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Abstract Constraint Programming (CP) is at the core of Artificial Intel-
ligence (AI) and has been applied to many real-world scenarios. Weighted
Constraint Satisfaction Problems (WCSPs) are one of the most important
CP models aiming to find a cost-minimal solution. However, due to its NP-
hardness, solving a WCSP usually requires efficient heuristics to explore high-
quality solutions. Unfortunately, such heuristics are hand-crafted, i.e., they
rely on domain-specific knowledge and may not be generalizable across differ-
ent cases. On the other hand, although Deep Learning (DL) has been proven
to be a promising way to automatically learn heuristics for combinatorial opti-
mization problems, the existing DL-based methods are unsuitable for WCSPs
since they fail to exploit the problem structure of WCSPs. Besides, such meth-
ods are often based on Supervised Learning (SL), making the learned heuris-
tics less efficient since generating optimal labels for large problem instances
could be infeasible. To address the above issues, we propose a novel Deep
Reinforcement Learning (DRL) framework that is able to train the model on
large-scale problems, so as to the model could mine more sophisticated pat-
terns of problems and provide high-quality solution construction heuristics
for WCSPs. By exploiting the problem structure, we effectively decompose
the problem by using a pseudo tree, and formulate the solution construc-
tion process as an Markov Decision Process (MDP) with multiple indepen-
dent transition states. With Graph Attention Networks (GATs) parameter-
ized deep Q-value network, we learn the optimal Q-values through a modified
Bellman Equation that considers the multiple transition states, and the solu-
tion construction heuristics are extracted from the learned Q-value network.
Besides constructing solutions greedily, our heuristics can also be applied to
many meta-heuristics such as Beam Search (BS) and Large Neighborhood
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2 Dingding Chen1 et al.

Search (LNS). Finally, we demonstrate the effectiveness of our proposed DRL
framework by comparing the heuristics obtained from our DRL model with
those derived from the SL model. Extensive empirical evaluations show that
our DRL-boosted algorithms significantly outperform their counterparts with
traditional tabular-based heuristics (e.g., mini-bucket elimination, MBE) and
state-of-the-art methods on benchmark problems.

Keywords WCSP · Incomplete WCSP Algorithm · Heuristics · DRL · GATs

1 Introduction

Constraint Satisfaction Problems (CSPs) [12] provide a unified framework for
general problem modeling and solving in Artificial Intelligence (AI). A CSP
consists of a fixed set of variables, each with an associated domain of values,
and a set of hard constraints on these variables to specify the allowable as-
signment combinations. Weighted Constraint Satisfaction Problems (WCSPs)
[38] are a generalization of CSPs where the constraints are no longer “hard”.
Instead, each tuple in a constraint, i.e., all variable assignments involved in
that constraint, is associated with a positive real value as a weight (usually
called a “cost”) to specify the violation degree of constraints. The objective
of solving a WCSP is to find an assignment for all variables that minimizes
the aggregated constraint cost. WCSPs have been successfully applied into
many real-world applications, including supply-chain management [20], judge
assignment [21], bioinformatics [43,48] and many others.

Algorithms for WCSPs can be classified into two categories, i.e., complete
algorithms and incomplete algorithms. Complete algorithms guarantee to find
the optimal solution and can be broadly classified into inference-based al-
gorithms [11] and search-based algorithms [28]. Search-based algorithms sys-
tematically explore the entire solution space by branch-and-bound. Instead,
inference-based algorithms employ a dynamic programming paradigm to solve
a WCSP. Since solving WCSPs is NP-Hard, complete algorithms exhibit an
exponentially increasing computation overhead and cannot scale up to large
real-world applications. Therefore, there has been considerable research effort
to develop incomplete algorithms to find high-quality solutions at an accept-
able computational overhead. Incomplete algorithms generally follow three
strategies, i.e., local search [52,32,23], belief propagation [16,9] and sampling
[33,31]. However, existing incomplete algorithms usually rely on hand-crafted
heuristics that require domain-specific knowledge to tune for different settings,
such as the large neighborhood selection policy in large neighborhood search
[35] and the temperature schedule in simulated annealing [7].

Deep Learning (DL) has been proven to be promising in learning algorithms
for solving NP-hard problems [4]. Several works have tried to leverage DL to
learn effective heuristics automatically for existing methods, such as variable
selection for a branch-and-bound algorithm [5] or a stochastic local search
algorithm [51], and branching heuristics for a backtracking search algorithm
[26]. Unfortunately, the learned heuristics are only applicable to a particular
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Leaning Heuristics for Weighted CSPs through Deep Reinforce Learning 3

algorithm and usually cannot be generalized to other algorithms. Recently,
Deng et al. [14] proposed a supervised pre-trained model to generate heuristics
for a wide range of algorithms. However, generating optimal labeled data could
be expensive, which makes the model only trained on small-scale problems and
thus affects the quality of the learned heuristics.

Instead, we propose to train the model on large-scale problems with Deep
Reinforcement Learning (DRL) to generate efficient solution construction heuris-
tics for WCSPs. Specifically, our main contributions are listed as follows:

– We propose a novel Deep Reinforcement Learning (DRL) framework where
the model could be trained on large-scale problems. As a result, our model
could capture more sophisticated patterns of problems to provide high-
quality solution construction heuristics for WCSPs. To improve computa-
tional efficiency, we propose to use a pseudo tree to decompose the problem
effectively, and formulate the solution construction process of a WCSP as
an Markov Decision Process (MDP) with multiple independent transition
states by exploiting the problem structure. In our MDP formulation, the
state is the remaining sub-problem to be solved, action space is the domain
of the target variable, and reward is the change of the current cost.

– We propose to use Graph Attention Networks (GATs) [46] parameterized
deep Q-value network to learn the optimal Q-values through a modified
Bellman Equation that considers the multiple transition states. And, the
solution construction heuristics are derived from the learned Q-value net-
work. Besides constructing greedy solutions, we embed our heuristics into
meta-heuristics including Beam Search (BS) [40] and Large Neighborhood
Search (LNS) [41]. Specifically, our heuristics can be used as a quality eval-
uation of the partial assignments in BS or as a sub-routine of LNS to repair
destroyed variables via constructing a solution greedily.

– Extensive empirical evaluations indicate that the heuristics derived from
our DRL model are superior to those obtained from the SL model [14].
Furthermore, we empirically demonstrate the effectiveness of our heuristics
by combining them with meta-heuristics including Beam Search (BS) and
Large Neighborhood Search (LNS) on various standard benchmarks.

