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To mitigate the current COVID-19 pandemic, policy makers at the Greater London Authority,
the regional governance body of London, UK, are reliant upon prompt, accurate and actionable
estimations of lockdown and social distancing policy adherence. Transport for London, the local
transportation department, reports they implemented over 700 interventions such as greater signage
and expansion of pedestrian zoning at the height of the pandemic’s first wave with our platform
providing key data for those decisions. Large well-defined heterogeneous compositions of pedestrian
footfall and physical proximity are difficult to acquire, yet necessary to monitor city-wide activity
(busyness) and consequently discern actionable policy decisions. To meet this challenge, we leverage
our existing large-scale data processing urban air quality machine learning infrastructure to process
over 900 camera feeds in near real-time to generate new estimates of social distancing adherence,
group detection and camera stability. In this work, we describe our development and deployment
of a computer vision and machine learning pipeline. It provides near immediate sampling and
contextualization of activity and physical distancing on the streets of London via live traffic camera
feeds. We introduce a platform for inspecting, calibrating and improving upon existing methods,
describe the active deployment on real-time feeds and provide analysis over an 18 month period.
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INTRODUCTION

Before 2020, the phrase ‘social distancing’ had hardly any
visibility to the public eye [1] as vernacular more frequently
found in epidemiology textbooks and historical reports [2].
However, during the COVID-19 pandemic, physical spacing
between strangers became a means of trying to curb the spread
of the virus.

As the global community is actively engaged in under-
standing more about the effects and transmission mechanisms
of COVID-19, many governments have enacted temporary
restrictions targeted at reducing the proximity of the public

to one another, including measures such as limiting capac-
ity within enclosed spaces, communicating new pedestrian
traffic flow and, when necessary, enacting broader controls
via ‘lock-downs’ [3]. The monitoring of public response to
these measures has come out of necessity for policy makers
to better understand their adoption, plan economic recovery
and eventual suspension. When social restrictions were first
implemented in the UK, there were limited measures of public
activity in the context of likely vectors for viral transmission.
A number of private companies trading in public movement
data began providing aggregate information at the request of
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local government, from sources such as workplace reporting,
wearable sports activity trackers and point of sale transactions
[4]. It became clear there was an immediate need for additional
response metrics for pedestrian activity, unmet by the afore-
mentioned sources.

This work seeks to estimate social distance in areas of high
footfall in London, UK. The goal is to gauge adherence at
high spatial and temporal granularity, and most importantly
provide near real-time access to policy makers. We describe
a social-distancing estimation system using Open Government
Licensed [5] traffic cameras directed towards pedestrian cross-
ings and pavements. We include the description of our pipeline,
methodology, algorithms and new accuracy results as urban
object detection benchmarks.

The basis for this approach was initially built for construct-
ing greater predictive features to improve a live air quality
model of London [6]. It is known that pollutants are generated
at different rates depending on driving activity [7]. Traffic
camera footage is a suitable candidate for proving features on
typical vehicle movement, capable of assisting the modelling
of fine airborne particulates contributing to air pollution. The
cloud infrastructure developed for the air quality model serves
as the foundation for our social distancing estimation system.

Due to the nature of large-scale CCTV capture, there were
initial substantial privacy concerns. All footage employed
throughout the process is anonymized via deliberate restrictive
sampling and systematically undergoes continuous review by
The Alan Turing Institute’s Ethical Advisory Group [8].

2. METHOD

Cameras available to the public are heterogeneous in quality
and fall victim to the sporadic physical nature of London’s
historical streets. This scenario presents numerous challenges
from a geospatial statistical and technical perspective, see
Fig. 2 for an example of a post-processed still frame. Our
platform predominately relies upon 912 independent traffic
camera feeds, over 500 of which typically overlook an inter-
section or crossing with an expected pedestrian footfall. In
order to mitigate potential deanonymization, all input visual
data are reduced in video resolution, significantly hampering
facial identification. Additionally, to place our results in an
appropriate broader context, our research goal is to measure
variations in social distancing and feed quality over extended
periods of time.

Each camera feed provides two data elements: a short video
every few minutes and a restrictive set of static metadata
regarding location and approximate cardinal direction. Hence,
before attempting to estimate any pedestrian location, each
camera requires an initial digital twin abstraction to define the
world-plane of the visible scene stage, usually synonymous
with visible road structure. A final real-world calibration is
applied using human-labelled mappings from pixel locations

within the image to physical coordinates of objects identified
within the scene. These anchors are considered as ‘ground-
truth’, examples include road markings, telephone booths and
traffic lights. The objects selected are collectively referred to
as ‘urban furniture’, and are of most benefit if visible from
aerial or satellite photography for later calibration. As a form
of image registration, this enables mapping from the two-
dimensional video frame to an inferred unreferenced world-
plane, finally to a real-world location. The process is difficult
with highly variate CCTV scenes; our method learns one set
of parameters for mapping a 2D scene to a 3D real-world
coordinate projection and is described in Section 2.1.

