1 1 
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Fig. 3. Possible schedules resulted from Step 3. 

Fig. 4. Schedule σ obtained after Step 4. 
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case, T j uses one processor in S 0 and one pro- 

cessor in S 1 .) 

Repeat Step 3.3 if after transforming the pair 

{ T i , T j } there still exists at least one such pair. 

Step 3.4. Let q be the number of idle processors in S 1 . 

For each task T i in S 2 with γ (i, τ3 ) ≤ q , reallo- 

cate T i to γ (i, τ3 ) processors in S 0 if t i,γ (i,τ3 ) 
> 

τ1 and to S 1 otherwise. Let m 0 := m 0 + γ (i, τ3 ) 

and m 1 := m 1 − γ (i, τ3 ) , if T i is reallocated to 

S 0 . 

Step 3.5. If some task was reallocated to S 1 from S 2 in 

Step 3.4, then go back to Step 3.2. 

Step 3.6. Regardless of whether shelf S 2 uses more than 

m 1 processors or not, let S 1 and S 2 use the 

same m 1 processors, which together with S 0 
form a schedule denoted by σ3 . If S 2 uses more 

than m 1 processors (as illustrated in Fig. 3 (b)), 

then terminate with output “exit ” (due to in- 

feasibility of σ3 ). Otherwise (as illustrated in 

Fig. 3 (a)), go to Step 4 (with feasible σ3 ). 

Step 4. On the basis of partial schedule σ1 , σ2 , or σ3 of large tasks 

only, add small tasks in T S (if any) to the schedule in the 

following ways to produce a full schedule σ of makespan 

C(τ1 , τ2 , τ3 ) < + ∞ . 

Step 4.1. Reindex tasks T i ∈ T S in the order of non- 

increasing execution time of t i, 1 . 

Step 4.2. For i = 1 , . . . , |T S | , iteratively allocate task T i in

T S to the least loaded processor and update the 

processor load after each job allocation. 

Step 4.3. Compute the total load C(τ1 , τ2 , τ3 ) of the most 

loaded processor. 

Step 4.4. Postpone all tasks in S 2 (if any), so that their 

completion times are equal to C(τ1 , τ2 , τ3 ) . 

Small tasks allocated to a processor can be 
l

573 
scheduled in any order between tasks in S 1 and 

S 2 (if any) or after tasks in S 0 (if any) scheduled 

in the processor. (See Fig. 4 for illustration.) 

nd of Procedure A (T , m, τ1 , τ2 , τ3 ) 

. Analysis of procedure F(T , m ) 

Now let us discuss and confirm that Procedure F (T , m ) suc- 

eeds in identifying the right values of τ1 , τ2 and τ3 , unless sched- 

le ˜ σ has a makespan at most 3 
2 C 

∗
max . Let us first focus on Step 2

f the procedure, which aims at finding the value of τ1 . 

Case (a). Suppose W ( ̄x ) + W S ( ̄x ) > m ̄x . According to Lemma 1 , we

obtain C ∗max > x̄ . Then by the definition of τ1 given in 

(1) and x̄ , we have τ1 = x̄ , which implies Procedure 

F (T , m ) succeeds in finding τ1 . 

Case (b). Suppose W ( ̄x ) + W S ( ̄x ) ≤ m ̄x . Then there exists a 

pair (x j , x j+1 ) such that W (x j ) + W S (x j ) > mx j and

W (x j+1 ) + W S (x j+1 ) ≤ mx j+1 . According to Lemma 1 ,

we have x j < C ∗max and the schedule ˜ σ1 constructed 

in Step 2 of Procedure F (T , m ) is a feasible schedule

with makespan at most 3 
2 x j+1 . Then we discuss the 

relationship between x j+1 and C ∗max . 

(i) If x j+1 ≤ C ∗max , by the definition of τ1 it is not correct 

to set τ1 := x j , which implies Procedure F (T , m ) fails to

find τ1 . However, the makespan of the feasible schedule 

is at most 3 
2 x j+1 ≤ 3 

2 C 
∗
max . (ii) If x j+1 > C ∗max , by the def-

inition of τ1 and the fact that x j < C ∗max , it is correct to 

set τ1 := x j , which implies Procedure F (T , m ) succeeds 

in finding τ1 . 