The rest of this paper is organized as follows. We briefly review related work
in Sect. 2. The preliminaries, including WCSPs, pseudo tree, GATs, Markov
Decision Process (MDP), beam search and large neighborhood search, are
presented in Sect. 3. In Sect. 4, we describe our proposed method, including
the MDP formulation of WCSPs, graph representation and graph embedding,
the DRL training algorithm, and heuristics for beam search and large neigh-
borhood search. Finally, we present the empirical evaluation of our proposed
method in Sect. 5 and our conclusion in Sect. 6.
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4 Dingding Chen1 et al.

2 Related Work

In this section, we first review traditional tabular-based algorithms for WCSPs,
and then introduce state-of-the-art deep learning-based methods for constraint
reasoning.

2.1 Tabular-based Algorithms for WCSPs

The complete approaches for WCSPs employ either inference or systematic
search. Branch-and-Bound (BnB) is the most significant landmark of search-
based algorithm. Given a variable ordering, BnB sequentially explores the
whole solution space in a depth-first fashion. Pruning happens when the cur-
rent lower bound is higher than the known upper bound. Therefore, the bound
quality is the key of efficient pruning. Currently, several works attempt to
tighten the bounds via local consistency [27,10] or combining the benefit of
the best-first search and depth-first search strategies [1]. On the other hand,
bucket elimination [11,34] is a well-known algorithm for WCSPs that performs
dynamic programming on the variable ordering (e.g., a pseudo tree). The al-
gorithm forwards the assignment combination utilities bottom-up and then
reversely propagates the optimal decisions along with the variable ordering.
However, its memory consumption is exponential in the induced width [12].
Therefore, the memory-bound bucket elimination method [6] was proposed
to trade the runtime for smaller memory consumption. Since solving WCSPs
is NP-hard, complete algorithms require exponential computation overheads,
making them unsuitable for large-scale practical applications.

Incomplete algorithms can be generally classified into local search, belief
propagation-based and sampling-based algorithms. Inspired by Monte-Carlo
tree search, a sampling-based algorithm with confidence bounds [33] was pro-
posed for solving WCSPs. However, the algorithm requires an exponential
memory with the number of variables, limiting its application to large-scale
problems. Therefore, Nguyen et al. [31] proposed to map a WCSP to a max-
imum a-posteriori estimation problem and solve it by Gibbs sampling. Local
search algorithms [52,32] are the most popular incomplete methods for WC-
SPs, where each variable optimizes its assignment based on its local constraints
and assignments of all its neighbors. Unfortunately, these algorithms tend to
converge to local optima. Therefore, K-optimality (K-OPT) [47] was proposed
to improve the solution of local convergence by optimizing the assignments of
all variables within the K-size coalition. However, the computational effort re-
quired to find the K-optimal solution grows exponentially as K increases. Max-
Sum [16] is a classic belief propagation-based algorithm that gathers global
information by propagating and accumulating the maximum utility through
the whole factor graph. Unfortunately, Max-Sum is only guaranteed to con-
verge in cycle-free problems. Thus, Damped Max-Sum (DMS) [9] was proposed
to improve the convergence probability of belief propagation by reducing the
influence of information circulation propagation. However, incomplete algo-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Leaning Heuristics for Weighted CSPs through Deep Reinforce Learning 5

rithms still either require considerable computational efforts (e.g., K-OPT) or
exhibit poor performance (e.g., local search) in general problems. Therefore,
by leveraging its powerful representational capability, we resort to deep neural
networks to embed WCSPs to learn efficient and effective heuristics.

2.2 Deep Learning-based Methods for Constraint Reasoning

In recent years, methods that use deep learning techniques for constraint rea-
soning have received increasing attention, and can be generally divided into
Supervised Learning (SL) based and Deep Reinforcement Learning (DRL)
based methods. The classical SL-based method is NeuroSAT [39], which uses
a message-passing neural network to solve SAT (Boolean satisfiability) prob-
lems in an end-to-end fashion and further decode the satisfactory assignments.
In the method, a SAT problem is encoded as an unweighted bipartite graph to
provide permutation and variable relabeling invariance. Since the constraint
costs of WCSPs are arbitrary positive real values, the unweighted bipartite
graph is unsuitable for representing WCSPs. In addition, there are some works
that can be adapted to solve WCSPs, but they have their own limitations. For
example, Xu et al. [50] proposed to encode a binary CSP as a matrix and train
a convolutional neural network to predict the satisfiability, but the represen-
tation scheme cannot scale to arbitrary problem sizes. Instead, Galassi et al.
[19] proposed to construct a feasible solution of a CSP instance by extending
a partial assignment with a trained deep neural network. Still, this approach
is restricted to problems of a pre-determined size.

Recently, Razeghi et al. [36] and Deng et al. [15] proposed to use Multi-
layer Perceptrons (MLPs) to parameterize the high-dimensional data in bucket
elimination [11] and regret matching [22], respectively. But, the online learning
nature prevents these methods from generalizing to unseen instances. Further-
more, training MLPs requires a considerable time. Therefore, Deng et al. [14]
proposed using SL to learn a pre-trained model to construct effective heuris-
tics for a broad range of algorithms. However, constructing optimal labeled
data in SL could be infeasible in large problem instances. Instead, there is an-
other line of works that exploit DRL to learn heuristics for existing algorithms.
For instance, Yolcu and Poczos [51] proposed to use Graph Neural Networks
(GNNs) [37] to encode SAT instances and REINFORCE [49] to learn satisfy-
ing assignments inside a stochastic local search procedure. Besides, learning
branching heuristics for constraint programming via DRL has been intensively
investigated [5]. Unfortunately, these learned heuristics are solely devoted to
a particular algorithm. Instead, our proposed DRL framework aims to learn
solution construction heuristics that can be embedded in many different algo-
rithms.
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6 Dingding Chen1 et al.

 

(a)  

(b)

Fig. 1: An example of constraint graph and pseudo tree

3 Background

3.1 Weighted Constraint Satisfaction Problems

A weighted constraint satisfaction problem (WCSP) can be defined by a tuple
(X,D,F ) such that:

– X = {x1, x2, ..., xn} is a set of variables.
– D = {D1, D2, ..., Dn} is a set of finite variable domains. Each domain

Di ∈ D consists of a set of finite allowable values for variable xi ∈ X.
Besides, we denote the maximal domain size as d = maxDi∈D |Di|.

– F = {f1, f2, ..., fm} is a set of constraint functions. Each function fi :
Di1 × Di2 × · · · × Dik → R≥0 specifies a non-negative cost to each value
combination of the involved variables xi1 , xi2 , ..., xik .

