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We study the dynamics of two air bubbles driven by the motion of a suspending viscous
fluid in a Hele-Shaw channel with a small elevation along its centreline via physical
experiment and numerical simulation of a depth-averaged model. For a single-bubble
system we establish that, in general, the bubble propagation speed monotonically increases
with bubble volume so that two bubbles of different sizes, in the absence of any
hydrodynamic interactions, will either coalesce or separate in a finite time. However, our
experiments indicate that the bubbles interact and that an unstable two-bubble state is
responsible for the eventual dynamical outcome: coalescence or separation. These results
motivate us to develop an edge-tracking routine and to calculate these weakly unstable
two-bubble steady states from the governing equations. The steady states consist of pairs
of ‘aligned’ bubbles that appear on the same side of the centreline with the larger bubble
leading. We also discover, through time-dependent simulations and physical experiment,
another class of two-bubble states that, surprisingly, are stable. In contrast to the ‘aligned’
steady states, these bubbles appear on either side of the centreline and are ‘offset’ from
each other. We calculate the bifurcation structures of both classes of steady states as
the flow rate and bubble volume ratio are varied. We find that they exhibit intriguing
similarities to the single-bubble bifurcation structure, which has implications for the
existence of n-bubble steady states.
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Figure 1. A perturbed Hele-Shaw channel. Fluid is extracted a constant flux, Q∗, at one end, so that the bubbles
propagate down the channel. The perturbation takes the form of a constant height and width rectangular rail at
the bottom of the channel.

1. Introduction

Identifying invariant objects (steady states, periodic orbits, invariant tori etc.) of
high-dimensional, nonlinear systems and how they influence the transient dynamics is
crucial in understanding how a system evolves towards an eventual dynamical outcome.
One approach to identifying these objects is to perform a number of initial-value problems
(IVPs), either experimentally or theoretically, and observe how the system behaves. The
inherent disadvantage of this approach is that the outcome is binary; either the system
settles to a stable invariant object, or long-term transient behaviour emerges. To capture
unstable invariant objects, bespoke techniques are required, for example edge tracking
(Kerswell, Pringle & Willis 2014) or parameter continuation (Kuznetsov 1998; Net &
Sánchez 2015). Although these invariant objects may be unstable, they still influence
the dynamics of the system in a crucial way that would remain hidden in an IVP. In
highly complex systems, such as the transition to turbulence in pipe flow (Kerswell 2005;
Schneider, Eckhardt & Yorke 2007; Schneider et al. 2008; Kawahara, Uhlmann & Van
Veen 2012), these invariant solutions are often of high dimensionality and difficult to
compute. We surmise, however, that these ideas are applicable to a large range of nonlinear
systems and can be applied to systems which, although nonlinear and high-dimensional,
are more amenable to theoretical and experimental analysis.

As a model ‘playground’ to test these ideas we consider the steady state structure and
transient dynamics of two finite air bubbles propagating in a Hele-Shaw channel with a
prescribed depth perturbation when the surrounding fluid is extracted at a constant flow
rate (see figure 1). In a previous work (Gaillard et al. 2021), we showed that a single bubble
may break up into two (or more) bubbles depending on its initial spatial configuration and
on the flow rate and that, post-breakup, the bubbles may either merge back into a single or
compound bubble or separate indefinitely (see figure 2). A key result of this study was that
the post-breakup dynamics was strongly influenced by the existence of weakly unstable
steady states that are specific to the two-bubble system. It was hence hypothesised that
the complexity of the dynamics may increase with the number of bubbles, owing to the
increase in the number of underlying (stable or unstable) steady states of the system.

A feature of this system is that the topology of the system changes when a bubble
breaks up or when two (or more) bubbles coalesce. Following such topological events,
a different family of invariant solutions influence the transient dynamics. For a given
system of, say, n-bubbles we might expect the steady states of the system to be related
to the steady states of the lower-order 1, 2, . . . , n − 1-bubble systems in such a way that
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Figure 2. Experimental time snapshots of the evolution of a bubble in a perturbed Hele-Shaw channel, as
viewed from above: (a) Q = 0.02. In this case, post-breakup, the smaller bubble crosses the rail and eventually
coalesces with the larger bubble in an asymmetric configuration; (b) Q = 0.03. In this case, post-breakup, the
two bubbles separate indefinitely on either side of the rail.

a hierarchy of 1, 2, . . . , n-bubble states can be constructed from smaller bubble systems.
The broad phenomenon of ‘lower-order’ states interacting to form new coherent structures
has been seen in other physical systems. For example, the interaction of solitons in water
waves (see, for example Drazin & Johnson 1989) and nonlinear optics (see, for example
Akhmediev & Ankiewicz 2005), spatially localised states in convection systems (see,
for example Mercader et al. 2010) and oscillons in granular particulate flow (see, for
example Umbanhowar, Melo & Swinney 1996). A particular anomaly of our system is
that we cannot smoothly move from a n-bubble state to a m-bubble state by continuation
or branch-switching methods because the topologies of the systems are different. How the
steady states of n and m-bubbles relate to each other is therefore non-trivial and this system
represents a rather different example of interacting localised states, from those previously
highlighted.

The propagation of finite air bubbles in a Hele-Shaw channel of uniform depth is a
classical problem in fluid dynamics with a long and rich history. Transient behaviour and
steady propagation modes have been investigated extensively in the case of a single bubble
using a mixture of analytical and numerical techniques (see, for example Taylor & Saffman
1959; Tanveer 1987; Tanveer & Saffman 1987; Khalid, McDonald & Vanden-Broeck 2015;
Green, Lustri & McCue 2017; Lustri, Green & McCue 2020) and experiments (see, for
example Maxworthy 1986; Kopf-Sill & Homsy 1988; Wang et al. 2014; Zhang et al.
2016; Madec 2021; Sirino, Mancilla & Morales 2021). A key result from these studies
is that there is only one stable single-bubble solution for a channel of constant rectangular
cross-section. However, if a depth perturbation is added to the bottom of the channel,
as shown in figure 1, the range of existence and stability of steady propagation modes
changes dramatically, as mapped out by Franco-Gómez et al. (2017, 2018); Keeler et al.
(2019) and Gaillard et al. (2021). The solution branches interact in a highly non-trivial
manner, resulting in a number of different bifurcations and regions of bi-stability in the
system; features absent when there is no geometric perturbation in the channel. Recently
it has been shown that the transient behaviour of a single bubble in a perturbed Hele-Shaw
channel is heavily influenced by so-called ‘edge states’ of the system, whose stable and
unstable manifolds separate different dynamical outcomes (Keeler et al. 2019; Gaillard
et al. 2021).
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Although multi-bubble steady propagation modes in a Hele-Shaw channel have been
studied in unperturbed channels, see, for example Crowdy (2009), Green et al. (2017),
Vasconcelos (2015) and Lustri et al. (2020), these works have focused on steady state
solution construction at zero surface tension and their significance to the underlying
dynamics, including stability results, have not been investigated. Dipole models have
been proposed to understand the dynamics of multiple bubbles in an infinite, unbounded
Hele-Shaw cell, (Pumir & Aref 1987; Sarig, Starosvetsky & Gat 2016; Green 2018), by
treating the bubbles as small and circular, and forming a system of ordinary differential
equations describing the position of the individual bubbles based on interactions between
each of them. The dipole model in an infinite, unbounded Hele-Shaw cell of uniform depth
predicts that a single row of identical bubbles is neutrally stable but is prone to instability
if ‘nudged’ out of line. Also, relevant to this study, two rows of identical bubbles, located
symmetrically about the horizontal centreline, are also neutrally stable, whilst two rows of
bubbles which are located asymmetrically about the horizontal centreline are unstable, see
Pumir & Aref (1987). We remark that no stable multiple-bubble states have been observed
in other confined systems and that in general the bubbles will always either separate or
coalesce (Maxworthy 1986; Rohilla & Das 2020; Madec 2021).

