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Abstract— This paper presents a flexible modeling framework
for multi-target tracking based on the theory of Outer Probability
Measures (OPMs). The notion of labeled uncertain finite set is
introduced and utilized as the basis to derive a possibilistic analog
of the δ-Generalized Labeled Multi-Bernoulli (δ-GLMB) filter, in
which the uncertainty in the multi-target system is represented
by possibility functions instead of probability distributions. The
proposed method inherits the capability of the standard proba-
bilistic δ-GLMB filter to yield joint state, number, and trajectory
estimates of multiple appearing and disappearing targets. Beyond
that, it is capable to account for epistemic uncertainty due to
ignorance or partial knowledge regarding the multi-target system,
e.g., the absence of complete information on dynamical model
parameters (e.g., probability of detection, birth) and initial number
and state of newborn targets. The features of the developed filter
are demonstrated using two simulated scenarios.
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I. INTRODUCTION

THE Multi-Target Tracking (MTT) problem is to
jointly estimate the number, state, and individual trajec-
tory of targets based on a sequence of measurements,
where the number of targets may be time varying due
to possible birth and death events. The major challenge
in this process is to resolve various sources of uncer-
tainty stemming from target-to-measurement association,
false alarm, and missed detection. Over the years nu-
merous multi-target tracking algorithms have been de-
veloped based on the multi-target Bayes filter, and three
of the major methodologies are Multiple Hypothesis
Tracking (MHT) [1], Joint Probabilistic Data Association
(JPDA) [2], and Random Finite Set (RFS) [3].

The RFS approach is the latest solution to the MTT
problem. It provides a general systematic treatment of
multi-target systems by modeling the multi-target state
as finite set valued random variables, which enables
the derivation of multi-target filters based on Bayes’
theorem. Several realizations of RFS filters have been
developed, including the Probability Hypothesis Density
(PHD) [4], Cardinalized Probability Hypothesis Density
(CPHD) [5], and Multi-Bernoulli (MB) [6] filters. How-
ever, the above methods cannot provide trajectory-related
information, which are of particular interest in many
applications, e.g., space surveillance. To cope with this
issue, Vo. et al [7, 8] further developed the Generalized
Labeled Multi-Bernoulli (GLMB) filter based on the
notion of labeled RFS. In the GLMB filter, a unique
label is assigned to each target for identity maintenance,
and the corresponding trajectory can be reconstructed
by extracting the sequence of estimates with the same
label. Beyond that, the GLMB filter outperforms the
PHD, CPHD and MB filters in terms of state estimation
accuracy. Efficient approximations of the GLMB filter,
e.g., the Labeled Multi-Bernoulli (LMB) filter [9] and
Marginalized GLMB filter [10], further facilitate the ap-
plication of labeled RFS filters in several disciplines, e.g.
track before detect [11], sensor control [12, 13, 14], and
information fusion [15, 16].

In the GLMB method, the recursive estimation of the
filtering density of the multi-target state relies on the
framework of the Bayes multi-target filter. In the typical
Bayes multi-target filter, all uncertain components in the
multi-target system are modelled as aleatoric, and they
must be characterized by a probability distribution based
on the assumption that one possess complete knowledge
or sufficient statistical information of the system. For
instance, the newborn targets and false alarms are usually
assumed as uniformly or Poisson distributed within the
sensor Field-of-View (FOV). However, in many realistic
applications, the exact knowledge concerning the birth
model and detection profile may not be available for anal-
ysis. This kind of uncertainty that results from the lack
of information is referred to as epistemic uncertainty. As
opposed to the inherent randomness of the system, epis-
temic uncertainty is reducible if we can keep collecting
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and processing information to learn all aspect of the sys-
tem. Modeling epistemic uncertainty using a probabilistic
model may result in ill-adapted representation [17]. The
mismatches between the assumed model and the real-
ity may result in performance degradation of the filter,
such as erroneous state and cardinality estimations [18].
Several versions of RFS filters, including CPHD [5] and
GLMB [19, 20] filter, have been proposed to adaptively
estimate unknown detection profile and clutter rate while
filtering. However, these methods are less effective when
the detection profile and clutter background evolve rapidly
compared to the measurement-update rate.

The recently developed Outer Probability Measures
(OPMs) framework [21] yield an alternative representa-
tion of limited information of a complex system. Closed-
form filtering solutions based on OPMs have been derived
for a recursive so-called uninformative prior Bayesian
estimation [22] for enhanced robustness in the absence
of precise measurements or dynamic model assumptions.
Ref. [23] explores the concept of Uncertain Finite Set
(UFS) by replacing the random variables in a RFS with
uncertain variables, and the possibility Bernoulli filter on
the basis of UFS has been developed to accommodate the
presence of partial knowledge on the model and filtering
parameters. In [18], a uncertain finite set is also referred
to as uncertain counting measure, which is employed to
model the multi-target tracking system and develop a pos-
sibilistic version of the PHD filter. The possibility PHD
filter provides significant modeling versatility for multi-
target systems and enables an appropriate representation
of imperfect information about the number and state of
newborn targets. However, similar to the PHD filter, the
possibilistic analog cannot provide trajectory information.
In addition, directly estimating the number of targets is
not possible in this method.

In this paper, a robust multi-target tracker is developed
to provide joint state, number, and trajectory estimates
with very little information about some aspects of the
underlying processes, e.g., birth process and detection
profiles. The proposed approach allows to represent uncer-
tainty in parameters without necessarily using additional
levels of modelling (such as hyperparameters or false-
alarm generators employed in Refs. [5, 19]). To this
end, we exploits the notion of labeled UFS by adapting
the labeled RFS approach to the OPM framework. The
GLMB UFS is introduced as the form of weighted max-
imum of multi-target exponentials, which also satisfies
the property of conjugate priors that are closed under
the Chapman-Kolmogorov equation. The predict-update
recursion of the GLMB UFS is shown to take the same
form as the standard version with integrals replaced by
supermums. On top of that, the developed possibility δ-
GLMB filter can handle the MTT problem in the situation
of ignorance or partial knowledge in the MTT problem.
The performance of the developed method is verified by
comparing with the standard δ-GLMB filter using two
simulated MTT scenarios.

The rest of the paper is organized as follows. Sec. II
briefly reviews the mathematical foundation of OPMs and
possibilistic Bayesian multi-target inference. The theory
of labeled UFS is introduced in Sec. III, followed by
the definition of the GLMB UFS and recursion given
in Sec. V. Sec.VI elaborates the implementation of the
possibility δ-GLMB filter. The simulation results are
presented in Sec. VII and concluding remarks are given
in Sec. VIII.

II. Background

In this section, the mathematical definition of OPMs
will be first introduced, followed by a description of
the multi-target filter based on the possibilistic Bayesian
inference.

A. Outer Probability Measures and Possibility
Functions

An outer probability measure is essentially a set
function P̄ defined on the state space X, and P̄ (A) ∈ [0, 1]
indicates the credibility of the event X ∈ A for all
subsets A of X, where X is referred to as uncertain
variable as opposed to a random variable to represent an
uncertain system. In addition, P̄ satisfies the following
properties [21]:

P̄ (∅) = 0

P̄ (X) = 1

P̄ (A) ≤ P̄ (B), A ⊆ B

P̄
(⋃∞

i=1Ai

)
≤

∑∞
i=1 P̄ (Ai), ∀Ai ⊆ X.

OPMs are distinct from probability measure because
they are non-additive. Given two subsets A and B of X,
the probability of the two events X ∈ A and X ∈ B
sums to one: P (A) + P (B) = 1, while OPMs instead
consider P̄ (A ∪B) ≤ P̄ (A) + P̄ (B). Due to the concept
of non-additivity, OPMs provide additional flexibility for
modeling ignorance [21]. For instance, P̄ (A) = 1 and
P̄ (B) = a denote that the probability of X ∈ A is un-
known as we lack the evidence to discard any possibility
of this event, and the probability of X ∈ B is no more
than a. This example indicates that an OPM P̄ defines an
upper bound for the underlying probability distributions.
For X ∈ A, it follows that

1− P̄ (X \A) ≤ P (A) ≤ P̄ (A),

where ·\· denotes the set difference, and P̄ (A) and
1−P̄ (X\A) are also respectively referred to as possibility
measure and necessity measure in possibility theory [24].
As more information is available for analysis, the upper
and lower bound in the above definition will converge to
P (A). In the extreme case of 1 − P̄ (X \ A) = P (A) =
P̄ (A), the analyst knows the probability of X ∈ A,
meaning that there is no epistemic uncertainty left at that
point.
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We will focus on the class of OPMs, which are defined
by a possibility function f(x) ∈ [0, 1] as follows

P̄ (A) = sup
x∈A

f(x).

A possibility function is normalized with maximum or
supremum equals to one, i.e., maxx∈X f(x) = 1 or
supx∈X f(x) = 1. Possibility functions can be related
to fuzzy sets and belief functions as described in [25]
and [26]. Given two uncertain variables x and y, then the
marginal and posterior possibility functions are defined as

f(y) = sup
x∈X

f(x, y), f(x|y) = f(x, y)

f(y)
,

where f(x, y) is the joint possibility function that de-
scribes x and y. If x and y are said to be independently
described, when f(x, y) = f(x)f(y). There are various
notions of conditioning and independence in possibility
theory [27], we follow the route of numerical possibility
theory for its strong connections with probability theory.