For the sake of simplicity, we assume that all constraint functions are binary
(i.e., fij : Di × Dj → R≥0). A partial assignment Γ is a set of assignments
in which each variable appears at most once. The cost of Γ is calculated by
aggregating the cost of all constraints involving only the variables that appear
in the partial assignment. That is,

cost(Γ ) =
∑

fij∈F,xi,xj∈Γ

fij
(
Γ[xi], Γ[xj ]

)
(1)

where Γ[xi] is the assignment of xi in Γ . A partial assignment that includes
all variables in X is a full assignment. The goal of solving a WCSP is to find
a full assignment to minimize the aggregated constraint cost. That is,

X∗ = argmin
di∈Di,dj∈Dj

∑
fij∈F

fij (di, dj) (2)

A WCSP can be visualized by a constraint graph where a vertex represents
a variable and an edge represents a binary constraint. Fig. 1(a) gives the
constraint graph of a WCSP with four variables and four binary constraints.
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Leaning Heuristics for Weighted CSPs through Deep Reinforce Learning 7

3.2 Pseudo Tree

A pseudo tree [18] arrangement of a constraint graph is a tree with the same
nodes and edges as the original graph. It has the property that adjacent nodes
of the original graph fall in the same branch of the tree. Therefore, the sub-
problems in different branches can be solved independently. A pseudo tree
can be generated by a depth-first traversal of the constraint graph, catego-
rizing the constraints into tree edges and pseudo edges (i.e., non-tree edges).
Fig. 1(b) presents a possible pseudo tree derived from Fig. 1(a), where tree
edges and pseudo edges are shown as solid lines and dashed lines, respectively.
For a variable xi in the pseudo tree, we denote the ancestor connected with
xi through a tree edge as its parent P (xi). The ancestors connected with xi

through back edges as its pseudo parents PP (xi), and the descendants con-
nected with xi through tree edges as its children C(xi). In addition, we denote
all parents of xi as AP (xi), i.e., AP (xi) = PP (xi) ∪ {P (xi)}. Taking x2 in
Fig. 1(b) as an example, we have P (x2) = x1, PP (x2) = ∅, C(x2) = {x3, x4},
and AP (x2) = {x1}.

3.3 Graph Attention Networks

Graph Attention Networks (GATs) [46] are a convolutional neural network ar-
chitecture operated on graph-structured data. They are constructed by stack-
ing several graph attention layers such that nodes can attend over the features
of their neighbors. Furthermore, to indicate the importance of different nodes
in the neighborhood, GATs introduce a self-attention mechanism that assigns
different weights to these different nodes. In the self-attention mechanism, the
calculation of the attention coefficient between each pair of neighbor nodes is:

eij = a(Whi,Whj) (3)

where hi, hj ∈ Rd are the features of nodes i, j, W ∈ Rd × Rd is a weight
matrix, and a is a single-layer feed-forward neural network.

Then, the attention coefficients are normalized using the softmax function
to facilitate comparison between different nodes. The normalization coefficient
across node j is computed by:

αij =
eij∑

k∈Ni
exp (eik)

(4)

where Ni is the neighborhood of node i in the graph (including i). These
normalized attention coefficients are then computed by the linear combination
of their corresponding features and served as the final output feature for each
node. That is,

h′
i = σ

∑
j∈Ni

exp (αijWhj)

 (5)
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8 Dingding Chen1 et al.

where σ is a nonlinear function, such as LeakyReLU or sigmoid.
In order to stabilize the learning process of self-attention, GATs adopt

Multi-head attention [45] in which K independent attention mechanisms are
performed. Their features are averaged as:

h′
i = σ

 1

K

K∑
k=1

∑
j∈Ni

exp
(
αk
ijW

khj

) (6)

where αk
ij are normalized attention coefficients computed by the k-th attention

mechanism (ak), and Wk is the corresponding input linear transformation’s
weight matrix.

3.4 Markov Decision Process

An Markov Decision Process (MDP) is formulated as a tuple ⟨S,A, T , r, γ⟩,
where

– S is a set of environment and agent states.
– A is a set of actions of the agent.
– T (s, a, s′) = Pr(s, a, s′) is the transition function, specifying the probability

of the transition from an initial state s to a new state s′ under an action
a. Here, s, s′ ∈ S and a ∈ A.

– r(s, a) is the reward function, defining the immediate reward after taking
an action a at the state s.

– γ ∈ [ 0, 1) is the discount factor, used to weight the preferences for imme-
diate reward relative to future reward.

The agent interacts with the environment following a policy (i.e., π : S ×A →
[0, 1]) which describes the probability of taking an action from a given state.
At each decision point t, the agent observes the current state st ∈ S, selects
an action at ∈ A according to the policy π, and receives an immediate reward
r(st, at). The goal of the agent is to learn the optimal Q-function (Qπ∗(s, a)),
an action-value function that estimates the sum of future rewards after taking
an action a at the state s and following the optimal policy π∗, i.e.,

Qπ∗(s, a) = max
π

Qπ(s, a)

= max
π

Eπ,T [r(st, at) + γr(st+1, at+1) + · · · | st = s, at = a, π] (7)

The optimal Q-function is the fixed-point of Bellman Equation [3], i.e.,

Qπ∗(s, a) = Eπ,T

[
r(s, a) + γmax

a′
Qπ∗ (s′, a′)

]
(8)

According to the Bellman Equation, the Q-learning algorithm [44] can
be derived. However, the Q-learning algorithm suffers from the curse of di-
mensionality, becoming less efficient as the dimensionality of the environment
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Leaning Heuristics for Weighted CSPs through Deep Reinforce Learning 9

increases. Therefore, Deep Q-network (DQN) [29] was proposed to use a multi-
layered neural network (i.e., the main Q-network Qθ(s, a)) to parameterize
the optimal Q-function. DQN can handle complicated decision processes with
large and continuous state space by directly outputting the predicted Q-value
of each state-action pair with state features as input.

To train the main Q-network efficiently, DQN introduces an experience
replay memory and a separate target network. A First-In-First-Out (FIFO)
experience replay memory is established to store the agent’s experience to
remove the correlation between consecutive transitions. As a result, the high
variance in parameter updates and the instability of the training processes can
be reduced. The update of the parameter of the main Q-network is based on
a mini-batch of samples randomly drawn from the experience replay memory.
The target Q-network (Qθ̄(s, a)) is introduced to improve the stability of the
training process that uses temporal difference error, i.e.,

L(θ) =
(
Qθ(s, a)− r(s, a)− γmax

a′
Qθ̄ (s

′, a′)
)2

(9)

At each time step, the parameter of the target Q-network is updated towards
the main Q-network according to θ̄ ← ρθ̄+(1−ρ)θ, where ρ is the interpolation
factor in Polyak averaging for the target Q-network and between 0 and 1,
usually close to 1.

