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Abstract

The three pillars of Mathematical Finance are optimal investment, pricing,

and risk management. In this thesis, we intertwine all three in the context

of a one-period economy by replacing the variance in mean-variance portfolio

selection by a risk measure ρ. This entanglement stems from ρ-arbitrage, which

is a generalisation of ordinary arbitrage where – unlike in the classical theory

of Markowitz – no efficient portfolios exist.

We first assume an Expected Shortfall (ES) risk constraint and prove that

the market does not admit ES-arbitrage at confidence level α if and only if

there exists an equivalent martingale measure Q ≈ P such that
∥∥dQ

dP

∥∥
∞ < 1

α
.

We then quantify risk by a general positively homogeneous risk measure.

After providing a primal characterisation of ρ-arbitrage we prove that it cannot

be excluded in this setting unless ρ is as conservative as the worst-case risk

measure. In the case where ρ is a coherent risk measure that admits a dual

representation, we further give a necessary and sufficient dual characterisation

of ρ-arbitrage. This is intimately linked to the interplay between the set of

equivalent martingale measures for the discounted risky assets and the set of

absolutely continuous measures in the dual representation of ρ.

We end our exploration by considering star-shaped risk measures. We

introduce the new axiom of strong sensitivity to large losses and show it is

key to ensure the absence of ρ-arbitrage. This leads to a new class of risk

measures that are suitable for portfolio selection. Specialising to the case that

ρ is convex and admits a dual representation allows us to derive equivalent

dual characterisations of ρ-arbitrage as well as the property that ρ is suitable

for portfolio selection. Finally, we introduce the new risk measure of Loss

Sensitive Expected Shortfall, which is similar to and not more complicated to

compute than Expected Shortfall, but suitable for portfolio selection – which

Expected Shortfall is not.

xi
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Introduction

It has been said (cf. [28]) that there have been three major revolutions in

Mathematical Finance. The first one was Markowitz’ mean-variance analysis

[68]. Markowitz is widely regarded as the father of portfolio theory. Denoting

by Xπ the excess return of a portfolio π ∈ Rd, he considered the following two

problems:

• Given a minimal desired expected excess return ν∗ ≥ 0, minimise the

variance Var(Xπ) among all portfolios π ∈ Rd that satisfy E[Xπ] ≥ ν∗;

• Given a maximal variance threshold V ∗ ≥ 0, maximise the return E[Xπ]

among all portfolios π ∈ Rd that satisfy Var(Xπ) ≤ V ∗.

This is very intuitive and reduces the portfolio choice to a two-stage process: de-

termining a set of efficient portfolios, and then selecting the most appropriate

portfolio from the efficient set. Moreover, it is mathematically elegant and

leads to nice explicit formulas due to the simplicity of the computation of the

variance. Markowitz’ work popularised concepts like diversification and over-

all portfolio risk and return, moving away from the performance of individual

stocks. It led to the CAPM of Treynor [86], Sharpe [85], Lintner [66, 65] and

Mossin [71], and changed the way people invested.

The second revolution was the Black-Scholes-Merton formula [17]. This

helped theorise options trading, making it seem less like speculation. It had a

significant impact on how financial markets were viewed, and paved the way

towards the use of more sophisticated mathematical methods. The formula is

based around the crucial principle of no-arbitrage, which states that a model

of a financial market should not admit any arbitrage opportunities. Loosely

speaking, an arbitrage opportunity is a tradable payoff producing a sure gain

1



Introduction

with no chance of loss. Thus, the absence of arbitrage is a natural criterion.

It took over two decades to crystallise the mathematics of arbitrage (cf. [37]),

which allows us to systematically derive prices for options and other contingent

claims in an economically convincing way.

Finally, the third revolution was the development of coherent risk measures

by Artzner, Delbaen, Eber and Heath [11], which was later extended to convex

risk measures in [44] and [47]. Risk plays a role in every decision we face and

is at the heart of finance. Its quantification is a key issue, both for regulators

and financial institutions. Furthermore, new ways of looking at risk yield new

approaches to other problems in finance. The main contribution of the above

authors was shifting the paradigm of dealing with financial risks towards the

use of axioms, and introducing a mathematical notion of acceptability. They

laid the foundation of a new theory of risk measurement that has turned out

to be surprisingly rich and holds strong connections to many other areas in

economics, statistics and mathematics, cf. [46].

In this thesis, we link the first and third revolution by substituting the

variance in the theory of Markowitz by a general measure of risk ρ. Denoting

by Xπ the excess return of a portfolio π ∈ Rd, we consider the following two

problems:

(1) Given a minimal desired expected excess return ν∗ ≥ 0, minimise the

risk ρ(Xπ) among all portfolios π ∈ Rd that satisfy E[Xπ] ≥ ν∗;

(2) Given a maximal risk threshold ρ∗ ≥ 0, maximise the return E[Xπ]

among all portfolios π ∈ Rd that satisfy ρ(Xπ) ≤ ρ∗.

Herein, we refer to this as mean-ρ portfolio selection, and we refer to the

solutions of (1) and (2) as ρ-efficient portfolios.

When computing the risk of a portfolio, the variance has some deficiencies

due to its symmetry and inability to capture the risk of low probability events,

as for example default. Moreover, it is well-known that mean-variance prefer-

ences are not consistent with second-order stochastic dominance, while mean-ρ

preferences can be. However, unlike classical mean-variance portfolio selec-

tion, mean-ρ portfolio selection may be ill-posed in the sense that there are

no ρ-efficient portfolios, or even worse, that there is a sequence of portfolios

(πn)n∈N such that E[Xπn ] ↑ ∞ and ρ(Xπn) ↓ −∞. We refer to these situa-

tions as ρ-arbitrage and strong ρ-arbitrage, respectively. This terminology is

2



Introduction

motivated by the fact that they generalise the ordinary notion of arbitrage,

cf. Proposition 3.1.21. As a byproduct, we extend the methods relating to the

second revolution by replacing “no-arbitrage” with “no-(strong)-ρ-arbitrage”.

1.1 Motivating Example

We begin with a toy example. Consider a market with two assets. Asset 0

is riskless, hence by definition we know exactly what it is worth at time t = 1.

Assume its price at time t = 0 is equal to 1 and for simplicity neglect interest

rates, i.e.,

S0
0 = S0

1 = 1.

Assume the risky asset, asset 1, has the following dynamics

S1
0 = 1 and S1

1 =


2, with probability 1

3
,

1, with probability 1
3
,

1
2
, with probability 1

3
.

Denote the return of asset i ∈ {0, 1} by Ri := (Si
1 − Si

0)/S
i
0 and fix an initial

wealth x0 > 0. We can parametrise trading in fractions of wealth. Let π1 ∈ R
and π0 = 1− π1 denote the fractions of wealth invested in the risky asset and

riskless asset, respectively. Then the space of obtainable returns is given by

the set

X := {π0R0 + π1R1 : π1 ∈ R and π0 = 1− π1} = {π1R1 : π1 ∈ R},

which does not depend on π0 nor x0.

Mean-ES Portfolio Selection

In this market, every portfolio can be described by a real number π1. For

given desired return ν ≥ 0, one has to invest π1
ν = 6ν into the risky asset to

obtain an expected return of ν. As for the associated risk, we use the Expected

Shortfall, which is the most important risk measure in banking practice and

insurance regulation as of today. The Expected Shortfall (ES) of an integrable

3



1.1. Motivating Example

random variable X at confidence level α ∈ (0, 1) is given by

ESα(X) :=
1

α

∫ α

0

VaRu(X) du,

where VaRu(X) := inf{m ∈ R : P[m+X < 0] ≤ u} is the Value at Risk (VaR)

of X at confidence level u ∈ (0, 1). Here, portfolios with an expected return

of ν ≥ 0 have an ES at level α given by

ESα
ν =


3ν, if α ∈ (0, 1/3],

ν
α
, if α ∈ (1/3, 2/3),

5ν
α
− 6ν, if α ∈ [2/3, 1).

Fixing α∗ = 5/6, for ν > 0 we obtain

ESα
ν


> 0, if α < α∗,

= 0, if α = α∗,

< 0, if α > α∗.

If we plot expected return against ES of return, we get the following three

cases:

Figure 1: Mean-ES portfolio selection for the market (S0, S1)

It is easy to check that in case (a) of Figure 1 we do not have ESα-arbitrage.

There is a risk-reward tradeoff. Efficient portfolios exist and they “lie” on the

green branch. However, we do have ESα-arbitrage for cases (b) and (c). The

risk constraint becomes counterproductive for α ≥ α∗. In the case of (c), i.e.,

α > α∗, we further have strong ESα-arbitrage.

4
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No-(Strong)-ES-Arbitrage Pricing

Now suppose we introduce a third asset S2 in our model, an option on

S1 with strike price K: the buyer of the option has the right, but not the

obligation, to buy one share in asset 1 at time t = 1 at a predetermined price

K. For directness, we fix K = 1. The option is worthless at time t = 1 if

S1
1 ≤ 1, otherwise it is worth S1

1 − 1. Therefore,

S2
1 = (S1

1 − 1)+.

However, the value of the option at time t = 0 is not clear. One approach is to

find the values S2
0 for which the augmented market (S0, S1, S2) does not admit

(strong) ESα-arbitrage.

To that end, if we assume S2
0 = x > 0, then R2 = (S2

1 −x)/x and for ν ≥ 0

E[π1R1 + π2R2] = ν ⇐⇒ π1 = 6ν − 2π2((1− x)/x− 2).

Using this, it follows that any portfolio (in fractions of wealth) (π1, π2) ∈ R2

that has an expected return of ν has a corresponding ES at level α given by

ESα(π1R1 + π2R2) =


−m1, if α ∈ (0, 1/3],

1
α
(−1

3
m1 − (α− 1

3
)m2), if α ∈ (1/3, 2/3),

1
α
(−1

3
m1 − 1

3
m2 − (α− 2

3
)m3), if α ∈ [2/3, 1),

where

m1 := min(π1R1 + π2R2) = min{6ν + π2(4− 1−x
x
),−π2 − 3ν − π2(3− 1−x

x
)};

m2 := min({6ν + π2(4− 1−x
x
),−π2,−3ν − π2(3− 1−x

x
)} \ {m1});

m3 := max(π1R1 + π2R2) = max{6ν + π2(4− 1−x
x
),−π2,−3ν − π2(3− 1−x

x
)}.

Letting ESα
ν := min{ESα(π1R1 + π2R2) : π1 = 6ν − 2π2((1 − x)/x − 2)}, for

ν > 0 we obtain ESα
ν = νESα

1 , where

ESα
1 > 0 ⇐⇒ max(0, 1

3
− 1

9α
) < x < min(1

3
, 1
6α
);

ESα
1 ≥ 0 ⇐⇒ max(0, 1

3
− 1

9α
) ≤ x ≤ min(1

3
, 1
6α
).

When S2
0 = x < 0, we work with the equivalent market (S0, S1, S̃2) where

5



1.2. Objective

S̃2 := −S2 (so we can use fractions of wealth). By arguing similar to above,

one can show ESα
ν = νESα

1 where ESα
1 < 0. Finally when S2

0 = 0, we work with

the equivalent market (S0, S1, S̃2) where S̃2 := S2 + S0 (so that the relative

return is well-defined). Here, ESα
ν = νESα

1 where ESα
1 = 0 if α ∈ (0, α∗] and

ESα
1 < 0 otherwise.

Using similar logic to the reasoning after Figure 1 together with the analysis

above reveals that the no-(strong)-ESα-arbitrage pricing interval for this new

financial instrument is given by the (closed) open interval from max(0, 1
3
− 1

9α
)

to min(1
3
, 1
6α
). (Note that this interval is empty for α ≥ (>) 5/6 = α∗ as

expected.)

1.2 Objective

The preceding example was simple enough to take a direct approach. How-

ever, we want to develop a deeper understanding. We want to construct a

theory that can be applied to more general markets and to a wide variety of

risk measures, allowing us to bypass complicated calculations.

Fixing a probability space (Ω,F ,P) and a Riesz space L∞ ⊂ L ⊂ L1 with

the P-a.s. ordering, the objective of this thesis is to study mean-ρ portfolio

selection where ρ : L→ (−∞,∞] satisfies

• Monotonicity: For X1, X2 ∈ L such that X1 ≤ X2 P-a.s., ρ(X1) ≥ ρ(X2);

• Normalisation: ρ(0) = 0;

• Star-shapedness: For all X ∈ L and λ ≥ 1, ρ(λX) ≥ λρ(X).

Here, monotonicity means that higher payoffs have lower risk, which is a very

natural property. Normalisation encodes that no investment means no risk.

Finally, star-shapedness captures the idea that a position’s risk should increase

at least proportionally when scaled by a factor greater than one. (Note that

this framework is rich enough to include any convex risk measure.)

The way we tackle mean-ρ portfolio selection is to first study the mean-ρ

problem (1) with an equality constraint, i.e., for fixed ν ≥ 0, find the minimal

risk among the portfolios with expected excess return ν:

(1’) For ν ≥ 0, minimise ρ(Xπ) among all portfolios π with E[Xπ] = ν.

Solutions to (1’) are referred to as ρ-optimal portfolios. The first question we

seek to answer (Q1), concerns their existence:

6
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(Q1) Existence of optimal portfolios. What conditions guarantee that ρ-

optimal portfolios for a desired excess return ν ≥ 0 exist?

The next step is to plot ν against ρν := infπ∈Πν ρ(Xπ) as in Figure 1, and

identify the set of ρ-efficient portfolios. We want to perform this procedure

only if we know this set is nonempty, otherwise the risk constraint is void.

Thus, the next question we consider is:

(Q2) Absence of (strong) ρ-arbitrage. What are necessary and sufficient

conditions to ensure that a market does not admit (strong) ρ-arbitrage?

This is also important in the context of pricing. Indeed, we have seen in

the motivating example that obtaining no-(strong)-ES-arbitrage price bounds

directly for a new asset can be tedious. This can be simplified if we can find

a simple characterisation of (strong) ρ-arbitrage.

Remark 1.2.1. In classical mean-variance portfolio selection, the solution to

(1’) exists for all ν ≥ 0. It also gives the solution to (1) and provides the so-

called efficient frontier, which in turn can be used to derive the solution to (2).

In particular, (1) and (2) are always well-posed and equivalent problems. By

contrast, in the mean-ρ setting, existence in (1’) is not guaranteed. Moreover,

even if (1’) has a solution for all ν ≥ 0, (1) and (2) may both be ill-posed, or

(1) may be well-posed and (2) ill-posed. This implies in particular that (1)

and (2) are no longer equivalent. These issues arise exactly when the market

admits ρ-arbitrage.

These first two questions are local, in the sense that we work on a fixed

market. The final question we consider is global:

(Q3) Suitable for risk management/portfolio selection.

(a) When is ρ suitable for risk management, i.e., when does ρ satisfy the

following universal property: every market that satisfies no-arbitrage

does not admit strong ρ-arbitrage?

(b) When is ρ suitable for portfolio selection, i.e., when does ρ satisfy the

following universal property: for every market that satisfies no-arbitrage

and for every ν∗ ≥ 0 and ρ∗ ≥ 0, the mean-ρ problems (1) and (2) admit

at least one solution with finite risk?

7



1.3. Literature

The notion of suitability for risk management is crucial from a regulator’s per-

spective. They want to avoid situations where there is a sequence of portfolios

whose reward increases to ∞ and risk decreases to −∞. In addition, being

suitable for portfolio selection is desirable from an investor’s perspective as

efficient portfolios exist. Economically speaking, (Q3) is the most important

question. The qualifier “suitable” should be interpreted from a purely the-

oretical perspective. Whether or not risk measures deemed “unsuitable” for

portfolio portfolio selection/risk management are actually unsuitable in prac-

tise is left for further research, cf. Remark 2.3.2.

1.3 Literature

Mean-ρ Portfolio Selection

Mean-ρ portfolio selection for specific (classes of) risk measures has been

well studied in the extant literature. Alexander and Baptista [5] solved the

problem of mean-VaR portfolio selection explicitly for multivariate normal

returns distributions. Rockafellar and Uryasev [77] studied mean-ES portfolio

selection for continuous returns distributions and showed that the optimisation

problem could be reduced to linear programming. Subsequently, the results of

[77] were extended to general returns distributions by the same authors [78]

and later generalised to spectral risk measures by Adam et al. [2].

A related strand of literature has looked at mean-ρ portfolio selection,

where ρ is a deviation risk measure (a generalisation of standard deviation).

This class of risk measures has been axiomatically studied by Rockafellar et

al. [80]. They showed in [81] that if D is a deviation risk measure, then mean-

D portfolio selection is always well posed. However, deviation risk measures

quantify the degree of uncertainty in a random variable, while regulators are

more concerned with the overall seriousness of possible losses. In particular,

deviation risk measures are not monotone.

Beyond the aforementioned research, the theory surrounding mean-ρ port-

folio selection is sparse. Notwithstanding, the minimisation of convex risk

measures has been studied by Ruszczyński and Shapiro [84], and their results

were later extended to quasiconvex risk measures by Mastrogiacomo and Gi-

anin [69]. These two papers study the following question: Given a vector space

Z representing the set of actions and a function F : Z → L which maps each

8
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action to a payoff, when is minz∈C ρ(F (z)) well-posed for some some given

convex subset C of Z. While their setting is more general than ours, their

assumptions on ρ are stronger (in particular a ‘nice’ dual representation). As

an application, they consider the mean-ρ problem (1) and provide sufficient

conditions that guarantee the existence of a solution to (1). In particular, these

conditions imply the existence of optimal portfolios (in our sense) and thereby

answer (Q1) at least partially. Nevertheless, their results do not contribute

to answering (Q2). Indeed, as we have seen in the toy example, even if the

mean-ρ problem (1) has a solution, there might still be ρ-arbitrage – in which

case the mean-ρ problem (2) does not have a solution. Finally, neither [84] nor

[69] consider (Q3) which we believe to be the most interesting and important

question from the point of view of the regulator.

(Strong) ρ-Arbitrage

The existence of ρ-arbitrage is puzzling at first sight because this is a sit-

uation that does not appear in the classical mean-variance framework. Its

occurrence was first recognised for VaR by [5] who gave necessary and suf-

ficient conditions for its absence in the case of multivariate normal returns

distributions. For ES, the possibility of ρ-arbitrage was first noted in a work-

ing paper by De Giorgi [34] in the case of elliptical returns distributions and

later observed in a simulation study by Kondor et al. [60]. The latter paper

led to a more detailed study by Ciliberti et al. [31], who concluded that there

is a phase transition, i.e., for small values of α, mean-ES portfolio selection

is well-posed, and from a certain critical value α∗ onwards, mean-ES portfo-

lio selection becomes ill-posed. The working paper [79] also recognised the

occurrence of ρ-arbitrage for coherent risk measures, noting that minimising

the risk subject to an inequality constraint on the expected return may fail

to have a solution. They called this an “acceptably free lunch”. More re-

cently, Armstrong and Brigo [9] showed that VaR and ES constraints may be

void for behavioural investors with an S-shaped utility. They proceeded to

study ρ-arbitrage for general coherent risk measures [10], focusing on multi-

variate normal returns and looking at the issue from an empirical/statistical

perspective, demonstrating that it is relevant in practise.

(Strong) ρ-arbitrage is related to the theory of good-deal pricing. To make

this connection, let us fix some pieces of notation. Denote by X the set of

9
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excess returns, F ⊂ X the set of “free” (i.e., whose price is nonpositive)

nonzero payoffs in the market and let D ⊂ L be a set of “desirable claims”.

Then the market is said to satisfy no-good-deals if F ∩ D = ∅; in which case

the set of no-good-deal prices for a financial contract Y outside the market is

given by

ID(Y ) := {y ∈ R : the augmented market with Y priced at y

satisfies no-good-deals}.

The absence of good-deals simply translates to forbidding positions that are

“too good to be true”. The no-good-deals pricing technique allows us to extend

the pricing rule in a “market consistent way”. Often both parts are expressed,

via duality, using pricing kernels.

When D = L+ := {X ∈ L : X ≥ 0 P-a.s.}, we are in the classical setting

of arbitrage pricing. (For a historical overview of arbitrage pricing, refer to

[37].) While the absence of arbitrage is universally accepted, its implications

for pricing are often rather weak, since for incomplete markets, the interval

NA(Y ) := IL+(Y ) is too large to provide any useful information. Sharper

bounds can be obtained by incorporating individual preferences.

A problem that arises immediately is how to define a good-deal, which

unlike arbitrage opportunities, may expose to downside risk. Cochrane and

Saa-Requejo [32] and Bernardo and Ledoit [15] initiated this study. The former

used Sharpe ratios to govern the set D, while the latter employed gain-loss

ratios. Their results were generalised by Černỳ and Hodges [23] who developed

an abstract theory for closed boundedly generated sets D and applied it, in a

finite state setting, to good-deals defined via utility functions. For a multi-

period and continuous time treatment of utility-based good-deal bounds see

[58] and [7], respectively. An alternative, but somewhat related way to define

a good-deal is through risk measures. This was first explored by Jaschke and

Küchler [55], who studied the situation where D = {X ∈ L : ρ(X) < 0} and ρ

is a coherent risk measure; this was later extended by Cherny [28].

In all the above concepts of a good-deal, D ̸⊃ L+, which is problematic

since it may mean that ID(Y ) ̸⊂ NA(Y ). The only notion (aside from ρ-

arbitrage) we are aware of that truly subsumes ordinary arbitrage is the (scal-

able) acceptable deal by Arduca and Munari [8]. There, the authors derive a

fundamental theorem of asset pricing for pointed convex cones D that contain

10
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L+. Their main result, albeit in a much more complicated setting, holds a

strong connection with our main result in Chapter 3, cf. Remark 4.2.10.

Our contribution to the theory of good-deal pricing is expressed through

Corollaries 4.2.8 and 4.2.11. In essence we replace the term “no-good-deal”

with “no-(strong)-ρ-arbitrage”, and are able to derive price bounds based on

convex risk measures, which is missing is in the literature. One could argue that

since (strong) ρ-arbitrage relies on the expectation playing the role of a reward

measure, it would be more fitting to use the term (strong) (E, ρ)-arbitrage.
However, it is often the case that (strong) ρ-arbitrage can be reformulated in

terms of a statement involving only ρ, cf. Remarks 3.1.17 and 3.1.19. Further-

more, as we do not differ how the reward is quantified in this thesis, there is

nothing to be gained by complicating our terminology.

Related Concepts

A strand of literature that is not directly related to mean-ρ portfolio se-

lection but is close from a conceptual point of view is mean-variance port-

folio selection under ambiguity aversion. Here, the idea is that the investor

is uncertain about the probabilistic model but otherwise stays in the clas-

sical mean-variance framework. Let us just mention two key contributions:

Boyle et al. [20] assume that the investor is uncertain about the mean (but

not the variance) of the risky assets and hence first minimises over the ex-

pected returns they consider plausible. If the investor has less uncertainty

about the returns of some “familiar” assets, they hold – compared to classi-

cal mean-variance portfolio selection – a higher proportion of “familiar” assets

and a lower proportion of “unfamiliar” ones, where they have more uncertainty

about the returns. Maccheroni et al. [67] consider the Bayesian framework of

model uncertainty from [57], where the agent has a prior on plausible models

and penalises the mean-variance utility under the so-called ambiguity neutral

model by a variance term describing the model uncertainty. In a setting with

a riskless and two risky assets (one with and one without model uncertainty),

they show that the alpha of the ambiguous asset is the key additional statistic

in this problem.

Both mean-ρ portfolio selection and mean-variance portfolio selection under

ambiguity aversion can be seen as a way of making the classical Markowitz

problem more robust. In the former, the focus is on making the risk measure

11
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more robust (and correcting for the theoretical shortcomings of the variance

as a measure of risk). In the latter, the focus is on making the probabilistic

model more robust by taking uncertainty on the mean/the probabilistic model

into account. Both extensions are important but address different issues.

Last but not least, ρ-arbitrage is conceptually related to the notion of reg-

ulatory arbitrage. Here the idea is that the risk measure constraint can be

interpreted as a regulatory capital requirement imposed by the regulator. If

the agent can act in some way to avoid (or weaken) the regulatory constraint,

they perform a regulatory arbitrage. The term ‘regulatory-arbitrage’ has been

emphasised in the literature more intensively since 2004 as explained in [88].

However, there is no universal definition for this concept. The general consen-

sus is that it is a notion that refers to actions performed by financial institutions

to avoid unfavourable regulation.

The closest paper to our work in that direction is Wang [87], who defines

regulatory arbitrage quantitatively as the level of superadditivity that a risk

measure possesses. The larger the latter, the more the agent can weaken the

regulatory constraint by splitting up their position. While this definition is

somewhat different from our notion of ρ-arbitrage, it captures the same idea

that risk measure constraints may be (partially) avoided by financial agents. In

our case, for certain market environments, the regulatory constraint becomes

void in portfolio optimisation, whereas in [87], the action of splitting up the

position can weaken the regulatory constraint.

1.4 Structure

In addition to this introductory part and to the following section, where

we describe our model of a financial market, the dissertation is divided into

three chapters.

Chapter 2 is devoted to a rigorous study of mean-ES portfolio selection. It

is widely argued that the financial crisis of 2007-2009 was a result of excessive

risk-taking by banks; see e.g. [41, 89]. Consequently, the financial regulators

have tried to impose better risk constraints on financial institutions, which for

the banking sector are codified in the Basel accords. One of the key changes

from Basel II to Basel III was updating the ‘official’ risk measure from VaR to

ES in the hope of better financial regulation; cf. the discussion in [59]. Thus,

12
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we begin our exploration with mean-ES portfolio selection. More precisely,

we show that optimal portfolios always exist, we give necessary and sufficient

conditions for the existence of (strong) ES-arbitrage, and conclude that ES is

not suitable for risk management/portfolio selection.

Many of the techniques in Chapter 2 can be generalised to positively ho-

mogeneous risk measures, ρ (ρ(λX) = λρ(X) for λ ≥ 0). This is what we do

in Chapter 3, focusing particularly on answering (Q1)-(Q3) for coherent mea-

sures of risk. We begin by showing that under mild regularity assumptions,

positive homogeneity alone (without convexity) is enough to ensure existence

of optimal portfolios. We then provide a primal characterisation of (strong)

ρ-arbitrage.

We then introduce necessary and sufficient dual criteria for the absence

of (strong) ρ-arbitrage when ρ is a coherent risk measure that admits a dual

representation ρ(X) = supZ∈Q E[−ZX], where Q describes some dual set of

probability measures that are absolutely continuous with respect to P. Our

main result in this chapter Theorem 3.2.18, shows that absence of ρ-arbitrage is

equivalent to P∩Q̃ ≠ ∅, where P describes the set of all equivalent martingale

measures (EMMs) for the discounted risky assets and Q̃ is the “interior” of

Q. The precise definition for this “interior” of Q is very delicate because

both topological and algebraic notions fail. For this reason, we define Q̃ in an

abstract way that also gives some additional flexibility. This is worth the effort:

As a by-product of our main result, we get a refined version of the fundamental

theorem of asset pricing in a one-period market: for returns in L1, we show in

Theorem 3.3.2 that standard no-arbitrage is equivalent to the existence of an

EMM Q whose Radon-Nikodým derivative is uniformly bounded away from 0.

We proceed to apply our dual results to a large variety of examples. These

examples also highlight an important technical feature of our analysis. In order

to achieve a maximum level of generality, we do not assume that the set Q in

the dual representation of ρ (which is not unique) is L1-closed (as for example

assumed by [28]), nor do we assume that it coincides with the maximal dual

set. This extra flexibility allows us to get dual characterisations of ρ-arbitrage

even in cases when ρ might take the value ∞, and to explicitly characterise

the “interior” set Q̃ for a large class of examples.

In this chapter, we also explain how ρ-arbitrage and strong ρ-arbitrage gen-

eralise the classical notions of arbitrage of the first and second kind, respec-

tively, and show in Theorem 3.1.22 that (strong) ρ-arbitrage cannot be excluded
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(under standard no-arbitrage) unless ρ is as conservative as the worst-case risk

measure. Since a worst-case approach to risk is infeasible in practise, this in-

dicates that one should move beyond the class of positively homogeneous risk

measures for effective risk constraints in the context of portfolio selection. This

is the content of Chapter 4.

