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Abstract
Novel Monte Carlo methods to generate samples from a target distribution, such as a posterior from a Bayesian analysis,
have rapidly expanded in the past decade. Algorithms based on Piecewise Deterministic Markov Processes (PDMPs), non-
reversible continuous-time processes, are developing into their own research branch, thanks their important properties (e.g.,
super-efficiency). Nevertheless, practice has not caught up with the theory in this field, and the use of PDMPs to solve applied
problems is not widespread. This might be due, firstly, to several implementational challenges that PDMP-based samplers
present with and, secondly, to the lack of papers that showcase the methods and implementations in applied settings. Here,
we address both these issues using one of the most promising PDMPs, the Zig-Zag sampler, as an archetypal example.
After an explanation of the key elements of the Zig-Zag sampler, its implementation challenges are exposed and addressed.
Specifically, the formulation of an algorithm that draws samples from a target distribution of interest is provided. Notably,
the only requirement of the algorithm is a closed-form differentiable function to evaluate the log-target density of interest,
and, unlike previous implementations, no further information on the target is needed. The performance of the algorithm is
evaluated against canonical Hamiltonian Monte Carlo, and it is proven to be competitive, in simulation and real-data settings.
Lastly, we demonstrate that the super-efficiency property, i.e. the ability to draw one independent sample at a lesser cost than
evaluating the likelihood of all the data, can be obtained in practice.

Keywords Automatic inference · Piecewise deterministic Markov processes · Zig-Zag sampler · Gradient-based MCMC ·
Super-efficiency

1 Introduction

Applications of Bayesian inference have proliferated
immensely in the most disparate fields during the recent
decades. The diffusion of Bayesian methods in several sci-
entific communities owns its credit, among other things, to
advances in software that allow one to draw samples from
a posterior distribution p(θ |y) of interest. The availability
of programs such as BUGS (Gilks et al. 1994) and JAGS
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(Plummer 2003), made standard Markov chain Monte Carlo
(MCMC) algorithms such as the Metropolis-within-Gibbs
sampler available to the community and used in many appli-
cations.

In parallel to this proliferation of applications, themethod-
ologybehindMCMCalso expanded: recent research focussed
on the exploitation of the gradient of the target density
to explore the space in a more efficient manner. Early
examples include the Metropolis-adjusted Langevin algo-
rithm (MALA) (Roberts and Rosenthal 1998; Roberts and
Tweedie 1996); and the Metropolis-adjusted Langevin algo-
rithm (MALA) algorithm (Neal et al. 2011); these algorithms
showed the practical gain in efficiency of exploiting informa-
tion from the gradient. HMC gained popularity in the 2010s
thanks to the software Stan (Carpenter et al. 2017), which
has an embedded Automatic Differentiation tool that allows
to draw samples from a target distribution, needing only the
functional form of its probability density function (pdf).

More recently, algorithms based on PDMPs (Fearnhead
et al. 2018) have been proposed and showed great poten-
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tial (Bierkens et al. 2018; Bouchard-Côté et al. 2018) thanks
to their continuous-time behaviour and to convenient prop-
erties such as super-efficiency. Nevertheless, their use is
not yet widespread, and very few papers use PDMP-based
algorithms to addressBayesian estimationproblems (Cheval-
lier et al. 2020; Koskela 2022). Even fewer papers attempt
to implement PDMP-based algorithm in a general form
(Bertazzi et al. 2021; Pagani et al. 2022), unfortunately they
don’t retain exactness.

This paper intends to help the practice to catch up with
the advances in the theory in three ways: (i) it provides a lay
explanation of the implementation of PDMP algorithms, and
specifically of the Zig-Zag sampler, making PDMPs avail-
able to a wider audience, both in terms of comprehension of
themethod and possibility of its applications; (ii) it addresses
some of the obstacles that prevent the use in practice of the
algorithms for a general target density of interest, in partic-
ular, the availability of explicit form of the gradient of the
target density and a bounding constant for it; and (iii) it pro-
vides examples of the use of PDMP algorithms for real-data
analyses.

Section 2 introduces PDMPs in their general form and
gives an example of a PDMP-based algorithm: the canoni-
cal Zig-Zag sampler. This algorithm is used as a reference
through themanuscript as its simple formulationmakes illus-
tration of many aspects of PDMPs clear and as it was shown
to outperformother PDMP-based algorithms in some applied
settings (Chevallier et al. 2020). Section 3 addresses themain
implementation problems of the Zig-Zag sampler and pro-
vides the formulation of an algorithm that requires as input
only a function that evaluates a differentiable target density
at a specific point: the Automatic Zig-Zag sampler. In Sect. 4
the performance of this algorithm is evaluated against a com-
petitive gradient-based scheme. Section 5 provides examples
of analyses carried out using Automatic Zig-Zag sampling.
Section 6 illustrates how super efficiency can be achieved
in the context provided of the Automatic Zig-Zag sampler.
Discussion and conclusions follow in Sect. 7.

2 Background: the Zig-Zag sampler

A PDMP is a continuous-time stochastic process denoted by
Zt , which, in between random times, evolves according to
deterministic dynamics.Values zt of the process can, for now,
be thought of as d-dimensional vectors with elements z(i)t for
i = 1, . . . , d. A PDMP can be defined through specifying
the following three components (Fearnhead et al. 2018):

(i) a deterministic dynamic describing the change of the pro-
cess over timewhich can be specified through an ordinary
differential equation,

dz(i)t

dt
= �i (zt ) for i = 1, . . . , t . (1)

hence the state of the process at time t+s canbe computed
as a deterministic function of the state of the process at
time t and the elapsed time s: zt+s = �(zt , s);

(ii) random switching times which happen with rate depen-
dent on the current state of the process λ(zt ); and

(iii) a transition kernel q(·|zt ) that determines the distribu-
tion of events that take place at the switching times and
depends, again, on the current state of the process zt .

The various PDMP-based algorithms differ among them-
selves in one or more of these specifics.

2.1 Definition

The Zig-Zag sampler is based on the simulation of a PDMP
composed of two, distinguishable, elements: a location X ∈
R
d and a velocity V . The velocity can be thought of as an

auxiliary variable defined on the space V = {−1,+1}d ; the
location instead, is typically the main component of interest:
the sampler is constructed so that X has stationary distri-
bution with density π(x) (e.g. a posterior density). Crucial
to the definition of the Zig-Zag sampler is that the target
density could be written as π(x) ∝ e−U (x), where U (x) is
sometimes called the potential.

