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Interacting loop ensembles and Bose gases

Jirg Frohlich Antti Knowles Benjamin Schlein Vedran Sohinger

January 20, 2023

Abstract

We study interacting Bose gases in thermal equilibrium on a lattice. We establish convergence
of the grand-canonical Gibbs states of such gases to their mean-field (classical field) and large-
mass (classical particle) limits. The former is a classical field theory for a complex scalar field
with quartic self-interaction. The latter is a classical theory of point particles with two-body
interactions. Our analysis is based on representations in terms of ensembles of interacting
random loops, the Ginibre loop ensemble for Bose gases and the Symanzik loop ensemble for
classical scalar field theories. For small enough interactions, our results also hold in infinite
volume. The results of this paper were previously sketched in [11].

1. Introduction and main results

1.1. Overview. In this paper we study equilibrium properties of Bose gases and of systems emerg-
ing from Bose gases in various limiting regimes, by representing these systems in terms of ensembles
of interacting random loops. These include the Ginibre loop ensemble [13—16], which describes an
interacting Bose gas in thermal equilibrium, and the Symanzik loop ensemble [32], which describes
the equilibrium state of an interacting classical field theory. The main goals of this paper are to
highlight the usefulness of such random loop representations and to develop a unified approach to
analyse their relationships and their behaviour in various limiting regimes.

Among different limiting regimes, we analyse the mean-field and the large-mass limits of inter-
acting Bose gases using their random loop representations. These representations are particularly
well-suited for proving results in infinite volume, and all our results also hold in infinite volume
assuming the interaction strength is small enough. Our results on the interacting Bose gas are
mostly new. We also obtain a new proof of convergence to the mean-field limit on a finite lattice,
which was previsouly established using other methods.

For concreteness, we focus on the Euclidean lattice Z¢%, where the random loops are defined
in terms of continuous-time simple random walks. With fairly straightforward modifications, our
results and proofs — with the exception of convergence to the mean-field limit in dimensions d > 1,
treated in separate papers [10,26] — extend to continuum gases defined on R?, where the random
loops are defined in terms of Brownian motion. For conciseness, we shall however not pursue this
direction in the present paper.

Next, we describe the main results established in this paper and the methods used to prove
them. For d € N* and L € N* we define the discrete cube A := [~L/2,L/2)?NZ% On A we define
the discrete Laplacian

Af(x):= > (fly)—f(x), [f:A—=C, (1.1)



with periodic boundary conditions on the cube A. For T' > 0 and z,y € A we denote by Q;‘;z
the set of cadlagh paths w : [0,7] — A satisfying w(0) = z and w(T) = y. We also abbreviate
or .= Uz.yen ng and Q := Up>o Q7. Forw € QZ@, we use the shorthands T'(w) :=T, z(w) := x,
and y(w) :==y.

For z € A and T > 0, let PL denote the law on Q7 of the continuous-time random walk starting
at x, which is by definition the Markovian jump process with generator A/2. On Q7 we define the
path measures

W (dw) == 1ory—y PT(dw), W7 iz / dzWT, | (1.2)

The measure W is the path measure for closed paths (i.e. loops) and W;‘ZI the path measure for
open paths from x to y. Here we use the abbreviation [dz =3 c,.

By definition, a loop ensemble is a random point process ® on the polish space 2. That is, @ is
a random locally finite collection of elements of 2 (see e.g. [19]). To describe it in more detail, we
suppose that we are given a single-loop measure L, which is a positive measure on 2. To simplify
the presentation, we suppose here that L is finite (although in our proofs we shall have to abandon
this assumption). As a point process, the loop ensemble is characterized by its p-loop correlation
functions vy,, p € N*, which are defined through

/f(wl,...,wp)’yp(wl,...,wp)]L(dwl)---]L(dwp):E S e wp)

W1,...,wpEP

for any nonnegative symmetric test function f, where the expectation is taken over the point
process ® and the sum is taken over all pairwise distinct p-tuples of loops in ®. The noninteracting
loop ensemble associated with the single-loop measure L is the Poisson point process on ) with
intensity measure L. More concretely, in the noninteracting loop ensemble the loop configuration
(wi,...,wy) carries the weight

éﬁ%ﬂ&dwl)“.ﬂ(dwn)’ 7 = §:7;L/H4dw1)”'ﬂ4dw”)' (1.3)

neN

Here the factor 1/n! compensates the overcounting from permuting the n loops. The p-loop corre-
lation function of the noninteracting loop ensemble is simply 1 for all p € N*.
In order to define an interacting loop ensemble, we introduce a two-loop interaction V(w,®),
which is a real-valued function on €2 x . This determines an n-loop interaction potential through
1 n
V(wl,...,wn) = 5 Z V(wi,wj). (1.4)
ij=1
The interacting loop ensemble is then obtained from the corresponding noninteracting loop ensemble
by weighting the contribution of each loop configuration (wi,...,wy) in (1.3) by the Boltzmann
factor e~V (@irwn)  Recalling the definition (1.3), we then easily find that the p-loop correlation
function of the interacting loop ensemble is

'yp(wl,...,wp):+, (1.5)

'Right-continuous with left limits.



where we defined the loop partition functions

Zwr, . wp) = — / L(dG1) - L(d@y,) eV @wpbin) 7. 7(p). (1.6)
neN

Next, we explain the three interacting loop ensembles used in this paper and explain how they
are related to each other. The Symanzik loop ensemble has the single-loop measure

/]Ld(dw) - /Ooo T G;T /WT(dw) , (1.7)

where k > 0 is a killing rate (a negative chemical potential in physics terminology). The factor
1/T has the interpretation of compensating the overcounting arising from the arbitrary choice of
the origin in the time interval [0, 7] parametrizing the closed loop. The factor e "’ entails an
exponential suppression of long loops. We note that L is not finite, owing to the contribution of
very short-lived loops; we temporarily ignore this issue here. In our proofs, we shall regularize L
by truncating it at small values of T, and then show that the truncation can be removed in the
quotient (1.5). The two-loop interaction of the Symanzik loop ensemble is

Vel (w / / " ot — o). (1.8)

where v : A — R is a two-body interaction potential. We denote the associated n-loop interaction
potential in (1.4) by V(wy,...,w,)

The Symanzik loop ensemble was introduced in [32] to describe interacting Euclidean field
theories. To define a field theory of a complex scalar field ¢ on A with interaction potential v, we
define the complex Gaussian measure with mean 0 and covariance (—A/2 + x)~! through

1
(¢,(A/2=K)9)

where d¢ denotes Lebesgue measure on C. The (relative) classical partition function is
2% = [ appinr(do)em It vl e o (1.10)

The classical p-point correlation function is

p p

1 - _1 2,0 2
(Fgl)x,y — ﬁ/ﬂ(—A/Z—i—n)*l(dqﬁ) H¢(yi) H¢($i)e 3 [y dz [, dylé@)?v(@—y) [o(y)l 7 (1.11)

i=1 i=1

where x,y € AP. As observed in [32], the relation between the classical correlation function of
the interacting field theory (Fgl),gy from (1.11) and the correlation function of the Symanzik loop
ensemble 'y;l(wl, ...,wp) from (1.5) is given by

M)y = (H/ dT;e " ><H/ A dwl> Ny, wp) . (1.12)
TESp

See Proposition 2.1 and Appendix A.1 below.



Next, we describe the Ginibre loop ensemble. It depends on three parameters v, k, A > 0. It has
the single-loop measure .
—K
LY (dw) :=v e7/V\VT dw) . 1.13
Jr=v 5 S [ (113)
Note that (1.13) is obtained from (1.7) by replacing the Lebesgue integral [ dT" with its discrete
(Riemann-sum) approximation v Y pc, n+. In the Ginibre loop ensemble, the two-loop interaction

1S

- A L .
V”’)‘(w,w) = - 14 Z 13<T(w) v Z 1§<T(<IJ) 7/ dt v(w(s + t) - w(s + t)) 5 (1.14)
v sevN 5evN vJo
and we denote the associated n-loop interaction potential by V¥ (w1, ..., wy,) (see (1.4)). Thus,

the Ginibre loop ensemble can be regarded as a discretized version of the Symanzik loop ensemble,
where the times are constrained to belong to the lattice vZ. See Figure 1.1 for an illustration of
the Symanzik and Ginibre ensembles.

Figure 1.1. An illustration of the Symanzik (left) and Ginibre (right) loop ensembles. The random loops
w are drawn in black. An interaction V(w,®) is drawn with a dotted blue line, joining the points w(t) and
&(f) that appear in the argument of the interaction potential v. Note that each loop can interact with each
other loop and with itself. In the Ginibre ensemble, the duration of the loops is a multiple of v, and the
times at which the loops interact differ by integer multiples of v, indicated using empty blue dots. In the
Symanzik ensemble, all times are arbitrary real numbers.

The Ginibre loop ensemble was introduced in [13-16] to describe the statistical mechanics of
interacting Bose gases at positive temperatures. A system of n spinless bosons of mass m > 0
confined to A is governed by the Hamiltonian

Hn = - _— — i i) 11
Dam T 2 M) (1.15)



where A, is the discrete Laplacian introduced in (1.1) acting on the variable x;, A > 0 is a coupling
constant, and v : A — R is a two-body interaction potential. The Hamiltonian (1.15) acts on the
n-particle bosonic Hilbert space H,, := P L?*(A"), where

Pr—:—f(wl)"'? : 'Zf Lr(1)y -+ Lr(n ))

n TESH

is the orthogonal projection onto the subspace of symmetric functions, and L?(A") is the L2-space
with respect to the counting measure on A",

We analyse the Bose gas in the grand-canonical ensemble at positive temperature. Its equilib-
rium state is described by a sequence of density matrices (p,)nen defined by

“BMHn—pn)  with == ZTr B (Hn — “”))
neN

Pn =

[I]\ —

Here 8 > 0 is the inverse temperature, p < 0 is the chemical potential, and = is the grand-canonical
partition function, which is a normalization constant chosen such that >, Tr(p,) = 1.

Without loss of generality, we set § = 1 as it can be absorbed into the other parameters, and
we replace the parameters m and p with

1
vi=—>0, ki=—pm > 0. (1.16)
m

Thus we find that the grand-canonical ensemble is characterized by the sequence (p%**),en, where

1 v, "
pz/@ A me—(Hn A fkn) , TVRA Z ’I\r(e_(Hn A‘*‘HV”)) , (117)
neN

and
H = —ZA+ Z (1.18)
,7=1

The reduced p-particle density matriz of the grand-canonical ensemble is defined as

A (p+n)! A
Tyt =3 S T, pin (055 (1.19)
neN ’
where Trpy1.. p4+n denotes the partial trace over the coordinates zpi1,...,Zp1n. We denote by

(T5**)xy the operator kernel of T';**. As observed in [13-16], the relation between the reduced
density matrix (Fgﬁ’)‘)x,y from (1.19) and the correlation function of the Ginibre loop ensemble

V,n,A(

YN (wiy -y wp) from (1.5) is given by

(FZ’H’A)x,y ZS <1_[1 TZN*e " Z) <H/Wyw(z) T; dwz)) VN)\(wl’ T ’wp)' (1'20)

See Proposition 2.3 and Appendix A.2 below.
In this paper we analyse various limiting regimes of the Ginibre loop ensemble.



(a) The mean-field (or classical field) limit: v — 0, A = 12, k fixed. Recalling (1.16), we see that
this amounts to a high temperature and high density limit, or, equivalently, to a large mass
and large chemical potential limit. Our main result is the convergence of the Ginibre loop
ensemble to the Symanzik loop ensemble,

: vk, 2 — ~cl

ll/% Y Yp - (1.21)
At a formal level, this convergence is plausible after comparing the single-loop measures (1.7),
(1.13) and the two-loop interactions (1.8), (1.14). As a corollary, using the representations
(1.12), (1.20), we deduce the convergence of the rescaled reduced density matrices of the
quantum Bose gas to the correlation functions of the classical field theory:

lim 17 T2 = 19 (1.22)

v—0

see Theorem 1.2.

(b) The large-mass limit: v — 0, A = 1, Kk = Ko/v for some fixed k9. Recalling (1.16), we see
that this amounts to the limit of large m for fixed 8 and p. In this limit, we show that the
Ginibre loop ensemble converges to an ensemble of interacting classical particles,

lim v,ko/v,1
v—0 ’Yp

— (1.23)

where 'y}?m is the correlation function of a process of interacting weighted particles which we
describe in more detail below?. We conclude convergence of the reduced density matrices
: 1 7l
lim Tyeo/vt = I, (1.24)

where F},m is a classical correlation function defined in terms of a process of interacting
weighted particles. See Theorem 1.4.

In addition, we extend both convergence results to the thermodynamic limit L. — oo, under
the assumption that the two-body potential v is of short range and not too large. Indicating the
L-dependence of all quantities with a superscript, we extend (1.22) to

. . 2 .
hn% Lhm Z bt L= Lhm F;LL (1.25)
v—0 L—00 —00

where all limits exist; see Theorem 1.6. Similarly, we extend (1.24) to

lim lim Tyeo/vbl = Jim IO (1.26)
v—0 L—oo L—oo
where all limits exist. See Theorem 1.8.

The convergence (1.22) is not new and was previously established in [20], using different meth-
ods. The convergence of the loop ensembles (1.21), however, and the other three results (1.24),
(1.25), and (1.26) appear to be new.

Finally, we describe the process of interacting weighted particles that emerges in the large-mass
limit (b). It may be formulated as an ensemble of interacting stationary loops of integer time length.

2In the continuum R? instead of the lattice Z¢, with the correct choice of & as a function of v, the limit v — 0
describes a classical gas of point particles with two-body interactions given by the potential v.



To describe this precisely, introduce the measure D as the atomic measure on Q7 at the constant
loop w(t) = x for all ¢ € [0,7]. The loop ensemble in the large-mass limit has the single-loop

measure
—kok

/Dlm(dw) = Z € ? Adm/]D)l;;(dw),

keN*

and the two-loop interaction is

Vo (w,@) = S > /1 dtv(w(k +t) — ok +t)).

0<k<T(w) 0<k<T (@) 0

The right-hand side of (1.23) is by definition the p-loop correlation function of this loop ensemble,
and analogously the right-hand side of (1.24) is given by

)y = 5 (H S ek g(y 0 — /11» dw1)>fyp (W1, wp).

weSp \i=1k;eN*

The interpretation is that in the large-mass limit, only loops of duration of order v contribute,
in which time the simple random walk cannot make even a single jump. Loops thus collapse to
points. We can make this collapse more explicit by parametrizing a stationary loop w with its
location x € A and its duration kv, where k € N*. The couple (k, z) describes a weighted particle,
where k is the occupation number and = the position. Using this parametrization, the single-loop
measure and the two-loop interaction become

Im 7n0k I . B .
/11» (d(k, 2)) = /dx VI(k, ), (k, 7)) = k Fo(z — 7).

kEN*

It is of some interest to consider also interaction potentials with a hard core repulsion, i.e. v(0) =
+oo. In that case the interaction energy in (1.18) is always infinite, but we can renormalize it
by omitting the diagonal terms ¢ = j. Then the density matrices in (1.17) and the Ginibre loop
ensembles are well defined. For systems with hard core two-body potentials, only loops of duration
v contribute in the large-mass limit, i.e. all occupation numbers k are zero or one. In particular,
one can see that loops of duration kv with k£ > 2 are eliminated by a self-interaction, which is
absent from loops of duration v. The interpretation is that, due to hard core repulsion, multiple
occupancies of a single site are excluded.

1.2. Statement of the main results. Let

=U,K,A

Zy,n,/\ -

Zo0 (1.27)
be the relative grand-canonical partition function, where Z"%* was defined in (1.17).

We first state our result on the mean-field regime on a finite lattice. We begin by stating precise
assumptions on the interaction potential v.

Assumption 1.1. We consider an interaction potential v : A — R which is pointwise nonnegative
and of positive type (i.e. its Fourier transform is pointwise nonnegative).