In this paper we concentrate on a two-bubble system in a depth-perturbed Hele-Shaw
channel and investigate the existence of steady states and their dependence on the flow rate
and bubble volume. We calculate the two-bubble solution structure and find a number of
two-bubble steady states, each playing a unique role in the underlying transient dynamics
as the system parameters are varied. Surprisingly, we find that a stable steady state exists
with a bubble on either side of the centreline and the smaller bubble leading. Furthermore,
by comparing the two-bubble and single-bubble bifurcation diagrams, we uncover an
underlying solution structure that may have implications for the existence of n-bubble
steady states in general. We also make the observation that the dynamics of the two-bubble
system is not necessarily dominated by the larger bubble, but rather it is the leading bubble
that has the largest influence on the system.

The paper is organised as follows. In §§ 2 and 3 we present the experimental and
numerical methods used to investigate the dynamics of the system. In § 4.1 we summarise
the known results of the single-bubble system and extend these to explore the relationship
between bubble speed and volume, which is fundamental to understanding the theoretical
construction of two-bubble states. We then describe two classes of two-bubble states;
aligned states where the bubbles have a similar vertical offset (§ 4.2.1), and ‘offset’ states
where the bubbles are staggered on either side of the rail (§ 4.2.2). Next, in § 4.3, we
compare the solution structures of the two-bubble system with the single-bubble system
before we conclude with a discussion of the implications of our results for n-bubble
systems (§ 5).

2. Experimental methods

We performed experiments in which two bubbles propagated through the channel from
prescribed initial configurations imposed prior to flow initiation. The experimental
Hele-Shaw channel presented in figure 3 has been comprehensively described by Gaillard
et al. (2021). Thus, we only recall the salient details here. The channel consisted of two
float glass plates separated by walls (strips of stainless steel shim), which were accurately
positioned to make a channel of length L∗ = 170 cm, width W∗ = 40 ± 0.1 mm and height
H∗ = 1.00 ± 0.01 mm, with an aspect ratio α = W∗/H∗ = 40. A centred rail of width
w∗ = 10.0 ± 0.1 mm and thickness h∗ = 24 ± 1 μm consisted of a translucent adhesive
tape strip bonded to the bottom glass plate, see figure 3(b).
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Figure 3. (a) Schematic of the experimental set-up and (b) experimental channel in cross-sectional view.

The channel was filled with silicone oil (Basildon Chemicals Ltd) of dynamic viscosity
μ = 0.019 Pa s, density ρ = 951 kg m−3 and surface tension σ = 21 mN m−1 at the
laboratory temperature of 21 ± 1 ◦C, and connected to oil reservoirs through inlet and
outlet ports located at the upstream and downstream ends of the channel, respectively
(see figure 3a). Flow in the channel was imposed by injecting oil through the inlet port
with constant volume flux Q∗ using a bank of three syringe pumps, and letting oil escape
through the outlet port. Air bubbles were generated by injecting prescribed volumes of
air in the channel through an air port positioned slightly downstream of the inlet port;
see Gaillard et al. (2021) for details on the bubble generation protocol. Once formed,
the bubbles were propagated through a centring device consisting of a section of channel
of reduced width followed by a region of linear expansion, as shown schematically in
figure 3(a).

Experiments were performed with pairs of bubbles, each of prescribed area as measured
from above, which were arranged in reproducible initial configurations in terms of
their shapes and relative positions. We distinguish ‘aligned’ initial bubble configurations
from ‘offset’ configurations. The former correspond to axially aligned bubbles with
both bubbles either positioned symmetrically about the channel centreline (‘on-rail’) or
asymmetrically (‘off-rail’) but on the same side of the rail (figure 3a). In the ‘offset’
configuration, two off-rail bubbles are positioned on opposite sides of the rail as shown
schematically in figure 4. These initial bubble configurations were generated using two
different experimental protocols described in Appendix A.

Bubbles were propagated from their initial configuration at a constant dimensionless
flow rate Q = μU∗

0/σ where U∗
0 = Q∗/(W∗H∗) is the average oil velocity in an equivalent

channel without the rail. The bubbles were filmed in top view using a CMOS camera
mounted on a motorised stage, which translated at a constant velocity value chosen
to ensure that the bubbles remained within the field of view of the camera for the
duration of the experiment. We refer to each initial bubble with a numerical index
in order of decreasing size, so i = 1 corresponds to the largest bubble. The projected
area A∗

i (i = 1, 2) and centroid position of each bubble were measured from the bubble
contour detected using an edge detection algorithm. The distance between the two
bubbles is quantified by D = 2D∗/W∗ where D∗ is the dimensional distance between
the centroids of the two bubbles. Unless otherwise specified, the combined bubble size
is A1 + A2 = 0.542π, which is the size of the single bubbles used in Gaillard et al.
(2021), where Ai = A∗

i /(W
∗/2)2 (i = 1, 2) is the non-dimensional area of each bubble.

We investigated initial configurations with either the larger or smaller bubble in the leading
position.
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Figure 4. Sketch of the non-dimensional computational domain, which is in a frame of reference centred
on the overall centre of mass that moves with speed Ub. The horizontal domain is truncated at a value of
x = L (typically L = 6 in our calculations) and the boundaries of the rectangular rail are marked using dotted
horizontal lines. The fluid domain is denoted Ω , and the two air bubble boundaries are denoted Γ1 and Γ2. The
centroids of the bubbles are denoted (x̄i, ȳi). The inset diagram shows the smoothed obstacle in the ( y, z) plane
(solid line), and a rectangular step (dashed line), corresponding to the limit s → ∞.

In the experiment, we only measure the projected area directly during bubble
propagation. For a fixed volume of injected air, the projected area of the bubble can
decrease sharply when flow is initiated because of air compression which increases
with flow rate as the associated pressure head increases. However, the bubble retains
an approximately constant projected area during each experiment, with a small increase
of up to 7 % at the highest flow rates. Conversely, the presence of lubricating oil films
separating the bubble from the top and bottom plates, whose thickness increases with
increasing flow rate, tends to increase the projected area of the bubble. These effects are
discussed in detail in Gaillard et al. (2021) and a suitable calibration of the injected volume
of air was performed to obtain propagating bubbles with the required prescribed areas Ai
(i = 1, 2). These lubricating oil films are a reason why the quantitative prediction of the
model (discussed below) does not precisely match the experiment, although the qualitative
agreement is excellent, as shown extensively in Gaillard et al. (2021).

3. Mathematical model and numerical methods

The depth-averaged model for the propagation of multiple bubbles in our Hele-Shaw
channel has been previously described and we only summarise its key features below. Our
approach extends that of McLean & Saffman (1980) to account for a non-uniform channel
height and has been used extensively in studies of the propagation of a semi-infinite
air finger (Thompson, Juel & Hazel 2014; Franco-Gómez et al. 2016), single closed air
bubbles (Franco-Gómez et al. 2017, 2018; Keeler et al. 2019) and most recently single
and multiple air bubbles (Gaillard et al. 2021). We use the model to compute steady
states of the system, calculate their linear stability and perform numerical time-dependent
simulations.

