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Abstract
Increasing evaluation indexes have been involved in the networkmodeling, and some parameters cannot be described precisely.
Fuzzy set theory becomes a promisingmathematical method to characterize such uncertain parameters. This study investigates
the fuzzy multi-objective path optimization problem (FMOPOP), in which each arc has multiple crisp and fuzzy weights
simultaneously. Fuzzy weights are characterized by triangular fuzzy numbers or trapezoidal fuzzy numbers. We adopt two
fuzzy number ranking methods based on their fuzzy graded mean values and distances from the fuzzy minimum number.
Motivated by the ripple spreading patterns on the natural water surface, we propose a novel ripple-spreading algorithm (RSA)
to solve the FMOPOP. Theoretical analyses prove that the RSA can find all Pareto optimal paths from the source node to all
other nodes within a single run. Numerical examples and comparative experiments demonstrate the efficiency and robustness
of the newly proposed RSA.Moreover, in the first numerical example, the processes of the RSA are illustrated usingmetaphor-
based language and ripple spreading phenomena to be more comprehensible. To the best of our knowledge, the RSA is the
first algorithm for the FMOPOP that can adopt various fuzzy numbers and ranking methods while maintaining optimality.

Keywords Fuzzy graph · Multi-objective optimization · Path optimization · Pareto optimal path · Ripple-spreading algorithm

Introduction

The path optimization problem (POP) is fundamental to var-
ious practical applications, such as transportation [1], supply
chain management [2], telecommunication [3], and robot
control [4]. The shortest path problem (SPP) is the most
well-studied in the field of POP, and many classical algo-
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rithms have been proposed [5,6]. The SPP aims to minimize
the summation of deterministic weights associated with each
arc.With the fast development of the networkmodeling, each
arc may have multiple criteria [7], which forms the multi-
objective path optimization problem (MOPOP).

Generally, the weights of each arc represent the cost, time,
and reliability that are assumed to be deterministic. How-
ever, in many real-world situations, some kinds of weights
are uncertain and difficult to be represented by crisp num-
bers. For example, the traversing time of a road greatly
depends on traffic conditions [8]. Zadeh et al. [9] proposed
the fuzzy set theory, which is a typical way to handle uncer-
tainties. An element of a universe discourse is characterized
by a membership degree between 0 and 1 [10]. The fuzzy
set theory has emerged as a powerful platform for various
real-world applications with uncertainties, such as decision
making [11], networkmodeling [12], and pattern recognition
[13]. The POP on fuzzy networks has been widely studied in
recent years on account of its application values. Moreover,
a network may have both crisp and fuzzy weights simulta-
neously. For example, path length and population exposure
are two evaluation indexes for hazardousmaterial transporta-
tion [14]. The path length can be measured accurately, while
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the population exposure depends on the population density,
which is always time-varying. Therefore, providing com-
plete solutions efficiently to theMOPOPwith crisp and fuzzy
weights maymake a difference in numerous real-world prob-
lems.

The MOPOP belongs to the scope of the multi-objective
optimization problem (MOOP),whose primary goal is to find
Pareto optimal solutions [15]. There exist mainly four cate-
gories of MOOP algorithms: (1) using an aggregate function
to combine objectives into a single one [15,16]; (2) optimiz-
ing one objectivewhile treating the others as constraints [17];
(3) evolutionary algorithms based on Pareto ranking [18];
(4) evolutionary algorithms based on decomposition [19].
The first two categories decompose the MOOP into single-
objective optimization problems that deem partial objectives
more important than the others. Therefore, they may miss
some Pareto optimal solutions [20]. The last two categories
are based on evolutionary algorithms, which are stochas-
tic and cannot guarantee optimality [21]. In addition, some
specific algorithms for MOPOPs have been proposed, such
as the two-phase method [22], labeling method [23], and
ranking method [24]. These algorithms are logic-based and
extended from SPP algorithms. Moreover, they mainly focus
on bi-objective problems. For this reason, these MOPOP
algorithms have relatively low flexibility to be adapted to
fuzzy graphs with more than two objectives.

Recently, researchers have shown a growing interest in
POPs with fuzzy weights. Dubois et al. [25] first proposed
an algorithm based on the Floyd algorithm to solve the SPP in
a fuzzy network (FSPP), in which each arc is characterized
by a fuzzy number. Various algorithms for the FSPP have
been proposed [26], such as the dynamic programming [27],
fuzzy Dijkstra algorithm [28], fuzzy Physarum algorithm
[29], and fuzzy genetic algorithm [30]. Furthermore, some
researchers also investigate MOPOPs with fuzzy weights.
Kim et al. [31] proposed a quantum-inspired evolutionary
algorithm to plan robotic paths considering three objectives.
In [32], fuzzy objectives are aggregated using sum-weighted
functions. Adhikari et al. [33] planned 3D UAV paths with
a multi-objective fuzzy logic controller using fuzzy adap-
tive differential evolution. Zero et al. [14] modified Martin’s
Algorithm andA∗ algorithm to solve a bi-objective POPwith
a crisp objective and amin-max fuzzy objective. Abbaszadeh
et al. [34] implemented the fuzzy inference system to find a
path considering three objectives while respecting resource
constraints.Bagheri et al. [35] devised fuzzy efficiency scores
to convert fuzzy objectives to a single objective and imple-
mented the data envelopment analysis.

The ripple-spreading algorithm (RSA) is an agent-based
and deterministic algorithm that consists in solving various
POPs [36–39]. The RSA is proposed by simulating the fol-
lowingnatural phenomena: a ripple spreads out on adisturbed
water surface and triggers new ripples when encountering

obstacles. Different RSAs share the same optimization prin-
ciple: the traveling path of the first ripple reaching a node is
the shortest path, which is consistent with natural phenom-
ena. Although this principle makes the RSA a deterministic
algorithm, the RSA can also be implemented as an agent-
based model whose primary merit is flexibility [40]. All
ripples can have their spreading motions and triggering con-
ditions, and their combined behaviors help solve a specific
problem. We can modify the triggering condition and termi-
nation judgment of the RSA tomake it solve the SPP [36], the
POP on dynamic networks [37], the k shortest paths problem
[38], and the MOPOP [39].

