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Intelligent Wind Farm Control via Grouping-Based
Reinforcement Learning

Hongyang Dong and Xiaowei Zhao

Abstract— This paper aims to maximize the total power
generation for wind farms subject to strong wake effects and
stochastic inflow wind speeds. A data-driven control method
that only requires the accessible measurements of every turbine
in the farm is proposed via deep reinforcement learning
(DRL). We employ a grouping strategy to mitigate the high
computational complexity induced by DRL and enhance our
method’s applicability to large-scale wind farms. Based on
the levels of aerodynamic interactions among turbines, this
grouping strategy divides the whole farm into small sub-groups.
Therefore, one can execute DRL on these sub-groups instead
of carrying on a complicated learning process for the entire
farm. Simulations verify the advantages of the proposed DRL-
based wind farm control method over the commonly employed
greedy strategy. Results also show that the proposed method
can significantly reduce the overall computing cost compared
with the direct execution of DRL on the whole wind farm.

I. INTRODUCTION
Wind energy is one of the most efficient green energy,

and it is essential for the global goal towards zero-carbon
emissions. Currently, 743 GW wind energy capacity has been
installed worldwide, helping decrease over 1.1 billion tons
of CO2 [1]. In particular, 15 new offshore wind farms were
put into operation in 2020, and 30 more are currently under
construction. With the rapid development of wind farms,
maximizing wind farms’ operating efficiency has become
an essential topic that has received great attention from
both industry and academia. As reported by many studies
[2], [3], [4], [5], the farm-level power generation can be
significantly influenced by the wake effects among turbines
[6], [7]. Under this context, the traditional greedy strategy
(in which every single turbine in the farm only cares about
maximizing its own power generation) can result in reduced
farm-level power generation efficiency, e.g., wake effects
lead to a 20% annual generation loss of Denmark Horns Rev
Offshore Wind Farm. Therefore, many recent studies, e.g.
[3], [4], [5], [8], [9], [10], explore to control all turbines in
the farm cooperatively to mitigate wake effects and increase
the whole farm’s economic profitability. For example, site
tests in [4] verified that properly controlling every turbine in
the farm can steer wakes and potentially increase the farm-
level power generation.

Most of the existing methods to maximize farm-level
power generation are optimization-based. They first em-
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ploy/build analytical models for wakes or wind farm sim-
ulators to map the relationship between wind farm states
(e.g., induction factors and yaw angles of all turbines)
and the farm-level power generation. After that, different
optimization methods can be developed to decide settings
or control inputs for every turbine in the farm. Based on the
famous Park model, Ref. [9] searched the optimal induction
factors for a three-turbine wind farm via a game-theoretic
(GT) method. Similarly, Ref. [10] utilized the GT method to
optimize turbine yaw settings based on a parametric model
developed by the authors. A sequential convex programming
strategy was employed in [11] and applied to a model
tweaked from the Jensen wake model [12], and a Bayesian-
based optimization method was designed in [13] for the same
purpose. All these elegant results show that cooperatively
operating all turbines in the farm can improve the farm’s
power capture efficiency and increase the overall power
generation.

However, these optimization-based methods have sev-
eral limitations. They usually require steady-style data to
carry out searching/learning. Such data typically come
from steady-state wind farm models, which have limited
fidelity and inevitable modelling errors. Employing data
from more practical environment conditions (e.g. under
time-varying wind speeds), on the other hand, can make
these optimization-based methods unstable. Therefore, un-
matched or degraded performance may be observed in
practical applications of optimization-based methods. In
addition, these methods only can provide unchanged set-
tings for turbine states (e.g., induction factors and yaw
angles). They cannot achieve closed-loop control based on
real-time external/internal conditions, rendering their perfor-
mance sub-optimal and limited. Aiming to address these
issues, Refs. [8], [14] developed model predictive control
methods to adjust turbines’ induction factors in real-time.
Their case studies verified that closed-loop control could
lead to clearly better performance than quasi-steady-state
optimization. However, a drawback of these important results
is that the full states at all spatial cells of the staggered grid
(which is used to discrete the flow field) are required by the
controller. But such information may be hard to measure for
real wind farms.