We work in a frame moving with the centroid position of the entire collection of bubbles
and non-dimensionalise the physical system shown in figure 3 using W∗/2 and H∗ as
characteristic length scales in the (x∗, y∗) plane and z∗ direction, respectively, and U∗

0 =
Q∗/(W∗H∗) as the velocity scale. The resulting non-dimensional computation domain is
shown in figure 4.
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The two-dimensional depth-averaged lubrication model reduces to an equation for the
pressure in the fluid domain

∇ · (b3∇p) = 0 (x, y) ∈ Ω, (3.1)

where the mobility b( y) represents the variable depth of the channel, modelled as a
smoothed tanh profile

b( y) = 1 − 1
2 h

[
tanh(s( y + w)) − tanh(s( y − w))

]
, (3.2)

where h = h∗/H∗ and w = w∗/W∗ are the non-dimensional height and width of the rail
respectively; and s sets the ‘sharpness’ of the sides of the rail, which in the limit as s →
∞, corresponds to a rectangular step; see the inset in figure 4. We use h = 0.024 and
w = 0.25 consistent with experiments and we choose s = 40 (Thompson et al. 2014). We
impose no-penetration conditions on the upper and lower walls, which yield py = 0 on
y = ±1. The pressure is fixed to zero at the inflow, and a non-zero constant at the outflow to
ensure the dimensionless volume flux is consistent with the inflow dimensionless volume
flux.

Equations are solved in the reference frame moving at velocity U and we assume that
the air bubble fills the height of the channel so that the kinematic boundary conditions on
the contour of each bubble denoted by Ri (where i = 1, 2, . . . indicates the ith bubble in
decreasing size order) is given by

∂ Ri

∂ t
· ni + U · ni + b2∇p · ni = 0, (3.3)

where ni is the unit normal vector directed away from the ith bubble and U = (Ub, 0) is
the velocity of the centre of mass of the system along x. The centre of mass speed, Ub,
is an unknown in the problem which is obtained by requiring that the x coordinate of the
centre of mass of the system remains at zero. The dynamic boundary condition is based
on a Young–Laplace law (see, for example, De Gennes 2004), where the pressure jump
across the bubble interface is proportional to the mean curvature. In our system this can
be written as

pi − p = 1
3αQ

(
κ

α
+ 1

b( y)

)
, (3.4)

where κ denotes the curvature of the bubble in the (x, y) plane and the effects of the
variable depth on the transverse curvature are accounted for by the 1/b( y) term (which
assumes that the interface is a semi-circle occupying the entire channel height in the
( y, z) plane). The aspect ratio is set to α = 40. We expect the qualitative features of the
bifurcation structure to remain similar over a broad range of α, as found for air fingers
(Franco-Gómez et al. 2016). Franco-Gómez et al. (2016) also found excellent agreement
between the model and experimental results when α > 30. The pressure pi in each bubble
is not known a priori and is determined by ensuring that the dimensionless bubble volume
Vi remains constant, where the volume Vi and area Ai, are defined via

Vi =
∫

Γi

b( y) dx dy =
∫

∂Γi

xb( y) dy, Ai =
∫

Γi

dx dy, (3.5a,b)

where Γi is the interior of bubble i and ∂Γi its bounding curve. We describe two-bubble
systems by the ratio of the largest bubble’s volume to the total volume, i.e. Vr =
V1/(V1 + V2), and the overall vertical centre of mass of the system, defined as Ȳ =
(V1ȳ1 + V2ȳ2)/(V1 + V2), where (x̄i, ȳi) are the centroid coordinates of the ith bubble.
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The total bubble volume V1 + V2 is set to 0.542π unless specified otherwise, consistent
with the experiments of Gaillard et al. (2021). In the model, the dimensionless volume
and area of a given bubble are almost identical because we assume that the bubble fills
the entire channel height, which differs from 1 by at most 2.4 %. In the experiment, we
measure the size of the experimental bubbles by their projected areas Ai (i = 1, 2) because
the air volume required to yield a bubble of fixed projected area varies with flow rate as
discussed in § 2.

We solve the system of equations, (3.1)–(3.5a,b) on the domain shown in figure 4
to determine p, Ri, pi and Ub and we use the flow rate Q and bubble volumes
Vi as control parameters. The spatial discretisation of the equations is obtained by
using a finite-element method using the open-source oomph-lib library (Heil & Hazel
2006). During time-dependent calculations a second-order backwards differentiation Euler
method is used with a typical time step of 	t = 0.01. For more details of this method,
applied to a similar problem, see Gaillard et al. (2021).

When performing time-dependent simulations, the initial shape of each bubble was
chosen to be an ellipse with contour coordinates

Ri(t = 0) = (x̄i(0) + 
i cos θ, ȳi(0) + di sin θ), 0 ≤ θ < 2π. (3.6)

In all the numerical time-dependent simulations presented in this paper, the volume ratio
is Vr = 2/3 and we chose initially slender bubbles with d1 = 0.3 and d2 = 0.2 so that the
bubbles did not break up before they interacted. The values of 
i = Ai/πdi were set to
ensure the prescribed volumes.

To account for topology changes that may occur, such as bubble breakup and
coalescence events, we use a procedure detailed in Appendix B.1. Stable and unstable
steady solutions of the governing equations are calculated using Newton’s method.
Convergence of this method requires a good initial guess for the bubble configuration.
For stable steady states, an initial guess can be obtained by performing a time-dependent
simulation from an initial condition where the system converges towards the stable state.
For unstable steady states, however, finding a good initial guess requires bespoke methods
for each individual state, see Appendix B.2. Once a stable or unstable steady state has been
identified for a given set of control parameters, we use continuation methods to map the
solution space as the control parameters are varied.

The one- and two-bubble steady states described in §§ 4.1 and 4.2 are labelled in the
form ‘nXm’, where n corresponds to the number of bubbles in the system, X is a Latin
character which is either ‘A/S’, corresponding to whether the state is asymmetric (Ȳ /= 0)
or symmetric (Ȳ = 0), respectively. For two-bubble states, this identifier could also be ‘F’,
which corresponds to an ‘offset’ state (two bubbles on either side of the occlusion so that
ȳ1ȳ2 < 0). The subscript m is a label that corresponds to the order in which the branches
appear, as Q increases from zero. We also use the subscript to distinguish between branches
that, although connected, have different linear stability properties (cf. 1S2 and 1S3 in the
section below).

4. Results

4.1. Single-bubble systems
Before we discuss two-bubble systems, we present an overview of the steady propagation
of single bubbles and examine the influence of bubble volume over our range of interest.
Figure 5 presents theoretical, panel (a), and experimental results, panels (b,c), for the
dimensionless speeds, Ub, of individual bubbles as functions of dimensionless flow rate Q.
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Figure 5. Single-bubble solution space. The velocity Ub is plotted as a function of dimensionless flow rate
Q for (a) the different solution branches of the theoretical model and (b,c) for the stable steady modes
of propagation observed in experiments, where (c) focuses on the lowest flow rates, for different bubble
volumes/areas. The experimental data presented in (b) are reproduced from Gaillard et al. (2021) with
permission. The inset panels in (a) correspond to bubble profiles specified by solid circular markers on the
branches. On (a), the bubbles have volumes V = π0.542, π0.462, π0.352, indicated by the different colours of
the branches. In the theoretical results, the flow rate Qs indicates where a ‘switchover’ occurs in the relative
speeds of larger and smaller bubbles. There is no evidence for the existence of Qs in the experiments. The
hollow circular markers in (b) correspond to the symmetric 1S2 state and the solid circular markers in (b,c)
correspond to the asymmetric 1A1 state.

The different colours correspond to different bubble volumes and we find that the structure
of the steadily propagating solutions in the theoretical model is independent of bubble
volume within the range investigated. For our region of interest, there are three distinct
solutions: a stable asymmetric bubble, 1A1, that exists for all flow rates; an unstable
symmetric double-tipped bubble, 1S1, that exists for small flow rates; and an alternative
symmetric bubble, 1S2/1S3, that exists for larger flow rates and is unstable/stable,
respectively. Inset snapshots in figure 5(a), show the shapes of the bubble at flow rates
indicated by dots on the solution branches. For an intermediate range of flow rates,
the system is bistable with both symmetric and asymmetric, stable propagation modes
available.
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The experimental data shown in figure 5(b) correspond to the symmetric and
asymmetric states in the bistable regime and we find the following general trends in both
experiments and the theoretical model: (i) the dimensionless speed Ub = U∗

b/U∗
0 , of the

bubble relative to the average speed of the surrounding fluid, typically increases with flow
rate (note that for high flow rates the relative bubble speed saturates for the symmetric
state and, in the experiments, decreases slightly for the asymmetric state); (ii) for a fixed
flow rate, the dimensionless speed increases with bubble volume, for the range of volumes
investigated here. At low flow rates in the theoretical model, however, the opposite trend is
observed.