In Chapter 4 we complete our objective and answer (Q1)-(Q3) in the case

where ρ is monotone, normalised and star-shaped. We first address (Q1) and

show in Theorem 4.1.5 that the crucial ingredient for the existence of optimal

portfolios is that ρ satisfies on the set of returns X ⊂ L, the following new

axiom:

• Weak sensitivity to large losses on X : For any X ∈ X with P[X < 0] > 0

and E[X] = 0, there exists λ > 0 such that ρ(λX) > 0.

The economic meaning of this axiom is simple and intuitive: Apart from the

riskless portfolio, any portfolio that is expected to break-even has a positive

risk if it is scaled by a sufficiently large amount.

We then turn our attention to (Q2). Here, it turns out that the crucial

ingredient is a stronger version of the above axiom:

• Strong sensitivity to large losses on X : For all X ∈ X with P[X < 0] > 0,

there exists λ > 0 such that ρ(λX) > 0.

Again, its economic meaning is simple and intuitive: Apart from the riskless

portfolio, any portfolio has a positive risk if it is scaled by a sufficiently large

amount. The main issue with positively homogeneous risk measures, as men-

tioned in [46, page 306], is that an acceptable position X remains acceptable

if it is multiplied by an arbitrarily large factor λ > 0; and this is exactly

what makes it undesirable in portfolio selection since it can lead to an “unde-

tected accumulation of risk” [11, page 233]. Strong sensitivity to large losses

overcomes this pitfall. With the help of this axiom, we can provide a primal

characterisation of ρ-arbitrage in Theorem 4.1.23.

We also seek to derive a dual characterisation for the absence of (strong)

ρ-arbitrage. To this end, a key methodological tool is to consider ρ∞, the

smallest positively homogeneous risk functional that dominates ρ. Together

with the fact that if ρ has a dual representation then so does ρ∞, this allows

us to lift the results from Chapter 3 on the dual characterisation of ρ-arbitrage

for coherent risk measures to convex risk measures. We also provide a dual
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characterisation of strong ρ-arbitrage for convex risk measures. However, in

this case the link to ρ∞ breaks down and so the result is more involved.

Finally, we address (Q3). Here again, the key methodological tool is to

consider ρ∞. A key observation is that ρ satisfies weak/strong sensitivity to

large losses if and only if ρ∞ does. For part (a), we show in Lemma 4.1.26 that

a risk measure ρ is suitable for risk management if and only if ρ∞ is the worst-

case risk measure. And for part (b), we prove in Lemma 4.1.30 that a convex

risk measure ρ is suitable for portfolio selection if and only if it is real-valued

and ρ∞ is the worst-case risk measure. Combining these two results yields

in Theorem 4.1.31 the unexpected result that suitability for risk management

is equivalent to suitability for portfolio selection for a very wide class of risk

measures.

While the above results fully answer (Q3) from a theoretical perspective, it

leaves open the questions how large the subclass of risk measures suitable for

portfolio selection is and how concrete examples look like. Perhaps surprisingly,

we can describe in Theorem 4.2.13 all such convex risk measures in a dual way

if L is an Orlicz heart, which includes all Lp-spaces for p ∈ [1,∞).

Of course, of special interest is the case L = L1. We first show that an

important subset of risk measures that are suitable for portfolio selection on L1

are given by a subclass of so-called g-adjusted Expected Shortfall risk measures,

recently studied by Burzoni et al. [21]. In particular, we introduce the new

risk measure Loss Sensitive Expected Shortfall, which is not more complicated

to compute than ES, but unlike ES, is suitable for portfolio selection on L1.

We believe that this new risk measure could become of great relevance to the

regulator because it keeps many attractive features of ES, while being strongly

sensitive to large losses.

The thesis ends with some closing remarks. Past that, there is the appendix

and the bibliography. The appendix is split into six sections. Appendix A.1

contains some auxiliary results on the Expected Shortfall Deviation. Appendix

A.2 starts with a brief overview of some key definition and results concerning

Orlicz spaces before summarising existing results on the dual representation

of real-valued coherent risk measures defined on Orlicz spaces. Counterex-

amples complementing our theory are collected in Appendix A.3. Appendix

A.4 recalls some results relating star-shaped sets/functions with their recession

cones/functions, whilst Appendix A.5 contains key definitions and results on
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convex analysis. Last but not least, some additional technical results can be

found in Appendix A.6.

1.5 Model

The assumptions and notation introduced here will be adhered to through-

out this thesis. We consider a one-period (1 + d)-dimensional market

(S0
t , . . . , S

d
t )t∈{0,1}

on some probability space (Ω,F ,P). We assume that S0 is riskless and satisfies

S0
0 = 1 and S0

1 = 1 + r, where r > −1 denotes the riskless rate. We further

assume that S1, . . . , Sd are risky assets, where S1
0 , . . . , S

d
0 > 0 and S1

1 , . . . , S
d
1

are real-valued integrable random variables. We denote the relative return of

asset i ∈ {0, . . . , d} by

Ri :=
Si
1 − Si

0

Si
0

,

and its expectation by µi := E[Ri]. For notational convenience, we set S :=

(S1, . . . , Sd), R := (R1, . . . , Rd) and µ := (µ1, . . . , µd) ∈ Rd. We may assume

without loss of generality that the market is nonredundant, i.e.,
∑d

i=0 ϑ
iSi = 0

P-a.s. implies that ϑi = 0 for all i ∈ {0, . . . , d}. We also assume that the risky

returns are nondegenerate in the sense that for at least one i ∈ {1, . . . , d},
µi ̸= r. If this were not true, then there would be no incentive to trade in the

financial market.

Portfolios

As S0
0 , . . . , S

d
0 > 0, we can parametrise trading in fractions of wealth, and

we assume that trading is frictionless. More precisely, we fix an initial wealth

x0 > 0 and describe any portfolio (for this initial wealth) by a vector π =

(π1, . . . , πd) ∈ Rd, where πi denotes the fraction of wealth invested in asset

i ∈ {1, . . . , d}. We do not impose any portfolio constraints, so in particular

short selling is permitted. The fraction of wealth invested in the riskless asset

is in turn given by π0 := 1−
∑d

i=1 π
i = 1− π · 1, where 1 := (1, . . . , 1) ∈ Rd.

The return of a portfolio π ∈ Rd (which is independent of the initial wealth
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x0) can be computed by

Rπ := (1− π · 1)r + π ·R,

and the excess return of a portfolio π ∈ Rd over the riskless rate r is in turn

given by

Xπ := Rπ − r = (1− π · 1)r + π ·R− r = π · (R− r1). (1.1)

It follows that X = {Xπ : π ∈ Rd} is a subspace of L1. The expected excess

return of a portfolio π ∈ Rd over the riskless rate r can be calculated as

E[Xπ] = π · (µ− r1).

For fixed ν ∈ R, we set

Πν := {π ∈ Rd : E[Xπ] = ν}, (1.2)

i.e., Πν denotes the set of all portfolios with expected excess return ν. By

nondegeneracy, Πν is nonempty for all ν ∈ R, and it is an affine subspace.

Moreover, the definition of Πν in (1.2) implies that

Πk =

kΠ1 := {kπ : π ∈ Π1}, if k > 0,

(−k)Π−1 := {−kπ : π ∈ Π−1}, if k < 0.
(1.3)

Finally, in the sequel, we will only focus on nonnegative excess returns.
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Mean-Expected Shortfall Portfolio Selection

In this chapter, we study how the Expected Shortfall (ES) performs as a

regulatory constraint imposed by the regulator on a financial agent seeking

to optimise a portfolio. For an axiomatic justification of mean-ES portfolio

selection, we refer to [52].

Standing Assumption. Throughout the entire chapter we consider the

market (S0, S) described in the introduction with the additional assump-

tion that it satisfies no-arbitrage, i.e., there is no trading strategy (ϑ0, ϑ) ∈
R1+d (in numbers of shares) such that

ϑ0S0
0+ϑ·S0 ≤ 0, ϑ0S0

1+ϑ·S1 ≥ 0 P-a.s. and P[ϑ0S0
1+ϑ·S1 > 0] > 0.

By the Dalang-Morton-Willinger theorem [33], this means that the set

P := {Q ≈ P : EQ[Si
1/(1 + r)] = Si

0 for all i = 1, . . . , d},

of all equivalent martingale measures for the discounted risky assets is

nonempty and there is Q ∈ P such that the Radon-Nikodým derivative
dQ
dP is in L∞.

2.1 Mean-Expected Shortfall Portfolio Optimisation

We start by recalling the definitions of Value at Risk and Expected Short-

fall.
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Definition 2.1.1. Let α ∈ (0, 1) be a confidence level and X an integrable

random variable.

• The Value at Risk (VaR) of X at confidence level α is given by

VaRα(X) := inf{m ∈ R : P[m+X < 0] ≤ α}.

• The Expected Shortfall (ES) of X at confidence level α is given by

ESα(X) :=
1

α

∫ α

0

VaRu(X) du.

Remark 2.1.2. (a) It follows immediately from the definition that for fixed

X, the function α 7→ VaRα(X) is nonincreasing, which in turn implies that

the function α 7→ ESα(X) is nonincreasing and continuous. Note that α 7→
VaRα(X) might not be continuous.

(b) Basel III currently endorses ES at level 2.5%.

(c) Both VaR and ES are positively homogeneous. However, unlike VaR,

ES satisfies convexity, which means it encourages diversification. It also admits

a dual representation. To this end, for α ∈ (0, 1), set

Qα :=

{
Q ≪ P :

dQ
dP

≤ 1

α
P-a.s.

}
. (2.1)

By [45, Theorem 4.47] which extends to the case X ∈ L1, we have the following

dual characterisation of ES:

ESα(X) = max
Q∈Qα

EQ[−X]. (2.2)

(d) By equation (A.2) ES is (strictly) expectation bounded, that is

ESα(X) ≥ E[−X], X ∈ L1,

(where the inequality is strict if X is not P-a.s. constant). This is an important

property in what follows. Note that VaR is not expectation bounded. For

further properties of VaR/ES we refer to [45, Section 4.4].

We start our discussion on mean-ES portfolio optimisation by introduc-

ing a partial preference order on the set of portfolios. This preference order

formalises the idea that return is “desirable” and risk is “undesirable”.
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Definition 2.1.3. Fix a confidence level α ∈ (0, 1). A portfolio π ∈ Rd

is strictly ESα-preferred over a portfolio π′ ∈ Rd, if E[Xπ] ≥ E[Xπ′ ] and

ESα(Xπ) ≤ ESα(Xπ′), with at least one inequality being strict.

2.1.1 Optimal Portfolios

We approach the problem of mean-ES portfolio selection by first looking

at the slightly simplified problem of finding the minimum risk portfolio given

a fixed excess return.

Definition 2.1.4. Fix a confidence level α ∈ (0, 1) and an excess return ν ≥ 0.

A portfolio π ∈ Rd is called ESα-optimal for ν if π ∈ Πν and ESα(Xπ) ≤
ESα(Xπ′) for all π′ ∈ Πν . We denote the set of all ESα-optimal portfolios for

ν by Πα
ν .

The following result gives existence and further properties of ESα-optimal

portfolios. It relies on properties of the so-called Expected Shortfall Deviation

that are discussed in Appendix A.1.

Proposition 2.1.5. Fix a confidence level α ∈ (0, 1) and ν ≥ 0. Then the set

Πα
ν is nonempty, compact and convex. Moreover, Πα

0 = {0} and Πα
ν = νΠα

1 .

Proof. This follows from Corollary A.1.4 in Appendix A.1.

For ν > 0, the set Πα
ν is in general not a singleton, i.e., there may be

multiple optimal portfolios. Nevertheless, for all π ∈ Πα
ν , the associated risk

ESα(Xπ) is the same. Therefore, for α ∈ (0, 1) and ν ≥ 0, we may define

ESα
ν := ESα(Xπ), π ∈ Πα

ν . (2.3)

We proceed to study the properties of ESα
ν . First, we consider it as a function

of ν.

Lemma 2.1.6. Fix a confidence level α ∈ (0, 1) and ν ≥ 0. Then ESα
ν = νESα

1

where ESα
1 ≥ −1.

Proof. This follows immediately from (1.1), Proposition 2.1.5, positive homo-

geneity of ES and (A.2).

Next, we show that ESα
1 as a function of α is nonincreasing and continuous.

These properties will turn out to be very useful in the proof of our main results.
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Proposition 2.1.7. The function α 7→ ESα
1 is nonincreasing and continuous.

Proof. First, we establish monotonicity of ESα
1 . Let 0 < α1 < α2 < 1. Let

πα1 ∈ Πα1
1 and πα2 ∈ Πα2

1 . Then by (2.3), the fact that ESα is nonincreasing

in α and the definition of ESα-optimal portfolios, we obtain

ESα1
1 = ESα1(Xπα1

) ≥ ESα2(Xπα1
) ≥ ESα2(Xπα2

) = ESα2
1 .

Next, we establish left-continuity of α 7→ ESα
1 . So fix α ∈ (0, 1) and let

πα ∈ Πα
1 . Let ε > 0. By continuity of ESα in α, there is δ ∈ (0, α) such that

ESβ(Xπα)− ESα(Xπα) < ε, for all β ∈ (α− δ, α].

Hence, by definition of ESα
1 , we obtain

ESβ
1 ≤ ESβ(Xπα) ≤ ESα(Xπα) + ε = ESα

1 + ε, for all β ∈ (α− δ, α].

Since ESβ
1 ≥ ESα

1 for β ∈ (0, α] by the first part of the proof, left-continuity of

α 7→ ESα
1 follows.

Finally, we establish right-continuity of α 7→ ESα
1 . Suppose to the con-

trary that there is α ∈ (0, 1), a nonincreasing sequence (αn)n∈N in (α, 1) with

limn→∞ αn = α, and ε > 0 such that

ESαn
1 ≤ ESα

1 − ε for all n ∈ N.

Then for each n ∈ N, the set

An := {π ∈ Π1 : ES
αn(Xπ) ≤ ESα

1 − ε}

is nonempty. Each An is also compact by Proposition A.1.2(d), (A.4) and

the fact that Π1 is closed. Moreover, the sequence (An)n∈N is nested in the

sense that each An contains An+1 by the fact that ES is nonincreasing in its

confidence level. Hence
⋂

n∈NAn ̸= ∅ by Cantor’s intersection theorem, i.e.,

there exists π ∈ Π1 such that

ESαn(Xπ) ≤ ESα
1 − ε for all n ∈ N.

By continuity of expected shortfall in its confidence level, we arrive at the
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contradiction

ESα(Xπ) ≤ ESα
1 − ε,

We conclude that α 7→ ESα
1 is right-continuous.

We proceed to define the ESα-optimal boundary.

Definition 2.1.8. Fix a confidence level α ∈ (0, 1). Define the ESα-optimal

boundary by

OESα := {(ESα
ν , ν) : ν ≥ 0} ⊂ R× R+.

The following result gives a full description of the shape of the ESα-optimal

boundary. It follows directly from Lemma 2.1.6.

Proposition 2.1.9. Fix a confidence level α ∈ (0, 1). Then OESα is given by

OESα = {(kESα
1 , k) : k ≥ 0}, (2.4)

where ESα
1 > −1 is a constant that depends on α.

The following figure gives a graphical illustration of Proposition 2.1.9. It

shows that OESα can takes three different shapes depending on the sign of ESα
1 .

Figure 2: General shapes of the ESα-optimal boundary

2.1.2 Efficient Portfolios

We proceed to study the notion of ESα-efficient portfolios, which are defined

in analogy to efficient portfolios in the classical mean-variance sense.

Definition 2.1.10. Fix a confidence level α ∈ (0, 1). A portfolio π ∈ Rd is

called ESα-efficient if there does not exist another portfolio π′ ∈ Rd that is
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strictly ESα-preferred over π. We denote the ESα-efficient frontier by

EESα := {(ESα(Xπ),E[Xπ]) : π is ESα-efficient}.

Remark 2.1.11. Note that a portfolio π ∈ Rd can only be ESα-efficient if

it is ESα-optimal for some ν := E[Xπ] ≥ 0. Indeed if π /∈ Πα
ν , then any

π∗ ∈ Πα
ν is strictly ESα-preferred over π because ESα(Xπ∗) < ESα(Xπ) and

E[Xπ∗ ] = E[Xπ] = ν. Likewise if ν < 0, then ESα(Xπ) ≥ E[−Xπ] = −ν > 0

by expectation boundedness of ES, and so the riskless portfolio 0 is strictly

ESα-preferred over π.

As we have seen in the introduction, it can happen that there are no ESα-

efficient portfolios – despite the fact that ESα-optimal portfolios exists for

all ν ≥ 0. The following result shows that the existence of the ESα-efficient

frontier depends only on the sign of ESα
1 .

Theorem 2.1.12. Fix a sensitivity level α ∈ (0, 1). Then the following are

equivalent:

(a) ESα
1 > 0.

(b) EESα ̸= ∅.

Moreover, if ESα
1 > 0, then the efficient frontier is given by

EESα = {(kESα
1 , k) : k ≥ 0} (2.5)

Proof. First assume that ESα
1 > 0. We proceed to show that any ESα-optimal

portfolio for ν ≥ 0 is efficient, and so (2.5) follows from Remark 2.1.11 and

Proposition 2.1.9. Seeking a contradiction, let π ∈ Πα
ν for some ν ≥ 0 and

assume that there is π′ ∈ Rd such that E[Xπ′ ] ≥ E[Xπ] = ν and ESα(Xπ′) ≤
ESα(Xπ) = νESα

1 , with one inequality being strict. Set ν ′ := E[Xπ′ ]. If

ν ′ = ν, then ESα(Xπ′) < ESα(Xπ) and we arrive at a contradiction as π ∈ Πα
ν .

Otherwise, if ν ′ > ν, let π∗ ∈ Πα
ν′ . Then E[Xπ∗ ] = ν ′ > E[Xπ] = ν and

ESα(Xπ∗) = ν ′ESα
1 ≤ ESα(Rπ′ − r) ≤ ESα(Rπ − r) = νESα

1 . Since ESα
1 > 0,

we arrive at the contradiction that ν ′ > ν and ν ′ ≤ ν.

Finally, assume that ESα
1 ≤ 0. We proceed to show that there does not

exist any ESα-efficient portfolio. Seeking a contradiction, suppose that π ∈ Rd

is ESα-efficient. Then π ∈ Πα
ν for some ν ≥ 0 by the first step. Pick ν ′ > ν and
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let π′ ∈ Πα
ν′ . It follows from Proposition 2.1.9 that E[Xπ′ ] = ν ′ > E[Xπ] = ν

and ESα(Rπ′ − r) = ν ′ESα
1 ≤ νESα

1 . Hence, π
′ is ESα-preferred over π and we

arrive at a contradiction.

The following figure gives a graphical illustration of Theorem 2.1.12.

Figure 3: ESα-optimal boundary (red) and ESα-efficient frontier (green)

2.2 ESα-Arbitrage and its Dual Characterisation

As we have seen in the previous section, mean-ESα portfolio optimisation

is not always well defined as it can happen that there are no ESα-efficient

portfolios. We call this situation ESα-arbitrage.

Definition 2.2.1. Fix a confidence level α ∈ (0, 1). The market (S0, S) is said

to satisfy ESα-arbitrage if there are no ESα-efficient portfolios. It is said to

satisfy strong ESα-arbitrage if there exists a sequence of portfolios (πn)n∈N ⊂
Rd with

E[Xπn ] ↑ ∞ and ESα(Xπn) ↓ −∞.

Based on Theorem 2.1.12 and Lemma 2.1.6, we can show that the existence

of (strong) ESα-arbitrage is fully characterised by the sign of ESα
1 .

Theorem 2.2.2. Fix a confidence level α ∈ (0, 1). We have the following

trichotomy:

(a) If ESα
1 > 0, then the market (S0, S) does not admit ESα-arbitrage.

(b) If ESα
1 = 0, then the market (S0, S) admits ESα-arbitrage but does not

admit strong ESα-arbitrage.
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(c) If ESα
1 < 0, then the market (S0, S) admits strong ESα-arbitrage.

Proof. (a) This follows from Theorem 2.1.12.

(b) By Theorem 2.1.12, it suffices to show that (S0, S) does not admit

strong ESα-arbitrage. Let 0 ∈ Rd be the riskless portfolio and π′ ∈ Rd be any

other portfolio such that ν := E[Xπ′ ] > 0. Then ESα(Xπ′) ≥ ESα
ν = νESα

1 = 0

by the definition of ESα
ν and Lemma 2.1.6. Thus (S0, S) does not admit strong

ESα-arbitrage.

(c) Since ESα
1 < 0, by definition there exists a portfolio π ∈ Π1 such that

ESα(Xπ) < 0. Then, E[Xkπ] → ∞ and ESα(Xkπ) → −∞ as k → ∞. Thus,

(S0, S) admits strong ESα-arbitrage.

Remark 2.2.3. Theorem 2.2.2 shows that ESα-arbitrage corresponds to cases

(b) and (c) in Figure 3, whereas strong ESα-arbitrage corresponds to case (c).

Theorem 2.2.2 provides a full characterisation of (strong) ESα-arbitrage.

However, the criterion is rather indirect as it requires to calculate ESα
1 , which

relies on a nontrivial optimisation problem. Inspired by the Dalang-Morton-

Willinger theorem [33] and the dual representation of ES, one might want to

look at a simpler dual characterisation of ESα-arbitrage in terms of equivalent

martingale measures (EMMs) P for the discounted risky assets S/S0. To this

end, fix α ∈ (0, 1) and pick πα ∈ Πα
1 . Combining Theorem 2.2.2 and (2.2)

shows that the market (S0, S) does not admit ESα-arbitrage if and only if

max
Q∈Qα

EQ[−Xπα ] > 0.

Now if Qα ∩ P ̸= ∅, i.e., Qα contains an EMM P̃ for S/S0, then (1.1) and the

fact that P̃ is an EMM give

EP̃[−Xπα ] = EP̃[−πα · (R− r1)] = −πα · EP̃[R− r1] = −πα · 0 = 0,

where the expectation of a vector is understood component wise. As the

optimal Q∗ in (2.2) is in general not an equivalent measure, one might expect

max
Q∈Qα

EQ[−Xπα ] > EP̃[−Xπα ] = 0,

which would imply that (S0, S) does not admit ESα-arbitrage.
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Conversely, if Qα ∩ P = ∅, one might hope that

EQ[−Xπα ] < 0

for all Q ∈ Qα, which would imply that the market admits ESα-arbitrage.

It turns out that the heuristic argument above holds some truth and that

the minimal L∞-norm of Radon-Nikodým derivatives of EMMs is directly

linked to the presence or absence of (strong) ESα-arbitrage. This is the content

of the two main results in Chapter 2.

Our first main result provides a dual characterisation of ESα-arbitrage.

Theorem 2.2.4. Let P be the set of equivalent martingale measures for S/S0.

Then for α ∈ (0, 1) the following are equivalent:

(a) The market (S0, S) does not admit ESα-arbitrage.

(b) There exists Q ∈ P such that

∥∥∥∥dQdP
∥∥∥∥
∞
<

1

α
.

Our second main result provides a dual characterisation of strong ESα-

arbitrage.

Theorem 2.2.5. Let P be the set of equivalent martingale measures for S/S0.

Then for α ∈ (0, 1) the following are equivalent:

(a) The market (S0, S) does not admit strong ESα-arbitrage.

(b) inf
Q∈P

∥∥∥∥dQdP
∥∥∥∥
∞

≤ 1

α
.

The proofs of Theorems 2.2.4 and 2.2.5 are rather involved and delegated

to the next section.

2.3 Proofs of the Main Results

In this section we provide rigorous proofs for our main results, Theorems

2.2.4 and 2.2.5. To this end, we define the critical confidence level α∗ ∈ (0, 1)

for the market (S0, S) by

α∗ := sup{α ∈ (0, 1) : Qα ∩ P ̸= ∅}.
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Note that α∗ > 0 by the Dalang-Morton-Willinger theorem [33] and α∗ < 1

by the fact that P ̸∈ P by nondegeneracy. More precisely, if there exists a

sequence (αn)n∈N in (0, 1) with limn→∞ αn = 1 such that for each n there is

Qαn ∈ Qαn ∩ P with Radon-Nikodým derivative Zαn , then Zαn converges to

1 = dP
dP in L1 by the fact that

E[|Zαn − 1|] = 2E[(Zαn − 1)+] ≤ 2

(
1

αn

− 1

)
,

where we have used that E[|X|] = 2E[X+] for E[X] = 0. Hence, by dominated

convergence, P ∈ P . Also, note for future reference that

1

α∗ = inf
Q∈P

∥∥∥∥dQdP
∥∥∥∥
∞
. (2.6)

With the help of the critical confidence level α∗, we may combine Theorems

2.2.4 and 2.2.5 as follows:

Theorem 2.3.1. Let α∗ ∈ (0, 1) be the critical confidence level for the market

(S0, S). Then we have the following trichotomy:

(a) If 0 < α < α∗, then the market (S0, S) does not admit ESα-arbitrage.

(b) If α = α∗, then the market (S0, S) admits ESα-arbitrage but not strong

ESα-arbitrage.

(c) If 1 > α > α∗, then the market (S0, S) admits strong ESα-arbitrage.

Remark 2.3.2. (a) As a consequence of this result, ESα is not suitable for

portfolio selection/risk management. Indeed, one can always construct a mar-

ket (S0, S) that satisfies no-arbitrage and for which α∗ < α.

(b) The critical confidence level α∗ depends only on the market. An inter-

esting study would be to empirically find values of α∗ using real data. We do

not do this here, however Figure 6 suggests that within the current regulatory

frameworks, the chance to encounter ES-arbitrage is low but possible.

(c) Going back to the motivating example from the introduction, one can

describe the set of EMMs for the two-dimensional market by

P = {(q1, q2, q3) ∈ (0, 1)3 : q1 ∈ (0, 1/3), q2 = 1− 3q1 and q3 = 2q1}. (2.7)
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Using (2.6), it follows that α∗ = 5/6 (as we computed). We cannot use The-

orem 2.3.1 to find the no-(strong)-ESα-arbitrage price bounds for S2 since we

have no-arbitrage as part of our standing assumption in this chapter. This will

be rectified in the next chapter, cf. Remark 3.3.5(b).

The rest of this section will be devoted to proving Theorem 2.3.1.

The Case α < α∗

We first show that if 0 < α < α∗, then the market (S0, S) does not admit

ESα-arbitrage. This establishes Theorem 2.3.1(a)

Proposition 2.3.3. Assume that 0 < α < α∗. Then the market (S0, S) does

not admit ESα-arbitrage.

Proof. By Theorem 2.2.2, it suffices to show that ESα
1 > 0. So let π ∈ Πα

1

be arbitrary and set X := Xπ for convenience. Let P be set of equivalent

martingale measures for S/S0 and Qα be defined as in (2.1). By the definition

of ESα
1 in (2.3) and the dual characterisation of ES in (2.2) it suffices to show

that there is Q ∈ Qα such that EQ[−X] > 0.

First, note that EQ[−X] = 0 for all Q ∈ P . By the characterisation of

α∗ in (2.6) and the fact that 1
α
> 1

α∗ , it follows that there is ε > 0 and

Q̃ ∈ P such that Z̃ := dQ̃
dP ≤ 1

α
− ε P-a.s. tThe idea is to perturb Q̃ or more

precisely its Radon-Nikodým derivative Z̃ to define a measure Q ∈ Qα such

that EQ[−X] > 0 = EQ̃[−X].

Let A := {X < 0}. Note that P[A] ∈ (0, 1) since P ≈ Q̃, E[X] = 1 and

EQ̃[−X] = 0. Pick δ ∈ (0, ε) such that P[A]/Q̃[Ac] < 1/δ and define the

random variable Z by

Z(ω) :=

Z̃(ω) + δ if ω ∈ A,(
1− δ P[A]

Q̃[Ac]

)
Z̃(ω) if ω ∈ Ac.