Once complete, active data collection continuously ingests
10 s camera clips from the public domain. Upon successful
retrieval of each video sample, they are batched for object
detection. Our image processing pipeline is composed of a
cluster of dynamically scaled compute resource via virtual
machines operated by a container-orchestration system called
Kubernetes [9]. As a batch of 500 clips are ingested at a time,
we are careful to ensure our model and computational resources
are sufficient to process each sample in less or equal time than
they represent, i.e. 30 min of footage must complete within 30
min, or the system would perpetually slip behind real-time. We
employ a tuned state-of-the-art object detection model called
YOLOV4 [10, 11] for identification of pedestrians within video
frames. The reasoning for this selection and the tuning process
is included in Section 2.2, and active deployment as described
in Section 2.5.

Results from the camera calibration and object detection
stages are then stored within high-availability databases [12]
near our data storage and image processing cluster. These
databases permit immediate availability to public policy mak-
ers, specifically the greater London authority (GLA) and trans-
port for London (TFL) via a reliable representational state
transfer application programming interface (REST API). Addi-
tionally, high availability increases capacity for complimentary
research tasks, such as simultaneously watching for spikes
or irregularities via expectation-based network scan statistics
[13].

A primary challenge borne out of long-term experimental
processing is the unexpected consequences of relying upon
cameras prone to real-world interference. Some examples iden-
tified during the developmental phase of this system are graf-
fiti, wind progressively drifting the view direction, physical
malfunction and trees sprouting leaves restricting previously
clear views. In response to these detriments, we designed a
camera stability change point detection process for identifying
and alerting when scene dissimilarity meets a predetermined
threshold, as described in Section 2.3.

Finally, purely recognition, localization and relative dis-
tance are not enough for adequate social distancing metrics, as
pedestrian activity typically includes grouping behaviour. As
individuals seek to preserve physical distance with strangers
while reducing the chance of disbanding their safe social group
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(a) Road curvature challenging condition example, leading
to erroneous vanishing point.
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(b) Harsh shadow parallel to vanishing lines, a beneficial
scenario.

FIGURE 1. Lines detected by our feature extraction algorithm; two orthogonal sets of lines: those parallel to the foreground road (green, road
edges) and those perpendicular (blue, road perpendiculars). The intersection of each set, the vanishing point (light blue) which lies on the horizon.
Some challenging conditions are visible, including varying lighting and non-zero road curvature.
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(a) Detected edges, generated ground plane, and overlaid
pedestrian detection density in bright green, black, and
viridis heat map respectively.

(b) High accuracy detections, pedestrians, buses and bicycles
in red, blue, green respectively.

FIGURE 2. Example of our method applied to a traffic camera at Bank, London.

(or ‘bubble’) [14], an inclusion of group agency is considered.
An algorithm for group detection operating at frame and scene
granularity is presented in Section 2.4 for discussion as part of
the final results.

2.1. Camera calibration

Obtaining a world-plane mapping of a camera scene is exten-
sively described in the computer vision and photogrammetry

literature [15, 16]. A large portion of literature requires manual
calibration using known patterns to estimate a mapping from
sensor data to a real world contextualization [17-19]. We aim
to learn the geometric relationship between camera view and
physical scene, frequently described through similarity, affine
or projective transformations. A vanishing point of an image
is the location of apparent three-dimensional convergence of
parallel vanishing lines from a two-dimensional perspective
(Fig. 2a). Estimation of these vanishing lines is a common

SECTION C: COMPUTATIONAL INTELLIGENCE, MACHINE LEARNING AND DATA ANALYTICS
THE CoMPUTER JOURNAL, VoL. 00 No. 00, 2023

€202 YOJel\ € U0 1sanB Aq $2G1./0//0919BXQ/UIWOD/EE0L 01 /10P/3[0NE-80UBADE/|U[LLIOD/LO0D"dNO"OILISPEOE//: SARY WO PAPEOUMOQ



4 J. WALSH et al.

technique to recover some of these transformations. Our input
scenes have multiple limitations: roads are usually curved or
contain junctions of varying width; irregular road markings
vary in quality; low video resolution of the feed; lighting
conditions change frequently and are individually very short
in duration.