In conclusion, Procedure F (T , m ) either finds the right value of 

1 or a feasible schedule with makespan at most 3 
2 C 

∗
max . The fol- 

owing lemma hence follows. 
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Lemma 8. If there is no large task in T , then mC − W ≥ 0 . �
emma 3. In O (nm log (nm )) time, Procedure F (T , m ) either finds

he right value of τ1 or a feasible schedule with makespan at most 
3 
2 C 

∗
max . 

roof. Sorting elements in X needs O (nm log (nm )) time. The num- 

er of binary searches is bounded by log (nm ) and for each binary 

earch we need to solve a knapsack problem in O (nm ) . On the

ther hand, the feasible schedule can be generated by Algorithm 

 (T , m, d) in O (nm ) time, from which the lemma follows. �

Similar arguments to those in the proof of Lemma 3 apply to 

he analysis of Steps 3 and 4 of Procedure F (T , m ) and lead to the

ollowing two lemmas. 

emma 4. In O (nm log (nm )) time, Procedure F (T , m ) either finds

he value of τ2 or a feasible (full) schedule with makespan at most 
3 
2 C 

∗
max . �

emma 5. In O (nm + n 2 ) log (nm + n 2 )) time, Procedure F (T , m ) ei-

her finds the value of τ3 or a (full) feasible schedule with makespan 

t most 3 
2 C 

∗
max . �

Combining Lemmas 3 –5 , we obtain our first theorem. 

heorem 1. Procedure F (T , m ) either finds a feasible schedule within 

 factor 3 / 2 of optimum, or outputs the correct values of τ1 , τ2 and

3 . It runs in O (nm log (nm )) time for m > n and in O (n 2 log n ) time

or m ≤ n . 

. Analysis of procedure A(T , m, τ1 , τ2 , τ3 ) 

In this section we analyze Procedure A (T , m, τ1 , τ2 , τ3 ) pre-

ented in Section 3.2 . As one can see in our FA Algorithm, Pro-

edure A (T , m, τ1 , τ2 , τ3 ) constructs a schedule dependent on the

alues of τ1 , τ2 and τ3 given by Procedure F (·) . Note that F (·) may 

nd wrong values for parameters τ1 , τ2 and τ3 . Taken incorrect 

alues as input, Procedure A (T , m, τ1 , τ2 , τ3 ) may deliver an in-

easible schedule, or may exit at Step 3.6, and the makespan of 

he final schedule may exceed 

3 
2 C 

∗
max . However, Theorem 1 allows 

s either (a) to use the schedule produced by procedure F (·) as 

ur final output or (b) to assume that F (·) computes the values 

1 , τ2 and τ3 correctly. Therefore, in this section, we assume that 

he values of τ1 , τ2 and τ3 used in Procedure A (T , m, τ1 , τ2 , τ3 )

re correct as defined. With this assumption, we establish that 

rocedure A (T , m, τ1 , τ2 , τ3 ) delivers a feasible schedule σ with 

akespan C(τ1 , τ2 , τ3 ) ≤ 3 
2 C 

∗
max . 

As one can easily see from Procedure A (T , m, τ1 , τ2 , τ3 ) , there

s exactly one of σ1 , σ2 and σ3 when the procedure enters Step 4. 

or convenience of our exposition, we denote the only one partial 

chedule by σ0 . We first establish in Section 5.1 that if the partial 

chedule σ0 satisfies the following three conditions, then the final 

ull schedule σ is feasible and its makespan C(τ1 , τ2 , τ3 ) is at most 
3 
2 C 

∗
max . Then we show in Sections 5.2.1 –5.2.3 that σ0 indeed satis- 

es the following three conditions, where W S = 

∑ 

T i ∈T S t i, 1 denotes 

he sum of the workloads of tasks in T S when each task in T S is

llotted to one processor: 

• Feasibility: Each processor executes at most one task at a 

time; all the processors allotted to a task execute the task 

simultaneously without preemption; at any time point, the 

number of non-idle processors does not exceed m . 
• Workload: The schedule workload is at most mC ∗max − W S . 
• Makespan: The makespan is at most 3 

2 C 
∗
max . 

For convenience, a (partial) schedule that satisfies the above 

hree conditions will be called a good schedule. 

According to the monotonicity assumption, workload of a task 

s minimum when it is allocated to a single processor, which im- 

lies that in any schedule the total workload of small tasks is at 
574 
east W S . Let W 

∗ denote the workload of an optimal schedule for 

ll tasks of T . It follows that W S ≤ W 

∗ ≤ mC ∗max . 