Then Z is P-a.s. positive, bounded above by 1
α
− ε+ δ ≤ 1

α
, and satisfies

E[Z] = E[(Z̃ + δ)1A] +

(
1− δ

P[A]
Q̃[Ac]

)
E[Z̃1Ac ]

= Q̃[A] + δP[A] + Q̃[Ac]

(
1− δ

P[A]
Q̃[Ac]

)
= 1.
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So we can define the measure Q ≈ P by dQ
dP := Z. Then one can verify that

Q ∈ Qα by the definition of Z. Moreover, using that E[X1A] = E[X1{X<0}] <

0 by the fact that P[A] = P[X < 0] > 0 and E[Z̃X1Ac ] = E[Z̃X1{X≥0}] ≥ 0,

we obtain

EQ[X] = E[ZX] = E
[
(Z̃ + δ)X1A +

(
1− δ

P[A]
Q̃[Ac]

)
Z̃X1Ac

]
= E[Z̃X] + δE[X1A]− δ

P[A]
Q̃[Ac]

E[Z̃X1Ac ]

< E[Z̃X] = EQ̃[X] = 0.

Thus, EQ[−X] > 0.

The Case α ≥ α∗

We now consider the case that α is greater or equal than the critical con-

fidence level α∗.

We focus on the case that α > α∗ first. In order to show that under

this condition the market (S0, S) admits ESα-arbitrage, we use a separation

argument as is customary in dual characterisations of standard no-arbitrage;

cf. [45, Theorem 1.6]. To this end, for α ∈ (0, 1), we define

Cα := {EQ[R− r1] : Q ∈ Qα} ⊂ Rd, (2.8)

where EQ[R−r1] is a shorthand for the d-dimensional vector with components

EQ[Ri − r].

Note that the sets Cα are strongly related to mean-ESα portfolio optimi-

sation since for any π ∈ Rd,

ESα(Xπ) = max
c∈Cα

(−π · c).

We proceed to study some fundamental properties of the set Cα.

Lemma 2.3.4. Let α ∈ (0, 1). Then the set Cα is non-empty and convex.

Proof. This follows from the fact that the set Qα is nonempty (since P ∈ Qα)

and convex.

Next, note that EQ[R − r1] = 0 for any Q ∈ P . Conversely if Q ≈ P and

EQ[R − r1] = 0, then Q ∈ P by the definition of an equivalent martingale
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measure. Thus, if α ∈ (0, α∗), then 0 ∈ Cα because P ∩ Qα ̸= ∅. The next

result shows that for α > α∗, the zero vector is no longer in Cα. This is not

completely obvious as Qα also contains measures that are not equivalent to P.

Lemma 2.3.5. Let 1 > α > α∗. Then 0 /∈ Cα.

Proof. Seeking a contradiction, suppose that 0 ∈ Cα. Then there exists a

probability measure Qα ∈ Qα with Radon-Nikodým derivative Zα ∈ [0, 1
α
] P-

a.s. satisfying

EQα [R− r1] = E[Zα(R− r1)] = 0.

Choose β ∈ (0, α∗) such that

α∗ > β > αα∗

2α−α∗ > 0. (2.9)

and note that 1 > α > α∗ > 0 implies that α∗(2α − α∗) > αα∗ > 0. By the

definition of α∗, there exists Qβ ∈ Qβ∩P with corresponding Radon-Nikodým

derivative Zβ ∈ (0, 1
β
] P-a.s. satisfying

EQβ [R− r1] = E[Zβ(R− r1)] = 0.

Consider the probability measure given by the mixture Q̃ := 1
2
Qα+

1
2
Qβ. Then

EQ̃[R− r1] = 1
2
EQα [R− r1] + 1

2
EQβ [R− r1] =

1

2
0+

1

2
0 = 0.

The corresponding Radon-Nikodým derivative Z̃ = 1
2
Zα + 1

2
Zβ satisfies

0 < Z̃ ≤ 1
2
1
α
+ 1

2
1
β
< 1

α∗ P-a.s.,

where the last inequality follows from the choice of β in (2.9). But this means

that Q̃ is an EMM whose Radon-Nikodým derivative satisfies Z̃ ≤ 1
α̃
P-a.s. for

some α̃ > α∗, in contradiction to the characterisation of α∗ in (2.6).

We are now in a position to prove that for α > α∗ the market (S0, S)

admits ESα-arbitrage.

Proposition 2.3.6. Assume that 1 > α > α∗. Then the market (S0, S) admits

ESα-arbitrage.

Proof. By Lemmas 2.3.4 and 2.3.5, the set Cα ⊂ Rd is non-empty, convex and

does not contain the origin. Therefore by the separating hyperplane theorem
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[16, Proposition B.13] applied to the nonempty and convex sets {0} and Cα,

there exists π ∈ Rd \ {0} such that π · c ≥ π · 0 = 0 for all c ∈ Cα, i.e.,

EQ[π · (R− r1)] ≥ 0 for all Q ∈ Qα.

Thus, (1.1) and the dual characterisation of ES in (2.2) give

ESα(Xπ) = ESα(π · (R− r1)) = max
Q∈Qα

EQ[−π · (R− r1)] ≤ 0. (2.10)

Now set ν := E[Xπ]. Then

ESα
ν ≤ ESα(Xπ) ≤ 0.

It follows from expectation boundedness that ν ≥ 0. Moreover, ν ̸= 0. Indeed,

seeking a contradiction, suppose that ν = 0. Then ESα
ν = 0 by Lemma 2.1.6

and hence ESα(Xπ) = 0 = ESα
0 , which implies that π ∈ Πα

0 . By Proposition

2.1.5(a), this in turn implies that π = 0, and we arrive at a contradiction.

Thus, we may conclude that ν > 0. Lemma 2.1.6 then gives that ESα
1 =

1
ν
ESα

ν ≤ 0, which together with Theorem 2.2.2(b) and (c) implies that (S0, S)

admits ESα-arbitrage.

The following corollary shows that also for α = α∗, the market (S0, S)

admits ESα-arbitrage but not strong ESα-arbitrage, which establishes Theorem

2.3.1(b)

Corollary 2.3.7. Assume that α = α∗. Then the market (S0, S) admits ESα-

arbitrage but not strong ESα-arbitrage.

Proof. It follows from Propositions 2.3.3 and 2.3.6 that

ESα
1 > 0 if α ∈ (0, α∗),

ESα
1 ≤ 0 if α ∈ (α∗, 1).

Moreover, by Proposition 2.1.7, the function α 7→ ESα
1 is continuous. This

implies that ESα∗

1 = 0. Now the claim follows from Theorem 2.2.2(b).

We proceed to strengthen the assertion of Proposition 2.3.6, by showing

that for α > α∗ the market (S0, S) admits strong ESα-arbitrage, which estab-

lishes Theorem 2.3.1 and ends this chapter.
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Proposition 2.3.8. Assume that 1 > α > α∗. Then the market (S0, S) admits

strong ESα-arbitrage.

Proof. Let π ∈ Πα∗
1 and set X := Xπ for convenience. Then by definition of

ESα
1 in (2.3), Corollary 2.3.7 and Remark 2.1.2(a), we obtain

ESα
1 ≤ ESα(X) ≤ ESα∗

(X) = ESα∗

1 = 0. (2.11)

Suppose to the contrary that (S0, S) does not admit strong ESα-arbitrage.

This means that we have equality throughout (2.11). By the dual character-

isation of ES in (2.2), this means that there is Qα ∈ Qα with corresponding

Radon-Nikodým derivative Zα such that

0 = ESα(X) = EQα

[−X] = E[−ZαX]. (2.12)

Now fix β ∈ (0, α∗). Then by Proposition 2.3.3, the market (S0, S) does not

admit ESβ-arbitrage, and so ESβ
1 > 0 by Theorem 2.2.2. Therefore, there is a

probability measure Qβ ∈ Qβ, with corresponding Radon-Nikodým derivative

Zβ, such that

0 < ESβ
1 ≤ ESβ(X) = EQβ

[−X] = E[−ZβX]. (2.13)

Consider the probability measure given by the mixture

Q̂ :=
α

α∗
α∗ − β

α− β
Qα +

β

α∗
α− α∗

α− β
Qβ,

which has Radon-Nikodým derivative

Ẑ :=
α

α∗
α∗ − β

α− β
Zα +

β

α∗
α− α∗

α− β
Zβ.

Then Ẑ ≤ 1
α∗ P-a.s., by the fact that Zα ≤ 1

α
P-a.s. and Zβ ≤ 1

β
P-a.s.. Whence

Q̂ ∈ Qα∗ . It now follows from (2.12) and (2.13) that

0 = ESα∗

1 = max
Q∈Qα∗

EQ[−X] ≥ EQ̂[−X] = E[−ẐX]

=
α

α∗
α∗ − β

α− β
E[−ZαX] +

β

α∗
α− α∗

α− β
E[−ZβX] > 0,

which is absurd. Thus, ESα
1 < 0, and the claim follows from Theorem 2.2.2.
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3

Mean-ρ Portfolio Selection for Coherent Risk

Measures

We have seen in the previous chapter how an ES constraint is flawed in the

context of portfolio selection, cf. Remark 2.3.2(a). In this chapter we explore

whether there is an alternative coherent risk measure that is superior.

Standing Assumption. Throughout the entire chapter we consider the

market (S0, S) described in the introduction. We assume that L∞ ⊂
L ⊂ L1 is a Riesz space with the P-a.s. ordering that contains X =

{Xπ : π ∈ Rd}. We focus on a positively homogeneous risk measure

ρ : L −→ (−∞,∞], which satisfies the following axioms for X, Y ∈ L:

• Monotonicity: If X ≤ Y P-a.s., ρ(X) ≥ ρ(Y );

• Cash-invariance: If c ∈ R, then ρ(X + c) = ρ(X)− c;

• Positive homogeneity: For λ ≥ 0, ρ(λX) = λρ(X).

Unlike Chapter 2, we do not assume that the market satisfies no-arbitrage.

A couple of remarks are in order.

Remark 3.0.1. (a) Along with Value at Risk and Expected Shortfall, the

worst-case (WC) risk measure WC : L→ (−∞,∞] given by

WC(X) := ess sup(−X)

is one of the most famous examples of a positively homogeneous risk measure.

More examples are given in Section 3.3.
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(b) The Riesz space L can be seen as an ambient space of X . Key examples

include Lp-spaces, for p ∈ [1,∞], or more generally Orlicz spaces (cf. Appendix

A.2). Of course, the natural choice is to take L = L1, however the Fatou

property (defined later) on L is weaker than the Fatou property on L1 and so

our results are (slightly) more general by not fixing L = L1. Moreover, not all

positively homogeneous risk measures can be naturally extended to L1.

(c) In some situations, it is useful to allow ρ to take the value ∞. For

example, if all the returns Ri are bounded from above but unbounded from

below and only in L1 (so that L = L1), it makes perfect sense to consider for

ρ the worst-case risk measure WC. Then WC(Xπ) is finite if πi ≥ 0 for all

i ∈ {1, . . . , d} but it may take the value ∞ if πi < 0 for some i ∈ {1, . . . , d}.

3.1 Mean-ρ Portfolio Optimisation

We start our discussion on mean-ρ portfolio selection by introducing a par-

tial preference order on the set of portfolios. Just like Chapter 2, this preference

order formalises the idea that return is “desirable” and risk is “undesirable”.

Definition 3.1.1. A portfolio π ∈ Rd is strictly ρ-preferred over another

portfolio π′ ∈ Rd if E[Xπ] ≥ E[Xπ′ ] and ρ(Xπ) ≤ ρ(Xπ′), with at least one

strict inequality.

3.1.1 Optimal Portfolios

We approach mean-ρ portfolio selection by first looking at the slightly sim-

plified problem of finding the minimum risk portfolio(s) given a fixed excess

return.

Definition 3.1.2. Let ν ≥ 0. A portfolio π ∈ Πν is called ρ-optimal for ν

if ρ(Xπ) < ∞ and ρ(Xπ) ≤ ρ(Xπ′) for all π′ ∈ Πν . We denote the set of all

ρ-optimal portfolios for ν by Πρ
ν . Moreover, we set

ρν := inf{ρ(Xπ) : π ∈ Πν} ∈ [−∞,∞], (3.1)

and define the ρ-optimal boundary by

Oρ := {(ρν , ν) : ν ≥ 0} ⊂ [−∞,∞]× [0,∞).
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Remark 3.1.3. If ρν = −∞, since ρ can only take values in (−∞,∞], for

every portfolio in Πν there is another portfolio in Πν with strictly lower risk.

Thus, Πρ
ν = ∅. If ρν = ∞, every portfolio in Πν has infinite risk, and so Πρ

ν = ∅.

As the riskless portfolio has zero risk, ρ0 ≤ 0. Positive homogeneity implies

that either ρ0 = −∞ (in which case Πρ
0 = ∅) or ρ0 = 0 (in which case 0 ∈ Πρ

0).

For ν > 0, positive homogeneity gives Πρ
ν = νΠρ

1 and ρν = νρ1. Thus, the

ρ-optimal boundary is given by

Oρ = {(ρ0, 0)} ∪ {(kρ1, k) : k > 0}, (3.2)

where ρ0 ∈ {−∞, 0} and ρ1 ∈ [−∞,∞]. Note that the ρ-optimal boundary is

nonempty even if ρ-optimal portfolios do not exist. Depending on the sign of

ρ1, Figure 4 gives a graphical illustration of the three different shapes Oρ can

take when ρ0 = 0 and ρ1 ∈ R.

Figure 4: General shapes of the ρ-optimal boundary when ρ0 = 0 and ρ1 ∈ R

We now seek to understand under which conditions ρ-optimal portfolios

exist and which properties ρ-optimal sets have. First, we consider the case

ν = 0, which is also of key importance for the case ν > 0.

Proposition 3.1.4. Πρ
0 ̸= ∅ if and only if ρ0 = 0. Moreover in this case,

either Πρ
0 = {0} or Πρ

0 fails to be compact.

Proof. If ρ0 = 0, then 0 ∈ Πρ
0. If ρ0 ̸= 0, then ρ0 = −∞ and Πρ

0 = ∅.
Moreover, if ρ0 = 0 and there is π ̸= 0 with ρ(Xπ) = 0, it follows from positive

homogeneity that λπ ∈ Πρ
0 for all λ ≥ 0 and hence Πρ

0 fails to be compact.

We proceed to find sufficient conditions that guarantee ρ0 = 0 or even

Πρ
0 = {0}.
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Definition 3.1.5. The risk measure ρ is called expectation bounded if ρ(X) ≥
E[−X] for all X ∈ L. It is called strictly expectation bounded if ρ(X) > E[−X]

for all non-constant X ∈ L.

Remark 3.1.6. (a) Expectation boundedness is implied by, but strictly weaker

than, dilatation monotonicity, i.e., ρ(X) ≥ ρ(E[X|G]) for all X ∈ L and all

sub-σ-algebras G ⊂ F . The latter concept was introduced in [64] and has

far reaching implications. For example, every dilatation monotone convex

risk measure on an atomless probability space is law-invariant [29], and every

dilatation monotone risk measure that satisfies the Fatou property can be

extended to L1 [73].

(b) Strict expectation boundedness – first introduced in [80] – is a nat-

ural requirement on a risk measure that is satisfied by Expected Shortfall

and a large class of coherent risk measures; see Remark 3.2.1(e) and Propo-

sition 3.2.11. In fact, when the underlying probability space is atomless, L

is rearrangement-invariant and ρ is law-invariant, coherent and satisfies the

Fatou property, then it is automatically strictly expectation bounded unless

ρ(X) = E[−X]. This is a simple consequence of the much deeper [12, Proposi-

tion 5.12], which is a generalisation of the celebrated Kusuoka representation.

(c) Value at Risk is not expectation bounded (apart from degenerate prob-

ability spaces). For example, if Z is a standard normal random variable, then

VaRα(Z) < 0 = E[−Z] for α > 1/2. This failure of expectation boundedness

for Value at Risk has some undesirable consequences like the non-existence of

optimal portfolios; cf. Remark 3.1.29.

(d) By cash-invariance of ρ, it suffices to consider X ∈ L with E[X] = 0 in

the definition of (strict) expectation boundedness.

We proceed to show that under (strict) expectation boundedness of ρ, op-

timal portfolios for ν = 0 exist (and are unique).

Corollary 3.1.7. If ρ is expectation bounded, then ρ0 = 0. If ρ is even strictly

expectation bounded, then Πρ
0 = {0}.

Proof. If ρ is expectation bounded, then for any π ∈ Π0, ρ(Xπ) ≥ E[−Xπ] = 0

and we may conclude that ρ0 = 0. If ρ is strictly expectation bounded, fix

π ∈ Π0 \ {0}. Then Xπ is non-constant by nonredundancy of the financial

market. Strict expectation boundedness of ρ gives ρ(Xπ) > E[−Xπ] = 0. We

may conclude that Πρ
0 = {0}.
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We next consider ρ-optimal sets for ν > 0. To this end, we recall the Fatou

property for ρ; for our applications, it sometimes suffices to consider this on a

subset Y ⊂ L.

Definition 3.1.8. The risk measure ρ is said to satisfy the Fatou property on

Y ⊂ L, if Xn → X P-a.s. for Xn, X ∈ Y and |Xn| ≤ Y P-a.s. for some Y ∈ L

implies that ρ(X) ≤ lim infn→∞ ρ(Xn).

We now come to the main result of this section, which establishes existence

of ρ-optimal portfolios under very weak assumptions on ρ, only requiring that

ρ satisfies the Fatou property on X = {Xπ : π ∈ Rd} and Πρ
0 = {0}. In

particular, we do not require ρ to be convex, which is a key assumption in the

extant literature; see e.g. [81, Proposition 4].

Theorem 3.1.9. Assume Πρ
0 = {0}, ρ1 ∈ R and ρ satisfies the Fatou property

on X = {Xπ : π ∈ Rd}. Then for any ν ≥ 0, the set Πρ
ν of ρ-optimal portfolios

for ν is nonempty and compact.

Proof. The key idea of the proof is to consider the function fρ : Rd → [0,∞],

defined by

fρ(π) =

ρ(Xπ) + (|ρ1|+ 1)E[Xπ], if π ∈ ∪k≥0Πk,

∞, if π ∈ ∪k<0Πk.

Then fρ is nonnegative, positively homogeneous and satisfies f−1
ρ ({0}) = {0}.

Moreover, if πn → π in Rd, we have E[Xπ] = limn→∞ E[Xπn ] as well as ρ(Xπ) ≤
lim infn→∞ ρ(Xπn) because ρ satisfies the Fatou property on X (and L ⊃ X is

a Riesz space). This implies that fρ is lower semi-continuous.

We proceed to show that fρ has compact sublevel sets. As ρ1 < ∞, there

is at least one portfolio π∗ ∈ Π1 with ρ(Xπ∗) < ∞. Let S = {x ∈ Rd : ∥x∥2 =
∥π∗∥2}. As S is compact and fρ lower semi-continuous, m := min{fρ(x) : x ∈
S} is well defined. Note that m > 0 since ∥π∗∥2 > 0 and f−1

π ({0}) = {0}.
As fρ is positively homogeneous, fρ(π) ≥ m

∥π∗∥2∥π∥2 for any portfolio π ∈ Rd.

Thus, fρ has bounded sublevel sets, which are also closed since fρ is lower

semi-continuous.

We finish by a standard argument. For δ ≥ 0, set Aδ := {π ∈ Rd : fρ(π) ≤
δ} ∩ Π1 and δ1 := inf{fρ(π) : π ∈ Π1}. Note that δ1 < ∞ since ρ1 ∈ R.
Moreover, each Aδ is compact and nonempty for δ > δ1. As the Aδ are nested
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(i.e., Aδ ⊂ Aδ′ for δ ≤ δ′), it follows that

Πρ
1 = Aδ1 =

⋂
δ>δ1

Aδ

is nonempty and compact. Whence, so is Πρ
ν = νΠρ

1 for any ν > 0. (For ν = 0,

the claim is trivial.)

Remark 3.1.10. (a) The requirement that ρ satisfies the Fatou property on

X is a mild assumption, which is satisfied by VaR, ES and WC. Anticipating

ourselves a bit, we note that it is satisfied by any risk measure ρ : L −→ (−∞,∞]

admitting a dual representation ρ(X) = supZ∈Q E[−ZX] for some nonempty

set Q of Radon-Nikodým derivatives satisfying ZRi ∈ L1 for all Z ∈ Q and

i ∈ {1, . . . , d}; cf. Proposition 3.2.3.

(b) By Corollary 3.1.7, the requirement that Πρ
0 = {0} is automatically

satisfied if ρ is strictly expectation bounded. By Remark 3.1.6(b), this is not

very restrictive.

(c) If ρ is in addition convex, i.e., ρ(λX1+(1−λ)X2) ≤ λρ(X1)+(1−λ)ρ(X2)

for X1, X2 ∈ L and λ ∈ [0, 1], then we also have convexity of ρ-optimal sets.

Indeed, let ν ≥ 0, π, π′ ∈ Πρ
ν , and λ ∈ [0, 1]. Then ρ(Xλπ+(1−λ)π′) = ρ(λXπ +

(1− λ)Xπ′) ≤ λρ(Xπ) + (1− λ)ρ(Xπ′) = ρν . Therefore, λπ + (1− λ)π′ ∈ Πρ
ν .

(d) If |ρ1| = ∞, then Πρ
ν = ∅ for all ν > 0. If ρ1 ∈ R and {0} ⊊ Πρ

0, then

boundedness of the sublevel sets is lost (since f−1
ρ ({0}) is unbounded) and Πρ

ν

can be empty for all ν > 0; see Example A.3.1 for a concrete counterexample.

3.1.2 Efficient Portfolios

We proceed to study the notion of ρ-efficient portfolios.

Definition 3.1.11. A portfolio π ∈ Rd is called ρ-efficient if E[Xπ] ≥ 0 and

there is no other portfolio π′ ∈ Rd that is strictly ρ-preferred over π. We

denote the ρ-efficient frontier by

Eρ := {(ρ(Xπ),E[Xπ]) : π is ρ-efficient}.

Remark 3.1.12. (a) If π ∈ Rd is ρ-efficient, it follows that ρ(Xπ) < ∞.

Indeed, if E[Xπ] = 0 and ρ(Xπ) = ∞, then 0 is strictly ρ-preferred over π, and

if E[Xπ] > 0 and ρ(Xπ) = ∞, then λπ is strictly ρ-preferred over π for λ > 1.

(b) It follows from (a) that every ρ-efficient portfolio is ρ-optimal.
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(c) If ρ is expectation bounded, we may drop the assumption that E[Xπ] ≥
0 for π to be efficient since under expectation boundedness, for any portfolio

π with E[Xπ] < 0, we have ρ(Xπ) ≥ E[−Xπ] > 0, and so the riskless portfolio

0 is strictly ρ-preferred over π.

The mean-ρ portfolio selection problems (1) and (2) are both well-posed

and admit solutions when ρ-efficient portfolios exist, i.e., when Eρ ̸= ∅. Remark

3.1.12(b) implies that Eρ ⊂ Oρ. The following result shows that when Πρ
ν ̸= ∅

for all ν ≥ 0 (which is satisfied under the conditions of Theorem 3.1.9), then

the existence of the ρ-efficient frontier depends only on the sign of ρ1.

Proposition 3.1.13. Assume Πρ
ν ̸= ∅ for all ν ≥ 0. Then the following are

equivalent:

(a) ρ1 > 0.

(b) Eρ ̸= ∅.

Moreover, if ρ1 > 0, the ρ-efficient frontier is given by

Eρ = {(kρ1, k) : k ≥ 0}.

Proof. First assume that ρ1 > 0. We proceed to show that any ρ-optimal

portfolio is ρ-efficient. It then follows from Remark 3.1.12(b) and Proposition

3.1.4 that

Eρ = Oρ = {(kρ1, k) : k ≥ 0}.

Seeking a contradiction, let π ∈ Πρ
ν for some ν ≥ 0 and assume that there is

π′ ∈ Rd such that E[Xπ′ ] ≥ E[Xπ] = ν and ρ(Xπ′) ≤ ρ(Xπ) = νρ1, with one

inequality being strict. Set ν ′ := E[Xπ′ ]. If ν ′ = ν, then ρ(Xπ′) < ρ(Xπ) and

we arrive at a contradiction as π ∈ Πρ
ν . Otherwise, if ν ′ > ν, let π∗ ∈ Πρ

ν′ .

Then ν ′ρ1 = ρ(Xπ∗) ≤ ρ(Xπ′) ≤ ρ(Xπ) = νρ1. Since ρ1 > 0, we arrive at the

contradiction that ν ′ > ν and ν ′ ≤ ν.

Now assume that ρ1 ≤ 0. We proceed to show that there does not exist any

ρ-efficient portfolio, even though Πρ
ν ̸= ∅ for all ν ≥ 0. Seeking a contradiction,

suppose that π ∈ Rd is ρ-efficient. Then by Remark 3.1.12(b), π ∈ Πρ
ν for some

ν ≥ 0. Pick ν ′ > ν and let π′ ∈ Πρ
ν′ . Then E[Xπ′ ] = ν ′ > ν = E[Xπ] and

ρ(Xπ′) = ν ′ρ1 ≤ νρ1 = ρ(Xπ) by positive homogeneity of ρ and ρ1 ≤ 0. Hence,

π′ is strictly ρ-preferred over π and we arrive at a contradiction.
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Remark 3.1.14. A close inspection of the proof of Proposition 3.1.13 reveals

that the equivalence between (a) and (b) remains true if we only require that

Πρ
ν ̸= ∅ for all ν > 0. However, if Πρ

0 = ∅, the ρ-efficient frontier is given by

Eρ = {(kρ1, k) : k > 0}.

The following figure gives a graphical illustration of Proposition 3.1.13.

Figure 5: ρ-optimal boundary (red) and ρ-efficient frontier (green) when Πρ
ν ̸=

∅ for all ν ≥ 0

3.1.3 ρ-Arbitrage

We have seen above that mean-ρ portfolio selection is not always well de-

fined as it can happen that there are no ρ-efficient portfolios. We call this

situation ρ-arbitrage.

Definition 3.1.15. The market (S0, S) is said to satisfy ρ-arbitrage if there

are no ρ-efficient portfolios. It is said to satisfy strong ρ-arbitrage if there

exists a sequence of portfolios (πn)n∈N ⊂ Rd with

E[Xπn ] ↑ ∞ and ρ(Xπn) ↓ −∞.

It is clear that strong ρ-arbitrage implies ρ-arbitrage but not vice versa.

The following two theorems give primal characterisations. Whereas strong ρ-

arbitrage is fully characterised by the sign of ρ1, defined in (3.1), the case of

ρ-arbitrage is more subtle.

Theorem 3.1.16. The market (S0, S) admits strong ρ-arbitrage iff ρ1 < 0.

Proof. First, assume that the market satisfies strong ρ-arbitrage. As the risk-

less portfolio has zero risk and zero return, by definition of strong ρ-arbitrage,
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there is a portfolio π ∈ Rd with E[Xπ] =: ν > 0 and ρ(Xπ) < 0. Let π′ := 1
ν
π.

Then π′ ∈ Π1, and

ρ1 ≤ ρ(Xπ′) = 1
ν
ρ(Xπ) < 0.

Conversely, assume that ρ1 < 0. Then there exists a portfolio π ∈ Π1 with

ρ(Xπ) < 0. Thus, E[Xkπ] → ∞ and ρ(Xkπ) → −∞ as k → ∞.

Remark 3.1.17. By Theorem 3.1.16, if ρ is a positively homogeneous risk

measure that is expectation bounded, the market admits strong ρ-arbitrage if

and only if there exists a portfolio π ∈ Rd (in fractions of wealth) such that

ρ(Xπ) < 0. This is equivalent to the existence of a portfolio (ϑ0, ϑ) ∈ R1+d (in

numbers of shares) and ε > 0 such that

ϑ0S0
0 + ϑ · S0 ≤ 0 and ρ(ϑ0S0

1 + ϑ · S1 − ε) ≤ 0,

which is referred to as a good-deal (of the second kind), see e.g. [55, 28]. Note,

however, that this relationship crucially relies on ρ being expectation bounded

since otherwise a portfolio with negative risk may have a negative expected

excess return. Also note that assuming that ρ is expectation bounded is a real

restriction as it is not satisfied by Value at Risk.