Theorem 1.2 (Mean-field limit on a finite lattice). With v as in Assumption 1.1, the following
limits hold.



(i) lim,_o 20" = Z,
(ii) For all p € N* and x,y € AP, we have lim,_,g VP (1“;"“”2),(7y = (I‘;l)x,y.

Next, we state our result on the large-mass limit on a finite lattice. In this regime, we modify
Assumption 1.1 to account for interaction potentials that can have a hard core.

Assumption 1.3. We consider an interaction potential v : A — [0,00] for which there exists
R € {0,1} such that (i) v(z) € [0,00) for |z| > R. (ii) v(z) = oo for |z| < R.

We note that the analysis can be extended to consider arbitrary R > 0, but we consider
R € {0, 1} for simplicity. As remarked in the overview, we take A =1 and k = ko /v for some fixed
ko. In light of Assumption 1.3, we modify (1.18) and work with

H;:’l —— Z A+ = Z _j]_Rzl)’U(:Ei — fL’j) s (128)

3,j=1

thereby eliminating the infinite self-interaction in the presence of a hard core interaction potential.
Given n € N* k € (N*)" x € A", we define

1 n .
7 2ij=1 kikju(@i — x; fR=0
Vin(k, x) == {% ij=1 kikyo (@i = ;) ? (1.29)
3 2ij=1 V(@i — ) Ligj le=n, + 00 1zq, if R=1.
Here, we write
1,:=(1,...,1) € (N*)". (1.30)

We then consider the (relative) classical partition function with infinite mass, which is defined as

{Z > H dxe”0|k|exp(—Vlm(k,x))}/exp{ie_]:Ok\A\}. (1.31)

" ke(N*)n i= 1 k=1

Furthermore, for p € N* and x,y € AP, we consider

Z1m (K, x)

Flm : Z Z e~rolkl §(ry — x) —m (1.32)
ke(N*)P m€S)p
where
=1 =1 i ~
Z™kx) =Y o S TI = dxe oM exp(— V™ (kk, x%)), 2™ =2"(0). (1.33)

Here S, is the set of permutations of {1,...,p}, 7y = (Yr(1),---»Yr(p)), and we use the notation
(2.1) below.
We prove the following result.

Theorem 1.4 (Large-mass limit on a finite lattice). With v as in Assumption 1.3, and with
notations as in (1.31)—(1.32), the following holds.

(i) lim,_,o ZVHo/v1 = Zlm,

(ii) For all p € N* and x,y € AP, we have that lim, (T} HO/VI) Xy = (I‘}Jm)x’y



Next, we extend the results of Theorems 1.2 and 1.4 to the infinite lattice Z?. To that end, we
explicitly include the side length L of the cube A = Ay in our notation.

Assumption 1.5. We consider v : Z? — R which satisfies the following properties. (i) v is
pointwise nonnegative. (i) v is of positive type. (iii) v € £1(Z%).

With v given as in Assumption 1.5, we work with v’ : A; — R given by

vh(@) = Y w(a+k). (1.34)

ke(Lz)?

Furthermore, we define the specific (relative) Gibbs potential of the Bose gas by

1
gU,Ii,)\,L — |A ‘ log ZV,H,)\;L (135)
L

and the classical specific (relative) Gibbs potential by

1
gl = ALl log Z°MF (1.36)

In order to study the convergence of the reduced density matrices, we need to define an appropriate
norm. Given p € N* and Ly € N*, we define

ML,y = Prr () PLY, (1.37)

where Pp, : (?(Z%) — £2(A1,) denotes the canonical orthogonal projection. With Il ,, given as in
(1.37), and for A an operator on ¢?(Z%)®P we define

[AllLop = MLop Allegery, - (1.38)

Theorem 1.6 (Infinite volume mean-field limit). Let v be as in Assumption 1.5. If |[v|l g (zay is
sufficiently small depending on k, the following limits exist and satisfy the following relations.

(i) We have

o 2 .
lim lim ¢**"F = lim ¢*".
v—0 L—o0 L—o0

(i) Fiz p € N*. Then for any Ly € N* we have

. . 2 .
lim lim P TY%"L = lim Fgl’L
v—0 L—oco L—oo

with respect to || - ||1y,p, uniformly in Ly.
When studying the large-mass limit in the infinite volume, we modify Assumption 1.5 as follows.

Assumption 1.7. We consider an interaction potential v : Z¢ — [0, 00] for which there exists
R € {0,1} such that (i) v1,>p € (*(Z%) and (ii) v(z) = oo for |z| < R.

We consided the Hamiltonian defined in (1.28) with interaction potential v* : Ay — [0, o0],
which is given by (1.34) with v as in Assumption 1.7, and modify notations accordingly.

Theorem 1.8 (Infinite volume large-mass limit). Let v be as in Assumption 1.7. If |[v|pn(zay is
sufficiently small in terms of ko, the following limits exist and satisfy the following relations.



(i) We have

lim lim ¢g»"o/vbl = lim ¢™%
v—0 L—o0 L—oo

where g™t = 7|A1L| log Zm.L

(ii) Fiz p € N*. Then for any Ly € N* we have

lim lim T%%0/"bE = Jim rimE
v—0 L—o00 L—o0

with respect to || - ||Lyp, uniformly in Ly.

Remark 1.9. We note that the results stated in Theorems 1.6 and 1.8 extend to more general
boundary conditions for (1.1) by using very similar arguments. This can be seen by appropriately
modifying the proofs of Propositions 5.5 and 5.20 below. We study periodic boundary conditions
for concreteness.

Remark 1.10. By using subadditivity arguments [28] one can show convergence of the thermody-
namic potentials (as L — oo) for all temperatures.

Remark 1.11. When studying the mean-field limit, the assumption that v is of positive type
and pointwise nonnegative (see Assumption 1.1 and 1.5 above) is needed purely for mathemat-
ical reasons. More precisely, the assumption that v is of positive type is needed to apply the
Hubbard-Stratonovich formula (A.3), which is the starting point of the proof of the Symanzik loop
representation, stated in Proposition 2.1. Furthermore, the proof of the Ginibre loop representation,
stated in Proposition 2.3, relies on the pointwise nonnegativity of v.

1.3. Related results. The methods used in this paper are inspired by representations of Bose
gases and Euclidean field theories in terms of interacting random loops developed by Ginibre [13-16]
and Symanzik [32], respectively. We note that the mean-field limit was studied for d = 1,2,3 in
the continuum in the work of Lewin, Nam, and Rougerie [23—26], in our previous work [8,10-12], in
the work of the fourth author [30], as well as in the work of Rout and the fourth author [27]. When
studying the limiting regime of Bose gases, as v — 0, in dimensions d = 2,3 in the continuum, it
is necessary to introduce a renormalization in the form of Wick ordering. This serves to control
ultraviolet (short-distance) singularities. The latter do not occur in the study of lattice Bose gases
(see also Appendix C). We note that the results in [8] have been extended to gases with singular
interaction potentials in [30], and time-dependent correlation functions in one dimension have been
constructed and studied in [9].

Cluster expansions, which we use to extend our results to the infinite lattice, are ubiquitous
in statistical mechanics. For further results on cluster expansions and their applications, we refer
the reader to [2,5,17,18] and the references therein. Concerning the infinite-volume limit in the
continuum, we note that the normalization of the classical Gibbs measure and its distributional
properties in the limit L — oo have been studied in [1].

In the recent paper [29], a construction of regularized coherent-state functional integrals for
ensembles of bosons on a lattice is given. As in [10], an important tool is the Hubbard-Stratonovich
formula.
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2. The Symanzik and Ginibre representations

2.1. Notation. Let us first introduce some notation that we will use throughout the paper. We
write N={0,1,2,...} and N* = {1,2,3,...}. We use the notation A, , for the operator kernel of
an operator A with respect to the counting measure. When working on a fixed spatial domain A,
we write [ dz to mean [, do = )" c,, if there is no possibility for confusion. We denote by p¢ a
Gaussian measure with covariance C. We state all of the properties of u¢ that we use throughout
the paper in Appendix B.

Given a,b > 0, we write a < b if there exists C' > 0 such that a < Cb. We sometimes also write
this as a = O(b). Furthermore, if C' depends on a set of parameters p1,...,pr, we write this as
C=0Cp,.pe Ot aSp . pb,a=0p 5 (b). 1x denotes the indicator function of a set X.

We use the notation

Xy:(q"l?"'vxpvylu"'vyn) (21)
for vectors x = (x1,...,2p),y = (Y1,...,yn). Moreover, the symmetric group S, acts on p-
component vectors X = (71, ...,Zp) according to mX = (Tr(1), -+, Tr(p))-

For n € N* and T € (0,00)", denote by QT := Q7' x ... x Q" and w = (w1,...,w,) €
QT where w; € Q. For x,y € A", we define the product measure on QT by Wg,? (dw) =

W2, (dwr) - W, (dwn). Given T € (0,00)7, we write |T| := Y0, Th. Analogously to (2.1),
glVGIl w = (wl """ w”) € Qr and w = (wlv R 7(:]’”1,) S QT7 we write
C{JC:J = ((JJl,. . 70‘]71,7@17- .. 7(;:]771) 6 QTT

2.2. The Symanzik representation. In this section, we derive the Symanzik representation for
the classical partition function (1.10) and for the classical p-particle correlation functions (1.11)
following [32]. The precise statement is given in Proposition 2.1 below. In Corollary 2.2, we use the
methods from the proof of Proposition 2.1 to give a proof of a correlation inequality for classical
p-particle correlation functions. The proofs of both Proposition 2.1 and Corollary 2.2 are given in
Appendix A.1.

In this subsection, the interaction V' = V' is given by (1.4) using (1.8). For the single-loop
measure, we will work with a suitable regularization of L given by (1.7). In particular, given
e > 0, we consider L¢ given by

/ L (dw) = /5 “ar G;T / W (dw) . (2.2)

We define
> 1
Zoe = Z — /LCLE(dwl) . /LCI’E(dwn) exp(—V(w)) exp(K*9), (2.3)
—n!
where 0 T
Kei=— | — ‘”T/WT dw) . (2.4)
Note that lim._,g K¢ = —oo. Furthermore, we let
chs( )
cl e F T
1—\ E 7y z; / ‘ ‘ /Wﬂyx ch s (25)
e
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where

cha Z " /Lcle Lcla(dwn) eXp( VCl(wL:})) exp(K‘s). (2.6)

Note that (2.6) reduces to (2.3) when w = ().

Proposition 2.1 (Symanzik loop representation). Let v be of positive type. With notation as in
(1.10), (1.11), (2.3), and (2.5), the following claims hold.

(i) Z< = lim,_,o 2.
(i) For all p € N* and x,y € AP, we have (T 1) x,y = limg (T la)x’y.

We now introduce a coupling constant A > 0 in front of the interaction v. This changes the
exponential weight in (1.10). Note that if v is of positive type, then so is Av. The proof of Propo-
sition 2.1 (see Appendix A.1) allows us to deduce a correlation inequality for the (unnormalized)
classical p-point correlation function

(F53)y = [ 1z 1 (@) (3 -+ Dlyp) ar) -+ by e 3 S 4 [ WA P,
(2.7)

Corollary 2.2 (Correlation inequality). Let v be of positive type. Given p € N*, and x,y € AP,
with notation as in (2.7), we have

0< (T, < @) (2.8)

X,y Xy

2.3. The Ginibre representation. In this section, we recall the Ginibre loop representation
of the reduced p-particle density matrices and of the partition function. These results appeared
originally in the work of Ginibre [13-16].

Proposition 2.3 (Ginibre loop representation). Let v be pointwise nonnegative. Recalling (1.5)—
(1.6), the operator kernel of FZ’“’)‘ defined in (1.19) satisfies identity (1.20). Here, the single loop
measure L = L is given by (1.13) and the interaction V. = V¥ is given by (1.4) using (1.14).
Furthermore, we can write (1.27) as

ZrmA {2;‘ / L% () - - - L2 () exp(—V”’)‘(w))} / exp{ / ]L"’”(dw)}. (2.9)

For completeness, we give the proof of Proposition 2.3 in Appendix A.2.
It is useful to rewrite the Ginibre representation of (1.19) in terms of relative quantities.

Remark 2.4. Let us define
> 1 -~ —U,K U,k
Eu,n,/\(w) — {Z E /LV,H(d(DI) . 'LV’H(d@n) exp(—V”’A(ww))}, =Y A == 7/\((2)), (2.10)
n=0""

VKA
and we let 2N (w) = W&“’) Then, Proposition 2.3 implies that for p € N* and x,y € AP, we

have - M)
ZVrt (w
)\ Z Z _
FI/K? 7y e H|T|/Wﬂ_yx W (211)

meSp TE(vN*)P
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3. The mean-field limit: Convergence of the Ginibre representation to the
Symanzik representation

In this section, we study the mean-field convergence on the finite lattice A and we prove Theorem
1.2. Let us recall that in this regime, we consider v — 0 with A = v? and & fixed. Throughout
the section, we assume that v satisfies Assumption 1.1. Recalling (1.8) and (1.14), by pointwise
nonnegativity of v, we have that

V@) >0, VY (w,a)>0. (3.1)
Given n € N*, and T € (0,00)", in the sequel we write
WT(dw) == / dx WL (dw). (3.2)
We denote by
(@) = (%) (33)
the heat kernel on A. Let us note that for x,y € A and £ > 0 we have
[ @) = vty ). (34)

Further properties of the heat kernel on the lattice are given in Appendix C.

Proof of Theorem 1.2. Let us first prove (i). For w € QT we can write V"’ (w) = s(f.vvf),
where

f(l') = zn: Z 1T‘i<Ti /0” dt (5(1’ — wi(t + Tz)) . (3.5)

i=1r;evN

We rewrite Z¥5” by starting from (2.9). By using the Hubbard-Stratonovich formula (A.3) for f
as in (3.5), collecting terms in the exponential, and recalling (1.13) we can write

ZV7H,I/2 — /,U,m,(dO') exp{/L”’”(dw) |:ei ZTEVN 1r<T(uJ) fol’ dto‘(W(H_r)) — 1:| } . (36)

Given ¢ > 0, we let

e*l{T

227 i [ 1(do) exp{l/ > wT(w)[eiEreuN1r<Tfo”dt”<w<f+”>—1]}. (3.7)

TevN*N[e,00)

We first show that there exists 1y > 0 sufficiently small such that

lin% Zvrvte = zvmr® - niformly in v € (0,1p) . (3.8)
e—

In order to prove (3.8), we use (3.6)—(3.7) to compute
Zu,n,uz - Zu,n,uz,s

e—mT

_ /,um)(dU) exp{y > 7 /WT(dw) {eineuN Loor [} dto(w(t+r)) _ 1}}

TevN*N[e,00)

efnT

X <6XP{V Z T /WT(dw) [eiZTEVN Lrer [y dto(e(ttn) _ 1}} — 1) . (3.9)

TevN*N(0,¢)
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We estimate each factor of the integrand in (3.9) separately. For the first factor, we recall (1.2)
and (3.4) to note that [ W7 (dw) = 7 (0)]A|. Furthermore, we use the elementary inequality
le!® — 1] < C|al for a € R and consider Riemann sums with mesh size v for the integral

/;o AT =T T(0) = Ox (1), (3.10)

to deduce that

—kT y

TevN*N[e,00)

< Celllole (311

Note that for (3.10) we used that 17 (0) < 1, which follows from Lemma C.1 (i). Similarly, for the
second factor of the integrand in (3.9), we use the elementary inequality |e¢ — 1| < |¢]el¢! for ¢ € C
and consider Riemann sums with mesh size v for the integral [5 dT e T 4T (0) < € to deduce that

—kT v
exp{y > 5 / W (dw) [eizre““lw Jordrotettin) _ 1”

TevN*N(0,¢)

— 1] < Ce|A|||o o0 CM o

(3.12)
Combining (3.9)—(3.12), it follows that

‘le,/i,lﬁ . ZV,N,V275‘ < Ce /d,U;yU(U) eCN|A|“U“QO ) (313)
Recalling (A.16), we note that (3.8) follows from (3.13) if we prove that, for fixed = € A, we have
/du,,v(a) Clr@l = 0(1), uniformly in v € (0,1p), (3.14)

for vy > 0 sufficiently small. We deduce (3.14) by using (A.17) (with v replaced by vv). Namely,

we note the elementary inequality (1,212)2' < (1,21 274! and thus obtain that the left-hand side of
(3.14) is < 322°0(2C0(0)1/201/2)" = O(1), provided that v € (0, 1) for vy > 0 sufficiently small.

