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Abstract

Enhancers are DNA elements which play crucial roles in the spatio-temporal
regulation of gene expression. An open question in enhancer biology is to identify
which enhancers regulate which genes in which cell types. Recent experimental
advances have enabled the design of high throughput screens to functionally in-
terrogate putative enhancer-gene connections. These datasets have facilitated the
development of predictive models of enhancer-gene regulation.

The main contribution of this thesis is an in depth analysis of the predic-
tive ability of a specific enhancer-gene prediction method known as the Activity-by-
Contact (ABC) model. We show that ABC is an effective predictor and outperforms
other previously published prediction methods. We consider variations of the score
which help to illustrate why the model performs so well. We consider the implica-
tions of success of the model on the role of genome architecture in gene regulation.

The ABC model is practically implementable and we describe how it was
used to generate a database of enhancer-gene predictions across 131 cell types. We
illustrate case studies which describe how this database can be used to interpret
non-coding human genetic variation.

We discuss recent advances in single-cell sequencing which may form the ba-
sis for future larger-scale enhancer screens. We highlight a power-calculation that
must be conducted to design such an experiment.

We also consider a formal mathematical representation of the ABC model.
We show that the mathematical model is tractable and compute the mean of the
mRNA distribution under this model. We show how the ABC Score formula can
be derived from the mathematical model and generally describe the relationship
between conceptual modeling and formal modeling.

We conclude by discussing the importance of these results within the field of
gene regulation as a whole.
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Chapter 1

Introduction
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1.1 Discovery of enhancers

This thesis investigates the role of enhancers in eukaryotic gene regulation. En-

hancers are non-coding DNA sequences which act as cis-regulators of gene expres-

sion. Enhancers were originally discovered in the early 1980s through experiments

conducted by the laboratories of Schaffner and Chambon [1, 26]. In these experi-

ments a non-coding sequence from the SV40 genome was shown to increase (enhance)

the expression of genes on a plasmid. These early experiments also showed that the

enhancer could activate expression regardless of its orientation and precise location

relative to the gene promoter.

In the subsequent decades enhancers were discovered in their native genomic

contexts (for the remainder of this thesis the term enhancer will refer to a DNA

sequence which is a cis-regulator of a gene in its native context in the genome -

not the ability of the sequence to drive expression in an episomal reporter assay).

Enhancers were discovered in a wide range of model systems including drosophila,

mouse, human etc. Such enhancers were found to play critical roles in development

and to mediate disease risk [21, 7]. Through these studies it also became clear that

some enhancers act in a cell-type specific manner - that is an enhancer sequence may

control gene expression in one specific cell type or tissue - but may not be relevant

in another cell type.

1.2 Enhancer mechanisms

The biochemical mechanisms by which enhancers function to activate genes has

been an active area of study. Early experiments noted that enhancers tend to be

accessible by the enzyme DNase suggesting that enhancer sequences are devoid of

nucleosomes [7]. This has been confirmed with genome-wide assays of chromatin

accessibility such as DNase-Seq and ATAC-Seq. ChIP experiments have begun to

illuminate the set of factors present at enhancers [35]. It is now appreciated that

transcription factors (TF) bind to enhancer regions and the role of many TFs have

been elucidated. ChIP studies have also shown that the histones flanking active

enhancers seem to be marked by a certain set of post-translational modifications

[4]. These studies have suggested a guiding model of enhancer function - enhancers

serve as landing pads for transcription factors which then recruit other activators

and components of the transcriptional machinery.
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A central open question is how the set of factors at the enhancer locus are

able to affect the gene promoter which may be located distal (over tens to hundreds

of kilobases or more) to the enhancer. Early experiments suggested that even though

enhancers and their target gene promoters may be far away in the linear genome,

they are actually in much closer proximity in the 3D nature of the nucleus [37]. With

the advent of high throughput chromosome conformation mapping and live imaging

of DNA the relationship between enhancer-promoter distances has been more fully

investigated [34, 3]. Such studies have hinted at the role of 3D genome architecture

in regulating enhancer-promoter communication although the precise relationship

between genomic distance, 3D distance and gene regulation is still unclear.

1.3 Identifying enhancers in the genome

The progress made in understanding enhancer biology has formed the basis for the

enhancer identification problem: given a gene in a particular cell type, or cell state,

can we find all of its regulatory elements? The gold standard experiment to identify

an enhancer is to perturb the DNA element through a genetic deletion and to read

out the effect on expression of its putative target gene. However, such experiments

are low throughput and prior to 2016 only a few dozen such examples have been

found. Instead numerous attempts at computationally predicting enhancers have

been proposed. Such attempts are typically based on identifying enhancers through

epigenetic marks or through 3D genome conformation [10, 5, 38, 22]. Yet, the lack

of gold standard functional experimental data has made it impossible to test these

predictive models.

1.4 Relation of enhancers to human genetics studies

The ability to identify which enhancers regulate which genes in which cell types

may impact our understanding of complex human traits and diseases. The 2000s

have seen hundreds of genome-wide association studies (GWAS) conducted for a

wide range of complex diseases and traits [6]. Such studies have implicated tens

of thousands of variants (more precisely haplotypes) which are statistically associ-

ated with the traits/diseases. Crucially, however, such studies only identify the risk

haplotype, they do not assign a mechanism by which the risk haplotype mediates

disease risk.
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The vast majority of risk variants are in non-coding regions of the genome.

A seminal observation is that many of the risk variants appear to be in regions of

the genome which are predicted to be enhancers [25]. A hypothesis has emerged

wherein many variants mediate disease risk by altering enhancer function which in

turn modulates gene expression. Accurate maps of enhancer-gene regulation are

thus a potential stepping stone to investigate disease-associated non-coding genetic

variation.

1.5 Technologies to experimentally identify enhancers

at scale

The advances in this thesis are based on experimental work to test whether a DNA

element acts as an enhancer for a given gene in a particular cellular context. Such

an experiment typically consists of a strategy to perturb the enhancer element and

read out its effect on gene expression.

The predominant perturbation strategy that has emerged is known as CRISPR

interference (CRISPRi) [20]. This strategy consists of fusing the protein domain

KRAB to catalytically inactive cas9 (dcas9). The dCas9-KRAB fusion is directed to

a DNA element using a guide RNA complementary to the sequence of the DNA ele-

ment. Upon localization to an enhancer element, KRAB recruits HP1 to heterochro-

matinize the chromatin and abrogate enhancer function. This strategy is favored

over catalytically active cas9 strategies because it is amenable to high throughput

experiment and it is unknown how the enhancer will be affected due to the short

indels that occur due to homology directed repair. In general CRISPRi has been

shown to be both robust and specific [19]. A limitation of CRISPRi is that it the

dCas9-KRAB fusion may interfere with transcription making CRISPRi unsuitable

for identifying enhancers-gene connections where the enhancer lies within the tran-

scribed region of the gene.