Theorem 3.1.18. We have the following three cases:

(a) If Πρ
1 ̸= ∅, then the market (S0, S) admits ρ-arbitrage if and only if

ρ1 ≤ 0.

(b) If Πρ
1 = ∅ and Πρ

0 ̸= ∅, then the market (S0, S) admits ρ-arbitrage if and

only if ρ1 < 0.

(c) If Πρ
1 = ∅ and Πρ

0 = ∅, then the market (S0, S) admits ρ-arbitrage.

Proof. (a) This follows from Proposition 3.1.13 and Remark 3.1.14.

(b) If ρ1 < 0, by Theorem 3.1.16 the market admits strong ρ-arbitrage

and a fortiori ρ-arbitrage. Conversely, if ρ1 ≥ 0, any portfolio π ∈ Rd with

E[Xπ] =: ν > 0 has ρ(Xπ) > νρ1 = 0 because Πρ
ν = νΠρ

1 = ∅. Thus, any

portfolio in Πρ
0 is ρ-efficient because Πρ

0 ̸= ∅ (and therefore ρ0 = 0). Thus, the

market does not admit ρ-arbitrage.

(c) This follows from Remark 3.1.12(b).
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Remark 3.1.19. A good-deal of the first kind is a portfolio (ϑ0, ϑ) ∈ R1+d\{0}
(in numbers of shares) such that

ϑ0S0
0 + ϑ · S0 ≤ 0 and ρ(ϑ0S0

1 + ϑ · S1) ≤ 0.

In our setting, this corresponds to a portfolio π ∈ Rd \ {0} (in fractions of

wealth) with ρ(Xπ) ≤ 0. Thus, by Theorems 3.1.9 and 3.1.18, when ρ is

a positively homogeneous risk measure that satisfies the Fatou property and

strict expectation boundedness, the existence of a good-deal of the first kind

is equivalent to the market admitting ρ-arbitrage.

The following corollary relates the absence of (strong) ρ-arbitrage to the

existence of the mean-ρ portfolio selection problems. The proof is straightfor-

ward and hence omitted.

Corollary 3.1.20. Assume that Πρ
ν ̸= ∅ for all ν ≥ 0, so that the mean-ρ

problem (1’) is well posed.

(a) The mean-ρ portfolio selection problem (1) is well posed if any only if

the market (S0, S) does not satisfy strong ρ-arbitrage. In this case, the

portfolios that solve (1) are inΠρ
ν∗ , if ρ1 > 0,

∪ν≥ν∗Π
ρ
ν , if ρ1 = 0.

(b) The mean-ρ portfolio selection problem (2) is well posed if and only if the

market (S0, S) does not satisfy ρ-arbitrage. In this case, the portfolios

that solve (2) are in Πρ
ρ∗/ρ1

.

A natural question that arises is how (strong) ρ-arbitrage is related to the

ordinary notion of arbitrage. To this end, recall that the market (S0, S) is said

to satisfy

• arbitrage of the first kind if there exists a trading strategy (ϑ0, ϑ) ∈ R1+d

(parametrised in numbers of shares) such that

ϑ0S0
0+ϑ·S0 ≤ 0, ϑ0S0

1+ϑ·S1 ≥ 0 P-a.s. and P[ϑ0S0
1+ϑ·S1 > 0] > 0;
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• arbitrage of the second kind if there exists a trading strategy (ϑ0, ϑ) ∈
R1+d (parametrised in numbers of shares) such that

ϑ0S0
0 + ϑ · S0 < 0, and ϑ0S0

1 + ϑ · S1 ≥ 0 P-a.s.

The following result shows that if ρ is given by the worst-case risk measure

WC, (strong) WC-arbitrage is equivalent to arbitrage of the first (second)

kind. Thus, ρ-arbitrage can be seen as an extension of the ordinary notion of

arbitrage.

Proposition 3.1.21. The market (S0, S) satisfies (strong) WC-arbitrage if

and only if the market satisfies arbitrage of the first (second) kind.

Proof. First note that by Theorem 3.1.9 either WC1 = ∞ or ΠWC
1 ̸= ∅.

Now if (ϑ0, ϑ) ∈ R1+d is an arbitrage of the first (second) kind, then π :=

(ϑ1S1
0 , . . . , ϑ

dSd
0) ̸= 0 satisfiesXπ = π·(R−r1) = (ϑ0S0

1+ϑ·S1)−(1+r)(ϑ0S0
0+

ϑ · S0) ≥ 0 (> 0) P-a.s., which implies that WC(Xπ) is nonpositive (negative).

Hence, WC1 ≤ 0 (WC1 < 0) and ΠWC
1 ̸= ∅. It follows that the market satisfies

(strong) WC-arbitrage by Theorem 3.1.18(a) (Theorem 3.1.16).

Conversely, if the market does not satisfy arbitrage of the first (second)

kind, then for all π ∈ Π1, WC(Xπ) > 0 (WC(Xπ) ≥ 0). Since WC1 = ∞ or

ΠWC
1 ̸= ∅, it follows that WC1 > 0 (WC1 ≥ 0). Hence, the market does not

satisfy (strong) WC-arbitrage by Theorem 3.1.18 (Theorem 3.1.16).

We say that the market is arbitrage-free if it does not admit arbitrage of

the first kind. The following result shows that unless ρ is as conservative as

the worst-case risk measure, one can always construct a financial market that

is arbitrage-free but admits strong ρ-arbitrage.

Theorem 3.1.22. Assume ρ : L → (−∞,∞] is not as conservative as the

worst-case risk measure. Then there exists a market (S0, S) that is arbitrage-

free but admits strong ρ-arbitrage.

Proof. It is enough to construct a random variable R ∈ L with E[R] > 0,

P[R < 0] > 0 and ρ(R) < 0. Indeed, we can then define the market (S0, S) by

S0 ≡ 1 and S := S1, where S1
0 = 1 and S1

1 = 1 + R. This is nonredundant,

nondegenerate, and arbitrage-free but admits strong ρ-arbitrage by Theorem

3.1.16 since ρ1 < 0.
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First, if ρ is not expectation bounded, there existsX ∈ L such that E[−X]−
ρ(X) := ε > 0. By cash-invariance of ρ, this implies that X cannot be constant

so ess sup(−X + E[X]) > 0. Set δ ∈ (0, ess sup(−X + E[X])) and let R :=

X − E[X] + δ. Then E[R] = δ > 0, P[R < 0] > 0 and ρ(R) = −ε− δ < 0.

Next, if ρ is expectation bounded but not as conservative as WC, there ex-

ists X ∈ L such that ρ(X) < ess sup(−X) ≤ ∞. Let m ∈ (ρ(X), ess sup(−X))

and R := X +m. Then P[R < 0] > 0, ρ(R) < 0 and E[R] ≥ −ρ(R) > 0 by

expectation boundedness of ρ.

Remark 3.1.23. The preceding two results together imply that the worst-

case risk measure is the only positively homogeneous risk measure suitable for

risk management. It is also suitable for portfolio selection if L = L∞.

3.1.4 ρ-Arbitrage for Elliptical Returns

The primal characterisations of (strong) ρ-arbitrage in Theorems 3.1.16

and 3.1.18 are particularly useful when returns are elliptically distributed with

finite second moments and the risk measure is law-invariant. We briefly recall

both concepts.

Definition 3.1.24. An Rd-valued random vector X = (X1, . . . , Xd) has an

elliptical distribution if there exists a location vector µ̃ ∈ Rd, a d × d non-

negative definite dispersion matrix Σ̃ ∈ Rd×d, and a characteristic generator

ψ : [0,∞) → R such that the characteristic function of X, ϕX can be expressed

ϕX(t) = eit
⊤µ̃ψ(tT Σ̃t) for all t ∈ Rd.

In this case we write X ∼ Ẽd(µ̃, Σ̃, ψ).

Elliptical distributions are generalisations of the multivariate normal distri-

bution, which allow for heavy tail models while possessing many useful prop-

erties. Indeed, the fat tails of most of their members make them natural

candidates in modelling the distribution of speculative returns. Examples of

elliptical distributions include the multivariate normal distribution, the mul-

tivariate t-distribution and the multivariate symmetric Laplace distribution.

For a thorough description of elliptical distributions refer to [42, 63].

Remark 3.1.25. If X has an elliptical distribution with finite second mo-

ments, X is also characterised by its mean vector µ ∈ Rd, covariance ma-
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trix Σ ∈ Rd×d and characteristic generator ψ. Therefore, we may write

X ∼ Ed (µ,Σ, ψ); see [70, Remark 3.27] for details.

Definition 3.1.26. A risk measure ρ : L → (−∞,∞] is called law-invariant

if ρ(X1) = ρ(X2) whenever X1, X2 ∈ L have the same law.

The following result shows why elliptical distributions and law-invariant

risk measures work particularly nicely together.

Lemma 3.1.27. Suppose ρ is law-invariant and the return vector R has an

elliptical distribution with mean vector µ ∈ Rd, covariance matrix Σ ∈ Rd×d

and characteristic generator ψ. Assume {X ∼ E1(µX , σ
2
X , ψ) : µX ∈ R, σ2

X ≥
0} ⊂ L and let Z ∼ E1 (0, 1, ψ). Then for any π ∈ Rd,

ρ(Xπ) = −E[Xπ] + ρ(Z)
√

Var(Xπ) = −π⊤(µ− r1) + ρ(Z)
√
π⊤Σπ, (3.3)

where ∞× 0 = 0, so that ρ(Xπ) = −E[Xπ] if Var(Xπ) = 0. Moreover, ρ(Z) is

nonnegative (positive) if ρ is (strictly) expectation bounded.

Proof. Standard properties of elliptical distributions imply that

π · (R− r1) ∼ E1

(
π · (µ− r1), πTΣπ, ψ

)
for any portfolio π ∈ Rd. This means that Xπ

d
= π⊤(µ− r1)+Z

√
π⊤Σπ, where

Z ∼ E1 (0, 1, ψ). As ρ is a law-invariant, ρ(Xπ) = −π⊤(µ−r1)+ρ(Z)
√
π⊤Σπ.

The final claim follows from the fact that E[Z] = 0 because Z ∼ E1 (0, 1, ψ)

has a symmetric distribution.

With the help of Lemma 3.1.27, we can give a very simple characterisation

for the absence of (strong) ρ-arbitrage in terms of the maximal Sharpe ratio.

Corollary 3.1.28. Suppose ρ is law-invariant and the return vector R has

an elliptical distribution with mean vector µ ∈ Rd satisfying µ ̸= r1, positive

definite covariance matrix Σ ∈ Rd×d and characteristic generator ψ. Assume

{X ∼ E1(µX , σ
2
X , ψ) : µX ∈ R, σ2

X ≥ 0} ⊂ L and let Z ∼ E1 (0, 1, ψ). Define

the maximal Sharpe ratio as

SRmax := max
π∈Rd\{0}

E[Xπ]√
Var(Xπ)

=
√

(µ− r1)⊤Σ−1(µ− r1). (3.4)

Then we have the following trichotomy:
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(a) If SRmax < ρ(Z), the market (S0, S) does not admit ρ-arbitrage.

(b) If SRmax = ρ(Z), the market (S0, S) admits ρ-arbitrage but not strong

ρ-arbitrage.

(c) If SRmax > ρ(Z), the market (S0, S) admits strong ρ-arbitrage.

In particular, if ρ(Z) ≤ 0, the market (S0, S) admits strong ρ-arbitrage, inde-

pendent of µ or Σ. Moreover, if ρ(Z) < 0 and d ≥ 2, ρ-optimal portfolios fail

to exist for any ν ≥ 0, independent of µ or Σ.

Proof. For π ∈ Rd \ {0}, set SRπ := E[Xπ]/
√
Var(Xπ) and note that this is

well defined because µ ̸= r1 and Σ is positive definite. It follows from linearity

of the expectation and positive homogeneity of the standard deviation that

SRmax := maxπ∈Π1 SRπ. It is not difficult to check that the portfolio

π∗ :=
1

(µ− r1)TΣ−1(µ− r1)
Σ−1(µ− r1) ∈ Π1

has maximal Sharpe ratio given by the right-hand side of (3.4).

If ρ(Z) ∈ (0,∞), then by Lemma 3.1.27 for any π ∈ Π1,

ρ(Xπ) = −1 + ρ(Z)
√
Var(Xπ) = −1 +

ρ(Z)

SRπ

.

Thus, minimising ρ(Xπ) over π ∈ Π1 is equivalent to maximising SRπ over Π1.

Whence

ρ1 := −1 +
ρ(Z)

SRmax

= −1 +
ρ(Z)

SRπ∗
= ρ(Xπ∗).

Parts (a), (b) and (c) now follow from Theorems 3.1.16 and Theorem 3.1.18(a).

If ρ(Z) = ∞, every portfolio has infinite risk except the riskless portfolio

which has zero risk. Whence Πρ
0 = {0}, Πρ

1 = ∅ and ρ1 = ∞. Now part (a)

follow from Theorem 3.1.18(b).

If ρ(Z) = 0, ρ(Xπ) = −E[Xπ] for every portfolio π ∈ Rd. Thus, ρν = −ν
for any ν ≥ 0 and the market admits strong ρ-arbitrage by Theorem 3.1.16.

Finally, if ρ(Z) < 0, Lemma 3.1.27 gives for ν ≥ 0,

inf
π∈Πν

ρ(Xπ) = inf
π∈Πν

{−ν + ρ(Z)
√

Var(Xπ)} = −ν + ρ(Z) sup
π∈Πν

√
Var(Xπ) < 0.

Whence, ρν < 0 and so the market admits strong ρ-arbitrage by Theorem

3.1.16. If d ≥ 2, it is not difficult to check that supπ∈Πν

√
Var(Xπ) = ∞, and
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3. Mean-ρ Portfolio Selection for Coherent Risk Measures

hence ρν = −∞, which implies that Πρ
ν = ∅.

Remark 3.1.29. Corollary 3.1.28 shows that in general it is not true that

for elliptically distributed returns and a law-invariant risk measure ρ, the ρ-

optimal portfolios coincide with the Markowitz optimal portfolios. (This is for

instance claimed in [40, Theorem 1].) Indeed, Corollary 3.1.28 shows that in

every elliptical market, VaRα-optimal portfolios fail to exist if α > P[Z ≤ 0] =

1/2 + 1/2P[Z = 0], where Z ∼ E1 (0, 1, ψ). (Note that Z ∼ E1 (0, 1, ψ) has

a symmetric distribution.) In particular, VaRα-optimal portfolios fail to exist

for α > 1/2 in every multivariate Gaussian market. The underlying reason is

that Value at Risk fails to be expectation bounded.

We illustrate the above result by considering the case that R has multivari-

ate Gaussian returns and the risk measure is either Value at Risk or Expected

Shortfall.

Example 3.1.30. Assume the return vector R has a multivariate normal

distribution with mean vector µ ∈ Rd satisfying µ ̸= r1 and a positive definite

covariance matrix Σ ∈ Rd×d. Let Z ∼ N(0, 1). Then for α ∈ (0, 1), we have

VaRα(Z) = Φ−1(1− α) and ESα(Z) =
ϕ(Φ−1(α))

α
,

where ϕ and Φ denote the pdf and cdf of a standard normal distribution,

respectively. By Corollary 3.1.28, we can fully characterise (strong) ρ-arbitrage

in this market for both risk measures by looking at the maximal Sharpe ratio.

Figure 6 gives a graphical illustration.

0 0.025 0.05 0.075 0.1
1

1.5

2

2.5

3

Figure 6: ρ-arbitrage for ES (blue) and VaR (orange), for Gaussian returns
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If SRmax lies above the blue (orange) curve, then this Gaussian market

admits strong ESα(VaRα)-arbitrage. If it lies below the blue (orange) curve

then the market does not admit ESα(VaRα)-arbitrage. And in the intermediate

case, the market admits ESα(VaRα)-arbitrage, but not strong ESα(VaRα)-

arbitrage.

Also note that for Value at Risk, if α > 1/2, then Φ−1(1−α) < 0. Hence, in

this case we always have strong VaRα-arbitrage and VaRα-optimal portfolios

fail to exist for d ≥ 2, independent of µ or Σ.

3.2 Dual Characterisation of (Strong) ρ-Arbitrage

Theorems 3.1.16 and 3.1.18 provide a full characterisation of strong ρ-

arbitrage and ρ-arbitrage, respectively. However, the criterion is rather indirect

as it requires to calculate ρ1, which relies on a nontrivial optimisation problem.

In this section, we consider the case that ρ is in addition convex (and hence

coherent), expectation bounded and has a dual representation. We then derive

a dual characterisation of (strong) ρ-arbitrage.

Let D := {Z ∈ L1 : Z ≥ 0 P-a.s. and E[Z] = 1} be the set of all Radon-

Nikodým derivatives of probability measures that are absolutely continuous

with respect to P. Throughout this section, we assume that ρ : L −→ (−∞,∞]

is an expectation bounded, coherent risk measure and admits a dual represen-

tation

ρ(X) = sup
Z∈Q

(E[−ZX]), (3.5)

for some Q ⊂ D. Since ρ is expectation bounded, we may assume without loss

of generality that 1 ∈ Q. Moreover, taking the supremum over Q is equivalent

to taking the supremum over its convex hull, and therefore, we may assume

without loss of generality that Q is convex.

Remark 3.2.1. (a) Since −ZX may not be integrable, we define E[−ZX] :=

E[ZX−] − E[ZX+], with the conservative convention that if E[ZX−] = ∞,

then E[−ZX] = ∞.

(b) Apart from the (natural) assumption that ρ is expectation bounded,

this is the most general class of coherent risk measures on L that admit a dual

representation in which the representing set consists of countably additive (and

not just finitely additive) set functions. For instance, we do not impose L1-

closedness or uniformly integrability of Q (which is for instance assumed in
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[28]). A wide range of examples of risk measures satisfying a representation of

the form (3.5) are given in Section 3.3.

(c) On a general space L, e.g., an Orlicz space whose Young function does

not satisfy the ∆2 condition, a representation of the form (3.5) is generally

not possible even for “nicely regular” risk measures. Notably, in a nonatomic

probability space, the special representation (3.5) will automatically hold pro-

vided the risk measure ρ is law-invariant and satisfies the Fatou property. In

this case, the representing set Q can always be restricted to a subset of D∩L∞

(by [48, Corollary 5.2]), thus simplifying considerably the analysis.

(d) The representation in (3.5) is not unique. However, it is not difficult

to check that the maximal dual set for which (3.5) is satisfied is given by

Qρ := {Z ∈ D : E[ZX] ≥ 0 and E[ZX−] <∞ for all X ∈ Aρ}, (3.6)

where Aρ := {X ∈ L : ρ(X) ≤ 0} is the acceptance set of ρ. Note that in

general Qρ is not L1-closed. It turns out that for the dual characterisation

of ρ-arbitrage, it is sometimes useful not to consider the maximal dual set;

cf. some of the examples in Section 3.3.

(e) If we define ρ by (3.5) for some convex set Q containing 1, it follows

that ρ is (−∞,∞]-valued, expectation bounded and a coherent risk measure

(i.e., it is monotone, cash-invariant, positively homogeneous and convex).

3.2.1 Preliminary Considerations and Conditions

In this section, we introduce and discuss some additional conditions that

are needed (and necessary) for the main results in Chapter 3, Theorems 3.2.14

and 3.2.18.

We start by introducing two conditions concerning the (uniform) integra-

bility of the returns under the probability measures “contained” in Q.

Condition I. For all i ∈ {1, . . . , d} and any Z ∈ Q, ZRi ∈ L1.

Condition UI. Q is uniformly integrable, and for all i ∈ {1, . . . , d}, RiQ is

uniformly integrable, where RiQ := {RiZ : Z ∈ Q}.

Remark 3.2.2. (a) Condition I may depend on the choice of the dual set Q
in the dual representation (3.5) of ρ. In particular, it may not be satisfied for

the maximal dual set Qρ; cf. Section 3.3.1 for a concrete example. For this

reason, one might want to choose a “small” dual set Q for ρ.
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(b) By contrast, Condition UI essentially does not depend on the choice of

the dual set Q in the dual representation of ρ. More precisely, this statement

is true if ρ is such that all representing dual sets have the same L1-closure.

One important example is when L is an Orlicz space and ρ is real valued;

cf. Proposition A.2.5.

While Condition I is quite weak, it has some important consequences.

Proposition 3.2.3. Suppose that Condition I is satisfied. Then the set

CQ := {E[−Z(R− r1)] : Z ∈ Q} (3.7)

is a convex subset of Rd and for any portfolio π ∈ Rd,

ρ(Xπ) = sup
c∈CQ

(π · c). (3.8)

Moreover, ρ satisfies the Fatou property on X = {Xπ : π ∈ Rd}.

Proof. The set CQ is real valued by Condition I and convex by convexity of

Q. This together with linearity of the expectation implies that

ρ(Xπ) = sup
Z∈Q

(E[−ZXπ]) = sup
Z∈Q

(E[−Z(π · (R− r1))]) = sup
c∈CQ

(π · c).

Finally, to establish the Fatou property on X , assume that Xπn → Xπ P-a.s.
Nonredundancy of the market implies that πn → π. Then for any Z ∈ Q,

Condition I, linearity of the expectation and the definition of ρ in (3.5) gives

E[−ZXπ] = π · E[−Z(R− r1)] = lim
n→∞

πn · E[−Z(R− r1)]

= lim
n→∞

E[−ZXπn ] ≤ lim inf
n→∞

ρ(Xπn).

Taking the supremum over Z ∈ Q gives ρ(Xπ) ≤ lim infn→∞ ρ(Xπn).

Remark 3.2.4. Example A.3.2 shows that without Condition I, the set CQ

may fail to be convex or Rd-valued and (3.8) may break down.

Condition UI is a uniform version of Condition I. (Note that Z ∈ L1 for

all Z ∈ Q even though this does not appear explicitly in Condition I.) The

following result shows that under Condition UI, the supremum in (3.8) can be

replaced by a maximum, if we replace Q in (3.7) by its L1-closure.
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Proposition 3.2.5. Suppose that Condition UI is satisfied. Denote by Q̄ the

L1-closure of Q. Then the set

CQ̄ := {E[−Z(R− r1)] : Z ∈ Q̄} (3.9)

is a convex and compact subset of Rd. Moreover, for any portfolio π ∈ Rd,

ρ(Xπ) = max
c∈CQ̄

(π · c). (3.10)

Proof. Since Condition UI implies Condition I, (3.8) gives

ρ(Xπ) = sup
c∈CQ

(π · c) ≤ sup
c∈CQ̄

(π · c). (3.11)

Since Q is UI and convex, Q̄ is convex and weakly compact by the Dunford-

Pettis theorem. To show that the supremum on the right side of (3.11) is

attained, let (Zn)n∈N be a maximising sequence in Q̄. Since Q̄ is weak se-

quentially compact by the Eberlein-Šmulian theorem, after passing to a sub-

sequence, we may assume that Zn converges weakly to some Z ∈ Q̄. Since the

map Z̃ 7→ E[−Z̃(R − r1)] is weakly continuous on Q̄ by Proposition A.6.2,

Z is a maximiser. The same argument, but now for a maximising sequence

in Q ⊂ Q̄, shows that we have have equality in (3.11). Finally, using again

that the map Z̃ 7→ E[−Z̃(R− r1)] is weakly continuous on Q̄ and Q̄ is weakly

compact, it follows that CQ̄ is compact.

Remark 3.2.6. Example A.3.3 shows that without Condition UI (even when

Condition I is satisfied), the set CQ̄ may fail to be convex, compact or a subset

of Rd and (3.10) may break down.

Remark 3.2.7. In [28], it is assumed that Q is uniformly integrable and that

Ri ∈ L1(Q), where

L1(Q) := {X ∈ L0 : lim
a→∞

sup
Z∈Q

E[Z|X|1{|X|>a}] = 0}. (3.12)

By Proposition A.6.1, this is equivalent to Condition UI. However, we believe

Condition UI better highlights why this is a uniform version of Condition I.

We next aim to introduce a notion of “interior” for Q, which is crucial

for the dual characterisation of ρ-arbitrage. This turns out to be rather sub-

tle since neither algebraic nor topological notions of interior work in general;
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cf. Remark 3.2.8. Instead, we define our notion of “interior” in an abstract

way. More precisely, we look for (nonempty) subsets Q̃ ⊂ Q satisfying

Condition POS. Z̃ > 0 P-a.s. for all Z̃ ∈ Q̃.

Condition MIX. λZ + (1− λ)Z̃ ∈ Q̃ for all Z ∈ Q, Z̃ ∈ Q̃ and λ ∈ (0, 1).

Condition INT. For all Z̃ ∈ Q̃, there is an L∞-dense subset E of D ∩ L∞

such that for all Z ∈ E , there is λ ∈ (0, 1) such that λZ + (1− λ)Z̃ ∈ Q.

A few comments are in order.

Remark 3.2.8. (a) Condition MIX implies in particular that Q̃ is convex.

(b) Condition INT of Q̃ is inspired by the definition of the core/algebraic

interior. Indeed, recall that for a vector space V , the algebraic interior of a set

M ⊂ V with respect to a vector subspace X ⊂ V is defined by

aintXM := {m ∈M : for all x ∈ X, there is λ > 0 such that

m+ δx ∈M for all δ ∈ [0, λ]};

see [91] for details. When M is convex, one can show that

aintXM = {m ∈M : for all x ∈ X, there is λ > 0 such that m+ λx ∈M},

and any strict convex combination of a point in M and aintXM belongs to

aintXM . To see the link to our setup, assume that Q ⊂ L∞. Set M := Q,

V := L∞ and X := {Z ∈ L∞ : E[Z] = 0}. Then aintXM satisfies conditions

POS, MIX and INT. Moreover, for certain examples (e.g. Expected Shortfall),

aintXM ̸= ∅. Note, however, that if Q ̸⊂ L∞, it is not possible to define a

nonempty set Q̃ satisfying Conditions POS, MIX and INT via the algebraic

interior.

(c) One might wonder if one could define Q̃ as the topological interior of

Q in a suitable subspace topology of D ∩ V , where L∞ ⊂ V ⊂ L1 is a vector

subspace. Again if Q ⊂ L∞, for certain examples (e.g. Expected Shortfall), the

topological interior of Q in the subspace topology of D∩L∞ is nonempty and

satisfies Conditions POS, MIX and INT. However, if Q ̸⊂ L∞, this approach

does not work since the topological interior may fail to satisfy Condition MIX

(because D ∩ V is not a vector space).

(d) In light of Propositions 3.2.11 and A.6.6, one could slightly relax Con-

dition INT, by requiring that the sets E are only σ(L∞, L1)-dense in D ∩ L∞.
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However, this additional level of generality does not seem to be useful in con-

crete examples. On the other hand, considering L∞-dense subsets of D ∩ L∞

is useful; cf. Section 3.3.3.

We proceed to characterise the maximal subset of Q satisfying Conditions

POS, MIX and INT. This is surprisingly simple and shows that we can expect

Q̃max to be nonempty for most risk measures ρ.

Proposition 3.2.9. Define the set Q̃max by

Q̃max := {Z̃ > 0 ∈ Q : there is an L∞-dense subset E of D ∩ L∞ such that for

all Z ∈ E , there is λ ∈ (0, 1) such that λZ + (1− λ)Z̃ ∈ Q}.

Then Q̃max satisfies Conditions POS, MIX and INT. Moreover, if Q̃ ⊂ Q
satisfies Conditions POS, MIX and INT, then Q̃ ⊂ Q̃max.

Proof. Q̃max satisfies Conditions POS and INT by definition. To establish

Condition MIX, let Z ∈ Q, Z̃ ∈ Q̃max and µ ∈ (0, 1). Clearly µZ+(1−µ)Z̃ > 0

P-a.s. It remains to show that there exists an L∞-dense subset E ′ ofD∩L∞ such

that for all Z ′ ∈ E ′, there is λ′ > 0 such that λ′Z ′+(1−λ′)(µZ+(1−µ)Z̃) ∈ Q.