By using (A.3) as in the proof of (3.6), we can rewrite (3.7) as

gumie _ Z L' $ H o—IT /WT(dw) exp(—V" (w)) exp(KZ),  (3.15)

= Te(vN*Ne,00))" 1= 1

where
efnT T
Ky:=—v Y YT (0)|A] <0. (3.16)
T

TevN*N[e,00)

For the inequality above, we used Lemma C.1 (i).

Recalling (2.3), we now show that for all € > 0
lim ZVv5e = Zebe (3.17)

v—0

In order to prove (3.17), we show three auxiliary claims. Let us henceforth fix ¢ > 0.

14



(1) For uj,uz € A, we have

9 —nTle—mTQ
v > > —T / Wi, (dwy) / W2, (dws)
T evN*N[e,00) To€vN*N[e,00) 152
‘exp(—V”’”Q(wl,wg)ﬂ) — exp(—VCl(wl,wg)/2)‘ < Cuv||v]|e . (3.18)

(2) For u € A, we have

fnT
v /w = 0..(A]). (3.19)
TGVN*

(3) With K¢ as in (3.16) and K€ as in (2.4), we have

lim K = K°. (3.20)

v—0

Let us assume (3.18)—(3.20) for now. We show how one can then deduce (3.17). Let us define
for v > 0 the auxiliary quantity

Frete Z 3 er—ﬁllewT (dew) exp(—V(w)) exp(KS).  (3.21)

TE(VN* N[e,o0)™ 1=1

Using (3.1), (3.16), (3.18)—(3.19), and applying a telescoping argument in comparing (3.15) and
(3.21), we deduce that
Zl/l-i I/ ,€ Zl/.% l/ N — OE,U,A,N(V) . (322)

By using (2.3), (3.20), (3.21), and by considering Riemann sums with mesh size v we deduce that

lim Zvvhe = Zebe | (3.23)

v—0

We hence obtain (3.17) from (3.22)—(3.23). Claim (i) then follows from Proposition 2.1 (i), (3.8),
and (3.17).

Let us now show (3.18)—(3.20). We first show (3.18). By using (3.1) and recalling (1.8), (1.14),
we have that the contribution to the left-hand side of (3.18) for fixed T4, T3 is

/Wul u1 dwl /Wug U2 dWQ Z 1T‘<T1 Z 1S<T2/ dtl/ dtQ

revN sevN
|v(w1 (tl + T‘) - WQ(tl + S)) - v(wl (tl + T‘) - WQ(tQ + S))| . (3.24)

The contribution to (3.24) when ¢; < to is

Z Ler, Y 15<T2/ dt1/ dt2/dC/d771/dﬁ2 P (C = ua) T (g — )

reyN sevN
X TS — ) 2 (g2 — ) TR (g — 1) [0(¢ = m) = w(¢ = m2)|, (3.25)

which by Lemma C.1 is?

S V3 ”’UHgoo Z 1r<T1 Z 1s<T2 =V ”’UHgoo T1T2 . (326)
revN sevN

3Note that (3.25) vanishes if 71 = 72, hence we estimate 1'2~" (2 — 1) by Lemma C.1 (ii).
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The contribution to (3.24) when ¢; > t3 is estimated analogously. Using (3.26), it follows that the
expression on the left-hand side of (3.18) is

S v ||vlfese Z Z Ve " ie™ T  Cv||v||gee (3.27)
T1evN*N[e,00) TrevN*Ne,00)

as was claimed. In order to obtain (3.27), we considered a Riemann sum of mesh size v for the
integral [>°dTy [>° ATy e Tle 12 = O, (1).
We now show (3.19). By Lemma C.1 (i), it follows that the expression on the left-hand side of

(3.19) is
v Z

TevN*N[e,00)

—kT

and we hence obtain (3.19). In (3.28), we considered a Riemann sum of mesh size v for the integral
—rT

[2°dT S = O x(1).
Flnally, in order to show (3.20), we rewrite (2.4) using Lemma A.1 as
o dT
E=-| — e "Iy (0)|A]. (3.29)
g

Using (3.16), (3.29), and considering Riemann sums of mesh size v for the integral in (3.29), we
deduce (3.20). Claim (i) now follows.

The proof of (ii) is similar to that of (i). We just outline the main differences. We now start from
(2.11) and hence work with paths that can also be open For fixed T € (vN*)P, T € (vN*)", x,y €
AP (w,@) € QT x 0T we can write V** (w@) = L(f,vvf), where

Z Z 1< / dtd(z — w;(t + 1)) —|—Z Z 182<T/dt6m—wlt+sl)). (3.30)

j=1lr;evN 1=1 s;EvN

We use (2.11) and apply (A.3) with f as in (3.30) to obtain that

P 2 = 2
(O™ xy = (O™ xy s (3.31)

Zv,k,02

o,
V,R,V H
where (I')™"" )y y is

= Z Z e_“‘T‘/Wﬁyx (dw) /,uv(da exp{ Z z 17"]<T/ dto( wj(t—l—r]))}

Te(vN*)P €S, j=1lr;evN
X exp{/L”H(d )[ e Lacr@ Jy dto@t+s) _ 1} }

By arguing analogously as for (3.8) we have that there exists vy > 0 sufficiently small such that

liH(l] Vp(fg’”"ﬂ’s)x’y = yp(f‘;’””ﬁ)xvy, uniformly in v € (0,1p), (3.32)
e—
where
AV7K/7V278 — _H‘T‘ - L - i _H‘T‘
Ty = > D e Wayx(dw) > — I 7e
Te(vN*)P T€S) n=0 Te(wN*)nne,00)n =1 ¢

x / W (d@) exp(— V" (wi)) exp(K2), (3.33)
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for K¢ as given by (3.16). We now use (3.33) and consider Riemann sums as in the proof of (3.17)
to deduce that for all € > 0 we have
lim pP(D%5°),cy = 2 (DE)

v—0

X,y ) (3.34)

where (F}C}’E)&y is given by (2.5). Claim (ii) now follows from (3.31), (3.32), (3.34), Proposition 2.1
(ii), and from part (i) of the theorem.
U

4. The large-mass limit

In this section, we analyse the large-mass limit on the finite lattice A and provide the proof of
Theorem 1.4. We recall that in this regime, we consider v — 0 with A = 1 and x = “2. Throughout
this section, we assume that v satisfies Assumption 1.3. In light of (1.28), we need to slightly
modify (1.4) when studying the large-mass limit. Namely, recalling (1.14), we work with

1 n
Vil(w) = 3 > Vo wi,wy) + o ZV“ +Q|T|1R 0, (4.1)
i,j=1 =1
i#]
where
Vol(w) = ” Z 1y sT(w) 7«755/ dtv(w(t+7r) —w(t+s)). (4.2)
r,s€vN

Note that (4.1) differs from (1.4) only in the presence of a hard core potential. With this modifi-
cation, the result of Proposition 2.3 holds. We use this without further comment below.
Before proceeding to the proof of Theorem 1.4, we first note several basic facts.

Lemma 4.1. Let g1 : A - C and g2 : A x A — C be given. The following estimates hold.

(i) For x,2’ € A,T >0, and r,s,t € [0,T] satisfyingr < s and t +s < T, we have
[ ) g1 (o + 1) =l ) = 2 (0)] = OA(T ). (43)
(i) For x1,xa, 2,25 € A, T1,Th > 0,t; € [0,T1],t2 € [0,Ts] we have

/Wf} (dwy) /W (dwa) |ga(wi(t1), wa(t2)) —ga(z1, 22)| = OA((T1+T2) |lg2lle=) - (4.4)

Proof. We first prove (i). Let us first consider the case when & = a’/. The expression on the
left-hand side of (4.3) is then given by

[ ¢ [angt (¢ =) e = O v @ = 0) 91 (¢ - )~ 91 (0)]. (4.5)

By Lemma C.1 (i)—(ii), it follows that the expression in (4.5) is

</dC/dn¢H(n—C) 191(¢ =) — g1(0)] = OA(T [|g1]le=) - (4.6)
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Let us now consider the case when z # 2. By using (3.4) and Lemma C.1 (ii), it follows that the
expression on the left-hand side of (4.3) is

<2)gille=v" (" — 2) S Tlgalle . (4.7)

Claim (i) follows from (4.6)—(4.7).
We now prove (ii). Let us first consider the case when z1 = z and x9 = x5. Similarly as in the
proof of (i), we need to estimate

[ ¢ [ anut (€= a0 6Tt e = 0w = a) 6w = 1) ga(Con) - galon,an)].

which by the triangle inequality and Lemma C.1 (i) is

< [an [acu™c~a)lgaCn) ~ gotarm| + [ dn [dCu - a2)ga(arn) - galor, )|
By Lemma C.1 (ii), the above expression is

= OA((T1 + T2) [|g2]]e==) - (4.8)

Let us now consider the case when x1 # 7. By (3.4) and Lemma C.1 (i)—(ii), we obtain that the
expression on the left-hand side of (4.4) is

< 2|\ galleme 1 (2] — 1) W2 (2l — 22) S Thllgalle - (4.9)

Finally, when zo # 24, we obtain by analogous arguments that the left-hand side of (4.4) is

< Tal g2l ¢ - (4.10)
Claim (ii) follows from (4.8)—(4.10). O
We define
~ 1 - o QLN
Vy’l(w) = 5 Z V”’l(wi,wj) + 5 ZV”’l(wi,wi) 1r—o, (4.11)
ij=1 i=1
i
where we let )
Vol (w, @) = 3 T(@) T@)v(x(w) - 2(@)). (4.12)

We note that V*!(w) depends only on the durations T = (T'(wy),...,T(wy,)) and initial points
x = (x(w1),...,x(wy)) of the paths w = (w1, ...,w,). Let us note a consequence of Lemma 4.1.

Lemma 4.2. The following estimates hold.

(i) Suppose that R =0 in Assumption 1.3. For xz,z’ € A and T € vN*, we have

-V (w,w V1 (ww T3
/W%(dw) R :OA<V2 Hv||goc>.
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(ii) With v as in Assumption 1.3, we define the function v : A — R by
o(x) = v(T) LpzR - (4.13)
For x1,z9, 2,25 € A and Ty, Ty € vN*, we have

T (T + T
=Op (W ||mgoo> +OT2+TY.  (4.14)

Proof. In order to prove (i), we note that for w € Q7,
1.3

‘e*V”’l(w,w) _efﬁwl(w,w)‘ 21/ Z Lcr > leer /V dtjv(w(t+7) —w(t+s)) —v(0)]. (4.15)

sevN

we have by (4.1), (4.12), and Assumption

z’'x

Using (4.15), Fubini’s theorem, and Lemma 4.1 (i) with g1 = v, we first integrate in w for fixed
t €[0,v],r,s € vN with r,s < T. Then, we integrate in ¢ and sum in r, s to deduce claim (i).
We now prove (ii). We consider the cases R = 0 and R = 1 separately.

Case 1: R=0. Let w; € Qz} 2, and wy € Qg? 2, e given. As in (4.15), we get that
1’ 2

‘er”*l(wl,wg) _ ef]/”’l(wl,wz)

Z Leer, Y 15<T2/ di |o(wi(t+71) —wa(t + 5)) —v(wr — z2)|. (4.16)

reuN s€vN

We use Fubini’s theorem and first integrate in w; and wy in (4.16). In doing so, for fixed ¢ € [0, V],
andr, s € vN, with r < Ty, s < Ty, we use Lemma 4.1 (ii) with ¢; = t+r,te = t+s, g2((,n) = v({—n).
We then integrate in ¢ and sum in r, s and recall that by (4.13) we have © = v. Claim (ii) for R=0
now follows.

Case 2: R=1. If x1 = x4, then by the right continuity of w; and we, there exists ¢ € (0,v) such
that w; = wy on [0,¢). Hence, recalling (1.14) and (4.12), the expression on the left-hand side of
(4.14) is zero by Assumption 1.3 (ii).

We henceforth assume that z1 # zo. Let us separately consider the integral over two regions in

(wi,ws) € QZ:I o Qg? 2y which are defined depending on whether w; and wy intersect.
29

(i) w1 and wy do not intersect. In other words, we consider the region

Ry = {(wl,wg) QT{z x Q2 Yty € [0,Ty] Vit € [0, To], wi(ty) # m(tg)}. (4.17)

1 93:17’

Using (4.13) and (4.17), we see that in the contribution from R; to the left-hand side of
(4.14), we can replace v by ¢ in (1.14) and (4.12). Therefore, we can argue analogously as in
Case 1 and obtain the same upper bound.

(ii) wy and wo intersect. We consider the region

Ro := {(W1,CL)2) € Qf’i,rl X sz,xg’ dt; € [O,Tl] dty € [O,TQ], wl(tl) = WQ(tQ)} .
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Since x1 # 2, we have Ry C Rg) U R§2), where

RY = {(wrwn) €, x O 3 € LT, wylty) £}

By using |e V" (@1w2) _ _9V’1(°J1""2)\ < 1 and recalling (3.4), we get that the contribution
from Rg ) to the left-hand side of (4.14) is
T1
oy [t e et e - )| 6T - e =0 @)
A\{z1} 0

In the last step above, we used Lemma C.1. Similarly, the contribution from Rg) to the
left-hand side of (4.14) is O(T%) and the claim follows.

O
We now have the necessary ingredients to prove Theorem 1.4.

Proof of Theorem 1.4. We first prove (i).
Let us note that it suffices to consider unnormalized quantities. In particular, recalling (1.33)
and (2.10), it suffices to show that

lim Zvro/vl = Zm (4.19)

v—0
Namely, by (1.13), (3.4), Lemma C.1 (i)—(ii), and the dominated convergence theorem, we have
that

o0 —kok
. v,Kko /v _ e "0
lim [ I (dw) kz::l p |A]. (4.20)

Therefore, (4.19) implies claim (i) by (1.31), (2.9), and (4.20).
We note that (4.19) follows if we show that for all n € N* k € (N*)", we have

lim [ W (dw) exp(~V" (w / dx exp(—V™(k, x)) . (4.21)
Namely, since [ W*(dw) < |A|, we have
- e—ﬁok kv
Z W™ (dw) = Oy, (JA]) - (4.22)
k=1

Using (4.22), V¥!(w) > 0, and the dominated convergence theorem, we deduce that the claim of
the theorem indeed follows from (4.21). We now show (4.21). In doing so, we consider the two
cases R = 0 and R = 1 separately.

Case 1: R = 0. Recalling (4.1), (4.11), and using Lemma 4.2 together with a telescoping argument,
it follows that

[ (dw) exp(-V (@) = [ WRAw) exp(~V @) + Op i) (423)
We use (1.29), (3.4), and (4.11)—(4.12) to write
/ W (dw) exp(~7"1(w)) = [T v4( / dx exp(=V™(k, x)) . (4.24)
i=1
Note that by Lemma C.1 (ii), we have that for all £ € N*
Y (0) =1+ O(kv). (4.25)

Combining (4.23)—(4.25), we deduce (4.21).
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Case 2: R =1. We recall (1.29) and deduce that (4.21) is the consequence of the following two
claims.

(1) For all n € N* and k € (N*)" \ {1,,}, we have

lin%) W (dw) exp(—V*H(w)) =0. (4.26)
v—
(2) For all n € N*, we have
hr% W (dw) exp(-=V" (w)) = [ dx exp(—V"™(1,,x)). (4.27)
v—r Am

Here we recall (1.30).