CRISPRi has recently been combined with readout technologies to enable

high throughput enhancer screens. In one of the first such screens [13] identified all

regulatory sequences for the genes MYC and GATA1 in the K562 cell line. This

initial functional datasets of enhancer-promoter connections facilitated the testing

of predictive models of which enhancers regulate which genes. Based upon this
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preliminary data, an enhancer prediction framework based on chromatin state and

3D genome architecture was hypothesized. This predictor was able to accurately

distinguish DNA elements which acted as enhancers for MYC in K562 from those

which did not. This predictor was later called the Activity by Contact Model

More experimental data was needed in order to rigorously test this predictive

model. This led to the development of the CRISPRi-FlowFISH screening strategy

(Fig 1) [14]. This strategy, in which the readout is based on RNA FISH and flu-

orescence activated cell sorting, identifies all regulatory elements for a given gene

in a given cell type. This strategy is sensitive enough to detect approximately 20%

effects on gene expression. Limitations of this strategy include that it cannot dis-

tinguish between cis and trans effects. This technique was used to screen all DNase

peaks located within 500kb of 30 genes in the K562 cell line. In addition, we curated

a set of other CRISPR experiments from the published literature. In total we have

a dataset of 3863 experimentally interrogated element-gene pairs - of which 141 are

found to be statistically significant. We will now use this data set to assess various

predictive models of enhancer-gene regulation.
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Figure 1: Figure reproduced from [[14], Main fig 1] (a) CRISPRi-FlowFISH Screen-
ing strategy. Cells expressing KRAB-dCas9 are infected with a pool of gRNAs tar-
geting DHS elements near a gene of interest, labeled using RNA FISH against that
gene and sorted into bins of fluorescence signal by FACS. The quantitative effect
of each gRNA on the expression of the gene is determined by sequencing the gR-
NAs within each bin. Inset: example of K562 cells labeled for RPL13A. (b) Distal
elements (DE) affecting GATA1 and HDAC6 expression in K562 cells. Genes ex-
pressed in K562 cells are shown in black; those not expressed are shown in gray.
Red/blue arcs: perturbation of a DE resulted in a significant decrease/increase in
the expression of the tested gene. Gray circles are distal elements where perturba-
tion with CRISPRi affects the expression of at least one tested gene as measured
by CRISPRi-FlowFISH. Distal elements are DHS peaks. (c) Close-up of region
containing GATA1 and HDAC6. Points represent the effect on gene expression of
a single gRNA. HDAC6 vertical axis capped at 200%. Gray, red and blue bars:
DHS elements in which CRISPRi leads to either no detectable change (gray) or a
significant decrease (red) or increase (blue) in expression. Elements overlapping the
assayed gene are excluded from analyses because recruitment of KRAB-dCas9 in
a gene body directly interferes with transcription. Such elements are included in
analyses for other genes, as shown for the elements overlapping GATA1
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Chapter 2

The predictive ability of the

ABC Score
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2.1 Precision-recall framework

Our first task is to compare the performance of various models in predicting the

experimental data. In order to do so we require a quantitative framework for mak-

ing such a comparison. Assuming that the prediction method is quantitative (as

opposed to binary), we can make a scatter plot whose x axis is the predictor and y

axis is the experiment. An example is given in Figure 2 using genomic distance as a

continuous predictor. In Figure 2 it’s clear that red points are shifted to the left rel-

ative to gray, indicating that a predictor solely based on enhancer-gene distance has

better than random performance. In order to formalize and quantify this relation-

ship, as well as support binary predictors, we use a precision-recall (PR) framework.

Figure 2: Figure reproduced from [14] Main fig 2e. Relationship between element-
gene distance and effect size observed in CRISPRi Flow-FISH screen. Each dot
represents an element-gene pair. The x-axis is the genomic distance between the
element and the transcription start site of the gene. The y-axis represents the
change in gene expression upon CRISPRi perturbation of the element as measured
by FlowFISH. Red and blue dots represent statistically significant pairs, gray dots
are not statistically significant.

For the PR framework, the set of ground truth positives are taken to be the

element-gene pairs in the CRISPR dataset which are statistically significant and for
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which CRISPR perturbation of the element leads to a decrease in gene expression.

We then classify each element-gene pair in the CRISPR dataset as a true positive

(TP), false positive (FP), true negative (TN), false negative (FN) relative to each

predictive model. The precision of a predictive model is TP/(TP + FP) and the

recall is TP/(TP + FN). Ie, precision measures whether the predicted positives are

experimental positives and recall measures how many of the experimental positives

are predicted positives. For a continuous predictor the PR curve is formed by com-

puting precision and recall using a binary cutoff throughout the predictors range.

A perfect predictor has both a recall and precision of 1 and would be represented

as a dot on the top right of the PR curve. A predictor that makes random pre-

dictions would be represented by a horizontal line whose y-intercept is equal to the

percentage of positives in the dataset. We note an important limitation of the PR

framework is that the quantitative effect size of the experimental data is ignored -

only its statistical significance is considered.

With the PR framework in hand, we can evaluate the performance of different

predictors (Fig 3a). We find that predictors based on proximity such as distance or

closest gene have modest performance, predictors based on binary features of the

3D genome (such as TADs and Loops, see Chapter 3) or correlation techniques have

poor performance. We find that the ABC Score (described in detail below) has the

best performance.

2.2 ABC Score - conceptual explanation

We now describe the conceptual notion of the ABC model (Fig 3b), details of its

computation are in the next section. The ABC model is based on the following

conceptual notions:

• Enhancers activate their target genes upon contact (or close physical proxim-

ity) between the enhancer element and the target gene promoter

• Each enhancer element is assumed to have an intrinsic activity level. Activity

may reflect the frequency with which the TFs and co-activators are recruited

to the enhancer

• Each enhancer has its own level of activity which is the same for each gene.

• The expression of a gene is proportional to sum of enhancer activity weighted

by its contact frequency to the gene promoter

9



Putting this together we have the linear formula

G ∼
∑
e

AeCe,G (2.1)

Where G is the expression of a gene, Ae is the activity of an enhancer element,

Ce,G is the contact frequency between the enhancer and the target gene promoter

and the sum is over all regulatory elements.

We now use this linear formula to derive the ABC Score. In the CRISPR

experiments we measure the fraction change in gene expression

Fraction Change :=
G−G∆

G
(2.2)

where G is the expression of a gene in the control condition and G∆ is

the expression of the gene in the CRISPR perturbation condition. Making the

assumption that perturbation of element e causes the Activity of e to go to zero,

combining 2.1 and 2.2 we have the

ABC Score(G,e) :=
AeCe,G∑
e′ Ae′Ce′,G

(2.3)

where the sum is taken over all enhancers e′ within 5Mb of the transcription

start site of G. See chapter 6 for a more formal mathematical derivation of the ABC

Score.