The simplest possibility function is called the indicator
function, i.e., f(x) = 1A(x), which indicates x ∈ A
almost surely but no further information is available to
describe the distribution of x within A. The indicator
function has been applied in [28] to provide an “unin-
formative” initial orbital state of a space object.

Another commonly used possibility function is the
Gaussian possibility function f(x) = N̄ (x;µ, S), where

N̄ (x;µ, S) = exp
(
− 1

2
(x− µ)TS−1(x− µ)

)
,

for some µ ∈ Rd and some d × d positive definite
matrix S. In this paper, the µ and S are defined as
possibilistic expected value and variance, respectively.
The probabilistic mean in a Gaussian Probability Density
Function (PDF) p(x) = N (x;µ, S) represents a state that
is statistically most likely, while the possibilistic expected
value corresponds to the mode of the possibility function,
indicating the value that we have least information to
reject. In addition, the possibilistic variance describes
the spread of the function. Unlike a Gaussian PDF, the
Gaussian possibility function does not characterize the
aleatory behavior, while it can be interpreted as a given
shape of uncertainty or an upper bound of all underlying
probability distributions.

A Gaussian Max-Mixture (GMM) possibility function
takes the form of a weighted combination of Gaussian
possibility functions. A GMM with N max-mixture com-
ponents is defined by

f(x) = max
1≤i≤N

wi N̄ (x;µi, Si),

where wi ∈ [0, 1] and max
1≤i≤N

wi = 1. The GMM is similar

in formulation to a probabilistic Gaussian mixture model,
e.g., p(x) =

∑N
i=1 wipi(x), pi(x) = N (x;µi, Si), and∑N

i=1 wi = 1. The Gaussian mixture model suffices to
approximate any smooth PDF with a specific nonzero
amount of error using enough components [29]. Likewise,
the GMM function can be cast as a universal approxima-
tion of any possibility function.

B. Possibility Bayes Multi-Target Filter

By replacing the notion of a random variable with
the one of uncertain variable, the possibilistic analog
of the standard Bayes multi-target filter is introduced
in this section. The following notation are employed in
the remainder of this paper. Single-target variables are
denoted by lower-case letters (e.g., x, z), multi-target
variables are represented by upper-case letters (e.g., X ,
Z), and the labeled states and distributions are denoted by
bold-type symbols (e.g., x, X and π). The multi-target
exponential is represented by [f ]X =

∏
x∈X f(x), where

f∅ = 1. The black-board bold letters indicate spaces (e.g.,
the multi-target state space X and the measurement space
Z). The multi-target state and observations are upper case
letters X ∈ F(X) and Z ∈ F(Z), respectively, where
F(X) denotes all finite subset of X, and Fn(X) denotes
the collection of finite subsets of X with n elements.

Suppose the multi-target state at time tk−1 is an un-
certain variable Xk−1 on X, all the available information
about the number and multi-target state at time tk−1 is
modeled by a possibility function πk−1(Xk−1|Z1:k−1),
which is conditioned on the observation history Z1:k−1.
The multi-target prior at time tk is the predicted pos-
sibility function πk(Xk|Z1:k−1) obtained based on the
multi-target transition kernel fk|k−1(Xk|Xk−1) using the
following equation

πk(Xk|Z1:k−1) = sup
X∈F(X)

[
fk|k−1(Xk|X)πk−1(X|Z1:k−1)

]
,

(1)
where the conditional possibility function fk|k−1(Xk|X)
describes the transition of the target’s state Xk given
Xk−1 = X .

The predicted possibility function πk(Xk|Z1:k−1) can
then be updated by the information contained in the new
observation Zk based on Bayesian inference. Assuming
the observation process is also modeled by a possibility
function gk(Zk|Xk) for observation Zk, the posterior
possibility function is expressed as

πk(Xk|Z1:k) =
gk(Zk|Xk)πk(Xk|Z1:k−1)

sup
X∈F(X)

gk(Zk|X)πk(X|Z1:k−1)
. (2)

The prediction and update formulas can be seen as
the possibilistic analog of the multi-target Chapman-
Kolmogorov equation and the Bayes’ update equation,
respectively. The major difference is that the supremums
are utilized to replace integrals, and the state transition
function fk|k−1 and the likelihood function gk are repre-
sented by possibility functions instead of PDFs.

III. Labeled Uncertain Finite Set

This section first reviews the fundamental of UFS
with a few examples in Sec. A, and then introduces the
definition of labeled UFS and LMB UFS in Sec. B.
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A. Uncertain Finite Set

1. Concept of Uncertain Finite Set
An UFS X ∈ F(X) is a finite set valued uncertain

variable, where the number of points in X and the points
themselves are uncertain. An UFS is completely described
by its cardinality function and spatial distribution. The
cardinality function of X is a discrete possibility function
fc(n) = P̄ (|X| = n), and maxn≥0 fc(n) = 1. The spatial
distribution of X is a symmetric possibility function de-
noted by fn(x1, . . . , xn) with supremum equals one, i.e.,
supx1,...,xn

fn(x1, . . . , xn) = 1. The possibility function
of an UFS X = {x1, . . . , xn} is defined by [23]

π(X) = fc(n)fn(x1, . . . , xn). (3)

If the uncertain variables x1, . . . , xn in an UFS X are
independently described by the same possibility function
f(·), then they are regarded as independently identically
described (i.i.d.). The possibility function of the UFS X
is expressed as

π(X) = fc(|X|)
∏
x∈X

f(x).

The supremum of the function π(X) of an UFS X on
X is referred to as set supremum in this paper, and the
formal definition is given by

sup
X⊆X

π(X) = max
n≥0

[
sup

(x1,...,xn)∈Xn

π({x1, . . . , xn})
]
. (4)

The term within the max operator is the supremum of n!
permutations of (x1, . . . , xn) in Xn. This equation is in a
form similar to Mahler’s set integral equation for multi-
target density functions [3]. The set integral takes the sum
of the integrals for all the finite subsets X of X, while
(4) is determined by a single set of (x1, . . . , xn) whose
supremum is the maximum over n. Eq. (4) serves as one
main base for deriving the GLMB recursion in Sec. V.

In [18], the concept of first-moment measure or inten-
sity measure is extended to uncertain counting measure,
which is defined as intensity measure. Following [18], the
intensity measure of an UFS X is defined as

v̄(x) = max
n≥0

sup
(x1,...,xn)∈Xn

π({x} ∪ {x1, . . . , xn}). (5)

The intensity measure of a RFS is the so-called Prob-
ability Hypothesis Density (PHD). The integral of the
PHD over a region S gives the expected number of
elements in S. However, the intensity measure cannot
provide a cardinality information, and indeed, it yields
the credibility that there is at least one point in S.

The following example is presented to provide insights
into the principle of set supremum and intensity measure.

Example 1

Suppose the possibility function π of an UFS X is

characterized by

π(∅) = r
(1)
0 r

(2)
0 (6a)

π({x}) = max
{
r
(1)
1 r

(2)
0 f (1)(x), r

(1)
0 r

(2)
1 f (2)(x)

}
(6b)

π({x1, x2}) = r
(1)
1 r

(2)
1

×max
{
f (1)(x1)f

(2)(x2), f
(1)(x2)f

(2)(x1)
}

(6c)

and by π(X) = 0 if |X| > 2, where max{r(1)0 , r
(1)
1 } = 1,

max{r(2)0 , r
(2)
1 } = 1, and f (1) and f (2) are possibility

functions, such that the supremum of each is equal to
one. The set supremum of π(X) is given by

supπ(X) = max
{
π(∅), sup

x
π({x}), sup

x1,x2

π({x1, x2})
}
.

Substituting (6) into the above equation and simplifying
the supremum of f (1) and f (2), we can easily conclude
that supπ(X) = 1. The intensity measure of π(X) is
given by

v̄(y) = max
{
r
(1)
1 f (1)(y), r

(2)
1 f (2)(y)

}
.

This solution is obtained by substituting (6) into (5) and
considering the supremum of possibility functions f (1)

and f (2) is equal to one. Actually, the UFS X considered
in this example is a multi-Bernoulli UFS, whose formal
definition is given in the following section.

2. Multi-Bernoulli Uncertain Finite Set
The multi-Bernoulli UFS X is defined as the union of

m independent Bernoulli UFS X(i), i.e., X =
⋃m

i=1X
(i).

A Bernoulli UFS X can be an empty set with possibil-
ity r0 or a singleton with possibility r1. Its possibility
function π(X) for a X on X is defined as [23]

π(X) =

{
r0 if X = ∅,
r1f(x) if X = {x}.

(7)

Its cardinality is either 0 or 1. The maximum of
a Bernoulli possibility function is equal one, i.e.,
max{r0, r1 supx∈X f(x)} = 1, since supx∈X f(x) = 1 and
max{r0, r1} = 1. The definition of the multi-Bernoulli
UFS is introduced below.