3.5 Beam Search and Large Neighborhood Search

Beam Search (BS) [40] is an incomplete derivative of Branch-and-Bound (BnB)
[28]. Different from the systematic search of BnB, BS selects the partial assign-
ments that satisfy the optimal solution conditions to branch. It uses breadth-
first search with an impermissible pruning rule to construct its search tree.
That is, at each level of the search tree, only the predetermined number (called
the beam width) of the best partial assignments is selected for further branch-
ing, while the remaining partial assignments are permanently pruned. The
beam width defines the memory required to perform the search in BS. The
larger the beam width, the fewer the partial assignments pruned. When the
beam width is infinite, no partial assignment is pruned, and thus BS is the
same as breadth-first search.

Large Neighborhood Search (LNS) [41] is a meta-heuristic that iteratively
explores complex neighborhoods in a search space to find better candidate
solutions. The algorithm iteratively improves an initial solution by repeat-
edly performing destroy and repair phases. Specifically, a subset of variables
(called Large Neighborhood, LN) is selected to discard their current values
in the destroy phase. During the repair phase, new assignments are found for
the LN variables, provided the undestroyed variables retain their value from
the previous iteration. Compared with other local search techniques, LNS is
characterized by exploring a LN at each step, with the aims of making the
search process away from local optima and finding better candidate solutions.
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GAT

Graph representation 

and embedding

WCSP instances

Deep Q-network

Fig. 2: The pipeline of our proposed method

4 The Proposed Method

The pipeline of our proposed DRL framework is shown in Fig. 2. We first re-
formulate a WCSP according to MDP. Then, we give the graph representation
and graph embedding of a WCSP instance, i.e., a parametric function that en-
codes the input problem and outputs the predicted Q-values. Next, we present
a DRL training algorithm, which determines how to learn the parameter of the
Q-network. Finally, we embed the learned Q-network into two meta-heuristics,
including beam search and large neighborhood search.

4.1 The MDP Formulation

Given a variable ordering, the solution to a WCSP instance can be con-
structed by sequentially extending a partial assignment until a full assignment
is reached. Therefore, it is natural to model the solution constructing process
as an MDP where the state is the remaining sub-problem to be solved (i.e., the
problem P under the partial assignment Γ and xi as the target variable), the
action space is the domain of xi and the reward is the change of the current
cost incurred by a new assignment of xi, respectively.

A straightforward approach to order variables is assuming a global ordering
over all variables, e.g., alphabetic ordering. However, such ordering ignores the
problem structure and fails to decompose the problem efficiently. Taking Fig.
3(c) as an example, the problem to be solved contains x3 and x4. Since there is
no constraint between x3 and x4, the problems of selecting values for x3 and x4
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Fig. 3: The solution construction process in WCSP solving as an MDP

can be solved independently, thereby reducing the computational overheads.
To cope with this issue, we propose to order variables by using a pseudo tree.

We denote the problem P given the partial assignment Γ and a target vari-
able xi as ⟨P, Γ, xi⟩. Since we use a pseudo tree as the ordering, after assigning
xi with a value di ∈ Di, the problem is reduced to multiple independent sub-
problems, i.e., each of them rooted at a child of xi. Therefore, the transition
state in our MDP formulation consists of a set of independent sub-states, i.e.,
s′ = {sc|∀xc ∈ C(xi)} where sc = ⟨P, Γ ∪ {⟨xi, di⟩}, xc⟩. As a result, the
Bellman Equation in our MDP formulation needs to be modified as:

Qπ∗(s, a) = r(s, a) + γ
∑

xc∈C(xi)

max
ac

Qπ∗(sc, ac) (10)

where ac is the action of xc.
Formally, the state, action, transition, and reward in our MDP formulation

are defined as follows:

– State: a state s is the WCSP instance P instantiated with Γ and xi as the
target variable. That is, s = ⟨P, Γ, xi⟩.

– Action: an action a = ⟨xi, di⟩ corresponds to assigning xi with a value
di ∈ Di.

– Transition: transition is deterministic, i.e, Pr(s, ⟨xi, di⟩, s′) = 1. Since we
use a pseudo tree to order variables, after taking an action ⟨xi, di⟩ at the
state s = ⟨P, Γ, xi⟩, the transition state is s′ = {sc|∀xc ∈ C(xi)} where
sc = ⟨P, Γ ∪ {⟨xi, di⟩}, xc⟩.

– Reward: the reward function r(s, ⟨xi, di⟩) is defined as the change of the
current cost when assigning xi with di at s = ⟨P, Γ, xi⟩, i.e.,

r(s, ⟨xi, di⟩) = −
∑

xj∈AP (xi)

fij
(
di, Γ[xj ]

)
(11)

It is worth mentioning that the objective function of our MDP formulation
is aligned with that of WCSPs when the discount factor γ = 1. That is because
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Target assignment

GAT
FC 

layer

Directed tripartite graph

The initial feature of variable-assignment nodes 

The initial feature of constraint-cost nodes 

The initial feature of function nodes 

The embedding of variable-assignment nodes 

The embedding of function nodes 

1. Graph representation 2. Graph embedding 3. Prediction

The Q-value of  

Fig. 4: The graph representation and embeddings of a partially instantiated
WCSP

the negative optimal Q-value of s = ⟨P, Γ, xi⟩ is equal to the optimal cost of
the sub-problem rooted at xi, ∀xi ∈ X. When xi is the root variable, the
negative optimal Q-value of s is equal to the optimal cost of the problem.

4.2 Graph Representation and Graph Embedding

A critical step of applying DL to solve combinatorial optimization problems is
to build an appropriate structure. Selsam et al. [39] proposed to encode a SAT
as an unweighted bipartite graph, where each literal and clause corresponds
to a node, and the association between the literal and clause corresponds to
an edge. However, the problem structure of WCSPs is quite different from
that of SAT in many ways. For instance, the constraint costs of WCSPs are
arbitrary positive real values, which cannot be represented by an unweighted
bipartite graph. Furthermore, a variable in a WCSP may have more than two
values in its domain, while variables in a SAT are restricted to a boolean
domain (i.e., Ture or False). Xu et al. [50] proposed to represent CSPs as a
matrix form, where each entry indicates whether the corresponding assignment
is allowed or not. Unfortunately, the representation scheme cannot scale to
arbitrary problem sizes. Recently, Song et al. [42] proposed to represent the
underlying constraint network of a CSP as GNNs, with variables as vertices
and constraints as edges. This method also cannot explicitly handle the cost
values in each constraint, making it unsuitable for WCSPs. Thus, we opt for
representing a WCSP as a directed and acyclic tripartite graph [14].

