
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=geno20

Engineering Optimization

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/geno20

Using the knowledge gradient acquisition function
in Bayesian optimization when searching for
robust solutions

Hoai Phuong Le & Juergen Branke

To cite this article: Hoai Phuong Le & Juergen Branke (2022): Using the knowledge gradient
acquisition function in Bayesian optimization when searching for robust solutions, Engineering
Optimization, DOI: 10.1080/0305215X.2022.2145604

To link to this article: https://doi.org/10.1080/0305215X.2022.2145604

© 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

View supplementary material

Published online: 05 Dec 2022.

Submit your article to this journal

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=geno20
https://www.tandfonline.com/loi/geno20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/0305215X.2022.2145604
https://doi.org/10.1080/0305215X.2022.2145604
https://www.tandfonline.com/doi/suppl/10.1080/0305215X.2022.2145604
https://www.tandfonline.com/doi/suppl/10.1080/0305215X.2022.2145604
https://www.tandfonline.com/action/authorSubmission?journalCode=geno20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=geno20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/0305215X.2022.2145604
https://www.tandfonline.com/doi/mlt/10.1080/0305215X.2022.2145604
http://crossmark.crossref.org/dialog/?doi=10.1080/0305215X.2022.2145604&domain=pdf&date_stamp=2022-12-05
http://crossmark.crossref.org/dialog/?doi=10.1080/0305215X.2022.2145604&domain=pdf&date_stamp=2022-12-05

ENGINEERING OPTIMIZATION
https://doi.org/10.1080/0305215X.2022.2145604

RESEARCH ARTICLE

Using the knowledge gradient acquisition function in Bayesian
optimization when searching for robust solutions

Hoai Phuong Lea and Juergen Brankeb

aMathematics for Real-World Systems, University of Warwick, Coventry, UK; bWarwick Business School, University of
Warwick, Coventry, UK

ABSTRACT
This article considers the use of Bayesian optimization to identify robust
solutions, where robust means having a high expected performance given
disturbances over the decision variables and independent noise in the
output. A variant of the well-known knowledge gradient acquisition func-
tion is proposed specifically to search for robust solutions, with analytic
expressions for uniformly and normally distributed disturbances. An empir-
ical evaluation on a number of test problems demonstrates that the new
acquisition function outperforms alternative approaches.

ARTICLE HISTORY
Received 4 January 2022
Accepted 3 September 2022

KEYWORDS
Reliability; Gaussian process;
Bayesian optimization;
robustness

1. Introduction

The problem of expensive black-box optimization is considered where the goal is to identify a robust
solution, robust meaning here having a high expected performance despite disturbances over the
decision variables and noise in the output.

Many engineering optimization problems can only be formulated as black-box functions, e.g. if
the problem involves a simulation to evaluate solutions. Such problems are challenging to optimize,
in particular if the evaluation of a solution is costly or computationally expensive, as is typical in
engineering. In such cases, the budget for function evaluations is very limited. Bayesian optimiza-
tion (Frazier 2018) has been shown to be a powerful technique of black-box optimization, especially
for problems with a limited budget of function evaluations. It is an optimization method at the inter-
face of machine learning that iteratively builds or updates a surrogate model and uses an acquisition
function to determine the solution that would give the biggest additional information value when
being added to the current data set.

When optimizing complicated systems, it is not always practicable to guarantee that the imple-
mented solution follows exactly the design specification, and sometimes the environment where the
solution is deployed is unpredictable. For instance, in engineering, manufacturing tolerances mean
that the produced solution may deviate from the designed solution. In such situations, a solution is
usually sought that is not merely good but is also robust.

This article is aimed at finding solutions having a good expected performance even with the
presence of disturbances of the decision variables and output noise. Essentially, this means that
not only the solution should be good, but its neighbourhood should also have high average qual-
ity (Branke 1998).

CONTACT H. P. Le Hoai-Phuong.Le@warwick.ac.uk

Supplemental data for this article can be accessed here. https://doi.org/10.1080/0305215X.2022.2145604

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creative
commons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original
work is properly cited, and is not altered, transformed, or built upon in any way.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/0305215X.2022.2145604&domain=pdf&date_stamp=2022-12-02
mailto:Hoai-Phuong.Le@warwick.ac.uk
https://doi.org/10.1080/0305215X.2022.2145604
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 H. P. LE AND J. BRANKE

One of the simple ways to evaluate the expected performance of a solution is to estimate it directly
by sampling from the distribution of disturbances and averaging. However this is of course very com-
putationally expensive, particularly in higher dimensional search spaces andwhen the output is noisy,
since the method would need many samples for an accurate estimation.

In Le and Branke (2020), the robust Knowledge Gradient (rKG) acquisition function has been
suggested for Bayesian optimization, an adaptation of a method for simulation optimization with
input uncertainty (Pearce and Branke 2017). This article summarizes the previous work and makes
the following original contributions:

• The rKG is extended to normally distributed disturbances and an analytic expression for this case
is derived.

• The consistency of the algorithm is proved.
• The proposed algorithm is empirically compared with a recently published benchmark, NES_EP,

on a number of additional test functions and it is demonstrated that it outperforms alternative
state-of-the-art algorithms.

The article is organized as follows. It begin with an overview of related literature on robust opti-
mization in Section 2. The problem is formally defined in Section 3 and the method for simulation
optimization for robust solutions is explained in Section 4, followed by empirical tests and compar-
ison with some benchmarks in Section 5. Finally, Section 6 consists of conclusions and suggestions
for future work.

2. Literature review

Bayesian optimization has recently become a popular method for solving many kinds of problem
involving costly-to-evaluate functions. In every iteration, a response surface (often called a surro-
gate model, emulator or metamodel) is fitted to the data collected so far, with Gaussian Processes
(GPs) being the most commonly used metamodel. Based on the information given by the meta-
model, the next sample is chosen, maximizing a so-called infill criterion or acquisition function. The
most popular acquisition function is Expected Improvement (EI), first proposed by Mockus, Tiesis,
and Zilinskas (1978) and popularized in Efficient Global Optimization (EGO) (Jones, Schonlau, and
Welch 1998). Other examples are Upper Confidence Bound (Srinivas et al. 2010), Knowledge Gradi-
ent (Scott, Frazier, and Powell 2011) and Entropy Search (Hennig and Schuler 2012). A variant of EI
with an adaptive exploration component has recently been proposed by Xu, Guo, and Saleh (2021).