Concerning the deterministic dynamics (i), the vector of
velocities v is assumed to be constant between switching
times, with each dimension of x increasing or decreasing at
the same rate, so that Eq. (1) is effectively:

dx (i)
t

dt
= v

(i)
t (2)

for i = 1, . . . , d. Given a starting state of the process (xs, vs),
the velocity then switches according to (ii) the minimum of
d non-homogeneous Poisson processs (NHPPs) with rates

λ(i)(t; xs, vs) = max

{
vs

(i) ∂

∂x (i)
U (xt), 0

}
. (3)

for i = 1, 2, . . . , d, with xt = xs + vs · t from (i). The
intuition behind this formulation of the rate λ(·) is similar to
that of many other gradient-based scheme: if the value of the
potential is growing, the chains is moving away from where
the mass concentrates, and hence the direction changes.

Lastly, (iii) the transition kernel q(·|zt) is defined by the
flipping operator Fm(·) that inverts the sign of the m-th
dimension of the velocity, wherem denotes the dimension of
the earliest event in the realizations of the NHPPs.

Fm(v(i)) =
{

−v(i) for i = m

v(i) for i �= m
(4)
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Bierkens et al 2019 (Bierkens et al. 2019) proved that a Zig-
Zag process, under mild regularity conditions, converges to
the invariant distribution of interest X with density π(x).

To obtain the earliest realization of the d NHPPswith rates
(3) it is possible sample from a one-dimensional inhomoge-
neous Poisson process with rate:

λ(t; xs, vs) =
d∑

i=1

λ(i)(t; xs, vs). (5)

The dimension in which the switch takes place is the realiza-
tion of aMultinomial randomvariable (rv)with probabilities:

pi = λ(i)(t; xs, vs)
λ(t; xs, vs) (6)

for i = 1, 2, . . . , d.
An illustration of the first steps of the simulation of a

Canonical Zig-Zag process is reported in Figure 1.

2.2 Implementation

The practical implementation of the algorithm requires sam-
pling from an NHPP with rate λ(t), where arguments xs and
vs are omitted since they are constant between switching
times. As summarised by Lewis and Shedler (1979), this can
be done either via time-scale transformation, finding τ such
that:
∫ τ

0
λ(t) dt = u (7)

given u sampled from an Exp(1); or via thinning, i.e. (i)
finding a constant upper bound λ such that λ ≥ λ(t), either
globally ∀t or in some interval [a, b], (ii) sampling a candi-
date point τ ∗ from an homogeneous Poisson process (HPP)
with rate λ and (iii) accepting the candidate point with prob-
ability λ(τ∗)

λ
. These sampling techniques are illustrated in

Fig. 2.
Analytically determining the point τ that satisfies Eq. (7)

is often impossible, above all due to the maximum contained
in (3). Solving Eq. (7) numerically is often more expensive
than finding a suitable upper bound λ and simulating the
process via thinning: while the latter requires only a lim-
ited, wisely chosen, number of evaluations of the objective
function, numerical integration implies a discretization of the
domain t and the evaluation of the function at these numer-
ous discrete points. Hence, here the thinning method is used
to simulate an NHPP.

Using the ingredients of Eqs. (2), (3), and (4), it is pos-
sible to obtain the positions and the velocity of the process
at each switching time tk :

{
xtk , vtk

}K
k=1. These are called the

skeleton points of the sampled distribution. The value of the
process at each time t between two skeleton points can then

(a) xs

[
0.5
1.1

]
, vs

[+1
−1

]

(b) λ(1), λ(2)

(c) xt1 , vt1

[−1
−1

]

(d) xt0:tL , vt0:tL

Fig. 1 Simulation of a Zig-Zag process targeting a bivariate indepen-
dent standard normal distribution . a Initial location and velocity; b
time-varying rate and samples from the NHPP for dimension 1 (black)
and 2 (grey); c first switching time; d first 50 switching times (white)
and continuous-time sample (grey)
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(a)
∫ τ

0 λ(t)dt = u

(b) Samples from the HPP (dotted vertical lines) with rate

λ (dashed) accepted with probabilities λ(τ∗)
λ

(stars).

Fig. 2 Sampling mechanisms for a NHPP: a time-scale transformation
and b thinning method

be obtained using the deterministic dynamics of Equation (2)
which results in:

xt = xtk + vtk (t − tk) for t ∈ [tk, tk+1].

The pseudo-code of the Zig-Zag sampler with thinning
when a global upper bound λ is known, is reported in Algo-
rithm 1.

2.3 Beyond canonical Zig-Zag sampling

The Canonical Zig-Zag algorithm is not the only exam-
ple of the use of PDMPs to sample from a target density
of interest π(x). The basic algorithm can be changed and
extended in a number of ways to improve its performance
on specific targets; moreover, different deterministic dynam-
ics and switching rates/kernels can been used to formulate
other PDMP-based algorithms (see, for example Bouchard-
Côté et al. (2018), Wu and Robert (2020), and Bierkens et al.
(2020)). Nevertheless, the focus of this paper is on theCanon-
ical Zig-Zag algorithm to provide a simple example where
our methods are applicable.

Algorithm 1 Canonical Zig-Zag algorithm with thinning
with known global bound λ.
Require: Initial velocity v0; initial location x0; total number of skeleton

points to be sampled K ; functions to compute the dimension-wise
and global switching rate λ(·) and λ(i)(·); an upper bound for the
global rate λ .

Ensure: Time, location and velocity at K skeleton points:
{tk , xk, vk}Kk=1

1: t0 = 0 #set starting time
2: t ←� t0, x ←� x0,v ←� v0

#set current state of the process
3: while k ≤ K do
4: τ ∗ ∼ Exp(λ) #propose switching time
5: λ(τ ∗) = ∑d

i=1 λ(i)(τ ∗;x,v)

# compute the global rate at τ ∗
6: u ∼ Ber( λ(τ∗)

λ
) # accept/reject τ ∗

7: if u = 1 then
8: t ←� t + τ ∗ #progress time
9: x ←� x + vτ ∗ #progress location

10: m ∼ Multinom

(
1 : d;

{
λ(i)(τ∗;x,v)

λ(τ∗)

}d
i=1

)

#sample component
11: v ←� Fm(v) #flip velocity of dim m
12: tk ←� t, vk ←� v, xk ←� x

#save skeleton point
13: k = k + 1
14: else
15: t ←� t + τ ∗ #progress time
16: x ←� x + vτ ∗ #progress location
17: v ←� v #retain velocity
18: end if
19: end while

2.3.1 Non-canonical Zig-Zag sampling algorithms

The switching rate in Eq. (3) could be further extended by
adding an excess switching rate γ (i)(xt , vt) such that

{
γ (i)(xt , vt) ≥ 0

γ (i)(xt , vt) = γ (i)(xt , Fi (vt)).
(8)

leading to switching rate:

λ(i)(t; xs, vs) =max

{
vs

(i) ∂

∂x (i)
U (xt), 0

}

+ γ (i)(xt , vt)

(9)

for i = 1, . . . , d.
This simple modification, discussed in Bierkens et al.