DEFINITION 1. A multi-Bernoulli UFS is completely de-
scribed by a parameter set {(r(i)0 , r

(i)
1 , f (i))}mi=1, where

max{r(i)0 , r
(i)
1 } = 1, for i = 1, . . . ,m. The possibility

function of a multi-Bernoulli UFS for a set of non-empty
X = {x1, . . . , xn} is defined by

π(X) =

m∏
i=1

r
(i)
0 max

1≤i1 ̸=... ̸=in≤m

n∏
j=1

r
(ij)
1

r
(ij)
0

f (ij)(xj). (8)

The possibility function of a multi-Bernoulli UFS π in
the case of all the elements are empty set X(i) = ∅ is
π(∅) =

∏m
i=1 r

(i)
0 .

The form of (8) is similar to the PDF of a multi-
Bernoulli RFS [7], while the maximum replaces sum-
mation, and r

(i)
0 and r

(i)
1 are determined independently.
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Based on the definition of UFS (3), the cardinality
function of a multi-Bernoulli UFS can be obtained by
fc(n) = supX∈Fn(X) π(X), i.e.,

fc(n) =

m∏
i=1

r
(i)
0 max

1≤i1 ̸=... ̸=in≤m

n∏
j=1

r
(ij)
1

r
(ij)
0

. (9)

We can easily conclude that fc(n) is a possibility function
whose maximum is one since the maximum of (8) is equal
to one (the proof is given in the Appendix).

B. Labeled Uncertain Finite Set

The fundamentals of the labeled UFS are similar to the
probabilistic case [7], while the concepts and formulations
presented in this section require a strict derivation for the
sake of completeness.

1. Fundamentals of Labeled Uncertain Finite Sets
In order to distinguish the identity of each target, a

unique label ℓ on a discrete labeled space L is assigned
to each single-target state x ∈ X, such that we obtain a
labeled single-target state denoted by x = (x, ℓ). Each
label ℓ = (k, i) is uniquely determined by the birth time
k of the target and the order i of birth at time k. The
label of x can be retrieved using a projection function
L((x, ℓ)) = ℓ, where L : X× L → L.

A labeled UFS is defined as an UFS on X × L with
state space X augmented by the label space L. Each
realization of a labeled UFS is a labeled multi-target state
X = {x1, . . . ,xn} that has a distinct set of labels, i.e.,
|L(X)| = |X|. A distinct label indicator is denoted by
∆(X) = δ|X|(|L(X)|), where the generalized Kronecker
delta function δY (X) = 1 if and only if X = Y , and
δY (X) = 0 otherwise.

Given a labeled UFS with possibility function π, the
UFS of a X = {(x1, ℓ1), . . . , (xn, ℓn)} is given by

π({x1, . . . , xn}) = max
(ℓ1,...,ℓn)∈Ln

π({(x1, ℓ1), . . . , (xn, ℓn)}).
(10)

The unlabeled version is the projection from X× L into
X. The cardinality function of a labeled UFS should be
the same as its unlabeled version. This is formalized by
the following proposition.

PROPOSITION 1. A labeled UFS has the same cardinality
function as its unlabeled version. According to (4) and
(10), the set supremum of a function f : X × L → R is
given by

sup
X⊆X×L

π(X) = max
n≥0

[
max

(ℓ1,...,ℓn)∈Ln

[
sup

{x1,...,xn}⊆Xn

π
(
{(x1, ℓ1), . . . , (xn, ℓn)}

)]]
.

(11)

2. Labeled Multi-Bernoulli Uncertain Finite Set
Based on the definition of labeled UFS and multi-

Bernoulli UFS, the labeled multi-Bernoulli UFS is intro-
duced in this section. An LMB UFS X is defined on

state space X and label space L, and it can be completely
represented by a parameter set {(r(ζ)0 , r

(ζ)
1 , f (ζ))}ζ∈Ω,

where ζ is some index defined in the index space Ω, and
τ : Ω → L is a 1− 1 mapping. If a Bernoulli component
in an LMB yields a non-empty set, then a unique label
τ(ζ) is assigned to it. The possibility of a set of labeled
states {(x1, ℓ1), . . . , (xn, ℓn)} is given by

π({(x1, ℓ1), . . . , (xn, ℓn)}) = δn(|{ℓ1, . . . , ℓn}|)

×
∏
ζ∈Ω

r
(ζ)
0

n∏
i=1

1τ(Ω)(ℓi)
r
(τ−1(ℓi))
1

r
(τ−1(ℓi))
0

f (τ
−1(ℓi))(xi).

(12)

where π(·) can be seen as the possibility function of an
LMB RFS X = {(x1, ℓ1), . . . , (xn, ℓn)}. For an empty set
X = ∅, the possibility function is π(X) =

∏
ζ∈Ω r

(ζ)
0 .

The unlabeled version of an LMB UFS is a multi-
Bernoulli UFS, and this can be proven by substituting
(12) into (10) and rearranging the terms within the maxi-
mum over the labels. Furthermore, according to (10), the
maximum of LMB UFS is equal to its unlabeled version,
indicating that the maximum of an LMB UFS is equal
to one. In this paper, the formal definition of the LMB
possibility function is given in the following definition.

DEFINITION 2. The possibility function π(X) of an LMB
UFS X is defined as

π(X) = ∆(X)1τ(Ω)(L(X))
[
Φ(X; ·)

]Ω
, (13)

where the indicator function 1τ(Ω)(L(X)) = 1 if and only
if L(X) ∈ τ(Ω). A component Φ(X; ζ), ζ ∈ Ω within the
exponential is given by

Φ(X; ζ) =[
max

(x,ℓ)∈X
δτ(ζ)(ℓ)r

(ζ)
1 f (ζ)(x) +

(
1− 1L(X)(τ(ζ))

)
r
(ζ)
0

]
.

where Φ(X; ζ) = r
(ζ)
1 f (ζ)(x) if (x, τ(ζ)) ∈ X and

Φ(X; ζ) = r
(ζ)
0 when τ(ζ) /∈ L(X).

In addition, (13) can be rearranged as the following
alternative form

π(X) = ∆(X)w(L(X))fX , (14)

where

w(L) =
∏
i∈L

r
(i)
0

∏
ℓ∈L

1L(ℓ)
r
(ℓ)
1

r
(ℓ)
0

,

f(x, ℓ) = f (ℓ)(x).

Eq. (14) closely resembles to the equation of LMB RFS
except that each element in (14) is a Bernoulli UFS and
the maximum of the weight w(·) is equal to one, i.e.,
maxL∈L w(L) = 1. It is shown in Sec. V that the LMB
UFS can be seen as a special case of a GLMB UFS.

IV. Multi-Target Model

In this section, the possibilistic analog of the multi-
target dynamical model and observation model are pre-
sented in Sec. A and B, respectively. It is possible to
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utilize both the OPMs and the probability theory for
modeling a MTT system in the case when we have a
complete understanding of some aspects of the model but
are ignorant of the rest [18]. For simplicity, this paper
mainly focuses on the application of OPMs in modeling.

A. Dynamical Model

Let Lk denote the label space of all targets born
at time k, the label space of all targets at time k is
constructed by L0:k = L0:k−1 ∪ Lk. In order to simplify
notation, the time indices k and k − 1 are omitted, and
let L = L0:k−1 denotes the label space at time k − 1 and
B = Lk denotes the label space for newborn targets at
time k, where L and B are disjoint. Then the label space
at time k is denoted as L+ = L ∪ B.

Given the multi-target state X at time k − 1, each
track (x, ℓ) either survives to time k with a possibility of
survival s1(x, ℓ) and generates a new single-target state
(x+, ℓ+) with possibility f(x+|x, ℓ), or disappears with
a possibility s0(x, ℓ). Note that 1 − s0(x, ℓ) and s1(x, ℓ)
can be interpreted as the lower and upper bound of
the survival probability, and max{s0(x, ℓ), s1(x, ℓ)} = 1.
Track labels remain the same during the process of state
transition.

Supposing the labels of the multi-target state X are
distinct and the state transition of single-target state is
independent, then the set S of states of the targets that sur-
vive to the next time is an LMB UFS that completely char-
acterized by the parameter set {(s0(x), s1(x), f(·|x)) :
x ∈ X}, and S is described by the possibility function

ϕS(S|X) = ∆(S)∆(X)1L(X)(L(S))
[
Φ(S; ·)

]X
,

where ϕS(S|X) is only defined when ∆X = 1, and

Φ(S;x, ℓ) = max
(x+,ℓ+)∈S

[
δℓ(ℓ+)s1(x, ℓ)f(x+|, x, ℓ)+

(1− 1L(S)(ℓ))s0(x, ℓ)

]
.

(15)

The set B of new target birth with label space B
is modeled by an LMB UFS with the parameter set
{(r(ℓ)b,0, r

(ℓ)
b,1, f

(ℓ)
B )}Bℓ=1, where r(ℓ)b,0 and r(ℓ)b,1 denote the pos-

sibility of non-existence and existence of the newborn
track ℓ, respectively, and max{r(ℓ)b,0, r

(ℓ)
b,1} = 1. According

to (14), the possibility function of a birth LMB UFS is
given by

ϕB(B) = ∆(B)wB(L(B))[fB ]
B,

where

wB(L) =
∏
i∈B

r
(i)
b,0

∏
ℓ∈L

1B(ℓ)
r
(ℓ)
b,1

r
(ℓ)
b,0

,

fB(x, ℓ) = f
(ℓ)
B (x).

fB(·) is a possibility function that describes the distribu-
tion of a newborn state.