There are a large number of publications regarding robust global optimization, but mostly based
on evolutionary algorithms (Beyer and Sendhoff 2007). So far, Bayesian optimization for solving that
problem has not been applied widely. Articles can be split into articles looking for worst-case robust-
ness, where disturbance of the decision variable is defined as a compact set, and those that look for
good expected performance given a probability distribution of disturbances, as in this article. There
is also the related area of reliability based design optimization where the goal is to identify the best
solution that remains feasible despite disturbances to the decision variables, see e.g.Yang et al. (2016).

Among the articles searching for solutions robust with respect to the worst case, Marzat, Walter,
and Piet-Lahanier (2013) propose a combination of Bayesian optimization and an iterative relax-
ation procedure. The basic idea is to maintain a discrete set of disturbances, and alternate between
seeking the robust optimal solution given the disturbance set, and seeking a new worst-case distur-
bance to be added to the disturbance set. In each of the two alternating optimization steps, expected
improvement-based algorithms are used. Note that, in this article, it is not the decision variables that
are disturbed, but the simulation model’s input parameters (Pearce and Branke 2017).

ur Rehman, Langelaar, and Keulen (2014) and ur Rehman and Langelaar (2017) modify the EI
acquisition function to the case of searching for a robust solution in the worst-case context. First,
the nominal optimum is computed on the constructed metamodel. It is the solution with the best

ENGINEERING OPTIMIZATION 3

worst-case prediction, not the best found solution. Then the next sampling location is determined
by a modified EI. For any position x in the design variable space, according to the metamodel, the
worst-case xw in the disturbance region is identified, and then at that worst-case location xw the pre-
dicted performance distribution is used to evaluate the acquisition function. The solution is the robust
optimum of the metamodel in the last iteration. The proposed approach appeared to be much more
sample-efficient than themethod fromMarzat,Walter, and Piet-Lahanier (2013) in an empirical com-
parison on some benchmark problems. ur Rehman and Langelaar (2017) deviate from ur Rehman,
Langelaar, and Keulen (2014) by considering constrained problems instead of unconstrained ones.

Sanders et al. (2019) also identify the current best robust solution with respect to the worst case
within the disturbance region, using the posterior mean of the constructed GP. A number of realiza-
tions (functions) are drawn from the fitted GP to determine the next disturbance region to sample
in. The actual improvement over the current best solution for each realization is computed and the
average of the improvements over all function realizations will be the overall expected improvement
of a solution. The solution with the largest expected improvement is sought using an evolutionary
algorithm. The next observation of the target function is made within the disturbance region of this
solution, at the location with the largest variance as predicted by the Gaussian process. It is shown
empirically on a number of benchmark problems that the method performs significantly better in
comparison with the algorithm suggested by ur Rehman, Langelaar, and Keulen (2014). While the
article focuses on worst-case performance, the authors mention that their algorithm, with a minor
modification, could also be used for optimizing expected performance over a disturbance region.

Nogueira et al. (2016) propose to approximate the expectation of the EI acquisition function given
the distribution of disturbances. This so-called unscented expected improvement is computed using
the unscented transformation (Julier and Uhlmann 2004).

Two very recent articles that optimize expected performance over the input disturbances have been
published by Fröhlich et al. (2020) and Iwazaki, Inatsu, and Takeuchi (2020). The first article consid-
ers the same problem as in this article, but adapts the Entropy Search acquisition function (Hennig
and Schuler 2012). It is shown to outperform the unscented expected improvement by Nogueira et
al. (2016). The latter adapts the Upper Confidence Bound acquisition function (Srinivas et al. 2010)
to search for a robust solution in amulti-objective context considering bothmean and variance. Thus
it is similar to this work when focusing on only the mean. Both articles assume normally distributed
disturbances, whereas the rKG algorithm is based on the KG idea and tested with both uniformly and
normally distributed disturbances.

The method is related to the method proposed for simulation optimization with input uncer-
tainty (Pearce and Branke 2017) or optimizing expensive integrands (Toscano-Palmerin and Fra-
zier 2018) but adapted to the case of searching for robust solutions.

3. Problem definition

Let black-box function f be defined over a compact input domain X ⊂ R
D. There are two kinds of

uncertainty, called noise and disturbance. Observing f at a solution x is noisy, i.e. y = f (x) + ε with
ε ∼ N (0, σ 2

ε). The white noise ε is assumed to have constant variance across the input domain. Addi-
tionally, the disturbance δ is distributed around each solution x ∈ X with a probability distribution
P[δ]. While in this article the approach is tested with uniformly and normally distributed distur-
bances, it also applies to other distributions of the disturbance, although this may require reverting
to Monte Carlo estimation rather than analytical derivation of the acquisition function. The goal is
to maximize the expected performance given noise and disturbances, i.e. to maximize the following
robustness function:

max
x∈X

F(x) =
∫

RD
f (x + δ)P[δ] dδ. (1)

4 H. P. LE AND J. BRANKE

The Opportunity Cost (OC) is used as the measurement for the quality of the method. OC is the
difference between the value of the robustness function at the true optimal robust solution and the
solution that the algorithm recommends. Let xr denote the final solution returned by the algorithm,
the opportunity cost is then

OC(xr) = max
x′ F(x′) − F(xr). (2)

It is assumed that the latent function f can be approximated by a Gaussian process reasonably well.
There is a limited budget ofN noisy observations of function f (N samples). The algorithm can choose
the solution xn at each iteration n to be sampled, dependent on the information collected so far. The
goal is to sample solutions in such a way that minimizes the OC of the solution xr that is returned
at the end of optimization. The algorithm therefore needs to define where to sample next (i.e. what
acquisition function to use) and what solution to return at the end.

4. Methodology

The method proposes to use Bayesian optimization, and in particular a variant of the KG acquisi-
tion function (Scott, Frazier, and Powell 2011), as an efficient way to search for robust solutions. The
method uses a surrogate model and a novel acquisition function to define the next sample iteratively.
The surrogate model and the acquisition function are described in the following subsections.

4.1. Gaussian process

A surrogate model is also called an emulator, metamodel or response surface. There are several
choices, such as a Gaussian process or Tree Parzen estimator. In this approach, a Gaussian process is
chosen following themajority of the literature. AGaussian process is a collection of random variables,
any finite number of which have a joint Gaussian distribution (Rasmussen and Williams 2006).

It is characterized by its mean function μ0(x) and kernel (covariance function) �0(x, x′), where

μ0(x) = E[f (x)],

�0(x, x′) = E[(f (x) − μ0(x))(f (x′) − μ0(x′))].

The widely used constant mean function and squared-exponential kernel are chosen, i.e.

μ0(x) = μ0,

�0(x, x′) = α0 exp
(

−‖x − x′‖2
2l2x

)
.