The result that larger bubbles travel faster at a fixed flow rate follows from the
theoretical analysis of Taylor & Saffman (1959), under the assumption of fixed bubble
width. The same theory predicts that, for a fixed volume, wider bubbles travel faster. The
explanation for these results is that either increasing bubble width for fixed volume, or
increasing volume for fixed width leads to increased viscous dissipation. Increased viscous
dissipation is balanced by an increase in the work done by fluid pressure on the bubble,
which results in a higher local fluid pressure gradient. The increased pressure gradient
leads to a higher local fluid velocity around the bubble, which leads to faster bubble speeds
via the kinematic condition, (3.3). Related results have also been found for buoyant rise of
bubbles in Hele-Shaw cells (Maxworthy 1986) in which the bubble speed also increases
with bubble width. In that case, however, the increase in viscous dissipation is balanced
by an increase in the work done by the buoyancy force, which itself increases with bubble
volume. Similar arguments can explain why in the bistable regime the asymmetric bubble
travels faster than the symmetric one, for a fixed flow rate. The symmetric bubble spans
the rail which means that it displaces a smaller area of fluid within each cross-section as it
propagates, leading to lower dissipation, lower local pressure gradient and hence a lower
bubble speed.

At lower flow rates (Q < 0.02), there is a qualitative disagreement between the model
and the experimental results. In the experiments, the relative propagation speed of
single bubbles is an increasing function of the bubble size at all values of the flow
rate investigated, see figure 5(c). In the model, for both the asymmetric and symmetric
solutions there is a critical flow rate below which the relative bubble speed decreases as
the bubble volume increases. The value of Q where this trend ‘switches’ over is denoted
Qs. This discrepancy has been previously noted by Maxworthy (1986) who states ‘It is
also clear also that the theory overestimates the bubble velocities for the smaller widths,
having the wrong behaviour as D (the diameter) → 0’ (Maxworthy 1986, p. 108). We do
not have a specific explanation for this discrepancy, but it is most likely to be a violation
of the modelling assumptions used for the boundary conditions at the bubble interface.
For example, in our model, the dynamic condition (3.4) only considers normal stresses
in the (x, y) plane, lateral stresses are ignored, which can cause smaller bubbles (in an
unperturbed cell without side walls) to slow down (Nagel 2014). However, it is not clear
how lateral stress effects interact with bubble shape deformation, which can be more
pronounced at larger Q, nor with the channel sidewalls or rail. In addition, we assume
that the transverse curvature is constant in the transverse ( y, z) plane, corresponding
to a semi-circle perfectly wetting the lower and upper walls, which is not strictly valid
when considering small bubbles. We accept, therefore, that for small bubbles and low
rates the model does not reflect the experiments and we confine the majority of our
analysis to Q > Qs where the model and experiment predict the same speed–volume
relationship.
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4.2. Two-bubble systems
From the results for single bubbles, § 4.1, we know that two bubbles of different volumes
will always travel at different speeds when the surrounding fluid moves at a fixed flow
rate Q. Hence, in the absence of any hydrodynamic interactions and irrespective of the
initial separation, two different bubbles will either coalescence in finite time or separate
indefinitely depending on whether the slower bubble is initially ahead or behind the faster,
respectively. In this section, we demonstrate that bubbles interact hydrodynamically, which
results in the existence of stable and unstable two-bubble steady modes of propagation. As
far as we are aware, such modes have not been observed for bubble of different sizes
in related confined systems. In those cases, the bubbles will either separate or coalesce
(Maxworthy 1986; Madec 2021).

We first consider aligned states, see § 4.2.1, in which the two bubbles are on the same
side of the rail, ȳ1ȳ2 ≥ 0, and then ‘offset’ states, see § 4.2.2, where the two bubbles are
on opposite sides of the rail (ȳ1ȳ2 < 0).

4.2.1. Aligned bubbles
Bubble pairs propagating from aligned initial configurations were prepared experimentally
using the protocol outlined in Appendix A.1. For both symmetric (‘on rail’) and
asymmetric (‘off-rail’) pairs of bubbles, when the larger bubble was initially placed behind
the smaller one, the bubbles always coalesced. Hence, any hydrodynamic interactions were
not sufficient to prevent the behaviour predicted from the single-bubble results, in which
larger bubbles move faster.

Figure 6 shows propagation experiments in which the larger bubble is initially leading.
For a sufficiently large initial separation, the bubbles separate indefinitely (figures 6(a),
asymmetric, and 6(c), symmetric), as predicted from the single-bubble results. For smaller
initial separation distances, however, the two bubbles aggregate to form a compound
bubble (figures 6(b), asymmetric, and 6(d), symmetric); a process that must be driven
by hydrodynamic interactions between the two bubbles, which lead to an increase in the
relative speed of the trailing bubble.

The hydrodynamic interactions arise from the changes in the bulk pressure field, which
in the absence of the bubbles would decrease linearly along x. Single bubbles always
propagate faster than the surrounding oil, as seen in § 4.1, with accompanying local
increases in pressure gradient. Hence, the fluid pressure at the front and rear of a bubble
propagating in the channel is respectively higher and lower than the background pressure.
The pressure perturbation decays with distance from the bubble, but increases with bubble
volume because larger bubbles are faster. Consequently, when the smaller bubble is placed
behind the larger, the net result of the perturbations due to both bubbles is that the
trailing bubble experiences a lower local pressure near its tip, but a higher local pressure
gradient causing the bubble to extend and narrow, see t = 5.8 in figure 6(b) and t = 8.3 in
figure 6(d). The resulting changes in bubble shape cause an increase in speed of the trailing
bubble and eventually it catches the bubble in front. The trailing bubble’s speed continues
to increase as the bubbles approach because the local pressure gradient increases, which
further modifies the bubble shape. The interaction just described is generic and has been
observed in two-bubble interactions in other confined systems (Maxworthy 1986; Madec
2021). The decay of the perturbations with distance means that if the bubbles are far
enough apart, like in figure 6(a,c), the trailing bubble’s speed does not increase sufficiently
to allow it to catch the leading bubble.

The transition between the separation and aggregation outcomes observed in
figure 6(a–d) was investigated by performing successive experiments with a variety of
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Figure 6. Time sequences of two-bubble evolution for different initial bubble-pair configurations, where the
leading bubble is larger than the trailing bubble: (a,b) aligned asymmetric bubbles overlapping the rail from
one side, (c,d) aligned bubbles straddling the rail symmetrically about its centreline. The non-dimensional
initial distance between the centroids of each bubble (which are indicated by crosses) is D(t = 0) = 2.10
(a), 1.77 (b), 2.39 (c) and 1.98 (d). The flow rate is Q = 0.04 (Q∗ = 106 ml min−1), the total bubble
area is A1 + A2 = 0.542π and the bubble size ratio is A1/(A1 + A2) = 0.60. Each row of top view images
shows the evolution of the system in terms of the non-dimensional time t = 2U∗

0 t∗/W∗ elapsed since flow
initiation at t = 0. The dimensional time t∗ is indicated in the last snapshot of each time sequence. (e) Time
evolution of the non-dimensional distance D = 2D∗/W∗ between the centroids of two asymmetric bubbles
propagated from different initial separation distances. The two curves with time labels correspond to the time
sequences shown in (a,b). Dc is the critical bubble distance delineating aggregation (blue curves) and separation
(red curves).
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initial bubble distances D(t = 0). Results are shown in figure 6(e), which presents the
time evolution of the distance D(t) between two initially asymmetric bubbles similar to
that of figure 6(a,b) for a variety of different initial D(t = 0). A transition between the
two possible outcomes (aggregation in blue and separation in red) appears to occur for a
threshold value of D(t = 0). All experiments, regardless of outcome, feature an initial
decrease of D(t) for 0 < t < 1.4 which is associated with the rapid change in bubble
shape following flow initiation; see e.g. figure 6(a,b) where bubbles are more slender at
t = 1.4 than at t = 0. This is followed by a monotonic increase in the case of separation
or a steepening decrease in the case of aggregation. The neighbouring red and blue
curves which bound the range of initial separations where the transition occurs feature
an approximately flat region after their initial decrease, indicating that bubbles initially
travel with approximately constant separation. This suggests the existence of an unstable
two-bubble steady mode of propagation where the two bubbles would neither separate or
aggregate but always remain at the same critical distance Dc from one another. We estimate
Dc to be the average between the values of D(t) for the (blue and red) curves adjacent to
the threshold following initial decrease, i.e. D(t = 1.4) in figure 6(e). This unstable state
is a so-called edge state that marks the boundary between bubble separation and bubble
aggregation.