The generation of the graph representation consists of the following three
steps: first, the partially instantiated WCSP instances are converted into a
microstructure representation [24]; then the microstructure is compiled into
a tripartite graph; finally, the tripartite graph is transformed to a directed
acyclic graph (cf. Fig. 4(a)). The microstructure representation of a WCSP
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instance P = (X,D,F ) given the partial assignment Γ is a weighted undi-
rected graph, where each variable assignment that is compatible with Γ cor-
responds to a vertex, and the constraint cost between a pair of vertices is rep-
resented by a weighted edge. Afterward, the microstructure is compiled into
a tripartite graph TG = ⟨(VX , VC , VF ), ETG⟩ where VX and VC correspond
to variable assignment nodes and constraint costs (i.e., weighted edges) in the
microstructure, respectively. VF corresponds to the constraint function in the
WCSP instance. ETG contains two kinds of edges, the first class of edges is
the undirected edges between variable assignment nodes and their neighboring
constraint cost nodes. The second class of edges is the directed edges between
constraint cost nodes and their constraint function nodes.

Finally, by determining the indirect direction between VX and VC , the
directed and acyclic tripartite graph is obtained and implemented through
the following two stages. At first, the constraint graph induced by the set
of unassigned variables is constructed as a pseudo tree rooted at the target
variable. Then, for each constrained variable pair xi and xj with xi ∈ AP (xj)
and their assignments (i.e., ⟨xi, di⟩ and ⟨xj , dj⟩), the variable-assignment node
of ⟨xi, di⟩ is set to be the precursor of the constraint-cost node of fij(di, dj)
and the node of fij(di, dj) is set to be the precursor of the node of ⟨xj , dj⟩.

Since a partially instantiated WCSP instance is represented as a directed
tripartite graph, we use GATs to construct a model that learns graph embed-
dings (cf. Fig. 4(a) and (b)). In the GAT model, we set a four-dimensional

initial feature vector h
(0)
i for each node i. For the feature vector h

(0)
i , its first

three elements represent the type of node i (i.e., variable assignment node,
constraint cost node, and function node) and its last element is set to be
the constraint cost of node i if it is a constraint-cost node, and 0 otherwise.

Subsequently, h
(0)
i is embedded through T layers of the GAT by:

h
(t)
i = σ

 1

K

K∑
k=1

∑
j∈Ni

exp
(
αk
ijW

k,(t)h
(t−1)
j

) ,∀t = 1, 2, ..., T (12)

where h
(t)
i is the embeddings of node i in the t-th time step and {Wk,(t)|∀k =

1, 2, ...,K} is the parameter of the t-th layer of the GAT model.
Given a target variable assignment ⟨xi, di⟩ and a partial assignment Γ , the

optimal cost of the problem P instantiated with Γ ∪{⟨xi, di⟩} can be predicted
according to the embeddings of the variable-assignment node i (i.e., ⟨xi, di⟩)
and the cumulative embeddings of all function nodes in the tripartite graph
(cf. Fig. 4(c)). That is,

ĉi = W3

Concat

W1h
(T )
i ,W2

∑
vj∈VF

h
(T )
j

+ b1 (13)

where W1, W2, W3 and b1 are the parameters of three 1-layer Multi-layer
Perceptrons (MLPs). For the sake of description, we denote the GAT model
trained by our DRL framework as Qθ.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 Dingding Chen1 et al.

Algorithm 1 Deep Q-network for training the model

Require: number of training epochs N , number of training iterations K, problem dis-
tribution P and experience replay memory B to capacity N

1: for n = 1, ..., N do
2: P ≡ ⟨X,D,F ⟩ ∼ P, Γ ← ∅
3: build a pseudo tree for P rooted at xi

4: DFSDecision(Γ, xi)
5: for k = 1, ...,K do
6: Bs ← sample random minibatch of data from B
7: train the model Qθ to minimize Eq. (14)
8: θ̄ ← ρθ̄ + (1− ρ)θ
9: end for

10: end for
Function DFSDecision(Γ, xi)

11: s← ⟨P, Γ, xi⟩

12: di =

{
random value d′i ∈ Di,w.p. ϵ

arg maxd′i∈Di
Qθ

(
s, ⟨xi, d

′
i⟩
)
, otherwise

13: compute r by Eq. (11), Γ ← Γ ∪ {⟨xi, di⟩}
14: s′ ← {⟨P, Γ, xc⟩|∀xc ∈ C(xi)}, B ← B ∪ {(s, ⟨xi, di⟩, r, s′)}
15: for xc ∈ C(xi) do
16: DFSDecision(Γ, xc)
17: end for

4.3 The DRL Training Algorithm

To learn the parameter of our DRL model, we use Deep Q-network (DQN)
as illustrated in Algo. 1. In the algorithm, the experiences are generated and
stored into a capacitated experience replay memory B (line 1-4, 11-17). After-
ward, the DRL model is trained with the data from the experience memory
(line 5-9). Specifically, DQN first samples a WCSP instance from the prob-
lem distribution and builds a pseudo tree to order variables (line 2-3). Then, it
progressively chooses values for all variables to generate experiences (line 4, 11-
17). For each variable xi given the partial assignment Γ , DQN calls Function
DFSDecision to assign xi based on the ϵ-greedy policy, compute the reward
and transition state (line 11-13). The experience, including the initial state,
action, reward, and transition state, is then added to the experience memory
(line 14). Subsequently, DQN calls Function DFSDecision to select values
for the children of xi (line 15-17). After all variables have been assigned, DQN
uniformly samples a batch of data from the experience memory, and train the
DRL model with the temporal difference error (line 6-7). That is,

L(θ) = 1

|Bs|
∑

⟨s,⟨xi,di⟩,r,s′ ⟩∈Bs

(Qθ(s, ⟨xi, di⟩)− y(s′))
2

(14)

where s′ = {sc|∀xc ∈ C(xi)} and y(s′) = r+γ
∑

xc∈C(xi)
maxdc∈Dc Qθ̄ (sc, ⟨xc, dc⟩).