The choice of other mean functions and kernels is discussed by Rasmussen and Williams (2006).
Given the vector of observations f (x1:n) = (f (x1), . . . , f (xn))T at the vector of points x1:n =

(x1, . . . , xn)T, the posterior mean μn and posterior covariance �n can be computed as follows:

μn(x) = �0(x, x1:n)(�0(x1:n, x1:n) + σ 2
ε In)

−1(f (x1:n) − μ0(x1:n)) + μ0(x), (3)

�n(x′, x) = �0(x′, x) − �0(x′, x1:n)(�0(x1:n, x1:n) + σ 2
ε In)

−1�0(x1:n, x), (4)

where In is the identity matrix of size n and

�0(x, x1:n) = (�0(x, x1), . . . ,�0(x, xn)),

�0(x1:n, x) = (�0(x1, x), . . . ,�0(xn, x))T.

ENGINEERING OPTIMIZATION 5

The Gram matrix

�0(x1:n, x1:n) =

⎛
⎜⎜⎜⎝

�0(x1, x1) �0(x1, x2) . . . �0(x1, xn)
�0(x2, x1) �0(x2, x2) . . . �0(x2, xn)

...
...

. . .
...

�0(xn, x1) �0(xn, x2) . . . �0(xn, xn)

⎞
⎟⎟⎟⎠

is also called the covariance matrix and is positive semidefinite.
Maximum likelihood is usually used for tuning the hyperparameters of themodel, which are signal

variance α0, lengthscale lx and noise variance σε .

4.2. Robust Bayesian optimization

4.2.1. Standard knowledge gradient
In Bayesian optimization, at each iteration, the point maximizing a so-called acquisition function is
chosen as the next sampling point. One of the most widely used acquisition functions is the Knowl-
edgeGradient (KG). Frazier, Powell, andDayanik (2009) introducedKG for optimizing over a discrete
and finite set whichmaximizes the expected improvement of themaximal value of the posteriormean
conditioned on sampling once more at a specific point.

LetFn denote the sigma-algebra generated by the data collected so far {(x1, f (x1)), . . . , (xn, f (xn))}.
Denoting by μn(x) the posterior mean after n already taken samples {x1, x2, . . . , xn} and with the
assumption that the next sample xn+1 will be at x, KG can be written as

KGn(x) := E

[
max
x′ μn+1(x′) − max

x′′ μn(x′′)|Fn, xn+1 = x
]
.

Scott, Frazier, and Powell (2011) present an extension of KG for correlated beliefs, KG for continu-
ous parameters, which can be approximated by maximization over a finite subset of the input space.
For instance, by discretizing X over a subset XnX = {x1, . . . , xnX } ⊂ X, KGn can be approximated as
follows:

KGn(x) = E

[
max

i=1,...,nX
μn+1(xi) − max

i=1,...,nX
μn(xi)|Fn, xn+1 = x

]

= E[max{μ1 + Zσ1, . . . ,μnX+1 + ZσnX+1}|Fn, xn+1 = x], (5)

where Z ∼ N (0, 1) and

μi = μn(xi) − x′ ∈ XnX ∪ {x}μn(x′), i = 1, . . . , nX ,

σi = σ̃ n(xi, x) = �n(xi, x)√
σ n(x)2 + σ 2

ε

, i = 1, . . . , nX ,

μnX+1 = μn(x) − max
x′∈XnX∪{x}

μn(x′),

σnX+1 = σ̃ nX+1 = �n(x, x)√
σ n(x)2 + σ 2

ε

.

4.2.2. The Direct Robustness Approximation (DRA)
Perhaps the simplest way to apply Bayesian optimization to find the robust solution solving (1) is
to estimate F(x) by sampling over δ and to apply standard acquisition functions such as the stan-
dard KG. To reduce the impact of disturbances and noise, every observation can be averaged over k
independent replications. This method is called Direct Robustness Approximation (DRA(k)) (Le and

6 H. P. LE AND J. BRANKE

Branke 2020). The idea is to approximate the robustness function F(x) directly by the GP and each
observation with random disturbance and output noise is taken as a sample of F.

TheGPmodel forDRA(k) has always to allow for observationnoise even if the underlying function
f is deterministic, as observations are still stochastic owing to the random input disturbance. The
method returns the solution with the best posterior mean of the approximated robustness function
(Le and Branke 2020).

Because each observation is an average over multiple samples, the method is computationally
expensive. The estimate of the solution quality can be improved if the k samples are drawn by Latin
Hypercube Sampling (LHS) (McKay, Beckman, and Conover 1979) rather than random sampling (Le
and Branke 2021).

4.3. Robust knowledge gradient

The robust Knowledge Gradient (rKG) is proposed as an acquisition function to identify robust solu-
tions. The key insight is that disturbances can usually be controlled during optimization (e.g. when
running a simulationmodel), and only the final solution is subject to disturbances. rKG thus uses aGP
to approximate the latent f, not the robustness function F, and estimates values for F from evaluating
f at locations without disturbance.

From the estimation of the underlying function f with μn(x), an approximation of the robustness
function F by the robust mean is brought forward:

Mn(x) =
∫

RD
μn(x + δ)P[δ] dδ, x ∈ X. (6)

The rKG is then simply the expected value of the increase in maximal value of the posterior robust
mean conditioned on sampling once more at a specific location. So the main difference between the
standardKG and the rKG is that, instead of the posteriormean, the change in the posterior robustness
mean from sampling a solution is looked at. Hence rKG after n samples for continuous parameters
can be written as follows:

rKGn(x) := E

[
max
x′ Mn+1(x′) − max

x′′ Mn(x′′)|Fn, xn+1 = x
]
.

Similarly to the standard KG, the conditional mean can be rewritten as μn+1(x′) = μn(x′) +
σ̃ n(x′, x)Z |Fn, xn+1 = x with Z ∼ N (0, 1). Thus

Mn+1(x′) = Mn(x′) + �̃n(x′, x)Z,

where

�̃n(x′, x) =
∫

RD
σ̃ n(x′ + δ, x)P[δ] dδ, x′ ∈ X. (7)

The robust KG, rKG(x), still has a formula similar to (5)

rKGn(x) = E

[
max

i=1,...,nX
Mn+1(xi) − max

i=1,...,nX
Mn(xi)|Fn, xn+1 = x

]

= E[max{M1 + Z�̃1, . . . ,MnX+1 + Z�̃nX+1}], (8)

but with the adjusted components Mi = Mn(xi) − maxx′∈XnX∪{x} Mn(x′), MnX+1 = Mn(x) −
maxx′∈XnX∪{x} Mn(x′) and �̃i = �̃n(xi, x), �̃nX+1 = �̃n(x, x), i = 1, . . . , nX .