The evolution of two aligned bubbles in simulations of the theoretical model is very
similar to that in the experiments. In figure 7, time-dependent simulations calculated
for bubbles of volume ratio Vr = 2/3, propagating at flow rate Q = 0.04 from different
aligned initial conditions are presented as trajectories in a projection of the phase space
plotting the bubble separation, D (distance between the two centroids), against the offset
of the centre of mass Ȳ . Initial conditions with various initial global offsets Ȳ(t = 0) and
separation distances D(t = 0) are denoted by hollow markers labelled ‘IC’ and lead to
either aggregation and then coalescence or separation of the two bubbles depending on
the value of D(t = 0), as shown in the inset snapshots of the final outcomes with solid
line bubble contours. Initial conditions with a global offset Ȳ less than approximately 0.1
ultimately lead to one or two symmetric bubbles (ȳ1 = ȳ2 = 0) (blue curves) while initial
conditions with a global offset Ȳ larger than approximately 0.2 ultimately lead to one or
two asymmetric bubbles (red curves). Moreover, as suggested by the experimental results,
we find that there are unstable steadily propagating states in the model that divide the
different dynamical outcomes. The unstable steady states corresponding to the symmetric
and asymmetric configurations are labelled 2S2 and 2A2, respectively, and were calculated
using the method detailed in Appendix B.2.

For intermediate initial conditions, 0.1 ≤ Ȳ(t = 0) ≤ 0.2, we often observe bubble
breakup leading to three bubbles, as either a transient part of the evolution or a permanent
outcome. Figure 8 shows two examples with initial global offsets Ȳ(t = 0) = 0.10 and
0.13 for the same initial separation distance D(t = 0) = 2.4 in panels (a,b) respectively.
In panel (a), the bubbles oscillate until the smaller trailing bubble breaks up before
finally coalescing to form a single bubble which later coalesces with the leading bubble,
ultimately generating a single steady symmetric bubble. The initial oscillations are
reminiscent of the unstable periodic orbit identified in Keeler et al. (2019) for single
bubbles. In panel (b), the leading bubble is initially more asymmetric and breaks up as
it ‘hesitates’ between an off-rail and on-rail configuration. However, here the bubbles do
not coalesce and the final outcome is a three-bubble system with the larger leading bubble
propagating faster than the two trailing bubbles which ultimately propagate steadily at the
same speed on opposite sides of the rail. These two examples leading to two radically
different final outcomes illustrate the sensitivity of the system to the initial bubble offset.
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Figure 7. Time-dependent calculations when Q = 0.04 > Qs so that larger bubbles are faster, Vr = 2/3, V1 +
V2 = π0.542. The lines are trajectories in the projected phase plane (D, Ȳ). Hollow circles indicate initial
conditions (IC) and the arrows on the lines indicate increasing values of time, t. The triangles indicate the
unstable steady states, shown as dashed bubble contours in the insets. Insets with solid line contours indicate
the shapes of the bubbles at the stated time and correspond to solid markers on the trajectories. The dashed
lines indicate a region where time trajectories feature the breakup of at least one of the two bubbles.
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Figure 8. Numerical time snapshots of the evolution of the system at times indicated in each panel, starting
from initial conditions in the breakup zone in figure 7 at Q = 0.04. Initial conditions are (a) D = 2.4, ȳ1 =
ȳ2 = 0.10 and (b) D = 2.4, ȳ1 = ȳ2 = 0.13. In (b), the two trailing bubbles ultimately propagate at the same
velocity, as indicated by the dashed box.
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Figure 9. Solution space as projected in the (Vr, Dc) plane for the asymmetric 2A2 (red) and symmetric 2S2
(blue) aligned edge states at fixed flow rate Q = 0.04 and for a fixed total bubble volume V1 + V2 = 0.542π.
Dashed lines correspond to numerical results while data points with error bars correspond to experimental
values for which the bubble sizes are quantified by their area Ai instead of their volume Vi (see (3.5a,b)). Four
snapshots of the numerical bubble shapes are shown for values of Vr indicated by black circular markers on the
numerical lines labelled by digits from 1 to 4.

The second example also opens up the possibility of a stable two-bubble state featuring
offset bubbles, which will be explored in § 4.2.2.

Motivated by the fact that, as explored in Gaillard et al. (2021), a single bubble can
break up into bubbles of arbitrary volume ratio, we now use parameter continuation to
determine the effect of the volume ratio Vr on two-bubble steadily propagating solutions.
Figure 9 shows the bubble separation distance Dc associated with the 2A2 (red) and
2S2 (blue) edge states against the volume ratio Vr for a fixed total bubble volume and
a fixed flow rate Q = 0.04. The circular markers with error bars indicate experimental
results and are in reasonable agreement with numerical results. The agreement is generally
within the experimental error for the symmetric states at smaller volume ratios, but the
theoretical results consistently over-predict the separation distance for the asymmetric
states, suggesting that the hydrodynamic interactions between two bubbles located near
one edge of the rail are weaker in reality than in the model. The inset snapshots show the
bubble configuration of the edge states at values of Vr indicated by numbered markers
on the solution branches. For both edge states, the separation distance Dc decreases
with increasing volume ratio and appears to converge to a finite value as Vr → 1 (i.e.
V1/V2 → ∞), see insets 3 and 4, while increasing sharply as Vr → 1/2 (i.e. V1/V2 → 1),
see insets 1 and 2. Linear stability results indicate that both branches are unstable with a
single positive eigenvalue and that the least unstable eigenvalue approaches the imaginary
axis as Vr → 1/2, indicating that the state with two equal bubbles is neutrally stable, which
is consistent with the results of Pumir & Aref (1987), and as expected because identical
bubbles will travel at the same speed, assuming negligible hydrodynamic interactions. We
note, however, that it is of course impossible in practice to have two bubbles of the exact
same size in the experiments.
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Figure 10. Solution space for aligned bubbles, as projected in the (Q, Ub) plane for a fixed bubble volume
V1 + V2 = 0.542π and volume ratio Vr = 2/3. The circular markers indicate solutions that are shown in the
inset panels. Each inset has its own numerical label. Branches are dashed as the solutions are unstable and the
dotted vertical line marks the position of Qs ≈ 0.0096.

