
LOCAL LARGE DEVIATIONS
FOR PERIODIC INFINITE HORIZON LORENTZ GASES

By
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Abstract. We prove optimal local large deviations for the periodic infinite
horizon Lorentz gas viewed as a Z

d-cover (d = 1, 2) of a dispersing billiard. In
addition to this specific example, we prove a general result for a class of nonuni-
formly hyperbolic dynamical systems and observables associated with central limit
theorems with nonstandard normalisation.

1 Introduction

Local large deviations (LLD) for one-dimensional i.i.d. random variables that do
not satisfy the classical central limit theorem (with the standard normalisation)
but are in the domain of a stable law were recently obtained by Caravenna and
Doney [9, Theorem 1.1] and refined by Berger [6, Theorem 2.3]. Such results have
been extended to multivariate i.i.d. random variables in the domain of the stable
laws by Berger in [7]. Roughly speaking, an LLD measures the probability that the
sum of the random variables assumes precise, but asymptotically large values. In
the absence of second and even first moments, the proofs are considerably harder.

For dynamical systems, the first LLD results in the absence of the classical
central limit theoremwere obtained in [18]; they are as optimal as [6, Theorem2.3].
The main shift in that paper is an analytic proof which overcomes the restriction
of having independence. Although promising, the results in [18] are limited to the
Gibbs Markov maps. The aim of this paper is to prove an optimal LLD estimate
for infinite horizon periodic Lorentz maps, which were shown to satisfy a central
limit theorem with nonstandard normalisation by Szász and Varjú [22]. A crucial
new ingredient of the proofs of the present LLD results consists of a new operator
renewal technique on the Young tower for the billiard map.

Periodic dispersing billiards and Lorentz gases were introduced into ergodic
theory and studied in [21]. For a general reference, see [11]. We recall that
the classical central limit theorem was proved in the finite horizon case in [8]
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2 I. MELBOURNE, F. PÈNE AND D. TERHESIU

and local, moderate and large deviations were recently obtained in Dolgopyat
and Nándori [13]. In the same work [13] the authors designed a strategy to
prove the local limit theorem and mixing properties for group extensions (such
as Z

d) of probability preserving flows by free flight functions with finite second
moments. For a similar strategy but weaker results we refer to [3]. The strategy
in [13] consists of the systematic use of local large and moderate deviations for the
underlying probability preserving Poincaré map. Their result applies to the finite
horizon Lorentz flow. In that case, both the free flight and the roof function are
bounded. We believe that the LLD obtained in this paper (Theorem 1.1 below)
can be used to prove the local limit theorem and mixing properties for the infinite
horizon Lorentz flow.

A periodic Lorentz map (T̃, M̃, μ̃) is a Zd-cover of a periodic dispersing billiard
(T,M, μ). The notation for the dispersing billiard is recalled in Section 2. We
consider the cases d = 1 (tubular billiard) and d = 2 (planar billiard). We are
interested in the case of infinite horizon where the time between collisions for the
billiard map is unbounded, subject to certain nondegeneracy conditions described
in Section 2.

Let κ : M → Zd denote the cell-change function (discrete free flight function)
between collisions, and define κn =

∑n−1
j=0 κ◦Tj. For the Lorentz gas, geometrically

κn ∈ Z
d denotes the cell in the infinite measure phase space M̃ where the n’th

collision takes place for initial conditions starting in the 0’th cell.

Set

an =
√

n log n.

The central limit theorem with nonstandard normalisation proved in [22] says
that a−1

n κn converges in distribution to a nondegenerate d-dimensional normal
distribution. In fact, [22] proves a stronger result, namely the corresponding local
limit theorem. Our main result is:1

Theorem 1.1 (LLD for the dispersing billiard). There exists C > 0 such that

μ(κn = N) ≤ C
n
ad

n

log |N|
1 + |N|2 for all n ≥ 1, N ∈ Z

d.

Remark 1.2. Again, there is the geometric interpretation that μ(κn = N)
represents the probability that an initial condition in the 0’th cell of M̃ lies in the
N’th cell after n collisions.

Although we focus on the discrete free flight function κ : M → Zd, our results
apply immediately to the flight function V : M → R

d given by the difference

1We set log x = 1 for x ∈ [0, 2).
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in R
d between consecutive collision points. Indeed, defining Vn =

∑n−1
j=0 V ◦ Tj, it

is evident that |κn − Vn| is bounded by the diameter
√

d of the cells (since Vn is
the distance between successive collisions whereas κn is the distance between the
centres of the corresponding cells). Hence for any r > 0 there exists C > 0 such
that

μ(Vn ∈ Br(x)) ≤ C
n
ad

n

log |x|
1 + |x|2 for all n ≥ 1, x ∈ R

d.

Remark 1.3. The LLD bound for the dispersing billiard follows from a uni-
formversion [19] of the local limit theorem [22] in the rangeN � √

n log n. Hence,
the principal novelty of Theorem 1.1 lies in the range N � √

n log n. We note that,
as in [18], the approach in this paper does not rely on the local limit theorem and
extends to situations where the local limit theorem fails; see Theorem 7.1.

The approach in this paper, following [18], is Fourier analytic and relies on
smoothness properties of the leading eigenvalues and their spectral projections for
the appropriate transfer operator. We show how to obtain Cr control for all r < 2,
going considerably beyond previous estimates of [4, 19]. The methods developed
in Section 5 to obtain this control in the context of exponential Young towers are
the main technical advance of this paper and should have other applications, not
only to LLD.

In Section 2, we recall the setting for dispersing billiards. In Section 3, we prove
Theorem 1.1 in the range n � log |N|. Sections 4 to 6 treat the complementary
range log |N| ≤ ε1n where ε1 is chosen sufficiently small. Key technical estimates
are stated in Section 4 and proved in Section 5. In Section 6, we complete the proof
of Theorem 1.1. In Section 7, we state and prove an abstract version, Theorem 7.1,
of our main result, giving an LLD for a general class of nonuniformly hyperbolic
systems modelled by Young towers with exponential tails.

Notation We use “big O” and � notation interchangeably,writing bn = O(cn)
or bn � cn if there are constants C > 0, n0 ≥ 1 such that bn ≤ Ccn for
all n ≥ n0. As usual, bn = o(cn) means that limn→∞ bn/cn = 0 and bn ∼ cn

means that limn→∞ bn/cn = 1.
We write Br(x) to denote the open ball in Rd and C of radius r centred at x.

2 Setup

Define the d-torus Td = Rd/Zd. The Zd-periodic Lorentz gas describes the evolu-
tion of a point particle moving in the Zd-periodic domain Q̃ contained either in the
plane R2 (if d = 2) or in the tube R×T (if d = 1). The collisions are assumed to be
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elastic (equality of pre-collision and post-collision angles). The Lorentz gas map
T̃ : M̃ → M̃ is the collision map on the two-dimensional phase space (position
in ∂Q̃ and unit velocity) given by M̃ = ∂Q̃ × (−π/2, π/2).

We assume that Q̃ is the lifted domain2 of Q = T
2 \ �, where � ⊂ T

2 is a
finite union of convex obstacles (scatterers) with C3 boundaries and nonvanishing
curvature, and pairwise disjoint boundaries. The dispersing billiard T : M → M
corresponding to the associated collision map is obtained from T̃ : M̃ → M̃ by
quotienting. We denote by μ the unique ergodic T-invariant smooth probability
measure on M.

The Lorentz gas map T̃ : M̃ → M̃ can be viewed as aZd-cover of the dispersing
billiard (T,M, μ) by the cell-change function κ : M → Zd. We assume that κ is un-
bounded, so that we are in the case of infinite horizon. To avoid nondegeneracies in
the case d = 2, we require that there exist at least two nonparallel collisionless tra-
jectories in the interior of Q̃. (For d = 1, we require that there exists a collisionless
trajectory not orthogonal to the direction of the Z-cover, which is equivalent to our
assumption that κ : M → Z is unbounded.) Under these conditions, [22] proved
that κ satisfies a central limit theorem and local limit theorem with positive-definite
covariance matrix � ∈ Rd×d and nonstandard normalisation an =

√
n log n.

An important part of the proof of the results in [22] and of Theorem 1.1 is
that (T,M, μ) is modelled by a two-sided Young tower (f,�,μ�) with exponential
tails [10, 23]. We briefly recall the notion of Young tower.3

Let (Y, μY) be a probability space with an at most countable measurable par-
tition α, and let F : Y → Y be an ergodic measure-preserving transformation.
Define the separation time s(y, y′) to be the least integer n ≥ 0 such that Fny
and Fny′ lie in distinct partition elements in α. It is assumed that the partition α
separates trajectories, so s(y, y′) = ∞ if and only if y = y′; then dθ(y, y′) = θs(y,y′) is
a metric for θ ∈ (0, 1). We say that F is a (full-branch) Gibbs-Markov map
if

• F|a : a → Y is a measurable bijection for each a ∈ α, and
• there are constants C > 0, θ ∈ (0, 1) such that

| log ξ(y) − log ξ(y′)| ≤ Cdθ(y, y
′)

for all y, y′ ∈ a, a ∈ α, where ξ = dμY

dμY◦F : Y → R.
Let F : Y → Y be a Gibbs–Markov map and let σ : Y → Z+ be constant

on partition elements such that μY(σ > n) = O(e−an) for some a > 0, We define

2By the canonical projection from R
2 (if d = 2) or from R × T (if d = 1) onto T

2.
3We suppress many standard details about Young towers, mentioning only those aspects required

for this paper. For instance, we suppress the fact that the projection π̄ : � → �̄ corresponds in practice
to collapsing stable leaves.
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the one-sided Young tower with exponential tails �̄ = Yσ and tower map
f̄ : �̄ → �̄ as follows:

�̄ = {(y, 
) ∈ Y × Z : 0 ≤ 
 ≤ σ(y) − 1}, f̄ (y, 
) =

⎧⎨
⎩(y, 
 + 1) 
 ≤ σ(y) − 2,

(Fy, 0) 
 = σ(y) − 1.