With squared-exponential kernel and constant priormeanμ0, the analytical formulae for each ele-
mentMi and �̃i can be derived for two of the most frequently observed distributions of disturbances:

ENGINEERING OPTIMIZATION 7

uniform and normal. Each element in Mi and �̃i can be derived analytically using Equations (3)
and (4).

For each i = 1, . . . , nX , from (3) and (6)

Mn(xi) =
(∫

RD
�0(xi + δ, x1)P[δ] dδ, . . . ,

∫
RD

�0(xi + δ, xn)P[δ] dδ
)

(�0(x1:n, x1:n)

+ σ 2
ε In)

−1(f (x1:n) − μ0(x1:n)) +
∫

RD
μ0(xi + δ)P[δ] dδ (9)

and from (4) and (7)

�̃n(xi, x) = 1√
σ n(x)2 + σ 2

ε

∫
RD

�0(xi + δ, x)P[δ] dδ − 1√
σ n(x)2 + σ 2

ε

×
(∫

RD
�0(xi + δ, x1:n)P[δ] dδ

)
(�0(x1:n, x1:n) + σ 2

ε In)
−1�0(x1:n, x). (10)

For a D-dimensional input, the kth element of the vector in (9) can be computed as follows:
(a) for a uniformly distributed disturbance U(−�,�),

∫
RD

�0(xi + δ, xk)P[δ] dδ = α0

D∏
d=1

√
π ld√
2�d

(
	

(
xid − xkd + �d

ld

)
− 	

(
xid − xkd − �d

ld

))
;

(b) for a normally distributed disturbanceN (0,
2),

∫
RD

�0(xi + δ, xk)P[δ] dδ = α0

D∏
d=1

ld√
l2d +
2

d

exp

(
− (xid − xkd)

2

2(l2d +
2
d)

)
.

Details of the derivation are described in Appendix A of the online supplemental data for this article,
which can be accessed at https://doi.org/10.1080/0305215X.2022.2145604. The expectation in (8) can
be computed using Algorithm 1 in Scott, Frazier, and Powell (2011).

At the end of optimization, a GP model over all sampled points is fitted and the point that
maximizes the robustness performance of that model is the solution to return, i.e.

xNr = argmaxxM
N(x).

Algorithm 1 summarizes the details of rKG method of determining sampling points.

Algorithm 1: Pseudo-code for robustness optimization
Place a Gaussian process prior on f
Update distribution on f at n0 initially sampled points.
Set the number of sampled points n to n0.
while n ≤ N do

Fit a GP on n samples.
Identify the point with the largest value of rKG.
Add it to the set of sampled points and increase n by 1.

Result: xNr = argmaxxM
N(x)

https://doi.org/10.1080/0305215X.2022.2145604

8 H. P. LE AND J. BRANKE

4.4. Consistency of the algorithm

It is worth noting that the algorithm is myopically optimal by construction. It can be proved that the
rKG algorithm finds the true robust optimum xOPT on a compact domainX, given an infinite budget.

Theorem 4.1: If the input space is compact, the noise variance of the output is strictly positive across
the input domain, f can be modelled by a GP, and with the assumption that

∀ x′ �= x ∈ X, lim
n→∞ sup |Corrn[f (x′), f (x)]| ≤ Const. < 1, (11)

the solution returned by the rKGalgorithm converges to the true robust optimum, given an infinite budget
of evaluations.

The theorem is based on the fact that rKG at any location converges to zero given an infinite
budget of evaluations. This fact is proved combining the techniques of proving the convergence in
Pearce, Poloczek, and Branke (2019) and for the Knowledge Gradient for Continuous Parameters
(KGCP) in Scott, Frazier, and Powell (2011). Details of the proof are given in Appendix B of the
online supplemental data.

5. Experiments

Robust KG is tested on several one- and two-dimensional benchmark problems with both uniformly
and normally distributed disturbances, and compared with several alternative approaches.

5.1. Experimental setup

Initial points are sampled by LHS, the number of points is five times the number of dimensions, except
for the rocket simulation, which is difficult to model by a GP and thus requires a larger number of
initial points. For uniformly distributed cases, the total budget is 75, for normally distributed cases
it is 50 samples for one- and two-dimensional functions and 100 for three- and four-dimensional
functions. Unless stated otherwise, at each step, the HyperParameters (HP) of the GP are tuned by
maximizing the marginal likelihood. Functions from the TensorFlow (TF) library (Abadi et al. 2016)
are used to compute the log marginal likelihood, including the Cholesky decomposition and solving
triangular systems. The maximization of the marginal likelihood, as well as of the acquisition func-
tion, starts by evaluating some random points, followed by gradient ascent from the best points using
L-BFGS-B (Zhu et al. 1997) to find the maximum.

All experimental results are averaged over 100 independent runs for one-dimensional problems
and 25 independent runs for two-dimensional problems. OC figures show the mean plus and minus
one standard error.

5.2. Benchmark functions

The following nine test functions are used, summarized in Table 1 and visualized in Figures 1 and 2.

(1) A simple function from Le and Branke (2020) max f1(x) = −0.5(x + 1) sin(πx2).
(2) A function from Paenke, Branke, and Jin (2006) min f2(x) = 2 sin(10e−0.2xx)e−0.25x.
(3) The first function is also considered in a two-dimensional version by simply adding up over the

two dimensions: max f3(x1, x2) = −0.5(x1 + 1) sin(πx21) − 0.5(x2 + 1) sin(πx22).
(4) A simple one-dimensional function from Fröhlich et al. (2020) max f4(x) = sin(5πx2) + 0.5x.
(5) The one-dimensional Reproducing Kernel Hilbert Space (RKHS) function from Nogueira et

al. (2016), which is to be minimized.
(6) A two-dimensional Gaussian Mixture Model (GMM 2D) from Nogueira et al. (2016).

ENGINEERING OPTIMIZATION 9

Figure 1. One-dimensional benchmark functions.

Figure 2. Two-dimensional benchmark functions.

Table 1. Benchmark functions for experiments.