Let E be the L∞-dense subset of D ∩ L∞ for Z̃ in the definition of Q̃max. Set

E ′ := E . Let Z ′ ∈ E ′. Then there is λ > 0 such that λZ ′+(1−λ)Z̃ ∈ Q̃max ⊂ Q.

Set µ′ := 1−µ
1−µλ

∈ (0, 1) and λ′ := λµ′ ∈ (0, 1). Then by convexity of Q,

µ′(λZ ′ + (1− λ)Z̃
)
+ (1− µ′)Z = λ′Z ′ + (1− λ′)(µZ + (1− µ)Z̃) ∈ Q.

The additional claim follows immediately from the definition of Q̃max.

Remark 3.2.10. (a) If Q′ ⊂ Q are dual sets that can be used to represent ρ,

then Q̃′
max ⊂ Q̃max.

(b) While Proposition 3.2.9 is insightful from a theoretical perspective, it

is very difficult in practise to compute Q̃max. For this reason, it is often easier

to find a nonempty subset Q̃ ∈ Q satisfying Conditions POS, MIX and INT

directly. This is the approach that we take in virtually all of the examples

in Section 3.3. Since Condition MIX is easier to satisfy if Q is smaller, one

sometimes might even first have to find a smaller representing dual set Q′ ⊂ Q
for ρ and then a nonempty subset Q̃′ ∈ Q′ satisfying Conditions POS, MIX

and INT; see Section 3.3.3 for a concrete example.

55



3.2. Dual Characterisation of (Strong) ρ-Arbitrage

We finish this section by explaining the role of Conditions POS and INT

for establishing existence of ρ-optimal portfolios.

Proposition 3.2.11. Suppose Condition I is satisfied. Let Q̃ ⊂ Q satisfy

Conditions POS and INT. If 1 ∈ Q̃, then ρ is strictly expectation bounded and

Πρ
0 = {0}. If in addition ρ1 <∞, then for all ν ≥ 0, Πρ

ν is nonempty, compact

and convex.

Proof. Strict expectation boundedness of ρ follows from Lemma A.6.3 (with

Z̃ = 1) and Remark 3.1.6(c). Corollary 3.1.7 then gives Πρ
0 = {0}. Finally,

if ρ1 < ∞, it follows that ρ1 ∈ R since ρ1 ≥ −1 by expectation boundedness

of ρ. Now the remaining claim follows from Proposition 3.2.3, Theorem 3.1.9

and Remark 3.1.10(c).

3.2.2 Dual Characterisation of Strong ρ-Arbitrage

In this section, we provide a dual characterisation of strong ρ-arbitrage

in terms of absolutely continuous martingale measures (ACMMs) for the dis-

counted risky assets S/S0. To this end, set

M = {Z ∈ D : E[Z(Ri − r)] = 0 for all i = 1, . . . , d}, (3.13)

and note Z ∈ M is the Radon-Nikodým derivative of an ACMM for S/S0.

A first step towards a dual characterisation is the following equivalent char-

acterisation of strong ρ-arbitrage.

Proposition 3.2.12. The market (S0, S) satisfies strong ρ-arbitrage if and

only if ρ(Xπ) < 0 for some portfolio π ∈ Rd.

Proof. If the market admits strong ρ-arbitrage, then ρ1 < 0 by Theorem 3.1.16.

Hence, ρ(Xπ) < 0 for some portfolio π ∈ Rd.

Conversely, if ρ(Xπ) < 0 for some portfolio π, E[Xπ] ≥ −ρ(Xπ) > 0 because

1 ∈ Q. Thus, ρ1 < 0, and the market satisfies strong ρ-arbitrage.

Our next result shows that if Q contains an ACMM, the market does not

admit strong ρ-arbitrage.

Proposition 3.2.13. If Q ∩M ≠ ∅, then the market (S0, S) does not admit

strong ρ-arbitrage.
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Proof. Let Z ∈ Q ∩M. Then for any portfolio π ∈ Rd,

ρ(Xπ) ≥ E[−ZXπ] = 0.

Thus, by Proposition 3.2.12 the market does not admit strong ρ-arbitrage.

The converse of Proposition 3.2.13 is in general false. Example A.3.4 shows

that even under Condition I, Q ∩ M = ∅ is not enough to imply strong ρ-

arbitrage. However, under Condition UI, it is essentially true.

Theorem 3.2.14. Assume Q satisfies UI. Denote by Q̄ the L1-closure of Q.

The following are equivalent:

(a) The market (S0, S) does not admit strong ρ-arbitrage.

(b) Q̄ ∩M ̸= ∅.

Proof. First, assume Q̄ ∩ M ̸= ∅. Let Z ∈ Q̄ ∩ M. Then Proposition 3.2.5

gives ρ(Xπ) ≥ E[−ZXπ] = 0 for any π ∈ Rd. Therefore, the market does not

admit strong ρ-arbitrage by Proposition 3.2.12.

Conversely, assume Q̄∩M = ∅. By Proposition 3.2.5, {0} and CQ̄ are two

nonempty disjoint convex and compact subsets of Rd. By the strict separation

theorem (cf. [16, Proposition B.14]), there exists π ∈ Rd\{0} with π ·c < b < 0

for all c ∈ CQ̄. Thus, Proposition 3.2.5 gives

ρ(Xπ) = max
c∈CQ̄

(π · c) < 0,

and so the market admits strong ρ-arbitrage by Proposition 3.2.12.

Remark 3.2.15. (a) By virtue of Proposition 3.2.12 and Remark 3.1.17, The-

orem 3.2.14 is identical to the equivalent characterisation of no-good-deals in

[28, Theorem 3.1]. However, our proof is simpler since we are working with a

finite number of assets. We have included it for the convenience of the reader.

(b) Example A.3.5 shows that when Q is uniformly integrable but RQ is

not, then Theorem 3.2.14 is false. Example A.3.6 shows that Theorem 3.2.14

is also false if RQ is uniformly integrable but Q is not. Thus, we need both

parts of Condition UI simultaneously.

Characterising the absence of strong ρ-arbitrage is important. However, to

see the whole picture, it is important to also have a dual characterisation of

ρ-arbitrage.
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3.2.3 Dual Characterisation of ρ-Arbitrage

In this section, we provide a dual characterisation of ρ-arbitrage in terms of

equivalent martingale measures (EMMs) for the discounted risky assets S/S0.

To this end, set

P = {Z ∈ M : Z > 0 P-a.s.}.

and note Z ∈ P is the Radon-Nikodým derivative of an EMM for S/S0.

As we did for strong ρ-arbitrage, we start by providing an equivalent char-

acterisation of ρ-arbitrage. However, for ρ-arbitrage, we need to assume that

0 is the unique ρ-optimal portfolio.

Proposition 3.2.16. Assume Πρ
0 = {0}. Then the market (S0, S) satisfies

ρ-arbitrage if and only if ρ(Xπ) ≤ 0 for some portfolio π ∈ Rd \ {0}.

Proof. First assume the market satisfies ρ-arbitrage. As the riskless portfolio

0 has zero risk, by definition of ρ-arbitrage there must be another portfolio

π ∈ Rd \ {0} with ρ(Xπ) ≤ 0.

Conversely, if ρ(Xπ) ≤ 0 for some portfolio π ∈ Rd \ {0}, then E[Xπ] ≥ 0

by expectation boundedness of ρ, which in turn gives E[Xπ] > 0 because

Πρ
0 = {0}. It follows that either ρ1 < 0 (in which case Πρ

1 may or may not be

empty) or ρ1 = 0 (in which case Πρ
1 ̸= ∅). In either case the market admits

ρ-arbitrage by Theorem 3.1.18.

We proceed to give a preliminary dual characterisation of ρ-arbitrage. Note

that this characterisation does not rely on the set Q̃max to be nonempty.

Proposition 3.2.17. Assume Πρ
0 = {0} and Q satisfies Condition I. If Q ∩

M = ∅, then the market (S0, S) admits ρ-arbitrage.

Proof. Condition I implies that the set CQ in (3.7) is convex. If Q ∩M = ∅
then 0 /∈ CQ. By the supporting hyperplane theorem (cf. [16, Proposition

B.12]), there exists π ∈ Rd \ {0} with π · c ≤ 0 for all c ∈ CQ. By (3.8),

ρ(Xπ) = sup
c∈CQ

(π · c) ≤ 0,

and the claim follows from Proposition 3.2.16.

We are now in a position to state and prove the main result of this chapter,

the dual characterisation of ρ-arbitrage.
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Theorem 3.2.18. Suppose Q satisfies Condition I, Πρ
0 = {0}, and Q̃max ̸= ∅.

Then the following are equivalent:

(a) The market (S0, S) does not admit ρ-arbitrage.

(b) Q̃ ∩ P ̸= ∅ for some ∅ ≠ Q̃ ⊂ Q satisfying POS, MIX and INT.

(c) Q̃∩P ≠ ∅ for all ∅ ≠ Q̃ ⊂ Q satisfying Conditions POS, MIX and INT.

Proof. (b) =⇒ (a). Let ∅ ≠ Q̃ ⊂ Q satisfying Conditions POS, MIX and INT

and π ∈ Rd \ {0}. By Proposition 3.2.16, we have to show that ρ(Xπ) > 0.

Let Z̃ ∈ Q̃ ∩ P . Then E[−Z̃Xπ] = 0. Since Xπ ̸= 0 by nonredundancy of

the market, this implies that Xπ is a non-constant random variable. Now the

claim follows from Lemma A.6.3.

(a) =⇒ (c). We argue by contraposition. So assume that there exists

∅ ≠ Q̃ ⊂ Q satisfying Conditions POS, MIX and INT such that Q̃ ∩ P = ∅.
This implies that Q̃ ∩ M = ∅ by Condition POS. Refining the argument of

Proposition 3.2.17, it suffices to show that 0 is not in the interior of CQ.

Seeking a contradiction, assume that 0 ∈ Co
Q. Then there is ε > 0 such that

B(0, ε) ⊂ Q, where B(0, ε) denotes the open ball of of radius ε > 0 around 0

with respect to some norm ∥ · ∥. Set

CQ̃ := {E[−Z(R− r1)] : Z ∈ Q̃} ⊂ CQ ⊂ Rd.

Then CQ̃ is convex by Remark 3.2.8(a) and does not contain the origin because

Q̃ ∩ M = ∅. Hence, B(0, ε) ̸⊂ CQ̃. As Q̃ ̸= ∅, there is x ∈ CQ̃. Set

y := −ε/(2∥x∥)x ∈ B(0, ε). Then λx + (1 − λ)y = 0 for λ := ε/(2∥x∥ + ε).

Letting Zx ∈ Q̃ and Zy ∈ Q denote Radon-Nikodým derivatives corresponding

to x and y, respectively, it follows from definition ofM in (3.13) and Condition

MIX that λZx + (1− λ)Zy ∈ Q̃ ∩M, in contradiction to Q̃ ∩M = ∅.
(c) =⇒ (b). This is trivial.

Remark 3.2.19. (a) While Q̃max ̸= ∅ is the minimal theoretical condition

for Theorem 3.2.18 to hold (see Example A.3.7 for a counterexample if is not

satisfied), it is difficult to check in practise since we rarely can compute Q̃max;

cf. Remark 3.2.10(b). Instead, it is easier (and of course sufficient) to check

that Q̃ ̸= ∅ for some Q̃ ⊂ Q satisfying Conditions POS, MIX and INT. In all

our examples, the latter is done by showing that 1 ∈ Q̃, which by Proposition

3.2.11 also implies that Πρ
0 = {0}.
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(b) If we choose for ρ the worst-case risk measure, we recover a refined

version of the fundamental theorem of asset pricing in a one-period model; see

Theorem 3.3.2 below for details. In this case, the proof is particularly simple.

To the best of our knowledge, the argument (for the nontrivial direction) is

new, even simpler than any of the existing proofs (cf. e.g. [45, Theorem 1.7])

and yields a much sharper result.

3.3 Examples

In this section, we apply the preceding sections to various examples of risk

measures. Recall that we have already investigated the case of elliptically dis-

tributed returns in Section 3.1.4. Here, we do not make any assumptions on

the returns, other than our standing assumptions that returns are contained

in some Riesz space and that the market (S0, S) is nonredundant and nonde-

generate.

3.3.1 Worst-Case Risk Measure

We start our discussion by looking at the worst-case risk measure WC :

L1 → (−∞,∞] given by WC(X) := ess sup(−X). It is a coherent risk measure

and admits a dual representation with maximal dual set Qρ = D. However, if

the returns do not lie in L∞, Condition I is not satisfied. Therefore, we look

for a smaller dual set, and it turns out that a good choice is Q := D∩L∞; see

Proposition A.6.6. Using this Q, Condition I is always satisfied. By contrast,

Condition UI is never satisfied unless Ω is finite. It is not difficult to check

that Q̃ = {Z ∈ D ∩ L∞ : Z > 0 P-a.s.} satisfies conditions POS, MIX and

INT. However, it turns out that we get a stronger dual characterisation of

WC-arbitrage if we consider the set

Q̂ := {Z ∈ D ∩ L∞ : Z ≥ ε P-a.s. for some ε > 0},

which also satisfies Conditions POS, MIX and INT. Since 1 ∈ Q̂, it follows

from Proposition 3.2.11 that ΠWC
0 = {0}. Theorems 3.2.18 and 3.2.14 now

give the following result.

Corollary 3.3.1. The market (S0, S) does not admit WC-arbitrage if and

only if there is Z ∈ P ∩ L∞ with Z ≥ ε P-a.s. for some ε > 0. Moreover, if Ω
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is finite, (S0, S) does not admit strong WC-arbitrage if and only if M ≠ ∅.

Combining Proposition 3.1.21 with Corollary 3.3.1 gives a refined version

of the one-period fundamental theorem of asset pricing for L1-markets (with

trivial initial information). The refinement is that we show the existence of an

EMM with a positive lower bound.

Theorem 3.3.2. Suppose that the market (S0, S) has finite first moments.

(a) The market does not admit arbitrage of the first kind if and only if there

exists Z ∈ P ∩ L∞ with Z ≥ ε P-a.s. for some ε > 0.

(b) If Ω is finite, the market does not admit arbitrage of the second kind if

and only if M ≠ ∅.

Remark 3.3.3. To the best of our knowledge, a simple proof for the ex-

istence of an EMM with positive lower bound for arbitrage-free L1-markets

(with trivial initial information) has not been given before. In fact, the only

extant result that we are aware of that gives this lower bound for L1-markets

is [82, Corollary 2], which uses very heavy machinery from functional analy-

sis. (Under stronger integrability conditions on the market, the result has also

been established by [74, Remark 7.5].) By contrast our proof is elementary

and short, and might even be given in a classroom setting.

3.3.2 Value at Risk and Expected Shortfall

We have already introduced VaR and ES in Definition 2.1.1. Since VaR has

no dual representation, we cannot apply the results from Section 3.2. However,

using the inequality VaRα(X) ≤ ESα(X) for α ∈ (0, 1) and X ∈ L1, it follows

that if there is (strong) ESα-arbitrage, then there is (strong) VaRα-arbitrage.

As mentioned in Remark 2.1.2, unlike VaR, ES is coherent and admits for

α ∈ (0, 1) the following dual representation:

ESα(X) = sup
Z∈Qα

E[−ZX], where Qα := {Z ∈ D : ∥Z∥∞ ≤ 1
α
}. (3.14)

This can be extended to include α ∈ {0, 1}, whereQ0 := D∩L∞ andQ1 := {1}
only “contains” the real-world measure P. Note that ES1(X) = E[−X]; ES0

corresponds to the worst-case risk measure considered in Section 3.3.1.
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For α ∈ (0, 1), Conditions I and UI are satisfied for ESα and Qα is closed

in L1. Moreover, Proposition A.6.7 shows that

Q̃α := {Z ∈ D : Z > 0 P-a.s. and ∥Z∥∞ < 1
α
} (3.15)

satisfies Conditions POS, MIX and INT. Note that 1 ∈ Q̃α. Using Proposition

3.2.11 together with Theorems 3.2.14 and 3.2.18, we arrive at the following

complete description of mean-ES portfolio selection:

Theorem 3.3.4. Fix α ∈ (0, 1). Then ΠESα

ν is nonempty, compact and convex

for ν ≥ 0. Moreover:

(a) The market (S0, S) does not admit strong ESα-arbitrage if and only if

there exists Z ∈ M such that ∥Z∥∞ ≤ 1
α
.

(b) The market (S0, S) does not admit ESα-arbitrage if and only if there

exists Z ∈ P such that ∥Z∥∞ < 1
α
.

Remark 3.3.5. (a) It straightforward to check that

Q̂α := {Z ∈ D : there exists ε > 0 such that Z ≥ ε P-a.s. and ∥Z∥∞ < 1
α
}

is nonempty and satisfies POS, MIX and INT. Thus, Theorem 3.3.4(b) can be

strengthened: The market (S0, S) does not admit ESα-arbitrage if and only if

there exists Z ∈ P with Z ≥ ε P-a.s. for some ε > 0 and ∥Z∥∞ < 1
α
.

(a) Revisiting the toy example from the introduction; using this result

together with (2.7) and the fact

M = {(q1, q2, q3) ∈ [0, 1]3 : q1 ∈ [0, 1/3], q2 = 1− 3q1 and q3 = 2q1}

yields that the no-strong-ESα-arbitrage pricing interval for S2 is given by

{E[ZS2
1 ] : Z ∈ M and ∥Z∥∞ ≤ 1

α
} = [max(0, 1

3
− 1

9α
),min(1

3
, 1
6α
)].

And the no-ESα-arbitrage pricing interval for S2 is given by

{E[ZS2
1 ] : Z ∈ P and ∥Z∥∞ < 1

α
} = (max(0, 1

3
− 1

9α
),min(1

3
, 1
6α
)).
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3.3.3 Spectral Risk Measures

Spectral risk measures are mixtures of Expected Shortfall risk measures

that were introduced by [1]. Here, we follow the definition of [27], who has

studied their finer properties in great detail. For a probability measure µ on

([0, 1],B[0,1]), the spectral risk measure ρµ : L1 → (−∞,∞] with respect to µ

is given by

ρµ(X) :=

∫
[0,1]

ESα(X)µ(dα).

Remark 3.3.6. (a) If µ does not have an atom at 0, we can define the non-

increasing function ϕµ : [0, 1] → R+ by ϕµ(u) :=
∫
[u,1]

1
α
µ(dα) and write

ρµ(X) :=
∫ 1

0
ϕµ(u)VaRu(X) du. This is the original definition of [1]. Some

explicit examples for the choice of µ (or more precisely ϕµ) are given in [38].

(b) It was shown in [62, Theorem 7] for the domain L∞ that on a stan-

dard probability space where P is non-atomic, spectral risk measures coincide

with law-invariant, comonotone, coherent risk measures that satisfy the Fatou

property. It was then shown in [56] that the Fatou property is automatically

satisfied by law-invariant coherent risk measures. The result has then been

generalised to L1 by [72, Theorem 2.45].

Spectral risk measures admit a dual representation. It follows from [27,

Theorem 4.4] that the maximal dual set Qρµ is L1-closed and given by

Qρµ =

{∫
[0,1]

ζα µ(dα) : ζα(ω) is jointly measurable; ζα ∈ Qα for α ∈ [0, 1]

}
,

where Qα is as in (3.14). Here, we are in a situation, where it is useful to

consider a smaller dual set Q′ ⊂ Qρµ so we can explicitly construct a nonempty

subset Q̃′ ⊂ Q′ satisfying Conditions POS, MIX and INT. It turns out that a

good choice is

Qµ =

{∫
[0,1]

ζα µ(dα) : ζα(ω) is jointly measurable and there is 1 > ε > 0

such that ζα ∈ Qα for α ≤ 1− ε and ζα ≡ 1 for α > 1− ε

}
,

which is an L1-dense subset of Qρµ . It is shown in Proposition A.6.8(a) that

Qµ also represents ρµ. If µ does not have an atom at 0 and
∫
(0,1]

1
α
µ(dα) <∞,

it follows that Qµ (and Qρµ) is bounded in L∞. Hence, ρµ is real-valued and
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Condition I and UI are satisfied.

If µ does not have an atom at 1, it follows from Proposition A.6.8(b) that

Q̃µ =

{∫
[0,1)

ζα µ(dα) : ζα(ω) is jointly measurable; there is 0 < ε < 1 and

0 < δ < ε
1−ε

such that ζα ∈ Q̃α(1+δ) for α ≤ 1− ε and ζα ≡ 1 for α > 1− ε

}
,

where Q̃α(1+δ) is as in (3.15), satisfies Conditions POS, MIX and INT. Note

that 1 ∈ Q̃µ. Using Proposition 3.2.11 together with Theorems 3.2.14 and

3.2.18 we arrive at the following result:

Corollary 3.3.7. Let µ be a probability measure on ([0, 1],B[0,1]) such that

µ({0}) = 0 and
∫
(0,1]

1
α
µ(dα) < ∞. Then Πρµ

ν is nonempty, compact and

convex for ν ≥ 0. Moreover:

(a) The market (S0, S) does not admit strong ρµ-arbitrage if and only if

there exists Z ∈ M such that Z =
∫
[0,1]

ζα µ(dα), where ζα(ω) is jointly

measurable and satisfies ζα ∈ D and ∥ζα∥∞ ≤ 1
α
.

(b) If µ does not have an atom at 1, the market (S0, S) does not admit ρµ-

arbitrage if and only if there exists Z ∈ P, 0 < ε < 1 and 0 < δ < ε
1−ε

such that Z = µ((1 − ε, 1)) +
∫
[0,1−ε]

ζα µ(dα), where ζα(ω) is jointly

measurable and satisfies ζα ∈ D and ∥ζα∥∞ ≤ 1
α(1+δ)

for α ∈ [0, 1− ε].

3.3.4 Coherent Risk Measures on Orlicz Spaces

We proceed to discuss how our main results can be applied to the case

where the returns lie in some Orlicz space LΦ and ρ is real-valued on LΦ.

Risk measures on Orlicz spaces/Orlicz hearts are well studied; see e.g. [25,

49]. Not only do these spaces allow for the inclusion of unbounded random

variables, there is also an elegant duality theory. For a brief overview of some

key definition and results, see Appendix A.2.

We consider the following setup: Let Φ : [0,∞) → [0,∞] be a Young

function and ρ : LΦ → R a coherent risk measure that is expectation bounded.

We first consider LΦ = L∞, i.e., when Φ jumps to infinity, which is different

from all other Orlicz spaces in that the corresponding Orlicz heart is the null

space. In this case, ρ admits a dual representation if it satisfies the Fatou

property (cf. Theorem A.2.3(c)) and we have the following result.
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Corollary 3.3.8. Let ρ : L∞ → R be an expectation bounded coherent risk

measure on L∞ that satisfies the Fatou property. Let Q ⊂ Qρ be a convex

subset with 1 ∈ Q and Q̄ = Qρ. Suppose that Ri ∈ L∞. If ρ is strictly

expectation bounded, then Πρ
ν is nonempty, compact and convex for all ν ≥ 0.

Moreover:

(a) If ρ is continuous from below (that is ρ(Xn) ↘ ρ(X) whenever Xn ↗
X P-a.s.), the market (S0, S) does not admit strong ρ-arbitrage if and

only if Qρ ∩M ≠ ∅.

(b) If there exists Q̃ ⊂ Q satisfying Conditions POS, MIX and INT with

1 ∈ Q̃, then the market (S0, S) does not admit ρ-arbitrage if and only if

Q̃ ∩ P ̸= ∅.

Proof. The first assertion follows from Theorem 3.1.9 and Corollary 3.1.7.

Next, since Ri ∈ L∞, Condition UI is satisfied if and only if the dual set

Q is uniformly integrable, which by [45, Corollary 4.35] is equivalent to ρ be-

ing continuous from below. Since Q̄ = Qρ, part (a) follows from Proposition

A.2.5 and Theorem 3.2.14. Finally, Condition I is trivially satisfied and so part

(b) follows from Theorem 3.2.18.

We now consider the case of Orlicz spaces for a finite Young function. See

Theorem A.2.3 for conditions under which ρ admits a dual representation.

Corollary 3.3.9. Let Φ : [0,∞) → [0,∞) be a finite Young function with

conjugate Ψ and ρ : LΦ → R an expectation bounded coherent risk measure that

admits a dual representation. Let Q ⊂ Qρ be a convex subset with 1 ∈ Q and

whose closure in LΨ is Qρ. Suppose that Ri ∈ LΦ. If ρ is strictly expectation

bounded, then Πρ
ν is nonempty, compact and convex for all ν ≥ 0. Moreover:

(a) If Ri ∈ HΦ, the market does not admit strong ρ-arbitrage if and only if

Q̄ρ ∩M ≠ ∅, where Q̄ρ denotes the closure of Qρ in L1.

(b) If there exists Q̃ ⊂ Q satisfying Conditions POS, MIX and INT with

1 ∈ Q̃, then the market (S0, S) does not admit ρ-arbitrage if and only if

Q̃ ∩ P ̸= ∅.

Proof. The first assertion follows from Theorem 3.1.9 and Corollary 3.1.7.

Next, since Ri ∈ HΦ, Condition UI is satisfied by Proposition A.6.5(b), and

(a) follows from Proposition A.2.5 and Theorem 3.2.14. Finally, Condition I
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follows from Ri ∈ LΦ and the generalised Hölder inequality (A.5). Now part

(b) follows from Theorem 3.2.18.

Remark 3.3.10. If Φ does not satisfy the ∆2-condition and Ri ∈ LΦ \ HΦ

for some i ∈ {1, . . . , d}, then it is in general not possible to provide a dual

characterisation of strong ρ-arbitrage since condition UI is not satisfied. The

reason for this is that Proposition A.6.5 does not extend to LΦ. However, we

can often provide a dual characterisation of ρ-arbitrage since finding Q̃ ⊂ Q
satisfying Conditions POS, MIX and INT with 1 ∈ Q̃ is possible in many

cases; cf. Corollary 3.3.11.

g-Entropic Risk Measures

We proceed to apply the above results to the class of g-entropic risk mea-

sures. The class of g-entropic risk measures was introduced by [3, Definition

5.1]. It is best understood when presented in the context of Orlicz spaces. Let

Φ : [0,∞) → R be a finite superlinear Young function and Ψ its conjugate.

Let g : [0,∞) → [0,∞) be a convex function that dominates Ψ. For β > g(1),

define the risk measure ρg,β : LΦ → R by

ρg,β(X) = sup
Z∈Qg,β

E[−ZX], where Qg,β := {Z ∈ D : E[g(Z)] ≤ β},

and call it the g-entropic risk measure with divergence level β. (Note that our

definition slightly differs from the definition in [3]; there the domain is L∞ and

it is assumed that g is convex, (−∞,∞]-valued and satisfies g(1) = 0.) By

convexity and nonnegativity of g and the fact that g dominates Ψ, it follows

that Qg,β is convex, LΨ-bounded and L1-closed. (More precisely, ∥Z∥Ψ ≤
max(1, β) for all Z ∈ Qg,β and L1-closedness follow from Fatou’s lemma.) By

Proposition A.2.5, we may deduce that Qg,β = Qρg,β . Moreover, Proposition

A.6.9 shows that

Q̃g,β := {Z ∈ D : Z > 0 P-a.s. and E[g(Z)] < β}

satisfies Conditions POS, MIX and INT. Note that 1 ∈ Q̃g,β ⊂ Qg,β. Applying

Corollary 3.3.9, we get the following result:

Corollary 3.3.11. Let Φ : [0,∞) → R be a superlinear finite Young function

with conjugate Ψ, g : [0,∞) → [0,∞) a convex function that dominates Ψ and
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β > g(1). Suppose that Ri ∈ LΦ. Then Πρg,β

ν is nonempty, compact and convex

for all ν ≥ 0. Moreover:

(a) If Ri ∈ HΦ, the market (S0, S) does not admit strong ρg,β-arbitrage if

and only if there is Z ∈ M with E[g(Z)] ≤ β.

(b) The market (S0, S) does not admit ρg,β-arbitrage if and only if there is

Z ∈ P with E[g(Z)] < β.

We finish this section, by providing two specific examples of g-entropic risk

measures.