Figure 10 shows a bifurcation diagram of the different aligned two-bubble states
calculated through parameter continuation, where the velocity Ub of each state is plotted
against Q for a constant volume ratio Vr = 2/3. Each solution branch is illustrated by at
least one snapshot corresponding to a given value of Q indicated by a circular marker
on the branch. When Q is larger than the transition flow rate Qs discussed in § 4.1,
there are two branches discussed in figure 7 featuring symmetric (2S2) and asymmetric
(2A2) bubbles. In this case the symmetric 2S2 branch only exists after a finite value of
Q ≈ 0.03 and experiences a pitchfork bifurcation, after which the two bubbles are slightly
asymmetric, see inset labelled 10. We note that the asymmetric 2A2 branch persists for all
values of Q > Qs calculated but, as Q approaches Qs from above, the branch terminates as
the bubbles become increasingly further apart and the limits of the computational domain
are reached. For completeness, we also include unstable symmetric (2S1) and asymmetric
(2A1) solutions calculated for Q < Qs where the leading bubble is now smaller than the
trailing one. This is because the model predicts that for single steady bubbles, smaller
bubbles propagate faster. However, as discussed in § 4.1, numerical results for Q < Qs do
not reflect the experiments since there is no such transition flow rate in the experiments.
The similarities between the two-bubble and single-bubble bifurcation diagrams presented
in figures 10 and 5 will be discussed in § 4.3.

4.2.2. Offset bubbles
We now consider offset bubble-pair configurations in which the two bubbles are initially
positioned on opposite sides of the rail in an ‘offset’ configuration. The experimental
protocol to prepare these configurations is outlined in Appendix A.2.
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In figure 11(a–d), we present experimental time sequences for two bubbles of area ratio
2 : 1 propagating at flow rate Q = 0.04 from different initial conditions. As in the case
of aligned bubbles, if the larger bubble leads and the bubbles are initially well separated,
figure 11(a), there is no significant hydrodynamic interaction and the bubbles separate
indefinitely, remaining on their respective sides of the rail. As the distance between the
bubbles decreases, then the hydrodynamic interaction between the bubbles is such that
the trailing bubble migrates across the rail as it responds to the locally increased pressure
gradient introduced by the leading bubble, see t = 4.0 and t = 3.6 in figures 11(b) and
11(c) respectively. Once the bubbles are on the same side of the rail, the system is in the
aligned configuration, see § 4.2.1. The two bubbles separate indefinitely in figure 11(b) and
aggregate in figure 11(c) owing to the different values of D after bubble migration.

In figure 11(d), we consider the reverse initial configuration where the larger bubble is
initially trailing. We observe that at first the trailing bubble propagates faster, as it would
in the absence of hydrodynamic interaction, and hence the distance D between the two
bubbles decreases with time. As the bubbles approach, the trailing bubble starts to migrate
over the rail, which causes it to slow down owing to the reduced viscous dissipation
resulting from a smaller volume of fluid being displaced. In fact, the leading bubble also
migrates further over the rail and so both bubbles slow down before ultimately reaching
a steadily propagating state with a constant separation distance Dc, see figure 11(d) at
t = 25.3. This suggests the existence of a stable steady state of the two-bubble system,
which is confirmed by numerical simulations.

Corresponding numerical time-dependent simulations are shown in figure 11(e) and
presented as trajectories in a (x̄1, ȳ1) projection of the phase space, where (x̄1, ȳ1) are
the coordinates of the centroid of the largest bubble. We recall that the x-coordinate
of the centre of mass of the system is constrained to be zero throughout calculations.
The behaviour is similar to that observed in the experiments: in the case of an initially
larger leading bubble (x̄1 > 0), the final outcome of the system switches from offset
separation (orange trajectories) to aligned separation (blue trajectories) and finally to
bubble coalescence (black trajectories) as the initial distance between the two bubbles
is decreased. Figure 11(e) shows that when the smaller trailing bubble crosses the rail,
the 2A2 unstable steady state discussed in § 4.2.1 acts as an edge state delineating aligned
separation from coalescence outcomes, as blue and black trajectories approaching it from
different sides are deflected in different directions. In the case of an initially larger trailing
bubble (x̄1 < 0), all (red) trajectories in figure 11(e) converge towards a stable steadily
propagating state labelled 2F2, irrespective of the initial distance between the bubbles and
consistent with experimental observations.

We identify two further unstable steadily propagating states in figure 11(e), labelled 2F1
and 2F3. The red trajectory starting from the initial condition furthest to the right (x̄1(t =
0) = −0.1) is first attracted towards the weakly unstable steady state 2F1. A transient
bubble configuration extracted from such a time-dependent simulation is used as an initial
guess for calculating the 2F1 state. This state plays a role in transient dynamics involving
two bubbles that are almost on top of each other, which occurs for example after breakup
of a single bubble like in figure 2 and was previously identified in Gaillard et al. (2021),
along with another unstable state labelled ‘Barrier’ state that is not discussed in the present
paper. In contrast, the state 2F3 appears to have no influence on the dynamics.

We now use parameter continuation to examine the behaviour of the three offset
two-bubble steady states 2F1, 2F2 and 2F3 as we vary the flow rate Q and the bubble
volume ratio Vr. The two associated bifurcation diagrams are presented in figure 12
where in panel (a) we present the velocity Ub associated with each state against Q for
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(e)

(b)

(a)

(c)

(d )

t = 0

t = 0

t = 0

t = 0 t = 4.0

t = 1.7 t = 4.8

t = 2.8t = 1.8

t = 2.1

t = 3.3

t = 3.6 t = 5.4

t = 8.7 t = 15.2 t = 25.3

t = 8.7
t∗ = 6.4 s
t = 14.1

t∗ = 6.4 s

t∗ = 3.6 s

t∗ = 11.2 s

t = 14.2

t = 7.9

(b) (a)

(c)

(d )

Figure 11. (a–d) Experimental time snapshots of two bubbles propagating at flow rate Q = 0.04 from initial
offset configurations shown at t = 0. The larger bubble is initially leading in (a–c), with decreasing separation
distance from (a) to (c), and trailing in (d). Bubbles have a total area A1 + A2 = 0.542π and a 2 : 1 area
ratio. The time labelling is the same as in figure 6. (e) Corresponding numerical time-dependent simulations
presented as trajectories in a phase-plane projection using the coordinated (x̄1, ȳ1) of the larger bubble. The
flow rate is Q = 0.04 and bubbles have total volume V1 + V2 = 0.542π with Vr = 2/3. Initial conditions are
denoted by hollow circles, steady states by solid triangles and a star represents coalescence. Inset panels with
label ‘IC’ show three typical initial bubble configurations, inset panels with dashed bubble contours correspond
to four steady states and inset panels with solid bubble contours and coloured outlines correspond to four
different final outcomes for selected trajectories.
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Figure 12. Solution space for the offset steady states. Solid/dashed lines indicate stable/unstable solutions. The
black circular markers indicate solutions that are shown in the inset panels whilst solid blue circular markers
correspond to experimental results for the stable 2F2 state for bubbles of total area and area ratio equivalent to
numerical bubbles volumes. (a) The solution space in the (Q, Ub) plane when V1 + V2 = 0.54π2, Vr = 2/3.
The vertical dotted line indicates the value of Qs. (b) The solution space in the (Vr, Dc) parameter plane for
Q = 0.04 and the same total volume. The vertical dotted line indicates when the two bubbles are the same size,
i.e. Vr = 1/2.

a constant volume ratio Vr = 2/3 and where in panel (b) we present the bubble separation
distance Dc against Vr for a constant flow rate Q = 0.04, similar to figures 10 and 9
respectively for the aligned bubble states. Solid and dashed lines indicate stable and
unstable solutions respectively. Each branch is illustrated by at least one inset snapshot
corresponding to a flow rate indicated by a circular marker on the branch. Experimental
data points corresponding to measurements on the 2F2 stable state are also shown as solid,
circular markers.