.1. Quality of full schedule σ

Let us establish the following result as our starting point. 

emma 6. If σ0 is a good schedule, then schedule σ is feasible with 

akespan at most 3 
2 C 

∗
max . 

roof. Note that in schedule σ0 each processor is scheduled to ex- 

cute at most two tasks, each of which may use one or more than 

ne processor. The two tasks (if any) are executed as the first and 

he last task in the processor. In Step 4, each small task is sched- 

led to a single existing processor between two tasks (if any). No 

ew processor is added. Therefore, Step 4 always generates a fea- 

ible schedule σ if σ0 is feasible. 

Notice that in Lemma 6 σ0 is a good schedule and hence the 

orkload of σ0 is at most mC ∗max − W S according to the definition 

f “goodness”. Adding small tasks into σ0 forms σ . Since the total 

orkload of small tasks added by Procedure A (·) is exactly W S , the

otal workload of σ is at most mC ∗max . 

On the makespan of σ , suppose to the contrary that its 

akespan is more than 

3 
2 C 

∗
max . Consider a processor that is loaded 

ntil the makespan point. Then the last task scheduled onto the 

rocessor denoted by T p must be a small task defined in (4) , be-

ause σ0 satisfies the makespan condition. Note that the small task 

 p has a processing time at most 1 
2 C 

∗
max due to the definition of τ2 

iven in (2) and its completion time is 3 
2 C 

∗
max . Then the load of 

he processor before scheduling task T p must be larger than C ∗max . 

ccording to Step 4.2, the processor was the least loaded before 

he task T p is scheduled. Therefore, we conclude that all processors 

ave their loads greater than C ∗max . In other words, the workload of 

is greater than mC ∗max , which contradicts that the total workload 

f σ is at most mC ∗max . �

.2. Goodness of partial schedule σ0 

Given that exactly one of σ1 , σ2 and σ3 exists, which we denote 

y partial schedule σ0 , we consider that σ0 is respectively σ1 , σ2 

nd σ3 in Sections 5.2.1 –5.2.3 , and then show the goodness of σ1 , 

2 and σ3 , respectively. Before we show the goodness of partial 

chedule σ0 , let us first establish some properties for tasks. 

emma 7. For any task T i , we have γ (i, τ1 ) = γ (i, C ∗max ) , γ (i, τ2 ) =
(i, 1 2 C 

∗
max ) , and γ (i, τ3 ) = γ (i, 3 2 C 

∗
max ) . 

roof. For any task T i , we have γ (i, C ∗max ) ≤ γ (i, τ1 ) since τ1 ≤
 

∗
max . Suppose there exists a task T j such that γ ( j, C ∗max ) < γ ( j, τ1 ) .

his implies C ∗max ≥ t j,γ ( j,C ∗max ) 
≥ t j,γ ( j,τ1 ) −1 > τ1 , which contradicts 

he definition of τ1 . The same argument can be applied on τ2 and 

3 . �

orollary 1. For any task T i , we have t i,γ (i,τ1 ) 
= t i,γ (i,C ∗max ) 

, t i,γ (i,τ2 ) 
=

 

i,γ (i, 1 
2 

C ∗max ) 
, and t i,γ (i,τ3 ) 

= t 
i,γ (i, 3 

2 
C ∗max ) 

; on the other hand, we also 

ave w i,γ (i,τ1 ) 
= w i,γ (i,C ∗max ) 

, w i,γ (i,τ2 ) 
= w 

i,γ (i, 1 
2 

C ∗max ) 
and w i,γ (i,τ3 ) 

= 

 

i,γ (i, 3 
2 

C ∗max ) 
. �

.2.1. Schedule σ0 = σ1 

Let us show in this subsection that schedule σ1 is good. Accord- 

ng to the algorithm, schedule σ1 is empty. Hence we only need to 

heck the workload condition. As we already have mC ∗max ≥ W 

∗ ≥
 S , the workload condition is then satisfied by the empty sched- 

le σ1 with zero workload. Consequently, we have the following 

emma. 

∗

max S 
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.2.2. Schedule σ0 = σ2 

Now let us consider the goodness of schedule σ2 , which is de- 

ivered by the algorithm in its Step 2 for large tasks T L with a

akespan at most τ1 + τ2 . Since τ1 ≤ C ∗max and τ2 ≤ 1 
2 C 

∗
max , the 

chedule satisfies makespan condition. According to the algorithm, 

2 satisfies the feasibility condition. Now consider the workload 

ondition. 