These facts indicate that innovative technologies are re-
quired to achieve closed-loop wind farm control with mea-
surable states under dynamic environmental conditions. Deep
reinforcement learning (DRL) is a promising choice to
handle this challenging task. DRL is a state-of-the-art AI
and data-driven control technology. The core advantage of



it is the ability to improve control policies by interacting
with environments. It has attracted worldwide research in-
terest and been applied to many important fields [15], [16],
[17]. Notably, several recent studies [18], [19], [20], [21]
successfully applied DRL to address wind farm control tasks.
They verified the feasibility of employing DRL to maximize
wind farms’ economic profitability. These data-driven results
release the requirement of analytical wind farm models,
showing strong adaptability and robustness. However, a
drawback of DRL-based wind farm control methods is the
heavy computational complexity. DRL is based on trial-and-
error. It typically requires a relatively large set of data to
carry out training and improve its performance gradually, and
the complexity grows exponentially as the number of turbines
in the farm increases. Reducing computational complexity is
of great importance for the practical application of DRL-
based wind farm control methods.

Motivated by these facts, a grouping-based DRL method
is proposed in this paper to maximize the total power
generation for wind farms subject to strong wake effects
and stochastic inflow wind speeds. Based on the levels
of aerodynamic interactions among turbines, we propose a
grouping strategy to divide the whole farm into small sub-
groups. After that, we execute DRL on these sub-groups
instead of carrying on a complicated learning process for
the entire farm. Our method takes advantage of both model-
based and model-free wind farm control approaches. On the
one hand, it employs wind farm models/simulators to carry
out grouping and conduct pre-training for DRL, mitigating
the high computational complexity, increasing the learning
efficiency, and enhancing our method’s applicability to large-
scale wind farms. On the other hand, it inherits the core
features of model-free DRL methods. After the pre-training,
it can employ accessible data (e.g. states and measurements
of turbines) to improve the performance of closed-loop wind
farm control while without relying on any analytical models,
rendering strong adaptability and robustness. Simulations
with WFSim [22] verify the advantages of the proposed
DRL-based wind farm control method over the commonly
employed greedy strategy. Results also show that our method
can significantly reduce the overall computational complexity
compared with the direct execution of DRL on the whole
wind farm.

The remainder of this paper is as follows. First, we
formalize the wind farm power maximization problem in
Sec. II. Then we explain in detail how we carry out intelligent
wind farm control via a grouping-based DRL method in Sec.
III. Simulation results with WFsim are provided in Sec. IV.
Finally, we conclude this paper in Sec. V.

II. PROBLEM FORMULATION

We denote a wind farm by WF and the turbines in it
by WT 1, WT 2, ..., WT n, with n to be the total turbine
number. Then we describe the power generation of WT i

(denoted by Ei), i = 1, 2, ..., n, as follows:

Ei = Hi(Ui, αi, βi) (1)

where Ui is the inflow wind speed at turbine rotor, αi is
the induction state (such as the induction factor or some
other states that are related to the induction factor, e.g. the
modified thrust coefficient), and βi is the yaw angle. Here the
function Hi is the mapping from Ui, αi, βi to Ei. Therefore,
the whole farm’s power generation is

E =

n∑
i=1

Ei =

n∑
i=1

Hi(Ui, αi, βi) (2)

Our goal is to maximize E by controlling αi, βi for every
turbine in the farm. As mentioned in the introduction, a
grouping-based DRL method is developed in the next section
to achieve this goal. To make the whole design process easy-
to-follow, we consider a case study with a 16-turbine wind
farm as shown in Fig. 1. The related simulation is based
on the dynamic wind farm simulator (WFSim) developed
in [22]. From Fig. 1, one can see that the wakes caused
by upstream turbines have a clear impact on downstream
turbines. It should be emphasized that the proposed method
can be applied to different wind farms, and the one in Fig.
1 is just a prototypical example.

Fig. 1: Illustration of a 16-turbine wind farm.

Fig. 2: Illustration of the influence field of a single turbine.