2.3 ABC Score - practical implementation

In order to make the ABC Score practically implementable, we need to assign values

to Activity and Contact. The Activity is intended to represent the ability of the

element to bind transcription factors and other components of the transcriptional

machinery. We estimate this quantity by the amount chromatin accessibility of the

element and the amount of histone acetylation at the element. The Contact of an

element-gene pair is taken to be the Hi-C contact frequency between the element

and the gene promoter. We now describe this process in more detail.

The first step in computing the ABC Score is defining the set of putative en-

hancer elements (elements). Elements are taken to be regions of DNA which display

elevated levels of chromatin accessibility. These are determined by calling peaks

in an ATAC-Seq or DNase-Seq experiment. We make the heuristic assumption

that each element consists of roughly one nucleosomes worth of DNA ( 150bp) and
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that activating histone marks are present on neighboring nucleosomes. As such the

typical element is approximately 500bp in length. The Activity of the element is

computed as the geometric mean of the number of read counts (normalized by read

depth) of Dnase-seq (or ATAC-Seq) and H3K27ac ChIP-Seq over the element (Fig

3b )

The Contact of an element-gene pair is derived from Hi-C experiments. We

begin with a KR normalized Hi-C matrix at 5kb resolution. This matrix is then

minimally processed in the following ways:

• We replace each diagonal element of the matrix with the maximum of its

neighboring bins. We do this because we noted that the Hi-C signal on the

diagonal is not correlated with either of its neighboring bins. This suggests

that the Hi-C signal on the diagonal bins is highly influenced by the ability of

the sequence to self-circularize and is not reflective of DNA contacts occuring

within 5kb.

• We add a small pseudocount to each bin. For bins less than 1Mb the pseudo-

count is equal to the expected contact frequency at 1Mb (based on the pow-

erlaw distribution), for bins at distance greater than 1Mb the pseudocount is

equal to the expected contact frequency at that distance. This pseudocount

is a crude regularizer which is designed to hedge against counting noise in the

Hi-C experiment and to ensure that each bin has a non-zero count.

The Contact of an element gene pair is then the entry in this modified matrix

corresponding to the midpoint of the element and the transcription start site of the

gene.

We show below that the performance of the ABC score is robust to many data

processing decisions that go into computing the ABC Score (Fig 6). We emphasize

that the ABC Score is a parameter-free predictor - there are no free parameters:

each component of ABC is derived from epigenomic/Hi-C experiments orthogonal

to the CRISPR dataset. There is no model fitting, or training/testing framework

involved.

2.4 ABC Score performance

The ABC Score has high predictive ability on the CRISPR dataset. Considered as a

binary predictor, the ABC Score achieves a precision of 59% at a recall of 70%. We

use the area under the PR curve (AUPRC) as a summary metric of effectiveness of
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a predictor. The ABC Score achieves an AUPRC of .65. As a continuous predictor,

the ABC Score is correlated with the effect size observed in the CRISPR experiments

(Spearman correlation of -.63). This is a crucial point! The ABC Score is not a

statistical model, it is inherently a (crude) biophysical model. The fact that the score

is correlated with effect size is a strong signal that the model has some biological

relevance.

2.5 Performance of variations of ABC Score

We now dig deeper into ABC performance. We first note that the ABC Score

performs better than each of its individual components (Fig 4a). This appears to be

because there are some strong distal enhancers and some weak proximal enhancers

(Fig 4b).

Next we investigate different ways to measure Activity. We compute the

performance of the ABC Score using different histone marks, or measures of tran-

scription at the enhancer in place of H3K27ac. In general we find that many of these

variations of the ABC score have reasonably good performance which is roughly

comparable to H3K27ac, but some marks do not (Fig 4c).

Next we investigate a variation of the ABC Score which uses Hi-ChIP data

(Fig 4d). Hi-ChIP is an assay which performs chromatin immunoprecipitation on a

Hi-C library. As such a H3K27ac Hi-ChIP dataset can be roughly viewed as an ex-

perimental convolution of Hi-C and H3K27ac ChIP-Seq. We computed a variation

of the ABC Score using H3K27ac Hi-ChIP data in K562 cells from [27] . We find

the performance of this variation is similar to using separate Hi-C and H3K27ac

ChIP-Seq datasets. Importantly, the predictor using quantitative Hi-ChIP signal

far outperformed the Hi-ChIP loop calls (see next chapter for discussion of loops).

This result gives us further confidence that the ABC concept is robust to the exact

means by which to experimentally access Activity and Contact.

In analyzing the CRISPRi-FlowFISH dataset we noticed that ABC Score

performance seemed to vary from gene to gene. In particular there was a subset

of genes for which ABC tended to make many false positive predictions. We in-

vestigated whether these genes had a common property and realized that many of

them are classified as ubiquitously expressed genes (sometimes denoted housekeep-

ing genes.) We denoted genes as ’ubiquitously expressed’ based on previous anno-

tations which enumerated genes that had detectable or uniform expression across

many tissues [39, 11, 8]. We find that the ubiquitously expressed genes tested in the
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CRISPRi-FlowFISH assay tend not to have any enhancers, even though there are

elements with high ABC Scores (Fig 5).

We also examined how the performance of ABC varies with respect to various

decisions that need to be made in terms of data processing (Fig 6). We recomputed

the ABC score by varying the range over which the sum in the ABC Score is com-

puted (default 5mb), the size of the candidate elements (default 500 bp), the distance

used in the Hi-C pseudocount regularization (default 1Mb) and the replacement of

the Hi-C diagonal bin (default equal to the maximum of neighboring bins). We find

that ABC performance is robust to all of these choices.

2.6 ABC Performance in other cell types

We also compared ABC predictions against CRISPR data from other cell types

besides K562. This includes

• element-gene connections tested using allele-specific deletions alongside allele-

specific RNA-Seq in a hybrid mouse stem cell line [9]

• element-gene connections tested using CRISPRi through the CARGO system

followed by RNA-Seq in NCCIT cells [12]