(2019), allows the process to still converge to the correct tar-
get distribution (Bierkens et al. 2019) and slightly increases
the event rate, generating extra switching times in addition to
those driven by the potentialU (x). These switches are often
called refreshments and, while in principle adding exces-
sive refreshments will impoverish the mixing of the process
(Andrieu and Livingstone 2021), many interesting constructs
such as the Zig-Zag with subsampling, can be built by con-
sidering refreshment switches.
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Other extensions have been formulated, in order to
improve the performance of the Zig-Zag sampler on specific
distributions/applications (e.g. heavy tailed distributions,
highly correlated distributions, variable selection problems,
etc.). One of these extension proposed the addition of moves
beyond the flipping operator or the extension of the velocity
domain beyond V = {−1;+1}d (see for example Chevallier
et al. (2020)). Vasdekis and Roberts (2021) proposed the use
of a function S(xt) that allows the acceleration of the pro-
cess according to its position (e.g. speeding up in the tails).
In a recent work (Bertazzi and Bierkens 2020), an adaptive
version of the Zig-Zag sampler and other PDMP algorithms
was proposed, whereby the velocity is changed so that the
performance of the algorithm would be equal to that of the
canonical Zig-Zag sampler on an isotropic Gaussian distri-
bution. This was proven to substantially improve efficiency.

3 Automatic Zig-Zag sampling

This section describes some methods to allow the automatic
use of the Zig-Zag process. Here automatic means that the
only input needed is a differentiable functional form for the
potential U (x) = − log(π(x)) + c, where π(x) is the target
density. Note that this goal, not only implies that manual
differentiation of U (x) should not be needed prior to start
the analysis, but also that the algorithm should be run (i.e.
produce a sample from the PDMP) without relying on any
external information about properties of the density such as
its concavity or bounds.

3.1 Automatic differentiation

AD is a set of techniques that, given a function f (x) : R
n →

R
m , allows the evaluation of f ′(i)(x0), the derivative of f for

a specific point x0 ∈ R
n w.r.t dimension i = 1, . . . , n (Bay-

din et al. 2018). Notably, Automatic differentiation, not only
provides an exact solution, but also it tends to be efficient:
following the Cheap Gradient Principle, the computational
cost of computing the gradient of a scalar-valued function is
nearly the same (often within a factor of 5) as that of simply
computing the function itself (Griewank and Walther 2008).

The basis of Automatic Zig-Zag sampling is in computing
the rate at Eq. (3) via AD for the point xt = xs + vs · t
whenever needed; Algorithm 1 follows identically as before.

Since AD does not introduce any numerical approxima-
tion, all results proven for the Zig-Zag sampler (e.g. the main
convergence statements of Bierkens et al. (2019)) hold for the
Automatic Zig-Zag sampler.

3.2 Rate bounds

In the practical implementation of the Automatic Zig-Zag
sampler, the main challenge is to find an upper bound for the

global rate λ(t) of the NHPP. While a global or local upper
bound to the gradient of U (x) might be known for many
distributions of interest, we are looking for a general method
that could bound, at least locally, any closed-form density of
interest.

Constant upper bounds are used here and should be found
under the consideration that if the upper bound is too large,
then a large amount of computational effort is wasted in sam-
pling candidate skeleton points (and evaluating λ(i)(t)) that
are then rejected. Therefore, the upper bound should be as
close as possible to the time-varying rate λ(t). Hence, a prag-
matic approach is chosen: the rate bound is defined locally
(i.e. specific to the current location and velocity of the pro-
cess) to be the maximum of the global rate in an interval of
size tmax:

λ(tmax, xs, vs) = max
t∈[0,tmax] {λ(t; xs, vs)} (10)

which, for brevity is denoted by λ, dropping the notation of
the local dependence. If no events are sampled in theNHPP in
the interval [0, tmax], then the Zig-Zag process jumps straight
to zs+tmax = (xs + vs · tmax, vs) without any further evalu-
ations of the rates. The rate bound is then re-evaluated for
the next interval and sampling continues. Values of tmax are
further discussed in Sect. 3.3.

Since λ(t) consists of a blackbox and there is no explicit
form of the rate function, finding an analytical maximum
is impossible. Among the numerical optimization methods,
gradient- and Hessian-free methods are particularly attrac-
tive since they are highly efficient and robust for univariate
optimization problems, such as this one.

3.2.1 Brent’s optimization method

Similarly to other univariate optimization methods, the goal
of this routine is to obtain the minimum of an objective func-
tion f : R

1 → R
1 (if the maximum is needed, as in this

case, the optimization routine is run on − f instead). Brent’s
method (Vetterling et al. 1992) combines inverse parabolic
interpolation with Golden Section search (Kiefer 1953).

Parabolic interpolation starts from three points (a, f (a)),

(b, f (b)), (c, f (c)) such that a < b < c, f (b) ≤ f (a) and
f (b) ≤ f (c), and finds the abscissa x of the vertex of a
parabola interpolating the three points via the formula:

x = b−1

2

(b − a)2[ f (b) − f (c)] − (b − c)2[ f (b) − f (a)]
(b − a)[ f (b) − f (c)] − (b − c)[ f (b) − f (a)]

(11)

Substituting the highest point among (a, f (a)), (b, f (b)),
(c, f (c)) with (x, f (x)) and iterating this formula, until a
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fixed tolerance is reached, should approach the minimum of
the function f .

The Golden Section search brackets theminimum of f (x)
with intervals that are chosen to respect the golden ratio
1+√

5
2 , so that their width can be reduced most efficiently.
The Brent method combines these two methods by keep-

ing track of 6 points:

a / b lowest/highest point of the interval bracketing the mini-
mum

x best candidate minimum point found so far
v point with the second least value found so far
w value of v at the previous iteration
u point of the most recent evaluation of f

The optimization scheme is as follows:

1. Propose a new point x∗ by parabolic interpolation with
Eq. (11) on (x, f (x)), (v, f (v)) and (w, f (w))

2. if the new point lies in the bracketing interval: a ≤ x∗ ≤
b
and convergence is obtained by steps that are increas-
ingly smaller | f (x)− f (x∗)| ≤ 0.5| f (v)− f (w)| accept
the new proposed point and uprate the bracketing interval
to either (a, x) or (x, b)

3. otherwise update the bracketing interval by Golden
Search.

These steps are iterated until some tolerance is reached.
Note that the Golden Search method is slow and highly

reliable, while polynomial interpolation is much quicker but
is founded on the assumption that the function has an approx-
imately parabolic behaviour. Brent’s method would then be
at worst as slow as Golden Search method.