The primary goal of this paper is to provide complete solu-
tions efficiently to MOPOPs with multiple crisp and fuzzy
weights. We define the fuzzy MOPOP (FMOPOP), in which
each arc has at least one crisp weight and multiple fuzzy
weights. Each fuzzy weight can be represented by a triangu-
lar fuzzy number (TFN) [41] or a trapezoidal fuzzy number
(TrFN) [42]. Moreover, we adopt two methods to rank fuzzy
numbers. The first method is based on fuzzy graded mean
values [28,30], and the second method is based on the dis-
tances between fuzzy numbers [27,29,43]. Motivated by the
RSA, we adapt the triggering condition to make it solve the
FMOPOP. A ripple triggers another ripple on a water sur-
face when reaching a stone. In the RSA, we define the Pareto
optimal ripple (POR), and only PORs can trigger new rip-
ples at nodes. The newly proposed RSA is a deterministic
algorithm that ensures optimality. Furthermore, the RSA can
determine all Pareto optimal paths from the source node to
all other nodes within a single run. Different kinds of fuzzy
numbers and ranking methods can be adopted using the RSA
while maintaining optimality.

The remainder of this paper is organized as follows. The
second section provides preliminaries about the fuzzy set
theory, Pareto concepts, and the RSA. The mathematical for-
mulation of the FMOPOP is provided in the third section. In
the fourth section, the RSA is adapted to solve the FMOPOP.
Several numerical examples and comparative experiments
are presented in the fifth section. Finally, the paper ends up
with some conclusions the in the last sections.

Preliminaries

Basic definitions

Definition 1 (Fuzzy set) Let X denote a non-empty set, and
Ã denote a subset of X . If Ã is a fuzzy set, it can be described
as:

Ã = {(x, μ Ã(x)) | x ∈ X}, (1)
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where μ Ã : X → [0, 1] is the membership function of Ã.
For ∀x ∈ X , μ Ã(x) denotes the membership degree of x in
Ã.

Definition 2 (Fuzzy number) If and only if a fuzzy set Ã is
convex and normal, it is a fuzzy number. Where ”convex”
denotes that:

μ Ã((1 − λ)x1 + λx2) ≥ min(μ Ã(x1), μ Ã(x2)),

∀x1, x2 ∈ X ,∀λ ∈ [0, 1], (2)

and ”normal” denotes that:

sup
x∈X

μ Ã(x) = 1. (3)

Definition 3 (Triangular fuzzy number) Let Ã = (a1, a2, a3)
be a triangular fuzzy number (TFN), whose membership
function is defined as follows:

μ Ã(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x − a1
a2 − a1

, a1 ≤ x ≤ a2,

a3 − x

a3 − a2
, a2 ≤ x ≤ a3,

0, otherwise.

(4)

Definition 4 (Trapezoidal fuzzy number) Let Ã = (a1, a2,
a3, a4) be a trapezoidal fuzzy number (TrFN), whose mem-
bership function is defined as follows:

μ Ã(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x − a1
a2 − a1

, a1 ≤ x ≤ a2,

1, a2 ≤ x ≤ a3,
a4 − x

a4 − a3
, a3 ≤ x ≤ a4,

0, otherwise.

(5)

Definition 5 (Fuzzy operations) For two TFNs Ã = (a1, a2,
a3) and B̃ = (b1, b2, b3), their fuzzy addition (⊕) and mul-
tiplication (⊗) operations are defined as:

Ã ⊕ B̃ = (a1 + b1, a2 + b2, a3 + b3),

Ã ⊗ B̃ = (a1 × b1, a2 × b2, a3 × b3).
(6)

And for two TrFNs Ã = (a1, a2, a3, a4) and B̃ =
(b1, b2, b3, b4), their fuzzy addition (⊕) and multiplication
(⊗) operations are defined as:

Ã ⊕ B̃ = (a1 + b1, a2 + b2, a3 + b3, a4 + b4),

Ã ⊗ B̃ = (a1 × b1, a2 × b2, a3 × b3, a4 × b4).
(7)

Fig. 1 A TFN Ã = (a1, a2, a3) and its α-cut

Fig. 2 A TrFN Ã = (a1, a2, a3, a4) and its α-cut

Definition 6 (α-cut) Ã is a fuzzy subset of X . The α-cut ( Ãα)
and strong α-cut ( Ãα+) of Ã are defined as:

Ãα = {x | μ Ã(x) ≥ α, x ∈ X},
Ãα+ = {x | μ Ã(x) > α, x ∈ X}, (8)

where α ∈ [0, 1]. Moreover, we use Ã+
α to denote sup( Ãα)

and Ã−
α to denote inf( Ãα).

We provide Figs. 1 and 2 to illustrate an example of TFN
and TrFN and their α-cut. From the two figures, we can
quickly determine Ã+

α and Ã−
α .

Definition 7 (Fuzzy graded mean value) For a TFN Ã =
(a1, a2, a3), its fuzzy graded mean value is defined as:

P( Ã) = 1

6
(a1 + 4 × a2 + a3). (9)

And for a TrFN Ã = (a1, a2, a3, a4), its fuzzy graded mean
value is defined as:

P( Ã) = 1

6
(a1 + 2 × a2 + 2 × a3 + a4). (10)
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Definition 8 (Fuzzy distance)We adopt a non-negative func-
tion to calculate the distance Dp,q( Ã, B̃) between two fuzzy
numbers Ã and B̃, where p > 1 and 0 < q < 1 [44]:

Dp,q( Ã, B̃) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[

(1 − q)

∫ 1

0
| Ã−

α − B̃−
α |p dα + q

∫ 1

0
| Ã+

α − B̃+
α |p dα

] 1
p

, p < ∞,

(1 − q) sup
0<α≤1

(| Ã−
α − B̃−

α |) + q inf
0<α≤1

(| Ã+
α − B̃+

α |), p = ∞.