Scene object context methods [20, 21] use the activity of
multiple vehicles travelling parallel and regularly to estimate
the vanishing point, which is a feasible solution for our prob-
lem if multiple samples were stitched together and vehicle
movement manually corrected. Calibration methods [22-25]
require clear, regular or known lines in the scene, which is not
practical in the case of a large spread of physical geometry. A
stratified transformation approach discussed in [26] relies upon
maximum likelihood estimation (MLE), a popular method
for parameter estimation of an assumed probability distribu-
tion, given some observations. This is applied over multiple
extracted lines from high-quality images to build a real-world
model, an issue for our low-resolution samples. Finally, [20, 23,
24, 27] extract visible road features using a derivative-based
binarization operator. This is principally suitable for cameras
overlooking straight and visually similar lanes, which is turn
is only suitable for a portion of our input domain. Overall, we
sought a more easily generalizable method considerate of our
cluttered urban traffic scenes at low resolution that leverages
our high sample quantity.

2.1.1.  Simplified pinhole camera model

A mapping, (4, v,0) — (X,Y,Z), is sought from the image-
plane to world geometry—for example, the transformation
from pixels representing the bikes in Fig.2 to a physical
location. Without a priori truth of any parameters describing
the camera properties, these properties should be estimated or
assumed and categorized into two groups: intrinsics and extrin-
sics. Examples of intrinsics include focal length, principal
point, skew and aspect ratio, whereas extrinsics include posi-
tioning and direction. After manual inspection of all cameras,
we conclude the suitability of the Simplified Pinhole Camera
Model, as fewer than 0.5% of cameras have ultra wide-angle
(fisheye) lenses.

Our simplified pinhole camera model allows the transfor-
mation to be described by four parameters ug, vo, u1, h, where
(ug,vo), (u1,vo) are the vanishing points of two orthogonal
planar directions subtending the horizon line, and / is the height
of the camera above ground (Fig. 3). Parallel lines on the road
and on cars, such as road edges, advanced stop lines and car and
truck edges, are used to estimate this transformation (Fig. 2a).
This model makes the following assumptions:

(a) Unit skew, i.e. regularly square pixel grid.

(b) Constant aspect ratio, i.e. no change in width-to-height
ratio of pixels.

(c) Coincidence of principal point and image centre, i.e.
no change in the center pixel from the center of the
camera view.

These are commonplace and rarely estimated when lacking
more detailed visual information [28], [21]. External assump-
tions as follows:

(d) Rectilinear lens, i.e. zero radial distortion; the image
has already been pre-corrected such that perpendicular
straight lines in reality are straight on the perpendicular
pixel grid.

(e) Flat horizon vg = vy, i.e. camera has zero-roll.

(f) Zero-inclined roads Z = 0, i.e. pedestrians do not
move in a space large enough to calibrate deviation in
elevation.

Where cameras fail these external assumptions, a pre-
processing stage included additional information to correct
radial distortion [21], inclined horizon (setting vi # vg) and
non-zero inclination Z [29].

2.1.2. Edge detection

Our method for edge detection should be robust in noisy,
low-resolution scenes with varying light conditions. While
deep learning approaches for edge detection such as Visual
Geometry Group (VGG) models [30] have seen significant
advancements in the last decade [31, 32], they require hours of
training on a large set of labelled edges. Note that our dataset
does not have labelled edges. The value of rapid perspective
mapping outweighs the time necessary to produce a suitable
dataset of the scale of this task on our 912 scene samples.
This problem extends to considering direct vanishing point esti-
mation. The aforementioned deep learning approaches would
require labelled data on the order of magnitude of hundreds of
samples [32] for direct perspective estimation. We instead turn
our attention to classical methods [33].

Developed in 1986, the Canny Edge Detector has seen wide
adoption for its adept ability to find edges under the edge
detection goals of low error rates and minimized false edges
in noisy-scenarios, suitable for our low-resolution highly light-
variate input scenes, see Figs 1 and 2a.

The method relies upon Gaussian filters to first smooth
potential noise and then applies four filters to find intensity
gradients with reference to gradient angle direction. Edge-
thinning is subsequently applied via magnitude thresholding,
but this is not enough to remove spurious variations in colour
and noise. A second double threshold is applied using the
surviving edge gradients, this time utilizing high and low
empirically determined from the whole edge set. Finally, some
final weak edges remain. A process called hysteresis is applied
via blob analysis to determine survival based on proximity to
neighbouring strong pixels.