III. INTELLIGENT WIND FARM CONTROL VIA
GROUPING-BASED DRL

In this section, we proposed a grouping-based DRL
method to maximize the farm-level power generation (i.e.
E) by controlling yaw angles and induction states (i.e. αi

and βi, i = 1, 2, 3..., n).
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Fig. 3: Grouping Strategy Illustration.

A. Design of A Grouping Strategy for Wind Farm Control

As explained in the introduction, the aim of grouping is
to divide the whole wind farm into small sub-groups based
on the level of aerodynamic couplings among turbines and
therefore decrease the computational complexity for DRL
implementation. To this end, we introduce the following core
procedures for the design of our grouping strategy.

(a) We define the turbines’ influence fields to evaluate their
aerodynamic couplings quantitatively. As illustrated in Fig. 1,
a wind turbine will induce wakes with reduced wind speed
(w.r.t to the free stream wind speed) behind it. Therefore,
the deficit rate of wind speed can be employed to reflect
the turbine’s influence on the flow field. Based on that, we
definite and formalize the influence factor of a turbine WTi

on a spatial cell Sj in the following equation.

IFWTi→Sj =
1

βmax − βmin

∫ βmax

βmin

w(βi) · δUSj (βi)dβi

(3)
where βmax and βmin denote the acceptable maximum and
minimum yaw offsets of turbine WTi, w(βi) is a user-
defined function for weighting purposes; and δUSj

(βi) de-
notes the deficit factor induce by the yaw offset βi while
the induction state αi follows the greedy strategy. We calcu-
late the integral-form factor as shown in (3) based on the
turbine’s yaw angle because yaw angles can significantly
influence the direction of wakes and they are the main
control signals for wake steering. We note that δUSj

(βi)
can be calculated by analytical wind farm models or directly
obtained by wind farm simulators. It should be emphasized
that even steady-state wind farm models can be employed
to calculate IFWTi→Sj because only the key features of
wakes are required to achieve grouping. We employ the

popular parametric model (named FLORIS) developed in
[10] as an example to calculate IFWTi→Sj

under the setting
βmax = 30◦ and βmin = −30◦. The result is given in Fig. 2,
in which the warmer the color, the higher the influence factor.
After that, a cut-off value of IFWTi→Sj

can be applied to
specify the influence field.

(b) The second procedure of our grouping strategy is to
build directed graphs [23] for the whole farm based on the
influence field defined in (a) (we set the cut-off deficit rate to
be 0.2). Specifically, every turbine in the farm is regarded as a
vertex. If a downstream turbine is within the influence field of
an upstream turbine, then an edge from the upstream turbine
to the downstream turbine is added. Following that, the
relationships of all the turbines in the farm can be described
by directed graphs. We take the wind farm illustrated in Fig.
1 as an example. Based on the procedures given above, three
directed graphs are deduced, as shown in Fig. 3. The turbines
in each graph are summarized as follows:
Graph 1: {WT 1 → WT 5 → WT 8 → WT 11 →
WT 14,WT 4 → WT 8}
Graph 2: {WT 2 → WT 6 → WT 9 → WT 12 → WT 15}
Graph 3: {WT 3 → WT 7 → WT 10 → WT 13 → WT 16}

(c) After building graphs for the wind farm, we are ready
to get the grouping results. Actually, one can directly employ
all turbines in a graph to form a group. However, this can lead
to large groups due to the cascaded aerodynamic couplings
among turbines, and a trade-off is required to restrain the
group sizes. To this end, we divide the results from (b) into
sub-graphs by restricting their depth. Counting from the root
vertices (e.g., WT 1-WT 4 in Fig. 3), all vertices that are
beyond the maximum depth are kicked out from the graph.
Taking the wind farm in Fig. 3 as an example, we can get
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Fig. 4: Main structures of the proposed grouping-based DRL method for wind farm control.

the following sub-groups based on the cropped graphs, as
shown in Fig. 3.
Sub-Group 1 & Sub-Graph 1: {WT 1,WT 4,WT 5,WT 8}