According to Lemma 7 and Corollary 1 , problem 

P (T L , m, τ1 , τ2 ) in Step 2 of the procedure is equivalent to

he following knapsack problem KP (T L , m, C ∗max , 
1 
2 C 

∗
max ) , i.e., 

 (τ1 , τ2 ) = W (C ∗max , 
1 
2 C 

∗
max ) : 

 

(
C ∗max , 

1 

2 

C ∗max 

)
= min 

T ′ ⊆T L 

( ∑ 

T i ∈T ′ 
w i,γ (i,C ∗max ) 

+ 

∑ 

T i ∈T L \T ′ 
w i,γ (i, 1 2 C 

∗
max ) 

) 

ubject to 
∑ 

T i ∈T ′ γ (i, C ∗max ) ≤ m . 

Fix any optimal schedule of our problem. In an optimal sched- 

le, let p i denote the number of processors allotted to task 

 i . Let T ∗
1 

= { T i ∈ T L : t i,p i 
> 

1 
2 C 

∗
max } . Clearly, we have 

∑ 

T i ∈T ∗1 p i ≤
 as the optimal schedule is first feasible. Since p i ≥ γ (i, C ∗max ) 

or T i ∈ T ∗1 according to the definition of γ (i, C ∗max ) , we have
 

T i ∈T ∗1 γ (i, C ∗max ) ≤ m . Therefore, T ∗
1 

is a feasible solution of knap- 

ack problem KP (T L , m, C ∗max , 
1 
2 C 

∗
max ) . 

In an optimal schedule, the total workload of T S is at least 

 S , which implies that the total workload of the remain- 

ng large tasks is at most W 

∗ − W S : 
∑ 

T i ∈T L w i,p i 
≤ W 

∗ − W S . 

or any task T i ∈ T ∗
1 

, we have p i ≥ γ (i, C ∗max ) and hence

 i,p i 
≥ w i,γ (i,C ∗max ) 

. For any task T i ∈ T L \T ∗1 , we have t i,p i 
≤ 1 

2 C 
∗
max 

nd hence p i ≥ γ (i, 1 2 C 
∗
max ) , which implies w i,p i 

≥ w 

i,γ (i, 1 
2 

C ∗max ) 
. 

e then have 
∑ 

T i ∈T L w i,p i 
= 

∑ 

T i ∈T ∗1 w i,p i 
+ 

∑ 

T i ∈T L \T ∗1 w i,p i 
≥

 

T i ∈T ∗1 w i,γ (i,C ∗max ) 
+ 

∑ 

T i ∈T L \T ∗1 w 

i,γ (i, 1 
2 

C ∗max ) 
. As T ∗

1 
is a feasi- 

le solution of knapsack problem KP (T L , m, C ∗max , 
1 
2 C 

∗
max ) and 

 (C ∗max , 
1 
2 C 

∗
max ) is the optimal value of the knapsack problem, we 

hen have 

 

(
C ∗max , 

1 

2 

C ∗max 

)
≤

∑ 

T i ∈T ∗1 
w i,γ (i,C ∗max ) 

+ 

∑ 

T i ∈T L \T ∗1 
w i,γ (i, 1 2 C 

∗
max ) 

≤
∑ 

T i ∈T ∗1 
w i,p i + 

∑ 

T i ∈T L \T ∗1 
w i,p i = 

∑ 

T i ∈T L 
w i,p i ≤ W 

∗ − W S . 

hen, we have the following lemma with W 

∗ ≤ mC ∗max . 

emma 9. Any optimal solution to knapsack problem 

P (T L , m, τ1 , τ2 ) satisfies W (τ1 , τ2 ) ≤ mC ∗max − W S . �

The total workload of any schedule constructed at Step 2 is 

 (τ1 , τ2 ) . As a direct consequence of Lemma 9 , schedule σ2 satis-

es the workload condition. 

.2.3. Schedule σ0 = σ3 

It is clear that schedule σ3 , which is constructed in Step 3 of 

he algorithm, has a makespan at most max { τ1 + τ2 , τ3 } , which 

mplies that the makespan condition is satisfied by σ according 

o the definition of τ1 , τ2 and τ3 . We know the total workload of 

ny schedule constructed in Step 2 is W (τ1 , τ2 ) , which is at most

C ∗max − W S according to Lemma 9. Note in Step 3, the algorithm 

an only decrease the number of processors of some tasks, and 

he total workload of the schedule decreases accordingly due to 

he monotonicity assumption. Therefore, schedule σ3 satisfies the 

orkload condition. 

In schedule σ3 , m 0 is the number of processors allotted to tasks 

n S 0 and m 1 = m − m 0 . Notice that in Step 3, the number of used

rocessors in S 1 does not exceed m 1 , but the number of used pro-

essors in S can exceed m . Then if tasks in shelf S use at most
2 1 2 

575 
 1 processors, schedule σ3 is feasible (as illustrated in Fig. 3 (a)). 

n what follows, we show that this is indeed the case. 