3.2.2 Modification for Zig-Zag

In the application considered here, Brent’s optimization
method is used to solve Equation (??) and obtain a maxi-
mum. In this context, a few considerations can be made:

(i) If the distribution considered is unimodal, the rates (??)
will be often monotonic;

(ii) If tmax is chosen to be smaller than the distance to the
nearest mode, even in the case of a multimodal dis-
tribution, the rates would be mostly monotonic in the
optimization interval [0, tmax];

(iii) If the function to be maximised is monotonic in the inter-
val [0, tmax], the maximum is either at 0 or at tmax.

Given these considerations, Brent’s method can be mod-
ified and computations can be shortened after some tests

for monotonicity. For this reason, a modification to Brent’s
method is proposed: after the first iteration is carried out, a
check is run to assess if any of the two limits of the brack-
eting interval are unchanged. If so, then a second check is
performed to confirm that the rate function approaches the
end of the interval from below, by evaluating λ(t; xs, vs) a
distance ε from the end, for some small ε > 0. If this is the
case, the rate is assumed to be monotonic in [0, tmax] and the
value of the rate at the selected limit is taken as upper bound
λ; alternatively Brent’s algorithm is run until convergence to
the resulting maximum x and set λ = x .

3.3 Tuning of tMAX

With Eq. (11), a parameter tmax is introduced into the
Automatic Zig-Zag algorithm. This is effectively a tuning
parameter, with λ being more or less local according to the
magnitude of tmax.

When tmax is small,λwouldbevery local,withλ(t; xs, vs)
varying little in the interval, the rate should be smaller, hence
the HPP proposal events should bemore rare, making it more
likely for the PDMP to reach tmax without any switch; every
time this happens, another optimization step needs to be run

(a) Small tmax

(b) Large tmax

Fig. 3 Tuning of tmax. a A deterministic step encouraged by the choice
of a small value. bMany proposals of HPP prior to acceptance, caused
by a very large value of the local bound
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to obtain a new bound λ. On the other hand, if tmax is very
large, HPP events are likely to be proposed more often, and
for all the proposed times the rate λ(s) has to be evaluated.
An illustration of this tuning criterion can be found in Fig. 3.

Algorithm2AutomaticZig-Zag algorithmwith thinning and
local optimization.
Require: Initial velocity v0; initial location x0; total number of skeleton

points to be sampled K ; functions to compute the dimension-wise
and global switching rate λ(·) and λ(i)(·); tmax the tuning parameter.

Ensure: Time, location and velocity at K skeleton points:
{tk , xk, vk}Kk=1

1: t0 = 0, k = 1 #set starting time and skeleton count
2: t ←� t0, x ←� x0,v ←� v0 #set current state of the process
3: λ = maxt∈[0,tmax] {λ(t;x,v)} #compute upper bound
4: τ ∗ ∼ Exp(λ) #propose switching time
5: τ opt ←� τ ∗ #track time from last optimization
6: while k ≤ K do
7: u = 0 #set acceptance to 0 until next proposal
8: while τ opt ≤ tmax and u = 0 do
9: λ(τ opt ) = ∑d

i=1 λ(i)(τ opt ;x,v) # compute the global rate at
τ opt

10: u ∼ Ber( λ(τ opt )

λ
) # accept/reject τ opt

11: if u = 1 then

12: m ∼ Multinom

(
1 : d;

{
λ(i)(τ opt ;x,v)

λ(τ∗)

}d
i=1

)
#sample

component to switch
13: t ←� t + τ opt #progress time
14: x ←� x + vτ opt #progress location
15: v ←� Fm(v) #flip velocity of dimension m
16: tk ←� t, vk ←� v, xk ←� x #save skeleton point
17: k = k + 1 #increase skeleton count
18: λ = maxt∈[0,tmax] {λ(t;x,v)} #compute new upper

bound from switch
19: τ ∗ ∼ Exp(λ) #propose switching time
20: τ opt ←� τ ∗ #reset time from last optimization
21: else
22: τ ∗ ∼ Exp(λ) #sample new time increment
23: τ opt ←� τ opt + τ ∗ #compute new switching proposal
24: end if
25: end while
26: if τ opt > tmax and u = 0 then #if the horizon is reached with

no switch
27: t ←� t+ tmax #progress time deterministically until horizon
28: x ←� x + vtmax #progress location deterministically until

horizon
29: v ←� v #retain velocity
30: λ = maxt∈[0,tmax] {λ(t;x,v)} #compute new upper bound

from new location
31: τ ∗ ∼ Exp(λ) #propose switching time
32: τ opt ←� τ ∗ #reset time from last optimization
33: end if
34: end while

The optimal tmax is chosen by minimizing the number
of evaluations of the rate λ(s) per switching time, which
includes both the evaluations within the optimization algo-
rithm and the computation of the acceptance probabilities.
This can be done via some preliminary runs of the algorithm.

The pseudo-code of the Automatic Zig-Zag sampling tak-
ing as input a value of tmax is reported in Algorithm 2.

4 Performance evaluation

This section investigates the performance of the Auto-
matic Zig-Zag sampler. The performance is tested on some
bivariate distributions starting from an uncorrelated bivari-
ate normal and exploring increasingly-more-challenging
features.Main results are reported in Sect. 4.3 and an exhaus-
tive description of each simulation is reported in Online
Resource 1.

4.1 Performancemetrics

Performance is evaluated according to two criteria: efficiency
and robustness.

4.1.1 Efficiency

To measure efficiency, the Effective Sample Size (ESS) of
the sample drawn with the two algorithms is compared; the
samplers are run given a specific budget. The computational
budget c is defined as the total number of evaluations of the
gradient of the minus-log density of the target distribution
(∇U (x)).

For the Automatic Zig-Zag algorithm, the number of gra-
dient evaluations required to produce each skeleton point
comprises, for skeleton point k: Copt

k , the number of evalu-
ations of the switching rate during the optimization routine
to find the bound λ; and Ctpp

k , the number of proposed times
for the thinned Poisson process. The number of evaluations
over all the sampled skeleton is:

Czz =
K∑

k=1

{
Copt
k + Ctpp

k

}
(12)

and therefore, the sampler stops at the smallest K such that
Czz ≥ c.

For a canonical HMC algorithm that performs L leapfrog
steps per iteration and K iterations, the number of evaluation
of the gradient is:

Chmc = (L + 1) × K . (13)

Hence the sampler is run for K = c
L+1 steps.

The Automatic-Zig-Zag efficiency is computed using the
ESS for continuous-time trajectories presented in Bierkens
et al. (2019) (Supplementary Information S.2) for the func-
tion h(x) = xi for all the i coordinates. Similarly, the
batch-means approach for ESS calculated from discrete-time
samples is used to evaluate the efficiency of the runs of the
HMCalgorithm. To summarise the results in ESS acrossmul-
tiple dimensions, it is useful to compare the dimension with
smallest ESS (Median ESS over 100 independent chains)

123



  107 Page 8 of 16 Statistics and Computing           (2022) 32:107 

since this dimension mixes more slowly and hence constrain
the chain to an overall slower mixing.