Sub-Group 3 & Sub-Graph 3: {WT 2,WT 6,WT 9}
Sub-Group 5 & Sub-Graph 5: {WT 3,WT 7,WT 10}
After that, the leaf vertices in the resulting cropped sub-

graphs (e.g., WT 8, WT 9 and WT 10 in Fig. 3) are treated as
the root vertices for the remaining vertices, and the process
to get additional sub-groups based on the depth restriction
should be conducted over and over until the whole farm is
fully grouped. For the wind farm in Fig. 3, this process leads
to another three sub-groups:

Sub-Group 2 & Sub-Graph 2: {WT 8,WT 11,WT 14}
Sub-Group 4 & Sub-Graph 4: {WT 9,WT 12,WT 15}
Sub-Group 6 & Sub-Graph 6: {WT 10,WT 13,WT 16}
It should be emphasized again that the whole grouping

strategy proposed above can be adapted to wind farms with
different specifications, and the one given in Fig. 3 is just a
typical example to make the whole design easy to follow.

B. Design of a DRL-based Method for Wind Farm Control

Based on the grouping strategy in Sec. III.A, we design a
DRL-based wind farm control method in this subsection.

Typically, reinforcement learning can be modeled by a
Markovian Decision Process (MDP) [24], formalized by
{sk, ak, s+k , rk}. Here sk denotes the system states at a
time step k, ak is the control action that transfers sk to
its successor s+k at k + 1, and rk denotes the one-step
performance metric of such a transition. The aim of RL is
to maximize the long-term return defined in the following
equation by providing a control policy µ(s) for any system
state sk.

Rk =

∞∑
j=k

cj−krj (4)

where c ∈ (0, 1] is a user-defined discount factor.
In this study, we use a typical critic-actor structure to solve

the MDP problem defined above. To this end, we need to
employ the famous Q-function [24], denoted by Qµ(s, a).
At a specific time point k, Qµ(sk, ak) represents the long-
term reward when action ak is taken at state sk and a control
policy µ(s) is pursued thereafter [25].

The critic’s aim is to learn Qµ(s, a) by only accessible data
while without requiring any system models. Such a process
is based on an essential property of Qµ(s, a):

Qµ(sk, ak) = rk + cQµ(s
+
k , µ(s

+
k )) (5)

On the other hand, the actor’s objective is to find the best
control policy µ∗(s) such that

µ∗(s) = argmax
µ

Qµ(s, a) (6)

In DRL, deep neural networks (DNN) are employed as
function approximators and information processors in the
critic-actor structure, and their training processes are driven
by Eqs. (5) and (6) or their transformations.

Based on Eqs. (5) and (6), many popular DRL methods
have been developed, such as the deep deterministic policy
gradient (DDPG) method [26] and the proximal policy
optimization (PPO) method [27]. Here we tweak DDPG
to address the wind farm control tasks considered in this
paper. The main structures of our scheme are illustrated
in Fig. 4. Particularly, for any time step k, we set rk to
be the whole farm’s power generation (i.e., E), and the
control inputs are the change of αi and βi, i = 1, 2, 3..., n.
Therefore, the control objective is to maximize the long-
term farm-level power generation. It is noteworthy that all
variables are normalized in our DNN training process. One
can refer to [26] for the detailed implementation procedure



of DDPG, particularly the ideas of experience replay and
target networks.

However, it is well-known that though DDPG can achieve
high-performance model-free control, it also has a relatively
high computational complexity. In this study, we mitigate
this issue from the following two task-oriented measures.

• Based on the grouping strategy proposed in Sec. III.A,
the DRL method can be executed on the sub-groups in-
stead of the entire farm, which can significantly reduce
the overall computational cost since the control task’s
complexity is growing exponentially with the increase
of turbine numbers.

• We employ the sub-optimal results from analytical wind
farm models to carry out supervised-learning-style pre-
training for the DNNs in our critic-actor structure. Then
we carry out model-free fine-tuning with accessible
data. Such a design not only improves the training
efficiency of DRL but also allows our control scheme
to take advantage of both model-based and model-free
wind farm methods.