2.1.3. Parameter estimation

In order to learn our simplified pinhole camera model detector
parameters (ug, vo, U1, h), scenes with light vehicle traffic are
selected and the edge detector applied per frame to find sets
of road edges and road perpendiculars as shown in Fig. 2. In
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(b) Intermediate perspective mapping from image plane.
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(d) Intermediate world plane from perspective mapping.

FIGURE 3. Demonstration of perspective mapping of camera calibration from image to world plane before estimated registration to British
National Grid. Rays (black, solid) are drawn as grid lines and extended (red, dashed) to the estimated vanishing points (i, vo) and (u1, vp). After
mapping onto world coordinates, for example, vehicle trajectories (green, dotted) are also mapped by this transformation.
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FIGURE 4. Estimated locations of urban furniture (green) and trans-
formed ground-truth scene anchors (blue) on British National Grid.

order to learn a set of vanishing lines from these edges, the
Hough transform matches collinear edge segments into linked
lines which are then filtered by gradient [20] and dimensions.
The vanishing point is then simply estimated as the highest
frequency of the pairwise line intersections. This is chosen
over more computationally expensive aforementioned MLE
methods [34], where the vanishing point error is optimized
using least squares [28], [27] or Levenberg—Marquardt [20],
[26]. This procedure is repeated across different contrast factors
to provide a robust line detector in challenging lighting condi-
tions (as British weather traditionally exhibits). These ug, u1, vo
values are averaged over all frames to extract a final estimate.

Finally, the camera height 2 must be manually estimated.
One method is by transforming an object of known dimensions.

For example, using frequently appearing London buses of fixed
4.95m height, the calculated height averages h = 9.6m with
10% average deviation across seven randomly picked cameras.
Other ways to obtain the scale % include using car length
averages [29] or known lane spacing [25, 27]. Given few
known consistent standardized urban furniture upright heights,
the London Bus method is appropriate. With each parameter
estimated is it possible to define a world-plane.

2.14. Real-world reference

The world-plane projection (Fig. 3) is as yet unreferenced to
the real-world; a Euclidean Norm may be applied but not
uniformly across all cameras. We employ points of reference
via geotagged static urban furniture, such as traffic lights or
road markings to map this intermediate world-plane to a real-
world representation,

X + ey kicos(@) kzsin(@) .| |[x
Y +e | =|—kasin@@) kscos®) t,| |y
0 0 0 1 0

We select an appropriate flat 2D projected coordinate ref-
erence system, British National Grid (OS 27700). We then
employ a second transformation between these two 2D Carte-
sian frames of reference, represented above with scale and
shear factors, k, angle of rotation, 6, translations, ¢, and error
terms, e. The estimated real-world representation is the result of
optimization of the sum of squares error between transformed
image-coordinates of the urban furniture and the world-plane
image registration.
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2.2. Pedestrian detection

2.2.1. Camera dataset

Footage is sourced openly via Transport for London sourced
from the Open Roads initiative, known as JamCams [35]. A day
of collection constitutes approximately 220 000 individual files
of a total of 20-30GB, deleted upon processing in accordance
with our data retention policy. The nature of monitoring public
spaces means we cannot a priori request consent. The reductive
resolution of footage collected from this source inhibits any
capacity to personally identify an individual. Thus only their
humanoid likeness is utilized for detection.

2.2.2. Object detector

In order to detect entities quickly enough to assist policy
makers, we evaluate object detection models such as SSD [36]
and YOLO v3 [37] to balance speed against accuracy. These are
typically determined by architecture, model depth, input sizes,
classification cardinality and execution environment. You Only
Look Once (YOLO) [38] is a one-stage anchor-based object
detector which is both fast and accurate. YOLOV3 achieves
an accuracy of 57.9 APsp in 51ms [37]. Recently, a faster
version named YOLOv4 [10] was released with a state-of-the-
art accuracy than these alternative object detectors. Notably,
YOLOV4 can be trained and used on conventional GPUs which
allow for faster experimentation and fine-tuning on custom
datasets. YOLOv4 improves performance and speed by 10%
and 12%, respectively [10].

We employ both YOLOv3 and v4 in our experiments. Both
were pre-trained on Coco [39] dataset, a large-scale repository
of objects belonging to 80 class labels. Due to our objective,
the classes of interest are limited to six labels: person, car, bus,
motorbike, bicycle and truck. We fine-tuned the model on six
labels using joint datasets from COCO, MIO-TCD [40] and a
training set of custom manually labelled JamCam-specific set.
A validation set was also partitioned from the manually labelled
dataset for model evaluation. Results in the evaluation section
documents the success of this fine-tuning to traffic camera
footage.