We first prove claim (1). We recall (4.1)—(4.2), and use the nonnegativity of v, to deduce that
(4.26) follows if we show that for all k£ > 2 and = € A, we have

lim [ W (dw) exp(=V"1(w)) = 0. (4.28)
v—0
Namely, we know that there exists a component of k which is at least 2. Let’s assume without loss
of generality that k1 > 2. When integrating in wq, we use (4.28). When integrating in w;,2 < j < n,
we use the nonnegativity of v, (3.4) and Lemma C.1 (i). Therefore, claim (i) indeed follows from
(4.28).

Let us now prove (4.28). We define £ := {w e Qf

xT,r )

It € [0,T],w(t) # x} and 87 :=Qf \LT.
With this notation, we have

/Wf:'jx(dw) exp(=V"1(w)) < /Wiyx(dw 1ok (w) + /Wk” dw) exp(—V"H(w)) Tgw (w). (4.29)

By arguing analogously as for (4.18), it follows that the first term on the right-hand side of (4.29)
is O(k?v?). Furthermore, by (4.2) and the assumptions on v, the second term is equal to zero (here,
we are crucially using the fact that k£ > 2). We therefore obtain (4.28) and claim (i) follows.

Let us now prove claim (2). We apply Lemma 4.2 (ii) with 7" = v and use a telescoping argument
to deduce that

v—0

lim [ / W (dw) exp(— V" (w)) / W (dw) exp(—V™(1n,x))| = 0. (4.30)

Here, we recall (4.1)—(4.2), (1.29), (4.12), and keep in mind that the left-hand side of (4.27) does
not contain any self-interactions. Claim (ii) now follows from (4.30) by iteratively applying (3.4)
and Lemma C.1 (ii) in the second term and thus obtaining the expression on the right-hand side
of (4.27) in the limit. We deduce claim (i).

Let us now show claim (ii). The proof is similar to that of (i), so we will just outline the main
differences. Let p € N* and x,y € AP be given. By (1.32), (2.10)—(2.11), and (4.19), the claim
follows if we show that

hr% Z Z e_“("T'/”/WT (dw) H”'QO/"I Z Z e~ rolk| d(my — x) Zlm(k X) .

Te(vN*)P €Sy ke(N*)p meSp
(4.31)
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Analogously as for (4.21), it suffices to show that given k € (N*)?, 7 € S,,n € N* k € (N*)" we
have

lim [ Wk (dw) / W (d@) exp(~V*! (w@)) = 6(ry — x) /A ds exp(—V™ (k. x%)) . (4.32)
When R = 0, the proof of (4.32) proceeds as that of (4.21). The only difference is that we now
apply Lemma 4.2 for both open and closed paths. The p open paths give rise to delta functions by
Lemma C.1 (ii). We omit the details.

We henceforth show (4.32) when R = 1. Arguing as for (4.26)—(4.27), it suffices to show the
following two claims.

(a) For all n € N*, (k, k) € (N*)P x (N*)" \ {1,10,}, and 7 € S, we have

lim [ W2 (dw) / W (@) exp(— V! (wd)) = 0. (4.33)

v—0 Y%

(b) For all n € N*, we have

Tim [ W (dw) / W (d&) exp(— V¥ (w)) = 6(ry — x) /A ds exp(~V"(xx))
(4.34)

We first prove claim (a). Note that if k # 1,, then (4.33) follows from (4.28) by using
V¥ (wd) > V¥ (w), and by recalling (3.4) and Lemma C.1 (i). If k # 1,, then we consider two
subcases. If Ty # x, then (4.33) follows from (3.4) and Lemma C.1 (i)—(ii), since V*!(w@) > 0. If
Ty = x, then (4.33) again follows from (4.28), since V"!(w@) contains self-interactions (4.2).

Let us now prove claim (b). If my # x, then the limit is zero by arguing as in the proof of (a).
If my = x, then (4.34) follows by using Lemma 4.2 (ii) analogously as in the proof of (4.27). Note
that now we are integrating only over the endpoints of the closed paths. We hence obtain (b) and
claim (ii) follows. O

5. The infinite-volume limit

In this section, we study the infinite-volume limit. In Section 5.1, we study the mean-field regime
and prove Theorem 1.6. In Section 5.2, we study the large-mass regime and prove Theorem 1.8.

5.1. Infinite-volume limit of the specific relative Gibbs potential and reduced density
matrices I: the mean-field regime. In this subsection, we work in the mean-field regime. In
the sequel, we vary the size L € N* of the box Ay. Throughout, we assume that the interaction
potential on Ay is given by (1.34) for v as in Assumption 1.5. As was mentioned in the introduction,
we keep track of the L-dependence of all the quantities by adding a superscript L. More precisely,
we write Q5T and ngT for the appropriate space of cadlag paths on Ay. Analogously, we write
WiT (dw), WET (dw) for (1.2) respectively. Finally, we write ¢' = 4™ for the heat kernel (3.3) on
Ap.

Let us rewrite the reduced p-particle density matrix (1.19) as a power series representation
amenable to a cluster expansion. Our starting point is the Ginibre representation given in Propo-
sition 2.3 above. Before stating the precise formula, we introduce some notation. We consider
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VrAL(w, @) given by (1.14) with interaction as in (1.34) and define positive measures on Jp-o Q5T
through

L . e T LT —Vrrl(ww)/2
p(dw) :=v Z —— W™ (dw) e wHe (5.1)
TevN*
uyx (dw) Z e_”TWLT (dw) eV w2 (5.2)
TevN*

Given p € N* and wy,...,w, € 2 we define
Xwns )= 3 (ni!p)!/,uL(dwp_,_l) e g () G wr, - wn), XE = XE(D), (5.3)
with the Ursell function given by
ol (wi, ... w) ~ Z I ¢wiw)) Hw,@) == exp(—V" M (w,@)/2) — 1. (5.4)

Geos {i,j}eg

Here &S denotes the set of all connected graphs on [n] = {1,2,...,n}. In this section, we work in
the mean-field limit and therefore set A = 2 in the definitions above *
Throughout the sequel, we use the identity

0"l a,) = vl zay (5.5)
which follows directly from (1.34). We henceforth write [[v[|p = [|v]|p1 (za).-

Proposition 5.1 (The cluster expansion). With notation as in (5.3) and assuming that ||v|, is
sufficiently small, we have the following identities.

(i) log Zvmat L — XL _ XLO yhere XLO s given by (5.3) with interaction potential set to zero

(i.e. pF =1).
(ii) Let p € N* and x,y € AP be given. We have
(FVHV L xy = Z //_Ly 1> $1 dwl )T dwp Z H X wz ZE{ (56)
T€S, e, £l
where B, is the set of partitions of {1,...,p}.

Proof. The identity in (i) follows from [33, Theorem 1]. In order to prove (ii), we define

o0

XL(wl,..., Z = p)! /,u (dwp1) - - L(dwn) H exp(_VV’V27L(W7;,w]‘)/2) (5.7)

and X' := X(@). By Proposition 2.3, (5.1)~(5.2), and (5.7), we have
X5 wr, ... wp)

wy = 0 [l () e () S (5.8)
mESp

2
(Fg,n,u ,L)

“In order to simplify notation in the sequel, we write p’, ﬂjz, XL etc. instead of p™™ L,ﬂ‘y’ AL x v AL ege,

We bear in mind that all of the above quantities depend on v, k, A as well. In this section we fix x and take A =12
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By [33, Theorem 2], we have

L
A 9) ST X (i) (5.9)

L
X IIER, £€IT

and the claim follows from (5.8)—(5.9). O

The cluster expansion from Proposition 5.1 allows us to prove the bounds on the specific relative
Gibbs potential and the reduced density matrices, which are uniform in v, for v small enough, and
in L. For the remainder of the section, we assume that

ve(0,1/k]. (5.10)

Given p € N*, we consider the norm on operators acting on ¢2(Ap)®P given by \|A||g§o% =
SUDye AP i) A? dy |Axy|. By Schur’s test, we note that for self-adjoint operators A we have ||A|| <

||A”g§og§’, where || - || denotes the operator norm on £2(Ap)%P.

Proposition 5.2 (Bounds on the specific relative Gibbs potential and reduced density matrices in
a finite volume). For ||v||, sufficiently small depending on k, we have the following bounds for all

L e N*.
(i) The specific relative Gibbs potential (1.35) satisfies

2
gmn,l/ Lo O"%HUHZI (1) . (5.11)
(i) For p € N*, the p-particle reduced density matrix I‘Z”“’”Q’L satisfies
b K 27L JE—
vP HF;H Y ||£;oe§, - Oli,p,||v||41 (1) . (5.12)

From Proposition 5.2, we can deduce the existence of the specific relative Gibbs potential and
reduced density matrices in the infinite volume.

Corollary 5.3 (Specific relative Gibbs potential and reduced density matrices in the infinite vol-
ume). With assumptions as in Proposition 5.2, the following claims hold.

(i) The quantity
lim gl/,/iﬂ/QyL = gV757V27OO (5.13)

L—oo

exists.

(7i) Let p € N* and be given. We can take L = oo in (5.6) and obtain an operator FZ’“”’Z"X’ on
2(ZH®P which satisfies
V. l/2
vP ||Fpﬁ7 700“@3@ = OH,ILHvII,_A (1) . (5'14)

In (5.12), we are taking the || - ||é§og31, norm on operators acting on (2(Z4)®P,

Remark 5.4. We note that the results in Proposition 5.2 (i) and Corollary 5.3 (i) above are not
new. Furthermore, they hold under more general assumptions that do not require the interaction to
be small, see [6,28]. Below, we give a short proof under our assumptions using cluster expansions for
completeness and for expository purposes. This proof allows us to deduce more specific properties
of the thermodynamic limit, such as analyticity.
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We can use Proposition 5.2 and Corollary 5.3 to show that specific relative Gibbs potential and
reduced density matrices converge to their corresponding infinite-volume limits uniformly in v.

Proposition 5.5 (Convergence to the infinite-volume limit). With assumptions as in Proposition
5.2, the following claims hold.

(i) The convergence in (5.13) holds uniformly in v € (0,1/k].

(i) Let p € N* and Ly € N* be given. Let Fl’;7”7”2’°° be as in Corollary 5.3 (ii). Then, we have

I I AL (5.15)

L—oo
The convergence in (5.15) holds in || - ||1,, given by (1.38) and is uniform in v € (0,1/k] and
Ly € N*.
Before proceeding to the proofs of Proposition 5.2, Corollary 5.3, and Proposition 5.5, we note
several auxiliary results. The first one is a useful estimate on the Ursell function (5.4).
Lemma 5.6 (Tree bound). Forn € N and wy,...,w, € Q we have
) < T I wiwy)
TETn {'L,]}ET

Here T,, denotes the set of all trees on [n] = {1,2,...,n}.

We prove Lemma 5.6 in Appendix D.1. The proof is based on Kruskal’s algorithm [21], which we
also recall in Appendix D.1 for completeness. The second auxiliary result is the basis of an algorithm
that allows us to iteratively integrate all of the paths w; in the representation of Proposition 5.1
(recalling (5.1)—(5.4)). We now state the integration lemma.

Lemma 5.7 (Integrating out a vertex). Let w € Q5T with T(w) € UN*, g € N, and = € Ay, be
given. Then, the following estimates hold.

(i) J pH(d@) T@)7 |¢E(w, @) < T gt o]l

(ii) v [y, dy [ ik, (d0) T(@)7 [¢F(w, @) $ T (g + D! [[v]l o
(iii) [ pF(do) T(@)1 < ]
(iv) v [y, dy [ fil (d2) T(@)? $ &

In the proof of Lemma 5.7, we use the following lemma concerning Riemann sums, whose proof
is given in Appendix D.2.

if ¢ € N*.

Lemma 5.8. Given q € N and assuming (5.10), we have

— kT q
VTZN e "1 < T (5.16)
cvN*
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Proof of Lemma 5.7. Throughout the proof, we use the observation that
1
¢F (@, @) < 5 V7w, @), (5.17)

which follows from (5.4) and (3.1). Let us first prove (i). By using (1.14), (3.1), (5.1), and (5.17),
we need to estimate

/uL d@) T(@)1 VL (w, @)
2SS e T TS Ly S 13<T/ dt/ d:c/WLT (w(t+7)—a(t+s)).
TevN~ revN sevN Ar
(5.18)
We note that, for fixed T € vN*,y € Ap,t € [0,],s € vN with s < T we have
/ dx/WLT Ly—a(t+s)) / dx/ dz /WLHS /WLT (t+9) (da) vF (y—2)
AL AL AL

(5.19)
which is

= [ dz [ / dz / WET=(+9) (4gy) / ngﬂ(dwl)} vl(y — 2)
AL AL ) ’

:/A dva(y—z)/WLT / dzol(y — 2) 6T (0) < [Py = [olla - (5.20)
L

In order to deduce (5.20), we used Fubini’s theorem, the time-reversibility of the random walk,
(3.4), Lemma C.1 (i), the assumption that v is even, and (5.5).
Using (5.20) we get that the expression in (5.18) is

V3 Z e " Ta-1 Z 1 crw) Z 1, plvlle =v Z e " TIT (W) |[v]]er - (5.21)

TeyN~ revN sevN TeyN*

We hence deduce (i) from (5.21) and Lemma 5.8.
We now prove (ii). Similarly as in (5.18), we have

v [y [ Ak T@)1 v w,8)

L

gﬁ/A dy > e T Jq S Licrw) D 15<T/W / dt vH(w(t + ) — ot +5)) .
L

TevN* revN sevN
(5.22)

Let us consider fixed T € vN*, r,s € vN with 7 < T(w),s < T, and t € [0,]. We then write
/ dy /WLT d@) vH (w(t +7) — ot + s)) (5.23)
AL
= dy/ dz /WL s (d /W ~) (A@g) vE (w(t +7) — 2),
Ap Ar

which we rewrite by Fubini’s theorem as

/ dz/w““ dan (/ dy/wj’f““)(d@)) P (wt+7) — 2) < |lollgr - (5.24)
AL AL ’
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Above, we used (3.4), Lemma C.1 (i), (iii), and (5.5). Using (5.24) and Lemma 5.8, we get that
the expression in (5.22) is

<v > e T T T(W) [foflp <
TevN*

T(w)

(g +D!vle . (5.25)

This proves (ii).
We now prove (iii). Let ¢ € N* be given. By using (5.1), (3.1), and recalling (3.4), we have

/ML(de) <v Z o T Ja- 1/ALd:c/WLwa ( Z o T Ja- HpLT( )) AL,

TevN* TevN*
(5.26)

which by Lemma C.1 (i) and Lemma 5.8 is

( D 1) AL y<( ) Az (5.27)

TevN*

We hence deduce (iii).
Finally, we prove (iv). By using (5.2), (3.1), followed by (3.4), Lemma C.1 (iii), and Lemma
5.8, we have

- |
V/ dy/,uyxdw <v Z e“TTq/ dy/WLT )=v Z e*”Tquﬁ.

TEvN* TevN*
(5.28)
We hence deduce (iv). O
We now introduce some terminology and notation. Given n € N* and (d1,...,d,) € N", we
define
Pordn = (T €%, deg(i) =6;,i=1,...,n}. (5.29)

In (5.29), deg(i) denotes the degree of i in T, i.e. the number of vertices in [n] \ {¢} with which i is
connected by edges of 7. We note that T) consists of a single element, i.e. the tree with one vertex
and no edges and that ‘Z‘lsl = () if 61 # 0. For n > 2, 219 is nonempty only if (d1,...,d,) € (N*)?
and Y 1" 0; = 2(n —1).

Let us now note how we can use Lemma 5.7 (i)-(ii) to integrate all of the paths w; which
correspond to vertices of a tree that are not the root (which we henceforth designate to be 1).