Let σ̄ =
∫
Y σ dμY . Then μ̄� = (μY × counting)/σ̄ is an ergodic f̄ -invariant proba-

bility measure on �̄.
We say that (T,M, μ) is modelled by a Young tower (f,�,μ�) with exponential

tails if there exist a one-sided Young tower (f̄ , �̄, μ̄�) and measure-preserving
semiconjugacies

π : � → M, π̄ : � → �̄.

Next, we recall some properties proved in [22] of the cell-change function
κ : M → Z

d. First, there is a constant C > 0 such thatμ(|κ| = n) ∼ Cn−3. Second,
κ lifts to a function κ̂ = κ ◦ π : � → Zd that is constant on π̄−1(a × {
}) for
each a ∈ α, 
 ∈ {0, . . . , σ(a) − 1}. Hence κ̂ projects to an observable κ̄ : �̄ → Z

d

constant on the partition elements a × {
} of �̄. In particular,

μ̄�(|κ̄| = n) = μ(|κ| = n) ∼ Cn−3.

Define
ψ : Y → R, ψ(y) =

∑σ−1

=0 |κ̂(y, 
)|.

Proposition 2.1. There exists C > 0 such that

μY (ψ > n) ≤ Cn−2 for all n ≥ 1.

In particular, ψ ∈ Lr(Y) for all r < 2.

Proof. This is proved in [22]. The main step [22, Lemma 16] uses the bound
μ(|κ| > n) = O(n−2) together with the structure of infinite horizon dispersing
billiards (see also [12, Lemma 5.1]). The bound for μY (ψ > n) then follows (see
for instance [12, Section 2])). �

We end this subsection by recalling some results about transfer operators and
perturbed transfer operators on the one-sided tower. Let P : L1(�̄) → L1(�̄) be
the transfer operator for (f̄ , �̄, μ̄�), so∫

�̄
Pv w dμ̄� =

∫
�̄
v w ◦ f̄ dμ̄�

for all v ∈ L1,w ∈ L∞. By [4, Section 3.3], there is a Banach spaceB′ containing 1
and dense in L1 (called H in [4]) such that P : B′ → B′ is quasicompact. (The
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definition of B′ is not used in this paper.) In particular, the intersection of the
spectrum of P : B′ → B′ with the unit circle consists of finitely many eigenvalues
λ0, . . . , λq−1 of finite multiplicity and these are the q’th roots of unity λk = e2πik/q.
By ergodicity, these eigenvalues are simple.

We consider the perturbed family of transfer operators

Pt : L1(�̄) → L1(�̄), Ptv = P(eit·κ̄v), t ∈ R
d,

where · denotes the standard scalar product on R
d. Applying results of [17], it

is shown in [4, Section 3.3.2] that there exists δ > 0 so that t �→ Pt : B′ → L3

is continuous for t ∈ Bδ(0). Moreover, there are continuous families of simple
isolated eigenvalues t �→ λk,t for Pt : B′ → B′ with λk,0 = λk and |λk,t| ≤ 1. Let
t �→ �k,t denote the corresponding spectral projections on B′. Then

(2.1) Pn
t =

q−1∑
k=0

λn
k,t�k,t + Qn

t ,

where Qt = Pt(I −�0,t − · · · −�q−1,t). By [17, Corollary 2], there exist C > 0
and γ ∈ (0, 1) such that

(2.2) sup
t∈Bδ(0)

‖Qn
t ‖B′ ≤ Cγn.

Finally, by [22],

(2.3) 1 − λ0,t ∼ �t · t log(1/|t|) as t → 0.

3 The range n � log |N|
In this section, we prove Theorem 1.1 in the range n � log |N|. This estimate
holds at the level of T : M → M and κ : M → Zd (without requiring consideration
of Young towers). Recall that d ∈ {1, 2}.

Lemma 3.1. Let ω > 0, q ≥ 1. There exists C > 0 such that

μ(κn = N) ≤ C
1

|N|2 nq
for all n ≥ 1, N ∈ Z

d with n ≤ ω log |N|.

Proof. We use |x| = maxj=1,...,d |xj| so that |κ| is integer-valued. Let

Sn =
n−1∑
j=0

|κ| ◦ Tj, Mn = max
j=0,...,n−1

|κ| ◦ Tj.
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For q ≥ 1, define Jn = #{0 ≤ j ≤ n − 1 : |κ| ◦ Tj ≥ |N|/nq}. Since q ≥ 1, the
constraint κn = N implies that Jn ≥ 1. Let ε > 0. We show that

μ(Mn > |N|1+ε) � n
|N|2+2ε

, μ(κn = N, Jn = 1) � 1
|N|2 nq−2

,

μ(Sn ≥ |N|, Mn ≤ |N|1+ε, Jn ≥ 2) � n3q+1

|N|2+ 1
45

.

Then μ(κn = N) � 1
|N|2 nq−2 since n � log |N|. The result follows since q ≥ 1 is

arbitrary.
First,

μ(Mn > |N|1+ε) ≤
n−1∑
j=0

μ(|κ| ◦ Tj > |N|1+ε) = nμ(|κ| > |N|1+ε) � n/|N|2+2ε.

Second, if Jn = 1, then there exists j ∈ {0, . . . , n−1} such that |κ|◦Tj ≥ |N|/nq

and ∑
0≤i≤n−1, i �=j

|κ| ◦ Ti ≤ (n − 1)|N|/nq ≤ |N|/nq−1.

Since κn = N, this means that |κ| ◦ Tj ∈ (|N| − |N|/nq−1, |N| + |N|/nq−1). Hence

μ(κn = N, Jn = 1) ≤
n−1∑
j=0

μ(||κ| ◦ Tj − |N|| ≤ |N|/nq−1)

= nμ(||κ| − |N|| ≤ |N|/nq−1)

= n
∑

|p−|N||≤|N|/nq−1

μ(|κ| = p) � n
∑

|p−|N||≤|N|/nq−1

1
p3

≤ n ·
(2|N|

nq−1 + 3
)

·
( 2
|N|

)3 � 1
|N|2 nq−2 .

Finally, we estimate K = μ(Sn ≥ |N|, Mn ≤ |N|1+ε, Jn ≥ 2). Since Jn ≥ 2, there
exist 0 ≤ i < j ≤ n−1 such that |κ| ◦Ti ≥ |N|/nq and |κ| ◦Tj ≥ |N|/nq. It follows
that

K ≤ ∑
0≤i<j≤n−1

μ
(
|N|1+ε ≥ |κ| ◦ Ti ≥ |N|

nq
, |κ| ◦ Tj ≥ |N|

nq

)

=
∑

0≤i<j≤n−1

μ
(
|N|1+ε ≥ |κ| ≥ |N|

nq
, |κ| ◦ Tj−i ≥ |N|

nq

)

≤ n
∑

1≤r≤n−1

μ
(
|N|1+ε ≥ |κ| ≥ |N|

nq
, |κ| ◦ Tr ≥ |N|

nq

)

= n
∑

|N|1+ε≥p≥|N|/nq

∑
1≤r≤n−1

μ
(
|κ| = p, |κ| ◦ Tr ≥ |N|

nq

)
.
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Note that the constraints p ≤ |N|1+ε, n ≤ ω log |N| imply that

|N|
nq

� |N|
(log |N|)q ≥ p1/(1+ε)

(log p1/(1+ε))q
,

so there is a constant c > 0 such that |N|
nq ≥ cp1/(1+2ε). Also, the constraints

p ≥ |N|/nq, n ≤ ω log |N| imply that

n ≤ ω log |N| ≤ ω log(nqp) = qω log n + ω log p,

so there is a constant ω′ > 0 such that n ≤ ω′ log p. Hence, we can choose ε > 0
so that

K ≤ n
∑

p≥|N|/nq

∑
1≤r<ω′ log p

μ(|κ| = p, |κ| ◦ Tr ≥ cp4/5).

By [22, Lemma 16] (see also [12, Lemma 5.1]), there is a constant C > 0 such that

μ(|κ| = p, |κ| ◦ Tr ≥ cp4/5) ≤ Cp−2/45μ(|κ| = p) � p−(3+2/45)

for 1 ≤ r < ω′ log p. Hence taking η = 1/45,

K � n
∑

p≥|N|/nq

(log p) p−(3+2/45) � n
∑

p≥|N|/nq

p−(3+η) � n1+q(2+η)

|N|2+η
≤ n3q+1

|N|2+η

completing the proof. �

4 Key estimates on the one-sided tower

To proveTheorem1.1, it remains by Lemma 3.1 to consider the range log |N| ≤ ε1n

where ε1 is chosen sufficiently small. Since μ(κn = N) = μ̄�(κ̄n = N), it suffices to
work on the one-sided tower �̄. To simplify the notation, wewrite (f,�,μ�) for the
one-sided tower map, and κ : �→ Z

d for the free flight function on the one-sided
tower. Since the free flight function on M has mean zero (by time-reversibility of
the billiard map), it follows that

∫
� κ dμ� = 0.

To apply the method from [18], we require the following lemmas concerning
the leading eigenvalues λk,t for Pt and their corresponding spectral projections�k,t

in (2.1). As clarified in [19, Lemma 5.1], the derivative of Pt at t = 0 is not a
bounded operator from B′ → L1. In Section 5, we work with the Banach space
B ⊂ B′ ∩L∞ consisting of dynamically Hölder observables and show that we have
sufficient control on �t : B → L1. Let ∂j = ∂tj for j = 1, . . . , d. For t, h ∈ Rd,
b > 0, set

Mb(t, h) = |h|L(h){1 + L(h) |t|2L(t) + |h|−b|t|2L(t)L(h)2 |t|4L(t)2}
where L(t) = log(1/|t|).
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Lemma 4.1. Let j ∈ {1, . . . , d}, k ∈ {0, . . . , q − 1}. There exists δ > 0 such

that t �→ λk,t and t �→ �k,t : B → L1 are C1 on Bδ(0). Moreover, ∂jλk,0 = 0.

Furthermore, there exist C > 0, δ > 0, b > 0 such that for all t, h ∈ Bδ(0),

|∂jλk,t+h − ∂jλk,t| ≤ CMb(t, h), ‖∂j�k,t+h − ∂j�k,t‖B�→L1 ≤ CMb(t, h).