2.3. Scene stability and camera drift

2.3.1. Similarity indices

Due to the extended duration of this project, it is necessary to
include an evaluation of physical change in scene perspective
or visible feed quality. Examples exhibited over time include
intended adjustments made via motor-driven camera equip-
ment, strong weather laterally progressively shifting direction,
detachment from mounting hardware and when local vege-
tation sprouts to inhibit visibility of the original scene. To
mitigate and detect these issues, we construct a variation metric
using past frame information to detect variations in the captured
scene. Direct application of pixel-for-pixel Mean Square Error
(MSE) is not suitable under the change of lighting conditions,

and is too sensitive to minute pixel differences. The Structural
Similarity Index Measure (SSIM) has been shown [41] to aptly
measure image distance via a kernel comparison approach.

(2pxtty + 1) (20 + €2)
(,u)% +u3 + 61) (sz +o2+ 62)

SSIM(x, y) =

where iy, [y, axz, ayz, oyy are x and y window average, variance,
and covariance, respectively; ¢ » represent a weighted dynamic
pixel range.

2.3.2. Application to scene imagery

Numerous scene reference periods were selected to measure
SSIM for each camera: first known scene frame versus first
hourly frame, 1-week historical offset to first hourly frame and
mean of non-erroneous initial frames over 7 days from initial
data acquisition versus first daily at noon. It became clear that
the final measure is most appropriate both for noise reduction
and computational efficiency. Over time, this generates a uni-
variate time series measuring scene variation. Sustained linear
drift is less likely to negatively effect our pedestrian location
estimation; however, it can be detected once the threshold
is met. More importantly, a single major movement must be
detected for subsequent alerting during the live experiment
operation. This option however does deviate from other auto-
mated tasks, requiring the 7-day period to be adjusted to the
new scene reference upon human intervention.

2.3.3. Change point detection

Detection of abrupt shifts in frame similarity over time is a task
suitable to the unsupervised learning problem of change point
detection, the study of algorithms designed to find underlying
change in time series [42]. An offline solution is still suitable,
providing our large number of input feeds and necessity for
appending daily measures. Upon evaluation, we determined
Pruned Exact Linear Time (PELT) [43] under a standard RBF
kernel could accurately partition camera scene changes. Under
this measure, cameras of high variability are also excluded from
later analysis.

2.4. Group detection

In order to better describe social distancing efforts, we imple-
ment a group detection process (algorithm 1) and define seven
metrics to describe a scene over time (Table 1). Selecting
groups from pedestrian detection locations are calculated by
generating the Delaunay triangulation in the British National
Grid (BNG) projection for pedestrians within individual frames
per scene sample.
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Algorithm 1: Group proximity frame tracking

Input: Scene of localised detections, Sy,
Parameters: Confidence threshold, T,
Distance threshold, Ty
Output: Total detected groups, G,
Max groups per-frame, G ax(n)
Min distance between groups, G yin(a)
Mean distance between groups, G5
Mean internal group size, I
Mean internal group distance, I3

SL — SL,Conf > Tc 5
I}, I; < empty;

foreach f € 32 ;
do

> threshold confidence

> locations per frame

C' < empty;

if |f| <2 then

append(I;, |fL]);

if |fr| =2 then
append([q, Euclidean(fz,, fr,));
append(C, Mean(fz,, fL,));

end

else

E + DelaunayEdges(fr);

D < Euclidean(e,,, e,,) Ve € E;

E« Eq <TyVd € D, > threshold d.

A <+ BuildCoordinateMatrix(E);
foreach ¢ € ConnectedComponents(A)
do
append (I}, |c|);
append(Zy, Mean(D..));
append(C, Mean(e., );

end
append(Sc, C); > group centres
end
end
foreach fco € S’Zv ; > groups per frame
do

E <+ DelaunayEdges(f¢);
L < Euclidean(e,,, €,,) Ve € E;
append(fq, Mean(L))
end
G, |Id|;
Grmax(n) + max(max(g) Vg € fc);
Gmin(a) < min(fa);
Gz < Mean(fy);
Iz <+ Mean(1,);
I; < Mean(14);

Each metric is calculated depending on two constants: detec-
tion confidence, T, the threshold required to include a detec-
tion, and a distance threshold, 7, the maximum group diameter
distance (metres). This task is conducted per frame, producing

ASSIM

e
)

20/04 21/05 20/06 22/07 21/08 22/09 22/10 21/11

FIGURE 5. Change points detecting scene stability of Oxford St/Vere
St. Each colour represents a detected change, example frames included
and coloured, respectively, to indicate variation in camera quality and
direction.

frame-level results: total number of groups, G,; number of
people within a group [;; mean distance between individuals
within group, Iy; and group centres in BNG projection, C.
Intermediate per-frame groups are determined by refactoring
within threshold detection locations into a coordinate matrix
from the Delaunay graph. Individual groups are then classified
as connected components per [44]. Upon completion, each set
of groups detected per frame supports an additional Delaunay
triangulation, permitting final calculation of scene-level met-
rics: maximum number of groups per frame, G,; minimum
distance between groups; Gmax(»); and mean distance between
groups, G.