Transformed Norm Risk Measure. Let p ∈ (1,∞) and α ∈ (0, 1). (The

case p = 1 corresponds to Expected Shortfall, see Section 3.3.2.) Define the

transformed Lp-norm risk measure with sensitivity parameter α as

ρ(X) := min
s∈R

{ 1
α
∥(s−X)+∥p − s}, X ∈ Lp.

It is shown in [25, Section 5.3] that this is a real-valued coherent risk measure

on Lp and admits the dual representation with

Qρ = {Z ∈ D : ∥Z∥q ≤ 1
α
},

where q := p/(p− 1). Hence ρ = ρg,β, where Φ(x) = xp/p, Ψ(y) = yq/q, g = Ψ

and β := ( 1
α
)q/q.

Entropic Value at Risk. The entropic value at risk (EVaR) was introduced

in [3] and further studied in [4]. Consider the Young function Φ(x) = exp(x)−1

and fix α ∈ (0, 1). Then the entropic value at risk at level α is a risk measure

on LΦ given by

EVaRα(X) := inf
z>0

{
1

z
log

(
E
[
exp(−zX)

α

])}
.

(Note that the parametrisation in [4] is different: α is replaced by 1 − α and

X by −X.) By [4, Section 4.4] it admits a dual representation with dual set

Q := {Z ∈ D : E[Z log(Z)] ≤ − log(α)}.

Hence, EVaRα = ρg,β, where Ψ(y) = (y log(y)−y+1)1{y≥1}, g(y) = y log(y)−
y + 1 and β := − log(α).

67





4

Mean-ρ Portfolio Selection for Convex Risk

Measures

We have seen in Chapter 2 that it is possible for ES constraints to be in-

effective. Chapter 3 shows that the root of this issue stems specifically from

positive homogeneity. More precisely, Theorem 3.1.22 implies that regulators

cannot exclude (strong) ρ-arbitrage a priori when imposing a positively ho-

mogeneous risk measure – unless ρ is as conservative as the worst-case risk

measure. Since a worst-case approach to risk is infeasible in practise, this in-

dicates that one should move beyond the class of positively homogeneous risk

measures for effective risk constraints in the context of portfolio selection.

Positive homogeneity has been questioned on economic grounds from the

very beginning. It triggered the introduction of convex risk measures by [44]

and [47]. For empirical evidence that decision makers become more risk averse

in the face of large losses, see [18, 19]. It is easy to check that convexity

together with normalisation implies that the risk measure is star-shaped, i.e.,

ρ(λX) ≥ λρ(X) for λ ≥ 1, and this rather than convexity turns out to be

minimal property required in the context of portfolio selection. Star-shaped

risk measures have recently been studied by [22] in a setting where there is no

underlying probability measure.

The goal of this chapter is to study mean-ρ portfolio selection when ρ is a

risk functional, i.e., star-shaped, monotone and normalised. For some of our

results, in particular, for our dual characterisations, we assume in addition

that ρ is cash-invariant or convex or satisfies the Fatou property.
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Standing Assumption. Throughout the entire chapter we consider the

market (S0, S) described in the introduction. We assume that L∞ ⊂ L ⊂
L1 is a Riesz space with the P-a.s. ordering that contains X = {Xπ : π ∈
Rd}. We focus on a risk functional ρ : L −→ (−∞,∞], which satisfies the

following axioms for X, Y ∈ L:

• Monotonicity: If X ≤ Y P-a.s., ρ(X) ≥ ρ(Y );

• Normalisation: ρ(0) = 0;

• Star-shaped: For λ ≥ 1, ρ(λX) ≥ λρ(X).

Monotonicity together with normalisation imply that 0 lies in the accep-

tance set Aρ := {X ∈ L : ρ(X) ≤ 0} of ρ and Aρ+L+ ⊂ Aρ. Star-shapedness

(technically speaking, star-shapedness about the origin; see Appendix A.4 for

details) captures the idea that a position’s risk should increase at least propor-

tionally when scaled by a factor greater than one and is economically sounder

and strictly weaker than positive homogeneity, where the inequality is replaced

by an equality (and λ valued in (0,∞)). It implies that Aρ is star-shaped

(about the origin).

Our definition of a risk functional is very general, but for some of our

results, in particular for our dual characterisations, we also need some of the

following axioms:

• Cash-invariance: For all X ∈ L and c ∈ R, ρ(X + c) = ρ(X)− c;

• Convexity: For any X, Y ∈ L and λ ∈ [0, 1],

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y );

• Fatou property on Y ⊂ L: IfXn → X P-a.s. forXn, X ∈ Y and |Xn| ≤ Y

P-a.s. for some Y ∈ L then ρ(X) ≤ lim infn→∞ ρ(Xn).

All three axioms are widely used in the literature. Cash-invariance allows

us to write ρ(X) = inf{m ∈ R : X + m ∈ Aρ} and interpret the value as

the minimal amount of capital required to make the position X acceptable.

Such risk functionals are fully characterised by their acceptance set. Convexity

represents the idea that diversification should not increase risk and implies Aρ
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is convex. Note that under normalisation, convexity implies star-shapedness

(about the origin) but the converse is false. Finally, the Fatou property ensures

that risk is never underestimated by approximations; for our applications, it

sometimes suffices to consider this on a subset Y ⊂ L.

It will be made clear whenever an additional axiom is assumed. In line

with the extant literature, we refer to cash-invariant risk functionals as risk

measures and positively homogeneous convex risk measures as coherent risk

measures.

While the key point of this chapter is not to insist on positive homogeneity

of ρ, it turns out that its smallest positively homogeneous majorant ρ∞ : L→
(−∞,∞] plays a key role. This is also a risk functional. The notation comes

from the fact that ρ∞ is the recession function (see Appendix A.4) of ρ. It is

explicitly given by

ρ∞(X) := lim
t→∞

ρ(tX)

t
. (4.1)

For future reference, note that Aρ∞ = (Aρ)
∞ (where the latter is the recession

cone of Aρ; see Appendix A.4), and if ρ satisfies convexity, cash-invariance or

the Fatou property on some Y ⊂ L, then so does ρ∞.

4.1 Sensitivity to Large Losses

We start our discussion on mean-ρ portfolio optimisation (concurrently,

mean-ρ∞ portfolio optimisation) by introducing a partial preference order on

the set of portfolios.

Definition 4.1.1. A portfolio π ∈ Rd is strictly ρ-preferred over another

portfolio π′ ∈ Rd if E[Xπ] ≥ E[Xπ′ ] and ρ(Xπ) ≤ ρ(Xπ′), with at least one

strict inequality.

As in the previous chapters, we approach mean-ρ portfolio selection by

first looking at the slightly simplified problem (1’) of finding the minimum risk

portfolio(s) given a fixed nonnegative excess return.

Definition 4.1.2. Let ν ≥ 0. A portfolio π ∈ Πν is called ρ-optimal for ν

if ρ(Xπ) < ∞ and ρ(Xπ) ≤ ρ(Xπ′) for all π′ ∈ Πν . We denote the set of all

ρ-optimal portfolios for ν by Πρ
ν . Moreover, we set

ρν := inf{ρ(Xπ) : π ∈ Πν},
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and define the ρ-optimal boundary by

Oρ := {(ρν , ν) : ν ≥ 0}.

4.1.1 Weak Sensitivity to Large Losses

We seek to understand under which conditions ρ-optimal portfolios exist

(i.e., address (Q1)) and what properties ρ-optimal sets have. To that end, we

introduce the following axiom.

Definition 4.1.3. The risk functional ρ is said to satisfy weak sensitivity to

large losses on Y ⊂ L if for each X ∈ Y with P[X < 0] > 0 and E[X] = 0,

there exists λ > 0 such that λX ̸∈ Aρ.

Remark 4.1.4. (a) To the best of our knowledge, the axiom of weak sensitivity

to large losses has not been considered in the literature before; cf. also Remark

4.1.21 below.

(b) Note that ρ satisfies weak sensitivity to large losses on Y ⊂ L if and

only if ρ∞ does. When Y = L, this is equivalent to Aρ∞ \ {0} ⊂ {X ∈ L :

E[X] > 0}, from which it follows thatAρ∞ is pointed, i.e., Aρ∞∩(−Aρ∞) = {0}.
Pointedness of the recession cone of the acceptance set plays an important role

in [8, Section 4]; cf. also Remark 4.2.10(c).

(c) It is often the case (see the examples in Section 4.3) that ρ is weakly

sensitive to large losses on the entire space L. This is a more general concept

than strict expectation boundedness (i.e., ρ(X) > E[−X] for all non-constant

X ∈ L), which was important in Chapter 3. The two properties are equivalent

when ρ is a positively homogeneous risk measure.

The financial interpretation of weak sensitivity to large losses on X is clear:

For any portfolio π ∈ Π0 \ {0}, there is eventually a point where the scaled

portfolio λπ is considered unacceptable. By Theorem 3.1.9, if ρ is a positively

homogeneous risk measure, then weak sensitivity to large losses together with

the Fatou property implies that Πρ
ν is nonempty and compact for all ν with

ρν <∞. The same result also holds for risk functionals and this answers (Q1).

Theorem 4.1.5. Assume ρ is a risk functional that satisfies the Fatou property

on X and weak sensitivity to large losses on X . Then for any ν ≥ 0 with

ρν <∞, Πρ
ν is nonempty and compact.
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Proof. Define the function fρ : Rd → [0,∞] by

fρ(π) = max{ρ(Xπ), 0}+ |E[Xπ]|.

Then fρ is lower semi-continuous by the Fatou property of ρ on X (and the

fact that L ⊃ X is a Riesz space) and linearity of the expectation. Moreover,

it is star-shaped, i.e., fρ(λπ) ≥ λfρ(π) for all λ ≥ 1 and π ∈ Rd, by the

star-shapedness of ρ and linearity of the expectation.

For δ ≥ 0, set Aδ := {π ∈ Rd : fρ(π) ≤ δ}. Then each Aδ is closed by lower

semi-continuity of fρ. We proceed to show that each Aδ is also bounded and

hence compact.

For δ = 0, using fρ(π) ≥ |E[Xπ]| > 0 for any π ∈ Rd \ Π0, it follows that

A0 ⊂ Π0. Also note that for each π ∈ A0, Xπ ∈ Aρ. If A0 were unbounded,

then Proposition A.6.10(a) would imply the existence of a portfolio π ∈ Π0\{0}
with ρ(λXπ) ≤ 0 for all λ > 0. But this would contradict ρ being weakly

sensitive to large losses on X . Therefore, A0 must be bounded.

For δ > 0, we argue as follows: Since A0 is bounded, there exists d > 0

such that fρ(π) > 0 for any portfolio π belonging to the set D := {x ∈
Rd : ∥x∥2 = d}. Compactness of D and lower semi-continuity of fρ give

m := min{fρ(x) : x ∈ D} ∈ (0,∞]. Star-shapedness of fρ in turn implies that

fρ(π) ≥ m∥π∥2/d for all π ∈ Rd with ∥π∥2 ≥ d, which in turn implies that

each Aδ is bounded.

We finish by a standard argument. Fix ν ≥ 0 and assume ρν < ∞.

By definition, there exists a sequence of portfolios (πn)n≥1 ⊂ Πν such that

ρ(Xπn) ↘ ρν and ρν + 1 ≥ ρ(Xπn) for all n. Setting δ
∗ := max{ρν + 1, 0}+ ν,

it follows that (πn)n≥1 ⊂ Aδ∗ . Compactness of Aδ∗ , closedness of Πν and the

Fatou property of ρ imply the existence of a portfolio π ∈ Πν with ρ(Xπ) ≤ ρν ,

i.e., Πρ
ν is nonempty. Furthermore, Πρ

ν is bounded since it is a subset of Aδ∗ ,

and closed since ρ satisfies the Fatou property.

Remark 4.1.6. (a) If ρ is convex, then so is Πρ
ν . If ρ is even strictly convex

on Πν (i.e., ρ(λXπ + (1 − λ)Xπ′) < λρ(Xπ) + (1 − λ)ρ(Xπ′) for all λ ∈ (0, 1)

and π, π′ ∈ Πν with ρ(Xπ), ρ(Xπ′) <∞), then Πρ
ν is a singleton.

(b) One might wonder what happens when ρ is not weakly sensitive to

large losses on X . Then A0 may be unbounded, in which case we lose the

boundedness of the sublevel sets of fρ. Then for ν > 0, even if ρν < ∞, Πρ
ν

can be empty; see Example A.3.1.
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(c) The proof of Theorem 4.1.5 does not rely on the monotonicity of ρ and

so it can be applied to the class of deviation risk measures from [79].

4.1.2 Optimal Boundary

We next seek to understand the map ν 7→ ρν from R+ to [−∞,∞] whose

graph corresponds exactly to the ρ-optimal boundary (but with the axes re-

versed). To this end, it turns out useful to relate the map ν 7→ ρν to the map

ν 7→ ρ∞ν . We start by stating some basic properties.

Proposition 4.1.7. For a risk functional ρ, the map ν 7→ ρν from R+ to

[−∞,∞] is star-shaped about the origin, i.e., for all ν ∈ R+ and λ ≥ 1,

ρλν ≥ λρν. Moreover, ρ0 ≤ 0 and the map ν 7→ ρ∞ν from R+ to [−∞,∞] is a

positively homogeneous majorant.

As a consequence of this result, Oρ lies to the left of Oρ∞ in the mean-

risk plane. Moreover, the function ν 7→ ρν is increasing on the interval {ν ∈
[ν+,∞) : ρν <∞} where

ν+ := inf{ν ≥ 0 : ρν > 0} ∈ [0,∞].

However, we lack knowledge concerning its behaviour on (0, ν+). The next

result shows that weak sensitivity to large losses together with the Fatou prop-

erty yields a stronger connection between Oρ and Oρ∞ and gives us information

concerning

νmin := inf{ν ≥ 0 : ρν′ > ρν for all ν ′ > ν} ∈ [0, ν+] and

ρmin := inf{ρν : ν ≥ 0} ∈ [−∞, 0].

Proposition 4.1.8. Assume ρ is a risk functional that satisfies the Fatou

property on X and weak sensitivity to large losses on X . Then ν 7→ ρν is

(−∞,∞]-valued, lower semi-continuous, its positively homogeneous majorant

is given by ν 7→ ρ∞ν and

ρ∞1 > 0 ⇐⇒ ν+ <∞.

Moreover, we have the following three cases:

(a) If ρ∞1 > 0, then νmin <∞ and ρmin = ρνmin
∈ (−∞, 0].
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(b) If ρ∞1 = 0, then νmin ∈ [0,∞] and ρmin ∈ [−∞, 0].

(c) If ρ∞1 < 0, then νmin = ∞ and ρmin = −∞.

Proof. First note that by Theorem 4.1.5, the map ν 7→ ρν is (−∞,∞]-valued.

Next we establish lower semi-continuity. Fix y ∈ R and let By := {ν ∈
R+ : ρν ≤ y}. We must show that this set is closed. So let (νn)n≥1 ⊂ By

and assume νn → ν. By Theorem 4.1.5, for each n there exists a portfolio πn

such that ρ(Xπn) = ρνn ≤ y and E[Xπn ] = νn. We proceed to show that the

sequence (πn)n≥1 belongs to a compact set. To this end, let c ∈ R be such

that |νn| ≤ c for all n. Setting δ := max{y, 0} + c it follows that each πn

lies in Aδ := {π ∈ Rd : max{ρ(Xπ), 0} + |E[Xπ]| ≤ δ}, which is compact by

the proof of Theorem 4.1.5. Passing to a subsequence, we may assume that

(πn)n≥1 converges to some π ∈ Rd, and by dominated convergence and the

Fatou property, it follows that E[Xπ] = ν and ρ(Xπ) ≤ y. Whence, ρν ≤ y

and so ν ∈ By.

We now show that ν 7→ ρ∞ν is the smallest positively homoegeneous ma-

jorant of ν 7→ ρν . Since ρ∞ is weakly sensitive to large losses, ρ∞0 = 0 ≥ ρ0.

Thus, it suffices to show that

ρ∞1 = lim
t→∞

ρt/t. (4.2)

The key idea is to consider the risk functionals ρt : L → (−∞,∞] defined

by ρt(X) = ρ(tX)/t for t ≥ 1. They satisfy the Fatou property on X , weak

sensitivity to large losses on X and ρt/t = ρt1. By star-shapedness of ρ and

definition of ρ∞ in (4.1), we have ρt+1(X) ≥ ρt(X) and limt→∞ ρt(X) = ρ∞(X)

for all X ∈ L. This implies (ρt1)t≥1 is a nondecreasing sequence and

ρ∞1 ≥ m := lim
t→∞

ρt1.

If m = ∞, the reverse inequality is clear, so assume m < ∞. Then as ρt ≥ ρ

and m ≥ ρt1 for each t ≥ 1, it follows that

Πρt

1 ⊂ {π ∈ Π1 : ρ(Xπ) ≤ m}

⊂ {π ∈ Π1 : max{ρ(Xπ), 0}+ |E[Xπ]| ≤ max{m, 0}+ 1} := K.

Since K is compact by the proof of Theorem 4.1.5, (4.2) follows by applying

Proposition A.6.11 to the sequence of functions ft : K → (−∞,∞] given by
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ft(π) := ρt(Xπ).

The statements in (b) and (c) as well as the equivalence between ρ∞1 > 0

and ν+ < ∞ follow directly from the fact ν 7→ ρ∞ν is the smallest positively

homogeneous majorant of ν 7→ ρν .

Finally, we establish (a). If ρ∞1 > 0, then ν+ <∞ by the above and hence

ρν > 0 for all ν > ν+. By lower semi-continuity of ν 7→ ρν and compactness

of [0, ν+], there exists a global minimum m ≤ ρ0 ≤ 0 that is attained at

ν∗ := sup{ν ∈ [0, ν+] : ρν = m}. By construction, ρν > m for all ν > ν∗.

Whence, by definition νmin = ν∗ <∞ and ρmin = ρνmin
∈ (−∞, 0].

Example A.3.8 shows that even under the setting of Proposition 4.1.8, the

shape of Oρ may be very irregular. From an economic standpoint, we would

like more regularity – in particular, convexity (to account for diversification)

and continuity (there should be some continuous progression between risk and

return). The next result shows that these properties hold if ρ is convex.

Proposition 4.1.9. Suppose ρ is a convex risk functional that satisfies the

Fatou property on X and weak sensitivity to large losses on X . Then the

map ν 7→ ρν from R+ to (−∞,∞] is convex, continuous on the closed set

{ν ∈ R+ : ρν <∞} and

ρ∞1 > 0 ⇐⇒ ν+ <∞ ⇐⇒ νmin <∞.

Moreover, we have the following three cases:

(a) If ρ∞1 > 0, the map ν 7→ ρν is nonincreasing on [0, νmin], increasing

on the closed interval {ν ∈ [νmin,∞) : ρν < ∞} and bounded below by

ρmin = ρνmin
∈ (−∞, 0].

(b) If ρ∞1 = 0, the map ν 7→ ρν is nonincreasing on R+ and ρmin ∈ [−∞, 0].

(c) If ρ∞1 < 0, the map ν 7→ ρν is decreasing on R+ and ρmin = −∞.

Proof. First, we establish convexity of ν 7→ ρν . Let ν, ν ′ ∈ R+, λ ∈ [0, 1]

and A := Πν × Πν′ . Using convexity of ρ and the fact (π, π′) ∈ A implies

λπ + (1− λ)π′ ∈ Πλν+(1−λ)ν′ , we obtain

ρλν+(1−λ)ν′ ≤ inf
(π,π′)∈A

{ρ(Xλπ+(1−λ)π′)}

≤ inf
(π,π′)∈A

{λρ(Xπ) + (1− λ)ρ(Xπ′)} ≤ λρν + (1− λ)ρν′ .
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Next, since ν 7→ ρν is convex, it is continuous in the interior of its effective

domain {ν ∈ R+ : ρν < ∞}, which is an interval. This together with lower

semi-continuity shown in Proposition 4.1.8, implies that ν 7→ ρν is finite and

continuous on the closure of {ν ∈ R+ : ρν <∞}, which a fortiori implies {ν ∈
R+ : ρν < ∞} is closed. The other claims follow directly from Propositions

4.1.7 and 4.1.8 together with standard properties of convex functions.

The above result shows that for a convex risk functional ρ satisfying the

Fatou property and weak sensitivity to large losses, Oρ is continuous (except

where it jumps to ∞) and convex. It has a strong connection with Oρ∞ by

Proposition 4.1.8, and by Theorem 4.1.5 every point on the ρ-optimal boundary

(with finite risk) corresponds to a ρ-optimal portfolio.

4.1.3 Efficient Portfolios

We proceed to study the notion of ρ-efficient portfolios.

Definition 4.1.10. A portfolio π ∈ Rd is called ρ-efficient if E[Xπ] ≥ 0 and

there is no other portfolio π′ ∈ Rd that is strictly ρ-preferred over π. We

denote the ρ-efficient frontier by

Eρ := {(ρ(Xπ),E[Xπ]) : π is ρ-efficient} ⊂ (−∞,∞)× [0,∞).

Remark 4.1.11. It is not difficult to show that if π ∈ Rd is ρ-efficient then

ρ(Xπ) ∈ R. Whence, every ρ-efficient portfolio is ρ-optimal.

We begin by looking at the existence of the ρ∞-efficient frontier. Since ρ∞ is

a positively homogeneous risk functional, when it satisfies the Fatou property

and weak sensitivity to large losses on X , it follows by a similar argument as

in Proposition 3.1.13 (using also Remark 4.1.4(c)) and Remark 4.1.11 that

Eρ∞ =


∅, if ρ∞1 ≤ 0,

{(νρ∞1 , ν) : ν ≥ 0}, if 0 < ρ∞1 <∞,

{(0, 0)}, if ρ∞1 = ∞.

(4.3)

The case for ρ (which is only star-shaped) is slightly more involved but the

existence of the ρ-efficient frontier still crucially depends on the sign of ρ∞1 .

77



4.1. Sensitivity to Large Losses

Proposition 4.1.12. Assume the risk functional ρ satisfies the Fatou property

on X and weak sensitivity to large losses on X . Then ρ∞1 > 0 implies Eρ ̸= ∅.
When ρ is also convex,

Eρ =

∅, if ρ∞1 ≤ 0,

{(ρν , ν) : ν ≥ νmin and ρν <∞} ≠ ∅, if ρ∞1 > 0.

Proof. First, assume ρ∞1 > 0. Then by Proposition 4.1.8(a), νmin < ∞ and

ρmin = ρνmin
. By Theorem 4.1.5, there exists πνmin

∈ Πρ
νmin

. It follows by

definition that πνmin
is ρ-efficient and so Eρ ̸= ∅. If ρ is in addition convex,

Eρ = {(ρν , ν) : ν ≥ νmin and ρν <∞}.

Indeed, for ν < νmin and π ∈ Πν , πνmin
is strictly ρ-preferred over π. If ν > νmin

and ρν = ∞, then by Remark 4.1.11, (ρν , ν) /∈ Eρ. Finally, if ν ≥ νmin and

ρν < ∞, then there exists πν ∈ Πρ
ν by Theorem 4.1.5, and this portfolio must

be ρ-efficient as otherwise it would contradict Proposition 4.1.9(a). Whence

(ρν , ν) ∈ Eρ.
Next, assume that ρ is convex and ρ∞1 ≤ 0. When ρ∞1 ≤ 0, by Proposition

4.1.9(b) and (c), any portfolio in Πρ
ν is strictly ρ-preferred over the portfolios

in Πρ
ν′ for ν > ν ′ ≥ 0. Therefore, there cannot be any ρ-efficient portfolios,

i.e., Eρ = ∅.

Combining the above result with (4.3) indicates a further relationship be-

tween ρ and ρ∞: Under the assumptions of Proposition 4.1.12, Eρ ̸= ∅ if (and

only if, when ρ is also convex) Eρ∞ ̸= ∅. Figure 7 gives a graphical illustration.

Figure 7: The ρ-optimal boundary (solid) and ρ-efficient frontier (green
solid) with the ρ∞-optimal boundary (dashed) and ρ∞-efficient frontier (green
dashed) when ρ satisfies convexity, the Fatou property on X , weak sensitivity
to large losses on X , ρ0 = 0 and ρν < ∞ for all ν ≥ 0. The green dot in the
right lower panel indicates the efficient frontier for ρ∞.
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4.1.4 (Strong) ρ-Arbitrage

We have seen above that mean-ρ portfolio selection is not always well-

defined as it can happen that there are no ρ-efficient portfolios (even if ρ-

optimal portfolios exist). To reiterate, this is highly undesirable since it means

that for every portfolio there exists another one that dominates it. An even

worse scenario would be the existence of a sequence of portfolios whose expec-

tation increases to ∞ whilst simultaneously the risk decreases to −∞. Just

as before, we refer to these situations as ρ-arbitrage and strong ρ-arbitrage,

respectively.

Definition 4.1.13. The market (S0, S) is said to satisfy ρ-arbitrage if there

are no ρ-efficient portfolios. It is said to satisfy strong ρ-arbitrage if there

exists a sequence of portfolios (πn)n≥1 ⊂ Rd such that

E[Xπn ] ↑ ∞ and ρ(Xπn) ↓ −∞.

It is clear that strong ρ-arbitrage implies ρ-arbitrage but not vice versa.

The following two results give primal characterisations in terms of the sign of

ρ∞1 . In particular, note that ρ-arbitrage is fully characterised by the sign of

ρ∞1 when ρ is convex and satisfies the Fatou property and weak sensitivity to

large losses on X .

Proposition 4.1.14. We have that (a) ⇐⇒ (b) =⇒ (c) for the statements:

(a) ρ∞1 < 0.

(b) The market (S0, S) admits strong ρ∞-arbitrage.

(c) The market (S0, S) admits strong ρ-arbitrage.

Proof. “(a) ⇐⇒ (b)”. This is Theorem 3.1.16.

“(b) =⇒ (c)”. This follows from the definition of strong ρ-arbitrage and

the fact ρ∞ dominates ρ.

Remark 4.1.15. It follows from Remark 4.3.18 that the implication “(c) =⇒
(b)” does not hold even if ρ is convex, satisfies the Fatou property and weak

sensitivity to large losses on X .

Proposition 4.1.16. Assume ρ is convex and satisfies the Fatou property on

X and weak sensitivity to large losses on X . Then the following are equivalent:
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(a) ρ∞1 > 0.

(b) The market (S0, S) does not admit ρ∞-arbitrage.

(c) The market (S0, S) does not admit ρ-arbitrage.

If ρ is not convex, then (a) ⇐⇒ (b) =⇒ (c).

Proof. This follows directly from (4.3), Proposition 4.1.12 and the definition

of ρ-arbitrage.

Remark 4.1.17. (a) The direction “(c) =⇒ (b)” is wrong without convexity;

see Example A.3.9 for a counterexample.

(b) By Proposition 4.1.16 and Remark 4.1.4(b), when ρ is convex, weakly

sensitive to large losses and satisfies the Fatou property, then the market ad-

mits ρ-arbitrage if and only if there exists a portfolio π ∈ Rd \{0} (in fractions

of wealth) with Xπ ∈ Aρ∞ . This is equivalent to the existence of a portfolio

(ϑ0, ϑ) ∈ R1+d \ {0} (in numbers of shares) such that

ϑ0S0
0 + ϑ · S0 ≤ 0 and ϑ0S0

1 + ϑ · S1 ∈ A∞
ρ .

This is referred to as a (strong) scalable acceptable deal by [8].

Proposition 4.1.16 goes a long way in providing an answer to (Q2) from

the introduction. Indeed, when ρ satisfies weak sensitivity to large losses and

the Fatou property on X , the market does not admit ρ-arbitrage if (and only

if, when ρ is also convex) ρ∞1 > 0. However, this criterion is rather indirect.

We now focus on giving more explicit criteria.

Remark 4.1.18. As in Chapter 3, the primal characterisations of (strong) ρ-

arbitrage are particularly useful when returns are elliptically distributed with

finite second moments and the risk functional satisfies cash-invariance and

law-invariance. (Note that ρ∞ inherits these.) We do not give details here.

