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ESGN: Efficient Stereo Geometry Network for Fast
3D Object Detection

Aqi Gao, Yanwei Pang, Senior Member, IEEE, Jing Nie, Zhuang Shao, Jiale Cao, Yishun Guo,
and Xuelong Li, Fellow, IEEE

Abstract—Fast stereo based 3D object detectors have made
great progress recently. However, they suffer from the inferior
accuracy. We argue that the main reason is due to the poor
geometry-aware feature representation in 3D space. To solve
this problem, we propose an efficient stereo geometry network
(ESGN). The key in our ESGN is an efficient geometry-aware
feature generation (EGFG) module. Our EGFG module first
uses a stereo correlation and reprojection module to construct
multi-scale stereo volumes in camera frustum space, second
employs a multi-scale bird’s eye view (BEV) projection and
fusion module to generate multiple geometry-aware features. In
these two steps, we adopt deep multi-scale information fusion
for discriminative geometry-aware feature generation, without
any complex aggregation networks. In addition, we introduce a
deep geometry-aware feature distillation scheme to guide stereo
feature learning with a LiDAR-based detector. The experiments
are performed on the classical KITTI dataset. On KITTI test
set, our ESGN outperforms the fast state-of-art-art detector
YOLOStereo3D by 5.14% on mAP3d at 62ms. To the best of our
knowledge, our ESGN achieves a best trade-off between accuracy
and speed. We hope that our efficient stereo geometry network
can provide more possible directions for fast 3D object detection.

Index Terms—Autonomous driving, 3D detection, Stereo im-
ages, Computer vision.

I. INTRODUCTION

3D object detection is an important but challenging com-
puter vision task, which is essential for automatic driving.

Though LiDAR-based 3D object detection approaches [33],
[34], [39] have high accuracy, they suffer from the expensive
hardware cost and low resolution. Compared with LiDAR-
based 3D object detection approaches, stereo-based 3D object
detection approaches [24], [30], [47] adopt the low-cost optical
camera and can provide dense 3D information. The stereo-
based 3D object detection approaches can be mainly divided
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into camera frustum space based methods [27], pseudo LiDAR
based methods [20], [21], and voxel based methods [11], [15].

Currently, fast stereo 3D methods belong to camera frustum
space based methods and pseudo LiDAR based methods.
As shown in Fig. 1(I), camera frustum space based method
YOLOStereo3D [27] first employs a stereo 3D/4D correla-
tion module to generate stereo volume in camera frustum
space, and second performs 3D object detection directly on
stereo volume. Pseudo LiDAR based methods first generate
point cloud with estimated depth and then employ a light-
weighted LiDAR-based detector for 3D detection. However,
camera frustum space based methods lack effective feature
representation in 3D space, resulting in the issue of object
distortion, while pseudo LiDAR based methods are sensitive
to the precision of fast depth estimation network. Compared
with these fast methods, voxel based methods are dominant in
accuracy. Fig. 1(II) shows the pipeline of voxel based method
DSGN [11]. It first uses a plane sweep and aggregation module
to generate stereo volume in camera frustum space. After
that, it applies a deep bird’s eye view (BEV) projection and
aggregation module to extract geometry-aware feature in 3D
space, and performs 3D detection. In these two steps above,
voxel based methods employ heavy 3D and 2D aggregation
networks to extract discriminative features, which leads to a
slow speed. Namely, these existing methods do not achieve
a good trade-off between speed and accuracy. Therefore, it is
important to design a effective and efficient stereo 3D detector.

To achieve this goal, we propose an efficient stereo geom-
etry network (ESGN) in Fig. 1(III). The key is an efficient
3D geometry-aware feature generation module (EGFG), which
consists of a stereo correlation and reprojection (SCR) module,
and a multi-scale BEV projection and fusion (MPF) module.
We first use the SCR module to generate multi-scale stereo vol-
umes in camera frustum space. After that, we apply the MPF
module to convert multi-scale stereo volumes into multiple
geometry-aware features in 3D space. Finally, we perform 3D
detection on one of geometry-aware features. In addition, we
introduce a deep geometry-aware feature distillation scheme
to guide feature learning, where a LiDAR-based detector
is designed to provide deep supervisions in multiple levels.
Compared to these existing stereo 3D methods, our proposed
ESGN achieves an optimal trade-off between accuracy and
speed. We hope that our proposed method can provide more
possible directions for fast stereo 3D object detection, and
promote stereo application to automatic driving and robot. Our
contributions and metrics can be summarized as follows:

• We propose an efficient stereo geometry-aware feature
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Fig. 1. Comparison of different stereo methods. (I) Camera frustum space based method YOLOStereo3D [27]. It uses a stereo 3D/4D correlation module to
generate stereo volume in camera frustum space for 3D detection, which faces the issue of object distortion. (II) Voxel based method DSGN [11]. In the steps
of stereo volume and geometry-aware feature generations, it adopts the heavy 3D and 2D aggregation networks, resulting in a slow speed. (III) Our efficient
stereo geometry-aware network (ESGN). Compared to voxel based method DSGN, our ESGN adopts deep multi-scale information fusion, instead of heavy
3D and 2D aggregation networks, for geometry-aware feature generation.

network (ESGN) for fast 3D object detection. The key
module is an efficient geometry-aware feature generation
(EGFG) module. EGFG extracts discriminative geometry-
aware features in 3D space by adopting deep multi-scale
information fusion in both stereo volume and geometry-
aware feature generations.