4.1.2 Robustness

The other aspect examined to assess the performance of the
Automatic Zig-Zag sampler was whether or not the algo-
rithm was robust with respect to particular features of the
distribution (e.g. heavy or light tails, multimodality).

In particular, the ability of a tuned algorithm to properly
explore the target distribution was investigated, even when
starting from location far away from the mode. This was
conducted mainly graphically and robustness was assessed
qualitatively.

4.2 Simulation set up

The Automatic Zig-Zag algorithm is compared with the
Canonical HMC algorithm (for a description of the latter
see Sect. 3 of Neal et al. (2011) or Section S1 of Online
Resource 1 of this paper). The HMC algorithm is said to be
canonical when, in the velocity-position framework similar
to the one defined above, the velocity is sampled from an
independent multivariate Normal distribution. This is a rigid
structure, compared to other versions of the HMC algorithm
that choose a velocity distribution optimally with respect to
the target density. Similarly, the version of Zig-Zag sampler
used here is the canonical Zig-Zag, which employs constant
velocities in {−1,+1}d , with no attempt to choose an optimal
velocity that matches to the target distribution.

Both algorithms are tuned before the comparison via pre-
liminary runs. More specifically, tmax is chosen according to
the criterion explored in Sect. 3.3, while the choice of the
tuning parameters of the HMC (i.e. the total integration time
L × ε and of the number of leapfrog steps L) is known to
be a troublesome task (Sherlock et al. 2021). The procedure
adopted here for tuning includesmany graphical assessments
and is reported in Section S1 of Online Resource 1.

4.3 Results

The results of the efficiency analysis on various forms of
Bivariate Gaussian distribution are reported in Table 1. The
algorithms were tested on an isotropic Gaussian distribu-
tion (IsoG2); on a bivariate Gaussian distribution where
the two components had the same scale and high correla-
tion ρ = 0.9 (CorG2); on a bivariate Gaussian distribution
with independent components with very different scales
σ 2
1 = 1, σ 2

2 = 100 (DscG2); and on a bimodal distribution,
a mixture of Gaussians (BimodG2).

The two algorithms performed very similarly on IsoG2
(with aESS less then20% largerwhenHMCwasused),HMC
proved to be 4 to 5 times more efficient than Automatic Zig-

Table 1 Smallest ESS (Median) obtained with the Automatic Zig-Zag
algorithm and HMC algorithm given a pre-specified budget on bivariate
Gaussian distributions and heavy-/ light-tailed distributions

Target Sampler min Me ESS

IsoG2 ZZ 1723

HMC 2049

CorG2 ZZ 317

HMC 1419

DscG2 ZZ 261

HMC 43

BimodG2 ZZ 185

HMC 727

LT2 ZZ 1311

HMC 2820

HT2 ZZ 85

HMC 182

Zag sampling on CorG2. Conversely, Zig-Zag samplingwas
6 to 7 times more efficient than HMC on DscG2. Despite
the intrinsic advantage of HMC, which is built to perform
excellently on Gaussian targets, the observed comparable
efficiency shows that the Automatic Zig-Zag sampling is
competitive.

With respect to robustness on these Gaussian targets, both
algorithms performed well: the chains started in the mode
reached the tails with adequate frequency and the chains ini-
tiated in the tails quickly converged towards the mode and
continued to explore the target distribution.

The performance was then tested against an heavy-tailed
bivariate target (HT2) and a light-tailed bivariate target
(LT2). The former is assumed to be distributed according
to a bivariate Student-T with 2 degrees of freedom and the

latter is assumed to have density p(x) ∝ e−∑d
i=1 x

4
i /4 for

d = 2. HMC was twice as efficient as Automatic Zig-Zag
on HT2, whilst on LT2, HMC was almost two times more
efficient than Automatic Zig-Zag.

The Automatic Zig-Zag algorithm however, proved to
be more robust to these two examples providing consistent
exploration of the tails in HT2 and fast convergence towards
the mode when starting in the tails for both HT2 and LT2.
These are reportedgraphically inFig. 4wheremultiple chains
starting from a grid of values in the tails of the distribution
were run for a limited number of iterations/skeleton points.
In Figs. 4a and c the rapid convergence towards the mode
of the Zig-Zag algorithm can be appreciated. Conversely,
the HMC chains struggled to move towards the mode of the
heavy tailed distribution (Figure 4b) and did not move at all
on the light-tailed distribution (Figure 4d): the gradient in
these locations suggested proposals far off in the opposite
tail which were then never accepted.
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(a) Automatic Zig-Zag on HT2 (b) HMC on HT2

(c) Automatic Zig-Zag on LT2 (d) HMC on LT2

Fig. 4 Robustness of the algorithms on heavy- and light-tailed distribu-
tions: the two algorithms are tuned a priori and the chains are initiated
at a grid of values in the tail of the distribution (dots). The Zig-Zag algo-

rithm stops at 1000 skeleton points and HMC stops at 1000 iterations
(final sample denoted by a star). When the chains don’t move, such as
in panel (d), the first and last sample overlay

Comprehensive results from the simulation study, includ-
ing illustrations of the optimality of the tuning of the
Zig-Zag algorithm, are reported in Section S3 of Online
Resource 1.

5 Real data applications

In this section, some examples of the application af Auto-
matic Zig-Zag sampling to real data analyses are proposed.
The first is an example of a non-linear regression model
from a Bayesian Methods textbook (Carlin and Louis
2008); and the second example is a parametric survival
model.

5.1 A textbook example

We reproduce the analysis of (Carlin and Louis 2008, page
176), which analyses data on dugongs (sea cows), consider-
ing a non-linear growth model to relate their length in meters

(Y j ) to their age in years (z j ). The model assumed is:

Y j = α − βγ z j + ε j for j = 1, . . . , J (14)

with normally distributed errors ε j
i id∼ N (0, σ 2).

The parameters are α > 0, β > 0, 0 ≤ γ ≤ 1, σ > 0; the
parameters are explored on the following transformed space:

x1 = log(α)

x2 = log(β)

x3 = log

(
γ

1 − γ

)

x4 = log(σ ).

(15)

The priors are assumed flat on their original domain except
for γ which has a Beta(7, 7/3) prior. This model presents
some challenges in that this parametrization favours correla-
tion in the posterior distribution and different scales for the
parameters.
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Fig. 5 Selection of tmax via preliminary runs. Violin plots of the total
number of gradient evaluations form 100 samples of 1000 skeleton
points at given values of tmax

The selection of an appropriate tmax was done via prelim-
inary runs, as described in Sect. 3, that guided the choice of
an efficient value at tmax = 0.02 (see Figure 5).