The multi-target state X at the next time is the
superposition of the surviving objects and new born
objects, i.e., X+ = S ∪ B. As the birth and surviving
objects are independent, the multi-target transition kernel
is the product of the transition possibility function for
surviving objects XS = X+ ∩ X × L and new objects
XB = X+ −X× L, i.e.,

ϕ+(X+|X) = ϕS(XS |X)ϕB(XB).

B. Measurement Model

The measurements are modeled by an UFS Z with
two independent components Z = W ∪ Y , where the
set W represents the detection from the targets and Y
represents false observations. The set of detection W
consists of detected points z and missed detection ∅.
Specifically, a singe-target state x ∈ X may be detected
depending on the possibility of detection d1(x) and gen-
erates an observation z ∈W with the likelihood function
g(z|x). Alternatively, it may yield a missed detection ∅
with the possibility of detection failure d0(x). Hence,
each x generates a Bernoulli UFS with the parameter set
(d0(x), d1(x), g(·|x)). The set of detection W can then be
represented as a multi-Bernoulli UFS, which is distributed
according to the possibility function conditional on the
multi-target state X , i.e.,

πD(W |X) =
{
d0(x), d1(x), g(·|x)

}
x∈X

(W ). (16)

The two functions d1(x) and d0(x) define the upper
bound and lower bound for the probability of detection
pd via

1− d0(x) ≤ pd(x) ≤ d1(x).

The probability of detection failure is totally deduced
from the probability of detection pd, while d1 and
d0 are determined independently, and they verify that
max{d1, d0} = 1. The use of d1 and d0 properly reflects
our ignorance regarding pd. For instance, if it is not able
to specify the exact value of pd, but we can infer roughly
that its value is greater than a. Then, we can set d1 = 1
and d0 = 1 − a to describe all the limited information,
and nothing more.

The set of false observations are modeled as an UFS
Y , and its possibility function πF is defined by [30]

πF (Y ) =
∏
z∈Y

κ(z) = κY , (17)

where κ(z) describes the possibility that z is a false alarm,
and we have κ(∅) = 1 to ensure κ(·) is a possibility
function. Hence, πF (Y ) is also a possibility function with
supremum equals one: supY⊆Z(πF (Y )) = 1.

Given the possibility functions of detected measure-
ments and false alarms, we define the multi-target likeli-
hood function following [23], i.e.,

g(Z|X) = max
W⊆Z

[
πD(W |X)πF (Z −W )

]
, (18)

where the set difference Z −W represents false alarms.
Eq. (18) is slightly different from the standard labeled

6 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2022

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2022.3200022

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Warwick. Downloaded on November 10,2022 at 10:28:12 UTC from IEEE Xplore.  Restrictions apply. 



multi-target likelihood function as the use maximum
instead of summation. The detailed equation of (18) in
the GLMB form is given in the Appendix.

V. Possibility Generalized Labeled Multi-Bernoulli
Filter

In this section, the GLMB UFS is introduced based
on the theory of labeled UFS. Similar to the GLMB RFS,
the possibility function of a GLMB UFS is conjugate
with respect to the multi-object likelihood function, and
it is closed under the multi-object Chapman-Kolmogorov
equation. The results are similar to that of the probabilistic
GLMB filter described in [7], and the derivations are
given in the Appendix to justify the presented formula-
tions.

A. Generalized Labeled Multi-Bernoulli Uncertain
Finite Set

DEFINITION 3. A generalized labeled multi-Bernoulli
UFS is defined on the state space X and label space L
with possibility function given by

π(X) = ∆(X)max
o∈O

w(o)(L(X))
[
f (o)

]X
, (19)

where O indicates a discrete index space, and

max
L⊆L

max
o∈O

w(o)(L) = 1,

sup
x∈X

f (o)(x) = 1.

A GLMB UFS can be completely represented by the
parameter set {w(o)(I), f (o)}(I,o)∈L×O.

The formulation of GLMB UFS is somewhat different
from the GLMB RFS. Specifically, the GLMB RFS takes
the form of a weighted sum of multi-target exponentials,
and its density function is a probability distribution that
integrates to one. The GLMB UFS is formulated as
weighted maximum of multi-target exponentials, and the
supremum of its possibility function is equal to one. In
the case of only one element existing in the index space
O, the index o can be omitted and (19) is reduced to the
LMB equation (14).

The cardinality function of a GLMB UFS X equals
to n is given by

fc(n) = sup
(x1,...,xn)∈(X×L)n

π(x1, . . . ,xn)

= max
o∈O

max
L∈Fn(L)

w(o)(L).
(20)

It is clear that the cardinality function of a GLMB UFS
is a possibility function.

max
n≥0

fc(n) = max
n≥0

max
L∈Fn(L)

max
o∈O

w(o)(L)

= max
L⊆L

max
o∈O

w(o)(L) = 1.

It is straightforward to derive that the supremum of the
GLMB possibility function is equal to one, i.e.,

sup
X∈F(X×L)

π(X) = max
n≥0

sup
(x1,...,xn)∈(X×L)n

π(x1, . . . ,xn)

= max
n≥0

fc(n) = 1.

(21)

The intensity measure of an unlabeled GLMB UFS
can be derived by substituting the GLMB equation (19)
into (5), i.e.,

v̄(x) = max
o∈O

max
ℓ∈L

[
f (o)(x, ℓ)max

L⊆L
1L(ℓ)w

(o)(L)
]
. (22)

The supremum of the intensity measure is given by

sup
x∈X

v̄(x) = max
o∈O

max
ℓ∈L

max
L⊆L

1L(ℓ)w
(o)(L)

= max
n≥0

max
o∈O

max
L∈Fn(L)

w(o)(L)
[
max
ℓ∈L

1L(ℓ)
]

= max
n≥0

fc(n) = 1.

The last row is obtained by using (20) and
maxℓ∈L 1L(ℓ) = 1. In contrast to the intensity measure
or PHD of a GLMB RFS, the supremum of the GLMB
intensity measure does not yield the expected number of
targets, and it actually indicates that there is at least one
point exists in the UFS. Nonetheless, it is still possible
to estimate the cardinality of a GLMB UFS through v̄(·).
The intensity measure of each track ℓ can be extracted
from (22), i.e.,

v̄(ℓ)(x) = max
o∈O

max
L⊆L

1L(ℓ)w
(o)(L)f (o)(x, ℓ).

As supx∈X f
(o)(x, ℓ) = 1, the set supremum of v̄(ℓ)(·)

leads to the following form

sup
x∈X

v̄(ℓ)(x) = max
o∈O

max
L⊆L

1L(ℓ)w
(o)(L).

In fact, the above equation indicates the maximum weight
of all the hypotheses involving ℓ, and it can be interpreted
as the possibility of existence of track ℓ. Hence, the cardi-
nality of a GLMB UFS X can be estimated by assessing
the possibility of existence of each track ℓ ∈ L(X).

B. GLMB Uncertain Finite Set Recursion

1. Multi-Target Conjugate Prior
In Bayesian inference, the prior and posterior are

regarded as conjugate distributions if they belong to the
same category of distributions, and such a prior is called
a conjugate prior. The feature of conjugacy plays a vital
role in multi-target reasoning for deriving a closed-form
solution of the posterior. The conjugacy of the GLMB
UFS possibility function is introduced below.

PROPOSITION 2. If the multi-target prior is a GLMB
function, then the multi-target posterior is also in a GLMB
form under the multi-target likelihood function (18), i.e.,

π(Z|X) = ∆(X)max
o∈O

max
θ∈Θ

w(o,θ)(L(X))
[
f (o,θ)(·|Z)

]X
,

(23)
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where θ denotes an association map from the label space
to observation indices, θ : L → {0 : |Z|}, θ(ℓ) = θ(ℓ′) >
0 indicates ℓ = ℓ′, and Θ is the space of association maps.
The parameters of the posterior GLMB are given by

w(o,θ)(L) =
δθ−1({0:|Z|})(L)w

(o)(L)
[
η
(o,θ)
Z

]L
max

(o,θ,J)∈O×Θ×L
δθ−1({0:|Z|})(J)w

(o)(J)
[
η
(o,θ)
Z

]J ,
and by

f (o,θ)(x, ℓ|Z) = f (o)(x, ℓ)ψZ(x, ℓ; θ)

η
(o,θ)
Z (ℓ)

,

η
(o,θ)
Z (ℓ) = sup

x∈X
f (o)(x, ℓ)ψZ(x, ℓ; θ),

ψZ(x, ℓ; θ) =

{
d1(x,ℓ)g(zθ(ℓ)|x,ℓ)

κ(zθ(ℓ))
if θ(ℓ) ̸= 0,

d0(x, ℓ) if θ(ℓ) = 0.

where θ−1({0 : |Z|}) is to map the indices of measure-
ments to the associated track labels.

2. Multi-Target Chapman-Kolmogorov Prediction
The GLMB UFS possibility function is closed under

the multi-object Chapman-Kolmogorov equation regard-
ing to the multi-object transition kernel.