(11)

The first parameter p determines the analytical features of
Dp,q , while the second parameter q describes the subjective
weight attributed to the end points of support, i.e., ( Ã−

α , Ã+
α )

for the fuzzy number Ã [27]. When q is close to 0, the left
side of the support is given more consideration. The value
q = 1/2 is adopted in this study as the significance of the
end points of the support of fuzzy numbers is assumed to be
the same. Moreover, p = 2 is the most frequently used for
fuzzy distance [27,29,43]. For two TFNs Ã = (a1, a2, a3)
and B̃ = (b1, b2, b3), when p = 2 and q = 1/2, their
distance is calculated as:

D2,1/2( Ã, B̃) =

√
√
√
√
√

1

6

⎡

⎣
3∑

i=1

(ai − bi )2 + (a2 − b2)2 +
∑

i∈{1,2}
(ai − bi )(ai+1 − bi+1)

⎤

⎦. (12)

And for two TrFNs Ã = (a1, a2, a3, a4) and B̃ =
(b1, b2, b3, b4), their distance is calculated as:

D2,1/2( Ã, B̃)

=

√
√
√
√
√

1

6

⎡

⎣
4∑

i=1

(ai − bi )2 +
∑

i∈{1,3}
(ai − bi )(ai+1 − bi+1)

⎤

⎦.

(13)

Rankingmethods of fuzzy numbers

How to rank the fuzzy path cost is of great importance in
solving the FSPP. A number of studies have investigated how
to rank fuzzy numbers [45–47]. In this paper, we adopt two
methods:

Rankingmethod1The fuzzy numbers are ranked accord-
ing to their fuzzy graded mean values [28,30].

Rankingmethod2The fuzzy numbers are ranked accord-
ing to their distances between the fuzzy minimum number
(MÑ ) [27,29,43]. For two TFNs Ã = (a1, a2, a3) and
B̃ = (b1, b2, b3), their MÑ is defined as:

MÑ ( Ã, B̃) = (min(a1, b1),min(a2, b2),min(a3, b3)). (14)

In the same way, the MÑ of two TrFNs Ã = (a1, a2, a3, a4)
and B̃ = (b1, b2, b3, b4) is:

MÑ ( Ã, B̃) = (min(a1, b1),min(a2, b2),

min(a3, b3),min(a4, b4)). (15)

We take two TrFNs Ã = (2, 5, 9, 14) and B̃ =
(4, 6, 11, 12) as an example, as shown in Fig. 3. Using
ranking method 1, P( Ã) = 7.33 and P(B̃) = 8.33,
so Ã is less than B̃. Using ranking method 2, MÑ =
(2, 5, 9, 12). The distances are D2,1/2( Ã, MÑ ) = 0.82 and
D2,1/2(B̃, MÑ ) = 1.35, so Ã is less than B̃.

Pareto concepts

Pareto concepts are firstly applied in economic research [48]
and become the core concept of the MOOP [15]. For a
MOPOP with q objectives, it aims to minimize all of them.
Let P1 and P2 be two feasible paths, and f (P)(i) denote
the i th objective value of path P , i = 1, · · · , q. If P1 is no
worth than P2 on all objectives and better than P2 on at least
one objective, P1 Pareto dominates P2. We use P1 ≺ P2 to

Fig. 3 An illustration of two TrFNs
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denote that P1 Pareto dominates P2, and its mathematical
formulation is:

{
f (P1)(i) ≤ f (P2)(i), ∀i ∈ [1, · · · , q],
f (P1)( j) < f (P2)( j), ∃ j ∈ [1, · · · , q]. (16)

”Pareto optimal”means that the progression on one objec-
tivemust lead to regression on the others. Let a set�P contain
all possible paths. If a path P∗ is Pareto optimal, there is no
path P that Pareto dominates P∗. The mathematical relation
is:

!∃P ∈ �P , P ≺ P∗. (17)

All Pareto optimal paths construct the Pareto set. The pro-
jection of a Pareto optimal path in the objective space is a
Pareto point, and all Pareto points form the Pareto front of
the MOPOP [7].

Basic ideas behind the RSA

The RSA is proposed by simulating natural ripple patterns on
a water surface: all ripples spread out in all directions at the
same speed. A ripple triggers another ripple when encounter-
ing an obstacle. The basic principle behind this phenomenon
is that the first ripple that reaches a node travels along the
shortest path [36]. From the perspective of algorithm design,
each ripple has basic features: the epicenter, state, and radius.
The epicenter is the node where the ripple is generated. Only
ripples in the active state spread out. In the RSA, ripples
spread out on a network where the distance between two
nodes is represented by a crisp number. We present the basic
steps of the RSA for the SPP as follows:

1. An active ripple is initialized at the source node.
2. At each time, all active ripples spread out at the same

speed.
3. If a ripple reaches an unvisited node first, it triggers

another ripple.
4. If an active ripple has visited all nodes connected to its

epicenter, it becomes inactive.
5. If a ripple has visited the destination node, the SPP is

solved. The traveling path of this ripple is the shortest.

Figure 4 provides a toy example of the RSA for the SPP,
and only active ripples are plotted. Following the steps men-
tioned above, ripple R3 reaches the destination node d first
and becomes inactive . Its traveling path s-2-d is the shortest
path. We can observe that the whole processes resemble a
ripple relay race.

1

ds

2

R1

R1

R2

R1

R3
R3

R2

= 0, the first active ripple R1 is 

initialized at . 

= 3, R3 is the first to visit and 

becomes inactive. Its traveling path 

-2- is the shortest path. 

= 2, R1 triggers R2 at node 1 and 

R3 at node 2. R1 becomes inactive 

as it visits all nodes connected to . 

1

ds

2

1

ds

2

= 1, R1 spreads out. 