The comparative results against HMC showed the same
pattern observed in Sect. 4:HMCwas slightly faster thanZig-
Zag in exploring the space, leading to an increased ESS given
a limited budget . Zig-Zag however was much more robust to
the choice of initial values: it was able to reach themass of the
distribution very quickly. Conversely HMC often remained
stuck in initial values (or in other values away from themode),
struggling to reach convergence (Figure 6). This behaviour
was also observed when more elaborate adaptations of HMC
were used, such as the Non U-Turn Sampler (Hoffman and
Gelman 2014) implemented in the softwareStan (Carpenter
et al. 2017).

5.2 Parametric survival model

Automatic Zig-Zag was tested on the inference of a Bayesian
parametric survival regression model fitted to a sample of
individuals from a large synthetic database (Health Data
Insight CiC, n.d.). The whole data are described below and a
model was fitted initially to a sample of 500 individuals. The
dataset is analysed in full in the next section, where automatic
super-efficiency is explored.

5.2.1 Data

The dataset comprises information on 2,200,626 synthetic
patients and their 2,371,281 synthetic tumours, including the
time of each cancer diagnosis, the time/type of final event
observed (i.e. time of death if dead or censoring time if alive),
basic demographics of the patients and on their tumour his-
tory (e.g. time of surgery if surgically addressed, therapy type
and timings).

(a) Automatic Zig-Zag skeleton

(b) HMC samples

Fig. 6 Skeleton plot a and HMC chains b for the 4 parameters when
initiated in location not close to the mode: while Zig-Zag rapidly con-
verges to the true value, HMC takes much longer to reach convergence
or, in some case does not move

A parametric survival regression model (Jackson 2016)
was fitted to these data in order to explain the survival-
time from first tumour diagnosis with few individual-specific
covariates. Note that the results reported here should not be
interpreted as real, not only because the data used are syn-
thetic, but also because the effects estimated here should be
corrected for other covariates which were not included in
this analysis and are known to affect and confound survival
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from diagnosis. Other simplifying assumption were made,
including uninformative missingness, uninformative loss to
follow-up and no left censoring. Thanks to the high com-
pleteness of the dataset only 2,565 patients were excluded
due to missing at least one key variable (i.e. date/type of
final outcome).

The final dataset analysed consisted of: a set of times t j
fromdiagnosis of thefirst tumour to either death or censoring;
a set of event type c j , with c j = 1 for death and ci = 0 for
(administrative) censoring; and a set of covariates z1j , . . . , z

g
j

for j = 1, 2, . . . , J , with J= 2,198,061 individuals.

5.2.2 Model

A Weibull model was assumed, i.e. the time to death has
probability density function:

f (t;μ, α) = α

μ

(
t

μ

)α−1

e
−

(
t
μ

)α

(16)

and survival function:

S(t;μ, α) = e
−

(
t
μ

)α

(17)

so that the overall likelihood of the vectors of outcomes t =
t1, t2, . . . , tJ and c = c1, c2, . . . , cJ is:

�(t, c|μ, α) =
J∏

j=1

Ic j=1 f (t;μ, α) + Ic j=0S(t;μ, α) (18)

The scale parameterμwas related to the covariate of interest
z1, . . . , zg via log link:

log(μ j ) = β0 + β1z
1
j + · · · + βgz

g
j (19)

Let z1j be the age at diagnosis of patient j , and z2j be the dis-
crete variable identifying the spreading status of the cancer:
if z2j = 0, the cancer of patient j haven’t spread to other sites

(i.e. it is in stage 2 or smaller) if z2j = 1, the cancer of patient
j is likely to have spread to other sites (i.e. it is in stage 3 or
greater).

In the Zig-Zag notation, the location vector X was then
composed by all the parameters of the model:

X = (log(α), β0, β1, β2) . (20)

5.2.3 Results for 500 individuals

A randomly selected subset of J = 500 individuals was
initially analysed.

In this model, the parameter space is slightly unbalanced:
the first component (log(α)) highly affects the shape of the

potential, constraining all the other components, hence the
MCMC is doomed to mix slowly overall. This ill-behaviour
is a combination of two aspects explored in the simulations
of Sect. 4: the components of X have different scales and are
highly correlated.

The Zig-Zag sampler performed satisfactory in explor-
ing this challenging target distribution: it was shown to be
more robust than a properly-tuned HMC (results reported in
Section S4 of Online Resource 1). Moreover, the Zig-Zag
sampler was shown to be more efficient than HMC, achiev-
ing systematically higher ESS on all dimensions as reported
in Figure 7.

These results come from the analysis of a small subset of
the population but, as more data are included, the evaluation
of the likelihood and its gradient becomes more and more
expensive, and the overall exploration of the space is slower.
This motivates the need to exploit super-efficiency which is
described in Sect. 6 in a general context. Results from the
analysis of the full dataset using our super-efficient Zig-Zag
sampler are presented in Sect. 6.4.

6 Automatic super-efficiency

One of the most appealing properties of the Zig-Zag algo-
rithm, and of PDMPs more generally, is super-efficiency.
An algorithm is defined to be super-efficient if it “is able
to generate independent samples from the target distribution
at a higher efficiency than if we would draw independently

Fig. 7 Violin plot of the ESS of each dimension obtained on 100 sim-
ulated chains of HMC and Automatic Zig-Zag given a pre-sepcified
budget of 200000 gradient evaluations
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from the target distribution at the cost of evaluating all data”
(Bierkens et al. 2019).

6.1 Subsampling

Super-efficiency can be obtained if the potential U (x) takes
a particular form. Specifically, consider U (x) for which
∂iU (x) = ∂U (x)

∂xi
admits representation:

∂iU (x) = 1

J

J∑
j=1

E j
i (x) (21)

for i = 1, . . . , d. This representation is available, for exam-
ple, when the target density can be factorised in a series of J
components (e.g. a sum of J observation-specific likelihoods
of independent and identically distributed (iid) observations).

With representation (21), the following steps allow the
construction of an algorithm to sample from the correct target
distribution.

1. Define a dimension-specific collection of switching rates
(with i = 1, . . . , d indexing the dimension), where
each element of the collection can be thought of as the
observation-specific factor of the potential (with j =
1, . . . , J indexing the observation):

m j
i (t) := max

{
vi E

j
i (x(t)), 0

}
(22)

for i = 1, . . . , d; j = 1, . . . , J .
2. Find a collection-specific function Mi (t) which bounds

all the rate of a specific dimension i :

m j
i (t) ≤ Mi (t) for all j = 1, . . . , J

for i = 1, . . . , d. This bound can vary over time t or be
constant, i.e. Mi (t) = ci .

3. Sample the first event time from d homogeneous Poisson
processes: τi ∼ PP(Mi (t)) and take:

τ = min {τ1, τ2, . . . , τd}
i0 = argmin {τ1, τ2, . . . , τd} .