PROPOSITION 3. If the multi-target posterior is a GLMB
function as the form of (19), then the multi-target predic-
tion is also a GLMB with the following form

π+(X+) = ∆(X+)max
o∈O

w
(o)
+ (L(X+))

[
f
(o)
+

]X+

,

where

w
(o)
+ (L) = wB(L− L)w(o)

S (L ∩ L), (24)

w
(o)
S (J) =

[
η
(o)
1

]J
max
I⊆L

1I(J)
[
η
(o)
0

]I−J

w(o)(I), (25)

f
(o)
+ (x, ℓ) = 1L(ℓ)f

(o)
S (x, ℓ) + (1− 1L(ℓ))fB(x, ℓ), (26)

f
(o)
S (x, ℓ) =

supx′∈X[s1(x
′, ℓ)f(x|x′, ℓ)f (o)(x′, ℓ)]
η
(o)
1 (ℓ)

, (27)

η
(o)
1 (ℓ) = sup

x∈X
sup
x′∈X

[
s1(x

′, ℓ)f(x|x′, ℓ)f (o)(x′, ℓ)
]
,

(28)

η
(o)
0 (ℓ) = sup

x∈X
s0(x, ℓ)f

(o)(x, ℓ). (29)

The equation of the weight w(o)
+ (L) and possibility

function f
(o)
+ (x, ℓ) implies that the predicted GLMB is

the combination of the newborn tracks and survival
tracks. For an existing track ℓ, its possibility of sur-
vival and non-survival are represented by η

(o)
1 (ℓ) and

η
(o)
0 (ℓ), respectively, and the normalisation constraint is
max{η(o)1 (ℓ), η

(o)
0 (ℓ)} = 1. The weight of a survival

hypothesis J is proportional to the product of all the
possibility of survival of tracks in J and the maximum of
the prior weight over all label sets that contains J .

The propositions 2 and 3 can be seen as the possi-
bilistic analog of the propositions 7 and respectively 8
in [7], and the proofs are given in the Appendix. These

propositions indicate that for an initial prior described by
a GLMB possibility function, the predicted and updated
multi-target function is still in a GLMB form.

VI. Implementation of the Possibility GLMB Filter

In this section, a special form of the GLMB UFS,
namely δ-GLMB UFS, is introduced as the basis for
deriving an effective multi-target tracking algorithm. The
joint prediction and update method is applied to the
developed possibility δ-GLMB filter to improve the com-
putational efficiency. The implementation of the filter for
linear multi-target models is presented, followed by the
introduction of the birth model and multi-target estima-
tors. Compared with the probabilistic GLMB filter [7],
the main differences in the implementation are the use
of possibility functions to model imperfect information
in the multi-target transition and measurement detection
process, and the track extraction method which leverages
the notion of necessity (also called belief in the context
of Dempster-Shafer theory) is employed in multi-target
estimation to select GLMB hypothesis with the maximum
posterior weight.

A. δ-GLMB Uncertain Finite Set Recursion

DEFINITION 4. A δ-generalized labeled multi-Bernoulli
UFS is a special case of GLMB UFS, which is defined
on the state space X and label space L with possibility
function given by

π(X) = ∆(X) max
(I,ξ)∈F(L)×Ξ

w(I,ξ)δI(L(X))
[
f (ξ)

]X
,

(30)
where Ξ is a discrete space indicating the history of
association maps in multi-target tracking scenarios. The
coefficients in the above equation are related to (19) as
follows

F(L)× Ξ = O,
w(I,ξ)δI(L) = w(I,ξ)(L) = w(o)(L),

f (ξ) = f (I,ξ) = f (o).

A δ-GLMB UFS can be completely represented by the
parameter set {w(I,ξ), f (ξ)}(I,ξ)∈L×Ξ.

The δ-GLMB UFS is a weighted maximum of mul-
tiple hypothesis. Each pair (I, ξ) defines a unique hy-
pothesis indicating a set I of tracks with the history of
track-to-measurement association ξ. The weight w(I,ξ)

denotes the credibility of this hypothesis, and f (ξ)(·, ℓ) is
the possibility function describing the state information of
track ℓ. According to [7], the major advantage of δ-GLMB
over GLMB lies in the fact that the number of probability
functions f (ξ) that need to be stored are reduced from
|F(L) × Ξ| to |Ξ|. This advantage also applies to the δ-
GLMB UFS formulation.

The cardinality of a δ-GLMB UFS is obtained based
on (20), i.e., fc(n) = max(I,ξ)∈Fn(L)×Ξ w

(I,ξ). It is clear
that the cardinality of a δ-GLMB is a possibility function
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with maximum equals one. The intensity measure of a
δ-GLMB UFS can be obtained based on (22), i.e.,

v̄(x) = max
ℓ∈L

max
(I,ξ)∈F(L)×Ξ

1I(ℓ)w
(I,ξ)f (ξ)(x, ℓ).

The inner maximum can be seen as the intensity measure
v̄(ℓ)(·) of track ℓ. The set supremum of v̄(ℓ)(·) leads
to the possibility of existence of track ℓ, i.e., r(ℓ)1 =
max(I,ξ)∈F(L)×Ξ 1I(ℓ)w

(I,ξ).
As a special case of the GLMB UFS, the δ-GLMB

UFS also solves the Bayes multi-target filter in a closed
form. The derivation can be achieved following [7]
but replacing the integrals and PDFs by supremums and
respectively possibility functions.

B. Joint Prediction and Update

The formulation of the joint possibility δ-GLMB is
shown in the following proposition and the proof is given
in the Appendix.

PROPOSITION 4. The posterior δ-GLMB possibility func-
tion can be derived as the function of the prior δ-GLMB
as the following form

π(Z|X) ∝ ∆(X) max
(I,ξ,I+,θ+)

ω(I,ξ)ω
(I,ξ,I+,θ+)
Z

δI+(L(X))
[
f
(ξ,θ+)
Z

]X
,

(31)

where

ω
(I,ξ,I+,θ+)
Z = 1Θ(I+)(θ+)[rb,1]

B∩I+ [rb,0]
B−I+

×
[
η
(ξ)
1

]I∩I+[
η
(ξ)
0

]I−I+[
η
(ξ,θ+)
Z

]I+
η
(ξ)
1 (ℓ) = sup

x∈X
sup
x′∈X

[
s1(x

′, ℓ)f(x|x′, ℓ)f (ξ)(x′, ℓ)
]
,

η
(ξ)
0 (ℓ) = sup

x∈X
s0(x, ℓ)f

(ξ)(x, ℓ)

η
(ξ,θ+)
Z (ℓ+) = sup

x∈X
f (ξ)(x, ℓ+)ψZ(x, ℓ+; θ+)

f
(ξ,θ+)
Z (x, ℓ+) =

f
(ξ)
+ (x, ℓ+)ψZ(x, ℓ+; θ+)

η
(ξ,θ+)
Z (ℓ+)

,

f
(ξ)
+ (x, ℓ+) = 1L(ℓ+)f

(ξ)
S (x, ℓ+) + (1− 1L(ℓ+))fB(x, ℓ+),

f
(ξ)
S (x, ℓ+) =

supx′∈X[s1(x
′, ℓ+)f(x|x′, ℓ+)f (ξ)(x′, ℓ+)]

η
(ξ)
1 (ℓ+)

.

The set of (I, ξ, I+, θ+) is generated using a Gibbs
sampling method [31] with the stationary distribution
ω
(I,ξ,I+,θ+)
Z , such that only valid children components

with high weights are more likely to be sampled. The
computational complexity of this approach is linear,
which significantly reduces the computational load. De-
tailed implementation of the Gibbs sampler can be found
in [31].

C. Linear GMM Representation

Under the assumption of linear multi-target dynamical
model and observation model, and the distribution of

measurement error and process noise variations are Gaus-
sian. In addition, assume the single-target distribution and
birth intensity are described by a GMM. The possibilistic
expected value and variance of the predicted and updated
GMM components are computed following the Kalman
filter recursion [21].

For the linear Gaussian multi-target model, the tran-
sition function is Gaussian, f(x+|x, ℓ) = N̄ (x+;Fx,Q),
where F is the state transition matrix, and Q is the process
noise variance. If the single target distribution f (ξ)(x, ℓ)
takes the form of GMM:

f (ξ)(x, ℓ) = max
1≤i≤N(ξ)(ℓ)

w
(ξ)
i N̄

(
x;µ

(ξ)
i (ℓ), S

(ξ)
i (ℓ)

)
,

and the birth intensity measure fB(x, ℓ) is also a GMM,
then, the predicted single target possibility function
f
(ξ)
+ (x, ℓ) is also a GMM

f
(ξ)
+ (x, ℓ) =1L(ℓ) max

1≤i≤N(ξ)(ℓ)
w

(ξ)
i N̄

(
x;µ

(ξ)
S,i(ℓ), S

(ξ)
S,i(ℓ)

)
+ (1− 1L(ℓ))fB(x, ℓ),

where the expected value and variance are given by

µ
(ξ)
S,i(ℓ) = Fµ

(ξ)
i (ℓ),

S
(ξ)
S,i(ℓ) = FS

(ξ)
i (ℓ)FT +Q.

Supposing s1(x, ℓ) and s0(x, ℓ) are state and label in-
dependent, i.e., s1(x, ℓ) = s1 and s0(x, ℓ) = s0, the
possibility of target survival and non-survival are given
by η(ξ)1 (ℓ) = s1 and η(ξ)0 (ℓ) = s0, respectively.