Lemma 4.2. λk,t − λk ∼ −λk�t · t L(t) as t → 0 for each k = 0, . . . , q − 1.

Corollary 4.3. Let β ≥ 0, r ∈ R, k = 0, . . . , q − 1. There exist C > 0, δ > 0
such that ∫

B3δ(0)
|t|βL(t)r|λk,t|n dt ≤ C

(log n)r

ad+β
n

for all n ≥ 1.

Proof. By Lemma 4.2, |λk,t| − 1 ∼ −�t · t L(t) and hence

log |λk,t| = −�t · t L(t)(1 + o(1)).

Since � is positive-definite, there exists c > 0 such that log |λk,t| ≤ −c|t|2L(t).
The result now follows from [18, Lemma 2.3]. (The argument in [18] uses that an

satisfies n log an ∼ a2
n, so an ∼ ( 1

2n log n)1/2, which agrees with the definition of an

used here up to an inconsequential constant factor.) �

5 Proof of Lemmas 4.1 and 4.2

This section contains the proof of the key estimates Lemma 4.1 and 4.2 concerning
the leading eigenvalues λk,t and spectral projections�k,t for the perturbed transfer
operator Pt. This represents the main technical advance of this paper. The methods
of [17] give log-Lipschitz control which is insufficient for our purposes. In [19],
it was shown how to get almost C2 control at t = 0; here we show how to get
almost C2 control in a full neighbourhood of 0. Our method is to consider leading
eigenvalues τk,t and spectral projectionsπk,t at the level of the baseY of the tower�.
The uniformity of the dynamics on Y enables strong control on τk,t and πk,t and this
control lifts via the operator renewal theory of [14, 15, 20] to the Young tower �.
Using [17], we are able to identify the lifted quantities with λk,t and �k,t thereby
transferring the required regularity properties.

In Subsection 5.1, we consider estimates for renewal operators on the base Y

of the tower. Significantly more refined estimates are obtained in Subsection 5.2.
These estimates enable us in Subsection 5.3 to obtain the required strong control
on τk,t and πk,t. In Subsection 5.4, we show how to transfer this control to λt

and�t.
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We continue to work on the one-sided tower �. Fix θ ∈ (0, 1) and recall the
definition of the metric dθ on Y from Section 2. We define the Banach space
B = B(�) of dynamically Hölder observables v : �→ R with ‖v‖B < ∞, where

‖v‖B = sup
(y,
)∈�

|v(y, 
)| + sup
(y,
)�=(y′ ,
)

|v(y, 
) − v(y′, 
)|
dθ(y, y′)

.

In this section, we often write B(�) and L1(�) for the function spaces on the
Young tower �, to distinguish them from related function spaces defined on the
base Y .

5.1 Renewal operators. Let R : L1(Y) → L1(Y) denote the transfer oper-
ator corresponding to the Gibbs–Markov map F : Y → Y , so∫

Y
Rv w dμY =

∫
Y
v w ◦ F dμY

for all v ∈ L1, w ∈ L∞. For y ∈ Y and a ∈ α, let ya denote the unique preimage
ya ∈ a such that Fya = y. Recall that (Rv)(y) =

∑
aξ(ya)v(ya) and that there is a

constant C > 0 such that

(5.1) 0 < ξ(ya) ≤ CμY (a), |ξ(ya) − ξ(y′
a)| ≤ CμY(a)dθ(y, y

′),

for all y, y′ ∈ Y , a ∈ α. (Standard references for properties of the transfer operatorR
for a Gibbs–Markov map include [1, 2].)

Define the Banach space B1(Y) of observables v : Y → R with ‖v‖B1(Y) < ∞
where ‖v‖B1(Y) = ‖v‖∞ + supy�=y′ |v(y) − v(y′)|/dθ(y, y′).

Proposition 5.1. There exists C > 0 such that ‖R(uv)‖B1(Y) ≤ C‖u‖1‖v‖B1(Y)

for all u ∈ L1(Y) constant on partition elements and all v ∈ B1(Y).

Proof. Since u is constant on partition elements, we write u(a) = u|a. By (5.1),

‖R(uv)‖∞ � ∑
aμY (a)|u(a)| dμY ‖v‖∞ = ‖u‖1‖v‖∞.

Next, let y, y′ ∈ Y . Then (R(uv))(y) − (R(uv))(y′) = I1 + I2 where

I1 =
∑

a(ξ(ya) − ξ(y′
a))u(a)v(ya), I2 =

∑
aξ(y

′
a)u(a)(v(ya) − v(y′

a)).

By (5.1),

|I1| � ∑
aμY (a)dθ(y, y

′)|u(a)|‖v‖∞ = ‖u‖1‖v‖∞ dθ(y, y
′),

|I2| � ∑
aμY (a)|u(a)|‖v‖B1(Y) dθ(ya, y

′
a) ≤ ‖u‖1‖v‖B1(Y) dθ(y, y

′).

Hence |(R(uv))(y)− (R(uv))(y′)| � ‖u‖1‖v‖B1(Y) dθ(y, y′), and the result follows.�
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For z ∈ C with |z| ≤ 1 and t ∈ R
d, define

R̂(z, t) : L1(Y) → L1(Y), R̂(z, t)v = R(eit·κσzσv) =
∞∑
n=1

znRt,nv

where Rt,nv = R(1{σ=n}eit·κσv) and κσ(y) =
∑σ(y)−1

=0 κ(y, 
).

We now show that z �→ R̂(z, t) extends analytically to a neighbourhood of
the unit disk when restricted to B1(Y), and we obtain properties of this extension.
Recall thatψ(y) =

∑σ(y)−1

=0 |κ(y, 
)|. By Proposition 2.1, κσ, ψ ∈ Lr(Y) for all r < 2.

Proposition 5.2. There exists δ>0 such that, regardedas operators onB1(Y),
(a) z �→ R̂(z, t) is analytic on B1+δ(0) for all t ∈ R

d;
(b) (z, t) �→ (∂m

z R̂)(z, t) is C1 on B1+δ(0) × Rd for all m ≥ 0;

(c) z �→ (∂jR̂)(z, t) is C1 on B1+δ(0) uniformly in t ∈ R
d for j = 1, . . . , d.

Proof. It suffices to show that there exist a > 0, C > 0 such that

‖Rt,n‖B1(Y) ≤ Ce−an, ‖∂jRt,n‖B1(Y) ≤ Ce−an,

for all t ∈ R
d, j = 1, . . . , d, n ≥ 1.

Since κσ ∈ Lr(Y) for all r < 2 and σ has exponential tails, there exists a > 0
such that ‖1{σ=n}κσ‖1 � e−an.

Note that σ and κσ are constant on partition elements. By Proposition 5.1, we
have ‖Rt,n‖B1(Y) � ‖1{σ=n}‖1. Also, ‖∂jRt,n‖B1(Y) � ‖1{σ=n}κσ‖1 completing the
proof. �

For z ∈ C with |z| ≤ 1 and t ∈ R
d, define

Â(z, t) : L1(Y) → L1(�), Â(z, t)v =
∞∑
n=1

znAt,nv

where (At,nv)(y, 
) = 1{
=n}(Pn
t v)(y, 
) = 1{
=n}eit·κn(y,0)v(y).

Proposition 5.3. There exists δ > 0 such that regarded as operators from

L∞(Y) to L1(�),
(a) z �→ Â(z, t) is analytic on B1+δ(0) for all t ∈ Rd;

(b) (z, t) �→ (∂zÂ)(z, t) is C1 on B1+δ(0) × R
d.

Proof. Let ‖ ‖ denote ‖ ‖L∞(Y)�→L1(�). As in the proof of Proposition 5.2, it
suffices to obtain exponential estimates for ‖At,n‖ and ‖∂jAt,n‖.

There exists a > 0 such that ‖1{σ>n}ψ‖L1(Y) = O(e−an). Now

(At,nv)(y, 
) = 1{
=n}eit·κn(y)v(y)
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so

‖At,n‖ ≤
∫
�

1{
=n} dμ� ≤ ‖1{σ>n}‖L1(Y).

Similarly, ‖∂jAt,n‖ ≤ ∫
� 1{
=n}ψ dμ� ≤ ‖1{σ>n}ψ‖L1(Y) completing the proof. �

For z ∈ C with |z| ≤ 1 and t ∈ R
d, define

B̂(z, t) : L1(�) → L1(Y), B̂(z, t)v =
∞∑
n=1

znBt,nv

where

Bt,nv = 1YPn
t (1Dnv), Dn = {(y, σ(y) − n) : y ∈ Y, σ(y) > n}.

Proposition 5.4. There exists δ > 0 such that, regarded as operators from
B(�) to B1(Y),

(a) z �→ B̂(z, t) is analytic on B1+δ(0) for all t ∈ R
d;

(b) (z, t) �→ (∂zB̂)(z, t) is C1 on B1+δ(0) × Rd.

Proof. Let ‖ ‖ denote ‖ ‖B(�)�→B1(Y). Again, it suffices to obtain exponential
estimates for ‖Bt,n‖ and ‖∂jBt,n‖.

We can write Bt,nv = R(ut,nvn) where

ut,n(y) = 1{σ(y)>n}eit·κn(y,σ(y)−n), vn(y) = 1{σ(y)>n}v(y, σ(y) − n).

Note that ut,n is constant on partition elements and ‖vn‖B1(Y) ≤ ‖v‖B. Also, there
exists a > 0 such that ‖1{σ>n}ψ‖L1(Y) = O(e−an).

By Proposition 5.1,

‖Bt,n‖ � ‖ut,n‖L1(Y) = ‖1{σ>n}‖L1(Y).

Similarly, ‖∂jBt,n‖ � ‖1{σ>n}ψ‖L1(Y) completing the proof. �
For z ∈ C with |z| ≤ 1 and t ∈ R

d, define

Ê(z, t) : B(�) → L1(�), Ê(z, t)v =
∞∑
n=1

znEt,nv

where (Et,nv)(y, 
) = 1{
>n}(Pn
t v)(y, 
).