• We introduce a deep geometry-aware feature distillation
(DGFD) scheme. DGFD uses a LiDAR-based detector to
extract multi-level geometry-aware features and employs
these features to guide stereo feature learning.

• We perform the experiments on the classical KITTI
dataset [14]. On moderate test set, our ESGN achieves an
AP3d of 46.39% at a speed of 62ms, obtaining an optimal
trade-off between accuracy and speed. Compared to fast
YOLOStereo3D [27], our ESGN provides an absolute
gain of 5.14% at a comparable speed.

II. RELATED WORK

Compared to 2D object detection [7], [13], [36], [56], 3D
object detection [11], [24], [27] aims to classify and localize
objects in 3D space, which is more challenging and useful
for real applications. In this section, we first introduce stereo
3D object detection. After that, we review LiDAR-based 3D
object detection, and feature representation and distillation.

A. Stereo 3D Object Detection

As mentioned earlier, stereo 3D object detection can be
mainly divided into three classes: camera frustum space based
methods, pseudo LiDAR based methods, voxel based methods.
Camera frustum space represents a frustum from the perspec-
tive camera system, where a point coordinate is (u, v, d3d),

where u, v are the pixel coordinate in the image space and d3d
is depth coordinate. Therefore, camera frustum space based
methods extract the features in image coordinate system for
3D object detection. Stereo RCNN [24] first predicts a rough
3D bounding box based on the combined RoI features from the
left and right images, and second conducts a bundle adjustment
optimization for final 3D bounding box prediction. IDA-3D
[30] builds a cost volume from left and right RoI features to
predict the depth of center point for 3D object detection.

Pseudo LiDAR based methods convert stereo 3D detection
into LiDAR-based 3D detection. Pseudo-LiDAR [47] is one of
the earliest pseudo LiDAR based methods. It first uses stereo
matching methods (such as [2], [4], [5]) to get disparity map,
and then transforms the disparity map into the point cloud
data, and finally performs 3D point cloud detection. Pseudo-
LiDAR++ [54] introduces a depth cost volume to generate
depth map directly. OC-Stereo [31] and Disp RCNN [45] only
consider the foreground regions of point cloud and achieve
a better performance. ZoomNet [49] improves the disparity
estimation by enlarging the target region. The work of [1]
applies Pseudo LiDAR based method into road detection.

Voxel based methods extract voxel features in 3D space to
detect objects. Compared to camera frustum space, 3D space
can avoid object distortion. DSGN [11] converts stereo volume
in camera frustum space into the volume in 3D space to better
represent 3D object structure. LIGA [15] applies a LiDAR-
based detector as a teacher model to guide stereo feature
learning. With discriminative geometry-aware features, these
methods are dominate in accuracy. However, due to heavy 3D
convolutions and heavy 3D/2D aggregation networks, these
methods are insufficient enough to be applied in practice.

Fast stereo 3D object detection approaches mainly belong
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to camera frustum space based and pseudo LiDAR based
methods. Pseudo LiDAR based methods RT3D-GMP [21]
and RT3DStereo [20] use a light-weighted depth estimation
module to generate depth map. After that, they transform the
depth map into the point cloud and use a light-weighted 3D
point cloud detector to perform 3D detection. With these light-
weighted modules, these methods have a high speed. Camera
frustum space based method Stereo-Centernet [42] changes
the anchor-based network in Stereo-RCNN [24] into a key-
point based network for fast 3D detection. YOLOStereo3D
[27] first adopts a stereo 3D/4D correlation module to generate
stereo volume in camera frustum space and second per-
forms 3D detection directly on stereo volume. YOLOStereo3D
achieves best performance among these fast methods. How-
ever, due to the poor 3D geometry-aware feature represen-
tation, YOLOStereo3D lags far behind voxel based methods
[11] in accuracy. Our proposed method aims to bring this gap
by efficiently extracting discriminative geometry-aware feature
and achieve a best trade-off between accuracy and speed.

B. LiDAR-based 3D Object Detection

Compared to stereo 3D detection, LiDAR-based 3D object
detection has a higher accuracy, but suffers from expensive
hardware cost and low resolution. LiDAR-based 3D object
detection can be mainly divided into three classes: voxel based
methods, point based methods, point-voxel based methods.
Voxel based methods [22], [40], [53], [62] transform the
irregular point clouds to volumetric representation in compact
shape and extract the voxel features for 3D detection. Some
backbones (e.g., PointNet [33] and PointNet++ [34]) are
proposed to directly extract the features from irregular point
cloud data. Based on these backbones, point based methods
[32], [39], [41], [48], [51] directly perform 3D detection.
Voxel based methods are usually efficient but face the issue
of information loss, while point based methods have a large
receptive field but are inefficient. Point-voxel based methods
[10], [16], [38], [52] aim to integrate the advantages of voxel
based and point based methods. T3D [3] designs a transformer
based vote refinement module to improve 3D detection.