1

ds

2

Fig. 4 The illustration of how the RSA solves the SPP

Mathematical formulation

In this section, we provide the mathematical formulation of
the FMOPOP. We consider a directed network G = {V , E},
where V is the node set, and E is the arc set. V =
{1, 2, · · · , nn} contains nn different nodes, and E = {(i, j) |
i ∈ V , j ∈ V } contains na different arcs. The arc from node
i to node j is denoted as (i, j). Moreover, there are nc crisp
weights and n f fuzzy weights associated with each arc, and
nw denotes the total number of weights. For arc (i, j), itsmth

crispweight is denoted as cmi j , and its n
th fuzzyweight is c̃ni j . A

path Psd from the source node s to the destination node d is a
sequence of nodes Psd = {s = n1, n2, · · · , nm−1, nm = d},
where (nh, nh+1) ∈ E holds for ∀h = 1, · · · ,m − 1. The
mathematical formulation of the FMOPOP is:

min
nn∑

i=1

nn∑

j=1

xi j [c1i j , · · · , cnci j , c̃
1
i j , · · · , c̃

n f
i j ]

s.t.

nn∑

i=1

xi j −
nn∑

j=1

x ji =

⎧
⎪⎨

⎪⎩

1, for i = s,

0, otherwise,

− 1, for i = d,

xi j ∈ {0, 1}, ∀i, j ∈ [1, · · · , nn].

(18)

In model (18), xi j = 1 denotes that arc (i, j) is a part of the
path, otherwise xi j = 0.
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Moreover, we define the objective function of a path P =
{n1, n2, · · · , nm−1, nm} as:

f (P, i)( j)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, i = 1, 1 ≤ j ≤ nc,

(0, 0, 0) or (0, 0, 0, 0), i = 1, nc < j ≤ nw,

f (P, i − 1)( j) + c jni−1ni , i > 1, 1 ≤ j ≤ nc,

f (P, i − 1)( j) ⊕ c̃ jni−1ni , i > 1, nc < j ≤ nw.

(19)

In Eq. (19), f (P, i)( j) denotes the j th objective value of
the sub-path of P from node n1 to node ni . The objective
value is stored in a list structure, in which the first nc compo-
nents denote crisp values, and the last n f components denote
fuzzy values. For simplicity, we use f (P) to denote f (P,m)

hereafter.

The adapted RSA

This section proposes an adapted RSA for the FMOPOP and
conducts theoretical analyses to demonstrate its optimality
and efficiency.

Algorithm description

Different from the RSA for the SPP illustrated in Subsection
“Basic ideas behind the RSA”,we need to adapt the trigger-
ing condition and termination judgment for the FMOPOP.
We first introduce a new definition of Pareto optimal ripple
(POR):

Definition 9 (POR) If a ripple R reaches node n along path
P , and the traveling paths of other ripples that reach n before
R do not Pareto dominate P , then R is a POR at node n.

The new triggering condition is that if an incoming ripple
is a POR at this node, it triggers a new ripple. Moreover, the
termination judgment is modified as all ripples are inactive.
Other notations used in the RSA are listed in Table 1.

Algorithm 1 is the RSA for the FMOPOP. The flowchart
in Fig. 5 uses metaphor-based language to illustrate the pro-
cesses of the RSA step by step. After executing the RSA, the
traveling paths of all PORs at the destination d are exactly all
Pareto optimal paths of the FMOPOP. According to Line 3 of
Algorithm 1, ripples spread out on the network described by
the kth crispweight. The ripple spreading speed v is chosen as
theminimumvalue of the kth crispweight,which can increase
efficiency while maintaining optimality [39]. The new ripple
triggering condition is Line 12, where n /∈ P(i) is to avoid
loops in paths, ckE(i)n ≤ R(i) < ckE(i)n+v denotes that ripple

Table 1 The notations in the RSA and their meanings

Notations Meanings

R Radius set, the radius of ripple i is R(i)

S State set, S(i) = 0/1 denotes that ripple i is
inactive/active

E Epicenter set, ripple i is generated at node E(i)

P Path set, ripple i travels along P(i) from s to E(i)

O Objective value set, O(i) = f (P(i))

F Forward node set,
F(i) = { j | (i, j) ∈ E}, i = 1 · · · , nn

nr The current ripple number

v The ripple spreading speed

t The time index

�POR POR set, �POR(n) contains all PORs at node n

nc The number of crisp weights

n f The number of fuzzy weights

nn The number of nodes

s The source node

d The destination node

PR The output Pareto optimal path set

OR The output Pareto front

Algorithm 1 The RSA for the FMOPOP
Input: G = {V , E}, cmi j , c̃ni j , (i, j) ∈ E,m = 1, · · · , nc, n =

1, · · · , n f
Ouput: PR, OR
1: R = S = E = P = O = PR = OR = {}, nr = 0, �POR(n) =

{}, n = 1, · · · , nn
2: t = 0
3: v = min(cki j ) for k with minimum value of max(cki j )/min(cki j )
4: nr = 1, R(nr ) = 0, S(nr ) = 1, E(nr ) = s, P(nr ) = {s}, O(nr ) =

f (P(nr ))
5: nt = nr
6: while ∃i ∈ [1, · · · , nt ], S(i) = 1 do
7: t = t + 1
8: for i = 1, · · · , nt do
9: if S(i) = 1 then
10: R(i) = R(i) + v

11: for n ∈ F(E(i)) do
12: if (n /∈ P(i))∧(ckE(i)n ≤ R(i) < ckE(i)n+v)∧ IsPOR(i)

then
13: nr = nr + 1, R(nr ) = R(i) − ckE(i)n, S(nr ) =

1, E(nr ) = n, P(nr ) = P(i) ∪ {n}, O(nr ) =
f (P(nr )),�POR(n) = �POR(n) ∪ {nr }

14: if n = d then
15: PR = PR ∪ P(nr ), OR = OR ∪ O(nr )
16: end if
17: end if
18: end for
19: if ∀n ∈ F(E(i)), R(i) ≥ ckE(i)n then
20: S(i) = 0
21: end if
22: end if
23: end for
24: nt = nr
25: end while
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Step 1: Initialize all variables to record ripples’ information. Set 

time = 0 and a constant ripple spreading speed (line 1-3). 