Name Optimum Domain X Distribution n0 Figure

f1 Max [0.1, 2.1] U(−�,�),�=0.15 5 1(a)
f2 Min [0.0, 10.0] U(−�,�),�=0.5 5 1(b)
f3 Max [0.1, 2.1]2 U(−�,�),�=(0.15, 0.15) 10 2(a)
f4 Max [0.0, 1.0] N (0, 0.052) 5 1(c)
RKHS Min [0.0, 1.0] N (0, 0.032) 5 1(d)
GMM Max [0, 1]2 N ((0, 0), (0.1, 0.1)2) 10 2(b)
Rocket Max [−10, 45] × [4.1, 5] N ((0, 0), (3, 0.05)2) 20 2(c)
Hartmann Max [0, 1]3 N (0, 0.1) 15
Piston Max [0, 1]4 N (0.0, 0.052) 20

(7) A two-dimensional gravity assisted rocket trajectory simulation model from Fröhlich et
al. (2020), where the goal is to identify an angle α0 and launch speed ν0 that minimize a cost
term proportional to the launch speed and the distance of the resulting trajectory from the tar-
get planet. The two terms are combined in a single objective function J(α0, ν0) = log10(dtarget +
βν0), with β being a parameter that trades-off the two terms. The disturbance for ν0 and α0 is
�ν = 0.05 and �α = 3o, respectively.

10 H. P. LE AND J. BRANKE

(8) The three-dimensional Hartmann function

f (x) = −
4∑

i=1
αi exp

⎛
⎝ 3∑

j=1
Aij(xj − Pij)2

⎞
⎠ ,

where

α = (1.0, 1.2, 3.0, 3.2)T

A =

⎛
⎜⎜⎝
3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

⎞
⎟⎟⎠ ; P = 10−4

⎛
⎜⎜⎝
3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

⎞
⎟⎟⎠ .

(9) The piston design example, adapted from Arendt, Apley, and Chen (2013), with more details
in Section 5.7.

All functions have multiple local optima with the optimum of the undisturbed function being
different from the robust optimum given disturbances.

In case the disturbance distribution is uniform, it is capped at the boundary of the search space,
i.e.

P[δ] =
⎧⎨
⎩

1
min{ub, x + �} − max{lb, x − �} δ ∈ [max{lb, x − �}, min{ub, x + �}]
0 otherwise,

where lb and ub are the lower and upper bounds of the search space, respectively.
Unless stated otherwise, the output noise is set to have standard deviation 0.1, i.e. ε ∼ N (0, 0.12),

although some experiments are also runwithout output noise. In the case of normally distributed dis-
turbances, unless stated otherwise, the standard deviation of the output noise is set, following Fröhlich
et al. (2020), to 0.001, i.e. ε ∼ N (0, 0.0012).

5.3. Benchmarkmethods

The rKG algorithm is compared with the following three alternative approaches.

• The Direct Robustness Approximation (DRA) at each sample location as described in
Section 4.2.2.

• Uniform allocation (UA), which allocates the samples by LHS (McKay, Beckman, and
Conover 1979) rather than sequentially by an acquisition function. Apart from the acquisition
function, the algorithm is identical to the algorithm used with rKG, i.e. it builds a GP from the
data collected on the undisturbed function f and returns the solution with best robust posterior
mean xNr = argmaxxM

N(x).
• Noisy Entropy Search–Expectation Propagation (NES-EP): an approach proposed by Fröhlich et

al. (2020) that uses ES (Hennig and Schuler 2012) as acquisition function. As NES-EP has only
been derived for normally distributed disturbances, it is only used as a benchmark on such test
problems.

Note that NES-EP as proposed by Fröhlich et al. (2020) uses a different HP tuning algorithm based
on GPy (2012). Because of primary interest in the relative performances of the acquisition functions,
the originalHP tuning inNES-EP has been replaced by the samemethod used for rKG, i.e. acquisition
functions compared using the same HP tuning method. However, to explore the impact of the HP

ENGINEERING OPTIMIZATION 11

Figure 3. OC over number of evaluations for f1 .

tuningmethod, some experiments where rKG andNES-EP use the HP tuning of the original NES-EP
algorithm based on GPy are also run. These algorithms are then denoted as rKG_GPy and NES-
EP_GPy.

5.4. Results with uniform disturbance

5.4.1. One-dimensional test function f1
For test function f1(x), the robust optimum is approximately at x = 1.22. However, optimization of f
using standard KG would return a solution with lower robustness performance near x = 1.873.

The experiments are started by examining parameter k of DRA(k), the number of replications to
average over for a single observation. The bigger k, the smaller observation noise would be, but the
more computational time per iteration. The result is shown in Figure 3(a), which plots OC over the
total number of function observations so far.

With five initial solutions, DRA with k = 1 only needs five evaluations to initialize, whereas for
example the run with k = 7 requires 5 × 7 = 35 evaluations to initialize. Thus, larger k means a
delayed use of the acquisition function, but towards the end, the runs with k ∈ {3, 5, 7} find a slightly
better solution compared to k = 1. It can be concluded that, to evaluate a single solution, it is better to
use small values of k and the noise handling capability of the GP rather thanmany replications (bigger
k), at least for this test problem. While this would have been expected for problems with just output
noise, this was not so clear for problems with disturbance of decision variables, as the disturbance
leads to heteroscedastic observation noise.

Figure 3(b) compares the results of rKG, UA, DRA(1) and DRA(5). Visibly, the rKG method per-
forms better than all othermethods. UA is not far behind on this simple function whereas throughout
the runDRA is significantly worse. It is interesting to notice that, after the initial five samples, DRA(1)
already has a worse opportunity cost, using the same information as rKG. It seems that making the
relationship between f and F explicit by learning f and deriving F through integration leads to a better
model than approximating F directly.

Finally, the algorithms are tested on a deterministic version of f1. Similarity is observed in the
results of this case and the case of noisy observation, thus an additional figure was not included. It
seems the implicit averaging of the kernel function makes all approaches very robust to additional
output noise.

5.4.2. More complicated one-dimensional test function f2
This is a minimization problem taken from Paenke, Branke, and Jin (2006). The test function has
several local minima, concentrated on the left side of the input domain. Results are similar to those
of test function f1, although UA converges more slowly compared to rKG.

12 H. P. LE AND J. BRANKE

Figure 4. OC over number of evaluations for (a) f2, (b) f3.

Figure 5. OC over number evaluations of f4.

5.4.3. Simple two-dimensional test function f3
For this two-dimensional benchmark problem, 10 initial sample points are used, which means
DRA(5) would need 50 evaluations just to initialize, which renders this method unsuitable. Therefore
only rKG, UA and DRA(1) are compared.

The opportunity cost over the number of evaluations is shown in Figure 4(b). While the rKG
acquisition function once more quickly converges to the correct robust optimum (opportunity cost
of zero), UA and DRA(1) are significantly slower.