C. Feature Representation and Distillation

Feature representation plays a key role in computer vi-
sion tasks. At first, handcrafted features are widely used in
detection [6], [12], classification [29], and segmentation [8].
Recently, deep convolutional neural networks are proposed to
extract deep features [17], [43], [59]. Compared to handcrafted
features, deep features are more discriminative. With deep fea-
tures, the computer vision tasks make a great progress in recent
years, such as detection [24], [44], [57], segmentation [9], [55],
and classification [58], [60]. These methods improve feature
representation via better network or architecture design.

Knowledge distillation is first proposed for network com-
pression [19], where a large and high-performance teacher
network provides softened labels to supervise feature learning
of a small student network. As a result, the student network
can learn better features with a small number of network
parameters. After that, some methods [18], [37] explore to

make use of the knowledge from the intermediate layers of
teacher network. Recently, knowledge distillation has been
successfully applied to stereo 3D object detection [15], which
demonstrates that it is effective to use LiDAR-based detector
to guide stereo feature learning. We argue that single-level
distillation in [15] can not provide deep supervision for stereo
feature learning. To solve this issue, we propose a deep
geometry-aware feature distillation scheme that provides deep
multi-level supervisions on stereo feature learning.

III. OUR METHOD

In this section, we introduce our efficient stereo geometry
network (ESGN) for 3D object detection. Fig. 2(a) shows the
overall architecture of our proposed ESGN. We first employ
an efficient deep model ResNet-34 [17] to extract multi-
scale paired feature maps ({F i

l ,F i
r}, i = 1, 2, 3) from stereo

input images. Based on these paired feature maps, we design
a novel efficient geometry-aware feature generation (EGFG)
module to generate multiple geometry-aware features (F i

gf ,
i = 1, 2, 3) with deep multi-scale information fusion. Our
EGFG module contains a stereo correlation and reprojection
(SCR) module, and a multi-scale BEV preservation and fusion
(MPF) module. Specifically, we first use a SCR module to
generate stereo volume, which represents 3D geometry-aware
feature in camera frustum space. To avoid the object distortion
in camera frustum space, we then adopt a MPF module to
transform stereo volume in camera frustum space into BEV
feature in 3D world space, where the BEV feature contains
3D geometry-aware features in 3D space. With the joint SCR
and MPF modules, our proposed method is able to perceive
3D geometry-aware features of objects. To further enhance
geometry-aware feature representation, we introduce a deep
geometry-aware feature distillation (DGFD) scheme, where
a LiDAR-based detector is designed to extract multi-scale
discriminative geometry-aware features (F i

lgf , i = 1, 2, 3)
from point cloud data and then guide stereo geometry-aware
feature learning. Finally, the geometry-aware feature F 3

gf is
fed to 3D prediction head for 3D object detection.

Here, we first introduce the key efficient geometry-aware
feature generation (EGFG) module in Sec. III-A. After that,
we describe deep geometry-aware feature distillation (DGFD)
scheme in Sec. III-B. Finally, we describe the prediction heads,
including 3D detection head and auxiliary heads, in Sec. III-C.

A. Efficient Geometry-Aware Feature Generation (EGFG)

The efficient geometry-aware feature generation (EGFG)
module converts multi-scale paired feature maps ({F i

l ,F i
r},

i = 1, 2, 3) extracted from stereo images to multiple geometry-
aware features (F i

gf , i = 1, 2, 3) with deep multi-level fusion.
The EGFG module consists of two sequential modules: a
SCR module and a MPF module. The SCR module first
generates multi-scale stereo volumes in camera frustum space
with simple correlation and repojection operations. Then, the
MPF module converts multi-scale stereo volumes into 3D and
BEV spaces to generate multiple geometry-aware features.
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Fig. 2. (a) Overall architecture of our ESGN. Given a paired of input images, we adopt the efficient ResNet-34 [17] to extract multi-scale paired feature
maps ({F 1

l , F
1
r }, i = 1, 2, 3). Then, we employ our proposed efficient geometry-ware feature generation (EGFG) module to generate multiple geometry-ware

features (F i
gf , i = 1, 2, 3). In addition, we introduce a LiDAR-based detector for deep geometry-aware feature distillation (DGFD). (b) Stereo correlation and

reprojection (SCR) module converts multi-scale paired feature maps to multiple stereo volumes in camera frustum space. (c) Multi-scale BEV projection and
fusion (MPF) module converts camera frustum space to 3D space for geometry-aware feature generation.