Lemma 5.9 (Integration algorithm). Let n € N*, (61,...,d,) € (N*)" with >;; 0; =2(n—1) and
T € To-9n be given. Furthermore, let O,C C {2,3,...,n} such that O LUC = {2,3,...,n} and
(z;)ico € A© be given. Fori € {2,3,...,n} we let

U641 ifieO

ph(dw) ifieC

Oi(dw) := { v [y, dyu% (dw) ifie€O.

With this notation, we have that for wy € Q1

/@2(dw2)@3(dw3)~~®n(dwn) I 165 (wisw))l gcnfluv||g;11‘[(ﬁ*5i (8 = 1)!) Twr)™.
(i.5)eT i=2
. (5.30)
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We note that, in the statement above, O,C, denotes the set of vertices # 1 which correspond
to open paths and closed paths respectively.

Proof. We prove the claim by induction on n.

Base. The claim trivially holds when n = 1.

Step. Suppose that n > 2 and that (5.30) holds for all trees on at most n — 1 vertices.

Let k := 01. Then w; is connected to w;,,wi,,...,w;i, for 1 < ip < idpg < -+ < i < n. By
deleting the edges (1,41),...,(1,i) from T, we get a forest T3 UTa Ll --- U Ty, where iy € V(Ty) for
¢=1,...,k. Here, V(-) denotes the vertex set of a graph.

For ¢ =1,...,k, let ny:=|V(7;)|. By the inductive assumption, we have

[1 odw) I [C@wpl<em ol T (5% (6 - 1)) T(ws) e,

i€V (Te)\{ic} {i.g}eTe i€V(Te)\{ic}

forall{=1,... k.
We use (5.31) to deduce that the expression on the left-hand side of (5.30) is

. k
<ot I (R @G- 1)) H( / @wdwi@)T(wu)%1\<L<w17wl~g>|>.
(=1

1€m)\{i1,....ik }

(5.32)
We now apply Lemma 5.7 in each of the k factors in (5.32). More precisely, we apply Lemma 5.7
(i) if 7y € C and Lemma 5.7 (ii) if iy € O and deduce (5.30). O

We record a well-known result about the cardinality of T01% which can be obtained e.g.
from [31, Theorem 5.3.4].

Lemma 5.10. Let n > 2 and (01,...,0,) € (N*)" such that 37", 6; = 2(n — 1) be given. We then
N1
(

s S 1()n ; -

We now have the necessary tools to prove Proposition 5.2.
Proof of Proposition 5.2. Throughout the proof, we work with v such that ||v||, is sufficiently small

depending on « in a way to be precisely determined later. We first prove (i). By using Proposition
5.1 (i), (5.3), (5.4), and Lemma 5.6, we deduce that

llog 27+ < Z =D / (dwn) - (dewn) T 1¢E(wirwp)] - (5.33)
TET, {i,5}€T
By recalling (5.29), we rewrite the right-hand side of (5.33) as
=1
DO TEDS DR FTECPARTC W | [ IS CN PR CE )
n=2 """ (51 ..... 5n)€Nn TET;SLI """ on {’L,]}GT
§14-+0n=2(n—1)

By using (5.33)—(5.34) as well as Lemma 5.9 with C = {2,...,n} in each term of (5.34), we deduce
that

i v,k L < - Cn_l | n - 1 c e
log 2 £ 3 - Dol g Al =3 (el ) Azl (539)
n=2 : n=2
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Here, we used the observation that for (d1,...,d,) as above, we have

TL(e = 11) [ it 70 S s TLG = DYAL (5.36)
=2 1=1

which follows from Lemma 5.7 (iii). We deduce (5.35) from (5.36) by notlng that for n > 2, there
are (") < ™! possible choices of (31,...,6,) € (N*)" such that d; + -+ d, = 2(n — 1) and
by using Lemma 5.10. Claim (i) now follows.

We now prove (ii). By Proposition 5.1 (ii), it suffices to show that for all x € AP, we have

2 [ @ [ @)oo, @) S TLXA (e = Onp, 0 6:37)

meP, eIl

Let us first estimate the contribution to the left-hand side of (5.37) coming from the trivial partition
IT = [p]. To this end, we define

~ 2 ~ A
(™ 1= [l (on) i, (o) [XE(n, )

for x,y € AP. Recalling (5.3) and arguing analogously as in (5.33)—(5.34), we deduce that

Tk, 02 1 [l [i
E Dy <o 2 S i )l ()

p)!
nzp (01,...,0n)EN" Te‘:‘sl """ on
O1+-+0n —2(n 1)

< (dwpir) - pF(dwn) [T 1€ (ws wy)]. (5.38)
{i,7}eT

We first integrate (5.38) with respect to ya, ..., y,. By using Lemma 5.9 with O = {2,3,...,p},C =
{p+1,...,n} in each term of (5.38), we deduce that

T, k,v2 ~
o [y ey (B Dy < L [ i ()

- 5
TS > o IHUH?NH( 5= 1Y) [ iy (o) T
n>pv2 Pl (61 dm)ENT  pegiiin

01+ +0n=2(n—1)

(5.39)
We now use (5.39), Lemma 5.7 (iv), the fact that d1,...,d, < n — 1, and argue analogously as for
(5.35) to deduce that
~ C Nge; el
VP [ dy (T ), , < = + ( ) ( v > . 5.40
[ o (E; Y = ol (5.40)

We use (5.40) to estimate the contribution to the left-hand side of (5.37) coming from IT = [p].
By arguing analogously as for (5.40) we deduce that for a general nonempty set & C [p]

el (n—1)2 o n-l
Joo Tl I a0 [5Gl <+ 5 (25) 7 (Glell) - )
L i€ i€g n=|€|v2

In the proof of (5.41), it is important that the last vertex over which we integrate corresponds to
an open path (which in the proof of (5.40) was w;). This is possible to do by construction. We
deduce (5.37) from (5.41) and claim (ii) follows. O
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We can now deduce Corollary 5.3.

Proof of Corollary 5.5. We first prove (i). By standard arguments, it suffices to show the following
two claims.

(1) For fixed v > 0, the quantity g, , ,2 j, is bounded in L € N*.
(2) For disjoint boxes A’, A” C Z% and A :== A’ UA”, we have

=v,k,02, A > =v,k,v2 N =v,k,02 A —uv,5,0,A _ —=v,k,0,A" —uv,K,0,A” (r 42)
= = == = .

= — — 5

Here, we slightly modify the notation to replace the L-dependence by dependence on the
domain.

For a more detailed explanation on why these conditions are sufficient, we refer the reader to
[16, Section 2.2], as well as [6,28]. We note that (1) follows immediately from Proposition 5.2
(i). In order to prove the inequality in (2), we note that by the nonnegativity of v that for
w=(wi,...,wn),w = (w1,...,wy), we have

1 n’
VV’VQ(w,w,)—VV’V( ) Vuu 522 l/V w“ 20. (5'43)

The arguments in [16, Section 2.2] allow us to deduce the inequality (5.42) from (5.43). The equality
follows by analogous arguments, since in this case equality holds in (5.43). Hence (i) follows. Claim
(ii) follows directly from the proof of Proposition 5.2 (ii). O

Before proving Proposition 5.5, we note two technical lemmas that we apply in the proof. We
first introduce some notation. Throughout the sequel, we denote by | - |1 the (periodic) Euclidean
norm on Ay. Furthermore, we fix ¢ > 0 small and let

DL .= {w € U QLT w(s) —w(t)|p > cL for some s,t € [O,T(w)]}. (5.44)
T>0

All of the estimates below depend on ¢, but we do not keep explicit track of this dependence.
The first lemma is a modification of Lemma 5.7 telling us that we get small contributions if we
integrate over long paths.

Lemma 5.11. Let w € QLT with T(w) € vN* and q € N be given. Then, the following estimates
hold.

(i) [ p"(d@) T(@)7|¢H(w, @) 1p2 (@) Swg T(w) 0]l e ",

(ii) Let Ly € N* with
Lo < L/4 (5.45)

be given. Then, for x € Ar,, we have
v [y [ a3 T@)6Hw @) 1pp (&) Seq T) ol e "
Lo
(iii) For Lo as in (5.45) and x € Ar,, we have

v / dy / AL (4D) T(@)7 1 (&) Spg ¢ CF. (5.46)
ALO ) (&
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The second lemma states that the contribution from two interacting paths which are far away
is small. In order to state this precisely, we need to introduce some notation. With ¢ > 0 as earlier,
we let V"L (w, &) denote the quantity given as in (1.14) with interaction potential given by

UCL<.1‘) = vL(ac) Ljp|,>er - (5.47)

Note that, by (1.34) and Assumption 1.5 (iii), we have that

. L
Jimn o] 5(n, = 0 (5.48)
In analogy with (5.4), we define
¢Hw, @) = exp(—V" " (w,@)/2) — 1. (5.49)

With this notation, we have the following lemma.

Lemma 5.12. With assumptions as in Lemma 5.11, the following estimates hold.
(i) [ p"(d2) T(@)? ¢ (w, @)] Sk T(W) [0 ]ler(ay) -
(i) v [y, Ay [ fiy o (d2) T(@)7 |65 (w, @)] Swg T(w) [0 ller(a,) for all w € Ag,.

We prove Lemmas 5.11 and 5.12 in Appendix D.3. We now have all the necessary tools to prove
Proposition 5.5.

Proof of Proposition 5.5. We first show claim (ii) and then explain how the proof can be modified
to obtain claim (i). By Proposition 5.2 (ii) and Corollary 5.3 (ii), we can consider fixed n € N* in
(5.3) and fixed 7 € Sy, in (5.6). Without loss of generality, we can assume that 7 is the identity
and reduce to proving that

[ Ak (o) i () )+ ) )

hm P
L—

=0, (5.50)
Lo,p

/M?Jl 1 (dwy) - /A‘Zi,mp(dwp) Moo(dwpﬂ) o p2(dwn) 0™ (w1, - - wn)

where we recall (1.38) and also consider (5.1)-(5.2) and (5.4) on the infinite lattice Z¢, with anal-
ogous definitions. In (5.50) and in the remainder of the proof, all of the convergence claims are
interpreted as being uniform in v € (0, 1/x].

Let us now prove (5.50). Throughout the sequel, we assume that L € N* satisfies (5.45) above.
Given such an L, we take L; € N* to be the smallest even integer

Li>L/2, (5.51)
and define

AL = {w e |J ool wt)e A, Ve [O,T(w)]}, Bl =) QT \ Ak (5.52)

T>0 T>0

We first show that for all k € {1,...,n}, we have

Jim o7 | [l (o) i, () () -+ (don) Ls (1) @ (@1, 0n)

Lo,p
(5.53)
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By Lemma 5.6, (5.53) follows if we show that

=0,

lim P
L—oo

/ﬂﬁl,ml(dwl) el () 1 (dwp) -+ p(deon) e (wr)  JT €5 (@i )
{ijYeT Lo.p

(5.54)
for a fixed T € T,,. We note that (5.54) follows by applying the triangle inequality together with
Lemmas 5.11 and 5.12. More precisely, we note that in (5.54), the nonzero contribution comes
from 1 € Ar,. For such x;, we recall that by (5.45) and (5.52), there exists a point z on wy, with
the property that |z — x1|p 2 L. In particular, by the triangle inequality, it follows that, for the
paths over which we are integrating in (5.54), at least one of the following cases occur with suitable
c> 1

~ n’
(1) There exists i € {1,...,n} such that w; € D¢, Here, we recall (5.44).

2) There exists {i,j} € T such that ¢(¥(w;,w;) = ¢&(wi,w;). In other words, the two-particle
j c j
interaction is given by (5.47).

We now prove (5.54) by arguing analogously as in the proof of Proposition 5.2 (ii). We just modify
the proof to keep track of cases (1) and (2) above. If (1) occurs, we apply Lemma 5.11 when
integrating w;. If (2) occurs, we apply Lemma 5.12 when integrating the path w; or w; (determined
by the algorithm from Lemma 5.54). In this case, we also recall (5.48) to note that the estimates
that we get from Lemma 5.12 tend to zero as L — oco. We hence deduce (5.53).

By arguing analogously as for (5.53), we get that for all k € {1,...,n},

=0.
Lo,p
(5.55)

Combining (5.52), (5.53), (5.55), and recalling (1.38), we deduce that (5.50) follows if we prove
that

Lhm VP /:uyl z1 (dwr) - Myp Tp (dwp) oo(dprrl) - > (dwy) 1pc (wi) 9™ (w1, ... swn)

LIE)I;O Z /Myl T (dwl) e ﬂgp@p (dwp) ML(dwp-i-l) e ,U,L(dwn) H 1AL (U.)k) SDL(wla s 7w'fl)
k=1
[ ) 3, () 1 () ) T] s (o) 6 en, )| =0,
k=1 e
(5.56)
By (5.1)—(5.2) and (5.52), we have that
AL (00) 140 (0) = 5, (0) Tar (@), pE(d0) Lan () = p%(dw) Lar (). (5.57)

In other words, the presence of the indicator functions 1 4z (w) erases the boundary effects. By
(5.57), we note that (5.56) follows if we prove that

lim P
L—oo

[ 5 () 5 () (i) () T] s ()
k=1

X " (Wi wn) — @ (w1, - wh)| =0. (5.58)

]
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Recalling the bound from Lemma 5.6 and the integration algorithm from the proof of Proposition
5.2, by the dominated convergence theorem, we deduce that (5.58) follows if we prove that

lim (w1, ... wn) = 0P (Wi, ..., Wn), (5.59)
L—oo
for fixed paths wy,...,w,. We note that by (1.34) and Assumption 1.5 (iii), it follows that
lim vX(z) = v(z) Voezd. (5.60)

L—oo

Using (5.60) and recalling (1.14), it follows that
lim V5 (w, @) = V7 (w, @) (5.61)

L—o0
for all paths w,@. Substituting (5.61) into (5.4), we deduce (5.59). By construction, the convergence
is uniform in v and Lg. Claim (ii) now follows.
We note that (i) follows by arguing as in the proof of (ii). Namely, we differentiate with respect
to k to obtain

agy,ﬁ,z/Q,L v 27 v o0.L
=— dz (O] + — dz (D7 . 5.62
Ok AL Ja, (T'y )g;;g AL Ja, (I'y )xw ( )
We analyse each of the terms in (5.62) separately. We fix ¢ > 0 small and let Ly, € N* be the
largest even integer

Lo. <L-L"°. (5.63)
By Proposition 5.2 (ii) and the observation that
AL\ A
im A\ AL
L—o0 ‘AL‘
we deduce that the first term in (5.62) is
v >
=—— dg (T F +or(1), 5.64
’AL| Aro. ( 1 )I@ L( ) ( )

where or,(1) denotes a quantity that converges to zero as L — oo uniformly in v. By an analogous
proof as in (i), we have that for all z € A,

V(FZ{,H,VQ’L)LQ: _ V(Fllj7ﬂ’l/2’oo)z7x + OL(l)a (565)

More precisely, we replace Lo (as in (5.45)) with Lo, as in (5.63). Furthermore, we replace L; as
in (5.51) with Ly . € N* the smallest even integer such that L; . > L — %Ls. We then deduce (5.65)

v,k,v2 00 v,k,v2 00

by arguing as for (i). Using (5.65) and noting that (I' Jox = (T'] )o,0 by translation
invariance, we have
‘AL0,5| v,k,v2,00 v,k 02,00
(5.64) = == 7 v (T )o.0 +oL(l) = —v(I}] )oo +or(1), (5.66)

where for the last equality we recalled the construction of Lg.. An identity analogous to (5.66)

with v = 0 holds for the second term in (5.62). In particular, we can rewrite (5.62) as
09y

Ok
We deduce (i) from (5.67) by integrating in x. O

= —p (DY) o+ vt or(1). (5.67)
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Let us recall a general fact about interchanging the order of limits, whose proof we omit.
Lemma 5.13. Suppose that p : N* x (0, 00) — C is a function that satisfies the following properties.