Step 2: Initialize the first active ripple at the source node with 

radius 0 (line 4).

Step 3.2: Time updates a time unit (line 7).

Step 3.3: All active ripples spread out at speed (line 9-10).

Step 3.4: If an incoming ripple at node is assessed as a POR, it 

triggers a ripple at (line 11-13).

Step 4: The traveling paths of all PORs at the destination node

are Pareto optimal (line 14-16).

Step 3.1: If all ripples are inactive (line 6).
Yes

No

Step 3.5: If an active ripple has reached all nodes connected to 

its epicenter, it becomes inactive (line 19-21).

Fig. 5 The flowchart of the RSA using the metaphor-based language

i is an incoming ripple at node n in this period, and IsPOR(i)
is to judge whether ripple i is a POR or not. Algorithm 2
provides the pseudo code of determining whether path P1
Pareto dominates P2 using ranking method 2, in which f (P)

denotes the objective value of P according to (19). Actually,
we can adopt any fuzzy number ranking method. As long
as the Pareto domination relation between two paths can be
determined, the RSA can solve the FMOPOP.

Algorithm 2 Determine whether P1 ≺ P2
Input: f (P1), f (P2), nc, nw

Ouput: True or False
1: num ⇐ 0
2: for i = 1, · · · , nw do
3: if i ≤ nc then
4: if f (P1)(i) > f (P2)(i) then
5: return False
6: else if f (P1)(i) < f (P2)(i)
7: num ⇐ num + 1
8: end if
9: else
10: dis1 ⇐ D2,1/2(MÑ ( f (P1)(i), f (P2)(i)), f (P1)(i))
11: dis2 ⇐ D2,1/2(MÑ ( f (P1)(i), f (P2)(i)), f (P2)(i))
12: if dis1 > dis2 then
13: return False
14: else if dis1 < dis2
15: num ⇐ num + 1
16: end if
17: end if
18: end for
19: if num > 0 then
20: return True
21: else
22: return False
23: end if

Theoretical analysis

In this subsection, we prove that the traveling paths of PORs
at each node are exactly all Pareto optimal paths to this node.
Moreover, the time complexity of the RSA is calculated.

Lemma 1 In the RSA, the i th ripple that reaches a node trav-
els along the i th shortest path.

Lemma 2 A Pareto optimal path P = {s = n1, · · · , nm =
d} is formed by Pareto optimal sub-paths, i.e., {n1, · · · , ni }
is Pareto optimal from s to node ni .

Lemma 1 states the basic optimization principle of RSAs,
which directly comes from the theorems in [38]. And
Lemma 2 comes from the theorems in [49]. Readers can get
the detailed proof in these two papers.

Lemma 3 The traveling path P of aPORat node n is aPareto
optimal path from the source node s to n.

Proof The proof is divided into two scenarios: (1) According
to Definition 9, the traveling paths of all ripples that reach
n before the POR do not Pareto dominate P . (2) If a ripple
reachesn after the PORalongpath P1.We assume that ripples
spread out on the network described by the kth crisp weight.
According to Lemma 1, its kth objective value is greater than
the kth objective value of P , i.e., f (P1)(k) > f (P)(k).
According to relation (16), it is impossible that P1 ≺ P .
Therefore, Lemma 3 holds. ��
Theorem 1 After executing the RSA, the traveling paths of
all PORs at a node are all Pareto optimal paths to this node.
In other words, we can determine all Pareto optimal paths
from the source node s to all other nodes within a single run.

Proof According to Lemma 2, all the sub-paths of a Pareto
optimal path are also Pareto optimal. According to Defini-
tion 9, the ripple traveling along a Pareto optimal path is
assessed as a POR.Step 3.4 in Fig. 5 denotes that if an incom-
ing ripple is a POR, it triggers a new ripple.All Pareto optimal
paths are traveled by PORs at this node, i.e., the RSA does
not miss any Pareto optimal path. Moreover, Lemma 3 guar-
antees that the traveling paths of PORs are Pareto optimal.
Therefore, Theorem 1 is true. ��
Theorem 2 The time complexity of the RSA for the FMOPOP
is O(nw × na × n2POR), where nPOR is the average number
of PORs at each node.

Proof In the RSA, only active ripples need computational
steps. There are nn nodes and na arcs on the network, so
each node has na/nn arcs on average. Each active ripple
takes average nat time units to travel through the longest
arc connected to its epicenter, and then it becomes inactive.
During its active state, there are three parts of computational
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Fig. 6 The undirected network for Example 1

steps: (1) ripple spreading and comparing its radius with the
arc’s length; (2) determining the objective value of its trav-
eling path; (3) determining whether it is a POR at its visiting
node. The first part executes every time unit, which takes
(2 × nat × na/nn) steps. The second and third parts only
execute when reaching a new node, and there are average
nPOR ripples to be compared with on nw objectives. These
two parts take ((1 + nPOR) × nw × na/nn) steps. There
are (nn × nPOR) active ripples ever generated, so the whole
process of the RSA takes ncs computational steps:

ncs = nn × nPOR × (2 × nat + (1 + nPOR) × nw) × na/nn

= (2 × nat + (1 + nPOR) × nw) × nPOR × na . (20)

In large-scale problems, the number of PORs is much greater
than nat and 1. So the time complexity is calculated as
O(nw × na × n2POR). ��

Examples and comparative experiments

In this section, we present two numerical examples and some
comparative experiments to demonstrate the capability and
robustness of the newly proposed RSA.

Numerical examples

Example 1 We first consider an undirected network shown in
Fig. 6, consisting of 5 nodes and 8 arcs. A crisp weight and
a fuzzy weight described by a TFN are associated with each
arc, as shown in Table 2. The crispweight of an arc represents
its length. The source node is node 1, and all other nodes are
destination nodes. The aim is to find all Pareto optimal paths
from node 1 to destination nodes.

At t = 0, the first active ripple R1 is initialized at the
source node s. The ripple spreading speed v is chosen as
min(c1i j ) = 32.