1) Stereo Correlation and Reprojection (SCR): As shown
in Fig. 2(b), the SCR module takes multi-scale paired features
({F i

l ,F i
r}, i = 1, 2, 3) as inputs. With these paired features, the

SCR module first extracts multi-scale cost volumes (F i
cv , i =

1, 2, 3) with stereo correlation operation, and second generates
multi-scale stereo volumes (F i

sv , i = 1, 2, 3) in camera frustum
space with reprojection.

For a paired feature map {F i
l ,F i

r}, the cost volume (F i
cv) is

first generated with stereo correlation as follows.

F i
cv(d, h, w) =

1
C

C∑
c=1

F i
l (c, h, w − d) ∗ F i

r(c, h, w + d),

(1)
where d, h, w are the indexes of disparity, height, and width
dimensions, and C is the number of feature channels. The
disparity index d contains depth information, which is in-
versely proportional to the depth. w−d represents right shifting
d pixels for left feature map, while w + d represents left
shifting d pixels for right feature map. Eq. 1 is a classical
cost volume generation strategy [28], [46] that calculates cost
volume features by greed search in disparity space. For the
disparity d, the feature in left image is F i

l (c, h, w − d), and
the feature in right image is F i

l (c, h, w+d). We calculate cost
volume features by cross-channel feature correlation. The cost
volume features have strong response at index d if a 3D point
has a disparity d on stereo images. If w− d or w+ d are out
of range of F i

l and F i
r , we set the feature as zero.

After that, we convert multi-scale cost volumes (F i
cv , i =

1, 2, 3) to multi-scale stereo volumes (F i
sv, i = 1, 2, 3) with

our repojection operation, including multi-scale cost volume
fusion and dimension reshaping. Assuming that the size of F 1

cv

is D×H ×W , we first use a 2D convolution to generate raw
stereo volume F 1

rsv ∈ R(C∗D)×H×W and second reshape F 1
rsv

to stereo volume F 1
sv ∈ RC×D×H×W .The 2D convolution is

able to generate stereo volume based on depth information
existing in cost volume. At the same time, we downsample
raw stereo volume F 1

rsv twice time and concatenate it with
F 2
cv , which are fed to a 2D convolution to generate raw stereo

volume F 2
rsv ∈ R(C∗D)×H/2×W/2. The F 2

rsv is reshaped to
generate stereo volume F 2

sv ∈ RC×D×H/2×W/2. Similarly,
we generate stereo volume F 3

sv with the inputs of F 2
rsv and

F 3
cv . The above steps of our reprojection operation can be

summarized as the following equations. F 1
sv = fre(F

1
rsv), F

1
rsv = fconv(F

1
cv),

F 2
sv = fre(F

2
rsv), F

2
rsv = fconv(fcat(favg(F

1
rsv), F

2
cv)),

F 3
sv = fre(F

3
rsv), F

3
rsv = fconv(fcat(favg(F

2
rsv), F

3
cv)),

(2)
where fre represents dimension reshaping, fconv represents
2D convolution, fcat represents channel concatenation, favg
represents downsampling operation with average pooling.

The generated stereo volumes in camera frustum space exist
the issue of object distortion. To solve the issue, we introduce
a multi-scale BEV projection and fusion (MPF) module to
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Fig. 3. A detailed comparison between DSGN (a) and our EGFG (b).
Our EGFG adopts deep multi-scale information fusion for stereo volume
generation (left) and geometry-aware feature generation (right) which avoids
complex 3D and 2D aggregation networks adopted in DSGN [11]. Note that,
three input layers in our EGFG do not share Conv2D parameters. To highlight
the difference to DSGN, we just plot one Conv2D here.

convert stereo volume features in camera frustum space to 3D
geometry-aware features in 3D world space.

2) Multi-Scale BEV Projection and Fusion (MPF): As
shown in Fig. 2(c), the MPF module first transforms multi-
scale stereo volumes (F i

sv, i = 1, 2, 3) in camera frustum space
to multiple geometry volumes (F i

gv, i = 1, 2, 3) in 3D world
space. After that, the MPF module converts geometry volumes
in 3D space to the features in BEV, and performs a multi-level
fusion to generate geometry-aware feature (F i

gf , i = 1, 2, 3)
for 3D prediction.

To transform stereo volume in camera frustum space to
geometry volume in 3D space, we adopt volume transforma-
tion operation introduced in DSGN [11]. Specifically, we first
generate a regular voxel gird in 3D space and project each
voxel in grid into camera frustum space with camera internal
parameters. After that, we perform a reversing 3D projection
to project the corresponding feature in stereo volume to
that in geometry volume. With multi-scale stereo volumes
(F i

sv, i = 1, 2, 3), we adopt the voxel gird with the same size to
generate multiple geometry volumes (F i

gv, i = 1, 2, 3) with the
same resolution. After that, we convert the geometry volumes
to the BEV features (F i

bev ∈ R(C∗Y )×X×Z , i = 1, 2, 3) by
flattening geometry volumes along channel and y dimensions.

With the BEV features (F i
bev, i = 1, 2, 3), we perform a

multi-level fusion to generate the enhanced geometry-aware
features (F i

gf ∈ RC′×X×Z , i = 1, 2, 3). Specifically, we first
use a 2D convolution to generate geometry-aware feature F 1

gf .
At the same time, we concatenate F 1

gf with F 2
bev and fed it

to a 2D convolution to generate geometry-aware feature F 2
gf .