(1) There exists vy > 0 such that the limit

lim p(L,v) =: p(co, V), (5.68)

L—o0
exists uniformly in v € (0, ).
(2) For all L € N*, there exists p(L,0) such that

li_>m0 p(L,v) = p(L,0). (5.69)

Then, the following properties hold.
(i) p(00,0) :=limy_,o p(L,0) exists.
(i) With p(oc0,0) given as in (i), we have that lim,_o p(co,v) = p(00,0).
We now have the necessary tools to prove Theorem 1.6.

Proof of Theorem 1.6. We first prove claim (i). This follows from Theorem 1.2 (i), Proposition 5.5
(i), and Lemma 5.13 by taking p(L,v) = ¢g****L for v € (0,1/x] and p(L,0) = ¢g*F with vy = 1/k.

In order to prove claim (ii), we also apply a suitable modification of Lemma 5.13 where all of
the convergence is taken in the norm || - ||1,, given by (1.38). Namely, we first use Proposition
5.5 (ii) and Theorem 1.2 (ii) to note that assumptions (1) and (2) of Lemma 5.13 hold if we take
p(L,v) = vP I’;“’”Q’L, p(L,0) = F;le and if the convergence in (5.68)—(5.69) is interpreted with
respect to || - ||ryp- By Lemma 5.13 (i), we deduce that the limit limz_, 75 exists in || - ||,.p-
Note that, a priori this quantity depends on Lg (since the norm || - ||z, depends on Lg). However,
by recalling (1.37)—(1.38) and by construction, it follows that this limit is independent of L. We
conclude the result of claim (ii) from Lemma 5.13 (ii). O

Remark 5.14. In the noninteracting case v = 0, the measure p = p” given in (5.1) is a discrete-

time version of Lawler’s and Werner’s loop soup intensity measure [22], to which it converges as
e—nT

v — 0. Indeed, for v = 0 the measure p(dw) converges as v — 0 to {(dw) = [¢° dT &— W (dw),
which is precisely the intensity measure of the loop soup (a Poisson process with intensity &).

5.2. Infinite-volume limit of the specific relative Gibbs potential and reduced density
matrices II: the large-mass regime. In this subsection, we work in the large-mass regime.
Throughout, we assume that the interaction potential on Ay, is given by (1.34) for v as in Assump-
tion 1.7. We recall that we are considering the parameters kK = ko/v for fixed kg and A = 1 and

that the many-body Hamiltonian is given by (1.28).
Recalling the definition of V! (w) = V*!"L(w) with interaction v* given by (4.2), we define the

self-interaction )
VL () == PrbE(w) + - v*(0)T(w) 1p—o > 0. (5.70)
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Furthermore, we modify the definition of the measures (5.1)—(5.2) according to

—koT /v

pr(dw) == v > T

TevN*

,u,y »(dw) Z e rol/v Wﬁg(dw) eV W)/
TevN*

WET (dw) o~ VL (W)/2 ,

With v and R as in Assumption 1.7, we define v, v(?) : Z¢ — [0, 00] by
v =y 1. <R, v =y — o),
Note that, by Assumption 1.7 (i), we have that
0@ e itz
With notation as in (5.73), we define v o5+ A — [0, 00] by

oD (z) = 3 oDz +k), j=1,2.

ke(LZ)?

Throughout, we assume that
ko<1, v<I1.

(5.71)

(5.72)

(5.73)

(5.74)

(5.75)

(5.76)

With notation as in (5.71)—(5.73), and assuming (5.76), we note the following analogue of Lemma

5.7.

Lemma 5.15. Let w € QLT with T(w) € vN*, g € N, and x € Ap, be given. Then, the following

estimates hold.

(i) [t (d@) T(@)7 |¢H(w,@)| < +ECI‘(1+HU(2’H@)VH-

(i) Ja, dy [ iy (d®) T(@)7 |¢H(w, @) S fq(fz? (q+ DL+ [0 la) o

(iii) [ p*(d@) T(@)7 <

if ¢ € N*.

Here we recall the definition (5.4).

Proof. We first prove (i). We let V122 (w, &) be given as in (1.14), where we replace v = v’ by

L,(2)

v as given in (5.75) above. We define the set Z(w,v) as

I(w,v) = {d} € U QLT 3t e [0,T(w)] 3t €[0,T(@)], wt)=a(), t—te I/Z} .

>0

(5.77)

In other words @ € Z(w,v) if and only if w and @ intersect at times which are equal modulo vZ.

By Assumption 1.7, the construction of V112 (w, &) and (5.73), (5.77), we have

1CH (@, 0)| < 1z (@ @)+ 35 L2 (w,@).
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We now estimate the contribution to the left-hand side of (i) coming from each of the expressions
in the bound (5.78). For the first term, we use (5.70)—(5.71) to write

[ #H@) T@) Lz @) <v 3 e TPt [WhT (00) 17,0(@),
TevN*
which, recalling (5.77) is

<v Z e~ /v a-1 Z 1, c7(w) Z 1S<T/ dt

TevN* revN sevN

/A da =S (w(t +7) — z) LT (t+s) (x—w(t+r)). (5.79)

By using Lemma C.1 (i) and (iii), we note that (5.79) is

k0T v 5 Gl T(w)
< Y eI (W) < VT (w Z 71 < s g1 (5.80)
TeyN* Jj=1 ko

In order to obtain (5.80), we recalled (5.76) and used Lemma 5.8.
For the second term, we argue argue analogously as in (5.18)—(5.21) with v replaced by v (2

and deduce that
T (w)

[ @) 7@ w,5) £ T gl vt (5.81)
Ko
In order to deduce (5.81), we used the observation that
105 ey = 0Pz (5.82)

which follows from (5.75). Claim (i) then follows from (5.78), (5.80)—(5.81).
We now prove (ii). Let x € A be fixed. As in the proof of (i), we need to estimate the two
terms coming from (5.78). By (5.70), (5.72), the first term is

< Z e~oT/v 1q Z 1 cr(w) Z licr@ / dt/A dy /WLT (dD) Los(tr)=a(t+s)
L

TevN* revN sevN
T'(w)
S o r D (5.8)
Ko

In (5.83), we bounded the indicator function by 1 and argued as in (5.80). By analogous arguments
as in (5.22)—(5.25), and recalling (5.82), the second term coming from (5.78) is
T (w) _
S =z @+ D oP vt (5.84)
ko
Claim (ii) now follows from (5.78), (5.83)—(5.84).

We now prove (iii), we use (5.70)—(5.71) and argue analogously as in (5.26)—(5.27) to deduce
that

~

[ @y @;01)' AL,

Claim (iv) follows by analogous arguments. O

36



We can now deduce an analogue of Proposition 5.2.

Proposition 5.16. For ||v|[, sufficiently small depending on kg, we have the following bounds for
all L € N*.

(i) The specific relative Gibbs potential (1.35) satisfies gV ro/»1L = OrgJJofl,2 (1)-
(it) For p € N*, we have ||I‘”7"“0/”’17L||E;OQ, = O p Jlo],2 (1)-

Proof. The proof is analogous to that of Proposition 5.2. Instead of Lemma 5.7, we apply Lemma
5.15. We only need to note that the powers of v that we obtain by applying the estimates in
Lemma 5.15 cancel out. In order to do this, we note a general fact about trees. Let T € %,
with a distinguished root r be given. We recall that V(7)) denotes the set of vertices of 7. For
w € V(T), we denote by Q(w) the set of direct descendants of w. By definition, this is the set of
all w’" € V(7)) such that the unique path in 7 connecting w’ to r starts with the edge joining v’ to
w. By induction on the number of vertices of 7, we obtain that

Y. (A=1Qw)) =) (5.85)

weV(T)\{r}

Using (5.85), we deduce that, when applying Lemma 5.15 in the argument of the proof of Propo-
sition 5.2, the powers of v in the upper bound cancel out. The claim follows. O

Arguing analogously as for Corollary 5.3, we can use Proposition 5.16 to deduce the following
result.

Corollary 5.17. With assumptions as in Proposition 5.16, the following claims hold.

(i) The quantity

Vy”O/V717L —

lim g gVrolvilieo (5.86)

L—oo
exists.

(i) Let p € N* and be given. We can take L = oo in (5.6) and obtain an operator [WsRo/v,100 o
(24P which satisfies HF””QO/”J’OOHE?% = O/g7p,HUHZ1(1)'

With notation as in (5.44), we note the following analogue of Lemma 5.11 for given ¢ > 0 small.

Lemma 5.18. Let w € QLT with T(w) € vN* and g € N be given. Then, the following estimates
hold.

(i) [ n"(d2) T(@)7 |¢H(w, @) 1pp (@) Seg T(w) (1+ [0®|p) v~ e=CF.

(ii) Let Ly € N* as in (5.45) and x € AL, be given. Then, we have

|y [ (@) T@) |5 0,8)| 10p () S T@) (1 + o2 o) 11O
Lo

(iii) With Ly as in (i) and x € Ar,, we have

|y [ i d8) @) 10 (3) S T) e
Lo
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We also note an analogue of Lemma 5.12. Before stating the result, we need to modify some

of the notation. With ¢ > 0 as earlier, we let V('f’l’L’@) (w, @) denote the quantity given as in (1.14)

with interaction potential replaced by vCL’(2)(x) = v (2) 1j3|, >cr- Here, we recall (5.74)-(5.75)

to see that, similarly as in (5.48), we have limy,_, chL’(z)Hﬂ(AL) =0.
We modify (5.49) and let

(&P (w, ) = exp(=VPH P (w,@)) - 1. (5.87)
With this notation, we have the following lemma.
Lemma 5.19. With assumptions and notation as in Lemma 5.18, the following estimates hold.

(i) | (@) T@)7 165 (@, 0)] S T) [[08 Py, 17"

(ii) fn,, Ay ik, (42) T@)1 (5P (@,@)] Srg T@) 08P |y, v for all z € A,
We prove Lemmas 5.18 and 5.19 in Appendix D.4. Let us note an analogue of Proposition 5.5.
Proposition 5.20. With assumptions as in Proposition 5.16, the following claims hold.
(i) The convergence in (5.86) holds uniformly in v < 1.

(i) Let p € N* and Lo € N* be given. Let I';S,, be as in Corollary 5.17 (ii). Then, we have

prro/vloe = iy rse/vLL (5.88)
L—o0
The convergence in (5.88) holds in || - ||, given by (1.38) and is uniform in v < 1 and

Ly € N*.

Proof of Proposition 5.20. The proof is similar to that of Proposition 5.5. We just comment on the
main differences. As in Proposition 5.5, the proof of (ii) allows us to obtain claim (i). In order to
prove claim (ii), we note that by Proposition 5.16 (ii), Corollary 5.17 (ii), and arguing as for (5.50),
it suffices to prove

i | [ 7 (o), () e () - () o 0)

L—oo

=0, (5.89)
Lo,p

[ 8 s () 15, (o) () -1 () ¢ (1, 0n)

uniformly in ¥ < 1 and Ly. Note that in (5.89), the path measures are given by (5.71)—(5.72).
Recalling (5.52), and arguing analogously as in (5.53)—(5.54), we have that for all k € {1,...,n},

P H/ iy (deor) - il () (dwpyr) - i (deon) L (wn) 9P (w1, wa) | =0,
o0 Lo,p
(5.90)
which follows from the observation that
Jim | [, ()i () (i) - i) e ) [T Pl =0,
{ijteT Lo.p
(5.91)
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for a fixed 7 € %,,. The proof of (5.91) is analogous to that of (5.54), except that we now use
Lemmas 5.18-5.19 instead of Lemmas 5.11-5.12. Similarly, we have that for all k € {1,...,n},

=0.

L—oo Lo,p

i | 755 )5, ) ) ) i () - 0)

(5.92)
By using (5.90), (5.92), and arguing as in the proof of Proposition 5.5, the claim follows if we show

i | 8 (o) 8, () () -+ (o) T L) 9%, n)

L—oo

k=1
[ AT ) 52 () () () T Lo o) (@, n)| =0
k=1 tgerl
(5.93)

By arguing as in the proof of (5.56), we note that (5.93) follows from (5.60) with v as in Assumption
1.7 and v¥ as in (1.34). Note that (5.60) indeed holds by Assumption 1.7 (i). O

We now have the necessary tools to prove Theorem 1.8.

Proof of Theorem 1.8. The proof is similar to that of Theorem 1.6. We combine Theorem 1.4,
Proposition 5.20 and Lemma 5.13. O

A. Derivation of the Symanzik and Ginibre loop representations

In this appendix we derive the Symanzik and Ginibre loop representations of the classical field
theory and the interacting Bose gas, respectively. We shall use the following standard tool.

Lemma A.1 (Feynman-Kac formula). For any V : A — C and t > 0 we have
HA)2-V _ ¢ — [T ds V(w(s))
(e ))yﬂr = /Wyyx(dw)e Jo :

A.1. The Symanzik representation: proofs of Proposition 2.1 and Corollary 2.2. In
this appendix, we give give the proof of Proposition 2.1. Let us first comment on the main proof
strategy. Our starting point is the observation that the weight

o3 [ dw [ dylo(@) P via—y) o) (A1)

occurring in (1.10) and (1.11) is a function of |¢|> = (|¢(u)|*)uca. We rewrite (A.1) using the
Hubbard-Stratonovich formula (see (A.3) below). As a result, we obtain integrals over a field
o : A — R. After performing a Gaussian integration in the field ¢, we can resum the o integration
to obtain the result. For similar arguments based on the Hubbard-Stratonovich formula, we refer
the reader to [10, Sections 3-4]. Let us note that arguments based on rewriting (A.1) using the
Fourier transform were applied in [3, Section 2|, [4, Section 2], and [7, Section 5]. We now prove
Proposition 2.1.
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Proof of Proposition 2.1. Let us first prove claim (i). We identify v : A — R with a positive
quadratic form f +— (f,vf) := [dz [dy f(z)v(z —y) f(y). Note that the positivity of the quadratic
form follows since v is of positive type. Let p, be a Gaussian measure on R with covariance v, i.e.