Proposition 5.5. There exists δ > 0 such that regarded as operators from

B(�) to L1(�),
(a) z �→ Ê(z, t) is analytic on B1+δ(0) for all t ∈ Rd;

(b) (z, t) �→ Ê(z, t) is C0 on B1+δ(0) × R
d.
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Proof. Let ‖ ‖ denote ‖ ‖B(�)�→L1(Y). It suffices to obtain an exponential
estimate for ‖Et,n‖. But (Et,nv)(y, 
) = 1{
>n}eit·κn(y,
−n)v(y, 
− n), so

‖Et,n‖ ≤
∫
�

1{
>n} dμ� ≤ ‖σ 1{σ>n}‖L1(Y) � e−εn

as required. �

5.2 Further estimates. In this subsection, we obtain more refined esti-
mates on the renewal operators from Subsection 5.1, exploiting the fact (Proposi-
tion 2.1) that μY (ψ > n) = O(n−2).

Proposition 5.6. There exist C > 0, δ > 0, b > 0 such that

‖∂j∂zR̂(z, t + h) − ∂j∂zR̂(z, t)‖B1(Y) ≤ C|h|L(h)2{1 + |h|−b log |z|L(h)(|z| − 1)},

for all t, h ∈ Bδ(0), all z ∈ C with 1 ≤ |z| ≤ 1 + δ, and all j = 1, . . . , d.

Proof. In this argument, we take |x| = maxj=1,...,d |xj| on R
d so that ψ is

integer-valued. Now, ∂j∂zR̂(z, t)v = iR((κσ)jeit·κσσzσ−1v). By Proposition 5.1,

‖∂j∂zR̂(z, t + h) − ∂j∂zR̂(z, t)‖B1(Y) �
∫

Y
|κσ||eih·κσ − 1|σ|z|σ dμY

≤ 2
∫

Y
ψmin{|h|ψ, 1}σ|z|σ dμY = 2

∞∑
m,n=1

rm,n

where

rm,n = μY(ψ = m, σ = n)mn min{|h|m, 1}|z|n.
Recall that μY (σ = n) = O(e−an) for some a > 0. Fix a1 ∈ (0, a) and δ > 0 so that
e−a(1 + δ) < e−a1 . Then

rm,n � |h|m2ne−an|z|n � |h|m2e−a1n.

Fixing b > 0 sufficiently large,

∑
n>b log m

rm,n � |h|m2e−a1b logm(1 − e−a1 )−1 � |h|m2m−a1b ≤ |h|m−2.

Hence
∑∞

m=1

∑
n>b logm rm,n � |h|.

It remains to consider the terms with n ≤ b logm. Now

|z|n = 1 + (|z|n − 1) ≤ 1 + n|z|n−1(|z| − 1) � 1 + (logm)mb log |z|(|z| − 1).
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Hence

rm,n � μY(ψ = m, σ = n)m(logm) min{|h|m, 1}{1 + (logm)mb log |z|(|z| − 1)}
and so∑

n≤b logm

rm,n � μY(ψ = m)mmin{|h|m, 1}{log m + (logm)2mb log |z|(|z| − 1)}.

Let K = [1/|h|] ≥ 1. Then for m ≤ K,∑
n≤b logm

rm,n � μY(ψ = m)|h|m2{logK + (logK)2Kb log |z|(|z| − 1)},

and so by resummation,

(5.2)

K∑
m=1

∑
n≤b log m

rm,n � |h|
K∑

m=1

μY(ψ = m)m2{log K + (logK)2Kb log |z|(|z| − 1)}

� |h|(log K)2 + |h|(logK)3Kb log |z|(|z| − 1)

� |h|L(h)2{1 + |h|−b log |z|L(h)(|z| − 1)}.
Next,∑

m>K

∑
n≤b log m

rm,n � ∑
m>K

μY(ψ = m)m(logm)

+ (|z| − 1)
∑
m>K

μY(ψ = m)m1+b log |z|(logm)2.

Now,∑
m>K

μY (ψ = m)m1+b log |z|(logm)2

=
∑
m>K

μY (ψ ≥ m)m1+b log |z|(logm)2 − ∑
m>K

μY(ψ > m)m1+b log |z|(logm)2

≤ μY(ψ > K)K1+b log |z|(logK)2

+
∑
m>K

μY(ψ ≥ m)(m1+b log |z|(logm)2 − (m − 1)1+b log |z|(log(m − 1))2

� Kb log |z|−1(logK)2 + (1 + b log |z|) ∑
m>K

μY (ψ ≥ m)mb log |z|(logm)2

� |h|1−b log |z|L(h)2 +
∑
m>K

mb log |z|−2(logm)2.

By Karamata,∑
m>K

mb log |z|−2(logm)2 � (1 − b log |z|)−1Kb log |z|−1(logK)2 � |h|1−b log |z|L(h)2.
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Hence ∑
m>K

∑
n≤b log m

rm,n � |h|L(h){1 + |h|−b log |z|L(h)(|z| − 1)}.

This combined with (5.2) gives the desired estimate for
∑

m≥1

∑
n≤b log m rm,n, com-

pleting the proof. �

Remark 5.7. Similarly,

‖∂jR̂(z, t + h) − ∂jR̂(z, t)‖B1(Y) ≤ C|h|L(h){1 + |h|−b log |z|L(h)(|z| − 1)}.
Proposition 5.8. There exist C > 0, δ > 0, b > 0 such that

‖∂jÂ(z, t + h) − ∂jÂ(z, t)‖B1(Y)�→L1(�) ≤ C|h|L(h){1 + |h|−b log |z|L(h)(|z| − 1)},
for all t, h ∈ Bδ(0), all z ∈ C with 1 ≤ |z| ≤ 1 + δ, and all j = 1, . . . , d.

Proof. We have

(Â(z, t)v)(y, 
) =
∞∑
n=1

zn1{
=n}eit·κn(y,0)v(y) = z
eit·κ
(y,0)v(y).

Hence

‖∂jÂ(z, t + h) − ∂jÂ(z, t)‖B1(Y)�→L1(�)

� ‖|z|σψmin{|h|ψ, 1}‖L1(Y)

=
∞∑

m,n=1

μY (ψ = m, σ = n)m|z|n min{|h|m, 1}.

We now proceed as in the proof of Proposition 5.6, except that there is one less
factor of n (hence one less factor of L(h)). �

Proposition 5.9. There exist C > 0, δ > 0, b > 0 such that

‖∂jB̂(z, t + h) − ∂jB̂(z, t)‖B(�)�→B1(Y) ≤ C|h|L(h){1 + |h|−b log |z|L(h)(|z| − 1)},
for all t, h ∈ Bδ(0), all z ∈ C with 1 ≤ |z| ≤ 1 + δ, and all j = 1, . . . , d,

Proof. We have

‖∂jB̂(z, t + h) − ∂jB̂(z, t)‖B(�)�→B1(Y)

�
∞∑
n=1

|z|n‖1{σ>n}ψmin{|h|ψ, 1}‖L1(Y).

=
∞∑

m,n=1

μY (ψ = m, σ > n)m|z|n min{|h|m, 1}.

This is the same as in Proposition 5.8 except that σ = n is replaced by σ > n (which
makes no difference given the exponential tails). �
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5.3 Spectral properties for R̂(z, t). In this subsection, we analyse the
leading eigenvalues and spectral projections for R̂(z, t). Throughout we make use
of the fact that λσk = 1 (since σ is divisible by q and λk is a q’th root of unity). In
particular, R̂(λk, 0) = R̂(1, 0) = R for k = 0, . . . , q − 1.

Proposition 5.10. Let z ∈ C, |z| ≤ 1. Then 1∈spec R̂(z, 0) : B1(Y) → B1(Y)
if and only if zq = 1 in which case 1 is a simple eigenvalue with eigenfunction 1.

Proof. Similar arguments can be found for example in [14, Lemma 6.7]
and [20, Section 5.2]. Hence we just sketch the proof.

It is easily seen that the spectral radius of R̂(z, 0) is no larger than |z|, so we can
restrict to the case |z| = 1.

By [1, 2], the essential spectral radius of R̂(1, 0) is strictly less than 1. This
property extends to general |z| = 1 as follows: In the notation of the proof of
Proposition 5.1,

|R(zσv)(y) − R(zσv)(y′)| ≤ C
∑

aμY(a)dθ(y, y
′)‖v‖∞ +

∑
aξ(y

′
a)‖v‖B1(Y)dθ(ya, y

′
a)

= Cdθ(y, y
′)‖v‖∞ + ‖v‖B1(Y)θdθ(y, y

′).

Hence, we obtain a Lasota–Yorke (or Doeblin–Fortet) inequality

‖R̂(z, 0)v‖B1(Y) ≤ (C + 1)‖v‖∞ + θ‖v‖B1(Y)

and it follows that the essential spectral radius of R̂(z, 0) is at most θ.

In particular, 1 ∈ spec R̂(z, 0) if and only if 1 is an eigenvalue. By ergodicity,
1 is a simple eigenvalue for R̂(1, 0) with eigenfunction 1, hence this also holds
for R̂(z, 0) when zq = 1.

Finally, suppose that 1 is an eigenvalue for R̂(z, 0) for some |z| = 1, with
eigenfunction v ∈ B1(Y). Define

ṽ : � → C,

ṽ(y, 
) = z
v(y)

(note that ṽ ∈ B). Then, ṽ(·, 0) = v = R̂(z, 0)v = z(Pṽ)(·, 0) and, for 
 ≥ 1,
(Pṽ)(y, 
) = ṽ(y, 
− 1) = ṽ(y, 
)/z. This implies that z−1 is an eigenvalue for the
transfer operator P which, as noted in Section 2, is the case only for zq = 1. �

By Proposition 5.2(b), for k = 0, . . . , q−1, the eigenvalue 1 for R̂(λk, 0) extends
to a C1 family of simple isolated eigenvalues (z, t) �→ τk(z, t) on Bδ(λk) × Bδ(0),
for some δ > 0, with τk(λk, 0) = 1. Let σ̄ =

∫
Y σ dμY . Recall that L(t) = log(1/|t|).
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Proposition 5.11. Let 0 ≤ k, k′ ≤ q − 1. There are constants C > 0, δ > 0
such that

(a) |τk(z, 0) − 1 − λ−1
k σ̄(z − λk)| ≤ C|z − λk|2 for z ∈ Bδ(λk);

(b) |τk(λk, t) − 1| ≤ C|t|2L(t) for t ∈ Bδ(0);
(c) |τk(λk, t) − τk′(λk′, t)| ≤ C|t|2 for all t ∈ Bδ(0).