Finally, we need to address the overlap issue of different
sub-groups. Based on our grouping strategy, in one specific
sub-group/graph, its leaf vertices could also be included in
another sub-group/graph, which may cause control policy
conflicts. But an important fact is that these leaf vertices are
all the most downstream turbines in the corresponding sub-
groups, such as WT 8 in the sub-group 1 for the wind farm in
Fig. 3. Therefore, following a common practice in wind farm
control, when applying DRL to a sub-group/graph, we can set
the control policies of the most downstream turbines (i.e. leaf
vertices) always to be the greedy strategy. While if these leaf
vertices are also included in other sub-group/graphs, DRL-
based control policies will be applied to them since they are
the root vertices in these other sub-groups/graphs. This logic
makes our whole design self-consistent.

Fig. 5: Simulation results of the flow field at t = 3000s under
GB-DRL.

IV. CASE STUDY

In this section, we employ the dynamic wind farm sim-
ulator (WFSim) developed in [22] and the 16-turbine wind
farm illustrated in Fig. 3 to carry out a case study in order to

Fig. 6: Normalized power generation under different wind
farm control methods.

Fig. 7: Performance comparison of GB-DRL and DRL.

show the feasibility and performance of our grouping-based
DRL method (denoted by ‘GB-DRL’).

Based on the grouping strategy and results as given in
Sec. III.A and Fig. 3, the whole farm can be divided into
six sub-groups. Moreover, since the sub-groups 3-6 are
homogeneous, they can be controlled by same DRL agents.
In other words, we only need to apply our DRL method
proposed in Sec. III.B to the sub-groups 1, 2, and 3, and
then apply DRL networks same as the one for the sub-
group 3 to the sub-groups 4-6. This is another advantage
of grouping, which can reduce the overall computational
complexity further.

We also carry out simulations for another two wind farm
control methods for comparison purposes. They are

(1) The commonly-employed greedy strategy (denoted by
‘Greedy’), in which every single turbine in the farm only
cares about maximizing its own power generation. Greedy
strategy is the benchmark in wind farm control.

(2) A DRL method (denoted by ‘DRL’) without the group-
ing strategy, i.e., it is directly executed on the whole wind



farm for power maximization. This method is employed to
test the effectiveness and feasibility of our GB-DRL method.

After the training processes of DRL methods are finished,
we carry out 3000-second testing simulations with time-
varying free-stream wind speeds that follow a stochastic
Ornstein-Uhlenbeck process. The flow field at t = 3000s
under our GB-DRL is illustrated in Fig. 5. One can see
that our method can successfully steer wakes. Simulation
results of the whole farm’s power generation (normalized by
the power output at t = 0s) under all the three methods
are given in Fig. 6. It can be observed that both GB-DRL
and DRL can significantly increase the long-term farm-level
power generation (higher by 13.09% and 16.33% on average
than the greedy strategy, respectively).

We further compare the performance of GB-DRL and
DRL in Fig. 7. Though applying the grouping strategy leads
to a 2.54% total power generation decrease (compared with
the direct implementation of DRL to the whole farm), our
GB-DRL reduces 88.7% of the computing time of DRL
under the same hardware & software conditions.

All these results show the feasibility and merits of our GB-
DRL wind farm control method. It has the ability to increase
farm-level power generation while significantly reducing the
computational complexity at the cost of mild performance
degradation.

V. CONCLUSION

This paper achieved intelligent wind farm control via deep
reinforcement learning (DRL). A special grouping strategy
was designed to mitigate the heavy computational complexity
induced by DRL and enhance the proposed method’s appli-
cability. Based on the grouping strategy, a data-driven DRL
method was proposed to be executed on the resulting sub-
groups instead of carrying on a complicated learning process
for the entire wind farm. Simulation results indicated that the
proposed method had the ability to make a trade-off between
control performance and computing costs. On the one hand,
it led to clearly increased farm-level power generation than
the benchmark. On the other hand, it could significantly
reduce the computing time at the cost of mild performance
degradation compared with the direct implementation of
DRL on the whole wind farm.
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