Similarly, we generate geometry-ware feature F 3
gf . We also

map semantic features F 3
l to 3D space and concatenate it with

geometry-aware feature F 3
gf like [11]. Finally, the geometry-

aware feature F 3
gf is used to perform 3D prediction.

Difference to DSGN Fig. 3 gives a comparison between
DSGN [11] and our EGFG. Both DSGN and our EGFG
extract stereo volume in camera frustum space and convert
camera frustum space to 3D and BEV spaces for geometry-
aware feature generation. Though they adopt a similar pipeline,
they have significant differences as follows: (1) The goal is
different. DSGN aims to explore an accurate 3D detector
without considering computational costs, while our EGFG
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Fig. 4. Detailed architecture of our designed LiDAR detector for distillation.
The LiDAR detector first generates multi-scale voxel feature maps by a voxel
operation and a sparse 3D convolution backbone like [50]. Then, these multi-
scale voxel features are used to generate multiple geometry-aware features.

aims to explore a fast stereo 3D object detector with a best
trade-off between speed and accuracy. (2) The key idea of
geometry-aware feature generation is different. DSGN em-
ploys the heavy 3D and 2D aggregation networks to ex-
tract discriminative geometry-aware features, while our EGFG
adopts deep multi-scale fusion with 2D convolution to generate
discriminative geometry-aware features. The flops of 3D conv
in 3D aggregation networks are about D∗K times slower than
2D Conv in our EGFG, where D is disparity maximum and
K is kernel size. In addition, the number of 3D conv in 3D
aggregation networks is lager than the number of 2D conv in
EGFG. (4) We observe that it achieves a poor performance
without the heavy 3D and 2D aggregation networks used in
DSGN [11] (see Table 4).

B. Deep Geometry-Aware Feature Distillation (DGFD)

LiDAR-based 3D detection has a higher accuracy than
stereo 3D detection. To bring this gap, Guo et al. [15] proposed
a novel feature distillation approach (LIGA) for stereo 3d
detection. LIGA attaches a single-level feature distillation on
the output geometry-aware feature of deep stereo geometry
network (DSGN) [11]. We argue that this single-level distil-
lation can not provide a deep supervision. To this end, we
propose a deep geometry-aware feature distillation (DGFD)
scheme, where a LiDAR-based 3D detector is designed to
generate multi-level LiDAR features and then provide deep
multi-level supervision for stereo feature learning.

Fig. 4 shows the architecture of our designed LiDAR 3D
detector. We first convert raw point cloud representation into
a voxel representation and use a spare 3D convolutional
backbone [50] to extract multi-scale LiDAR voxel features
(F i

lvf , i = 1, 2, 3). Then, we flatten LiDAR voxel features
along channel and y dimensions and pool the BEV features
to the same resolution by using average pooling. We call the
resized output features as LiDAR BEV features (F i

lbev, i =
1, 2, 3). After that, we perform a multi-level fusion to output
LiDAR geometry-aware features (F i

lgf , i = 1, 2, 3). Finally,
we perform LiDAR 3D prediction on F 3

lgf .
We first train this LiDAR 3D detector on point cloud

data in KITTI dataset [14]. After that, the LiDAR geometry-
aware features (F i

lgf ∈ RC′×X×Z , i = 1, 2, 3) are used to
guide stereo geometry-aware feature learning. Specifically,
we minimize the feature difference Ldif between LiDAR
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TABLE I
COMPARISON (AP3D ) OF SOME STATE-OF-THE-ART 3D STEREO OBJECT (CAR) DETECTION METHODS ON BOTH KITTI VALIDATION AND TEST SETS.
THE INFERENCE TIME, EXCEPT YOLOSTEREO3D, IS TAKEN FROM THE LEADERBOARDS ON OFFICIAL KITTI WEBSITE. YOLOSTEREO3D AND OUR

ESGN ARE REPORTED ON NVIDIA RTX3090.

Method Time mAP (test) IoU > 0.7 (validation)
Moderate Easy Hard Moderate Easy Hard