For the linear Gaussian multi-target model, the like-
lihood function is Gaussian g(z|x, ℓ) = N̄ (z;Hx,R),
where H is the observation matrix and R is the ob-
servation noise variance. The possibility of a successful
detection and detection failure are assumed to be state and
label independent, i.e., d1(x, ℓ) = d1 and d0(x, ℓ) = d0.
Given singe target distribution f (ξ,θ)(·|ℓ) represented by
a GMM

f (ξ,θ)(x|ℓ) = max
1≤i≤N(ξ)(ℓ)

w
(ξ)
i (ℓ)N̄

(
x;µ

(ξ)
i (ℓ), S

(ξ)
i (ℓ)

)
,

then, for an updated (ξ, θ), the posterior possibility func-
tion is also in the form of GMM, i.e.,

f (ξ,θ)(x, ℓ|Z) = max
1≤i≤N(ξ)(ℓ)

w
(ξ,θ)
Z,i (ℓ)

η
(ξ,θ)
Z (ℓ)

N̄
(
x;µ

(ξ,θ)
i (ℓ)S

(ξ,θ)
i (ℓ)

)
η
(ξ,θ)
Z (ℓ) = max

1≤i≤N(ξ)(ℓ)
w

(ξ,θ)
Z,i (ℓ),

where

w
(ξ,θ)
Z,i (ℓ) = w

(ξ)
i

d1N̄ (z;ẑ
(ξ)
i ,S

(ξ)
z,i (ℓ));ℓ)

κ(zθ(ℓ))
, if θ(ℓ) ̸= 0

d0 if θ(ℓ) = 0

µ
(ξ,θ)
i (ℓ) =

{
µ
(ξ)
i +K

(ξ,θ)
i (ℓ)(z − ẑ

(ξ)
i ) if θ(ℓ) ̸= 0

µ
(ξ)
i if θ(ℓ) = 0

S
(ξ,θ)
i (ℓ) =

{
[I −K

(ξ,θ)
i (ℓ)H]S

(ξ)
i (ℓ) if θ(ℓ) ̸= 0

S
(ξ)
i (ℓ) if θ(ℓ) = 0

S
(ξ)
z,i (ℓ) = HS

(ξ)
i (ℓ)HT +R

K
(ξ,θ)
i (ℓ) = S

(ξ)
i (ℓ)HT

(
S
(ξ)
z,i (ℓ)

)−1
.
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D. Birth Model

There are two types of birth models that are generally
used in labeled RFS filters. The first is to assume a
fixed birth location [7, 8] within the sensor Field-of-View
(FOV). The fixed birth location is particularly suitable for
low signal to noise ratio applications since this assumption
can effectively avoid generating too many birth tracks
from false alarms. However, to establish the fixed birth
location, we need some initial knowledge regarding the
spatial distribution of newborn tracks, while this informa-
tion may not be available in practice.

Alternatively, the measurement-driven birth model [9,
32, 33] generates birth distributions based on the measure-
ments that have low association probability with existing
tracks. In this paper, the association possibility fa(z) of
each measurement z is calculated based on the maximum
posterior weight w(I,ξ,θ) including the track ℓ updated by
z, which is given by

fa(z) = max
(I,ξ)∈F(L)×Ξ

max
θ∈Θ

w(I,ξ,θ)1I(θ
−1(z)).

If the association weight of z is lower than a threshold,
then this measurement is employed to generate a newborn
track. According to [18], the measurement-driven birth
model in the OPM framework can be made uninformative
when the state space is unbounded. The major drawback
of this method is that it generates a large number of birth
tracks, especially in the case of high clutter rate.

E. Multi-Target Estimation

Multi-target estimation can be seen as the maximum
credibility given by the possibility δ-GLMB filter. Various
types of multi-target estimators have been proposed for
the probabilistic δ-GLMB filter, and two representative
methods are the multi-Bernoulli estimator and the MAP
cardinality estimator. Both estimators can be adapted to
the proposed method. In this paper, the possibilistic MAP
cardinality estimator is considered, where the cardinality
estimate is given by

fc(n) = max
(I,ξ)∈Fn(L)×Ξ

w(I,ξ).

The MAP cardinality n∗ = argmaxn fc(n) is generated
by the hypothesis with the highest posterior weight, i.e.,
(I∗, ξ∗) = argmaxI,ξ w

(I,ξ)δn∗(|I|). Then the states of all
targets in I∗ are extracted to represent the MAP multi-
target state.

VII. Simulation

In this section, we compare the performance of the
proposed method with the probabilistic δ-GLMB filter in
two test scenarios. In the first case, the two multi-target
trackers are applied to a general 2-dimensional multi-
target tracking scenario. The second case considers a
more challenging tracking scenario that employs a moving
sensor with limited sensor FOV [18].

The state of a single target is modeled by a 4-
dimensional vector [x1, x2, ẋ1, ẋ2]. Each target follows
a linear motion model with a constant velocity in a
2-dimensional surveillance region S. The single target
motion is governed by a linear Gaussian probability den-
sity fk|k−1(xk|xk−1) = N

(
xk;Fkxk−1, Qk

)
. The state

transition matrix Fk and process noise matrix Qk are
defined by

F = I2 ⊗
[
1 ∆
0 1

]
, Q = σ2

pI2 ⊗

[
∆4

4
∆3

2
∆3

2
∆4

4

]
, (32)

where the time duration ∆ = 1 s, I2 is a 2-dimensional
identity matrix, σp is the Standard Deviation (STD) of the
process noise, and ⊗ denotes the Kronecker product. The
probability of target survival is a constant: ps = 0.99.

The likelihood function is modeled by a Gaus-
sian probability function N

(
zk;H(xk − xs,k), Rk

)
, where

xs,k denotes the state of the sensor s at time k. The
measurement function H and measurement noise Rk are
given by

H =

[
1 0 0 0
0 0 1 0

]
, Rk = σ2

rI2, (33)

where σr = 5 m. The number of false alarms follows a
Poisson distribution with a mean value λfa.

The true dynamical model and observation model
are employed in the δ-GLMB filter. The possibility
δ-GLMB filter, however, does not assume one has
exact knowledge of the models. Hence, the single-
target possibilistic dynamical model and likelihood func-
tion are described by a Gaussian possibility function
fk|k−1(xk|xk−1) = N̄

(
xk;Fkxk−1, Qk

)
and ℓk(zk|xk) =

N̄
(
zk;H(xk − xs,k), Rk

)
, respectively. The possibility of

survival s1 is set to one and the possibility of non-survival
is s0 = 0.01. The possibility of successful detection
and detection failure are defined by d1(x) = 1 and
d0,k(x) = 1− pd,k(x), respectively. The MAP cardinality
estimator is employed to extract multi-target state.

Both methods are capped to 5000 components. The
pruning threshold of the δ-GLMB filter is set to 1×10−4,
while the possibility δ-GLMB filter considers a larger
threshold, i.e., 1 × 10−3 since possibilities is generally
larger than probabilities. The merging approach in the
possibility δ-GLMB filter is achieved based on the possi-
bilistic Hellinger distance [18] with a threshold of 0.1.
The δ-GLMB filter employs the Mahalanobis distance
with a threshold of 4. Both methods are tested by 100
Monte Carlo (MC) trials. The Optimal Sub-Pattern As-
signment (OSPA(2)) distance metric [34] with a cutoff
parameter c = 100 m, an order parameter p = 2, and a
sliding time window of 10 is used to assess the tracking
errors considering missed or false tracks.

A. Case A

This case evaluates the performance of the possibility
δ-GLMB filter when the knowledge of the probability of
detection is partially known. The scenario is restricted
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Fig. 1: Multi-target trajectories in the surveillance region,
and each trajectory starts from a circle and ends with a
triangle

within a surveillance region S = [−1000, 1000] m ×
[−1000, 1000] m, and the sensor is fixed at the center
of S with state xs = [0, 0, 0, 0]. The total tracking
period is discreted into 100 even time steps, and each
duration is ∆ = 1 s. The target birth model is an
LMB UFS represented by πB = {(r(i)b,0, r

(i)
b,1, f

(i)
B )}3i=1,

where r(i)b,0 = 1, r(i)b,1 = 0.01, f (i)B (x) = N̄ (x;m
(i)
B , S

(i)
B ),

and m
(1)
B = [0, 0,−800, 0]T , m(2)

B = [600, 0, 300, 0]T ,
m

(3)
B = [−600, 0, 300, 0]T , S(i)

B = diag([10, 10, 10, 10]T )2.
The existence possibility and non-existence possibility of
birth targets are defined as rb,1 = 0.01 and rb,0 = 1,
respectively. Assume we have the same information on
the birth process in the two methods, the existence prob-
ability of newborn targets is defined as rB = 0.01. This
scenario assumes 9 targets born from 3 fixed locations.
The trajectories of these targets are shown in Fig. 1.

Following the definition in [23], the detection prob-
ability is assumed as Pd(x) = exp

[
−(d/β)4

]
, where

d = ||x − xs|| and β = 900 m. The STD of the
process noise is σp = 0.1 m/s. False alarms follow a
Poisson distribution with an averaged number of λfa = 10
per frame. The possibility of false alarm is computed
as κ = λfa(2πσ

2
r)/V , where V is the volume of the

observation space and κ is a constant throughout the
tracking [18].