4.1.5 Strong Sensitivity to Large Losses

One clear case where ρ∞1 ≤ 0 is when the market admits arbitrage (of the

first kind), i.e., there exists a trading strategy (ϑ0, ϑ) ∈ R1+d (parametrised in

numbers of shares) such that

ϑ0S0
0 + ϑ · S0 ≤ 0, ϑ0S0

1 + ϑ · S1 ≥ 0 P-a.s. and P[ϑ0S0
1 + ϑ · S1 > 0] > 0.
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Proposition 4.1.19. If the market (S0, S) admits arbitrage and ρ is a risk

functional, then ρ∞1 ≤ 0 and the market admits ρ-arbitrage.

This result shows that it is necessary that the market is arbitrage-free in

order for ρ∞1 > 0. However, it is not sufficient: For example, if ρ is any

positively homogeneous risk measure that is not the worst-case risk measure,

it follows from Theorems 3.1.16 and 3.1.22 that there exists an arbitrage-free

market (S0, S) such that ρ1 = ρ∞1 < 0. To obtain a sufficient condition, we

introduce the following axiom, which is a stronger version of weak sensitivity

to large losses.

Definition 4.1.20. The risk functional ρ is said to satisfy strong sensitivity

to large losses on Y ⊂ L if for each X ∈ Y with P[X < 0] > 0, there exists

λ > 0 such that λX ̸∈ Aρ.

Remark 4.1.21. (a) By star-shapedness, ρ satisfies strong sensitivity to large

losses if and only if for each X ∈ Y with P[X < 0] > 0, limλ→∞ ρ(λX) = ∞.

This (up to a different sign convention) is the formulation in which this axiom

was considered by [24]. Note that we have added the qualifier “strong” to

better distinguish it from our axiom of weak sensitivity to large losses. To the

best of our knowledge, the property (unnamed) was first considered by [30,

Remark 2.7], where the authors write that this “could be quite a desirable

feature for potential applications”.

(b) It follows directly from (4.1) that ρ satisfies strong sensitivity to large

losses on Y ⊂ L if and only if ρ∞ does. When Y = L, this is equivalent to

Aρ∞ = L+. If we further assume that ρ is cash-invariant, this implies that ρ∞

is the worst-case (WC) risk measure

WC(X) := ess sup(−X), X ∈ L.

(c) Strong sensitivity to large losses implies weak sensitivity to large losses

but the converse is not true; e.g., consider ESα for α ∈ (0, 1), which is weakly,

but not strongly, sensitive to large losses on L1.

The financial interpretation of strong sensitivity to large losses is that scal-

ing magnifies gains but it also amplifies losses, and at some point, very large

losses outweigh very large gains. It ensures that no matter how “good” a port-

folio π is, if there is a possibility that it makes a loss, then for λ large enough,
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the scaled portfolio λπ is unacceptable as it may leave you with an extreme

amount of debt. The following result shows that this property is exactly what

is required on top of absence of arbitrage to ensure that ρ∞1 > 0.

Lemma 4.1.22. Assume the market (S0, S) is arbitrage-free and ρ is a risk

functional that satisfies the Fatou property on X . If ρ is strongly sensitive

to large losses on X , then ρ∞1 > 0. The converse is also true if ρ is weakly

sensitive to large losses on L.

Proof. Suppose ρ and hence ρ∞ is strongly sensitive to large losses on X . If

ρ∞1 = ∞, we are done, so assume ρ∞1 < ∞. By Theorem 4.1.5, there exists

π∗ ∈ Πρ∞

1 with ρ∞1 = ρ∞(Xπ∗). By the no-arbitrage assumption, P[Xπ∗ < 0] >

0, and so by strong sensitivity to large losses, there exists λ > 0 such that

ρ∞(λXπ∗) > 0. As ρ∞ is positively homogeneous, this means λρ∞1 > 0, i.e.,

ρ∞1 > 0.

Conversely, if ρ and hence ρ∞ is not strongly sensitive to large losses on

X , then there exists π ∈ Rd with P[Xπ < 0] > 0 and ρ∞(λXπ) ≤ 0 for all

λ > 0. If E[Xπ] ≤ 0, then by monotonicity, ρ∞(λY ) ≤ 0 for all λ > 0 where

Y := X − E[X] ≥ X P-a.s. and E[Y ] = 0. But this contradicts the fact ρ and

hence ρ∞ is weakly sensitive to large losses on L. Whence, E[Xπ] > 0 and so

ρ∞1 ≤ ρ∞(Xπ/E[Xπ]) ≤ 0.

With this, we have the following more direct answer to (Q2) for the primal

characterisation of ρ-arbitrage.

Theorem 4.1.23. Assume ρ is a convex risk functional that satisfies the Fatou

property on X and is weakly sensitive to large losses on L. Then the following

are equivalent:

(a) The market (S0, S) is arbitrage-free and ρ satisfies strong sensitivity to

large losses on X .

(b) The market (S0, S) does not admit ρ∞-arbitrage.

(c) The market (S0, S) does not admit ρ-arbitrage.

If ρ is not convex, then (a) ⇐⇒ (b) =⇒ (c).

Proof. By Lemma 4.1.22 and Proposition 4.1.19, (a) is equivalent to ρ∞1 >

0. This in turn is equivalent to (b) by Proposition 4.1.16. Furthermore, by

Proposition 4.1.16, (b) implies (c), and the converse is also true if ρ is in

addition convex.
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Remark 4.1.24. Strong sensitivity to large losses is also important if we

want a risk regulation which protects liability holders. Indeed, if this axiom is

satisfied, one cannot exploit the acceptability of a certain position by rescaling

it without consequences. Protection of liability holders was an argument used

in [59] to highlight that a regulation based on coherent risk measures, such as

ES, may be ineffective.

4.1.6 Suitability for Risk Management and Portfolio Se-

lection

We now focus on (Q3) from the introduction. To that end, we introduce

the following concept.

Definition 4.1.25. A risk functional ρ : L → (−∞,∞] is called suitable for

risk management if every nonredundant nondegenerate market (S0, S) with

returns in L that satisfies no-arbitrage does not admit strong ρ-arbitrage.

The absence of strong ρ-arbitrage is the main priority for a risk manager.

They want to avoid situations where there is a sequence of portfolios whose

reward increases to ∞ and risk decreases to −∞. The following result shows

that strong sensitivity to large losses is a sufficient (and also necessary under

cash-invariance) condition to ensure that a risk functional is suitable for risk

management.

Lemma 4.1.26. Let ρ : L → (−∞,∞] be a risk functional. If ρ satisfies

strong sensitivity to large losses, then ρ is suitable for risk management. The

converse is also true if ρ is cash-invariant.

Proof. Assume ρ is strongly sensitive to large losses on L but suppose that ρ is

not suitable for risk management, i.e., there exists a nonredundant nondegen-

erate market (S0, S) with returns in L that satisfies no-arbitrage and admits

strong ρ-arbitrage. Then by definition, there exists a sequence of portfolios

(πn)n≥1 ⊂ Rd such that ρ(Xπn) ↓ −∞ and E[Xπn ] ↑ ∞. As E[Xπn ] ↑ ∞, this

means ∥πn∥ → ∞ so by Proposition A.6.10(b) there exists Y ∈ Aρ∞ such that

P[Y < 0] > 0. By Remark 4.1.21(b), this contradicts the fact ρ satisfies strong

sensitivity to large losses on L.

When ρ is cash-invariant and not strongly sensitive to large losses, then by

Remark 4.1.21(b), ρ∞ is not the worst-case risk measure. Then Theorem 3.1.22
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implies the existence of a nonredundant nondegenerate market with returns

in L that admits strong ρ∞-arbitrage. As ρ is dominated by ρ∞, the market

must also admit strong ρ-arbitrage.

Remark 4.1.27. In the absence of cash-invariance, if ρ is suitable for risk

management, then it is not necessarily strongly sensitive to large losses, e.g.,

ρ ≡ 0.

While suitability for risk management is an important concept, it says noth-

ing about the mean-ρ problems (1) and (2). Thus, we introduce a (seemingly)

stronger notion of suitability.

Definition 4.1.28. A risk functional ρ : L → (−∞,∞] is called suitable

for portfolio selection if for every nonredundant nondegenerate market (S0, S)

with returns in L that satisfies no-arbitrage, and every ν∗ ≥ 0 and ρ∗ ≥ 0, the

mean-ρ problems (1) and (2) each have at least one solution with finite risk.

Remark 4.1.29. (a) In order for ρ to be suitable for portfolio selection, it

must be finite on {X ∈ L : E[X] > 0}. Indeed, otherwise there is Y ∈ L

with E[Y ] > 0 and ρ(Y ) = ∞. By normalisation and monotonicity, it must

be that P[Y < 0] > 0. Consider the market (S0, S) with S0 ≡ 1 and S := S1,

where S1
0 = 1 and S1

1 = 1 + Y . This is nonredundant, nondegenerate and

arbitrage-free. However, the mean-ρ problem (1) has no solution with finite

risk for any ν∗ > 0.

(b) Note that if ρ is a risk measure, then by cash-invariance, ρ is real-valued

on {X ∈ L : E[X] > 0} if and only if it is real-valued everywhere.

A risk functional ρ that is suitable for portfolio selection is desirable from

an investor’s perspective as efficient portfolios exist, and from a regulatory

point of view since it is clearly suitable for risk management. The following

result in conjunction with the previous lemma give a complete primal answer

to (Q3).

Lemma 4.1.30. Let ρ : L → (−∞,∞] be a convex risk functional. If ρ is

suitable for portfolio selection, then ρ is strongly sensitive to large losses on L

and real-valued on {X ∈ L : E[X] > 0}. The converse is also true if ρ satisfies

the Fatou property.

Proof. If ρ is not real-valued on {X ∈ L : E[X] > 0}, then ρ is not suitable for

portfolio selection by Remark 4.1.29. If ρ, and hence ρ∞, does not satisfy strong
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sensitivity to large losses on L, then there exists X ∈ Aρ∞ with P[X < 0] > 0.

Without loss of generality, we may assumeX is not a constant P-a.s., otherwise
we can simply replace X by X + 1A where A ∈ F is such that P[A] ∈ (0, 1).

Since X is not a constant, P[B] ∈ (0, 1) where B := {X ≥ E[X]}. Now let

Y :=

X + (1−E[X])1B

P[B]
, if E[X] ≤ 0,

X, if E[X] > 0.

Then P[Y < 0] > 0, E[Y ] > 0, and by monotonicity, Y ∈ Aρ∞ . Consider the

market (S0, S) with S0 ≡ 1 and S := S1, where S1
0 = 1 and S1

1 = 1 + Y .

This is nonredundant, nondegenerate and arbitrage-free. However, as ρ∞1 =

ρ∞(Y )/E[Y ] ≤ 0, the market admits ρ-arbitrage by Proposition 4.1.16. Thus,

ρ is not suitable for portfolio selection.

Conversely, assume that ρ is convex, strongly sensitive to large losses, real-

valued on {X ∈ L : E[X] > 0}, and satisfies the Fatou property. Let (S0, S)

be a nonredundant nondegenerate market with returns in L that satisfies no-

arbitrage. Then ρν <∞ for all ν > 0, and hence Eρ = {(ρν , ν) : ν ≥ νmin} ≠ ∅
by Proposition 4.1.12 and Lemma 4.1.22. Moreover, by Proposition 4.1.9, the

map ν 7→ ρν is increasing for ν ≥ νmin. It follows that for any ν∗ ≥ 0 and

ρ∗ ≥ 0, the mean-ρ problems both admit solutions with finite risk.

A particularly striking consequence of the previous two results is that for a

wide class of practically important risk measures, suitability for risk manage-

ment is equivalent to suitability for portfolio selection.

Theorem 4.1.31. Let ρ : L → R be a convex risk measure that satisfies the

Fatou property. The following are equivalent:

(a) ρ is suitable for risk management.

(b) ρ is suitable for portfolio selection.

(c) ρ satisfies strong sensitivity to large losses on L.

Remark 4.1.32. Convex real-valued risk measures on Orlicz hearts automat-

ically satisfy the Fatou property as a consequence of [25, Theorem 4.3]. Thus,

in Theorem 4.1.31 we can drop the Fatou property when L is an Orlicz heart.

Similarly in Lemma 4.1.30, if we start with a convex risk measure on an Orlicz

heart, then we can drop the Fatou property.
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Convex risk measures typically admit a dual representation. Therefore we

turn to the dual characterisation of (strong) ρ-arbitrage in the next section and

provide a dual description of when they are suitable for portfolio selection.

4.2 Dual Results

In this section, we consider the case that ρ is a convex risk measure on L

that admits a dual representation. There are many relevant examples that fall

into this category, cf. Section 4.3.

Let D := {Z ∈ L1 : Z ≥ 0 P-a.s. and E[Z] = 1} be the set of all Radon-

Nikodým derivatives of probability measures that are absolutely continuous

with respect to P. Throughout this section, we assume that ρ : L −→ (−∞,∞]

admits a dual representation

ρ(X) = sup
Z∈D

{E[−ZX]− α(Z)} = sup
Z∈Qα

{E[−ZX]− α(Z)}, (4.4)

for some penalty function α : D → [0,∞] with effective domainQα := domα =

{Z ∈ D : α(Z) < ∞} ̸= ∅. The penalty function determines how seriously we

treat probabilistic models in D. Since ρ is normalised, inf α = 0. Moreover,

replacing α if necessary by its quasi-convex hull, we may assume without loss

of generality that Qα is convex; see Remark 4.2.1 for details.

Remark 4.2.1. (a) Since −ZX may not be integrable, we define E[−ZX] :=

E[ZX−] − E[ZX+], with the conservative convention that E[−ZX] := ∞ if

E[ZX−] = ∞. Moreover, if α(Z) = ∞, we set E[−ZX]−α(Z) := −∞ so that

the second equality in (4.4) is preserved. This portrays the idea that only the

measures “contained” in Qα are seen as plausible.

(b) The class of risk measures satisfying (4.4) is very large. In particu-

lar, we do not impose lower semicontinuity on α, or L1-closedness or uniform

integrability on Qα.

(c) The representation in (4.4) is not unique. However, it is not difficult to

check that the minimal penalty function for which (4.4) is satisfied is given by

αρ(Z) := sup{E[−ZX]− ρ(X) : X ∈ L and ρ(X) <∞}.

Note that αρ is automatically convex. Moreover, its effective domain Qρ :=

{Z ∈ D : αρ(Z) < ∞} is also convex and the maximal dual set. Notwith-
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standing, it turns out that it is sometimes useful not to consider αρ or Qρ;

cf. Remark 4.2.1(c).

(d) If α : D → [0,∞] represents ρ and α′ : D → [0,∞] satisfies α ≥ α′ ≥ αρ,

then α′ represents ρ and Qα ⊂ Qα′ ⊂ Qρ. This follows directly by comparing

the right hand side (4.4) for α, α′ and αρ.

(e) IfQα is not convex, we may replace α by its quasi-convex hull qcoα, i.e.,

the largest function dominated by α that is quasi-convex; see Appendix A.5

for details. Since αρ is convex and dominated by α, we have αρ ≤ qcoα ≤ α.

Hence, by part (d), ρ is represented by qcoα and Qα ⊂ Qqcoα ⊂ Qρ. It follows

from the definition of quasi-convexity that Qqcoα is convex. Moreover, note

that Qqcoα is the convex hull of Qα.

(f) If we define ρ through (4.4) for some function α : D → [0,∞] satisfying

inf α = 0 and for which there exists Z ∈ Qα such that ZX ∈ L1 for all

X ∈ L1 (often there is no penalty associated with the real-world measure P,
i.e., α(1) = 0), then ρ is a (−∞,∞]-valued convex risk measure.

If ρ : L → (−∞,∞] admits a dual representation as in (4.4), then its

recession function ρ∞ : L → (−∞,∞] is a coherent risk measure that admits

the dual representation

ρ∞(X) = sup
Z∈Qα

(E[−ZX]). (4.5)

4.2.1 Preliminary Considerations and Conditions

We start by recalling the key conditions that were introduced in Section

3.2 and extend some of their consequences to the current setup.

Condition I. For all i ∈ {1, . . . , d} and any Z ∈ Qα, ZRi ∈ L1.

Condition UI. Qα is uniformly integrable, and for all i ∈ {1, . . . , d}, RiQα is

uniformly integrable, where RiQα := {RiZ : Z ∈ Qα}.

Condition I is weak, but has some important consequences. Arguing as in

Proposition 3.2.3, we obtain the following result.

Proposition 4.2.2. Suppose that Condition I is satisfied. Then for any port-

folio π ∈ Rd,

ρ(Xπ) = sup
c∈CQα

(π · c− fα(c)), (4.6)
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where CQα := {E[−Z(R−r1)] : Z ∈ Qα} ⊂ Rd is convex and fα : Rd → [0,∞],

defined by

fα(c) = inf{α(Z) : Z ∈ Qα and E[−Z(R− r1)] = c}

satisfies dom fα = CQα. Moreover, ρ satisfies the Fatou property on X .

Condition UI is a uniform version of Condition I. For X ∈ X , it allows us

to replace α in (4.4) by its L1-lower semi-continuous convex hull coα, and the

infimum by a minimum.

Proposition 4.2.3. Suppose that Condition UI is satisfied. Denote by coα :

D → [0,∞] the L1-lower semi-continuous convex hull of α. Then for X ∈ X ,

ρ(X) = max
Z∈Qcoα

{E[−ZX]− coα(Z)}. (4.7)

Proof. Let X ∈ X , i.e., there is π ∈ Rd such that X = Xπ = π · (R− r1). By

Condition UI, this implies that Qα and XQα are UI.

First, coα (whose effective domain is Qα) represents ρ by Remark 4.2.1(d)

since αρ ≤ coα ≤ α by Remark 4.2.1(c) and the definition of the convex hull.

This together with coα ≤ coα and Remark 4.2.5(a) implies that Qcoα ⊂ Q̄α

and

ρ(X) = sup
Z∈Qα

{E[−ZX]− coα(Z)} ≤ sup
Z∈Q̄α

{E[−ZX]− coα(Z)}. (4.8)

If we can show that the supremum on the right side of (4.8) is attained and

the inequality is an equality, then (4.7) follows.

To see that the supremum on the right side of (4.8) is attained, let (Zn)n∈N

be a maximising sequence in Q̄α. AsQα is uniformly integrable and convex, Q̄α

is convex and σ(L1, L∞)-sequentially compact by the Dunford-Pettis and the

Eberlein-Šmulian theorems. After passing to a subsequence, we may assume

that Zn converges weakly to some Z∗ ∈ Q̄α. Then because the map Z̃ 7→
E[−Z̃X] is weakly continuous on Q̄α (by Proposition A.6.2) and coα is also

σ(L1, L∞)-lower semi-continuous by [91, Theorem 2.2.1], Z∗ is a maximiser.

Finally, we show that the inequality in (4.8) is an equality. We may assume

without loss of generality that the right hand side of (4.8) is larger than −∞.

Hence, coα(Z∗) is finite. Let ε > 0. Since coα is the L1-lower semi-continuous

hull of coα and coα(Z) = ∞ for Z /∈ Qα and coα(Z∗) < ∞, by (A.6), there
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exists a sequence (Zn)n∈N ⊂ Qα that converges in L1 to the maximiser Z∗

and for which limn→∞ coα(Zn) ≤ coα(Z∗) + ε. Using again that the map

Z̃ 7→ E[−Z̃X] is weakly and hence strongly continuous yields

ρ(X) ≥ lim
n→∞

{E[−ZnX]− coα(Zn)} ≥ E[−Z∗X]− coα(Z∗)− ε.

Now the claim follows by letting ε→ 0.

As a consequence of Proposition 4.2.3, we obtain the following result which

is is crucial in establishing the dual characterisation of strong ρ-arbitrage.

Proposition 4.2.4. Suppose that Condition UI is satisfied. Then for any

portfolio π ∈ Rd,

ρ(Xπ) = max
c∈CQcoα

(π · c− fcoα(c)), (4.9)

where CQcoα := {E[−Z(R − r1)] : Z ∈ Qcoα} ⊂ Rd is convex and bounded,

and fcoα : Rd → [0,∞], defined by

fcoα(c) = inf{coα(Z) : Z ∈ Qcoα and E[−Z(R− r1)] = c} (4.10)

is the lower semi-continuous convex hull of fα defined in Proposition 4.2.2 and

satisfies dom fcoα = CQcoα. Moreover, the infimum in (4.10) is a minimum if

c ∈ CQcoα.

Proof. It is clear by the definition of CQcoα that dom fcoα = CQcoα . By Remark

4.2.5(a), Qcoα ⊂ Q̄α and as coα(Z) = ∞ for Z ∈ Q̄α \ Qcoα it follows that

fcoα(c) = inf{coα(Z) : Z ∈ Q̄α and E[−Z(R− r1)] = c}.

Since Q̄α is σ(L1, L∞)-sequentially compact by Eberlein-Šmulian theorem and

Dunford-Pettis, and coα is σ(L1, L∞)-lower semi-continuous by [91, Theorem

2.2.1], it follows that the infimum is attained and (finite) if c ∈ CQcoα . More-

over, since Qcoα ⊂ Q̄α is convex, it follows that

CQcoα ⊂ CQ̄α = {E[−Z(R− r1)] : Z ∈ Q̄α}

is convex and bounded since CQ̄α = cl(CQα) is a (convex) compact subset of

Rd by Proposition 3.2.5.

Next, we show that fcoα is convex and lower semi-continuous. Convex-

ity follows easily from convexity of coα. To argue lower semi-continuity let
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(cn)n∈N be a sequence in Rd that converges to c ∈ Rd. Without loss of gener-

ality, we may assume that each cn and c lies in CQcoα . Let (Zn)n∈N in Qcoα be

a corresponding sequence of minimisers. Since Q̄α is σ(L1, L∞)-sequentially

compact by the Dunford–Pettis and the Eberlein-Šmulian theorems, after pass-

ing to a subsequence, we may assume that (Zn)n∈N converges weakly to some

Z ∈ Qcoα. As the map Z̃ 7→ E[−Z̃X] is σ(L1, L∞)-continuous on Q̄α by

Proposition A.6.2, it follows that E[−Z(R−r1)] = c. By σ(L1, L∞)-lower semi-

continuity of coα this implies that fcoα(c) ≤ coα(Z) ≤ lim infn→∞ coα(Zn) =

lim infn→∞ fcoα(cn).

We proceed to show that fcoα is the the lower semi-continuous convex hull

of fα. To this end, for g : Rd → [0,∞], define the map αg : D → [0,∞] by

αg(Z) =

g(E[−Z(R− r1)]), if Z ∈ Qcoα

∞, otherwise,

If g is convex and lower-semicontinuous, then αg is convex and σ(L1, L∞)-

lower semi-continuous because the map Z̃ 7→ E[−Z̃(R − r1)] is linear and

σ(L1, L∞)-continuous on Q̄α ⊃ Qcoα by Proposition A.6.2.

Seeking a contradiction, suppose now that there exists a convex lower semi-

continuous function g : Rd → [0,∞] such that g ≤ fα and fcoα(c
∗) < g(c∗) for

some c∗ ∈ CQcoα . Then

αg(Z) ≤ αfα(Z) ≤ α(Z), Z ∈ Qcoα,

and hence αg ≤ coα. Let Z∗ ∈ Qcoα be such that E[−Z∗(R − r1)] = c∗ and

coα(Z∗) = fcoα(c
∗). Then

coα(Z∗) = fcoα(c
∗) < g(c∗) = αg(Z∗)

and we arrive at a contradiction.

Finally, (4.9) follows from Proposition 4.2.3.

Remark 4.2.5. (a) By the fact that coα ≤ α and (A.7) it follows that Qα ⊂
Qcoα ⊂ Q̄α, where Q̄α is the L1-closure of Qα. Moreover, if α is bounded from

above on its effective domain, then Qcoα = Q̄α.

(b) Since the L1-lower semi-continuous convex hull of α is equal to its

σ(L1, L∞)-lower semi-continuous convex hull by [91, Theorem 2.2.1], coα co-
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incides with α∗∗, the biconjungate of α under the pairing ⟨·, ·⟩ : L1×L∞ → R,
⟨Z,X⟩ 7→ E[−ZX], by the Fenchel-Moreau theorem (and the fact that α is

nonnegative); see Appendix A.5 for details.

The final object that we need to recall is the “interior” of Qα, which will be

crucial in the dual characterisation of ρ-arbitrage. This is done in an abstract

way. More precisely, we look for (nonempty) subsets Q̃α ⊂ Qα satisfying:

Condition POS. Z̃ > 0 P-a.s. for all Z̃ ∈ Q̃α.

Condition MIX. λZ+(1−λ)Z̃ ∈ Q̃α for all Z ∈ Qα, Z̃ ∈ Q̃α and λ ∈ (0, 1).

Condition INT. For all Z̃ ∈ Q̃α, there is an L∞-dense subset E of D ∩ L∞

such that for all Z ∈ E , there is λ ∈ (0, 1) such that λZ + (1− λ)Z̃ ∈ Qα.

By Proposition 3.2.9, the maximal subset Q̃α
max of Qα satisfying Conditions

POS, MIX and INT can be described explicitly by

Q̃max := {Z̃ > 0 ∈ Q : there is an L∞-dense subset E of D ∩ L∞ such that for

all Z ∈ E , there is λ ∈ (0, 1) such that λZ + (1− λ)Z̃ ∈ Q}.

4.2.2 (Strong) ρ-Arbitrage

We are now in a position to state and prove the dual characterisation

of strong ρ-arbitrage in terms of absolutely continuous martingale measures

(ACMMs) for the discounted risky assets,

M := {Z ∈ D : E[Z(Ri − r)] = 0 for all i = 1, . . . , d};

and the dual characterisation of ρ-arbitrage in terms of equivalent martingale

measures (EMMs) for the discounted risky assets,

P := {Z ∈ M : Z > 0 P-a.s.}.

We first consider the dual characterisation of strong ρ-arbitrage.

Theorem 4.2.6. Assume Condition UI is satisfied and 1 ∈ Qα. Denote by

coα : D → [0,∞] the L1-lower semi-continuous convex hull of α. Then the

following are equivalent:

(a) The market (S0, S) does not admit strong ρ-arbitrage.
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(b) Qcoα ∩M ≠ ∅.

Proof. First we show that the market admits strong ρ-arbitrage if and only

if infπ∈Rd ρ(Xπ) = −∞. For the nontrivial direction, let (πn)n≥1 ⊂ Rd be a

sequence of portfolios such that ρ(Xπn) ↘ −∞. By the dual representation of

ρ, this implies that E[−Xπn ] − α(1) ↘ −∞, and since α(1) < ∞, this gives

E[Xπn ] ↗ ∞.

Now let fcoα be as in Proposition 4.2.4. Since dom fcoα = CQcoα , the convex

conjugate of fcoα is given by

f ∗
coα(π) = sup

c∈Rd

(π · c− fcoα(c)) = sup
c∈CQcoα

(π · c− fcoα(c)), π ∈ Rd.

By (4.9), this implies

f ∗
coα(π) = ρ(Xπ), π ∈ Rd. (4.11)

Since fcoα is a nonnegative lower semi-continuous convex function, the Fenchel-

Moreau theorem (cf. Appendix A.5) and (4.11) give

−fcoα(0) = −f ∗∗
coα(0) = − sup

π∈Rd

(−fcoα∗(π)) = inf
π∈Rd

ρ(Xπ).

Now the result follows from using thatQcoα∩M = ∅ if and only if fcoα(0) = ∞,

and the market admits strong ρ-arbitrage iff infπ∈Rd ρ(Xπ) = −∞.

Remark 4.2.7. (a) Note that in order to apply Theorem 4.2.6, we do not

necessarily need to find coα but rather only its effective domain Qcoα.

(b) Theorem 4.2.6 is the first of its kind for convex risk measures. When

ρ is coherent, then Qcoα = Q̄α by Remark 4.2.5(a), and we arrive at Theorem

3.2.14.

The interpretation of Theorem 4.2.6 from a pricing perspective is as follows.