TL-Net [35] - 4.37 7.64 3.74 14.26 18.15 13.72
Stereo RCNN [24] 300ms 30.23 47.58 23.72 36.69 54.11 31.07
IDA3D [30] 300ms 29.32 45.09 23.13 37.45 54.97 32.23
PL: F-PointNet [47] 400ms 26.70 39.70 22.30 39.8 59.4 33.5
PL: AVOD [47] 400ms 34.05 54.53 28.25 45.3 61.9 39
PL++: AVOD [54] 400ms - - - 46.8 63.2 39.8
PL++: P-RCNN [54] 400ms 42.43 61.11 36.99 44.9 62.3 41.6
OC-Stereo [31] 350ms 37.60 55.15 30.25 48.34 64.07 40.39
ZoomNet [49] 300ms 38.64 55.98 30.97 50.47 62.96 43.63
Disp R-CNN [45] 387ms 45.78 68.21 37.73 47.73 64.29 40.11
DSGN [11] 670ms 52.18 73.50 45.14 54.27 72.31 47.71
CG-Stereo [23] 570ms 53.58 74.39 46.50 57.82 76.17 54.63
LIGA [15] 400ms 64.66 81.39 57.22 67.06 84.92 63.80
SNVC [26] 1000ms 61.34 78.54 54.23 63.75 77.29 56.81
RT3DStereo [20] 80ms 23.28 29.90 18.96 - - -
Stereo-Centernet [42] 40ms 31.30 49.94 25.62 41.44 55.25 35.13
RTS3D [25] 39ms 37.38 58.51 31.12 44.5 63.65 37.48
RT3D-GMP [21] 60ms 38.76 45.79 30.00 - - -
YOLOStereo3D [27] 50ms 41.25 65.68 30.42 46.58 72.06 35.53
ESGN (Ours) 62ms 46.39(+5.14) 65.80(+0.12) 38.42(+7.30) 52.33(+5.75) 72.44(+0.38) 43.74(+6.26)

geometry-aware features and stereo geometry-aware features
at multiple levels as follows:

Ldif =
∑

i=1,2,3

1

N

∣∣MfgMsp(g(F
i
gf )− F i

lgf )
∣∣2 , (3)

where i represents the scale index, g represents a single 1 ×
1 convolution, Mfg is the foreground mask, Msp is LiDAR
sparse mask, and N is the number of sparse foreground mask.

C. Prediction Heads

3D Detection Head Similar to [11], [15], we perform
3D detection by a classification head and a regression head.
During the training, the total loss of 3D detection can be
written as L3d = Lcls+Ll1+Ldir+Liou, where Lcls, Ll1, Ldir

respectively represent classification loss, box regression loss,
and direction classification loss in [15], [50], and Liou repre-
sents the rotated IoU loss [61].

Auxiliary Heads Similar to [11], [15], we add two auxiliary
heads during training, including a deep estimation head and
a 2D detection head. The depth estimation head consists of
several convolutions and is attached on stereo volume F 3

sv in
Fig. 2(b). The ground-truth of depth estimation is transformed
from point cloud data. The 2D detection head is attached on
the backbone feature F 1

l in Fig. 2(a). During the training, the
auxiliary loss can be written as Laux = Ldepth + L2d, where
Ldepth represents depth estimation loss and L2d represents 2D
object detection loss.

IV. EXPERIMENTS

A. Dataset and Implementation Details

Dataset We perform the experiments on the classical KITTI
dataset [14]. The KITTI dataset consists of 7,481 training
paired images and 7,518 test paired images. In addition, the
dataset provides the LiDAR point cloud data for each RGB
image. Following the existing works [24], [31], [47], we
split the original training images into the training set and

the validation set. The training set has 3,712 paired images
and the validation set has 3,769 paired images. For ablation
study, we train our ESGN on the training set with 3,712
images and evaluate it on the validation set. For state-of-the-
art comparison, we train our ESGN on the original training
images with 7,481 images and submit the results of the test
set to the official evaluation server for performance evaluation.

Implementation Details We implement our proposed
ESGN on a single NVIDIA RTX3090 GPU. To generate Li-
DAR features for deep distillation, we first train our designed
LiDAR-based detector on the training set using LiDAR point
cloud data. We adopt Adam for optimization and set the batch
size as 2. There are 80 epochs, where the learning rate is set
as 0.003 and decreases at epoch 35 and 45. After that, we train
our ESGN on the training set using stereo images. We adopt
Adam for optimization and set the batch size as 1. There are 55
epochs, where the learning rate is set as 0.001 and decreases
at epoch 50 by a factor of 10. We will plan to implement it
with MindSpore in future work.

For KITTI dataset, we set the detection region in range [-30,
30] × [-1, 3] × [2, 59.6] (meters). The voxel size in stereo
is set as [0.4m, 0.8m, 0.4m] for regular voxel grid generation
(see Sec. III-A1), while the voxel size in LiDAR is set as
[0.05m, 0.1m, 0.05m] for LiDAR voxel representation.

B. Comparison With State-Of-The-Art Methods

We first compare our proposed ESGN with some state-
of-the-art methods on both KITTI test and validation sets.
According to the degree of occlusion and truncation, the
validation and test sets are respectively divided into three
subsets: easy, moderate and hard. Tab. I gives the state-
of-the-art comparison in terms of speed and AP3d. Compared
to the high-accuracy DSGN [11] and LIGA [15], our proposed
ESGN is 11.2 and 6.5 times faster in speed. Among these state-
of-the-art methods, RT3DStereo [20], Stereo-Centernet [42],
RTS3D [25], RT3D-GMP [21], and YOLOStereo3D [27] be-
long to fast stereo 3D object detection approaches, which have
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TABLE II
COMPARISON (APBEV ) OF STATE-OF-THE-ART 3D OBJECT (CAR) DETECTION METHODS ON KITTI VALIDATION SET. THE INFERENCE TIME, EXCEPT

YOLOSTEREO3D, IS FROM THE OFFICIAL KITTI LEADERBOARDS. YOLOSTEREO3D AND OUR ESGN ARE REPORTED ON NVIDIA RTX3090.