4. Sample an index of the observations:

j0 ∼ Uniform(1, 2, . . . , J ).

5. Accept the switch for dimension i0 with probability
m j0

i0
(τ )/Mi0(τ ).

The process of using only one observation (or, any other
unbiased estimator of ∂iU (x) in (21) which uses less than
J computations) is called subsampling. Subsampling as

described above (i.e. when only one observation is used)
allows to reduce computational complexity of the algorithm
by a factor O(J ). This result has been proven in Bierkens
et al. (2019) and a few considerations were drawn: the result-
ing chain mixes more slowly than a chain obtained with the
non-subsampling algorithm; nevertheless, control variates
can be used to further improve the efficiency of the Zig-Zag
with subsampling.

A straightforward way to extend the methods presented
in Sect. 3 is to allow the input to be directly the observation-
specific density Ei

j , with the formulation of a generic
potential which depends on the observation index j .

6.1.1 Challenges

To properly implement subsampling, a collection-specific
upper bound Mi (t) (or a constant bound ci ) must be avail-
able, but in a generic example it may not be possible to find
a bound analytically. With the introduction of an automatic
method, all the functional information on the derivatives of
the potential is lost.

To address this issue, a constant-local approach is again
adopted: it would be sufficient to find a value ci for given
starting values (vs, xs)within an horizon of length tmax: (t ∈
[0, tmax]), so for a specific dimension i the bounding rate
would be:

m j
i (t) ≤ ci ∀ j = 1, 2, . . . J for t ∈ (0, tmax). (23)

If this approach is taken, ci refers specifically to the starting
values (vs, xs) and a new ci should be considered whenever
a switch or a deterministic move is made. Even within this
horizon [0, tmax], however, finding a maximum by evaluat-
ing and maximizing all the J observation-specific rates and
then comparing them would be counter-productive: all the
gain of super-efficiency would be lost in this optimization
step. A super-efficient method to overcome this challenge is
proposed below.

6.2 Bounding unknown rates

The main idea of our proposal to find an efficient estimate ĉi
of ci is to consider only a small sample of size q of the avail-
able switching rates, maximise them to obtain a sample of
rate-specificmaxima/bounds andfinally apply extreme-value
theory methods to infer the population maximum across all
the rates.

Given a local starting point (vs, xs) and within a given
horizon of length tmax, an estimate ĉi of ci is obtained with
the following steps:

1. select a sample Q of size q from the J rates available in
the collection;
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2. run a numerical optimization algorithm (e.g. our version
of Brent’s method) to obtain rate-specific maxima of the
q × d dimension-specific sampled rates:

λi
j = max

t∈(0,tmax)
m j

i (t);

for j ∈ Q, for i = 1, . . . d;

3. for each dimension i = 1, . . . , d, use the q values of λi
j

to fit a Generalised Pareto Distribution (GPD) and obtain
estimated parameters ξ̂i , σ̂i of the GPD;

4. use the parameters to predict ci in a return value per-
spective: ĉi = q(i)

J−1
j
, with q(i)

J−1
j

the 1− 1/J th quantile of

the extreme value distribution with parameters ξ̂i , σ̂i ; for
each dimension i = 1, . . . , d.

The estimated ĉi can be then considered as the population
bound: the value that would be the maximum (the only one
at or above its value) if we had a sample of size J .

More detail on the results used from extreme-values is
reported in Online Resource 1, Section S5. If the acceptance
step of the subsampling algorithm shows that ĉi is found not
to bound some rates, than a new set of rates Q is drawn and
steps 2 to 4 above are run again.

6.3 Practical considerations

The method proposed in Sect. 6.2 still retains the automatic
flavour of the algorithms proposed here but allows to exploit
what is thought of as the most-promising property of Zig-
Zag samplers and other PDMPs. In implementing this idea
in practice, however, a few choices must be made.

Firstly, one should decide on the level of super efficiency
desired: one of many iid observations already provides a
unbiased estimate for the rate, but it might be better to
include more, say h, observations in order to have a more-
representative sample of the population. The larger h, the
more homogenous the subsample-specific rates are.As a con-
sequence the process mixes better as the subsample-specific
rates resemble better the population rate. When one, or very
few observations contribute to each subsample-specific rate,
the process will switch often reflecting the heterogeneity
across them.

Likewise, q, i.e. the number of rates that are selected
for the estimation of the bounds, highly affects the quality
of the estimator ĉi , which, if underestimated, could lead to
the samples from the ZZ sampler being overdispersed with
respect to the target distribution. A robustness factor r ≥ 1
is introduced so that the upper bound is effectively larger
than the predicted return value by the Generalised Pareto:
ĉi = r × q(i)

J−1
j
.

These quantities: the number of observations per rate, q,
and r , should be considered tuning parameters and chosen on

a case-by-case basis via preliminary analysis as exemplified
in the following section. For example, finding that that the
rates exceed their estimated bound ĉ often, suggests that r
might have to be increased.

Lastly, note that, while q rates are needed to infer ĉ, the
optimization routine on each of these rates could be paral-

lelised: the q maxima λi
j
can be computed independently,

enabling even higher efficiency.

6.4 Parametric survival model on big data

In this section we fit the Parametric survival model of Eqs.
(16)–(19) to the total population of J = 2, 198, 061 individ-
uals.

As a staringpoint,we attempted themore computationally-
expensive approach of using the standardAutomatic Zig-Zag
algorithm, whose results are reported in blue in Figure 8. To
obtain such a skeleton (composed by 5000 switching times),
circa 63,000 gradient evaluations were made, each of which
is a computation of order J ≈ 2 million. The overall clock
time elapsed was 4 hours, after careful tuning of tmax.

6.4.1 Subsampling setup

We ran the Automatic Zig-Zag with subsampling, where at
each iteration the rate was approximated by considering a
potential that accounts for fewer than J observations.

When we implemented the most drastic subsampling,
using only one observation and we approximated the rate by
m j

i (t) as defined in (22), many problem arose. The switch-
ing rates were very heterogeneous in the observation that
was (sub-)sampled which meant that it was difficult to esti-
mate appropriate bounding constants ĉi that were valid for

Fig. 8 Skeleton of the Zig-Zagprocess without subsampling (black)
and with subsampling (blue)
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the whole population; for the same reason mixing was very
slowly.

We therefore decided to use subsamples of size h > 1 to
approximate the rates. LetSl be a sample of size h of indexes,
drawn without replacement from {1, 2, . . . , J }. The rates are
generated using estimates for the potential of the type:

El
i (x) =

∑
j∈Sl

E j
i

h
.

A subsample size of h = 20 gave very satisfactory results
with robust estimates of ĉ and good mixing.