Lastly, the parameter of the target Q-network is updated towards to the main
Q-network based on the interpolation factor ρ (line 8).
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Algorithm 2 Beam search with our DRL model

Require: a WCSP instance P , the DRL model Qθ, the paramters kbw and kext
1: PT ← build a pseudo tree for P
2: B ← {∅|∀i = {1, ..., kbw}}
3: for l = 1, ..., l∗PT do
4: for xi ∈ X, levelPT (xi) = l do
5: B′ ← ∅, E′ ← ∅
6: for j = 1, ..., kbw do
7: Γ ← B[j], E ← {q(Γ, ⟨xi, di⟩) computed by Eq. (15) |∀di ∈ Di}
8: Ind←the index of the kext smallest elements in E
9: D′

i ← {di|∀di ∈ Di, i ∈ Ind}
10: B′ ← B′ ∪

{
⟨Γ ∪ {⟨xi, di⟩}|∀di ∈ D′

i

}
11: E′ ← E′ ∪ {cost(Γ ) + q(Γ, ⟨xi, di⟩)|∀di ∈ D′

i}
12: end for
13: Ind′ ←the index of the kbw smallest elements in E′

14: B ←
{
B′

[i]
|∀i ∈ Ind′

}
15: end for
16: end for
17: return arg minΓ∈B cost(Γ )

4.4 Heuristics for Beam Search and Large Neighborhood Search

Besides constructing solutions greedily from scratch, in this section, we show
that our DRL model can also be embedded into various meta-heuristics. In
particular, we consider two well-known meta-heuristics, i.e., Beam Search (BS)
and Large Neighborhood Search (LNS) and show how to apply the predicted
Q-values to these heuristics.

Since the Q-values in our model approximate the optimal cost of the sub-
problem rooted at a variable, one can use the predicted Q-values as a proxy
to evaluate the quality of each assignment. Thus, our DRL model can be
embedded into BS to guide the expansion of partial assignments and determine
which extended partial assignments are eligible for further branching. Algo.
2 gives the pseudo-code of BS with our DRL model, where the beam B is
introduced to track the most promising partial assignments and initialized as
kwb (called the beam width) empty sets at the beginning of the algorithm (line
2). BS first orders variables by using a pseudo tree PT (line 1) where l∗PT is
the maximal level of variables in PT (line 3) and levelPT (xi) is the level of
xi in PT (line 4). Then, it explores the search tree according to the level of
each variable in PT (lines 3-16). For xi, a variable at the l-th level of PT , BS
works by extending each partial assignment Γ ∈ B at most kext possible ways
according to their quality (line 6-9). The quality of each value di ∈ Di under
Γ is evaluated by:

q(Γ, ⟨xi, di⟩) = −Qθ(⟨P, Γ, xi⟩, ⟨xi, di⟩) (15)

The extended partial assignments and their evaluation values are then
stored in a new beam B′ and E′, respectively (line 10-11). After all partial
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16 Dingding Chen1 et al.

Table 1: The intermediate results of x2 when executing BS

Γ q(Γ, ⟨x2, 0⟩) q(Γ, ⟨x2, 1⟩) d2 cost(Γ ) B′ E′

{⟨x1, 0⟩} 9 11 0 0 {{⟨x1, 0⟩, ⟨x2, 0⟩}, {9, 10}{⟨x1, 1⟩} 10 11 0 0 {⟨x1, 1⟩, ⟨x2, 0⟩}}

assignments in B have been processed, the algorithm updates B with the top
kbw optimal partial assignments in B′ (line 13-14).

Next, we will take the variable x2 in Fig. 1(b) as an example to show
how our DRL model is embeded into BS with kwb = 2 and kext = 1. As-
suming that B = {{⟨x1, 0⟩} , {⟨x1, 1⟩}} and D2 = {0, 1}, x2 expands each
partial assignment Γ ∈ B with its corresponding best value d2 ∈ D2 and the
intermediate results can be found in Table 1. For Γ = B[1] = {⟨x1, 0⟩}, it
computes the quality evaluation for each value in D2 given Γ by Eq. (15).
Thus, we have q(Γ, ⟨x2, 0⟩) = 9 and q(Γ, ⟨x2, 1⟩) = 11 as shown in the first
row of Table 1. Since q(Γ, ⟨x2, 0⟩) < q(Γ, ⟨x2, 1⟩) and kext = 1, x2 assigns itself
with 0 and extends Γ with its assignment, i.e., the extended assignment is
Γ ′ = Γ ∪ {⟨x2, 0⟩}. Then, it adds Γ ′ and the corresponding evaluation value
(i.e., cost(Γ ) + q(Γ, ⟨x2, 0⟩) = 9) to B′ and E′, respectively. Thus, we have
B′ = {⟨x1, 0⟩, ⟨x2, 1⟩} and E′ = {9}.

For Γ = B[2] = {⟨x1, 1⟩}, x2 performs a similar procedure as above. As
shown in the second row of Table 1, it selects 0 for itself (since q(Γ, ⟨x2, 0⟩) <
q(Γ, ⟨x2, 1⟩)) and expands Γ to Γ ′ = Γ ∪ {⟨x2, 0⟩}. Afterward, Γ ′ and the
corresponding evaluation value are added to B′ and E′, respectively. Now,
B′ = {{⟨x1, 0⟩, ⟨x2, 1⟩}, {⟨x1, 1⟩, ⟨x2, 0⟩}} and E′ = {9, 10}. Since |B′| = kwb =
2, no partial assignment in B′ will be abandoned and thus the beam for x3 is
B = B′ = {{⟨x1, 0⟩, ⟨x2, 1⟩}, {⟨x1, 1⟩, ⟨x2, 0⟩}}.

Algorithm 3 Large neighborhood search with our DRL model

Require: a WCSP instance P , the DRL model Qθ, the proportion of destroyed variables
p, number of iterations T

1: sol← a random solution
2: for t=1,...,T do

Destroy phase
3: Xdes ← uniformly select |X|p variables from X

Repair phase
4: Γ ←

{
⟨xi, sol[xi]

⟩|∀xi /∈ Xdes

}
5: for all connected sub-problem Xcr ⊆ Xdes do
6: PT ← build a pseudo tree for Xcr

7: for l = 1, ..., l∗PT do
8: for xi ∈ X, levelPT (xi) = l do
9: compute d∗i by Eq. (16), Γ ← Γ ∪ {⟨xi, d

∗
i ⟩}

10: end for
11: end for
12: end for
13: update sol with Γ
14: end for
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Leaning Heuristics for Weighted CSPs through Deep Reinforce Learning 17

Our model can also be embedded into LNS as a repair policy which solves
each connected sub-problem by assigning variables according to the predicted
Q-values. The pseudo-code of LNS with our DRL model can be found in Algo.
3. The algorithm iteratively improves an initial solution by repeatedly exe-
cuting destroy and repair phases (line 1-14). During the destroy phase, LNS
selects the Large Neighborhood (LN) variables whose current assignment will
be discarded (line 3). Then, in the repair phase, LNS finds a new assignment
for LN variables given the assignment of undestroyed variables from the pre-
vious iteration (line 4-12). The assignment for a LN variable xi is computed
by:

d∗i = arg max
di∈Di

Qθ(⟨P, Γ, xi⟩, ⟨xi, di⟩) (16)

5 Experimental Evaluations

In this section, we conduct extensive empirical studies. We first present the
details of the experiments and training stage. Then, we compare the heuris-
tics obtained from our DRL model against those derived from the SL model
to illustrate the superiority of our DRL framework. Finally, we compare our
DRL-based algorithms with their counterparts with traditional tabular-based
heuristics (e.g., mini-bucket elimination, MBE) and state-of-the-art incomplete
WCSP algorithms on various standard benchmarks, with the aims of showing
the capability of our DRL model to boost WCSP algorithms.