Method Time IoU > 0.7 IoU > 0.5
Moderate Easy Hard Moderate Easy Hard

TL-Net [35] - 21.88 29.22 18.83 45.99 62.46 41.92
Stereo RCNN [24] 300ms 48.30 68.50 41.47 74.11 87.13 58.93
IDA3D [30] 300ms 50.21 70.68 42.93 76.69 88.05 67.29
PL: F-PointNet [47] 400ms 51.8 72.8 44 77.6 89.8 68.2
PL: AVOD [47] 510ms 39.2 60.7 37 65.1 76.8 56.6
PL++: AVOD [54] 400ms 56.8 74.9 49 77.5 89 68.7
PL++: PIXOR [54] 400ms 61.1 79.7 54.5 75.2 89.9 67.3
PL++: P-RCNN [54] 400ms 56 73.4 52.7 76.6 88.4 69
OC-Stereo [31] 350ms 65.95 77.66 51.20 80.63 90.01 71.06
ZoomNet [49] 300ms 66.19 78.68 57.60 88.40 90.62 71.44
Disp R-CNN [45] 387ms 64.38 77.63 50.68 80.45 90.67 71.03
DSGN [11] 670ms 63.91 83.24 57.83 - - -
CG-Stereo [23] 570ms 68.69 87.31 65.80 88.58 97.04 80.34
LIGA [15] 400ms 77.26 89.35 69.05 90.27 97.22 88.36
SNVC [26] 1000ms 72.95 87.07 56.81 - - -
Stereo-Centernet [42] 40ms 53.27 71.26 45.53 - - -
RTS3D [25] 39ms 56.46 76.56 48.20 78.70 90.41 70.03
YOLOStereo3D [27] 50ms 55.22 80.69 43.47 79.62 96.52 62.50
ESGN (Ours) 62ms 63.86(+7.4) 82.29(+1.6) 54.63(+6.43) 82.22(+2.6) 93.05 72.25(+2.22)
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Figure 1. Accuracy (Moderate) vs. speed (ms) comparison on
KITTI test set. The inference time is taken from KITTI website.
Our method achieves a state-of-the-art tradeoff between accuracy
and speed.

References

1

Fig. 5. Accuracy (mAP) and inference time (ms) comparison of some state-of-
the-art stereo 3D object detection methods on KITTI test (moderate) set [14].
The inference time of most methods, except YOLOStereo3D [27], are taken
from the official KITTI leaderboards. For a fair comparison, the inference
time of YOLOStereo3D and our ESGN are reported on a single NVIDIA
RTX3090. Our ESGN achieves a best trade-off between accuracy and speed.

the speed of less than 100ms. For example, YOLOStereo3D
[27] achieves an AP3d of 41.25% on moderate test set at the
speed of 50ms. Compared to these fast stereo 3D detection
approaches, our ESGN achieves the best accuracy on three
subsets of both test and validation sets. For example, our
ESGN outperforms YOLOStereo3D by an absolute gain of
5.14% on KITTI moderate test set at a comparable speed.

Tab. II further provides the state-of-the-art comparison in
terms of both speed and APbev on KITTI validation set. We
show the results under two evaluation metrics (i.e., IoU >
0.5 and IoU > 0.7). On the moderate set, our ESGN out-
performs these fast stereo object detection approaches under
these two evaluation metrics. Moreover, we observe that our
ESGN is much better under the stricter evaluation metric

TABLE III
IMPACT OF INTEGRATING EGFG (SEC. III-A) AND DGFD (SEC. III-B)

MODULES INTO THE BASELINE ON KITTI VALIDATION SET.

Baseline EGFG DGFD Moderate Easy Hard

✓ 15.54 23.89 13.32
✓ ✓ 49.69 68.05 41.40
✓ ✓ ✓ 52.33 72.44 43.74

(IoU > 0.7). For example, our proposed ESGN outperforms
YOLOStereo3D by an absolute gain of 8.64% on moderate
set with the evaluation metric of IoU > 0.7.

Fig. 5 compares the accuracy and inference time of some
stereo 3D object detection methods. Our proposed ESGN has a
better trade-off between accuracy and speed than these existing
fast stereo methods.

C. Ablation Study

We conduct the ablation study to demonstrate the effective-
ness of different modules in our ESGN. All the results in this
subsection are evaluated on KITTI validation set under the
evaluation metric of IoU > 0.7.