At t = 1, R1 spreads out, and its radius becomes 32, as
shown in Fig. 7.

Table 2 The crisp and fuzzy weights of the network in Fig. 6

Arc Crisp weight Fuzzy weight

1-2 62 (3, 10, 20)

1-3 44 (4, 5, 7)

1-4 67 (3, 10, 19)

2-3 33 (5, 9, 20)

2-5 52 (3, 9, 12)

3-4 32 (2, 5, 6)

3-5 52 (14, 17, 20)

4-5 54 (2, 3, 16)

1

2

3

4

5

R1

Fig. 7 The ripple spreading motion at t = 1
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4

5

R1

R2

R3

Fig. 8 The ripple spreading motion at t = 2

At t = 2, R1 reaches node 3 and triggers a new ripple
R2 (red, radius = 20). R1 reaches node 2 and triggers a new
ripple R3 (yellow, radius = 2), as shown in Fig. 8.

At t = 3, R1 reaches node 4 and becomes inactive as it
has visited all nodes connected to node 1, and we eliminate
it from the network. R2 reaches node 2, node 4, and node
5 and also becomes inactive. R1 triggers R4 (blue, radius =
29) at node 4. R2 triggers R5 (green, radius = 20) at node
4 and triggers R6 at node 5 (black, radius = 0), as shown in
Fig. 9. It is worth noticing that R2 reaches node 2, and R3

reaches node 3, but they do not trigger any ripple. Take R2

as an example: when it reaches node 2, its objective value is
{77, (9, 14, 27)}. It is Pareto dominated by the existing POR
R2 at node 3, whose objective value is {62, (3, 10, 20)}. So
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Fig. 9 The ripple spreading motion at t = 3
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Fig. 10 The ripple spreading motion at t = 4
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Fig. 11 The ripple spreading motion at t = 5

R2 is not a POR at node 3. According to Step 3.4 in Fig. 5,
it does not trigger any ripple.

At t = 4, R3 reaches node 5 and becomes inactive. At
node 5, R3 triggers R7 (red, radius = 14), and R4 triggers R8

(yellow, radius = 7), as shown in Fig. 10.
At t = 5, R5 triggers R9 (blue, radius = 30) at node 5. R4,

R5, and R6 become inactive. R7 and R8 also spread out at
v = 32, as shown in Fig. 11.

At t = 6, R7, R8, and R9 reach all nodes connected to
node 5 and become inactive. Moreover, they are not PORs at

Table 3 All PORs at each node after solving Example 1

Node Ripple Traveling Path Objective value

2 R3 1-2 {62, (3, 10, 20)}

3 R2 1-3 {44, (4, 5, 7)}

4 R4 1-4 {67, (3, 10, 19)}

R5 1-3-4 {76, (6, 10, 13)}

5 R6 1-3-5 {96, (18, 22, 27)}

R7 1-2-5 {114, (6, 19, 32)}

R8 1-4-5 {121, (5, 13, 35)}

R9 1-3-4-5 {130, (8, 13, 29)}

Table 4 All possible paths to each node and the corresponding cost

Destination Possible path Crisp
cost

Fuzzy cost Optimal
1?

Optimal
2?

node 2 1-2 62 (3, 10, 20) Yes Yes

1-3-2 77 (9, 14, 27) No No

1-3-5-2 148 (21, 31, 39) No No

1-4-3-2 132 (10, 24, 45) No No

1-4-5-2 173 (8, 22, 47) No No

1-4-3-5-2 203 (22, 41, 57) No No

node 3 1-3 44 (4, 5, 7) Yes Yes

1-2-3 95 (8, 19, 40) No No

1-4-3 99 (5, 15, 25) No No

1-2-5-3 166 (20, 36, 52) No No

1-4-5-3 173 (19, 30, 55) No No

1-2-5-4-3 200 (10, 27, 54) No No

1-4-5-2-3 206 (13, 31, 67) No No

node 4 1-4 67 (3, 10, 19) Yes Yes

1-3-4 76 (6, 10, 13) Yes Yes

1-2-3-4 127 (10, 24, 46) No No

1-3-5-4 150 (20, 25, 43) No No

1-2-5-4 168 (8, 22, 48) No No

1-2-5-3-4 198 (22, 41, 58) No No

node 5 1-2-5 114 (6, 19, 32) Yes Yes

1-3-5 96 (18, 22, 27) Yes Yes

1-4-5 121 (5, 13, 35) Yes Yes

1-2-3-5 147 (22, 36, 60) No No

1-3-2-5 129 (12, 23, 39) No No

1-3-4-5 130 (8, 13, 29) Yes Yes

1-4-3-5 151 (19, 32, 45) No No

1-2-3-4-5 181 (12, 27, 62) No No

1-4-3-2-5 184 (13, 33, 57) No No

their forward nodes. Up to now, there is no active ripple, and
Example 1 is solved.

Table 3 lists all PORs at each node after solving Exam-
ple 1. Table 4 lists all possible paths to each node and their
corresponding values. Optimal 1 and Optimal 2 in Table 4
denote whether the path is Pareto optimal using the ranking
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Fig. 12 The directed network for Example 2

Table 5 The crisp and fuzzy weights of the network in Fig. 12

Arc Crisp 1 Crisp 2 Fuzzy 1 Fuzzy 2

1-2 8 1 (4, 7, 15) (12, 19, 20)

1-3 4 5 (8, 12, 17) (6, 14, 15)

1-5 9 7 (14, 15, 19) (2, 19, 20)

2-4 2 2 (8, 14, 16) (2, 19, 20)

2-5 6 8 (2, 5, 13) (2, 10, 12)

3-5 5 8 (13, 18, 19) (5, 9, 13)

3-6 8 1 (7, 8, 13) (2, 10, 11)

4-5 6 2 (14, 17, 20) (7, 11, 20)

4-7 4 5 (4, 6, 17) (2, 12, 16)

5-7 6 9 (4, 7, 11) (7, 10, 20)