In Fulco 2019 we found ABC performance in the non-K562 data to have an

AUPRC of .73 (Fig 7). In [28] we also applied CRISRPi-FlowFISH to cell lines

derived from immune lineages and found ABC performance in these cell types to

be similar to K562. Overall we find that the success of the ABC model is not

limited to K562 and performance is similar across other cell types and experimental

measurement modalities.
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Figure 3: Figure reproduced from [14], Main fig 3] (a) Precision-recall plot of
various predictive models evaluated on CRISPR dataset. Dots E (each element is
predicted to only regulate the closest gene), and G (each gene is predicted to be
regulated by its closest DHS element) represent proximity based predictors. Dots L
(element-gene pairs are predicted to be regulatory if they are at opposite ends of Hi-C
loops) and D (element-gene pairs are predicted to be regulatory if they are contained
within the same topologically associated domain) are based on binary features of
Hi-C maps. Dot J is a correlation based predictor which makes enhancer-gene
predictions by correlating epigenetic signals in DNA elements with gene expression
across many cell types [5] ’T’ represents enhancer-gene connection predicted by the
TargetFinder algorithm which combines loop calls with epigenetic data. [38] ’P’
represents enhancer-gene connection predicted by RNA polymerase II ChIA-PET
loops [22] ’H’ represents enhancer-gene connection predicted by H3K27ac Hi-ChIP
loops [27] (b) Hypothetical calculation of the ABC Score. e1 and e2 represent two
arbitrary enhancers for the gene (black arrow). The Activity of the elements is
determined by quantitative DHS and H3K27ac signals. The Contact between the
elements and gene promoter is determined by Hi-C. (c) Comparison of ABC scores
(predicted effect) to observed changes in gene expression following perturbations.
Each dot represents one tested element-gene pair. Red/blue dots: connections for
which perturbation resulted in a significant decrease/increase in the expression of
the tested gene. Gray dots: no significant effect. Dotted black line denotes 70%
recall, corresponding to the big red dot in (a)
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Figure 4: Figure reproduced from [14], Extended Data Fig 3 (a) Precision-
recall curves for classifying regulatory element-gene pairs, comparing each of the
components of the ABC score (b) Scatterplot of Activity and Contact frequency
for each tested element-gene. Contact frequency is derived from KR normal-
ized Hi-C experiments and linearly scaled to a maximum of 100 (c) Perfor-
mance of ABC Score when H3K27ac is replaced by other epigenomic datasets.
ActivityFeature1,Feature2 = sqrt(Feature1 RPM x Feature2 RPM). (ABC score corresponds to
ActivityDHS, H3K27ac x Contact) (d) Precision-recall curves for the ABC model using
H3K27ac HiChIP [27]. ABCDHS x H3K27ac Hi-ChIP corresponds to a predictive model
whose score is proportional to the Dnase signal at the candidate element multiplied
by the quantitative H3K27ac Hi-ChIP signal between the element and gene pro-
moter. ABCH3K27ac Hi-ChIP is the same as above but only uses the existence of the
DHS peak as opposed to the quantitative signal in the DHS peak. H3K27ac HiChIP
HiCCUPS Loops is the HiCCUPS loop calls derived from the H3K27ac HiChIP ex-
periment. ABC (red line) corresponds to the standard ABC Score using Dnase,
H3K27ac and Hi-C.
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Figure 5: Figure reproduced from [14] Extended Data Fig 4 (a) Left: Compari-
son of ABC scores (predicted effect) with observed changes in gene expression upon
CRISPR perturbations. Each dot represents one tested DE-G pair where G is a
ubiquitously expressed gene. Right: precision-recall curve for ABC score in classi-
fying enhancers for ubiquitously expressed genes (b) Same as (a) for tissue-specific
genes. All panels include only the subset of our dataset for which we have CRISPRi
tiling data to comprehensively identify all enhancers that regulate each gene (30
genes from this study [14], 2 from previous studies [13];
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Figure 6: Figure reproduced from [14], Supplement Fig 5. Changing the data pro-
cessing parameters parameters of the ABC score does not dramatically affect per-
formance near the default values. Each panel presents the area under the precision
recall curve (AUPRC) for the ABC score when changing the specified parameter.
Red lines indicate the values used throughout this paper. (a) Genomic distance
within which elements are included in the model. (b) Number of bases DHS peaks
were extended on either side before merging to create candidate elements. (c) Ge-
nomic distance used to compute the pseudocount added to the Contact component.
(d) In processing Hi-C data, each diagonal entry of the Hi-C matrix is replaced by
some percentage of the maximum of its four neighboring entries

Figure 7: Figure reproduced from [14], Main 4. ABC Performance on CRISPR
data in cell types other than K562
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Chapter 3

The ABC Model and genome

architecture
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In this chapter we revisit various models for the role of genome architecture

in gene regulation in light of the results from chapter 2.

3.1 Introduction

The development of the Hi-C assay has revealed many features of the 3D genome

such as TADs and loops [30]. These features have been hypothesized to play impor-

tant roles in gene regulation and have been investigated in some studies at individual

loci [36, 15]. Yet, the precise relationship between 3D genome architecture and gene

regulation is still unclear, and general principles that apply across the genome have

yet to be elucidated.

We begin by formalizing two common notions of the role of 3D architecture

into enhancer prediction models. We then show that these models are incompat-

ible with the results described in chapter 2. We then describe alternative models

suggested by the results from chapter 2.

3.2 TAD and loop hypotheses

We begin by stating what we call the TAD and loop enhancer-prediction models:

• The TAD predictor: this model proposes that enhancer-gene communication

is non-specific within TADs and constrained to within TADs.

• The Loop predictor: this model proposes that enhancer-gene connections can

be identified as loops or peaks in a Hi-C experiment

In order to test the TAD and loop predictors, we need to convert these

conceptual models into concrete predictive models. We note that the CRISPRi-

FlowFISH experiments were not specifically designed to test such hypotheses (an

ideal such experiment would directly perturb genome architecture), however, we

can use the CRISPR dataset to test whether these models are consistent with the

experimental data.

We define the TAD predictor as classifying all element-gene pairs that are

within a TAD as positives and all element-gene pairs not contained in the same

TAD as negatives (ie, all DHS peaks regulate all genes within its own TAD, but no

genes outside of its TAD). We observe that this predictor has high recall, but low

precision: most regulatory enhancer-gene pairs are contained within a TAD, but the

vast majority of putative enhancers (Dnase-peaks) do not regulate a gene within its
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TAD (Fig 3a). We also tested whether the TAD hypothesis performed better by

incorporating enhancer activity: we tested a model in which the Contact component

of the ABC Score is equal to 1 if the element and gene promoter are in the same

TAD and 0 otherwise. We find that this model performs substantially worse than

using Hi-C data (Fig 8a).

We define the loop predictor as classifying all element-gene pairs that are at

opposite ends of Hi-C loops (as called by the HiCCUPS algorithm on K562 Hi-C

data) as positives and all other element-gene pairs as negatives. We observe that

this predictor has modest precision and low recall: the vast majority of regulatory

enhancer-gene pairs are not identified with loops, and more than half of all element-

gene pairs associated with loops are not regulatory (Fig 3a). We note that this

analysis is contingent on the HiCCUPS loop caller. It is possible that the concep-

tual notion of identifying enhancer-gene connections as focal amplifications in Hi-C

experiments is valid, but a different loop calling method tuned more precisely for

this task would be needed. In particular, the median distance between anchors at

ends of HiCCUPS loops in K562 is 260kb, whereas the median distance between

regulatory enhancer-gene pairs in the CRISPRi-FlowFISH dataset is 22kb. It is

also possible that chromatin confirmation capture methods with higher resolution

(such as micro-C or promoter-capture Hi-C) may provide better experimental tech-

nologies to identify enhancer-gene connections.