[ nutdn)o@ aty) = viw—y). (A2)
The Hubbard-Stratonovich formula then states that
/Hv(dg) i) — g=5(fwf) (A.3)

which follows from Lemma B.1. By (A.3) with f = |¢|?> we can rewrite (1.10) as

z = / f(—A/24r)-1 (dO) ( / jo(do) et/ d“(I)W(I)P)’ (A4)
which by using Fubini’s theorem and evaluating a Gaussian integral equals
[ o) [ apinr(do) e deatolewr
= /,uv(da) det(—A/2+f€—iU)71 det(—A/2+ k) . (A.5)
We note that
det(—A/2+k—i0) " det(—A/24 k) = exp{—Trlog(—A/Q—i—m—ia) +Trlog(—A/2+f£)} , (A.6)

since the arguments of the logarithm have strictly positive real part.
We note that for all a,b € C of strictly positive real part we have

oo dt
loga — logh = —/ " (e7'e — 7). (A.7)
0
A direct calculation yields
loga —lo b——/oodt< ! —1) (A.8)
sa—iosr =" | t+a t+b)’ '

We deduce (A.7) from (A.8) by noting that for ¢ € C with Rec > 0 and ¢ > 0 we have tJ%C =

Joods e~*(+¢) and by using Fubini’s theorem. By using (A.7) followed by Lemma A.1, the fact
that Tr A = [du A, and (1.2), we can write

oo T . rT
—Trlog(—A/2+k—ic) +Trlog(—A/2+ k) :/0 dT/WT(dw) e T (elfo dto(w(t”—l). (A.9)

From (A.4)-(A.9), we conclude

o] T . rT
zd = /,uv(da) exp{/ dTe_“T/WT(dw) (el Jo dtotw®) _ 1> } (A.10)
0
In what follows, we fix ¢ > 0 and rewrite for fixed o the expression (A.9) as
Jree(@eyel o e gy [FCL e [ () (eifon“’(““” - 1) L (A
0
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where we recall (2.2) and (2.4). We now show that the third term in (A.11) is €|A|O(||o]|c0)-
Indeed, we obtain this by noting that

. rT
e Jo H7CO) 1] < o

and using (3.4) combined with Lemma C.1 (i). In particular, we can rewrite (A.11) as
. rT
/Lclvs(dw) oo @) 4 e A IO(flo]|o0) (A.12)

We now need to exponentiate and integrate in o. Before doing so, we analyse (A.12) more closely.
We first note that, by (2.4) we have

. T
Re ( / L (dw) ' Jo dtv(w(t”) +K°<0. (A.13)
Hence, (A.13) implies that
i [T dto(w(t
exp{ / L (dw) e Jo dote®) | K} =0(1), (A.14)

uniformly in e,k >0, A and 0 : A — R.
We now analyse the third (i.e. the error) term in (A.12). Given C' > 0 we show that

/uy(da) eCellelle 51 as e —0. (A.15)

We note that (A.15) follows from the dominated convergence theorem provided that we show that
for C' > 0 we have [ p,(do)eClolle < 00, We prove this by writing

/,uv(da) eClollee < /dx /uv(da) eClo@l (A.16)

Note that in (A.16), we used the fact that p, is a positive measure. We expand the exponential,
and use the Cauchy-Schwarz inequality, Wick’s theorem (Lemma B.1), and (A.2) to deduce

00 i N\ 1/2 00 i i) '
/,uv(da) eClol@)l < > % (/ y(do) U(a:)2’> =3 % (1?2); v(0)/? < o0, (A.17)
i=0 k=0 '

as desired.
We now combine (A.10)-(A.11), (A.12), (A.14)-(A.15), and apply an L*(duy) — LY(dpy)
Hélder’s inequality in o, to deduce Z° = lim._,g Z°¢, where

5 i [T dto(w(t
zZele .= /#U(da) exp{/LCl’g(dw) oo dtolw®) | Ka}. (A.18)
What remains, therefore, is to show that
Zele = zele (A.19)

By expanding the exponential and using Fubini’s theorem we have

~ > 1 e cle iS" Ti o(w; €
Zebe — Z 1 /}Ld’c (dwy) - - - L (dwy,) (/ py(do) e Yoiia ot Z(t))> exp(K°). (A.20)
n=0 """
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The o-integration can be performed in (A.20) by using the Hubbard-Stratonovich formula (A.3),
noting that >1* ; fOTZ dto(wi(t)) = (f,o) with f(x):=>1", foT’ dt d(x —w;(t)). We therefore obtain
(A.19) as claimed, and we deduce (i).

The proof of claim (ii) is similar to that of (i). We just outline the main differences. We first
apply (A.3) with f = |¢[? in (1.11) followed by Fubini’s theorem to deduce that

1 . - _
Ty = zat [ 10040) [ a1 @0) P79 Glyn) - G(yp) dlan) -+ Blay).  (A21)
By (B.l) and Lemma B.3, we can rewrite (A.21) as

1 .1
ZCI W; //.Lv dO' (A/2—|—/~§;—10‘>yw(i>7zi det(—A/Q + K — 10') det(—A/Q + H) . (A22)

Furthermore we have for all z,y € A

1 o]
_ T T(A/Q—H-‘rld’ / T —/{T/ lf dt o (w(t
(—A/Q—i-ﬁ:—i(f)y@ /0 d (e dT' e W )
(A.23)

where in the last equality we used Lemma A.1. We now combine (A.22) and (A.23) to deduce that

c 1 — K iy P T dt o(w;
(Fpl)xo’ = ? Z ‘/(0 e dTe i /Wﬂyx dw) (/ Mv(da)e Zg:l fo rol J(t))>
TES) [

x det(—A/2+ k —io) " det(~A/2+ k). (A.24)

We rewrite the factor of det(—A/2 + k — ia)_1 det(—A/2 + k) as in (A.6)—(A.9), recall (A.12),
(A.14)—(A.15), and proceed analogously as in the remainder of the proof of Proposition 2.1 (i) to
rewrite (A.24) as

(I‘;l)x,y = lim(f‘;l’s)x,y, (A.25)

e—0
where for € > 0, we let

(Fcls ey ZC] Z /0 ooy —/~c|T| /Wwyx dw Z /]Lcle Lcls(dwn)

TESp

% exp(—Vd(wd:)) </ (da) f lf o(w )dt+1zl lf o(w;(t) )dt> GXP(KE) (A.QG)

We can now perform the o integration in (A.26) analogously as in (A.19)—(A.20). Note that we
now apply (A.3) with f = >0_, fOTj dt6(z—wj(t))+> iy fOTZ dt d(z—w;(t)). In particular, recalling
(2.5) we obtain that (fz‘;hg)x,y = (1“;;1"5),@y and we deduce the claim (ii) from (A.25). O

We also give the proof of Corollary 2.2.

Proof of Corollary 2.2. We recall (1.9), and argue as in (A.21)—(A.23) with v replaced by A\v to
rewrite (2.7) as

~ 1
Felhy o / _H|T|/ d / d b,(A)2—K)o)
(T ey mlAl det(—A/2 + k)1 Z oo)p W”yx @ H o(u

ueEN

X /,U,)\U(d(f) exp [<1|¢|2 —|—ij§:1 T(,)(wj),aﬂ . (A27)
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n (A.27), given u € A and a path w, 7,(w) denotes the local time, i.e. the amount of time that w
spends at u. We use (A.3) with

f@) =lo@) + D 7a(wj)
Jj=1

to obtain that (f‘gl’k)x,y = Yres, J,00p AT e HITl fWﬂyx(dw) S 1—aj24m)-1(dp) e 3U2h) | from
where we deduce (2.8) since (f,vf) > 0 because v is of positive type. O

A.2. The Ginibre representation: proof of Proposition 2.3.

Proof of Proposition 2.3. We recall (1.18) and apply the Feynman-Kac formula, Lemma A.1 to
obtain that
—HYA vl v,
(1 )y = [ WL (dw) exp(— V" w)), (A.28)
where we write 1 = 1,, and recall (1.30) (in the sequel we drop the subscript n in (1.30)). Recalling
(1.1), we have

(e~ PF), & ~ Z )y x - (A.29)
" wEeSK
We use (A.28)—(A.29) in (1.19) and obtain

e~ KV (p+n)

(T )xy = Hm,\z > /ndu/WV (yw),xu(dw) exp(— Vi (w)) - (A.30)

TESpin

Now we perform the first step of the loop integration. We distinguish between two types of
paths. The first type are open paths with endpoints z; and y; for j, ;' € {1,...,p}. The internal
points in these open paths are of the form u; for some 1 < j < n. The second type are closed
paths, all of whose vertices are of the form u; for some 1 < j < n. Let us denote by r the number
of vertices contained in all of the closed paths. We give an example in Figure A.1 below. The first
step of the loop integration consists in integrating over the internal vertices of the open paths.

In the sequel, we write k; for the total number of edges in the open path with one endpoint z;
for i =1,...,p. Hence, in the example given in Figure A.1 we have k1 = 4. We rewrite (A.30) as

(55 Y S S (k- )(") (n—r)!
ke (N*)P n=07=0 r
1 —RV T 1% ~,
x o) ) /Wwyx (dew) / du ZS WL L (d@) exp(—V* (w@)). (A.31)
(IS [oS]

n (A.31), we chose for fixed 7 the (') elements of the form w; that are taken as vertices of closed
paths. For fixed k, the remaining n — r u’s can be distributed among the open paths in (n — r)!
different ways. Furthermore, we used the presence of the delta function to deduce that n+p = |k|+r
and to then perform the sum in n. In particular, we conclude that

1 _
(F;H’)\)x’y = TR A Z Z ’{‘T‘ Wgy X(dw)
- Te(WN*)P T€S)

o0 —RKRUT

/Td . /Wauudw exp(=V"MNw@)).  (A.32)
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Figure A.1. In this example, we have n = 5 and r = 2. The open path with endpoint x; has y- as its other
endpoint. It has three internal points w1, us, u3. The points uy, us belong to a closed path of length two.

Next, we perform the second step of the loop integration, by decomposing ¢ into cycles. For
a permutation o and k£ € N* denote by ag(c) the number of cycles of length k in 0. Write
a(o) = (a1(0),az(0),...) € NV, For a = (ay,as,...) € NV we define |a| := 372, ax (number of
cycles) and r(a) := Y p=; kay (number of elements in all cycles). Thus, if o € S, then r(a(o)) = r.
Note that the number of permutations o satisfying a(o) = a is equal to
r(a)!
132 (k% ay!)

For w € QT we let

Evr (w Z / du ) /Wﬁu (d@) exp(— V"M wa@))

- Y I

kakak / v@) (4G)e @) exp(— VPN wdd)) | (A.33)
acNN* k=1

where £(a) = (f1(a),...,{a(a)) € (N*)l2l is an (arbitrary) family of cycle lengths corresponding

to a, i.e. satisfying Zlﬂl 1y, (a)=k = ay, for all k € N*. Here, we recall the notation (3.2). Recalling
(1.13) and using the multinomial identity in (A.33), we find (writing n = |a| for the number of
cycles) that

~ i |
E”’””\(w) = Z -] /]L”’“(dd)l) - LYR(doy,) exp(—V"’A(w&:)) = E””"’)‘(w), (A.34)
=0 '

where we recall the notation from (2.10). We recall (1.17) and use the same arguments as above
to obtain

A (D) = EVRA (A.35)
The identity (1.20) now follows by substituting (A.34)—(A.35) into (A.32). The proof of (2.9)
is analogous. O
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B. Remarks on Gaussian integrals

We collect several standard facts about Gaussian integrals.

Lemma B.1. Let C > 0 be a positive real n xn matriz. We define the Gaussian probability measure
on R™ with covariance C through

1 1 1
dx) 1= e 2T N 4x.
pe(dx) = e © *

It has Fourier transform given by [pn pc(dx) elfax) — g=3(aCa) for alla € R™.

On C", we denote by (z,w) = Y, Z;w; the complex inner product and by dz the Lebesgue
measure.

Lemma B.2. Let C be a complex n x n matriz with ReC = (C +C*)/2 > 0. Then we have
dze #€7'% = 2" et C .
(Cn
Hence, for C a complex n X n matrix with ReC > 0, let us define the Gaussian probability
measure on C" with covariance C as

1
" det C

pc(dz) == e (2C72) 4y (B.1)

Lemma B.3. Let C be a complexr n x n matriz with ReC > 0 and let uc be given as in (B 1). For
sy ip J1s - Jp € {1, ..o n}, we have [ca pe(dz) Zj, -+ 25, 20+ 2y, = Eﬂ'eS Hk 1 %,Jw(k)

C. The heat kernel on the lattice

We note several useful estimates for the heat kernel ¢! on the finite lattice A7, and on the infinite
lattice Z.

Lemma C.1. (i) 0 <¢bi(z) <1
(ii) Yt(x) = §(x) + O(t). Here & denotes the Kronecker delta function on A .
(i) [y, dzpPt(z) = 1

For the following estimates, we use Fourier analysis. We denote the dual lattice by A7 : =2 TAL.
The heat kernel ™! on Ay can be written as

d
wL t( Ld Z ot elﬁx Aﬁ = (d — Zco3€j> .
£eAt Jj=1

For L = oo, we have
1 .
00,t —tAe Li€-x
V) = G /[_M)d de e~the i€ (C.1)

Lemma C.2. The following estimates hold.
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(i) There exist constants c1,ca > 0 with ca depending on d such that for every § € (0,1), and
x,y €N and t > 0, we have

woo,t<m) _ O(eclté e—cyﬂ:{;\) ) (C2)
(i) Given L € N*, x € Ar, and t > 0, we have
wL’t(l‘) _ Od<(1S eclté 6—025|m|L> ’ (03)

where c1,c2 >0 and 6 € (0,1) are as in part (i).

Proof. We first prove (i). We can assume without loss of generality, that |z1| = maxi<i<q|z;i|. In
particular, we have that |zi| > %M We then rewrite (C.1) as

™ ™ d . xd T )
woo’t(SU) _ 1 / s - - / dé, e—t [(d—l)—z:j:2 cos(gj)] ol ijz &z / dg e—t[l—cos(ﬁl)] IRISES

(2m)d
(C.4)
By a contour deformation, we can rewrite the &; integral in (C.4) as

/ T dg, e~ Hli—cos(&r£i0)] gi(aio)m (C.5)

where the sign is taken to be + if z;1 > 0 and — otherwise. Therefore, since cos(§; +1i6) — 1 < 9,
we deduce that the expression in (C.5) is

Slz]

= O(eCt‘S e_‘s‘“‘) = O(eCt eﬁ> . (C.6)

Substituting (C.5)—(C.6) into (C.4), we deduce (i). In order to show (ii), we note that, by periodicity
we have for x € A,
V@) = Y vt k). (©7)

ke(LZ)?

Using (C.2) for each term on the right-hand side of (C.7), and considering Riemann sums, we
deduce (C.3). O

D. Proofs of auxiliary claims from Section 5

D.1. Kruskal’s algorithm and proof of Lemma 5.6. In this subsection, we give an outline
of Kruskal’s algorithm, which we then use to prove Lemma 5.6. Kruskal’s algorithm [21] defines a
map K : 85 — T, with the property that C(G) C G is a spanning tree of G € & . For completeness,
let us briefly recall the construction of the map K. We first order all the edges of the complete
graph on n vertices according to an arbitrary (strict) linear order <. Given G € &S, we define the
following sequence (Fy) = (Fr(G)) of forests on n vertices.

(i) fo = @

(ii) Let k € N be given. We find the smallest edge ex11 € G\ Fj with the property that Fr,U{eg+1}
contains no cycles, in which case we let Fj11 := Fr U {egt1}. If no such ey exists, we let
Fi+1 := Fi, and we terminate the procedure.
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Given G € &, there exists k € N such that the above procedure terminates at the k-th step. We
then define K(G) := Fj. We note the following observation about the preimage of any tree under
the Kruskal map.

Lemma D.1. Let T € T, be given. Then there exists M(T) € & containing T such that
KN T)={Ge&, TcGcMT))}.

Proof. We let
M(T) := U G. (D.1)
Gese, K(G)=T

We obtain that (D.1) satisfies the wanted properties if we show that the following three claims
hold.

(i) K(T)="T.
(ii) Let G1,G2 € B¢ be such that (G1) = K(G2) = T. Then K(G1 UG2) =T.
(iii) Let Gi,G2 € &S be such that T C Go C Gy and K(G1) =T . Then K(G2) =T.

Claims (i) and (iii) follow immediately from the construction of the Kruskal algorithm. We now
prove claim (ii). We argue by contradiction. Assume that K(G; U Gs) = T for some T’ € T, with
T’ # T. In particular, there exists m € N such that

Fm(G1 U Ga) # Fn(G1) = Fin(Ga) . (D.2)
Note that m > 2 since F1(Gy U Ga) = Fi1(G1) = Fi1(G2) consists of the smallest edge in 7. In
particular, we have that
Fm-1(G1UG2) = Fre1(G1) = Frn—1(G2) . (D.3)
By construction
Fim(G1UG2) = Frm1(G1 U G2) U {e} (D.4)

for some edge e € Gy U Gy. If e € Gy, then by the construction of the Kruskal algorithm, as well
as (D.3)—-(D.4), we get that F,(G1) = Fm—1(G1) U{e} = Fn(G1 U Ga), which contradicts (D.2).
Analogously, we obtain a contradiction if e € Ga. Claim (ii) then follows. O

We now have the necessary tools to prove Lemma 5.6.