5-8 4 3 (2, 11, 12) (17, 19, 20)

5-10 9 7 (2, 5, 16) (6, 10, 20)

6-5 9 4 (2, 3, 17) (2, 11, 20)

6-8 4 3 (8, 15, 20) (5, 11, 19)

7-9 6 8 (8, 9, 17) (5, 6, 11)

7-10 4 7 (3, 12, 15) (6, 12, 17)

8-10 9 2 (5, 15, 19) (11, 14, 19)

8-11 1 6 (9, 10, 14) (7, 9, 12)

9-10 3 8 (2, 11, 18) (5, 12, 19)

9-12 7 1 (6, 11, 20) (4, 9, 19)

10-12 9 6 (10, 18, 19) (2, 3, 7)

11-10 5 3 (4, 8, 16) (9, 13, 19)

11-12 9 2 (4, 7, 19) (5, 13, 16)

methods 1 and 2 in the second section. After comparison,
we observe that all the traveling paths of PORs at each node
are exactly all Pareto optimal paths to this node. Moreover,
the RSA determines Pareto optimal paths to all other nodes
within a single run.

Example 2 The directed network of this example is shown in
Fig. 12, consisting of 12 nodes and 23 arcs. Each arc has two
crisp weights and two fuzzy weights, as shown in Table 5.
Crisp 1 and Crisp 2 denote two crisp weights. Likewise,
Fuzzy 1 and Fuzzy 2 denote two fuzzy weights, as shown
in Table 5. The source node is node 1, and the destination
node is node 12.

Table 6 lists all Pareto optimal paths determined by the
RSA. Example 2 demonstrates that the RSA also can provide

Table 6 The result of Example 2 solved by the RSA

Pareto optimal path Objective value

1-5-8-11-12 {23, 18, (29, 43, 64), (31, 60, 68)}

1-3-6-8-11-12 {26, 17, (36, 52, 83), (25, 57, 73)}

1-5-10-12 {27, 20, (26, 38, 54), (10, 32, 47)}

1-2-4-7-9-12 {27, 17, (30, 47, 85), (25, 65, 86)}

1-2-4-5-8-11-12 {30, 16, (41, 66, 96), (50, 90, 108)}

1-5-8-10-12 {31, 18, (31, 59, 69), (32, 55, 66)}

1-3-6-8-10-12 {34, 17, (38, 68, 88), (26, 52, 71)}

1-2-4-5-8-10-12 {38, 16, (43, 82, 101), (51, 85, 106)}

complete solutions for the FMOPOP where the number of
crisp and fuzzy weights is more than two.

Comparative experiments

This subsection conducts comparative experiments to eval-
uate the computational efficiency of the RSA on large-scale
networks. To the best of our knowledge, there is no exact
algorithm to solve the FMOPOP using various fuzzy number
rankingmethods.Given the complexity of calculating the dis-
tance between two fuzzy numbers, as shown in relation (11),
it is difficult to adapt existingMOPOP algorithms to solve the
FMOPOP.We choose one of the most classic multi-objective
evolutionary algorithms, the NSGA-II, as the benchmark for
its outstanding flexibility [18]. Each path is encoded in the
samemethod as [50]. To adapt the NSGA-II, we combine the
fast-non-dominated-sort with Algorithm 2, which can deter-
mine the Pareto domination relation of two paths. Moreover,
the crowding-distance-assignment in the NSGA-II is only
conducted on crisp objective values. The parameters of the
NSGA-II are set up as follows: the population size is 100,
the number of generations is 100, the crossover probability
is 0.9, and the mutation probability is 0.15.

The test networks are randomly generated and contain at
least one Hamiltonian cycle. The source and destination are
randomly chosen. Each arc has nc crisp weights uniformly
distributed between 1 and 20 and n f fuzzy weights described
by TFNs. For each TFN (a1, a1, a3), a1, a2, and a3 are dis-
tributed between 1 and 20. To evaluate the efficiency of the
RSA under different numbers of nodes and objectives, we
set nn in the range of 50 and 500 with the increment of
50 and nc = n f ∈ [1, 3, 5, 10]. For each instance, we set
na = 4 × nn . There are 40 instances in total, and we con-
ducted ten experiments for each instance. The results of the
two algorithms are gathered after solving the same problem.
Using the fast-non-dominated-sort [18], all non-dominated
solutions are true Pareto optimal paths, and the others are
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Table 7 The results of the comparative experiments of the RSA and NSGA-II