5.1 Benchmarks

In this experiment, the algorithms are benchmarked on four types of prob-
lems, including random WCSPs, weighted graph coloring problems, scale-free
networks and random meeting scheduling problems.

– Random WCSPs are a general form for WCSPs, where a set of variables
are randomly constrained with one another. In the experiment, the perfor-
mance of the algorithms is evaluated by varying the number of variables
and graph density (see the detailed configurations in Subsection 5.3). The
constraint costs are uniformly selected from [0, 100].

– Weighted graph coloring problems are the problems in which every vertex
should be colored, and two adjacent vertexes should have different colors.
In the experiments, we consider weighted graph coloring problems with 3
available colors for each variable, the graph density of 0.05, and varying the
number of variables from 100 to 300. The cost of each violation is chosen
uniformly from 0 to 100.

– Scale-free networks [2] are networks whose degree distribution follows a
power law. The experiment uses Barabási-Albert (BA) model to generate
the constraint graph topology. In the beginning, we set the number of
initial variables to 10 and connect them randomly. In an iteration of the

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18 Dingding Chen1 et al.

BA process, we add a new variable and connect it with 3 variables (for
spare problems) or 10 variables (for dense problems) with a probability
proportional to the current number of links. We set the variable number
to 120, and the other parameters are the same as that of random WCSPs.

– Random meeting scheduling problems [53] are problems of persons schedul-
ing a set of meetings. We randomly select a travel time for each pair of
meetings. When the difference between the time-slots of two meetings with
overlapping persons is less than the travel time, the persons in both meet-
ings are considered overbooked, and the cost is defined as the number of
the overbooked persons. In the experiments, we set the number of partici-
pants to 90, the number of meetings to 20, and the available time-slots to
20. Each person randomly participates in two meetings, and travel times
are uniformly selected from 6 to 10.

5.2 Baselines

In the expriment, we focus on three meta-heuristics for combinational op-
timization problems, including Greedy Search (GS), Beam Search (BS) and
Large Neighborhood Search (LNS). To demonstrate the superiority of our DRL
framework, we benchmark the heuristics derived from our DRL model, those
obtained from the SL model [14] and traditional tabular-based heuristics (e.g.,
mini-bucket elimination, MBE [13]). We set the memory budget of MBE to
d6, and kwb = 4 and kext = 2 for BS. Besides, we consider three types of base-
lines: local search, belief propagation and large neighborhood search. We use a
stochastic algorithm (SA) [52] with p = 0.8 and GDBA [32] with ⟨M,NM,T ⟩
as two representative local search methods, Damped Max-Sum (DMS) [9] with
the damping factor to 0.9 as a representative belief propagation method, and
T-LNS [23] with the destroy probability to 0.5 as a representative large neigh-
borhood search method.

For a fair comparison, the configuration of the GAT model we use is the
same as that in [14]. Specifically, our model consists of 4 GAT layers (i.e. T
= 4), where the first 3 layers have 8 output channels and 8 attention heads,
and the latter layer has 16 outputs channel and 4 attention heads. Besides,
we use ELU [8] as the activation function for each GAT layer. The training
set and validation set in the expriment are derived from a WCSP random
distribution with |X| ∈ [40, 60], d ∈ [3, 15], p1 ∈ [0.1, 0.4] where p1 is the
graph density of the WCSP instance. The GAT model is implemented with
the PyTorch geometry framework [17] and trained with the Adam optimizer
[25] with a learning rate of 0.0001 and a weight decay rate of 0.00001. For the
hyper-parameters of the deep Q-network algorithm, we set the discount factor
γ to 0.99, the batch size to 64, and the number of training steps to 15000.
Finally, we average the experimental results over 50 independently generated
problems and evaluate the solution quality of all algorithms after running for
the same wall-clock time. All experiments are carried out on an Intel i7-7820X
workstation with GeForce RTX 3090 GPUs.
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Fig. 5: Solution quality comparisons of the heuristics derived from our DRL
model and the SL model on random WCSPs

5.3 Performance Comparisons

Fig. 5 shows the comparison of the DRL-based and SL-based algorithms on
random WCSPs with the graph density of 0.05, the domain size of 3, and the
number of variables varying from 100 to 300. It can be seen from the figure that,
the DRL-based algorithms have great advantages over the SL-based algorithms
on all the problems. Specifically, GS DRL, BS DRL and LNS DRL outperform
GS SL, BS SL, LNS SL by about 0.71∼5.51%, 0.94∼3.11% and 0.81∼3.63%,
respectively. This phenomenon shows that the heuristics derived from our
DRL model is better than those obtained from the SL model, and the gap
become wider when solving large-scale problems. That is because training
on large-scale problems helps the model to mine more sophisticated patterns
of WCSPs, and the scale of training problems for DRL is much larger than
that for SL. Specifically, SL uses optimal labeled data to train the model.
However, obtaining optimal labeled data is quite challenging, making SL only
trainable on small-scale problems. In the experiment, the training data for SL
comes from a random WCSP distribution with |X| ∈ [15, 30], d ∈ [3, 15] and
p1 ∈ [0.1, 0.4]. The DRL training process can be seen as an alternation between
finding “high-quality labeled data” and performing SL on the collected data.
Thus, DRL can train models on large-scale problems. The training problems
for DRL comes from a random WCSP distribution with |X| ∈ [40, 60], d ∈
[3, 15] and p1 ∈ [0.1, 0.4].