Proof. Let vk(z, t) denote the C1 families of eigenfunctions corresponding to
the eigenvalues τk(z, t), with vk(λk, 0) = 1. Normalise so that∫

Y
R̂(λk, 0)vk(z, t) dμY =

∫
Y
vk(z, t) dμY = 1

for (z, t) ∈ Bδ(λk) × Bδ(0). Then

τk(z, t) =
∫

Y
R̂(z, t)vk(z, t) dμY = Ik(z, t) + Jk(z, t)

where

Ik(z, t) =
∫

Y
R̂(z, t)1 dμY =

∫
Y
zσeit·κσ dμY,

Jk(z, t) =
∫

Y
(R̂(z, t) − R̂(λk, 0))(vk(z, t) − vk(λk, 0)) dμY.

Since R̂ and vk are C1, it follows that

Jk(z, 0) = O(|z − λk|2) and Jk(λk, t) = O(|t|2).
Hence it suffices to consider the first term Ik.

For t = 0, using that λσk = 1,

Ik(z, 0) =
∫

Y
(λk + (z − λk))

σ dμY =
∫

Y
(1 + λ−1

k (z − λk))
σ dμY

= 1 + λ−1
k σ̄(z − λk) + O(|z − λk|)2

yielding part (a).
Recall (see the beginning of Section 4) that

∫
� κ dμ� = 0 and that∫

Y
σ dμY = σ̄ <∞.

Hence ∫
Y
κσ dμY =

∫
Y

σ(y)−1∑

=0

κ(y, 
) dμY(y) = σ̄
∫
�
κ dμ� = 0.

It follows that
Ik(λk, t) = 1 +

∫
Y
(eit·κσ − 1 − it · κσ) dμY,
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so

|Ik(λk, t) − 1| ≤
∫

Y
|eit·κσ − 1 − it · κσ| dμY ≤ 2

∫
Y

min{|t|2ψ2, |t|ψ} dμY

≤ 2|t|2 ∑
0≤m≤1/|t|

m2μY(ψ = m) + 2|t| ∑
m>1/|t|

mμY(ψ = m).

Using the tail estimate μY (ψ > n) = O(n−2) and resummation we obtain
|Ik(λk, t) − 1| � |t|2L(t) proving (b). Finally, Ik(λk, t) is independent of k yielding
part (c). �

It follows from Proposition 5.11(a) that (∂zτk)(λk, 0) = λ−1
k σ̄ �= 0. By the

implicit function theorem, we can solve uniquely the equation τk(z, t) = 1 near
(λk, 0) to obtain a C1 solution z = gk(t), gk : Bδ(0) → C, with gk(0) = λk.

Recall that Mb(t, h) = |h|L(h){1 + L(h) |t|2L(t) + |h|−b|t|2L(t)L(h)2 |t|4L(t)2}.
Corollary 5.12. There exist C > 0, δ > 0, b > 0 such that for all t, h ∈ Bδ(0),

j = 1, . . . , d, k = 0, . . . , q − 1,

(a) |gk(t) − λk| ≤ C|t|2L(t);
(b) |∂jgk(t + h) − ∂jgk(t)| ≤ CMb(t, h).

Proof. Write

(5.3) τk(z, t) = τk(λk, t) + (z − λk)ck(z, t).

It follows from Proposition 5.2(b) that (z, t) �→ ∂zτk(z, t) is C1. Introducing
momentarily the function ζ(s) = τk(λk + s(z − λk), t),

(5.4) ck(z, t) = (z − λk)
−1

∫ 1

0
ζ ′(s) ds =

∫ 1

0
(∂zτk)(λk + s(z − λk), t) ds.

We deduce that (z, t) �→ ck(z, t) is C1. By Proposition 5.11(a), ck(λk, 0) = λ−1
k σ̄ �= 0

and we can shrink δ if necessary so that ck(λk, t) is bounded away from zero for
t ∈ Bδ(0).

Solving τk(z, t) = 1,

(5.5) gk(t) − λk = z − λk ∼ ck(λk, t)
−1(1 − τk(λk, t)).

The spectral radius of R̂(λk, t) is at most 1 for all t, so τk(λk, t) ∈ B1(0). Hence
|gk(t)| ≥ 1 for all t. By Proposition 5.11(b),

|gk(t) − λk| ∼ |ck(λk, t)|−1|1 − τk(λk, t)| � |t|2L(t),

proving part (a).
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Implicit differentiation of τk(gk(t), t) ≡ 1 yields

∂jgk(t) = −∂jτk(gk(t), t)/∂zτk(gk(t), t).

By smoothness of ∂zτk and g, the denominator t �→ ∂zτk(gk(t), t) is C1. We claim
that

(5.6) |∂jτk(gk(t + h), t + h) − ∂jτk(gk(t), t)| � Mb(t, h)

from which part (b) follows.
It follows from Proposition 5.2(c) that z �→ ∂jτk(z, t) is C1 uniformly in t. Also,

g is C1, so |∂jτk(gk(t + h), t + h) − ∂jτk(gk(t), t + h)| � |h|. By (5.3),

|∂jτk(z,t + h) − ∂jτk(z, t)|
≤ |∂jτk(λk, t + h) − ∂jτk(λk, t)| + |z − λk| |∂jck(z, t + h) − ∂jck(z, t)|.

ByRemark 5.7, |∂jτk(λk, t+h)−∂jτk(λk, t)| � |h|L(h). By (5.4) and Proposition 5.6,

|∂jck(z, t + h) − ∂jck(z, t)| � |h|L(h)2{1 + |h|−b log |z|L(h)|z − λk|}.
Hence

|∂jτk(z, t + h) − ∂jτk(z, t)| � |h|L(h) + |h|L(h)2|z − λk| + |h|1−b log |z|L(h)3|z − λk|2,
for |z| ≥ 1. But |gk(t)| ≥ 1, so by part (a),

|∂jτk(gk(t), t + h) − ∂jτk(gk(t), t)| � Mb(t, h)

completing the proof of the claim. �
Let πk(z, t) : B1(Y) → B1(Y) denote the spectral projection corresponding to

τk(z, t).

Lemma 5.13. There exists δ > 0 such that

(5.7) (1 − τk(z, t))
−1πk(z, t) = (gk(t) − z)−1π̃k(t) + Hk(z, t)

where π̃k(t), Hk(z, t) : B1(Y) → B1(Y) are families of bounded operators satisfying

(a) π̃k is C1 on Bδ(0);
(b) Hk is C0 on Bδ(λk) × Bδ(0);
(c) z �→ Hk(z, t) is analytic on Bδ(λk) for t ∈ Bδ(0).

Moreover, there are constants C > 0, b > 0 such that

|∂jπ̃k(t + h) − ∂jπ̃k(t)| ≤ CMb(t, h)

for t, h ∈ Bδ(0), j = 1 . . . , d.
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Proof. Fix j and k. Throughout this proof, we use the following abbreviations
(for r ≥ 0):

(a) “Cr uniformly in z” means Cr on Bδ(0) uniformly in z ∈ Bδ(λk);
(b) “jointly Cr” means Cr on Bδ(λk) × Bδ(0);
(c) “analytic” means analytic on Bδ(λk) for all t ∈ Bδ(0).
Step 1. Write

πk(z, t) = πk(gk(t), t) + (gk(t) − z)H̃(z, t).

It follows from Proposition 5.2(a) that πk is analytic and hence that H̃ is analytic.
Next, ∂j(πk(gk(t), t)) = G1(t) + G2(t) where

G1(t) = (∂zπk)(gk(t), t) · ∂jgk(t), G2(t) = (∂jπk)(gk(t), t).

It follows from Proposition 5.2(b) that ∂zπk is jointly C1. Also, gk is C1. Hence,
by Corollary 5.12(b),

|G1(t + h) − G1(t)| � |h| + |∂jgk(t + h) − ∂jgk(t)| � Mb(t, h).

Next, we note that G2, with πk changed to τk, was estimated in (5.6), and the
identical argument shows that |G2(t + h) − G2(t)| � Mb(t, h). Hence

|∂j(πk(gk(t + h), t + h)) − ∂j(πk(gk(t), t))| � Mb(t, h).

Writing H̃(z, t) =
∫ 1
0 (∂zπk)((1− s)z+ sgk(t), t) ds, we obtain that H̃ is jointly C0.

Step 2. Write

1 − τk(z, t) = τk(gk(t), t) − τk(z, t) = (gk(t) − z)β(z, t).

Again, it follows from Proposition 5.2(a) that τk is analytic and hence that β is
analytic. Also, it follows from Proposition 5.2(b) that ∂2

z τk is jointly C1. Writing
β(z, t) =

∫ 1
0 ∂zτk((1 − s)z + sgk(t), t) ds, we obtain that ∂zβ is jointly C1. By

Proposition 5.6,

|∂jβ(gk(t + h), t + h) − ∂jβ(gk(t), t)| � Mb(t, h).

By Proposition 5.11(a), |β(λk, 0)| = σ̄ > 0 and we can shrink δ if necessary so
that β is bounded away from zero on Bδ(λk) × Bδ(0). Let β̃(z, t) = β(z, t)−1. Then,
we can write

(1 − τk(z, t))
−1 = (gk(t) − z)−1{β̃(gk(t), t) + (gk(t) − z)q(z, t)},

where q is analytic and jointly C0 and

|∂jβ̃(gk(t + h), t + h) − ∂jβ̃(gk(t), t)| � Mb(t, h).
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Step 3. Combining Steps 1 and 2, we obtain (5.7) with

π̃k(t) = β̃(gk(t), t)πk(gk(t), t),

Hk(z, t) = q(z, t)πk(gk(t), t) + β̃(gk(t), t)H̃(z, t) + (gk(t) − z)q(z, t)H̃(z, t).