The idea of our proof is by contradiction. Assume tasks in S 2 
se more than m 1 processors in schedule σ3 . First, we obtain a 

ower bound on the workload of tasks in S 0 . Then we establish 

ome properties of tasks in S 1 and S 2 . These properties help us 

o find some lower bounds on the workloads of tasks in S 1 and 

 2 . Using the workload condition for schedule σ3 , we then obtain 

 contradiction. 

emma 10. In schedule σ3 , the total workload in S 0 is greater than 

 0 C 
∗
max . 

roof. Since all processors in S 0 are scheduled in Step 3, we con- 

ider tasks scheduled in those processors in different cases. 

For task T i in Step 3.1, we have t i,γ (i,τ1 ) −1 = t i,γ (i,C ∗max ) −1 > C ∗max 

ccording to the definition of the canonical number of processors 

nd Lemma 7 . 

For tasks T i and T j in Step 3.2, we have t i,γ (i,τ1 ) 
= t i, 1 and

 j,γ ( j,τ1 ) 
= t j, 1 . As T i ∈ T L and T j ∈ T L , we then have t i, 1 > τ2 and

 j, 1 > τ2 according to the definition of T L given in (5) . Since t i, 1 ∈ X

nd τ2 is the largest value in X but no more than 

1 
2 C 

∗
max , then t i, 1 >

1 
2 C 

∗
max . Similarly, we can obtain t j, 1 > 

1 
2 C 

∗
max . Hence, t i, 1 + t j, 1 >

1 
2 C 

∗
max + 

1 
2 C 

∗
max = C ∗max . 

For tasks T i and T j in Step 3.3, we have t i,γ (i,τ1 ) 
= t i, 1 and

 j,γ ( j,τ1 ) 
= t j, 2 . Since T i ∈ T L , then t i, 1 > τ2 according to the defi-

ition of T L . Since t i, 1 ∈ X and τ2 is the largest value in X but

o more than 

1 
2 C 

∗
max , then t i, 1 > 

1 
2 C 

∗
max . Also, we have t j,γ ( j,τ1 ) 

=
 j,γ ( j,C ∗max ) 

> 

1 
2 C 

∗
max by Corollary 1 and Lemma 2 . Hence, t i, 1 + t j, 2 > 

1 
2 C 

∗
max + 

1 
2 C 

∗
max = C ∗max . 

For task T i in Step 3.4, because of the test in Step 3.4, we have

 i,γ (i,τ3 ) 
> τ1 . Since t i,γ (i,τ3 ) 

∈ X and τ1 is the largest value in X but 

o more than C ∗max , we then have t i,γ (i,τ3 ) 
> C ∗max . 

Therefore, the workload of any processor in S 0 is larger than 

 

∗
max , which implies the workload in S 0 is greater than m 0 C 

∗
max . �

orollary 2. In schedule σ3 , the total workload of tasks in S 1 and S 2 
s bounded by m 1 C 

∗
max − W S . �

According to Lemma 10 , the total workload of tasks in S 0 is 

reater than mC ∗max if m 1 = 0 , which is a contradiction to the work-

oad constraint. We then assume m 1 ≥ 1 in the remainder of this 

ubsection. Let us establish more properties of tasks scheduled in 

 1 and S 2 . 

emma 11. Schedule σ3 has the following properties: 

(a) Any task in S 1 uses at most two processors, i.e., γ (i, τ1 ) ∈ 

{ 1 , 2 } for T i in shelf S 1 . 

(b) Any task T i with γ (i, τ1 ) = 2 in S 1 has t i,γ (i,τ1 ) 
> 

3 
4 C 

∗
max . 

(c) Among all the tasks T i with γ (i, τ1 ) = 1 in S 1 , there exists at

most one task with execution time less than or equal to 3 
4 C 

∗
max . 

(d) Any task in S 2 uses at least two processors and its execution 

time is larger than 1 
4 C 

∗
max . 

(e) The workload of any task in S 2 is larger than 3 
2 qC ∗max , where q

is the number of idle processors in S 1 . 

roof. (a) Suppose to the contrary that there exists a task T i in 

 1 such that γ (i, τ1 ) ≥ 3 . According to the monotonicity assump- 

ion and the definition of τ1 , we have w i,γ (i,τ1 ) −1 ≤ w i,γ (i,τ1 ) 
≤

1 γ (i, τ1 ) ≤ C ∗max γ (i, τ1 ) . Therefore, 

 i,γ (i,τ1 ) −1 = 

w i,γ (i,τ1 ) −1 

γ (i, τ1 ) − 1 

≤ C ∗max γ (i, τ1 ) 

γ (i, τ1 ) − 1 

, 

hich is at most 3 
2 C 

∗
max when γ (i, τ1 ) ≥ 3 . Hence, task T i can be

escheduled to S 0 in Step 3.1. 