This case assumes that the probability of detection
Pd function is unavailable for analysis, and three Pd

specifications, i.e., Pd ∈ [0.4 1], Pd ∈ [0.6 1], and
Pd ∈ [0.8 1], are tested to evaluate the performance
of the proposed method in terms of different sensor
profiles. The OSPA(2) distance and cardinality estimate
of the method are shown in Fig. 2. Results show that
the possibility δ-GLMB filter yields the most accurate
state and cardinality estimates when using Pd ∈ [0.6 1],
indicating that the assumption of Pd ∈ [0.6 1] properly
captures the variations of the probability of detection of
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Fig. 2: Results of the possibility δ-GLMB filter using
different Pd specifications

most targets. In addition, the filter employs a large bound
of Pd, i.e., a smaller d0 value, reacts more quickly to
new target birth, while it also has a slow response to the
disappearance of existing targets.
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Fig. 3: Results of the possibility δ-GLMB filter and the
δ-GLMB filter

To further validate the possibility δ-GLMB filter, the
probabilistic δ-GLMB filter proposed in [19] is also
tested using the same parameters and measurements. The
probability of detection is assumed as unknown, and the
δ-GLMB filter is able to adaptively learn Pd by modeling
it using a beta distribution β(·; s, t). The initial value is
set to s = 8 and t = 2, indicating that the initial guess
of Pd is s

s+t = 0.8. The averaged OSPA(2) error and
cardinality error of the two filters are shown in Fig. 3. In
each subfigure, the blue solid curve represents the result
of the possibility δ-GLMB filter using Pd ∈ [0.6, 1], the
red dashed curve shows the result of the δ-GLMB filter.
Results show that the proposed method yields a better
accuracy of state estimation and its cardinality is closer to
the ground truth. The Pd of some targets change quickly
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in this case, especially when the target is relative far from
the sensor. As the adaptive estimation method is not able
to follow the rapid variation of Pd, the δ-GLMB filter may
yield missed detections, such that leading to inaccurate
state estimation.

B. Case B

In this case study, a moving sensor with limited
FOV is employed to monitor a compact region S =
[0, 1000] m× [0, 1000] m. The initial state xs of the sensor
is randomly generated, where the position components are
uniformly distributed within S and the velocity compo-
nents have a constant magnitude 50 m/s. The sensor will
turn an angle ±90◦ if it reaches the bound of S, and the
velocity of the sensor is subject to a rotation by a normally
distributed random angle with mean 0 rad and variance
0.05 rad. The total tracking period is 200 time steps with
duration of ∆ = 1 s. The STD of the process noise is
σp = 0.01 m/s2.

The number of new targets follows a Poisson dis-
tribution with λb = 0.3, and the new target birth is
only allowed before time k = 30. The initial position
of new targets is uniformly distributed within S, and
the initial velocity is generated based on the possibility
function based on a zero mean Gaussian distribution
with STD σv = 1 m/s. The measurement-driven birth
model is employed to conduct new target birth, where
the velocity components are randomly generated based
on the zero mean Gaussian distribution with STD σv = 1
m/s. The existence possibility and non-existence possi-
bility of birth targets are defined as rb,1 = 0.01 and
rb,0 = 1, respectively. Assuming we have the same
information on birth process, the existence probability of
birth targets is defined as rB = 0.01 for the δ-GLMB
filter. The probability of detection is time-varying, which
is calculated based on pd,k(x) = N̄ (x;xs,k, σ

2
sI2) with

σs = 150 describing the sensor’s detection capability.
As opposed to the previous case, the state-dependent
probability of detection pd,k(x) is used directly by both
methods in this scenario. The number of false alarms are
Poisson distributed with λfa = 1, and they are generated
from N (Hxs,k, σ

2
sI2). The possibility of false alarm is

calculated as κ(z) = λfa(2πσ
2
r)N̄ (z,Hxs,k, σ

2
sI2)/V ,

where the volume of the observation space is V = 2πσ2
s .

Fig. 4 shows an example of the multi-target tracking
scenario at time k = {20, 40, 60, 80}. The trajectory of the
sensor is shown as the blue curve with circles to represent
its position at each epoch. The triangle and the square
denote the position of the sensor at the start point and
the time instance k, respectively. The red dotted ellipse
represents the 1-σ bound of the sensor FOV, and the red
cross represents the measurements at time k. It can be
seen that a target might be outside the sensor FOV over a
long time period, which introduces an additional difficulty
to maintain custody of its identity.

The top panel in Fig. 5 shows the averaged OSPA(2)

distance of the two methods using the MAP cardinality
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Fig. 4: An example of multi-target and moving sensor
trajectories at time k = {20, 40, 60, 80}.
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Fig. 5: Results of the possibility δ-GLMB filter and the
δ-GLMB filter

estimator over 100 MC tests. It is clear that the proposed
method yields a smaller OSPA(2) distance than the δ-
GLMB filter after time k = 50. The bottom panel in Fig. 5
shows the cardinality estimation results. The ground truth
is an averaged value over 100 MC runs, and it gradually
decreases after time k = 30 since some targets move out
of the surveillance region over time. The possibility δ-
GLMB filter outperforms the δ-GLMB filter, and it can
eventually approximate the ground truth. As the sensor
has a limited FOV, the detection probability of some
targets that around the bound of the FOV is very low.
Thus, the standard δ-GLMB filter may fail to establish
the existence of new targets when both their existence
probability and detection probability are extremely low.
However, the possibility δ-GLMB filter is able to react
more quickly to new target birth when we have little
information about the birth and detection process. This
result demonstrates that the proposed method can better
deal with the uncertainty in the number of targets, and
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it provides a more robust solution to maintain custody
of multiple targets in the absence of initial knowledge of
their existence.

VIII. Conclusion

The contribution of this paper is a possibility Gener-
alized Labeled Multi-Bernoulli (GLMB) filter based on
the notion of Outer Probability Measures (OPMs). The
major advantage of this approach is the capability to prop-
erly account for epistemic uncertainty that comes from
ignorance or partial knowledge of a multi-target tracking
system, such as the absence of perfect information about
the sensor profiles and the number of newborn targets.

Similar to the probabilistic GLMB random finite set,
the family of GLMB Uncertain Finite Set (UFS) possibil-
ity functions are conjugate priors that are closed under the
multi-object Chapman-Kolmogorov equation. The predic-
tion and update recursion of the possibility GLMB filter
has a similar form as the standard probabilistic GLMB
filter but with supermums and possibility functions instead
of integrals and probability density functions, respectively.
The feasibility of the possibility δ-GLMB filter is vali-
dated using two simulated multi-target tracking scenarios.
The first is a general two-dimensional tracking case and
the second is a more challenging case that considers a
moving sensor with a limited FOV. Compared to the
standard δ-GLMB filter, the proposed method yields more
accurate state and cardinality estimation in the situation
of imperfect information of some aspects of the system.

Future research will study efficient approximations of
the possibility δ-GLMB filter, such as the possibility LMB
filter and the possibility marginalized GLMB filter. It is
also of interest to study multi-sensor multi-target tracking
algorithms based on the GLMB UFS for robust informa-
tion fusion in the absence of statistical information of data
sets.
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APPENDIX

Proof of the cardinality function of multi-Bernoulli
UFS:

We first prove the supremum of a multi-Bernoulli pos-
sibility function π is equal to one, i.e., maxX∈X π(X) = 1.

sup
X∈X

π(X)

= max
{
π(∪n

i=1∅), sup
{x1,...,xn}∈X

[
π({x1, . . . , xn})

]}
= max

{
m∏
i=1

r
(i)
0 , max

1≤n≤m

[
m∏
i=1

r
(i)
0 max

1≤i1 ,̸=...,
̸=in≤m

[ n∏
j=1

r
(ij)
1

r
(ij)
0

× sup
xj∈X

f (ij)(xj)

]]}

= max

{
m∏
i=1

r
(i)
0 , max

1≤n≤m

[
m∏
i=1

r
(i)
0 max

1≤i1 ,̸=...,
̸=in≤m

n∏
j=1

r
(ij)
1

r
(ij)
0

]}
.

(34)
Deriving the supremum of π(X) depends on the

following two conditions.
(1) If

∏m
i=1 r

(i)
0 = 1, the solution of (34) can be

determined as supX∈X{π(X)} = max
∏m

i=1 r
(i)
0 = 1.

In this case, we have no evidence to reject that all the
elements are empty: X(i) = ∅.

(2) In the case of
∏m

i=1 r
(i)
0 ̸= 1, we can rewrite the

inner maximum in (34) as the following form

max
1≤i1 ,̸=...,̸=in≤m

n∏
j=1

r
(ij)
1

r
(ij)
0

= max
1≤n≤m

∏
j∈{i1,...,in}

r
(j)
1

r
(j)
0

. (35)

Suppose there is a non-empty set {j1, . . . , jn}, where for
any j ∈ {j1, . . . , jn}, r(j)1 = 1 and r

(j)
0 ≤ 1. For any

j′ ̸∈ {j1, . . . , jn}, it is obvious that r(j
′)

0 = 1 and r(j
′)

1 ≤ 1

due to normalization: max{r(j
′)

0 , r
(j′)
1 } = 1. Hence, (35)

can be simplified as below

max
1≤n≤m

∏
j∈{i1,...,in}

r
(j)
1

r
(j)
0

=
∏

j∈{j1,...,jn}

r
(j)
1

r
(j)
0

, (36)

because only the terms j ∈ {j1, . . . , jn} can yield r
(j)
1

r
(j)
0

≥
1, involving any j′ ̸∈ {j1, . . . , jn} in the product can only
lower its value.