We first show the impact of progressively integrating dif-
ferent modules, including EGFG in Sec. III-A and DGFD in
Sec. III-B, into the baseline. Tab. III shows the results on
three subsets. Our baseline directly adopts the single stereo
volume F 1

sv for stereo 3D detection using 3D head like
[27]. On moderate subset, our baseline achieves a very low
AP3d of 15.54% on moderate subset, due to very simple
and plain design. Then, we integrate our EGFG into the
baseline, where EGFG fuses deep multi-level information for
both stereo volume and geometry-aware feature generations.
Our EGFG achieves an AP3d of 49.69%, which demonstrates
the effectiveness of our EGFG module. Finally, we integrate
our DGFD into them, which achieves an AP3d of 52.33%. It
demonstrates that deep distillation is useful for 3D detection.

We further show the impact of different modules in our
EGFG in Tab. IV. Our EGFG contains a SCR module and a
MPF module. When using only single scale SCR (baseline
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Fig. 6. Qualitative stereo 3D results of our ESGN. The top row shows 3D detection results in image viewpoint, and the bottom row shows 3D detection
results in 3D space. Our ESGN detects both large and small objects accurately.

TABLE IV
IMPACT OF TWO MODULES, INCLUDING SCR (SEC. III-A1) AND MPF

(SEC. III-A2), IN OUR EGFG MODULE (SEC. III-A) ON KITTI
VALIDATION SET. ‘SINGLE’ REPRESENTS USING ONLY ONE OF THREE

SCALES WITHOUT MULTI-SCALE FUSION, WHILE ‘MULTIPLE’
REPRESENTS USING THREE SCALES WITH MULTI-SCALE FUSION.

SCR MPF Moderate Easy HardSingle Multiple Single Multiple

✓ 15.54 23.89 13.32
✓ ✓ 37.87 57.12 31.52

✓ ✓ 46.24 64.98 38.79
✓ ✓ 49.69 68.05 41.40

TABLE V
IMPACT OF THE NUMBER OF LAYERS FOR MULTI-SCALE FUSION IN OUR

EGFG ON KITTI VALIDATION SET.

Method Moderate Easy Hard

Single 37.87 57.12 31.52
Two 44.41 63.93 36.71
Three 49.69 68.05 41.40

in Tab. III), it achieves an AP3d of 15.54% on moderate
subset. When using single-scale SCR and single-scale MPF,
it achieves an AP3d of 37.87%. Note that, this single-scale
SCR and single-scale MPF setting is similar to the light-
weighted DSGN in which the heavy 3D and 2D aggregation
networks are removed. The light-weighted DSGN is inferior
to our ESGN. When using multi-scale SCR and single-scale
MPF, it achieves an AP3d of 46.24%, which provides 8.37%
improvement. Namely, single-scale SCR can not extract multi-
scale geometry information for stereo volume generation.
Based on multi-scale SCR, we perform multi-scale MPF and
further improve the performance by 3.45%. Namely, multi-
scale BEV projection and fusion further enhances geometry-
aware features. In addition, we show the impact of the number
of layers for multi-scale fusion in our EGFG in Tab. V.
Compared to single layer or two-layer fusion, three-layer

TABLE VI
IMPACT OF SINGLE-LEVEL DISTILLATION AND DEEP DISTILLATION IN

OUR DGFD MODULE (SEC. III-B) ON KITTI VALIDATION SET.

Method Moderate Easy Hard

No distillation 49.69 68.05 41.40
Single-level distillation 51.40 72.25 43.31
Deep distillation 52.33 72.44 43.74

fusion has the best performance.
We also compare single-level distillation and deep distilla-

tion in Tab. VI. Single-level distillation only guides feature
learning at single geometry-aware feature F 3

gf like [15], while
deep distillation guides feature learning at multiple geometry-
aware features F i

gf , i = 1, 2, 3. Compared to no distillation
design, these two distillation strategies respectively provide
1.71% and 2.64% improvements on moderate subset. Com-
pared to single-level distillation, our proposed deep distillation
has 0.93% improvement. It demonstrates that deep multi-level
distillation can better guide geometry-aware feature learning
in multiple levels. In addition, our deep distillation does not
add extra computation costs during inference.

Finally, we provide some qualitative 3D detection results
of our ESGN in Fig. 6. The results in image viewpoint (top)
and corresponding 3D space (bottom) are both provided. Our
ESGN can detect both large and small objects accurately.

V. CONCLUSION

In this paper, we have proposed an efficient stereo geom-
etry network (ESGN) for fast 3D object detection. The key
module is a novel efficient geometry-aware feature genera-
tion (EGFG) module that first generates multi-scale stereo
volumes by a SCR module and second generates geometry-
aware features by a MPF module. With deep multi-scale
fusion, our EGFG module generates discriminative geometry-
aware features without heavy aggregation operation. We also
introduce a deep geometry-aware feature distillation scheme to
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guide feature learning with a LiDAR-based 3D detector. We
perform experiments on KITTI dataset. Our ESGN achieves a
best trade-off between speed and accuracy. Compared to the
high-accuracy DSGN, our ESGN is 11.2 times faster in speed.
Compared to the fast YOLOStereo3D, our ESGN achieves an
AP3d improvement of 5.14% at a comparable fast speed. We
hope that our ESGN can provide more possible ways for fast
stereo 3D object detection.
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