5.5. Results on test problemswith normally distributed disturbance

5.5.1. Noisy simple one-dimensional test function f4
For this test problem, the output noise standard deviation is set to 0.1, i.e. ε ∼ N (0, 0.12). As shown in
Figure 5, rKG is slightly better than NES-EP and both converge to a good solution, whereas DRA(1)
does not even converge to good solutions and the opportunity cost is almost a flat line. It seems
DRA(1) doesn’t work well in the case of normally distributed disturbance, thus this approach is
not tested with other test problems. UA is a bit better than DRA(1) but still does not return a good
solution.

5.5.2. RKHS function
The RKHS function is tested with small output noise (σε = 0.001) and large output noise (σε = 0.1).
As shown in Figure 6, the rKG approach is much better than the benchmarks for both levels of output
noise. Similarly to the test with function f4, UA cannot return a good solution. Since UA allocates the
samples uniformly, it is not able to focus on the region of the robust optimum. For higher dimensional

ENGINEERING OPTIMIZATION 13

Figure 6. OC over number of evaluations of the RKHS function in (a) small noise case and (b) large noise case.

Figure 7. OC over number of evaluations for (a) f3 with normally distributed disturbance, (b) GMM.

cases, UA requires manymore samples (exponential in the number of dimensions) to have a good GP
fit. Therefore this method is not tested any further.

5.5.3. Two-dimensional test function f3 for normally distributed disturbance
In order to be able to compare with NES-EP, normally distributed noise is also used with test function
f3. As can be seen in Figure 7(a), rKG works better than NES-EP for this problem.

5.5.4. Gaussianmixturemodel
As depicted in Figure 7(b), for this problem, rKG is comparable in the first 30 evaluations but then
better than NES-EP towards the end.

5.5.5. Gravity assist manoeuvre
The proposed method is applied to the problem of the gravity assist manoeuvre as described in
Section 4.3 of Fröhlich et al. (2020). As can be seen in Figure 8(a), rKG does not outperform NES-EP
although both solutions are relatively poor and the error bars are pretty big. This may be because this
problem has some very sharp peaks that are difficult tomodel with a squared exponential kernel. This
issue and the dependence on HP tuning is explored more deeply in Section 5.6.

5.5.6. Hartmann 3D
As depicted in Figure 9(a), rKG is similar to NES-EP in the first 35 evaluations but then NES-EP
converges prematurely to an inferior solution.

14 H. P. LE AND J. BRANKE

Figure 8. OC for the gravity assist problem when (a) using the TF approach for HP tuning, (b) using GPy for HP tuning.

Figure 9. OC for Hartmann 3D when (a) using the TF approach for HP tuning, (b) using GPy for HP tuning.

Figure 10. OC over number of evaluations of RKHS function with small noise and GPy used for HP tuning. (a) Mean and error bars
and (b) Median and percentiles.

5.6. Results with GPy HP tuning

So far, the HP tuning method with the TF library (Abadi et al. 2016) has been used. As NES-EP uses
GPy HP tuning as default, the impact of the HP tuning procedure is also tested on the relative com-
parison. Since GPy requires prior values, the same set of prior values given by Fröhlich et al. (2020)
is used.

5.6.1. RKHS function with small noise and HP tuning using GPy
As shown in Figure 10(a), rKG and NES-EP perform similarly, but NES-EP loses at the end owing to
few outlier runs with very poor results. This is still consistent with the results reported in Fröhlich et
al. (2020) if the OC is plotted with median and percentile as shown in Figure 10(b).

ENGINEERING OPTIMIZATION 15

Figure 11. Plot of OC over number of evaluations of the GMM function. (a) Mean and error bars and (b) Median and percentiles.

5.6.2. GMM function with HP tuning using GPy
As can be seen in Figure 11(a), once again rKG and NES-EP are similar, but NES-EP loses at the
end owing to few outlier runs with very poor results. Again, results are consistent with the article
by Fröhlich et al. (2020) if the OC is plotted with median and percentile as shown in Figure 11(b).

5.6.3. Hartmann 3D
As depicted in Figure 9(b), rKG is slower midway but catches up and converges to a similarly good
solution as NES-EP.

5.6.4. Gravity assist
Gravity assist was the only test problemwhereNES-EP performed better than rKG.However, as noted
above, this problem has some very sharp peaks in an otherwise smooth area, and thus is not suitable
to be modelled by a GP with squared exponential kernel. A poor HP choice will substantially disrupt
GP-based algorithms. Thismay be somewhat alleviated by choosing a good prior and optimizingHPs
using GPy. Thus the pairing of rKG_GPy and NES-EP_GPy is also compared.

As can be seen in Figure 8(b), performance of rKG_GPy and NES-EP_GPy is similar for the first
10 new evaluations. After that, rKG_GPy performs better, albeit the opportunity cost went back up
a little bit towards the end. This supports the conjecture that the relatively poor performance of rKG
on the gravity assist problem observed in Section 5.5.5 is due to a model mismatch.

5.6.5. Function f3 for dependency on the choice of hyperparamenter prior
As the results of NES-EP_GPy are noticed to be quite sensitive to the choice of prior values of
HPs, the simple two-dimensional function f3 is tested with varying values of prior lengthscale and
fixed signal variance or varying prior signal variance and fixed true lengthscale to see how the rKG
method and the benchmarkmethod depend on the choice of HPs. The fixed values of lengthscale and
signal variance have been learned by maximum likelihood with a meshgrid of 6400 points (length-
scale = 0.316,639,81, signal variance = 342.074,631,937,6998). The mean of opportunity cost after
25 independent runs is tested, using the acquisition function rKG and NES-EP_GPy with the same
method of HP tuning using GPy. Figure 12 shows that the rKGmethod is notably less sensitive to the
setting of the prior.

5.7. Real-world application

Normally distributed disturbances of solution variables have an infinite support (they are not
bounded). Thatmeans the integration limits in the calculation of the “expected performance” robust-
ness are the whole input space, irrespective of the constraints on the solution space. However, in
practice it is necessary to consider the reliability as it does not make sense if the disturbed solution
(solution with disturbance) lies outside the region of feasibility. One way to deal with this is to assign

16 H. P. LE AND J. BRANKE

Figure 12. (a) Varying lengthscale prior; (b) varying signal variance prior.

Figure 13. (a) Robustness with and without reliability compared on test function f4; (b) opportunity cost over number of evalua-
tions of piston design.

all solutions outside the region of feasibility a value of zero. The area where disturbed samples take
non-zero values depends on the location of the solution in the feasibility region. Therefore, the limits
are adjusted accordingly and the robustness with the adjusted limits is called ‘Robustness with Relia-
bility’. Note that, with the adjustment, the robust optimum solution is less likely to be at the edge of the
feasibility region. An example of robustness with and without reliability is depicted in Figure 13(a).