We fix the detection confidence threshold to 0.7, meaning
inferred detection certainties from object detection as pedes-
trian below 70% are excluded. A maximum interest area is
defined as 6 m between any two individuals. In practice, this
task is expensive and distributed among many processing nodes
using Python Dask parallelization.

2.5. Deployment

Deployment provisioning is controlled declaratively by Ter-
raform, containing each component of the processing pipeline
(Fig. 6). Kubernetes manages two compute clusters: A GPU
accelerated horizontally scaled video processing pool, and a
stability-focused horizontally scaled burstable CPU pool exe-
cuting scheduled tasks and hosting API access points for direct
data acquisition and service for control centre output.

3. EVALUATION
3.1. Camera calibration

3.1.1. World-plane estimation

Uncertainty in the estimation of the vanishing line and extrinsic
camera height arises due to imperfect camera effects eliminated
in the assumptions and inaccurate automatic line extraction.
The estimated errors in mapped world position, dX,dY, are
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TABLE 1. Group metrics calculated over a given sample of detection results.

Metric Definition
Individuals Total number of unique pedestrians
No. groups Total number of unique groups

No. groups max.

Outer group min. distance
Outer group mean distance
Inner group mean size
Inner group mean. distance

Maximum number of exhibited groups in a given location.
Minimum distance exhibited between two groups in a given location.
Mean distance of all exhibited groups in a given location.

Mean population within a group.

Mean of distance exhibited within a group.

evaluated for three randomly selected cameras manually cali-
brated beforehand using the total differential over all estimated
parameters p; € {ugp, vo, U1, h} assuming that the vehicle track-
ing u,v are accurate at the point of evaluation. The average
relative uncertainty in position mapping due to parameter esti-
mation |d7X| is calculated to be 17.7%, o = 7.9%.

3.1.2. Calibration to real-world reference

Of 912 total cameras, 504 were selected for analysis within
the Boroughs of Inner London with non-pedestrian motorway
scenes predominately excluded. For this training subset, 3298
manually labelled urban furniture anchors were employed for
frame real-world calibration. During labelling, care was taken
to maximize spacial coverage in each dimension, i.e. anchors
were sparsely labelled to include the width and depth of the
field of view. There are an average of 5.53 labels, |F|, per
scene s, with a minimum of 4, |Fg| > 4, where few urban
furniture could be identified. Given that we are interested in the
distance between individuals, the most appropriate error would
be distance between known real-world locations and their pixel
coordinates post transformation. The value of this comparison
stems from the interest of comparing two individuals or groups
within the scene. All possible lengths between all anchors,
N, were calculated before optimization. The error function
was the mean squared error between these and the learned
transformation results, M,

M M
e=MSE (N, D> > Ji2 -7 |.

i J#E

This tests the complete calibration pipeline, from pixel coor-
dinates in the image plane, to relative locations in the world
plane, and finally to the real-world distances between points.
The median optimization error was 0.8210 in BNS, meaning
our model is able to locate an object in the image within 82.10
cm. The distribution of this error is shown in Fig. 7.

3.1.3. Validation
There does not exist a ground-truth dataset containing relative
distances between people in the traffic camera frames around

London. To validate this approach, we remove ground-truth
anchors enforcing a reliance on fewer manually calibrated
examples. For every scene s with a set F of urban furniture
anchors, we remove exactly one anchor a; from F randomly
with uniform and independent probability. We train our model
only using anchors in Fg — {as}. The validation test set contains
all the out-of-sample removed anchors a, for each scene s.

The approach led to a mean relative distance error 83.43 cm,
a discrepancy of 1.33 cm, with distribution displayed in red,
Fig. 7. This indicates that the training procedure marginally
benefits from more labels and is resistant to changes in the input
training data.