(b) Since T i cannot be rescheduled to S 0 , we have t i,γ (i,τ1 ) −1 > 

3 . As t i,γ (i,τ ) −1 ∈ Y and τ3 is the largest value in Y but no more

1 
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han 

3 
2 C 

∗
max , we must have t i,γ (i,τ1 ) −1 > 

3 
2 C 

∗
max . Then, 

 i,γ (i,τ1 ) = γ (i, τ1 ) t i,γ (i,τ1 ) = 2 t i,γ (i,τ1 ) 

≥ w i,γ (i,τ1 ) −1 = ( γ (i, τ1 ) − 1 ) t i,γ (i,τ1 ) −1 > 

3 
2 
C ∗max . 

ence, t i,γ (i,τ1 ) 
> 

3 
4 C 

∗
max . 

(c) If there exist two tasks T i and T j with t i, 1 ≤ 3 
4 C 

∗
max and t j, 1 ≤

3 
4 C 

∗
max , then these two tasks can be scheduled in S 0 in Step 3.2

ince t i, 1 + t j, 1 ≤ τ3 ≤ 3 
2 C 

∗
max by the definition of τ3 . 

(d) According to the definition of large tasks and Lemma 2 , the 

laim holds. 

(e) Since any task in S 2 can not be rescheduled to S 0 or S 1 ,

ny task T i in S 2 has γ (i, τ3 ) > q , which implies t i,q > τ3 . As t i,q ∈ Y 

nd τ3 is the largest value in Y but no more than 

3 
2 C 

∗
max , we must

ave t i,q > 

3 
2 C 

∗
max . Due to monotony, we have w i,γ (i,τ2 ) 

≥ w i,γ (i,τ3 ) 
≥

 i,q = qt i,q > 

3 
2 qC ∗max . �

In schedule σ3 , let W 1 denote the workload of tasks in S 1 and 

 2 denote the workload of tasks in S 2 . If m 1 = q , we have W 1 = 0

nd W 2 > 

3 
2 m 1 C 

∗
max by (e) of Lemma 11 , which implies W 1 + W 2 >

 1 C 
∗
max . This contradicts that W 1 + W 2 ≤ m 1 C 

∗
max − W S according to

orollary 2 . Therefore, we assume m 1 − q ≥ 1 in the remainder of 

his subsection. 

If schedule σ3 is not feasible, number of processors used in S 2 
s more than m 1 . Lemmas 12 and 13 deliver some lower bounds 

f the workload of tasks in S 1 and S 2 . Lemma 14 shows that this

eads to a contradiction. 

emma 12. If tasks in S 2 use at least m 1 + 1 processors in schedule

3 , then the workload W 1 of tasks in S 1 is larger than 3 
4 (m 1 − q ) C ∗max ,

hile the workload W 2 of tasks in S 2 is larger than 1 
4 (m 1 + 1) C ∗max . 

roof. We have W 2 > 

1 
4 (m 1 + 1) C ∗max since any task in S 2 has an

xecution time larger than 

1 
4 C 

∗
max by (d) in Lemma 11 and tasks in 

 2 use at least m 1 + 1 processors. 

In S 1 , if all tasks have execution times larger than 

3 
4 C 

∗
max , we

ave W 1 > 

3 
4 (m 1 − q ) C ∗max . 

Then we concentrate on the case that there exists one task T i 
n S 1 such that t i,γ (i,τ1 ) 

≤ 3 
4 C 

∗
max . According to (a), (b) and (c) of

emma 11 , T i is the only task in S 1 with execution time less than or

qual to 3 
4 C 

∗
max . And we have γ (i, τ1 ) = 1 . We branch into several

ubcases. Recall that m 1 − q ≥ 1 . 

If m 1 − q = 1 and q = 0 , i.e., task T i is the only task in S 1 ,

e have W 1 > 

1 
2 C 

∗
max and W 2 > 

1 
4 (m 1 + 1) C ∗max = 

1 
2 C 

∗
max . Hence,

 1 + W 2 > C ∗max , which contradicts W 1 + W 2 ≤ m 1 C 
∗
max − W S by

orollary 2 . 