The application of the rKG and ‘Robustness with Reliability’ are demonstrated by the piston design
example that was analysed in Arendt, Apley, and Chen (2013). Owing to the expensive computa-
tional cost of the simulation used for the automotive piston design, whose true response surface is
unknown, a GP built over the data set of 200 equally spaced points is used as a replacement (Arendt,
Apley, and Chen 2013). The posterior mean of this GP is a function of four-dimensional design
variable d and two-dimensional noise variable w. The data used in this experiment are normal-
ized. More details can be found in Arendt, Apley, and Chen (2013). In this work, the problem is
adapted, replacing the additional noise variables by the disturbance of the decision variables. It
aims to search for the robust maximum of the function of four-dimensional design variables d,
which is the posterior mean when the noise variable is fixed to the mean value (w = [0.5, 0.5]).
The disturbance is distributed normally with zero mean and variance
2 = 0.052 around each
design variable. Robustness without reliability would yield a robust optimum solution on the edge
at d = [0.807,302,15, 1.0, 0.0, 0.0], whereas robustness with reliability returns a solution within the
region of feasibility d∗ = [0.791,864,73, 0.856,594,09, 0.162,340,84, 0.150,678,62].

Since NES-EP seeks for a robust solution without reliability, it cannot be used in this case. There-
fore rKG is compared with UA. It starts with 20 initial samples, chosen by LHS, and finishes after 80
iterations and averages the results over 8 runs. Figure 13(b) shows that rKG returns a solution close
to the true optimum much faster and more consistently (fewer fluctuations) compared to UA.

ENGINEERING OPTIMIZATION 17

6. Conclusion

In many real-world optimization problems, disturbances to the decision variables, for instance man-
ufacturing tolerances, may affect the solutions. It becomes crucial to search for a robust solution in
order to reduce the sensitivity to the disturbances and achieve a high expected performance.

This article introduced an algorithm based on the knowledge gradient idea for efficiently search-
ing for the robust optimumof expensive-to-evaluate functions, adapting the technique used in Pearce
and Branke (2017) and Toscano-Palmerin and Frazier (2018) for Bayesian optimization with input
uncertainty. The article suggests a novel acquisition function, called the robust Knowledge Gradient
(rKG), used for iteratively identifying the next point to sample. It has been demonstrated that, in the
case of uniformly distributed disturbance, with a much lower number of required function evalua-
tions, rKG can obtain the same solution quality as alternative approaches much more efficiently. And
for the case of normally distributed disturbance, the rKGmethod has been shown to be at least com-
parable to benchmark methods. Moreover, it can deal with output noise better and is less sensitive to
the hyperparameter prior.

Future work entails several avenues. The approach should be tested with more problems, espe-
cially higher dimensional and real-world problems. Also, it should be tested with other measures of
robustness where a quantile or the worst case is of interest rather than the expected performance.

Acknowledgments
The authors would like to thank Dr Michael Pearce for his technical assistance in completing the experiments. The
authors also acknowledge Dr Paul Arendt, Professor Wei Chen and Professor Daniel Apley for providing the data for
the piston design example. Authors are also grateful to Lukas Fröhlich, one of the authors of Fröhlich et al. (2020), for
making their code public, help in running the code and for providing the data for the gravity assist experiment.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
The authors acknowledge support from the EPSRC [grant EP/L015374/1]; and GE as part of the Colibri project
initiative.

Data availability statement
The data that support the findings of this study are available from the corresponding author, Hoai Phuong Le, upon
request.

References
Abadi,Martin, Paul Barham, JianminChen, ZhifengChen, AndyDavis, JeffreyDean,MatthieuDevin, et al. 2016. “Ten-

sorFlow: A System for Large-Scale Machine Learning.” In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’16), 265–283. Berkeley, CA: USENIX Association.

Arendt, Paul D., Daniel W. Apley, andWei Chen. 2013. “Objective-Oriented Sequential Sampling for Simulation Based
Robust Design Considering Multiple Sources of Uncertainty.” Journal of Mechanical Design 135 (5): 051005.

Beyer, H.-G., and Bernhard Sendhoff. 2007. “Robust Optimization—A Comprehensive Survey.” Computer Methods in
Applied Mechanics and Engineering 196 (33): 3190–3218.

Branke, Juergen. 1998. “Creating Robust Solutions by Means of Evolutionary Algorithms.” In Proceedings of Parallel
Problem Solving fromNature (PPSNV), edited by Agoston E. Eiben, Thomas Bäck,Marc Schoenauer, andHans-Paul
Schwefel, 119–128. Berlin: Springer.

Frazier, Peter. 2018. “A Tutorial on Bayesian Optimization.” https://arxiv.org/abs/1807.0281.
Frazier, Peter, Warren Powell, and Savas Dayanik. 2009. “The Knowledge-Gradient Policy for Correlated Normal

Beliefs.” INFORMS Journal on Computing 21 (4): 517–656.
Fröhlich, Lukas P., Edgar D. Klenske, Julia Vinogradska, Christian Daniel, and Melanie Nicole Zeilinger. 2020. “Noisy-

Input Entropy Search for Efficient Robust Bayesian Optimization.” In Proceedings of the Twenty Third International

https://arxiv.org/abs/1807.0281

18 H. P. LE AND J. BRANKE

Conference on Artificial Intelligence and Statistics, edited by Silvia Chiappa and Roberto Calandra, PMLR Proceedings
of Machine Learning Research 108: 2262–2272.

GPy. 2012. A Gaussian Process Framework in Python. http://github.com/SheffieldML/GPy.
Hennig, Philipp, and Christian J. Schuler. 2012. “Entropy Search for Information-Efficient Global Optimization.”

Journal of Machine Learning Research 13 (1): 1809–1837.
Iwazaki, Shogo, Yu Inatsu, and Ichiro Takeuchi. 2020. “Mean-Variance Analysis in Bayesian Optimization Under

Uncertainty.” arXiv:2009.08166.
Jones, Donald R., Matthias Schonlau, and William J. Welch. 1998. “Efficient Global Optimization of Expensive Black-

Box Functions.” Journal of Global Optimization 13 (4): 45–492.
Julier, S. J., and J. K. Uhlmann. 2004. “Unscented Filtering and Nonlinear Estimation.” Proceedings of the IEEE 92 (3):

401–422.
Le, Hoai Phuong, and Juergen Branke. 2020. “Bayesian Optimization Searching for Robust Solutions.” In Proceedings

of the 2020 Winter Simulation Conference, edited by K.-H. Bae, Ben Feng, S. Lazarova-Molnar S. Kim, Z. Zheng, T.
Roeder, and R. Thiesing, 2268–2278. Piscataway, NJ: Institute of Electrical and Electronics Engineers.