3.3 Using a powerlaw relationship as opposed to Hi-C

data

Hi-C experiments have demonstrated that contact frequency is well approximated

by a power-law function of genomic distance [32]. We fit a power-law to K562 Hi-C

data and found the power-law relationship with exponent .7 explained about 70%

percent of the variance in Hi-C data. We thus tested a version of ABC in which the

Contact component of the ABC Score is derived from the power-law relationship

as opposed to the Hi-C data itself. We find that this predictor has similar perfor-

mance to the ABC Score based on cell-type specific Hi-C data (Fig 8a,b). How is

it possible to accurately make cell-type specific predictions without using cell-type

specific Hi-C data? We recall that the median distance between regulatory pairs

in our dataset is 22kb, whereas many of the cell-type specific features of the 3D

genome that are not captured in a powerlaw (loops, TADS, stripes) appear at much
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larger distances.

To investigate this further we computed the power-law based version of ABC

with a wide range of powerlaw exponents. We find that ABC performance is high

for exponents that match Hi-C data, but is lower for more extreme exponents (Fig

8c). We also find that a version of ABC in which the Contact component decays

linearly performs poorly (Fig 8a,b). We further note that even within TADs there

is a decay rate with distance (Fig 8d). The ABC Model thus makes the prediction

that distances within TADs are important, which was subsequently observed in a

recent experiment [40]. A similar relationship where contact frequency decays with

distance holds for loops (Fig 8f). For example the strongest loops at a distance

of 500kb have the same contact frequency as typical non-loop loci at a distance of

50kb.

We thus come to our main conclusion in this section: the salient feature

of the 3D genome that appears to matter for enhancer-gene prediction is contact

frequency, not binary features of the 3D genome.

3.4 Construction of an average Hi-C dataset

The performance of the power-law version of ABC suggests that making cell-type

specific enhancer-gene predictions may not require cell-type specific Hi-C data. How-

ever, we know there are certain features of Hi-C data, which in some cases may be

important for enhancer-gene prediction, that are not apparent in the powerlaw dis-

tribution. Interestingly, many of the TADs and loops which have been identified in

Hi-C experiments are actually not cell type specific. For example, [30] found that

55-75% of loops are shared between distinct cell types. As such we suggest that by

averaging together many different Hi-C maps, we can form a reference Hi-C map

which is more informative than the power-law and can serve as a reference for mak-

ing cell-type specific enhancer-gene predictions in the absence of cell-type specific

Hi-C data.

We construct such a map by averaging together Hi-C data from 10 cell lines.

We find that such a map explains 80% of the variance in Hi-C data in a particular

cell line. We use this average Hi-C map to predict enhancer-gene connections in a

variety of cell lines and find a high level of performance when comparing to CRISPR

data (Fig 8a).
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Figure 8: Figure reproduced from [14], Supplementary figure 6] (a) PR curves
for various versions of the ABC model in which the contact component (derived
from K562 Hi-C data) is replaced by binary features of Hi-C experiments (loops or
domains) or decreasing functions of distance. Yellow: Contact component is equal
to 1 if the element and gene promoter are in the same TAD (based on K562 Hi-C
data) and 0 otherwise. Green: Contact component is equal to 1 if the element and
gene promoter are at opposite ends of the same HiCCUPS loop (based on K562
Hi-C data) and 0 otherwise. Black/blue/brown: Contact component is replaced
with decreasing functions of linear distance. Brown represents a linear decay. Blue
represents a powerlaw decay with exponent .7 and black represents a powerlaw decay
with exponent 1. Gray: Contact component is replaced with Hi-C data computed
as the average of Hi-C datasets from 10 different cell types. (b) Visualization
of functions used to replace contact frequency in (a) (c) AUPRC for models in
which the Contact component of the ABC Score is replaced by a powerlaw function
with varying exponent. Values of exponent derived from various polymer models
of DNA are highlighted in red. (d,e) Scatterplot of genomic distance vs Contact
frequency (from K562 Hi-C) for all experimental tested element-genea pairs in K562
at distance >10kb. Colors represent membership in the same TAD (yellow) loop
(green) or neither (gray) (f) Scatterplot of genomic distance vs contact frequency for
all HiCCUPS loops in K562. Although contact frequency is greater than expected
under the powerlaw model (with exponent .7) the absolute increase is modest. For
example, the loops with the highest contact frequency separated by 500kb have the
same contact frequency as non-loop loci at 50kb
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Chapter 4

A database of ABC predictions

with applications to human

genetics
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In this chapter we describe how we built a database of ABC Predictions across

131 cell types. We then describe how this database can be used in conjunction with

human genetic studies to investigate the genetic basis of complex traits and diseases.

4.1 Building a database of ABC predictions

Given our ability to make cell type specific predictions using the average Hi-C

dataset, the data required to generate ABC predictions in a particular cell type are

just ATAC-Seq and H3K27ac ChIP-Seq. Accordingly, we gathered these two epige-

nomic datasets for a total of 131 cell types and states (hereafter termed biosamples).

These biosamples included a variety of immortalized cell lines and primary tissue

from the ENCODE and Roadmap consortia, resting and stimulated immune cell

types from the Engreitz lab, and a variety of other samples from the literature. We

then generated ABC predictions in each of these biosamples.

One particular challenge in building this database of ABC predictions is that

the ABC Score is quite sensitive to the signal to noise ratio of the epigenetic data.

As the signal to noise ratio of the epigenetic data decreases, ABC Scores also tend to

become more uniform. As such ABC Scores computed in two different biosamples,

where the epigenetic data in each biosample has different signal to noise ratios, are

not directly comparable (although the relative ranking of each element-gene pair

within each biosample is still valid). In order to mitigate this, we quantile normal-

ized the counts of ATAC-Seq and H3K27ac ChIP-Seq across the candidate elements

in each cell type to a reference (chosen to be the counts in K562 cells). This pro-

cedure allows ABC scores to be comparable across cell types and facilitates the

creation of a reference database. In our initial testing we also noted the sensitivity

of the ABC Score to various properties of the Hi-C datasets. However, the use of

the Average Hi-C dataset for the entire database sidesteps these issues.

We note some of the basic properties of our predictions. Each expressed gene

is predicted to be regulated by 2.8 enhancers while each enhancer is predicted to

regulate 2.7 genes. We also note the cell type specificity of our predictions - on

average only 19% of connections are shared between cell types, with cell types from

similar tissue types or cell lineages having more shared connections (Fig 9a,b).