The desired regularity properties of π̃k and Hk follow immediately from the regu-
larity properties established in Steps 1 and 2. �

Corollary 5.14. There exists δ > 0 such that

(I − R̂(z, t))−1 =
q−1∑
k=0

(gk(t) − z)−1π̃k(t) + Ĥ(z, t), (z, t) ∈ B1+δ(0) × Bδ(0),

where π̃k is as in Lemma 5.13 and Ĥ(z, t) : B1(Y) → B1(Y) is a family of bounded

operators satisfying
(a) Ĥ is C0 on B1+δ(0) × Bδ(0);
(b) z �→ Ĥ(z, t) is analytic on B1+δ(0) for t ∈ Bδ(0).

Proof. Let t ∈ Bδ(0). For z ∈ Bδ(λk), the spectrum of R̂(z, t) is bounded
uniformly away from 1 except for the simple eigenvalue τk(z, t) near 1. Hence

(I − R̂)−1 = (1 − τk)
−1πk + Ĥk,0 on Bδ(λk) × Bδ(0),

where z �→ Ĥk,0(z, t) is analytic on Bδ(λk) for t ∈ Bδ(0) and Ĥk,0 is C0 on
Bδ(λk) × Bδ(0). Applying Lemma 5.13 and relabelling,

(I − R̂(z, t))−1 = (gk(t) − z)−1π̃k(t) + Ĥk(z, t).

In addition, z �→ (I − R̂(z, t))−1 is analytic on B1+δ(0) \ ⋃
k Bδ(λk) and

(z, t) �→ (I − R̂(z, t))−1 is C0 on (B1+δ(0) \ ⋃
k Bδ(λk)) × Bδ(0). Hence, we ob-

tain the desired result on B1+δ(0) × Bδ(0). �

5.4 Completion of the proof of Lemmas 4.1 and 4.2. Define for
t ∈ Rd, n ≥ 1,

Tt,n : L1(Y) → L1(Y), Tt,nv = 1YPn
t (1Yv).

For z ∈ C, t ∈ R
d, define P̂(z, t) =

∑∞
n=0 znPn

t , T̂(z, t) =
∑∞

n=0 znTn
t . By [20], we

have the renewal equation T̂ = (I − R̂)−1. Also, by [15], P̂ = ÂT̂B̂ + Ê.
Throughout, we work on the domain B1+δ(0) × Bδ(0) ⊂ C ×Rd. Applying the

renewal equation, Corollary 5.14 becomes

(5.8) T̂(z, t) =
q−1∑
k=0

(gk(t) − z)−1π̃k(t) + Ĥ(z, t),
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where π̃k, Ĥ : B1(Y) → B1(Y) are families of bounded operators satisfying: π̃k is
C1; Ĥ is C0; z �→ Ĥ(z, t) is analytic for all t. Moreover,

|∂jπ̃k(t + h) − ∂jπ̃k(t)| � Mb(t, h).

The same argument as in Step 1 of Lemma 5.13 (using Propositions 5.4 and 5.3
instead of Proposition 5.2) shows that

Â(z, t) = Ãk(t) + (gk(t) − z)Ĥk,1(z, t), Ãk(t) = Â(gk(t), t),(5.9)

B̂(z, t) = B̃k(t) + (gk(t) − z)Ĥk,2(z, t), B̃k(t) = B̂(gk(t), t),(5.10)

where Ãk, Ĥk,1 : B1(Y) → L1(�) and B̃k, Ĥk,2 : B(�) → B1(Y) are families of
bounded operators satisfying: Ãk, B̃k are C1; Ĥk,r is C0; z �→ Ĥk,r(z, t) is analytic
for all t; for r = 1, 2. Moreover, by Propositions 5.8 and 5.9,

‖∂jÃk(t + h) − ∂jÃk(t)‖B(Y1)�→L1(�) � Mb(t, h),

‖∂jB̃k(t + h) − ∂jB̃k(t)‖B(�)�→B1(Y) � Mb(t, h).

Combining (5.8), (5.9) and (5.10) together with Proposition 5.5,

P̂(z, t) = Â(z, t)T̂(z, t)B̂(z, t) + Ê(z, t) =
q−1∑
k=0

((gk(t) − z)−1π̃k,1(t) + Ĥk,3(z, t)),

where π̃k,1, Ĥk,3 : B(�) → L1(�) are families of bounded operators satisfying:
π̃k,1 is C1; Ĥk,3 is C0; z �→ Ĥk,3(z, t) is analytic for all t; and

|∂jπ̃k,1(t + h) − ∂jπ̃k,1(t)| � Mb(t, h).

Let ‖ ‖ denote ‖ ‖B(�)�→L1(�). An immediate consequence of the regularity
properties of Ĥk,3 is that there exists γ ∈ (0, 1) such that the Taylor coefficients
of Ĥk,3 satisfy ‖(Hk,3)t,n‖ � γn. Hence,

∥∥∥∥Pn
t −

q−1∑
k=0

gk(t)
−(n+1)π̃k,1(t)

∥∥∥∥ � γn.

By (2.1) and (2.2), ‖Pn
t −∑q−1

k=0 λ
n
k,t�k,t‖ � γn for some γ ∈ (0, 1). Altogether, we

have shown that there exist γ ∈ (0, 1), C > 0 such that∥∥∥∥
q−1∑
k=0

(λn
k,t�k,t − gk(t)

−(n+1)π̃k,1(t))
∥∥∥∥ ≤ Cγn for all t ∈ Bδ(0), n ≥ 1.

Since |λk,0| = |gk(0)| = 1, we can shrink δ > 0 so that |λk,t| > γ and
|gk(t)−1|> γ. It follows that {λk,t}k = {gk(t)−1}k and {�k,t}k = {gk(t)−1π̃k,1(t)}k.
The desired regularity properties of λk,t and �k,t : B(�) �→ L1(�) now follow
from those for gk and π̃k,1, completing the proof of Lemma 4.1.
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Proof of Lemma 4.2. After relabelling (by a permutation in k), we can
suppose that λk,t = gk(t)−1 with gk(0) = λ−1

k as before and λk,0 = λ−1
k . (In particular,

λ0,t is unchanged, but λk becomes λ−1
k .) By (2.3),

g0(t) − 1 = λ−1
0,t (1 − λ0,t) ∼ �t · t L(t).

By (5.5) with k = 0,

1 − τ0(1, t) ∼ c0(1, t)(g0(t) − 1) ∼ σ̄ �t · t L(t).

Hence by Proposition 5.11(c),

1 − τk(λ
−1
k , t) ∼ σ̄�t · t L(t)

for all k = 0, . . . , q − 1. Applying (5.5) once more,

gk(t) − λ−1
k ∼ ck(λ

−1
k , t)−1(1 − τk(λ

−1
k , t)) ∼ λ−1

k �t · t L(t).

Finally,

λk − λk,t = λk − gk(t)
−1 = λkgk(t)

−1(gk(t) − λ−1
k ) ∼ λk�t · t L(t)

completing the proof. �

6 Proof of the main result

In this section, we complete the proof of Theorem 1.1. We continue to work on
the one-sided tower �.

Fix δ as in Section 4. Let r : Rd → C be C2 with supp r ⊂ Bδ(0) and define
An,N =

∫
Rd e−it·Nr(t)Pn

t dt. By (2.1),

An,N =
q−1∑
k=0

∫
Bδ(0)

e−it·Nr(t)λn
k,t�k,t dt +

∫
Bδ(0)

e−it·Nr(t)Qn
t dt.

Following [18], the main step in the proof of Theorem 1.1 is to estimate ‖An,N‖.
Throughout this section, ‖ ‖ denotes ‖ ‖B�→L1 .

The next result suffices in the range |N| ≤ an.

Corollary 6.1. There exists C > 0 such that for all n ≥ 1, N ∈ Zd,

‖An,N‖ ≤ Ca−d
n .
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Proof. By (2.2) and Corollary 4.3,

‖An,N‖ �
q−1∑
k=0

∫
Bδ(0)

|λk,t|n dt + γn � a−d
n . �

Recall from the proof of Corollary 4.3 that there is a constant c > 0 such that
log |λk,t| ≤ −c|t|2L(t). Let b > 0 be as in Lemma 4.1 and define ε1 = c/(2b). We
now focus on the range

an ≤ |N| ≤ eε1n.

Choose j so that |Nj| = max{|N1|, . . . , |Nd|} and set h = πN−1
j ej (where ej ∈ R

d

is the j’th canonical unit vector).

Proposition 6.2. There exist C > 0, δ > 0 such that∫
B2δ(0)

|∂j(λn)k,t − ∂j(λ
n)k,t−h| dt ≤ C

n
ad

n

log |N|
|N|

for all n ≥ 1, |N| > π/δ with an ≤ |N| ≤ eε1n, k = 0, . . . , q − 1.

Proof. In this proof we abbreviate Ba(0) to Ba and suppress dt. Set s = t − h
and relabel so that

∫
B2δ

Mb(t, h)|λk,s|n ≤ ∫
B2δ

Mb(t, h)|λk,t|n. Then∫
B2δ

|∂j(λn)k,t − ∂j(λ
n)k,s| ≤ J + K

where

J = n
∫

B2δ

|λn−1
k,t − λn−1

k,s ||∂jλk,t|, K = n
∫

B2δ

|λk,s|n−1|∂jλk,t − ∂jλk,s|.

By Lemma 4.1,

(6.1)

K � n
∫

B2δ

Mb(t, h)|λk,t|n

� n log |N|
|N|

∫
B2δ

|λk,t|n +
n(log |N|)2

|N|
∫

B2δ

|λk,t|n|t|2L(t)

+
n(log |N|)3

|N|
∫

B2δ

|λk,t|n|N|b|t|2L(t)|t|4L(t)2.

Since

|N|b|t|2L(t) = eb(log |N|)|t|2L(t) ≤ ebε1n|t|2L(t) = e
1
2 cn|t|2L(t) ≤ |λk,t|−n/2,

it follows from Corollary 4.3 that∫
B2δ

|λk,t|n|N|b|t|2L(t)|t|4L(t)2 ≤
∫

B2δ

|λk,t|n/2|t|4L(t)2 � (log n)2

ad+4
n

.
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The other integrals in (6.1) are also estimated using Corollary 4.3 and we obtain

K � n
ad

n

log |N|
|N|

{
1 +

log |N| log n
a2

n
+

(log |N|)2(log n)2

a4
n

}
� n

ad
n

log |N|
|N| .