nn nc=1, n f =1 nc=3, n f =3 nc=5, n f =5 nc=10, n f =10

RT APN TPN RT APN TPN RT APN TPN RT APN TPN

50 RSA 0.01 1.9 1.9 0.05 5.2 5.2 0.11 10.4 10.4 0.33 13.1 13.1

NSGA-II 10.14 1.9 1.9 16.59 4.7 4.7 26.09 9.3 9.3 52.70 11.9 11.9

100 RSA 0.03 2.1 2.1 0.12 8.5 8.5 0.30 8.4 8.4 0.95 19.6 19.6

NSGA-II 10.00 2.1 2.1 19.75 5.8 5.8 30.29 6.1 5.9 39.02 11.5 11.5

150 RSA 0.04 2.4 2.4 0.21 5.0 5.0 0.58 15.0 15.0 2.01 31.9 31.9

NSGA-II 10.36 2.4 2.1 19.46 4.2 4.1 24.38 7.8 7.7 39.54 14.4 14.1

200 RSA 0.06 2.3 2.3 0.33 9.3 9.3 0.74 16.9 16.9 2.89 31.0 31.0

NSGA-II 10.80 1.7 1.7 16.84 6.9 6.1 25.32 8.6 8.5 45.17 11.5 11.2

250 RSA 0.07 1.7 1.7 0.38 5.5 5.5 1.14 19.3 19.3 3.81 33.4 33.4

NSGA-II 11.62 1.6 1.6 21.68 3.4 3.0 27.00 8.5 8.0 49.98 10.8 9.9

300 RSA 0.09 2.1 2.1 0.57 12.7 12.7 1.26 13.8 13.8 4.96 25.3 25.3

NSGA-II 11.20 1.8 1.7 18.62 5.7 5.2 31.96 7.0 5.9 65.84 7.8 6.6

350 RSA 0.11 2.9 2.9 0.65 11.4 11.4 1.65 11.8 11.8 6.52 37.3 37.3

NSGA-II 12.19 2.5 1.9 23.97 4.2 3.6 35.76 4.2 3.8 51.99 10.6 9.4

400 RSA 0.12 2.4 2.4 0.75 9.2 9.2 1.93 16.4 16.4 7.59 31.9 31.9

NSGA-II 13.38 1.9 1.6 24.83 4.2 3.5 32.79 5.8 5.4 60.71 8.1 7.5

450 RSA 0.13 2.8 2.8 0.91 10.0 10.0 2.33 12.2 12.2 8.84 35.3 35.3

NSGA-II 12.62 1.9 1.9 24.52 4.9 3.7 37.41 3.9 3.7 54.54 8.4 7.4

500 RSA 0.17 2.3 2.3 0.98 9.6 9.6 2.58 18.2 18.2 10.58 28.2 28.2

NSGA-II 13.97 2.6 1.6 22.81 5.2 3.9 34.23 5.8 4.4 57.66 6.4 6.2

false Pareto optimal paths. We record the running time (RT)
in seconds, the number of Pareto optimal paths (APN), and
the number of true Pareto optimal paths (TPN).

Table 7 presents the experimental data, from which one
may conclude that:

• The RSA has outstanding computational efficiency. The
average RTs of the RSA and NSGA-II are 1.67 s and
28.69 s, which implies that the RSA solves the FMOPOP
17.18 times faster than the NSGA-II on average.

• Due to the random features of the NSGA-II, its APN is
no greater than that of the RSA. Moreover, the TPN of
the NSGA-II is lower than the APN. It implies that the
NSGA-II may miss some Pareto optimal paths or output
some false Pareto optimal paths.On the contrary, theRSA
finds all Pareto optimal paths.

• With the increment of nn and nc, the percentage of the
Pareto optimal paths found by the NSGA-II decreases.
The parameters of the NSGA-II should be readjusted
according to the problem scale. Otherwise, it may lose
computational efficiency or miss Pareto optimal solu-
tions. Under different numbers of weights and nodes, the
RSA finds all Pareto optimal paths within a reasonable
computation time. What is striking about the RSA is its
robustness, as it maintains optimality without readjusting
any parameters.

Up to now, the existing studies have not dealt with the one-
to-all FMOPOP, which aims to determine all Pareto optimal
paths from the source node to all other nodes. We provide
a comparative experiment of the one-to-all FMOPOP. We
select one node as the source node from a network with 50
nodes and 200 arcs, and the others are destination nodes.
Each arc has 10 crisp weights and 10 fuzzy weights. We can
solve the one-to-all FMOPOP using the RSA within a single
run. However, the NSGA-II needs to run 49 times to find the
Pareto optimal paths from the source node to all other nodes.
We ran the two algorithms on a one-to-all FMOPOP and
recorded the TPN to each destination node. Fig. 13 presents
the comparative results, in which the TPN of the RSA is
shown in black, and the NSGA-II is in red. From the fig-
ure, the RSA finds all Pareto optimal paths to other nodes,
while the NSGA-II misses some of them. Moreover, the RT
of the RSA is 0.36 s, while the NSGA-II is 1752.11 s. For the
FMOPOP with multiple destination nodes, the advantage of
the computational efficiency of the RSA is further increased
compared to other algorithms.

From two numerical examples and comparative experi-
ments, we can obtain the following observations:

• The proposed RSA can find all Pareto optimal paths to
all other nodes within a single run. Moreover, the RSA
only finds true Pareto optimal paths.
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Fig. 13 The TPN of the RSA and NSGA-II in the one-to-all FMOPOP
experiment

• The RSA maintains its optimality when the number of
objectives is more than two.

• Various fuzzy numbers and ranking methods can be
adopted in the RSA on account of its flexibility.

• We can use metaphor-based descriptions and figures to
explain the detailed processes of the RSA, which is more
comprehensible.

• The RSA is an efficient and robust algorithm for the
FMOPOP.

• The main limitation of the RSA is that there must be at
least one crisp weight. We need a network described by
crisp weights to conduct the ripple relay race.

Conclusion

Networks with crisp and fuzzy weights are of interest within
a wide range of scientific and industrial processes. In this
paper,wedefine this optimization problemas the fuzzymulti-
objective path optimization problem (FMOPOP). Each arc
has multiple crisp weights denoted by positive real num-
bers and multiple fuzzy weights denoted by triangular fuzzy
numbers (TFNs) or trapezoidal fuzzy numbers (TrFNs). We
adopt two different methods to rank fuzzy numbers based
on their fuzzy graded mean values and distances from the
fuzzy minimum number. The main contribution of this paper
is to propose an algorithm that can determine all Pareto opti-
mal paths from the source node to all other nodes within
a single run. To this end, a nature-inspired algorithm, the
ripple-spreading algorithm (RSA), is proposed. The RSA
simulates ripple spreading and triggering motions on a water
surface. We adapt the triggering condition of new ripples to
make the RSA solve the FMOPOP. We prove the optimality
of the RSA theoretically and calculate its time complexity.
Twonumerical examples of theFMOPOPare provided. In the
first example, we illustrate how theRSA solves the FMOPOP
step by step using metaphor-based language and figures. The

second example demonstrates that the RSA can solve the
FMOPOP where the number of weights is more than two.
Comparative experiments imply the high computational effi-
ciency and robustness of the RSA for the FMOPOP.

In the future study, we want to extend the RSA to path
optimization in vague, intuitionistic, and neutrosophic envi-
ronments [26]. More ranking methods and interval-valued
fuzzy sets could be adopted. Finally, the RSA can combine
with some problem-specific operations to solve real-world
applications.
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