3.2. Object detection

As pre-processing steps, we subset six labels from the Coco
2017 and MIO-TCD localization dataset. Unlike the Coco
dataset, MIO-TCD localization dataset contains 11 labels with
additional categories such as motorized vehicle, non-motorized
vehicle, pickup truck, single unit truck and work van, not
found in the Coco 2017 dataset. For comparison, we collapse
the different categories of trucks as truck and remove labels
regarding vehicle motorization. We produce a new collection
of manually labelled entities specifically on frames from traffic
cameras, using CVAT [45]. The dataset contains 1142 frames
and 11 497 bounding boxes as shown in Table 2. For eval-
uation/validation, we compute the mean Average Precision
(mAP) at IOU threshold of 0.5 over the Coco 2017, MIO-TCD,
joint (Coco 2017 + MIO-TCD) and JamCam datasets.

We fine-tune a pre-trained YOLOv4 weights file on six
labels from different training datasets using a batch size of 16,
subdivisions of 4, image size of 416 and at least 7000 iterations
on a Tesla V100-SXM3-32GB GPU. We train three different
models on (1) Coco 2017 training data (2) MIO-TCD training
data and (3) Joint data containing random shuffle of Coco
2017 and MIO-TCD training data. Table 2 shows the number of
training data by labels. The validation data contain Coco 2017
validation data, MIO-TCD validation data and Jamcam data.

The performances of the three models are shown in Table 3.
On the Coco 2017 validation data, the model achieves a
mean Average Precision (mAP@0.50) of 67.55%. However,
the model trained on Coco 2017 dataset perform poorly on
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FIGURE 6. Development operations and platform architecture as deployed to Azure cloud services.

MIO-TCD localization validation dataset with an mAP of
20.39%. Likewise, the performance of the model trained on
MIO-TCD dataset reduces greatly from 85.80% to 14.24%
when Coco 2017 dataset is used as the validation dataset.
This behaviour might be as a result of the differences in
the resolutions and weather conditions in the two datasets.
Performing a joint training creates a balance between the
two datasets and increases the model’s performance on the
independent Jamcam dataset.

4. ANALYSIS

As of 23 September 2021, in the 18-month period the data
collection pipeline has processed 19.31 terabytes of footage,
for a total of 23 839 346 160 samples of all detection types,
spanning all calibrated camera scenes. Of these, 9453 327 651
were rejected either due to irrelevant camera positioning, or
out of caution when recorded during a period of high camera
variability.
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FIGURE 7. MSE distances of all possible distances from ground-truth
anchors and transformation results. Full data are displayed in black,
dropout validation results in red.

TABLE 2. Training and validation samples per dataset.

Dataset Person Bike Car M.bike Bus Truck
Train
Coco 2017 262465 7113 43867 8725 6069 9973

MIO-TCD 5760 1758
Validation

Coco 2017 11004 316 1932 371 285 415
MIO-TCD 1368 502 46730 353 2155 13694
Jamcam 1233 106 7867 106 203 1982

186767 1484 8443 54340

We define ‘Inner Bouroughs’ as the Statutory Inner London
according to the London Government Act of 1963. The results
for this section are generated for a period beginning from our
collection date 23 March 2020.

4.1. Scene stability and camera drift

Change in SSIM between the reference scene in the active
feed, ASSIM, is highly relevant to determining sample suit-
ability. Instances of multiple change points promote manual
intervention or total rejection; Fig. 5 is an instance of changing
stability, whereby the original perspective does not include
both pedestrian crossings; then the sensor becomes damaged
or over exposed for over 4 months, only to then be positioned
differently in October 2020.

Variance in camera positioning was noticeably larger in
areas of high pedestrian activity, indicative of the active role
Transport for London (TfL) has taken in monitoring pedestrian
and vehicle traffic. As demonstrated by comparing the standard
deviation of ASSIM between inner and non-inner boroughs
over the aforementioned time frame results, oijpner = 0.0636,
Oouter = 0.0053.

4.2. Macro policy intervention

Macro interventions within London are defined as either appli-
cable national requirements determined by the central govern-

ment or city-wide policies set forth by the Mayor’s Office. For
this example, inner boroughs are selected for their high camera
availability for a 12-month subset of these data. Applying group
detection per borough provides profiles visible in Fig. 8. A
timeline of intervention events [46] are documented in Fig. A.1.
Each profile is smoothed under simple local regression [47],
taking 5% closest points to (x;,y;), estimating y; under standard
weighted linear regression.

There are two predominant results generalized across the
city. First visible is a substantial increase in frequency of
pedestrian activity and reduction of social distancing during
the ‘Eat out to help out’ scheme between 3 and 30 August
2020. Additionally, activity during the second lockdown plum-
meted, while social distancing steadily increased. During the
reduced restriction periods between these events, a spike in
social distancing is seen in most boroughs. This result may
be indicative of successful public information campaigns and
a willingness to maintain safe distancing conditions, however
such a statement is extremely difficult to casually prove.