(Here, we used that log |N| � n = a2
n/ log n.)

Next, |λn−1
k,t − λn−1

k,s | ≤ (n − 1)(|λk,t|n−2 + |λk,s|n−2)|λk,t − λk,s| so by the mean
value theorem,

|λn−1
k,t − λn−1

k,s | � n
|N| (|λk,t|n + |λk,s|n)|∂jλk,u|

for some u between t and s. Accordingly,

J � n2

|N|
∫

B2δ

(|λk,t|n + |λk,s|n)|∂jλk,u||∂jλk,t|.

By Lemma 4.1,

|∂jλk,t| = |∂jλk,t − ∂jλk,0| � Mb(0, t) = |t|L(t), |∂jλk,u| � |u| log(1/|u|).(6.2)

Now |u| ≤ |t| + |h|, so

|u| log(1/|u|) ≤ (|t| + |h|) log(1/(|t| + |h|))
= |t| log(1/(|t| + |h|)) + |h| log(1/(|t| + |h|))
≤ |t| log(1/|t|) + |h| log(1/|h|) � |t| log(1/|t|) +

log |N|
|N|

= |t|L(t) +
log |N|

|N| .

In this way, it follows from (6.2) that

|∂jλk,t| � |t|L(t), |∂jλk,u| � |t|L(t) +
log |N|

|N| .

Similarly,

|∂jλk,t| � |s|L(s) +
log |N|

|N| , |∂jλk,u| � |s|L(s) +
log |N|

|N| .
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By Corollary 4.3,∫
B2δ

|λk,s|n|∂jλk,t||∂jλk,u|

�
∫

B2δ

|λk,s|n|s|2L(s)2 +
log |N|

|N|
∫

B2δ

|λk,s|n|s|L(s)

+
(log |N|)2

|N|2
∫

B2δ

|λk,s|n

�
∫

B3δ

|λk,t|n|t|2L(t)2 +
log |N|

|N|
∫

B3δ

|λk,t|n|t|L(t) +
(log |N|)2

|N|2
∫

B3δ

|λk,t|n

� 1
ad

n

( log2 n
a2

n
+

log |N|
|N|

log n
an

+
(logN)2

|N|2
)

=
log |N|

nad
n

( n log2 n
a2

n log |N| +
n logn
an|N| +

n logN
|N|2

)

� log |N|
nad

n

( log n
log |N| +

an

|N| +
a2

n

log an

log N
|N|2

)
� log |N|

nad
n
.

A simpler calculation shows that
∫
B2δ

|λk,t|n|∂jλk,t||∂jλk,u| � log |N|
nad

n
. Hence

J � n
ad

n

log |N|
|N| . This completes the proof. �

Lemma 6.3. There exists C > 0 such that∥∥∥∥
∫

Bδ(0)
e−it·Nr(t)λn

k,t�k,t dt

∥∥∥∥ ≤ C
n
ad

n

log |N|
|N|2

for all n ≥ 1, |N| > π/δ with an ≤ |N| ≤ eε1n, k = 0, . . . , q − 1.

Proof. Again, we abbreviate Bδ(0) to Bδ and suppress dt. Let

I =
∫

Bδ
e−it·Nr(t)λn

k,t�k,t.

Integrating by parts,

I =
1

iNj

∫
Bδ

e−it·N∂jr(t)λn
k,t�k,t +

1
iNj

∫
Bδ

e−it·Nr(t)∂j(λ
n�)k,t = I1 + I2 + I3

where

I1 = − 1
N2

j

∫
Bδ

e−it·N∂2
j r(t)λ

n
k,t�k,t, I2 = − 1

N2
j

∫
Bδ

e−it·N∂jr(t)∂j(λn�)k,t,

I3 =
1

iNj

∫
Bδ

e−it·Nr(t)∂j(λ
n�)k,t.
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Recall that r is C2 and that t �→ λk,t, t �→ �k,t are C1 by Lemma 4.1. Hence by
Corollary 4.3,

‖I1‖ � 1
|N|2

∫
Bδ

|λk,t|n � 1
ad

n

1
|N|2 , ‖I2‖ � n

|N|2
∫

Bδ
|λk,t|n � n

ad
n

1
|N|2 .

To estimate I3, we use a modulus of continuity argument (see, for
instance, [16, Chapter 1]). Set s = t − h where h = πN−1

j ej and notice that
I3 = − 1

iNj

∫
B2δ

e−it·Nr(s)∂j(λn�)k,s. Hence

I3 =
1

2iNj

∫
B2δ

e−it·N(r(t)∂j(λ
n�)k,t − r(s)∂j(λ

n�)k,s).

Setting I4 = 1
|N|

∫
B2δ

|r(s)|‖∂j(λn�)k,t − ∂j(λn�)k,s‖, we obtain

‖I3‖ � 1
|N|

∫
B2δ

|r(t) − r(s)|‖∂j(λn�)k,t‖ + I4

� n
|N|2

∫
B2δ

|λk,t|n + I4 � n
ad

n

1
|N|2 + I4.

Now,

I4 � 1
|N|

∫
B2δ

‖∂j(λn)k,t�k,t − ∂j(λ
n)k,s�k,s‖ +

1
|N|

∫
B2δ

‖λn
k,t∂j�k,t − λn

k,s∂j�k,s‖

� 1
|N|

∫
B2δ

|∂j(λn)k,t − ∂j(λ
n)k,s|‖�k,t‖ +

1
|N|

∫
B2δ

|∂j(λn)k,s|‖�k,t −�k,s‖

+
1

|N|
∫

B2δ

|λn
k,t − λn

k,s|‖∂j�k,t‖ +
1

|N|
∫

B2δ

|λk,s|n‖∂j�k,t − ∂j�k,s‖

� 1
|N|

∫
B2δ

|∂j(λn)k,t − ∂j(λ
n)k,s| +

n
|N|2

∫
B2δ

|λk,s|n

+
n

|N|2
∫

B2δ

|λk,t|n +
1

|N|
∫

B2δ

|λk,s|n‖∂j�k,t − ∂j�k,s‖.

To complete the proof, we show that I4 � n
ad

n

log |N|
|N|2 . The first integral on the

right-hand side was estimated in Proposition 6.2 while the second and third are
dominated by n

ad
n

1
|N|2 . The same calculation that was used for the integral K in

Proposition 6.2 shows that
∫
B2δ

|λk,s|n‖∂j�k,t − ∂j�k,s‖ � 1
ad

n

log |N|
|N| . The desired

estimate for I4 follows. �

Corollary 6.4. There exist ε1 > 0, C > 0 such that

‖An,N‖ ≤ C
n
ad

n

log |N|
1 + |N|2 for all n ≥ 1, N ∈ Z

d with |N| ≤ eε1n.
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Proof. By Corollary 6.1, ‖An,N‖ � a−d
n . Hence for n � (1 + |N|2)/ log |N|,

‖An,N‖ � a−d
n � n

ad
n

log |N|
1 + |N|2 .

Hence we can reduce to the case n ≤ 1
2 (1 + |N|2)/ log |N|. Then we can suppose

without loss that |N| > π/δ. In this way, we reduce to proving ‖An,N‖ � n
ad

n

log |N|
|N|2

under the constraints

|N| > π/δ, |N| ≤ eε1n, n ≤ 1
4
|N|2/ log |N|.

Since a2
n/ log an ∼ 2n, the last constraint can be weakened to

a2
n/ log an ≤ |N|2/ log |N|,

equivalently an ≤ |N|.
By (2.2), there exists γ ∈ (0, 1) such that ‖ ∫

Bδ(0) e
−it·Nr(t)Qn

t dt‖ � γn.Together
with Lemma 6.3, this implies that

‖An,N‖ � n
ad

n

log |N|
|N|2 +

1
|N|2 γ

n|N|2.

Shrinking ε1 if necessary, γn|N|2 ≤γne2ε1n ≤γn/2 � n
ad

n
, and so ‖An,N‖� n

ad
n

log |N|
|N|2 .�

Proof of Theorem 1.1. By Lemma 3.1, it remains to consider the range
log |N| ≤ ε1n. By [18, Lemma 3.9], there exists an even C2 function r : Rd → R

supported in Bδ(0) such that

1{κn=N} ≤
∫
Rd

e−it·Nr(t)eit·κn dt

for n ≥ 1, N ∈ Z
d. Hence

Pn1{κn=N} ≤
∫
Rd

e−it·Nr(t)Pneit·κn dt = An,N 1�.

It follows that μ�(κn = N) =
∫
� Pn1{κn=N} dμ� � ‖An,N‖. By Corollary 6.4, we

obtain the desired estimate for log |N| ≤ ε1n. �

7 LLD for nonuniformly hyperbolic systems modelled
by Young towers

In this section, we state and prove an abstract version of Theorem 1.1 for systems
modelled by a Young tower with exponential towers for a general class of observ-
ables κ. The observables take values in Z

d where there is no restriction on the
value of d ≥ 1.
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Let (T,M, μ) be a general nonuniformly hyperbolic map modelled by a two-
sided Young tower � with exponential tails (as in Section 2). Let κ : M → Z

d be
an integrable observable with

∫
M κ dμ = 0 and

∫
M |κ|2 dμ = ∞. Define the lifted

observable κ̂ = κ ◦ π : � → Z
d. We require that κ̂ is constant on π̄−1(a × {
}) for

each a ∈ α, 
 ∈ {0, . . . , σ(a) − 1}. Then κ̂ projects to an observable κ̄ : �̄ → Zd

constant on the partition elements a × {
} of the one-sided tower �̄.
Define Pt, λk,t and so on as in Section 2. Properties (2.1) and (2.2) remain

valid. Our further assumptions in the abstract setting are that there exist continuous
slowly varying4 functions 
1, 
2 : [0,∞) → (0,∞) and a positive-definite matrix
� ∈ R

d×d such that

μ(|κ| > x) ≤ x−2
1(x) for all x > 1,(7.1)

1 − λ0,t ∼ �t · t 
2(1/|t|) as t → 0.(7.2)

Define the slowly varying function 
̃1(x) =
∫ 1+x
1 u−1
1(u/ logu) du.5 We require

that there is a constant C > 0 such that

(7.3) (log x)2
̃1(x) ≤ C
2(x) for all x > 1.