Figure 12(a) shows that the stable 2F2 and unstable 2F3 solutions are connected through
a limit point denoted L1. Unlike 2F1, the 2F3 unstable state appears to have no influence on
the transient dynamics of the system according to figure 11(e). The limit point L1 occurs at
a flow rate that coincides with the transition flow rate Qs ≈ 0.0096, discussed in figure 5,
where the mathematical model predicts that the smaller bubble propagates faster than the
larger one in their respective 1A1 single-bubble mode of propagation. This is consistent
with the fact that a smaller leading bubble would then propagate faster in numerical
time-dependent simulations for Q < Qs so that the two bubbles would separate without
reaching a steady state. Surprisingly, although we know from § 4.1 that there is no evidence
for Qs in the experiments, a threshold, consistent with a limit point, of the 2F2 state is
also found experimentally at a critical flow rate QL1 = 0.0040 ± 0.0002 for a bubble area
ratio A1/(A1 + A2) ≈ 2/3. A representative time evolution observed experimentally for
Q < QL1 is shown in figure 13(a). In this case, the migration of the trailing bubble over the
rail induced by the bubble interaction does not cause a sufficient speed reduction to reach
a steadily propagating two-bubble state. Instead, the larger bubble passes over the smaller
bubble so that both bubbles ultimately propagate steadily and separate indefinitely. This
low flow rate scenario is not captured using our model. We also note that the 2F1 branch in
figure 12(a) is distinct from the two others and could not be calculated numerically below
a flow rate indicated by the label ‘1’ at which the smaller bubble touches the sidewall of
the channel, see associated inset snapshot.

Figure 12(b) shows that the stable 2F2 and unstable 2F1 solutions, which were
disconnected in the (Q, Ub) projection of figure 12(a), are in fact connected through a
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t = 0

t = 0 t = 26.4t =23.7t =21.5t =17.4

t∗ = 249.0 s

t∗ = 11.9 s

t = 23.3 t = 31.1t = 13.4 t = 18.8

(b)

(a)

Figure 13. Time sequence snapshots of experiments where 2F2 is not reached. (a) A1/(A1 + A2) ≈ 2/3
(bubble ratio 2 : 1) and Q = 0.002 < QL1 and (b) A1/(A1 + A2) = 0.753 and Q = 0.04.

limit point denoted L2 under variations in volume ratio. This means that there is a critical
volume ratio above which the stable 2F2 state does not exist, which we find to be Vr ≈ 0.79
at Q = 0.04. The existence of such a critical volume ratio is supported by our experiments,
in which no stable state is found for an area ratio A1/(A1 + A2) > 0.744 ± 0.007 at the
same flow rate. A representative experimental time evolution at A1/(A1 + A2) = 0.753 is
shown in figure 13(b) and equivalent numerical simulations are qualitatively similar. The
overall dynamics is essentially the same as that at low Q below L1 in the experiments: for
values of the volume ratio above L2 the interaction between the bubbles does not reduce
the speed of the trailing bubble sufficiently to establish a steadily propagating two-bubble
state. The only qualitative difference to the time evolution shown in figure 13(a) is that the
smaller bubble migrates over the rail once the larger bubble has moved ahead.

Figure 12(b) also shows that, like in figure 9 for aligned bubbles, the distance Dc between
the bubbles increases when approaching the limit of two bubbles of equal sizes (Vr = 1/2)
for the 2F2 and 2F3 branches. The chosen fixed length of the computational domain means
that the 2F2 branch solution could not be calculated close to that limit. By contrast, the
2F1 solution could be calculated up to the Vr = 1/2 limit where it features two identical
bubbles on either side of the rail propagating at the same x-position with opposite offsets
y2 = −y1.

4.3. Comparison of single- and two-bubble solution structures
There is a striking similarity between the solution structure for single bubbles presented in
figure 5 and discussed in our previous papers (Keeler et al. 2019; Gaillard et al. 2021),
and the solution structure for two bubbles presented in figures 7 and 12. For ease of
comparison, figure 14 shows a direct comparison between the solutions in the (Q, Ub)
plane for a single bubble (coloured lines) and a two-bubble system (black lines). The total
bubble volume in the two-bubble system is V1 + V2 = π0.542 and the bubble volumes
have a ratio Vr = 2/3. The bubble volume in the single-bubble system is the same as the
volume of the larger bubble of the two-bubble system, i.e. V = V1. A selection of the
branches are illustrated by snapshots at given flow rates indicated by a circular marker.

For Q > Qs the two-bubble 2A2 and 2F3 solution branches overlap and closely match
the single-bubble asymmetric state, 1A1. Furthermore the two-bubble symmetric 2S2
solution branch is almost indistinguishable from the symmetric one-bubble state, 1S2/1S3.
For Q < Qs there is no single-bubble state corresponding to 2A1, but the symmetric
two-bubble 2S1 solution branch has a similar structure to the single-bubble 1S1 branch,
albeit without the excellent quantitative agreement found in Q > Qs case. We examined
variations in the single-bubble volume and found that the closest match between the single
and two-bubble solution branches for Q > Qs occurs when the single bubble volume is
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Figure 14. Comparison of the single-bubble and two-bubble solution spaces plotted in the (Q, Ub) plane. The
single-bubble space is denoted by coloured lines and the two-bubble system by black lines, with solid/dashed
lines indicating stable/unstable branches. The 1A1 solution branch for the single-bubble system is shown for
the larger (red) and smaller (blue) bubble. Solid markers indicate specific solutions on the branch shown in the
inset panels. The vertical dotted line indicates Qs. The volume of the single bubble is identical to the larger of
the bubbles in the two-bubble system.

chosen to be equal to that of the leading bubble of the two-bubble system, as shown in
figure 14, which indicates that the leading bubble (not necessarily the fastest) sets the speed
of the bubble pair. This comparison is particularly evident when comparing two-bubble
branches with a larger leading bubble (see the 2A2 and 2S2 and their single-bubble
counterparts) but, as can be seen from the figure, the stable two-bubble 2F2 state is slightly
slower than the corresponding 1A1 state corresponding to leading (smaller) bubble.

Finally, we would expect the position of the two-bubble bifurcation points, as h and
Vi are varied, to be similar to the single-bubble equivalent, which have been calculated
previously (Keeler et al. 2019). For the two-bubble system the calculations are more
computationally expensive and we therefore leave a detailed analysis of the loci of the
bifurcation points with parameter variations to a future study.

5. Discussion

In this paper we studied the propagation of two bubbles through a geometrically perturbed
Hele-Shaw channel under constant flow rate: the simplest configuration that introduces
bubble–bubble interactions in the system. The study is of fundamental interest in a variety
of applications, but our initial motivation was to conduct a controlled investigation of
the post break-up dynamics of the single bubbles that we studied in our previous paper
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(Gaillard et al. 2021). When a single bubble breaks up, the relative positions and volumes
of the resulting multiple bubbles are very sensitive to perturbations in the system and are
extremely difficult to control. In this paper, we fixed the sum of the two-bubble volumes,
but varied the relative sizes of each bubble to simulate different break-up configurations.

We find that the general behaviour of the two-bubble system falls into four different
long-term outcomes: (i) indefinite separation of the two bubbles; (ii) aggregation and
coalescence of the two bubbles; (iii) a steadily propagating two-bubble state and (iv)
break up to form a larger number of bubbles with potential future break-up and
aggregation/coalescence events. We demonstrate that, as in the case of the single bubble,
the overall dynamics is orchestrated by both stable and unstable steadily propagating
one- and two-bubble states. The ranges of existence and stability of the states depend
on the flow rate and relative sizes of the two bubbles. The general behaviour of the
system is qualitatively described by a depth-averaged theory, provided that the flow rate is
sufficiently large, Q > Qs.