If m 1 − q = 1 and q ≥ 1 , we have W 1 > 

1 
2 C 

∗
max and W 2 >

3 
2 qC ∗max = 

3 
2 (m 1 − 1) C ∗max by (e) of Lemma 11 . Then, W 1 + W 2 >

 

3 
2 m 1 − 1) C ∗max = (m 1 + 

1 
2 m 1 − 1) C ∗max ≥ m 1 C 

∗
max as m 1 ≥ 2 . This

lso contradicts W 1 + W 2 ≤ m 1 C 
∗
max − W S . 

Therefore, we must have m 1 − q ≥ 2 , i.e., there exists at least 

nother task T j scheduled in S 1 with T i . According to (a) in 

emma 11 , we have γ ( j, τ1 ) = 1 or 2. If γ ( j, τ1 ) = 1 , we have

 i, 1 + t j, 1 > τ3 . By the definition of τ3 , t i, 1 + t j, 1 > 

3 
2 C 

∗
max , which im-

lies that the average load of the two processors executing T i and 

 j is larger than 

3 
4 C 

∗
max . If γ ( j, τ1 ) = 2 , then t i, 1 + t j, 2 > τ3 . We also

ave t i, 1 + t j, 2 > 

3 
2 C 

∗
max . Then the average load of the processors ex-

cuting T i and T j is also larger than 

3 
4 C 

∗
max . And all non-idle proces-

or(s) in S 1 execute task(s) with execution time larger than 

3 
4 C 

∗
max . 

hen, we obtain W 1 > 

3 
4 (m 1 − q ) C ∗max . �

emma 13. If tasks in S 2 use at least m 1 + 1 processors in sched-

le σ3 , the workload W 2 of tasks in S 2 is greater than 3 
2 qkC ∗max and

1 (m 1 + 1 − k ) C ∗max , where k is the number of tasks in S 2 . 
2 

576 
roof. We have 

 2 > 

3 

2 

qkC ∗max , (6) 

ince any task in S 2 has a work area larger than 

3 
2 qC ∗max by 

e) in Lemma 11 . Due to the monotonicity assumption and 

orollary 1 , task T i in S 2 has a workload w i,γ (i,τ2 ) 
= w 

i,γ (i, 1 
2 

C ∗max ) 
≥

 

i,γ (i, 1 
2 

C ∗max ) −1 
> 

1 
2 C 

∗
max (γ (i, 1 2 C 

∗
max ) − 1) , since γ (i, 1 2 C 

∗
max ) ≥ 2 by

d) in Lemma 11 . Then we have 

 2 > 

1 

2 

C ∗max 

( ∑ 

T i ∈ S 2 
γ
(

i, 
1 

2 

C ∗max 

)
− k 

) 

≥ 1 

2 

C ∗max (m 1 + 1 − k ) . (7) 

�

emma 14. In schedule σ3 , tasks in S 2 use at most m 1 processors. 

roof. By contradiction. Assume that tasks in S 2 use more than m 1 

rocessors. 

If q = 0 , we have W 1 + W 2 > 

3 
4 (m 1 − q ) C ∗max + 

1 
4 (m 1 + 1) C ∗max =

 1 C 
∗
max according to Lemma 12 , which contradicts W 1 + W 2 ≤

 1 C 
∗
max − W S by Corollary 2 . 

If q ≥ 1 . We have 

 2 < 

1 

4 

m 1 C 
∗
max + 

3 

4 

qC ∗max , (8) 

ince W 1 + W 2 ≤ m 1 C 
∗
max − W S and W 1 > 

3 
4 (m 1 − q ) C ∗max according

o Lemma 12 . Combining (6) and (8) , we obtain 

 qk < m 1 + 3 q ⇔ 3 q (2 k − 1) < m 1 . 

ombining (7) and (8) , we obtain 

(m 1 + 1 − k ) < m 1 + 3 q ⇔ m 1 < 3 q + (2 k − 2) . 

y transitivity we have the following inequality: 

 q (2 k − 1) < 3 q + (2 k − 2) ⇔ (3 q − 1)(k − 1) < 0 . 

owever, we have k ≥ 1 and q ≥ 1 , which is a contradiction. �

From Lemma 6 and the goodness of schedule σ0 established in 

ections 5.2.1 –5.2.3 , we obtain the following theorem. 

heorem 2. Procedure A (T , m, τ1 , τ2 , τ3 ) outputs in time O (nm +
 log n ) a feasible schedule that is (3 / 2) -approximate. 