Choose an so that
na−2

n 
2(an) ∼ 1.

Theorem 7.1 (LLD in abstract setting). Let d ≥ 1. There exist C > 0 and a
slowly varying function 
3 (depending on 
1, 
2 and d) such that

μ(κn = N) ≤ C
n
ad

n


3(|N|)
1 + |N|2 for all n ≥ 1, N ∈ Z

d.

Remark 7.2. The slowly varying function 
3 can be determined by modifying
the proof of Theorem 1.1. Some of the steps are indicated below.

In the case of billiards, assumptions (7.1) and (7.2) hold with 
1 ≡ 1 and

2(x) = log x. We note that even with these 
1, 
2 and d ≤ 2, obtaining 
3(x) = log x

in Theorem 1.1 requires extra structure for billiards beyond the abstract setting of
Theorem 7.1. This extra structure was used in Proposition 2.1 and Lemma 3.1.
Similarly, assumption (7.3) is not required in the billiard setting due to the extra
structure.

Remark 7.3. (a) In the simpler situation of Gibbs–Markov maps studied
in [18], the underlying assumption is that μ(|κ| > x) ∼ x−2
1(x) and that κ lies

4So limt→∞ 
1(λt)/
1(t) = 1 for all λ > 0, and similarly for 
2.
5To optimise the results, we should take 
̃1(x) =

∫ 1+x
1 u−1(log u)2
1(u/ log u) du. Then L̃(t) =


̃1(1/|t|) below but the formula for M̃b is much more complicated.
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in the nonstandard domain of a nondegenerate multivariate normal distribution.
A consequence is that 1 − λ0,t ∼ �t · t 
2(1/|t|) with 
2(x) = 1 +

∫ 1+x
1 
1(u)/u du.

Moreover, 
3 = 
2.

(b) As in [18], the proof of Theorem 7.1 does not rely on aperiodicity as-
sumptions and hence the result applies in situations where the local limit theorem
fails.

(c) More generally, one could consider situations where the underlying limit
laws areα-stable laws,α ∈ (0, 2) (rather than normal distributionswith nonstandard
normalisation). We already mentioned that the study of such stable LLD started
with [9] and [6] in the i.i.d. case for d = 1, extended to d ≥ 2 [7]. The Gibbs–
Markov case was studied in [18] for α ∈ (0, 1) ∪ (1, 2] and general d ≥ 1. We
expect that Theorem 7.1, in the abstract setting where M is modelled by a Young
tower with exponential tails, extends to the casesα ∈ (0, 1)∪(1, 2) with minor (and
obvious) modifications. However, for purposes of readability we do not pursue
this extension here.

In the remainder of this section, we sketch the proof of Theorem 7.1. Again,
the range n � log |N| is handled at the level of T : M → M and κ : M → Z

d.
Lemma 3.1 is replaced by

Lemma 7.4. Let d ≥ 1, ω > 0, ε > 0. There exists C > 0 such that

μ(κn = N) ≤ C
n
ad

n


1(|N|)(log |N|) d
2 +1+ε

|N|2

for all n ≥ 1, N ∈ Zd with n ≤ ω log |N|.

Proof. Define κ̃ = κ̃(N) = min{|κ|, |N|} and Mn = max0≤j≤n−1 |κ| ◦ Tj. We
use |x| = maxj=1,...,d |xj| so that |κ̃| is integer-valued.

Now,

μ(|κn| ≥ |N|) ≤ μ(|κn| ≥ |N|, Mn ≤ |N|) + μ(Mn > |N|).

Note that

μ(Mn > |N|) ≤
n−1∑
j=0

μ(|κ| ◦ Tj > |N|) = nμ(|κ| > |N|) � n|N|−2
1(|N|).

Next, for any r > 2,

μ(|κn| ≥ |N|, Mn ≤ |N|) ≤ μ(κ̃n ≥ |N|) ≤ ‖κ̃n‖r
r/|N|r ≤ nr‖κ̃‖r

r/|N|r.
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By resummation and (7.1),

‖κ̃‖r
r =

∞∑
j=1

jrμ(|κ̃| = j) ≤
|N|∑
j=1

jrμ(|κ| = j) �
|N|∑
j=1

jr−1μ(|κ| > j)

�
|N|∑
j=1

jr−3
1(j),

so by Karamata, ‖κ̃‖r
r � |N|r−2
1(|N|). Hence

μ(κn = N) ≤ μ(|κn| ≥ |N|) ≤ nr|N|−2
1(|N|) = na−d
n |N|−2
1(|N|)nr−1ad

n.

Since an is regularly varying of index 1
2 , and r > 2 is arbitrary, it follows that

nr−1ad
n � n

d
2 +1+ε � (log |N|) d

2 +1+ε. �
The remainder of the proof of Theorem7.1 is carried out on the one-sided tower.

As in Section 2, we defineψ(y) =
∑σ(y)−1

=0 |κ(y, 
)|. The analogue of Proposition 2.1

is:

Proposition 7.5. There exist C, n0 > 1 such that

μY(ψ > n) ≤ Cn−2(log n)2
1(n/ log n) for all n ≥ n0.

In particular, ψ ∈ Lr(Y) for all r < 2.

Proof. A standard argument (see, for example, [5, Proposition A.1]) shows
that

μY(ψ > n) ≤ μY(σ > k) + σ̄μ(|κ| > n/k),

for k, n > 1. In particular, there exists a > 0 such that

μY (ψ > n) � e−ak + n−2k2
1(n/k).

Taking k = q log n for any q > 2/a and using that 
1 is slowly varying,

μY (ψ > n) � n−2(log n)2
1(n/ logn).

Let ε ∈ (0, 2 − r). Since 
1 is slowly varying,


1(n/ logn) � (n/ logn)ε/2 � nε/2.

Hence μY (ψ > n) � n−(2−ε) and it follows that ψ ∈ Lr. �
Define

M̃b(t, h) = |h|L̃(h){1 + L(h)|t|2L̃(t) + |h|−b|t|2˜L(t)L(h)2|t|4L̃(t)2},
where L(t) = log(1/|t|) and L̃(t) = L(t)2
̃1(1/|t|).
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Lemma 7.6. The conclusions of Lemma 4.1 and 4.2 hold with Mb and L(t)
replaced by M̃b and 
2(1/|t|), respectively.

Proof. The modifications are elementary, but heavy on notation, so we only
sketch the details.

Since ψ ∈ Lr for all r < 2, the arguments in Section 5.1 are unchanged.
The changes in the proof of Proposition 5.6 are as follows. By resummation,
Proposition 7.5 and the definition of 
̃1,

K∑
m=1

μY(ψ = m)m2 �
K∑

m=1

μY(ψ ≥ m)m �
K∑

m=1

m−1(logm)2
1(m/ logm)

� (logK)2
K∑

m=1

m−1
1(m/ logm) � (logK)2
̃1(K).

Using this in (5.2), we obtain

K∑
m=1

∑
n≤b log m

rm,n � |h|L(h)3
̃1(1/|h|){1 + (|z| − 1)|h|−b log |z|L(h)}.

Similarly,

∑
m>K

∑
n≤b logm

rm,n � |h|L(h)3
1(|h|−1L(h)−1){1 + (|z| − 1)|h|−b log |z|L(h)}.

Hence the estimate corresponding to Proposition 5.6 is

‖∂j∂zR̂(z, t+ h)− ∂j∂zR̂(z, t)‖B1(Y) � |h|L(h)3
̃1(1/|h|){1+ (|z|−1)|h|−b log |z|L(h)}.

The corresponding estimates for ∂jR̂, ∂jÂ and ∂jB̂ are the same but with one less
factor of L(h).

Parts (a) and (c) of Proposition 5.11 are unchanged. Part (b) goes through
with L replaced by L̃. Hence, Corollary 5.12 becomes that

|gk(t) − λ̄k| � |t|2L̃(t), |∂jgk(t + h) − ∂jgk(t)| � M̃b(t, h).

The result follows. �

Corollary 7.7. Let β ≥ 0, r ∈ R, k = 0, . . . , q − 1. There exist C > 0, δ > 0
such that ∫

B2δ(0)
|t|βL̃(t)r|λk,t|n dt ≤ C

(L̃(1/an))r

ad+β
n

for all n ≥ 1.
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Proof. Following the proof ofCorollary 4.3,we obtain |λk,t|≤exp{−b|t|2
2(t)}.
Now use that an is defined using 
2 instead of L. �

Proof of Theorem 7.1. The arguments are identical to those in Section 6
up to slowly varying factors. Various simplifications no longer hold as the slowly
varying functions 
1, 
2, 
̃1 and log are less well related, so the exact formulas are
rather complicated and hence are omitted. �
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[4] P. Bálint and S. Gouëzel, Limit theorems in the stadium billiard, Commun. Math. Phys. 263
(2006), 461–512.

[5] P. Bálint and I. Melbourne, Statistical properties for flows with unbounded roof function, including
the Lorenz attractor, J. Stat. Phys. 172 (2018), 1101–1126.

[6] Q. Berger, Notes on random walks in the Cauchy domain of attraction, Probab. Theory Related
Fields 175 (2019), 1–44.

[7] Q. Berger, Strong renewal theorems and local large deviations for multivariate random walks and
renewals, Electron. J. Probab. 24 (2019), Article no. 46.

[8] L. A. Bunimovich, Y. G. Sinaı̆ and N. I. Chernov, Statistical properties of two-dimensional
hyperbolic billiards, Uspekhi Mat. Nauk 46 (1991), 43–92; English translation in Russian Math.
Surveys 46 (1991), 47–106

[9] F. Caravenna and R. A. Doney, Local large deviations and the strong renewal theorem. Electron.
J. Probab. 24 (2019), 1–48.

[10] N. Chernov, Decay of correlations and dispersing billiards, J. Statist. Phys. 94 (1999), 513–556.



34 I. MELBOURNE, F. PÈNE AND D. TERHESIU
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