Fig. 6 shows solution quality results for all the baselines on randomWCSPs
and Weighted Graph Coloring (WGC) problems. We set the graph density to
0.05, the domain size to 10, and the number of variables varied from 100 to
300 for random WCSPs. It can be seen from Fig. 6, the performance of the
DRL-based algorithms on small-scale problems (e.g., |X|=100) is similar to
their counterparts with MBE. The advantage of our DRL-based algorithms
comes out as the number of variables increases. Specifically, our DRL-based
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Fig. 6: Solution quality comparisons: (a) random WCSPs; (b) weighted graph
coloring problems

algorithms improve their counterparts with MBE by about 2.54∼10.85% on
random WCSPs with 300 variables and 1.17∼25.4% on WGC problems with
300 variables. That is because the induced width of the built pseudo tree in-
creases with the number of variables. Concretely, the average induced width
is 43 for the problems with 100 variables and 223 for the problems with 300
variables. Therefore, in the face of complex problems, MBE needs to approx-
imate more dimensions in the variable elimination process and cannot pro-
vide tight enough bounds. T-LNS attempts to optimize by optimally solving
tree-structure relaxations of sub-problems induced by destroyed variables in
each round. It also performs poorly when solving large-scale problems (e.g.,
problems with more than 200 variables) due to ignoring many constraints. In
contrast, our LNS DRL solves the induced problem without relaxation, which
is a significant improvement over state-of-the-art methods such as DMS. Pre-
cisely, LNS DRL outperforms DMS by about 1.69∼3.42% on random WCSPs
and 7.93∼25.03% on WGC problems.

Fig. 7 shows the comparison results of random WCSPs with the number of
variables of 70, where the domain size is set to 20, the graph density is set as
0.1 for the sparse configuration, and 0.6 for the dense configuration. It can be
seen from the figure that, the DRL-based algorithms have obvious advantages
over their counterparts with MBE on these problems. Precisely, GS DRL and
BS DRL excel GS MBE and BS MBE by about 2.32% and 2.03% on the
sparse problems, respectively, and 1.39% and 1.58% on the dense problems,
respectively. LNS DRL outperforms T-LNS by about 2.64% on the sparse
problems and 4.6% on the dense problems. These phenomena show that our
heuristics can effectively improve the performance of the original algorithms.
In addition, it can be seen that the local search algorithms (e.g., SA and
GDBA) quickly converge to poor local optima, while DMS can find a better
solution in 25 seconds for the sparse problems and 200 seconds for the dense
problems. In contrast, our LNS DRL improves more steadily, outperforming
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Fig. 7: Solution qualities on random WCSPs (70 variables)
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Fig. 8: Solution qualities on random WCSPs (120 variables)

all the baselines after 60 seconds on the sparse problems and 900 seconds
on the dense problems. Specifically, LNS DRL outperforms state-of-the-art
algorithms (e.g., DMS) by about 0.43% on the sparse problems and 0.11% on
the dense problems.

Fig. 8 presents the comparisons on the random WCSPs with 120 variables,
where the domain size is set to 10, the graph density is set as 0.1 for the
sparse configuration, and 0.6 for the dense configuration. Similarly, the DRL-
based algorithms have great superiorities over their counterparts with MBE.
Concretely, GS DRL and BS DRL surpass GS MBE and BS MBE by about
2.21% and 2.76% on the sparse problems, respectively, and 0.66% and 1.55%
on the dense problems, respectively. LNS DRL outperforms T-LNS by about
9.01% on the sparse problems and 4.38% on the dense problems. Different
from the experimental results shown in Fig. 7, we can see from Fig. 8 that
our BS DRL outperforms T-LNS by about 1.8% on the sparse problems, and
the advantage on the dense problems extends to 5.12%. That is because the
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Fig. 9: Solution qualities on scale-free problems

proportion of constraints ignored by T-LNS when solving the problems with
120 variables is much larger than when solving the problems with 70 variables.

Fig. 9 shows the comparisons of normalized anytime costs on the sparse and
dense scale-free networks, respectively. In the experiment, the average induced
width is 32 for the spare problems and 77 for the dense problems. Unlike the
experiment results on random WCSPs, GS DRL and BS DRL perform worse
than their counterparts with MBE on the spare scale-free networks. That is
because the induced width of spare problems is relatively small compared
to that of random WCSPs, so MBE can provide more efficient bounds for
greedy search and beam search. Also, it can be seen from Fig. 9(a) that T-
LNS exhibits great superiorities over local search algorithms (i.e., SA and
GDBA) and is slightly lower than DMS. However, due to the effectiveness of
our heuristics, LNS DRL still outperforms state-of-arts methods (e.g., DMS)
by about 2.48% on the spare problems. On the dense problems, the advantage
of our heuristics comes out in greedy search and beam search. Specifically,
GS DRL and BS DRL outperform GS MBE and BS MBE by about 1.75%
and 0.87%, respectively. Although T-LNS exhibits its huge advantage on the
spare problems, its performance on the dense problems is even 0.72% worse
than BS DRL and 6.88% worse than LNS DRL. These results demonstrate
the necessity of our heuristics for LNS to solve structured problems, especially
when facing large-scale problems.

Fig. 10 presents the comparisons of normalized anytime costs on the ran-
dom meeting scheduling problems. The average induced width for this exper-
iment is 14, which is much smaller than that of random WCSPs. Thus, it can
be seen that the performance of GS DRL and BS DRL is also inferior to their
counterparts with MBE, similar to the experimental results on the sparse scale-
free networks. Furthermore, T-LNS achieves better performance than all the
algorithms expected LNS DRL. That is because the variables in the problem
are under-constrained, and T-LNS only needs to drop a few edges to obtain
a tree-structured problem. However, our LNS DRL still exhibits great superi-
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Fig. 10: Solution qualities on random meeting scheduling problems

orities over other competitors. Specifically, LNS DRL is superior to DMS by
about 7.87%, GDBA by abour 7.05% and T-LNS by about 3.53%. The results
demonstrate that our heuristics can improve the performance of LNS when
solving real-world problems.

6 Conclusion

In this paper, we propose a DRL framework that enables the model to be
trained on large-scale problems. As a result, the learned model could capture
more sophisticated patterns of the problems to generate effective solution con-
struction heuristics for WCSPs. In the framework, we propose to effectively
decompose the problem by using a pseudo tree, and formulate the solution
construction process as an MDP with multiple independent transition states.
Through a modified Bellman Equation, we use GATs parameterized deep Q-
value network to learn the optimal Q-values, and the solution construction
heuristics are extracted from the learned Q-value network. In addition to con-
structing greedy solutions, we embed our heuristics into BS by evaluating the
quality of partial assignments, and LNS by finding new assignments for de-
stroyed variables via constructing a solution greedily. The extensive empirical
evaluations confirm the effectiveness of our proposed DRL framework.

In the future, we plan to improve our DRL framework in the following
aspects: at first, we will exploit curriculum learning [30] to make the training
processes more stable; then, we will devote to extending our DRL model to
handle the problems with hard and higher-arity constraints; finally, we will
explore to embed our model into complete WCSP algorithms, such as ex-
tracting the domain ordering heuristics from the model for branch-and-bound
algorithms.
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