We employed various checks to evaluate the self consistency of the predic-

tions. For biosamples in which independent replicates of the epigenomic data were
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available, we computed ABC Scores separately in each replicate. We found ABC

Scores to be quantitatively well correlated (Fig 9c). We also compared the number

of shared connections between the replicates. We found that on average 90% of

connections are shared between replicates, with the proportion of shared connec-

tions increasing as the ABC Score cutoff increased (Fig 9d) or the correlation of the

underlying epigenetic data increased (Fig 9e).

Figure 9: Figure reproduced from [[28], Supplementary figure 6] (a) Heatmap of
fraction of shared connections among 131 biosamples. For each pair of biosamples we
computed the fraction of predicted EG connections shared between the biosamples.
Median of row medians is 19% (b) Distribution of shared predicted connections
stratified by relatedness of the two biosamples (c) Quantitative reproducibility of
ABC Scores - example from the BJAB cell line. Each axis represents ABC Scores
computed using independent epigenomic experiments (d) Fraction of shared con-
nections increases as ABC Score cutoff increases. Single Donor refers to biosamples
for which the epigenomic data is derived from a single donor, Multiple Donors refers
to biosamples for which the epigenomic data is derived from multiple donors (e)
Fraction of shared connections increases as correlation of underlying epigenomic
data increases

4.2 Applications to human genetics

We next evaluated whether this database could be used to interpret disease-associated

non-coding genetic variation. The central idea is that a disease-associated variant

contained within a predicted ABC enhancer yields a hypothesis by which the vari-
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ant mediates disease risk - the variant is hypothesized to influence enhancer activity

which in turn affects gene expression in a particular cell type or state. The approach

is then to check if any fine-mapped disease associated variants lie within a predicted

ABC enhancer within the entire database of predictions.

We initially evaluated this approach in the case of inflammatory bowel dis-

ease (IBD). IBD was chosen because there existed accurate fine-mapping and many

of the cell types known to be relevant for IBD were contained in our ABC database.

We found that ABC enhancers in IBD relevant cell types were enriched for IBD

associated variants [28]. Additionally, we found that the ABC Score successfully

connected these variants to genes known to be relevant to IBD (a gold standard set

of genes was curated based on coding variation, therapeutic targets etc). Finally, the

ABC model predicted that the target of a specific variant, rs1250566 was the gene

PPIF instead of ZMIZ1 (which was previously hypothesized to be the right gene

since the variant resides in an intron of ZMIZ1). This prediction was verified using

CRISPRi experiments and the impact of PPIF on cellular function was studied [28]

We also applied this approach to a recent study of clonal hematopoiesis. We

found that a fine-mapped non-coding variant was predicted to regulate a gene TET2

[2]. A CRISPR deletion experiment validated this connection which yielded a regu-

latory mechanism hypothesis for the means by which this variant mediated disease

risk.

We do note some limitations to the approach of using the ABC prediction

database to interpret non-coding genetic variation.

• ABC makes predictions at the enhancer level, not the variant level.

• A predicted ABC connection may actually be real (ie, the enhancer does reg-

ulate the gene) but it may not be relevant for disease.

• The ABC Score is only designed to predict the effect of enhancers, it does not

predict other non-coding mechanisms such as splicing, UTR, CTCF etc.

• Success of the approach is fundamentally limited by the size and content of

the ABC database.

• The ABC Model itself is not perfect

Despite these limitations, the success of the approach for IBD and CHIP

suggests it could be more widely applicable.
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Chapter 5

Single-cell screen power

calculations
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This is a brief chapter describing my contributions to [23]. This study de-

scribes a new technology, Hybridization of Probes to RNA for sequencing (HyPR-

seq), to measure the expression level of a select set of RNAs in single cells. This

technology could be used in combination with CRISPRi to design enhancer screens

that test thousands of putative enhancer-gene connections in a single experiment.

Such sample sizes will be necessary in order to further refine the ABC Model and

other models of gene regulation.

My contributions to this study were to conduct a power calculation to esti-

mate the statistical power to detect certain effect sizes based on many parameters

of the screen. These parameters include the effect size of the enhancer on gene

expression, the expression of the gene, the number of cells needed to be profiled,

the number of guide RNAs per enhancer element etc. Simulations were conducted

to assess statistical power in a hypothetical HyPR screen. These simulations were

compared against the observed power in an actual single-cell CRISPR screen [16]

which used full transcriptome 10x sequencing (as opposed to target sequencing with

HyPR).

HyPR technology allows the sequencing reads to be concentrated in the genes

of interest which greatly increases the statistical power of the experiment. Consid-

ering a hypothetical enhancer screen consisting of 1,000 gRNAs tested against 50

genes, we find that approximately 25,000 single cells would need to be profiled with

HyPR (assuming 5,000 reads per cell) to have 90% power to detect 25% effects on

gene expression. To achieve the same power with 10x whole transcriptome sequenc-

ing would require over 1,000,000 cells at 20,000 reads per cell. This analysis does

not model guide to guide variability between guides targeting the same enhancer

element.
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Figure 10: Figure reproduced from [[23], Main figure 2d] Power to detect changes
in gene expression of various magnitudes as a function of the total number of cells
profiled. Power is shown for a hypothetical screen of 1,000 CRISPR perturbations
and is averaged over 37 genes expressed at > 1.5 UMIs per cell in a HyPR-seq
dataset (Left) and the same genes in a 10X Genomics Chromium 3 scRNA-seq
dataset (Right) sequenced to 18,000 UMIs per cell [16]
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Chapter 6

Mathematical formalization of

ABC Model
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The ABC model as described in Chapter 2 is considered informal in the sense

that the model is presented as a cartoon. The ABC Score is derived from the cartoon

using various assumptions and heuristics. In this chapter we show how the infor-

mal representation of the ABC model can be translated into a formal mathematical

model of transcription. We show how the ABC Score can be formally derived from

the mathematical model.

6.1 The linear framework

The mathematical modeling framework we employ is known as the linear framework

[17]. The linear framework is a graph based approach to Markov processes. The

starting point of the linear framework consists of a finite, directed, labeled graph, G.

In the context of gene regulation, each vertex of G represents a regulatory state of

a gene and the edge labels represent transition rates between the regulatory states.

The ABC Score is fundamentally a statement about mRNA counts, as such we need

a framework that models the number of mRNA present in the cell as well as the

regulatory state of the gene. To do so, we define the copy-number graph C(G) of any

regulatory graph. C(G) is an infinite graph which chains together countably many

copies of G by the production and degradation of mRNA. An example conversion

of a finite regulatory graph to an infinite copy number graph is given in Figure 11.
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k l

b

OFF, 0

ON, 0

OFF, 1

ON, 1

OFF, 2

ON, 2 . . .