Substituting (36) into (34), we have

max
1≤n≤m

[
m∏
i=1

r
(i)
0 max

1≤i1 ,̸=..., ̸=in≤m

n∏
j=1

r
(ij)
1

r
(ij)
0

]

=
∏

i∈{1,...,m}

r
(i)
0

∏
j∈{j1,...,jn}

r
(j)
1

r
(j)
0

=
∏

i∈{1,...,m}/{j1,...,jn}

r
(i)
0

∏
j∈{j1,...,jn}

r
(j)
1 = 1,

because all the r(i)0 and r(j)1 are equal to one.
Based on the above two cases, we can conclude that

supX∈X π(X) = 1 holds true.
Then, the maximum of the cardinality function of the

Bernoulli UFS is given by
max
n≥0

fc(n)

= max
1≤n≤m

[
m∏
i=1

r
(i)
0 ,

m∏
i=1

r
(i)
0 max

1≤i1 ,̸=..., ̸=in≤m

n∏
j=1

r
(ij)
1

r
(ij)
0

]
= 1.
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The following two Lemmas can be used to simplify
the distinct label indicator ∆(X) from the labeled UFS
expressions, which are frequently employed to evaluate
the labeled UFS.

Lemma 1
Given a symmetric function f : Ln → R, then

max
(ℓ1,...,ℓn)∈Ln

δn(|{ℓ1, . . . , ℓn}|)f(ℓ1, . . . , ℓn)

= max
{ℓ1,...,ℓn}∈Fn(L)

f(ℓ1, . . . , ℓn)
(37)

Lemma 2
For function f : X×L → R and ω : F(L) → R, we have

sup
X∈X×L

[
∆(X)ω(L(X))fX

]
= max

L⊆L
ω(L)

[
sup
x∈X

f(x, ·)
]L
.

(38)

Proof of Lemma 1:
Note the distinction between Ln and Fn(L). The former

is the n! permutations of labels with cardinality equals
n, while the later is all the finite subsets of labels with
cardinality equals n. Due to the distinct label indicator
δn(|{ℓ1, . . . , ℓn}|), the maximum in the LHS of (37)
is a maximum over n! permutations of (ℓ1, . . . , ℓn) in
Ln with distinct labels. As f is symmetric, the values
of f(ℓ1, . . . , ℓn) for all permutations of (ℓ1, . . . , ℓn) are
identical. Therefore, Lemma 1 holds true.

Lemma 1 is different from Lemma 12 in [7], where
the sum over indices Ln with distinct labels equals n!
permutations of {ℓ1, . . . , ℓn} ∈ Fn(L), Lemma 1 indicates
that the maximum functional value of all permutations
is the same as the maximum functional value of the set
{ℓ1, . . . , ℓn}.

Proof of Lemma 2:
According to (11), (38) can be rewritten as

sup
X∈X×L

[
∆(X)ω(L(X))fX

]
=max

n≥0

[
max

(ℓ1,...,ℓn)∈Ln
δn(|{ℓ1, . . . , ℓn}|)ω({ℓ1, . . . , ℓn})

×
[

sup
{x1,...,xi}∈Xi

n∏
i=1

f(xi, ℓi)
]]

=max
n≥0

[
max

{ℓ1,...,ℓn}∈Fn(L)
ω({ℓ1, . . . , ℓn})

n∏
i=1

sup
xi∈X

f(xi, ℓi)

]
=max

L⊆L
ω(L)

[
sup
x∈X

f(x, ·)
]L
,

where the distinct label indicator is removed according to
Lemma 1.

Proof of the cardinality function and intensity measure
of GLMB UFS:

Given an UFS X = {(x1, ℓ1), . . . , (xn, ℓn)}, the
distinct label indicator is expressed as ∆(X) =

δn(|{ℓ1, . . . , ℓn}|). Based on proposition 1 and Lemma 1,
the cardinality function of a GLMB UFS is given by

fc(n)

= max
(ℓ1,...,ℓn)∈Ln

δn(|{ℓ1, . . . , ℓn}|)max
o∈O

w(o)({ℓ1, . . . , ℓn})

×
[ n∏
i=1

sup
xi∈X

f (o)(xi, ℓi)
]

= max
o∈O

max
(ℓ1,...,ℓn)∈Ln

δn(|{ℓ1, . . . , ℓn}|)w(o)({ℓ1, . . . , ℓn})

= max
o∈O

max
L∈Fn(L)

w(o)(L).

According to (10), the intensity measure (5) of an UFS
can be rewritten as the function of the labeled possibility
function π

v̄(x)

= max
n≥0

sup
(x1,...,xn)∈Xn

max
(ℓ,ℓ1,...,ℓn)∈Ln+1

π({x, ℓ}

∪ {(x1, ℓ1), . . . , (xn, ℓn)})
= max

n≥0
sup

(x1,...,xn)∈Xn

max
(ℓ,ℓ1,...,ℓn)∈Ln+1

δn+1(|{ℓ, ℓ1, . . . , ℓn}|)

×max
o∈O

w(o)({ℓ, ℓ1, . . . , ℓn})f (o)(x, ℓ)
[
f (o)

]X
= max

n≥0
max
ℓ∈L

max
(ℓ1,...,ℓn)∈Ln

δn(|{ℓ1, . . . , ℓn}|)

× (1− 1{ℓ1,...,ℓn}(ℓ))max
o∈O

w(o)({ℓ, ℓ1, . . . , ℓn})f (o)(x, ℓ)

= max
o∈O

max
ℓ∈L

max
n≥0

max
I∈Fn(L)

(1− 1I(ℓ))w
(o)({ℓ} ∪ I)f (o)(x, ℓ)

= max
o∈O

max
ℓ∈L

f (o)(x, ℓ)max
L⊆L

1L(ℓ)w
(o)(L),

where I = {ℓ1, . . . , ℓn} and L = {ℓ} ∪ I . Since
all permutations of {ℓ, ℓ1, . . . , ℓn} yield the same value
of w(o)({ℓ, ℓ1, . . . , ℓn}), the distinct label indicator
δn(|{ℓ1, . . . , ℓn}|) is eliminated by applying Lemma 1.

Proof of Proposition 2:
According to (18), the multi-target likelihood function

is the superposition of the possibility functions of detec-
tion and false alarms. Substituting (16) and (17) into (18)
yields the following explicit expression of the multi-target
likelihood function

g(Z|X) =πF (Z) max
W⊆Z

[πD(W |X)

πF (W )

]
=κZ

|X|∏
i=1

d0(xi)max
θ
δθ−1({0:|Z|})(L(X))

×
∏

i:θ(i)>0

d1(xi)g(zθ(ℓ)|xi)

d0(xi)κ(zθ(i))
.

Assuming the labels are distinct, the above equation can
be rewritten as a form of GLMB UFS function, i.e.,

g(Z|X) = κZ
|X|∏
i=1

d0(xi)max
θ

∏
i:θ(i)>0

d1(xi)g(zθ(ℓ)|xi)

d0(xi)κ(zθ(i))

= κZ max
θ∈Θ

δθ−1({0:|Z|})(L(X))
[
ψZ(·; θ)

]X
.

14 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2022

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2022.3200022

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Warwick. Downloaded on November 10,2022 at 10:28:12 UTC from IEEE Xplore.  Restrictions apply. 



The product of the multi-target likelihood function g(·|·)
and the prior GLMB function π(·) yields a similar form
as that of the probabilistic version in [7]. Therefore, the
posterior multi-target UFS can be derived by dividing
g(·|·)π(·) by its supremum following the derivation in [7].

The proof of proposition 3 can be achieved by using
Lemma 2 and following the derivation of probabilistic
GLMB recursions in [7].

Proof of proposition 4:
The weight w(I+,ξ,θ+)(Z) of the posterior δ-GLMB

can be expressed as

w(I+,ξ,θ+)(Z)

= δθ−1
+ ({0:|Z|})(I+)

[
η
(ξ,θ+)
Z

]I+
w

(I+,ξ)
+

= δθ−1
+ ({0:|Z|})(I+)

[
η
(ξ,θ+)
Z

]I+
wB(B ∩ I+)w(ξ)

S (L ∩ I+)

= 1Θ+(I+)(θ+)
[
1F(B)(B ∩ I+)rB∩I+

b,1 r
B−B∩I+
b,0

]
×
[

max
I⊆F(L)

1F(I)(L ∩ I+)
[
η
(ξ)
1

]L∩I+

×
[
η
(ξ)
0

]I−L∩I+
w(I,ξ)

][
η
(ξ,θ+)
Z

]I+
= 1Θ+(I+)(θ+)r

B∩I+
b,1 r

B−B∩I+
b,0

[
max

I⊆F(L)

[
η
(ξ)
1

]I∩I+

×
[
η
(ξ)
0

]I−L∩I+
w(I,ξ)

][
η
(ξ,θ+)
Z

]I+
= max

I⊆F(L)
w(I,ξ)ω

(I,ξ,I+,θ+)
Z
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