roof. We are left to analyze the time complexity. Initially, for 

ny task T i , γ (i, τ1 ) , γ (i, τ2 ) and γ (i, τ3 ) can be computed in time

 ( log m ) by a binary search since tasks are monotonic. For n tasks,

t requires O (n log m ) time. Step 1 requires O (n ) steps. In Step

, it is well known that knapsack problem is NP-hard and can- 

ot be solved in a time bounded by a polynomial in n unless P 

 NP. However, it admits a pseudo-polynomial algorithm whose 

ime complexity is bounded by a polynomial in n and capacity m 

 Martello & Toth, 1990 ). In fact, dynamic programming recursions 

olve the knapsack problem exactly in O (nm ) . Hence, Step 2 re- 

uires O (nm ) steps. 

In Step 3.1, we check at most n tasks. In Step 3.2, we need to

ort at most n tasks in the nondecreasing order of t i, 1 for T i ∈ S 1 
nd γ (i, τ1 ) = 1 , and check first two of them at most n/ 2 times.

he time complexity is O (n log n ) . In Step 3.3, the analysis of time

omplexity is similar to that of Step 3.2. In Step 3.4, we need to 

heck at most n tasks in S 2 and reallocate it to S 0 or S 1 . If the

asks is reallocated to S 1 , we add the task into the list of tasks

orted on t i, 1 or t i, 2 according to γ (i, τ1 ) . This takes O ( log n ) time.

hen, the time complexity is O (n log n ) . In Step 3.5, we need to go

ack to Steps 3.2, 3.3 and 3.4. But the maximum times we need 

o run Steps 3.2, 3.3 and 3.4 are already counted in those steps. 

herefore, Step 3 requires O (n log n ) steps. 

In Step 4.1, the time complexity is O (n log n ) . In Step 4.2, there

re at most n steps. In Step 4.4, we need to modify at most m
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nding times of all tasks and decide at most n starting times for 

mall tasks. The greedy algorithm in Step 4 can be computed in 

 (m + n log n ) . 

Therefore, for a given input (T , m, τ1 , τ2 , τ3 ) , the algorithm re-

uires O (nm + n log n ) steps to deliver a schedule. �

emarks. The performance ratio 3/2 in Theorem 2 is tight as 

hown in the following example. Let n = 3 , m = 4 . t 1 , 1 = t 1 , 2 =
 1 , 3 = t 1 , 4 = 1 ; t 2 , 1 = 1 , t 2 , 2 = 

1 
2 , t 2 , 3 = t 2 , 4 = 

1 
3 ; t 3 , 1 = 2 , t 3 , 2 = 1 ,

 3 , 3 = t 3 , 4 = 

2 
3 . Clearly, the optimal makespan is C ∗max = 1 . Accord-

ng to our algorithm, we have τ1 = 1 , τ2 = 

1 
2 and τ3 = 

3 
2 . There-

ore, all three tasks are large tasks. One optimal solution to 

P (T L , m, τ1 , τ2 ) may lead to the assignment of task T 1 with one

rocessor and task T 3 with two processors in shelf S 1 and task T 2 
ith two processors in shelf S 2 , which results in a makespan of 

 / 2 . 

. Conclusions and remarks 

To summarize, our FA Algorithm, which combines procedures 

 (T , m ) and A (T , m, τ1 , τ2 , τ3 ) , outputs schedule ˜ σ of makespan

t most 3 
2 τ0 if τ0 ≤ C ∗max . Otherwise, by correctly computing 

τ1 , τ2 , τ3 ) , it outputs schedule σ of makespan C(τ1 , τ2 , τ3 ) ≤
3 
2 C 

∗
max . Combining Theorems 1 and 2 , we obtain the following main 

heorem. 

heorem 3. The FA Algorithm for scheduling monotonic modable 

asks is 3 
2 -approximate. Its time complexity is O (nm log (nm )) (if m > 

 ) and O (n 2 log n ) (if m ≤ n ). �

For non-monotonic moldable tasks, it is known that no approx- 

mation algorithm has an approximation ratio smaller than 

3 
2 un- 

ess P = NP. For monotonic moldable tasks, we believe it is also 

he case although a formal proof is still unavailable. 

We remark that the novel general technique developed in the 

aper for removing the ε-term in the worst-case performance ra- 

io can be applied to improving the performance guarantee of dual 

lgorithms for other combinatorial optimization problems. In fact, 

he technique has already been applied successfully in another 

tudy ( Wu, Jiang, Zhang, & Zhang, 2022 ). 
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