Le, Hoai Phuong, and Juergen Branke. 2021. “Bayesian Optimization for Robust Solutions Under Uncertain Input.” In
Advances in Uncertainty Quantification and Optimization Under Uncertainty with Aerospace Applications, edited by
Massimiliano Vasile and Domenico Quagliarella, 245–259. Cham, Switzerland: Springer International.

Marzat, Julien, EricWalter, and Hélène Piet-Lahanier. 2013. “Worst-Case Global Optimization of Black-Box Functions
Through Kriging and Relaxation.” Journal of Global Optimization 55 (4): 707–727.

McKay, M. D., Richard J. Beckman, and William J. Conover. 1979. “A Comparison of Three Methods for Selecting
Values of Input Variables in the Analysis of Output From a Computer Code.” Technometrics 21 (2): 239–245.

Mockus, Jonas, Vytautas Tiesis, and Antanas Zilinskas. 1978. “The Application of Bayesian Methods for Seeking the
Extremum.” Towards Global Optimization, Vol. 2, 117–129. https://www.researchgate.net/publication/248818761_
The_application_of_Bayesian_methods_for_seeking_the_extremum.

Nogueira, J., R. Martinez-Cantin, A. Bernardino, and L. Jamone. 2016. “Unscented Bayesian Optimization for Safe
Robot Grasping.” In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 1967–1972.

Paenke, Ingo, Juergen Branke, and Yaochu Jin. 2006. “Efficient Search for Robust Solutions by Means of Evolutionary
Algorithms and Fitness Approximation.” IEEE Transactions on Evolutionary Computation 10 (4): 405–420.

Pearce, Michael, and Juergen Branke. 2017. “Bayesian Simulation Optimisation with Input Uncertainty.” In Proceedings
of the 2017Winter Simulation Conference, edited byW. K. Chan, A. D’Ambrogiom, and G. Zacharewicz, 2268–2278.
Piscataway, NJ: Institute of Electrical and Electronics Engineers.

Pearce,Michael,Matthias Poloczek, and JuergenBranke. 2019. “BayesianOptimizationAllowing forCommonRandom
Numbers.” arXiv:1910.09259.

Rasmussen, Carl E., and Christopher K. I. Williams. 2006. Gaussian Processes for Machine Learning. Cambridge, MA:
MIT Press.

Sanders, Nicholas D., Richard M. Everson, Jonathan E. Fieldsend, and Alma A. M. Rahat. 2019. “A Bayesian Approach
for the Robust Optimisation of Expensive-to-Evaluate Functions.” arXiv:1904.11416v2.

Scott, Warren, Peter Frazier, and Warren Powell. 2011. “The Correlated Knowledge Gradient for Simulation Opti-
mization of Continuous Parameters Using Gaussian Process Regression.” SIAM Journal on Optimization 21 (3):
996–1026.

Srinivas, Niranjan, Andreas Krause, Sham Kakade, and Matthias Seeger. 2010. “Gaussian Process Optimization in the
Bandit Setting: No Regret and Experimental Design.” In Proceedings of the 27th International Conference onMachine
Learning, 1015–1022. Madison, WI: Omnipress.

Toscano-Palmerin, Saul, and Peter Frazier. 2018. “Bayesian Optimization with Expensive Integrands.” arXiv:1803.
08661.

ur Rehman, Samee, and Matthijs Langelaar. 2017. “Expected Improvement Based Infill Sampling for Global Robust
Optimization of Constrained Problems.” Optimization and Engineering 18 (3): 723–753.

ur Rehman, Samee, Matthijs Langelaar, and Fredvan Keulen. 2014. “Efficient Kriging-Based Robust Optimization of
Unconstrained Problems.” Journal of Computational Science 5 (6): 872–881.

Xu, Z., Y. Guo, and J. H. Saleh. 2021. “Efficient Hybrid Bayesian Optimization Algorithm with Adaptive Expected
Improvement Acquisition Function.” Engineering Optimization 53 (10): 1786–1804. doi:10.1080/0305215X.2020.
1826467.

Yang, J., Z. Zhan, K. Zheng, J. Hu, and L. Zheng. 2016. “Enhanced Similarity-Based Metamodel Updat-
ing Strategy for Reliability-Based Design Optimization.” Engineering Optimization 48 (12): 2026–2045.
doi:10.1080/0305215X.2016.1150469.

Zhu, Ciyou, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. 1997. “Algorithm 778: L-BFGS-B: Fortran Subroutines
for Large-Scale Bound-Constrained Optimization.” ACM Transactions on Mathematical Software 23 (4): 550–560.
doi:10.1145/279232.279236.

http://github.com/SheffieldML/GPy
https://www.researchgate.net/publication/248818761_The_application_of_Bayesian_methods_for_seeking_the_extremum
https://doi.org/10.1080/0305215X.2020.1826467
https://doi.org/10.1080/0305215X.2016.1150469
https://doi.org/10.1145/279232.279236

	1. Introduction
	2. Literature review
	3. Problem definition
	4. Methodology
	4.1. Gaussian process
	4.2. Robust Bayesian optimization
	4.2.1. Standard knowledge gradient
	4.2.2. The Direct Robustness Approximation (DRA)

	4.3. Robust knowledge gradient
	4.4. Consistency of the algorithm

	5. Experiments
	5.1. Experimental setup
	5.2. Benchmark functions
	5.3. Benchmark methods
	5.4. Results with uniform disturbance
	5.4.1. One-dimensional test function f1
	5.4.2. More complicated one-dimensional test function f2
	5.4.3. Simple two-dimensional test function f3

	5.5. Results on test problems with normally distributed disturbance
	5.5.1. Noisy simple one-dimensional test function f4
	5.5.2. RKHS function
	5.5.3. Two-dimensional test function f3 for normally distributed disturbance
	5.5.4. Gaussian mixture model
	5.5.5. Gravity assist manoeuvre
	5.5.6. Hartmann 3D

	5.6. Results with GPy HP tuning
	5.6.1. RKHS function with small noise and HP tuning using GPy
	5.6.2. GMM function with HP tuning using GPy
	5.6.3. Hartmann 3D
	5.6.4. Gravity assist
	5.6.5. Function f3 for dependency on the choice of hyperparamenter prior

	5.7. Real-world application

	6. Conclusion
	Acknowledgments
	Disclosure statement
	Funding
	Data availability statement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [493.483 703.304]
>> setpagedevice