. . .

k l k l k l k l

r

δ

r

2δ

r

3δ

δ 2δ 3δ

c

Figure 11: Conversion of finite underlying graph to infinite copy-number graph.
(a) Underlying regulatory graph of a two state model. (b) Infinite copy number
graph of two state model in (a) in which ON is the only production state with
production rate r and degradation rate δ. The state (ON, s) indicates that the
gene is in the ON state and there are s copies of mRNA in the cell. (c) Compact
representation of infinite copy number graph in (b). The purple squiggles represent
mRNA molecules. The arrow from ON with label r indicates that ON is a production
state.
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6.2 The multi-ON model

Given a gene with m enhancers, the simplest possible linear framework representa-

tion of the ABC model consists of graph with m + 1 states (Fig 12c). This model

includes one state in which mRNA is not produced and m production states. We call

this model the ’multi-ON model’. The multi-ON model does not explicitly specify

anything about the biology of gene regulation - each ON state in the multi-on model

is an abstract state. In this case we consider the state ONi to refer to a state in

which the gene is being transcribed due to the effects of enhancer i. In the context

of the ABC model, this means that ONi represents a state in which enhancer i is

active and is contacting the gene promoter.

However, even with this idea in mind, it is unclear how the notions of Activ-

ity and Contact should be incorporated into the transitions rates of the multi-ON

model. One possibility is that the notion of Contact should be incorporated into

the rates ki and li and Activity incorporated into the production rates ri. Another

possibility is that both Activity and Contact should be incorporated into the tran-

sitions rates ki and li and that the production rates ri are all equal and reflect a

property of the gene and not the enhancers. Although the precise mapping between

the conceptual ABC Model and the multi-ON model is not completely clear, we do

show that, under certain interpretations, the ABC Score can be formally derived

from a mathematical analysis of the multi-ON model.

Figure 12: A mathematical formalization of the ABC Model (a) Cartoon descrip-
tion of ABC model. Same as in Fig 3 (b) Computation of ABC Score. Same as in
Fig 3 (c) Simplest possible formulation of the ABC Model using Markov processes.
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In order to derive the ABC Score from the multi-ON model, we must first

analyze the steady-state behavior of the multi-ON model. We employ a seminal

result of Sanchez and Kondev [33] which states that the mean steady-state mRNA

copy number in any copy number graph is given by:

Mean =
r · µ
δ

(6.1)

where r is the vector of production rates, δ is the mRNA degradation rate

and µ is the steady-state probabilities of the underlying regulatory graph G. In

order to compute µ in the multi-ON model we use a general result known as the

Matrix Tree Theorem (MTT) [17]. The MTT states that µ can be calculated as

µi :=
ρi

ρ1 + ρ2 + · · ·+ ρN
(6.2)

where

ρi =
∑

T∈Θi(G)

∏
j→k∈T

e(j → k) (6.3)

Here Θi(G) denotes the set of all spanning trees of G rooted at vertex i and

the product is over all edge labels of the tree. A spanning tree in a directed graph

G is a tree (a tree is a connected and has no cycles) which includes all vertices of

the graph. A spanning tree is rooted at vertex i, if i is the only vertex in the tree

that has no outgoing edges.

The advantage of the MTT is that in certain graphs enumerating spanning

trees is very easy. The multi-ON graph is one such example, there is only 1 spanning

tree rooted at each vertex, making the computation trivial (Fig 13)

Indexing OFF as state 1 and ONi as state i + 1 and applying the MTT we

have:

ρ =


l1l2 . . . lm

k1l2 . . . lm
...

l1l2 . . . km


Let λi := ki

li
and Z = 1 +

∑m
i=1 λi. Dividing ρ by the scalar factor l1l2 . . . lm

and normalizing yields the steady-state probability distribution
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Figure 13: Spanning trees in the multi-ON regulatory graph with 3 enhancers.
The root of each tree is outlined in red. There is only one spanning tree rooted at
each vertex.

µ =
1

Z



1

λ1

λ2

...

λm


(6.4)

Applying (6.1) gives the mean mRNA copy number in the multi-ON model

as

Mean =
1

δ

1

Z

m∑
i=1

ri
ki
li

(6.5)

6.3 Deriving the ABC Score

We now show how the ABC Score can be derived from the mean mRNA copy

number of the multi-ON model. We recall that in the experiments described in [14],

the mean mRNA copy number, 〈G〉, of a particular gene is measured in a control

condition and the mean is measured in a condition in which enhancer j of the gene is

perturbed, which we denote 〈G∆j 〉. The ABC Score intends to predict the fractional

change in expression upon perturbation:
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Fraction Change in Expression =
〈G〉 − 〈G∆j 〉
〈G〉

(6.6)

The method used to perturb enhancers in [14] is CRISPR interference (CRISPRi).

We must now consider how to apply the effects of a CRISPRi perturbation to en-

hancer j in the mutli-ON model. This choice is subtle because the relationship

between the biology of CRISPRi and the multi-ON model is not clear. The poten-

tial options would be to change one of the rates associated to state ONj (kj , lj or rj)

or to just remove vertex ONj from the graph. Below we proceed by setting rj equal

to 0 which eliminates any transcription due to enhancer j. Removing ONj from the

graph (or equivalently letting kj → 0 or lj → ∞) will result in similar qualitative

behavior with some technical caveats not discussed here.

Using (6.5) and (6.6) and making the assumption that rj is the only rate

parameter that changes in the ∆j condition leads to

Fraction change in expression upon CRISPRi of enhancer j =
rjλj∑
i riλi

(6.7)

We note that this expression has the identical mathematical form as the ABC

Score (Fig 12b). Equations (6.6) and (6.7) also highlight the power of conducting

perturbational experiments. By forming the ratio in (6.6), the dependence on the

degradation rate δ cancels out. This is advantageous as it becomes possible to make

the fold-change predictions without measuring the mRNA decay rate.

A much more extensive discussion of these formal models and their relation

to the ABC model is forthcoming [Nasser et al, in preparation].
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Chapter 7

Discussion
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Understanding the role of enhancers in gene regulation is an active field of

modern research. There are many broad open questions that are being investigated:

What are the biophyiscal and biochemical mechanisms by which enhancers regulate

their target genes? How does enhancer-gene specificity arise? Can we experimen-

tally map and computationally predict enhancer-gene conncetions? What is the role

of enhancers in development, signaling, disease and other cellular or physiological

phenomena?

The ABC model provides some insight into these questions. On its most basic

level, as a practical predictor, the ABC model provides a means by which to com-

putationally predict enhancer-gene connections. Our results suggest that cell-type

specific Hi-C data is not needed in order to make cell-type specific enhancer-gene

predictions (at least for some subset of enhancer-gene connections). As such the re-

quirements of the model are ATAC-Seq and H3K27ac ChIP-Seq. These requirements

are modest and will facilitate the generation of large scale databases of predicted

enhancer-gene connections. These databases can then be mined to interpret non-

coding genomic variation as described in Chaper 4.