Proof of Lemma 5.6. We show the claim by applying Kruskal’s algorithm in (5.4) and by resum-
ming the contributions of edges that do not belong to the thus obtained spanning trees. Recalling
(5.4), we have that

@L(wl,...,wn):% Z Z H {L(wi,wj)

ST gEIC_I(T) {'Lv]}eg
1 VAL (s
— 3 I ey X I (o)
T TETN {i,5}ET GeK=H(T) {i.i}eG\T
1 _ UL (s s
= Yo I Hwiwy)e Ytigyemerng VO @iss) /2. (D.5)
T TeXn {i5}eT

Note that in the last line we applied Lemma D.1. The claim follows from (D.5) by recalling
(3.1). O
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Remark D.2. A similar method to bound the Ursell function has been applied in a more general
context in [2, Theorem 3.1].

D.2. Proof of Lemma 5.8. In this subsection, we prove Lemma 5.8.

Proof of Lemma 5.8. Let us first consider the case when ¢ > 1. We estimate the expression on the
left-hand side of (5.16) by analysing Riemann sums. We note that the function f(t) = e "4 is
increasing on [0, {] and decreasing on [{,00). We choose £y € N* such that fov < 1 < ({o+ 1)v.
By construction of £y, we have that

. - oo |
v Z e " T TT 4y Z e " T < / dte "1 = 3+1 . (D.6)
. . 0 K
TevN* TevN*
Tg(éo—l)l/ T}(fo—‘y—?)u

We now show that the bound in (D.6) also holds for the terms with ¢ € {{y, ¢y + 1}. We note that

for £ € {lp, 0y + 1} , ,
e e Sel, (W)L <q : 1> <e (Z) . (D.7)

Using (D.7), applying Stirling’s formula, and recalling (5.10), we deduce indeed that v e™* (1£)? <
Hf—il. For ¢ = 0, we also get the bound (5.16), but the proof is simplified since the function
f(t) = e " is decreasing on [0, 00) and we can estimate the Riemann sum by the integral. O

D.3. Proofs of Lemmas 5.11 and 5.12. In this subsection, we prove Lemmas 5.11 and 5.12,
which were used in the proof of Proposition 5.5.

Proof of Lemma 5.11. The proof is similar to that of Lemma 5.7. We just outline the main differ-
ences. We first prove (i). Recalling (5.44) and arguing analogously as in (5.18)—(5.20), we reduce
to estimating

dz vl (y — 2) / WET (42) 1p1 (@), (D.8)
AL

for fixed T € vN* and y € Ay. Here we used that, with notation as in (5.19)-(5.20), we have
O @ Wy €DE —= Gy p@ € DE. (D.9)

In (D.9), given wy € QLT e € QLTw2) | we define their concatenation wy @ wy € QLT (@W+T(w2)
by
w1 (t) if 0 <t < T(wl)

wy @ wa(t) = {wg(t —T(w1)) fT(w) <t <T(wr)+T(wa).

We now integrate over all possible pairs of points (wy,ws) € AQL with |w; — wa|r = cL and all
possible times at which the path @ reaches these points (assuming without loss of generality that
it reaches wy before wq) to obtain

T T
(D.8) < dzol(y — 2) / dtq / dts / dwq / dwa Ly, —y |, >l PP (wy — 2)
Ar 0 t1 Ap AL

x Lt (wy —wy) BT (2 —wy) . (D.10)

We estimate .
< enT/Q e—Cl-cL ’ (Dll)

~

Y (wy — wn)
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which follows from Lemma C.2 (ii) since to — t; < T. We then integrate in w; using ¥™*(w; — 2),
in wo using Y (2 — ws), in z using v’ (y — 2), and finally in t1, ¢, to deduce that

(D.10) < T2 eT/2 0= CkL || . (D.12)

Here, we used (5.5) and Lemma C.1 (iii). We deduce claim (i) from (D.12) by arguing analogously
as in the proof of Lemma 5.7 (i).

We now prove (ii). Let us consider fixed T € vN*, r,s € vN with r < T'(w),s < T, and t € [0, ].
Instead of (5.23), we need to estimate

/ dy/WLT (@) o* ((t + 1) — (t + ) 1pr (@), (D.13)
Arg ¢
which is
/ dwl/ dwg/ dy/WLwa (w(t—}—r)—(Ij(t—l—s))1‘w1_w2|L>cL1w1,w2€[@]. (D.14)
Ap Arp Ar,

In (D.14), we use the shorthand wy,wy € [@] to denote that there exist t,to € [0,7] such that
O(t1) = wi,w(t2) = wa. We assume without loss of generality that ¢; < ta. We need to consider
several cases depending on the relative size of t1,ty with respect to ¢ + s.

Case 1: t; <ty <t+ s. The contribution to (D.14) from this case is

t+s t+s
/ dy / dtl / dtZ / dwl / de dz 1|w1 ’w2|L20L @Z’ ' 1( - ZL‘)
ALO 0 Ar Ap Ap

s L2 (qpy — g ) BT () BT () — 1)y Lwt+r)—2). (D.15)
In (D.15), we estimate ¢">~"1 (wy — w;) as in (D.11). We then integrate in w; by ¢%" (w; — z),
in wy by Pl (2 —wy), in y by LT +9)(y — 2), and in 2 by v*(w(t +7) — 2). Using (5.5),
Lemma C.1 (iii), and integrating in ¢1, t2, we get that
(D.15) < T2 T/2 =CkL |1y|| 1 | (D.16)
Case 2: t; <t+ s < ta. The contribution to (D.14) from this case is

t+s T
/ dy / dtl / dtz / dw1 / dIUQ dz 1|w1—w2|L>CL wL’tl (w1 — J})
AL, 0 t+s Ar Ar Ar
x It Th () wL’tQ_(t+5)(w2 — 2) BTt (y — ) 0T (wt+r)—2). (D.17)

By using the triangle inequality, it suffices to consider two cases when estimating (D.17).
Case 2A: |wy — z|p > cL/2. In this case, we estimate Ppltts=h(z —w;) as in (D.11). We then
integrate in y by ¥»7T %2 (y — wy), in wy by LM (w; — x), in wy by L= (wy — 2), in z by
vl (w(t+ 1) — 2) and argue as before to get the same upper bound as in (D.16). Here, we also used
Lemma C.1 (iii) and (5.5).
Case 2B: |wy — 2|, > cL/2. In this case, we use Lemma C.2 (ii) to estimate

Ql)L,tg—(t-i-s) (w2 o Z) < eHT/Q e—CH\wg—z|L _ (D.18)
We first integrate in y using LZJL’T_tQ (y — wy), then in wy using 2=+ (wy — 2) together with
(D.18) and the assumption that |wy — z|r > ¢L/2, in w; using 5" (wy — 2) YpLts=h(z —w) <
Yt (wy — ) (the last inequality follows from Lemma C.1 (i)), and in z by v*(w(t +7) — 2). In

particular, we deduce that )
(D.17) S T2 T2 Okl jy]| . (D.19)
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Case 3: t+ s < t; < ty. The contribution to (D.14) from this case is

T T
/ dy dty / dto / dw, / dwo dz 1|w17w2|L>cL ¢L’t+s(2 — .’L‘)
ALO t+s t1 Ap Ap Ap
x =) () — 2) PP (g — wy) T2 (y — wy) WF (w(t+7r)—2). (D.20)
We use Lemma C.2 (ii) to estimate
wL,tQ—tl (’U)Q _ wl) IiT/Q —CH‘TUQ w1|L ) (D21)

In (D.20), we first integrate in y by using 97~ (y — ws), then in wo by using Y27 (wy — wy)
together with (D.21) and the assumption that |wy —wa|r > ¢L, in w; by using Pl —(t+s) (w1 — 2),
and in z by using v¥ (w(t + 1) — 2) LU=+ (wy — 2) < VL (w(t+7) — 2). In particular, we deduce
that .

(D.20) < T2er1/2 7Okl y]|, . (D.22)

Combining (D.16), (D.19), and (D.22) we deduce that
(D.13) < T2 eT/2 0 CkL ||| 0 . (D.23)

We now deduce claim (ii) from (D.23) by arguing analogously as in the proof Lemma 5.7 (ii).
In order to prove (iii), we argue similarly as in (5.28) and note that that left-hand side of (5.46)
is
Sv Y e T Tq/ dy/WLT d@) 1pr (@) . (D.24)
Ar, ¢
TevN*

We note that, for fixed T' € vN*,

/ dy/wgf ) 1z (@) </ dy/ dtl/ dtg/ dwl/ dws Ljuyy )y el
Ar, Ar, t Ar

thl (wl o :IZ') wL,tQ t1 (w2 _ wl) wluT to (y o ,w2) S T2 enT/Q e—CIiL ) (D25)

In order to obtain the last estimate in (D.25), we used Lemma C.1 (iii) to integrate in y by
P T =02 (y —wsy), in wy by Y274 (wy — wy), and in wy by ! (w — x). Substituting (D.25) into
(D.24), we deduce claim (iii) as in the proof of Lemma 5.7 (iv). O

Proof of Lemma 5.12. By recalling (5.49) and arguing analogously as in the proof of Lemma 5.7
(i) and (ii), we deduce the following estimates.

1) [ pk(de) T(@)7 ¢ (w,@)] S met a lvE e,

(2) fuy, W J A0 (02) T@) |G, 0 S T (q+ D! [0l for all = € g,

The claim now follows. O
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D.4. Proofs of Lemmas 5.18 and 5.19. In this subsection, we prove Lemmas 5.18 and 5.19.

Proof of Lemma 5.18. The proof is similar to that of Lemma 5.11. The main difference is that we
need to analyse the case when there is a hard core. Let us first prove (i). We estimate the two
terms that come from (5.78). For the first term, we use (5.70)—(5.71) and estimate

[ 1H08) T@) L@ oy @) < v 3 et Tt [T 3 10 3 1

TevN* revN sevN
/A dw A dws 1|w1—w2|L>CL /WLT(d‘D) 1w(t+r):w(t+s) 1w1,w26[£z] . (D'26)
L L

In the last line of (D.26), we use the same shorthand as in (D.14). We write w; = @(t;),j = 1,2,
where 0 < t1 < to < T, without loss of generality. As in the proof of Lemma 5.11, we need to
consider three cases depending on the relative sizes of t1,ts,t + s.

Case 1: t; <tz <t+ s. In this case, the last line of (D.26) is

t+s t+s
/ dﬂ?/ dw1 dUJQ 1|w17w2\L>cL / dtl / dtg wL’tl (w1 — .73) ¢L’t27tl (UJQ — wl)
Ar Ar Ar 0

t1
. .

x DT (ot 4 7) —wa) PP T (2 —w(t 4 7)) ST2e s e CL, (D27)
where we use Lemma C.2 (ii) to estimate ¢*2=% (wy—w;). We then use Lemma C.1 (iii) to integrate
in wy by YN (w — x), in wy by L= (w(t + 1) — wy), and in x by LT =) (2 — w(t 4 7).
Case 2: t; <t+ s < ty. In this case, the last line of (D.26) is

t+s T
/ dl’/ dwl dwg 1|w17w2\L>CL / dtl dt2 wlutl (wl — :I}) wLy(tJrS)ftl (w(t + T) — 'wl)
A~ Ap Ar 0 t+s
- ~o kT
s plt2 =) (ot 4 1)) WP T2 (2 — w) S T2 B e O, (D.28)

In order to deduce (D.28), we considered two subcases, which follow by the triangle inequality.

Case 2A: |w(t +r) —wi|r > cL/2. Here, we first use Lemma C.1 (i) and Lemma C.2 (ii) to
integrate in wy by Y (wy — ) YL (Wt 4+ r) —wy) < PO (W(t + 1) —w;). Then, we
use Lemma C.1 (iii) to integrate in wy by ¥™#2=+5) (wy — w(t 4 7)) and in = by -T2 (x — wy).
The result in the second subcase is obtained analogously.

Case 2B: |wy—w(t+r)|L > cL/2. Here, we first use Lemma C.1 (i) and Lemma C.1 (iii) to integrate
in z by 5" (wy — ) P Ttz (x —ws) < P Ttz (z —wsg). We then use Lemma C.1 (iii) and Lemma
C.2 (i) to integrate in w; by ¥+ =0(w(t + r) — w;) and in wy by 2=+ (wy — w(t 4 7))
respectively.

Case 3: t+ s <t1 < ta. We note that the last line of (D.26) is

T T
[odo [ dwn [ dwnt e [t [ At ) ) 6P (i)
AL AL AL t+s t1
x Bt (g — ) d)L’T_tQ (z —wy) S T? o5 oL, (D.29)

In order to obtain (D.29), we estimate Pt (w(t + 1) — x) by using Lemma C.1 (i). We then
integrate in = by YT~ (z — wy), in wy by Y274 (wy — w;) which we previously estimate as in

o1



(D.21), and in w; by 5=+ (w) — w(t 4 r)). For the last two integrations, we use Lemma C.1
(ii).
Using (D.27)—(D.29), we deduce that

+2 —op < Tw)e " +2
(D26) < Y e %7 T(w)e ™" S ——m— (g +2)v1. (D.30)
" ren "o
In order to deduce (D.30), we recalled (5.76) and used Lemma 5.8.
We now estimate the second term coming from (5.78), i.e
1
. / §E(d@) T@)1 V2O (w0, 3) 1 (@) (D.31)

Arguing analogously as in the proof of Lemma 5.11 (i), we reduce to estimating (D.8) with
L replaced by vl Arguing analogously as in (D.10)~(D.12), we get that this quantity is

~ kT
<T?es e CL [v@||p1. In particular, we deduce that

1 kT ~ T —CL
(D:31) 5 -~ Z T T (w) 0@ e‘CLs(“)%(qw)!zﬂ“ @, (D.32)
Y few 0

Claim (i) follows from (5.78), (D.30), and (D.32).
The proof of claim (ii) is similar. As in (i), we have to study the two terms that come from
(5.78). By (5.70), (5.72), the first term is

< Y ellv g / at S 1ore 31,
0

TevN* revN sevN

/ dy / dwl/ dws 1\w17w2|L>cL /Wig(d@) 1w(t+7’):§)(t+s) 1w1,w2€[®] : (DS?’)
ALO AL AL

L T
By arguing analogously as in (D.27)—(D.29), we deduce that the last line of (D.33) is < T2 esr e OL,
Here we note that, in the proof of (D.27)—(D.29), we are always integrating in x in the fourth factor
of 1™t(-). Substituting this bound back into (D.33), and arguing as for (D.30), we deduce that

T(w)e L

q+4
Ko

(D.33) < (q+3) 72, (D.34)

The second term coming from (5.78) is

2y el / At S Lo 31,0

TEVN* revN sevN

/ALO dy /WL T(d@) v2 @ (w(t +7) — @t + 5)) LpL(@). (D.35)

o T
By arguing as for (D.23), the last line in (D.35) is < 72 esr e CL |[v@)||,1. Substituting this bound
back into (D.35), and arguing as for (D.30), we deduce that

T(w)e ¢F

g+
Ko

(D.35) < (q+ ) o || 2+ (D.36)
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We deduce claim (ii) from (D.34) and (D.36).
Finally, we prove claim (iii). By (5.70), (5.72), the expression that we want to estimate is

= kT
< Z efnoT/zz T4 [/ dy/WLT dw 1DCL ((D)] S Z 672071/ Ta+2 o—CL
TevN~ TevN*

efC’L

S +3
~ q
Kq

(q+2)1v972, (D.37)

where in the second inequality in (D.37), we argued as for (D.25) to estimate the expression in
square brackets. O

Proof of Lemma 5.19. We use the estimate |Cé:’(2)(w,ab)| < Vé”l’L’@)(w,cD), which follows from
(5.87) and the nonnegativity of yuhb2 )(w ). We obtain (i) by arguing as in (5.81) above to

deduce that [ pu*(dw) T(@)? yytl@ )(w,w) S fq(fl q! ||vc H@(A) v9~1. Note that the first term in

the upper bound (5.78) does not appear by construction of VV’I’L (2)(

by arguing as in (5.84) to deduce that

@). Likewise, we obtain (ii)

y 5 T(w _
/A dy /,uyx (do) T (@)1 VvV 1.L,(2 )(w,w) < Rq(+2) (q—i—l)!”ch’@)Hel(AL) vt O
L
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