The estimates of ĉ were obtained by evaluating q = 1000
other rates, whosemaximawere used to fit aGPD; the robust-
ness factor was set to r = 2.

6.4.2 Results

The resulting 5000 switching-point skeleton appears to have
mixed well and converged to the same distribution as its
expensive, non-subsampling counterpart (see Figure 8).

The overall clock-time elapsed is circa 30 minutes, hence
the gain from applying the subsampling techniques is tangi-
ble: our implementation of the subsampling technique was
7 to 8 times faster than the standard method. The algorithm
was run without any parallelaziation in the estimation of the
local upper bounds, hence an even shorter computation time
could be achieved. Moreover, because the implementation of
the Automatic Zig-Zag with subsampling runs substantially
faster, a more precise estimate of the optimal tmax can be pro-
duced from the same computational budget. For the full data
it was almost impossible to accurately tune tmax, given the
long computation time, and our initial guess led to a run-time
of 24 hours, which was reduced to 4 hours only after using
the tmax obtained from the pilot runs of the sub-sampling
algorithm.

While the choice of the level of subsampling h was done
by trial and error, it is a straightforward process that, thanks
to the speed of the algorithm, can be performed a priori.
Notably, even if the Automatic Zig-Zag with subsampling
requires a more accurate tuning of the parameters h, r and
q, it still retains the automatic properties that the original
algorithm has, since no further information on the shape or
properties of the target distribution were used.

7 Discussion

The theory behindPDMPs is developing quickly and forming
a substantive body of results that make PDMP-based algo-
rithms extremely promising. Little work exists on the use of
these algorithms to address applied problems, with notable
exceptions including: variable selection problems (Cheval-
lier et al. 2020), inference of diffusion bridges (Bierkens

et al. 2021), and inference of phylogenetic trees (Koskela
2022). These applications develop bespoke versions of the
Zig-Zag sampler, and other PDMP-based algorithms, and
demonstrate their usefulness and efficiency within the spe-
cific applications considered.

Generalisations of PDMP algorithms that make them
applicable in any context are even more rare: the simula-
tion of a PDMP is strictly constrained by the availability of
adequate upper bounds of the switching rate or by closed-
form solutions to the integral of the rate for the time-scale
transformation. To our knowledge, there are only two papers
that provide a general tool to draw samples using PDMPs
requiring only the evaluation of the gradient of the target
density. The Numeric Zig-Zag (NuZZ) (Pagani et al. 2022)
uses numerical integration to simulate the next switching
event by time-scale transformation. The numeric integrator
requires the evaluation of the rate λ(t) for a grid of values for
t (from 7 to 14 points), and it is computed at each iteration
of a root-finding method that derives the switching time (τ
in Equation 7). While there might be cases when the NuZZ
is the most efficient solution, we have found that its numer-
ical routine requires more evaluations of λ(t) per switching
point compared to our algorithm,whose optimizationmethod
resulted extremely efficient, requiring often only 4 evalua-
tions of λ(t); the appropriate tuning of tmax keeps the total
number of Poisson Process proposals for thinning small and,
in the best cases, around 1. Lastly, the NuZZ is, differently
from ours, an approximated algorithm, whose error dimin-
ishes as the number of points used for the numerical integrator
increases.

Another simulation scheme for PDMPs is proposed in
Bertazzi et al. (2021), which solves the same problem by
exploiting Euler approximations of the switching rate, aban-
doning once again exactness for the sake of generalizability.
Similarly to the NuZZ, approximation schemes require the
evaluation of λ(t) for a grid of values, jeopardizing effi-
ciency.

Our work instead welcomes an intensive use of modern
AD techniques, which allow the exploration of any target
whose (minus log) density is differentiable. Rates computed
via AD are matched with a numeric optimization method
that allows the quick computation of a local upper bound to
sample the switching time via thinning. The resulting Auto-
matic Zig-Zag sampler provides a robust and general way to
sample from any distribution with differentiable log-density
without the need of any further information. We tested Auto-
matic Zig-Zag and showed it to be competitive with HMC:
although HMC is often apparently more efficient, we found
it to be considerably less robust when more challenging situ-
ations are presented and when starting values are far from the
support of the target distribution.Onmost of the real-data sce-
narios presented, the Automatic Zig-Zag sampler was shown
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to be superior toHMCproviding robust results with a simpler
tuning process.

In addition to automation of the differentiation and upper
bound calculation, the Automatic Zig-Zag sampler has been
further extended to benefit from super-efficiency, the most
appealing property of PDMP samplers. The power of super-
efficiency in this context has been demonstrated in practice
on the analysis of a large dataset.

Automatic Zig-Zag presents only a few limitations, the
first of which is the use of a numeric method to determine
a local upper-bound on the switching rate. As most of the
available optimization methods, Brent’s optimization (and
our modified method) does not guarantee convergence to a
global maximum in the interval considered. Nevertheless, we
have found that in practice the method is robust and it rarely
fails on the type of functions that need to be bounded in the
Zig-Zag algorithms and, given its low computational burden,
we were able to introduce further checks to prevent avoid-
able errors in the computation of the upper bound. Moreover,
the tuning parameter tmax, i.e. the width of the interval over
which the optimization is run, can be reduced to decrease
the probability of optimization failure. A similar consider-
ation applies to the method presented in Section 6 which
lacks guarantees that the estimator ĉ would bound all the
rates. Nevertheless, we again introduce checks and param-
eters that can make automatic super-efficiency more robust.
Another limitation of the work presented here is that it con-
templates only smooth densities on unbounded domain. The
general question of the behaviour if PDMPs on piecewise-
smooth and bounded densities is addressed inChevallier et al.
(2021), however, the results presented were derived using the
knowledge of the discontinuities in smoothness and on the
bound, hence they are not applicable in a general context.

Another possible improvement to the Automatic Zig-Zag
sampler is the adaptation of the velocity space to the tar-
get density considered, similarly to Bertazzi and Bierkens
(2020). This would improve the general performance of the
algorithm, not only in the aspects described by Bertazzi and
Bierkens (2020), but also it should lead to a choice of tmax
that is homogeneously optimal for all dimensions. Progress
in this direction is the focus of our future work.

Lastly, while a supplementary code of this paper is
provided and contains useful functions to understand and
replicate our methods, a full package that implements the
Automatic Zig-Zagsampler for Bayesian analyses is being
developed to make this method usable by practitioners in all
settings.

The availability of a continuous-time algorithm that
provides samples from a desired target requiring only a
functional form for its (minus log) density opens several
possibilities for probabilistic programming languages, sub-
stantially advancing the current state of the art. In this paper
we havemade contributionswhich facilitate the use of PDMP

methods on a substantially expanded family of targets, and
we hope that our work can therefore greatly expand the wide
applicability of PDMPs.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-022-10142-
x.
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