The existence of steadily propagating two-bubble states is striking because they have
not been in observed in other confined systems (Maxworthy 1986; Madec 2021), in which
the multiple bubbles will always separate or aggregate. There are large regions of overlap
between particular single- and two-bubble steadily propagating states in the relationship
between bubble speed and flow rate for a fixed volume ratio between the two bubbles, see
figure 14. The overlap regions suggest that these single- and two-bubble states are closely
related. In particular, over a wide range of flow rates, the unstable asymmetric two-bubble
states 2F3 and 2A2 have the same speed as the stable asymmetric single bubble 1A1; and
the unstable symmetric two-bubble state 2S2 has the same speed as the stable symmetric
single-bubble 1S3. In these comparisons, the single bubble always has the same volume as
the larger of the two bubbles in the two-bubble state, indicating that the two-bubble state
moves at the speed of the leading bubble and that the leading bubble is not significantly
affected by the interaction. In other words, the leading bubble is driving the dynamics
and the trailing bubble is carried along with it. This is only possible because the presence
of the rail allows the trailing bubble to experience different local geometric confinements
depending on its lateral position within the channel.

Having established the existence of two-bubble states, we can extend the methods used
in this paper to construct a variety of multiple-bubble states and the number of possible
states increases dramatically with the number of bubbles, in line with the number of
permutations of increasing numbers of discrete objects. Experimental confirmation of the
existence of what appear to be stable three- and four-bubble steadily propagating states
is given in figure 15. The existence of stable and unstable n-bubble steadily propagating
states will have a potential influence on the dynamics of bubble trains in confined systems
(Beatus, Tlusty & Bar-Ziv 2006; Beatus, Bar-Ziv & Tlusty 2012) in the presence of
imperfections in both geometry and bubble volume. The ranges of existence of the
multiple-bubble solutions and their sensitivity to perturbations will be pursued in a future
investigation.

Finally, although there is not a direct equivalent of the 2F1 state in the single-bubble
system, the 2F1 state is the only two-bubble state that persists if the height of the rail,
h, is decreased to 0. All of the other steady states cease to exist because their separation
distances increase indefinitely as h → 0, and, as far as we know, no further bifurcations
occur, but the 2F1 state barely changes. The question of whether a stable two-bubble steady
state exists when h = 0 remains open but certainly if one does exist it is unlikely to be
related to the steady states constructed here. Indeed, numerical IVP calculations confirm
that a two-bubble steady state does not exist in the same form as the 2F2 solution (an
‘offset’ configuration with the smaller bubble ahead) and that the dynamics is incredibly
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(b)(a)

Figure 15. Experimental evidence of a multi-bubble stable steady states, for Q = 0.011. (a) A three-bubble
stable steady state (dimensionless areas 0.332π, 0.402π, 0.472π). (b) A four-bubble stable steady state
(dimensionless areas 0.332π, 0.402π, 0.472π, 0.542π).

slow, indicating neutral stability. This exploration of two-bubble steady states in the
experiment will form part of a future investigation.
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Appendix A. Experimental protocols

A.1. Experimental protocol: aligned bubbles
Aligned pairs of bubbles were obtained by producing two bubbles sequentially with the
trailing bubble generated once the leading bubble had propagated by a prescribed distance
from the air port, which was set by the volume of oil injected in the intervening time.
A dimensionless flow rate Qi was then imposed to propagate the pair of bubbles to a
position a few centimetres downstream of the centring device before interrupting the flow
for half a second. For Qi = 0.029, the two bubbles straddled the rail symmetrically about
the channel centreline. However, asymmetric bubbles which overlapped the rail from only
one side could also be obtained for sufficiently small values of the flow rate (Qi = 0.0056)
because of the absence of stable one-bubble symmetric modes of propagation, which
meant that initially centred bubbles migrated off the rail. This migration was always to the
same side of the rail because of unavoidable bias in the levelling of channel; see Gaillard
et al. (2021) for details.

A.2. Experimental protocol: offset bubbles
The simplest method to generate bubbles on opposite sides of the rail is to break up a
single bubble into two parts, as illustrated in figure 2(b). This was achieved by initially
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propagating a single symmetric bubble downstream of the centring device at a flow rate
Qi = 0.03 before interrupting the flow for a controlled duration to allow the bubble to
widen and initiate its sideways migration towards one of the deeper regions of the channel,
see Gaillard et al. (2021) for a description of the bubble relaxation process at Q = 0.
A flow rate of Q = 0.05 was then imposed which led the bubble to break into two parts of
different sizes, overlapping the rail from opposite sides. The difference in bubble sizes after
breakup was set by the y-offset of the single bubble upon imposing the flow. Depending
on the direction of the oil flow used to break up the initial bubble (either from the inlet
towards the outlet or vice versa), different initial bubble-pair configurations could be
prepared, with the larger bubble either leading (closer to the outlet) or trailing (closer
to the inlet). The initial separation between the two bubbles was controlled by imposing
a flow rate of Q = 0.007 in the same direction as the flow used to split the single bubble.
This flow rate was chosen for two reasons. Firstly, at this flow rate, the larger leading
bubble propagated faster than the smaller trailing bubble so that the distance between the
two bubbles increased with time. Secondly, this flow rate was also sufficiently small to
prevent the smaller bubble from crossing the rail because of its hydrodynamic interaction
with the larger bubble. At lower flow rates, the relative strength of the capillary force acting
on each bubble increased which in turn meant that they propagated more asymmetrically,
ensuring that both bubbles remained on their respective sides of the rail. Finally, when the
bubbles reached a prescribed separation, the flow was interrupted for half a second before
beginning the two-bubble experiment.

Appendix B. Numerical methods

B.1. Topology changes
Figure 8 shows the numerous topology changes the system of bubbles experiences. To
facilitate topology change (i.e. bubble coalescence and bubble breakup) in the numerical
code we employ the procedure described in Gaillard et al. (2021). After each time step,
we measure the minimum distance between each of the pairs of bubbles and also check if
each individual bubble has self-intersected. If the minimum distance between two bubbles
is lower than a pre-defined threshold (in these calculations we choose 10−2), the bubbles
are merged into a single bubble. Alternatively, if self-intersection has been identified we
split the bubble into two separate bubbles. In each case, the simulations continue after the
topology change, with the number of volume constraints in the system deleted/added, as
appropriate. For more details we refer the reader to Gaillard et al. (2021).

B.2. Interval-bisection algorithm
The method for calculating the unstable two-bubble aligned states is now described in
more detail. The algorithm is initiated by solving two IVPs, one in the case where the two
bubbles are initially sufficiently far from one another to separate and one where they are
sufficiently close to one another to ultimately coalesce, as illustrated in figure 7. After this
initial step, a new IVP is solved where the initial distance between the bubbles is

Dedge(t = 0) = (Ds + Dc)/2, (B1)

where Ds and Dc are the values of the initial bubbles distance in the previous simulations
that lead to separation and coalescence respectively. Once the final dynamical outcome
is established, for this IC, either Ds or Dc is updated to the value of Dedge(t = 0), as
appropriate, and a new value of Dedge(t = 0) is chosen from (B1).

946 A40-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

61
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.618


The interaction of multiple bubbles in a Hele-Shaw channel

This interval-bisection procedure is repeated so that the initial bubble distance Dedge
converges to a value so that D(t) → Dcrit corresponding to the unstable steady state.
In each simulation, the volume and the initial offset and shape (slender ellipse) of each
bubble is kept constant while only varying the initial distance between the two bubbles.
The final dynamical outcome is determined when either the minimum distance between
the two-bubble contours gets smaller than a cutoff value D(t) < Dmin, which is small
enough to ensure that the bubbles will coalesce, or when the centroid-to-centroid distance
D(t) gets larger than a cutoff value D(t) > Dmax which ensures that the bubbles will
separate indefinitely. We use values of Dmin = 0.01, Dmax = 3 for the results of this paper.

The convergence criterion for the interval-bisection procedure is that the bubbles remain
within a small distance, ε, of each other for a large time, T , i.e.

|D(t) − Dedge(t = 0)| < ε, ∀t < Tend. (B2)

Once this condition has been satisfied we solve the steady governing equations to get
the unstable steady state. In the results presented here find that ε = 0.1 and T = 20 is
sufficient to ensure that we converged to a steady state.
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