During the Christmas period the initial social restriction
measures rapidly stem the quantity of individuals and groups in
all boroughs. After the holiday, activity and distances rapidly
grow until restrictions are relaxed leading to plummeting social
distancing in almost all boroughs.

4.3. Micro policy intervention

Micro interventions are limited within our dataset, as many
COVID protocols cannot be captured on traffic cameras. There
exist a number of smaller interventions in the form of pavement
extensions. These expansions in pedestrian space include road
reclamation in specific areas of high volume, such as near
restaurants and public transport stations. For our analysis, we
selected three stable scenes from distinct boroughs and filtered
our social distance metrics before and after the intervention for
comparison.

Locations Borough High St/Southward St, East Road/Vestry
St and AI0 North of Tyssen Rd (Fig. 9) have 50.2, 43.0 and
153.1 m? of pavement area within our digital twin scene. Post-
expansion, each gained 40.2, 20.5 and 100.3 m? of additional
walking space. Before intervention these had mean estimated
social distances of 1.33, 1.21, 0.73 m, or as a ratio to area,
0.027, 0.028, 0.005 m/mz, respectively. Post barricade instal-
lation, estimated mean distance rose to 1.50, 1.25, 0.93 m. This
is indicative of a clear usage of this space, increased physical
distancing and effective policy intervention.

5. CONCLUSION

This work contributes a new social distancing monitoring
platform, improves upon the accuracy of the state-of-the-art
detection model for an urban domain, introduces a new camera
perspective estimation method, provides physical spacing
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TABLE 3. Comparing models fine-tuned on the Coco 2017 dataset, MIO-TCD dataset and joint training set using YOLOV4 architecture.

Train Validation mAP@0.50 Precision Recall Fl1-score
Coco Coco 67.55 0.73 0.70 0.71
MIO-TCD 20.39 0.38 0.49 0.43
JamCam 41.64 0.62 0.59 0.60
MIO-TCD Coco 14.24 0.35 0.30 0.30
MIO-TCD 85.80 0.83 0.90 0.86
JamCam 35.12 0.75 0.45 0.57
Joint Coco 64.56 0.71 0.69 0.70
MIO-TCD 80.32 0.79 0.88 0.83
JamCam 46.53 0.76 0.57 0.65

28 s - Unselected

Selected
N No. Selected

--== No. Groups (count)
---= No. Individuals (count)
—— Internal Group Distance (m)

. - A v 2 AN
35 2 A PNV U
il - /A 2

7S s n
RN VAV
ot ML N e B

intensity

B
VBT
A\ N
AV =\

N e
(AN

-
R

I1[)-08-20 110-12—20 I12-[)4-2110-04-20 I10-08—20 I10-12—20

time

0
10-04-20

112-04-21 10-04-20

v10-08—20 I1()-12-2(] I12-04-21 10-04-20 I10-08-20 v1(]-12-20 I12—04-21

FIGURE 8. Number of individuals, I,, mean inner group physical distance, I7, outer group social distance, Gz, by inner borough. ‘Lockdowns’
and ‘Eat out to help out’ are represented by red and yellow, respectively. Points are representative of camera locations, selected and unselected in

blue and grey, respectively.

metrics in a viable historical context and demonstrates how
multiple machine learning techniques may benefit public
health. According to the Greater London Authority, this
tool enabled them to intervene quickly and identify where
street spacing interventions were required. These interventions
included moving bus stops, widening pavements and closing
parking bays to create space, which enabled social distancing.
‘TfL says that it implemented over 700 such interventions at

the height of the pandemic’s first wave, and that the Turing’s
tool provided key data for those decisions [48, 49].

Combined with large-scale inexpensive consumer-distributed
computing infrastructure, we provide an option for policy
makers to receive a near real-time perspective of their impact
via an online interface, Fig. 10. Ongoing directions for this
project include validating our early warning detection system,
improving the digital twin overall accuracy, providing more
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FIGURE 9. Before (top) and after (bottom) of three locations of pavement expansion interventions. Heat map of pedestrian footfall within
calibrated pavement and extension (red) areas pre- and post-bollard placement.
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FIGURE 10. Control centre output, real-time interactive pan-London
activity metrics as a web application convenient to stakeholders.

‘human-in-the-loop’ recommendations with high ease of use
for policy makers and continuing to provide transparent and
interrogatable examples of machine learning applications.
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APPENDIX A. LOCKDOWN PERIODS
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FIGURE A.1. City-wide policy interventions. Red lines indicate
lockdown start dates.
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