Can we learn anything new about enhancer biology from the predictive ability

of the ABC Model? This is a difficult question to answer. The initial conceptual-

ization of ABC was based on seminal advances in our understanding of enhancer

biology. Early investigations into enhancers showed the importance of chromatin

conformation, chromatin accessibility and suggested that histone modifications were

correlated with enhancer activity. ABC was a simple way to put all these ideas to-

gether into a predictive model and provides further support for these conceptual

ideas.

One important conclusion from the ABC story (so far!) is that a complicated

process such as eukaryotic transcription can be effectively described using a simple

model. We did not need to know the structural biology and interactions between

each component of the transcriptional machinery in order to identify enhancers in

the genome. Instead, we have settled for a higher level representation of the system.

We have arrived at a model which is just precise enough to describe the experiments:

CRISPRi-FlowFISH experiments perturb the enhancer as a whole, and our model

is represented at the level of the enhancer. An experiment with a more targeted

perturbation (such as a single base-pair change to an enhancer element, or a single

amino-acid substitution to a transcription factor) would require a model that ex-
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plicitly contains this perturbation component.

The results presented herein describe the first iteration of the ABC model.

While the performance of the model is sufficiently high to be used as a practical

predictor, there is still substantial room for improvement. Specific open questions

include

• Do the results for ubiquitously expressed genes hold in general? Can we iden-

tify a set of genes that are not regulated by distal enhancers?

• To what extent is cell-type specific data needed in order to make cell type

specific predictions? How well does the using the average Hi-C dataset do?

Are the enhancer-gene connections that need cell-type specific Hi-C data to

be identified special in some way?

• The ABC Score is currently mainly being used as a binary predictor. How-

ever, our results do show that the ABC score is correlated with the effect size

observed in the CRISPR screens. Can we actually predict effect size in a pa-

rameter free manner? Can we predict higher order features of transcription

such as gene expression variance or bursting kinetics?

• ABC currently operates at the level of 500bp enhancer elements. Is it possible

to get a sequence-level understanding of enhancers?

• What is the best path forward? Should we try to develop better ways to

measure ’Activity’ (say by combining multiple epigenomic datasets or through

MPRA reporter assays) and ’Contact’ (with higher resolution Hi-C)? Or is an

entirely new modeling framework needed?

Tackling such questions will require much more experimental data. Larger ex-

perimentally derived CRISPR datasets will need to be generated which can be used

as gold-standard datasets to develop further improvements to ABC. Improvements

in enhancer screening technologies may facilitate the generation of such datasets.

In addition to more enhancer screens, the best way to improve enhancer

prediction methods is to increase our understanding of enhancer biology. Open

questions remain such as (i) how do enhancers regulate gene expression over large

physical distances? (ii) what is the role of enhancer RNAs? (iii) what step in the

transcription process do enhancers regulate? (iv) how do multiple transcription fac-

tors work together at the level of a single enhancer element? (v) how do multiple
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enhancers work together to regulate gene expression? Progress on each of these

topics can lead to better enhancers models. But how do we actually do this? How

do we convert basic experimental advances in enhancer biology into a quantitative

models of enhancer regulation?

We suggest that the results of Chapter 6 may form the basis for such a strat-

egy. Such an approach is a way to convert informal models (depicted as cartoons or

described using words) into formal mathematical models that make testable predic-

tions. Such formalizations may not always be useful. However, the motivating idea is

that if we can convert conceptual ideas into quantitative models, and if these models

make quantitative predictions, and if these predictions are confirmed by experiment,

then this is good evidence that we have achieved a reasonable understanding of the

system which is being investigated. Such an approach has been conducted in the

context of prokaryotic gene regulation [29]. It may be worthwhile to attempt such

efforts in the eukaryotic paradigm.

The field of eukaryotic gene regulation is at an exciting moment. Experi-

mental advances have enabled new ways to observe and perturb the components

involved in gene regulation. A central challenge will be to convert these experimen-

tal observations into a comprehensive understanding of gene regulation. We suggest

modeling can be a way to synthesize our understanding at the conceptual and quan-

titative level. The work in this thesis provides a case study for such an approach in

the context of enhancers and suggests this approach may be more widely applicable.
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Elizabeth J. Grinkevich, Teia Noel, Sarah Mangiameli, Anna Greka, Eric S. Lander, Fei Chen, 
Jesse M. Engreitz, HyPR- seq: Single-cell quantification of chosen RNAs via hybridization and 
sequencing of DNA probes, PNAS 2020 117 (52) https://www.pnas.org/content/117/52/33404 

This paper presents a novel experimental approach (HyPR-seq) to sensitively detect selected 
RNAs in single cells.  

Joe’s main contribution to this paper was in the experimental design of several 
pilot experiments (Figure 2). Joe performed various power calculations to determine the size of 
the experiment that would be required (number of cells, number of reads per cell, number of 
guide RNAs, etc) in order to have sufficient statistical power to detect the expected effect 
sizes. These calculations were then used to actually design the experiment. Joe also analyzed 
the results of the experiment to assess the suitability of various assumptions made in the 
power calculations.  

I have been a Senior Group Leader at the Broad Institute of MIT and Harvard in the Kidney 
Disease Initiative since 2018 leading a group focused on the development of new technologies 
for quantifying RNA expression and determining the spatial location of RNA in the kidney in 
health and disease.   

Sincerely, 

Jamie L Marshall, PhD 
Senior Group Leader  
Kidney Disease Initiative  
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To Whom It May Concern: 

The purpose of this letter is to document the contributions of Joseph (Joe) Nasser to the 

publication: 

 

Bick, A.G., Weinstock, J.S., Nandakumar, S.K. et al. Inherited causes of clonal 

haematopoiesis in 97,691 whole genomes. Nature 586, 763–768 (2020) 

 

This publication investigates genetic risk for clonal haematopoiesis (CHIP). In this study, 

whole genome sequencing is performed in 97,691 individuals which is then used to 

conduct a genome-wide association study for CHIP. The publication identifies three 

genomic loci associated with CHIP status, including a non-coding signal at the TET2 

locus.  

Joe's contributions to this publication center on the interpretation of the signal at the 

TET2 locus. Joe was responsible for the bioinformatic analysis leading to the predicted 

function of the causal variant at the TET2 locus (Figure 3a-c). Specifically, Joe generated 

enhancer-gene predictions using the ABC model and noted that the causal variant at the 

TET2 locus overlapped a predicted enhancer in haematopoietic progenitor cells. This 

prediction was subsequently validated experimentally which constituted a major 

contribution to the publication as a whole. Joe also assisted in writing and editing the 

portion of the manuscript relating to these analyses. 

Sincerely, 

 
Alexander Bick, MD PhD 

Assistant Professor of Medicine 

Vanderbilt University School of Medicine 

Alexander.Bick@VUMC.org  
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