Corollary 4.2.8. Suppose Qα is uniformly integrable and 1 ∈ Qα. Let

L̃ := {X ∈ L1 : lim
a→∞

sup
Z∈Qα

E[Z|X|1|X|>a] = 0}

and assume (S0, S) is a (1+d)-dimensional market with returns in L̃ that does

not admit strong ρ-arbitrage. Then, the set of no-strong-ρ-arbitrage prices for
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any financial contract outside the original market Sd+1
1 ∈ L̃\span({1, S1

1 , . . . , S
d
1})

is nonempty and given by the interval

I(Sd+1
1 ) = {E[ZSd+1

1 /(1 + r)] : Z ∈ Qcoα ∩M} (4.12)

where M is the set of ACMMs for the original market.

Proof. By Theorem 4.2.6, Sd+1
0 is a no-strong-ρ-arbitrage free price for Sd+1

1 if

and only if there exists an ACMM Z ∈ Qcoα for the extended market, i.e.,

Si
0 = E[ZSi

1/(1 + r)], for i = 1, . . . , d+ 1.

In particular, Z is necessarily contained in Qcoα ∩ M, and we obtain the

inclusion ⊂ in (4.12). Conversely, if Sd+1
0 = E[ẐSd+1

1 /(1 + r)] for some Ẑ ∈
Qcoα ∩M, then this Ẑ is also an ACMM for the extended market model, and

so the two sets in (4.12) are equal.

We next consider the dual characterisation of ρ-arbitrage.

Theorem 4.2.9. Suppose that Condition I is satisfied, ρ satisfies weak sensi-

tivity to large losses on L and Q̃α
max ̸= ∅. Then the following are equivalent:

(a) The market (S0, S) does not admit ρ-arbitrage.

(b) Q̃α ∩ P ̸= ∅ for some ∅ ≠ Q̃α ⊂ Qα satisfying POS, MIX and INT.

(c) Q̃α ∩ P ̸= ∅ for all ∅ ≠ Q̃α ⊂ Qα satisfying POS, MIX and INT.

Proof. The result follows from Proposition 4.1.16 and Theorem 3.2.18, noting

that by Remark 4.1.4(c), ρ satisfying weak sensitivity to large losses on L

implies that ρ∞ is strictly expectation bounded.

Remark 4.2.10. (a) Usually (at least in all the examples we consider) there

is an “interior” of Q which contains 1 (the real world measure). This implies

Q̃α
max ̸= ∅. Furthermore, by Proposition 3.2.11 it follows that ρ∞ is strictly

expectation bounded and so by Remark 4.1.4(c), ρ is weakly sensitive to large

losses on the entire space L. In such cases, we only need to check when

Condition I holds in order to apply Theorem 4.2.9.

(b) Theorem 4.2.9 is the first of its kind for convex risk measures. When

ρ is coherent, we arrive at Theorem 3.2.18, which is strongly related to [8,

Theorem 4.14] by Remark 4.1.4(b) and Remark 4.1.17(b).
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The interpretation of Theorem 4.2.9 from a pricing perspective is as follows.

Corollary 4.2.11. Suppose ρ is weakly sensitive to large losses and admits a

dual representation (4.4) where ∅ ≠ Q̃α ⊂ Qα satisfies Conditions POS, MIX

and INT. Let

L̃ := {X ∈ L1 : ZX ∈ L1 for all Z ∈ Qα}

and assume (S0, S) is a (1 + d)-dimensional market with returns in L̃ that

does not admit ρ-arbitrage. Then, the set of no-ρ-arbitrage prices for any

financial contract outside the original market Sd+1
1 ∈ L̃ \ span({1, S1

1 , . . . , S
d
1})

is nonempty and given by the interval

I(Sd+1
1 ) = {E[ZSd+1

1 /(1 + r)] : Z ∈ Q̃α ∩ P} (4.13)

where P is the set of EMMs for the original market.

Proof. By Theorem 4.2.9, Sd+1
0 is a no-ρ-arbitrage free price for Sd+1

1 if and

only if there exists an EMM Z ∈ Q̃α for the extended market, i.e.,

Si
0 = E[ZSi

1/(1 + r)], for i = 1, . . . , d+ 1.

In particular, Z is necessarily contained in Q̃α∩P , and we obtain the inclusion

⊂ in (4.13). Conversely, if Sd+1
0 = E[ẐSd+1

1 /(1 + r)] for some Ẑ ∈ Q̃α ∩ P ,

then this Ẑ is also an EMM for the extended market model, and so the two

sets in (4.12) are equal.

Theorem 4.2.9 (Theorem 4.2.6) provides a dual characterisation of (strong)

ρ-arbitrage for convex risk measures that admit a dual representation. The

criterion for the absence of ρ-arbitrage and ρ∞-arbitrage is the same, but when

it comes to the absence of strong ρ-arbitrage and strong ρ∞-arbitrage, they

may differ. In view of Propositions 4.1.14 and 4.1.16, this is as expected.

4.2.3 Risk Measures Suitable for Portfolio Selection

Having provided a dual characterisation of (strong) ρ-arbitrage, we now

focus on giving a dual representation of risk measures that are suitable for

portfolio selection. We restrict our attention to Orlicz hearts. To that end,

let Φ : [0,∞) → [0,∞) be a finite Young function and HΦ its corresponding

Orlicz heart. Let Ψ be the convex conjugate of Φ and denote its corresponding
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Orlicz space by LΨ. Recall that the norm dual of (HΦ, ∥·∥Φ) is (LΨ, ∥·∥∗Φ),
where ∥·∥Φ denotes the Luxemburg norm and ∥·∥∗Φ denotes the Orlicz norm.

For a summary of key definitions and result on Orlicz spaces and Orlicz hearts,

we refer the reader to Appendix A.2.

By Section 4.1, it is clear that strong sensitivity to large losses is the key

axiom for a risk functional to possess. Thus, we first give a dual version of this

property.

Proposition 4.2.12. Assume ρ : HΦ → (−∞,∞] is a convex risk measure

that admits a dual representation

ρ(X) = sup
Z∈Qα

{E[−ZX]− α(Z)},

for some quasi-convex penalty function α : D → [0,∞] with effective domain

Qα ⊂ D ∩ LΨ. Then ρ is strongly sensitive to large losses on HΦ if and only

if Qα is σ(LΨ, HΦ)-dense in D ∩ LΨ.

Proof. By (4.5), the recession function of ρ is

ρ∞(X) = sup
Z∈Qα

(E[−ZX]), X ∈ HΦ.

By Remark 4.1.21(b), ρ is strongly sensitive to large losses on HΦ if and only

if ρ∞ ≡ WC. The result then follows by combining Proposition A.6.12 with

the fact Qα is a convex subset of D ∩ LΨ.

This result together with Lemma 4.1.26 allows us to immediately check

whether or not a convex risk measure on HΦ that admits a dual representation

(with a quasi-convex penalty function where Qα ⊂ D∩LΨ) is suitable for risk

management. When it comes to being suitable for portfolio selection, we can

say even more.

Theorem 4.2.13. Let ρ : HΦ → (−∞,∞] be a convex risk measure. The

following are equivalent:

(a) ρ is suitable for portfolio selection.

(b) ρ admits a dual representation with a quasi-convex penalty function α :

D → [0,∞] where Qα is a σ(LΨ, HΦ)-dense subset of D ∩ LΨ and there

exists a ∈ R and b > 0 such that α(Z) ≥ a+ b∥Z∥Ψ for all Z ∈ Qα.
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(c) ρ admits a dual representation, and for every quasi-convex penalty func-

tion α : D → [0,∞] associated to ρ, Qα is a σ(LΨ, HΦ)-dense subset of

D ∩ LΨ and there exists a ∈ R and b > 0 such that α(Z) ≥ a + b∥Z∥Ψ
for all Z ∈ Qα.

Proof. “(b) =⇒ (a)”. By [25, Theorem 4.2] and Proposition 4.2.12, ρ is a

convex real-valued risk measure that satisfies the Fatou property on HΦ and

strong sensitivity to large losses on HΦ. Note that [25, Theorem 4.2] asserts

that ρ is Lipschitz-continuous with respect to ∥ · ∥Φ which is stronger than the

Fatou property on HΦ. It follows that ρ is suitable for portfolio selection by

Theorem 4.1.31.

“(a) =⇒ (c)”. Assume ρ is suitable for portfolio selection. Then by

Remark 4.1.29 ρ must be real-valued on HΦ. Then the statement in (c) is a

consequence of: first applying [25, Theorem 4.3]; then using the fact that the

growth condition in [25, Definition 4.1] only requires that α(Z) ≥ a + b∥Z∥Ψ
for all Z ∈ D ∩ LΨ, however, it follows that since (LΨ, ∥·∥∗Φ) is the norm dual

of (HΦ, ∥·∥Φ) (and ∥·∥∗Φ and ∥·∥Ψ are equivalent) that if ρ is real-valued, any

penalty function associated with it must be ∞ outside of D ∩ LΨ; and finally

using Proposition 4.2.12 together with Lemma 4.1.30.

“(c) =⇒ (b)”. This is trivial.

This result is powerful as it characterises all convex risk measures that live

on Orlicz hearts and are suitable for portfolio selection. Of particular interest

is when HΦ = L1 and this will be further explored in the next section, as well

as the application of our theory to other examples of convex risk measures.

4.3 Examples

In this section, we apply our theory to various examples of risk functionals.

Our main focus is on convex risk measures that are not coherent since the

latter have been discussed in Section 3.3. We do not make any assumptions

on the returns, other than our standing assumptions that they are contained

in a Riesz space and that the market is nonredundant and nondegenerate.

4.3.1 Risk Functionals Based on Loss Functions

The examples in this section are based around the theme of loss functions,

namely: the expected weighted loss, which is closely related to expected utility
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theory; shortfall risk first introduced in [44, Section 3]; and the optimised

certainty equivalent, which comes from [13].

Definition 4.3.1. A function l : R → R is called a loss function if it is

nondecreasing, convex, l(0) = 0 and l(x) ≥ x for all x ∈ R.

A loss function l reflects how risk averse an agent is, and so it is natural to

assume that it is nondecreasing and l(0) = 0. The assumption l(x) ≥ x means

that compared to the risk neutral evaluation, there is more weight on losses

and less on gains. Finally, convexity of l encodes that diversified positions are

less risky than concentrated ones. Some of these properties can be relaxed in

what follows and we will make it clear whenever this is possible.

Expected Weighted Loss. The expected weighted loss of X ∈ HΦl with

respect to a loss function l is

EWl(X) := E[l(−X)],

where HΦl is the Orlicz heart corresponding to the Young function Φl := l|R+ .

By the properties of l and the definition of HΦl , EWl is a real-valued convex

risk functional (but never cash-invariant unless l(x) = x). It is also not difficult

to check that it satisfies the Fatou property on HΦl . Therefore, by Lemmas

4.1.26 and 4.1.30 and Proposition A.6.13 we have the following result:

Corollary 4.3.2. The following are equivalent:

(a) EWl is suitable for risk management.

(b) EWl is suitable for portfolio selection.

(c) limx→∞ l(x)/x = ∞ or limx→−∞ l(x)/x = 0.

Remark 4.3.3. One can check that the result (including Proposition A.6.13)

extends to functions l : R → R that are nondecreasing, convex, and satisfy

l(0) = 0 as well as limx→∞ l(x) = ∞ (which is weaker than l(x) ≥ x for all

x ∈ R).

Shortfall Risk Measures. Shortfall risk measures were first introduced as a

case study on L∞ in [44, Section 3]. Here, we work on Orlicz hearts. To that

end, let l be a loss function and define the acceptance set

Al := {X ∈ HΦl : EWl(X) ≤ 0},
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where HΦl is the Orlicz heart corresponding to the Young function Φl := l|R+ .

Then the shortfall risk measure associated with l is given by SRl : HΦl →
(−∞,∞] where

SRl(X) := inf{m ∈ R : X +m ∈ Al} = inf{m ∈ R : EWl(X +m) ≤ 0}.

This is a convex risk measure. It can be interpreted as the cash-invariant

analogue of EWl in the sense that it is cash-invariant and SRl(X) ≤ 0 if and

only if EWl(X) ≤ 0. When l|R− ≡ 0, then Al = HΦl
+ and so SRl ≡ WC.

This is suitable for risk management by Lemma 4.1.26, but not suitable for

portfolio selection by Lemma 4.1.30 and Remark 4.1.29 since it is not real-

valued on HΦl ⊋ L∞. When l|R− ̸≡ 0, it is easy to check that SRl is real-

valued. Therefore, by Theorem 4.1.31, Remark 4.1.32 and Proposition A.6.13,

we have the following result:

Corollary 4.3.4. Let l be a loss function and assume l|R− ̸≡ 0. Then the

following are equivalent:

(a) SRl is suitable for risk management.

(b) SRl is suitable for portfolio selection.

(c) limx→∞ l(x)/x = ∞ or limx→−∞ l(x)/x = 0.

Shortfall risk measures admit a dual representation, which we now recall.

Proposition 4.3.5. Let l be a loss function and l∗ its convex conjugate. Then

SRl(X) = sup
Z∈D

{E[−ZX]− αl(Z)} (4.14)

where αl(Z) = infλ>0
1
λ
E[l∗(λZ)].

Proof. If l|R− ≡ 0, αl(Z) = 0 for Z ∈ D ∩ L∞, and the result follows from the

dual representation of the worst case risk measure. Otherwise, if l|R− ̸≡ 0, SRl

is a real-valued convex risk measure on HΦl and the result follows from [25,

Theorem 4.3] and the proof of [44, Theorem 10].

When al := limx→−∞ l(x)/x > 0 and bl := limx→∞ l(x)/x < ∞, then

dom l∗ = [al, bl] and it follows that

Qαl

= {Z ∈ D : there exists k > 0 such that kZ ∈ [al, bl] P-a.s.}.

98



4. Mean-ρ Portfolio Selection for Convex Risk Measures

(Note that by the convexity of l we have al ≤ bl, where the inequality is strict

unless al = bl = 1, in which case l is the identify function and SRl(X) =

E[−X].) The dual characterisation of (strong) SRl-arbitrage now follows from

Theorem 4.2.6, Propositions A.6.15 and A.6.16, noting that Conditions I and

UI are satisfied since ∥Z∥∞ ≤ bl/al for any Z ∈ Qαl
by the fact that kZ ∈

[al, bl] for some k > 0 and E[Z] = 1.

Corollary 4.3.6. Let l be a loss function where 0 < al := limx→−∞ l(x)/x <

bl := limx→∞ l(x)/x <∞.

(a) The market (S0, S) does not admit SRl-arbitrage if and only if there exists

Z ∈ P such that al + ε < kZ < bl − ε P-a.s. for some k, ε > 0.

(b) The market (S0, S) does not admit strong SRl-arbitrage if and only if

there exists Z ∈ M such that al ≤ kZ ≤ bl P-a.s. for some k > 0.

Remark 4.3.7. (a) All of the above results for shortfall risk measures hold

for functions l : R → R that are nondecreasing, convex and satisfy l(0) = 0

and l(x) > 0 for all x > 0.

(b) Using numerical examples, it was shown in [51, Section 5] that shortfall

risk measures corresponding to functions of the form l(x) = cxα1{x>0} where

α > 1 and c > 0 “adequately account for event risk”. In light of part (a),

Corollary 4.3.4 is a generalisation of this result.

OCE Risk Measures. Optimised Certainty Equivalents (OCEs) were first

introduced by Ben-Tal and Teboulle [13] and later linked to risk measures on

L∞ by the same authors in [14]. (Note, however, that the name optimised

certainty equivalent is somewhat misleading as E[l(η −X)] is not a certainty

equivalent (since this would require to apply l−1 from the outside).) We fol-

low [25, Section 5.4] and define the OCE risk measure associated with a loss

function l as the map OCEl : HΦl → R,

OCEl(X) := inf
η∈R

{E[l(η −X)]− η}, (4.15)

where HΦl is the Orlicz heart corresponding to the Young function Φl := l|R+ .

By [25, Section 5.1] (with V ≡ EWl), OCEl is the largest real-valued convex

risk measure onHΦl that is dominated by EWl. (More generally, cash-invariant

hulls of convex functionals have been studied by [43, 61].) By [25, Theorem

4.3], it also satisfies the Fatou property on HΦl .
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Remark 4.3.8. Normalisation of OCEl is equivalent to l(x) ≥ x for all x ∈ R.
If l(x) > x for all x with |x| sufficiently large, then lim|x|→∞(l(x) − x) = ∞
by convexity of x, and the infimum in (4.15) is attained; cf. [25, Lemma 5.2].

However, if l(x) = x for either x ≥ 0 or x ≤ 0, then the infimum is not

necessarily attained, and it is easy to check that OCEl(X) = E[−X] for all

X ∈ HΦl .

Like shortfall risk measures, OCE risk measures admit a dual representa-

tion.

Proposition 4.3.9. Let l be a loss function and denote its convex conjugate

by l∗. Then

OCEl(X) = sup
Z∈D

{E[−ZX]− αl(Z)}, (4.16)

where αl(Z) = E[l∗(Z)].

Proof. This follows from [25, Equation (5.23)] and Remark 4.3.8 in the case

that l(x) > x for all x with |x| sufficiently large and from αl(1) = 0 and

αl(Z) = ∞ for all Z ∈ D \ {1} in the case that l is equal to the identity either

on R+ or R−.

Remark 4.3.10. Shortfall risk measures and OCE risk measures are inti-

mately linked. Indeed, combining (4.14) and (4.16) gives

SRl(X) = sup
Z∈D

{E[−ZX]− inf
λ>0

1
λ
E[l∗(λZ)]} = sup

Z∈D
sup
λ>0

{E[−ZX]− 1
λ
E[l∗(λZ)]}

= sup
λ>0

sup
Z∈D

{E[−ZX]− 1
λ
E[l∗(λZ)]} = sup

λ>0
sup
Z∈D

{E[−ZX]− E[(lλ)∗(Z)]}

= sup
λ>0

OCElλ(X),

where lλ = l/λ for λ > 0. This shows that shortfall risk measures can be

understood as the supremum of certain OCE risk measures.

Using the dual representation (4.16), we obtain the following corollary for

OCE risk measures.

Corollary 4.3.11. Let l be a loss function. The following are equivalent:

(a) OCEl is suitable for risk management.

(b) OCEl is suitable for portfolio selection.
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(c) limx→∞ l(x)/x = ∞ and limx→−∞ l(x)/x = 0.

Proof. The penalty function αl associated with OCEl is convex since l∗ is

convex. Moreover, by Proposition A.6.14 and the fact (l∗)+ ≥ Ψl, α
l satisfies

the growth condition

αl(Z) = E[l∗(Z)] = E[(l∗)+(Z)] ≥ E[Ψl(Z)] ≥ ∥Z∥Ψl
− 1.

Now let al := limx→−∞ l(x)/x and bl := limx→∞ l(x)/x. Then the σ(LΨl , HΦl)-

closure of Qαl
satisfies

clQαl

= D ∩ LΨl , if al = 0 and bl = ∞,

⊊ D ∩ LΨl , if al > 0 or bl <∞.
(4.17)

Indeed, since (al, bl) ⊂ dom l∗ ⊂ [al, bl], it follows that {Z ∈ D ∩ LΨl : Z ∈
(al, bl) P-a.s.} ⊂ Qαl ⊂ {Z ∈ D ∩ LΨl : Z ∈ [al, bl] P-a.s.}. Thus, al > 0 or

bl < ∞, it follows that clQαl ⊊ D ∩ LΨl , and if al = 0 and bl = ∞, then

D ∩ L∞ ⊂ clQαl ⊂ D ∩ LΨl . Hence, (4.17) follows from the fact that D ∩ L∞

is σ(LΨl , HΦl)-dense in D∩LΨl . The result then follows from Theorems 4.2.13

and 4.1.31.

When al := limx→−∞ l(x)/x > 0 or bl := limx→∞ l(x)/x < ∞, we can

derive a dual characterisation of (strong) OCEl-arbitrage. By Remark 4.3.8,

it suffices to consider the case al < 1 < bl.

Corollary 4.3.12. Let l be a loss function and assume al := limx→−∞ l(x)/x >

0 or bl := limx→∞ l(x)/x <∞, and al < 1 < bl. Then,

(a) The market (S0, S) does not admit OCEl-arbitrage if and only if there

exists Z ∈ P such that E[l∗(Z)] < ∞ and al + ε < Z < bl − ε P-a.s. for
some ε > 0.

(b) If in addition bl < ∞, the market (S0, S) does not admit strong OCEl-

arbitrage if and only if there exists Z ∈ M such that al ≤ Z ≤ bl P-a.s.

Proof. (a) This follows from Proposition A.6.17 and Theorem 4.2.9, noting

that Condition I follows from the generalised Hölder inequality (A.5).

(b) First, note that bl < ∞ implies αl(Z) ≤ l∗(bl) < ∞ for all Z ∈ Qαl
.

Hence, Remark 4.2.5(a) yields

Qcoαl

= Q̄αl

= {Z ∈ D : al ≤ Z ≤ bl P-a.s.}.
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This shows UI is satisfied. Now the result follows from Theorem 4.2.6.

4.3.2 g-Adjusted Expected Shortfall

In order to introduce the next class of examples, we first recall the definition

of the two most prominent examples of risk measures, Value at Risk (VaR)

and Expected Shortfall (ES). For X ∈ L1 and a confidence level α ∈ (0, 1),

VaRα(X) := inf{m ∈ R : P[m+X < 0] ≤ α} and

ESα(X) :=
1

α

∫ α

0

VaRu(X) du.

VaR is simple and intuitive, but it completely ignores the behaviour of the

loss tail beyond the reference quantile. ES is an improvement, but it still fails

to distinguish across different tail behaviours with the same mean. In order

to enhance how tail risk is captured, Burzoni, Munari and Wang [21] recently

developed a new class of risk measures, which builds on ES. To introduce this

class, let G be the set of all nonincreasing functions g : (0, 1] → [0,∞] with

g(1) = 0 and {1} ⊊ dom g.

Definition 4.3.13. Let g ∈ G. The map ESg : L1 → (−∞,∞], defined by

ESg(X) := sup
α∈(0,1]

{ESα(X)− g(α)},

is called the g-adjusted Expected Shortfall (g-adjusted ES).

Remark 4.3.14. Our definition of g-adjusted Expected Shortfall is based on

[21, Proposition 2.2], which considers nondecreasing functions that are not

identically ∞. However, in line with the way we defined ES, the functions g

must be nonincreasing for us. We assume g(1) = 0 to achieve normalisation.

But this is without loss of generality since otherwise, we simply replace g(·) by
g(·)−g(1), leaving identical preference orders (see Definition 4.1.1). Moreover,

the case dom g = {1} corresponds to the expected loss risk measure X 7→
E[−X] and is not interesting.

This is a family of convex risk measures. The function g may be interpreted

as a target risk profile. Indeed, a position is acceptable if and only if ESα(X) ≤
g(α) for all α ∈ (0, 1]. In this way, we achieve greater control of the loss tail.
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We proceed to state the dual representation of g-adjusted ES. To this end, for

β ∈ [0, 1) set Gβ := {g ∈ G : inf dom g = β}.

Proposition 4.3.15. Let g ∈ G. Then ESg : L1 → (−∞,∞] satisfies the dual

representation

ESg(X) = sup
Z∈D

{E[−ZX]− αg(Z)} = sup
Z∈Qαg

{E[−ZX]− g(∥Z∥−1
∞ )}

where the penalty function αg : D → [0,∞] is given by αg(Z) = g(∥Z∥−1
∞ ) if

Z ∈ D ∩ L∞ and αg(Z) = ∞ otherwise. Moreover, Qαg
= {Z ∈ D ∩ L∞ :

g(∥Z∥−1
∞ ) <∞} is convex and satisfies

Qαg

=


D ∩ L∞, if g ∈ G0,

{Z ∈ D : ∥Z∥∞ ≤ 1
β
}, if g ∈ Gβ, β ∈ (0, 1) and g(β) <∞,

{Z ∈ D : ∥Z∥∞ < 1
β
}, if g ∈ Gβ, β ∈ (0, 1) and g(β) = ∞.

(4.18)

Proof. The dual representation has been shown in [21, Proposition 3.7]. (4.18)

follows directly from the definition of αg, which also gives convexity ofQαg
.

Combining this dual representation with Proposition 4.2.12 and Theorem

4.2.13 allows us to immediately classify those g-adjusted ES risk measures that

are suitable for risk management/portfolio selection.

Corollary 4.3.16. Let g ∈ G. Then,

(a) ESg is suitable for risk management if and only if g ∈ G0.

(b) ESg is suitable for portfolio selection if and only if g ∈ G0 and there exists

a ∈ R and b > 0 such that g(x) ≥ a+ b/x for all x ∈ (0, 1].

We can further provide a dual characterisation of (strong) ESg-arbitrage

when g ∈ Gβ and β ∈ (0, 1). In this case, since Qαg
is L∞-bounded, Conditions

I and UI are both satisfied if the returns lie in L1. Moreover, it is not difficult

to check that

Q̃αg

= {Z > 0 ∈ D : ∥Z∥∞ < 1/β}

is a subset of Qαg
that satisfies Conditions POS, MIX and INT and contains
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1; see Proposition A.6.7 for details. Finally, Proposition A.6.19 shows that

Qcoαg

=

{Z ∈ D : ∥Z∥∞ ≤ 1
β
}, if g ∈ G∞

β ,

{Z ∈ D : ∥Z∥∞ < 1
β
}, if g ∈ Gβ \ G∞

β ,

where G∞
β := {g ∈ Gβ : g is bounded on its effective domain}. Thus, Theo-

rems 4.2.6 and 4.2.9 yield the following result.

Corollary 4.3.17. Let g ∈ Gβ where β ∈ (0, 1) and assume the market (S0, S)

has returns in L1.

(a) (S0, S) does not admit ESg-arbitrage if and only if there exists Z ∈ P
such that ∥Z∥∞ < 1

β
.

(b) When g ∈ G∞
β (g ∈ Gβ \G∞

β ), (S0, S) does not admit strong ESg-arbitrage

if and only if there exists Z ∈ M with ∥Z∥∞ ≤ (<) 1
β
.

Remark 4.3.18. This result shows that the implication “(c) =⇒ (b)” in

Proposition 4.1.14 does not hold. Indeed, if g ∈ Gβ \ G∞
β for β ∈ (0, 1) and

there exists no Z ∈ M with ∥Z∥∞ < 1
β
but a Z ∈ M with ∥Z∥∞ = 1

β
, then the

market admits strong ρ-arbitrage for ρ = ESg. However, since the L1-closure

of Qαg
is {Z ∈ D : ∥Z∥∞ ≤ 1

β
}, it follows from (4.5) and Theorem 3.2.14 that

the market does not admit strong ρ∞-arbitrage.

4.3.3 Loss Sensitive Expected Shortfall

Since the minimal requirement for mean-risk portfolio selection is that the

returns lie in L1, we are particularly interested in studying risk measures de-

fined on L1 that are suitable for portfolio selection. By Theorem 4.2.13, a

convex risk measure ρ : L1 → (−∞,∞] is suitable for portfolio selection if and

only if

ρ(X) = sup
Z∈D

{E[−ZX]− α(Z)} = sup
Z∈Qα

{E[−ZX]− α(Z)},

for some quasi-convex penalty function α : D → [0,∞] where the set Qα

is σ(L∞, L1)-dense in D ∩ L∞ and there exists a ∈ R and b > 0 such that

α(Z) ≥ a+ b∥Z∥∞ for all Z ∈ D. This class is large since the restrictions on α

are not very limiting. Nevertheless, to the best of our knowledge, it has never
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considered before in the literature. We would like to find risk measures in this

class that are “close” to ES.

The natural way to go about this is to assume (just like in the dual repre-

sentation of ES) that the penalty function depends only on ∥Z∥∞. And from

an economic perspective, it seems sensible to assume that measures that are

“further away” from P are punished more severely, i.e., α depends on ∥Z∥∞
in a nondecreasing way. This sub-family coincides exactly with the class of

g-adjusted Expected Shortfall risk measures that are suitable for portfolio se-

lection.

Proposition 4.3.19. Let ρ be a convex risk measure on L1. The following are

equivalent:

(a) ρ is suitable for portfolio selection and admits a dual representation that

depends only on ∥Z∥∞ in a nondecreasing way.

(b) ρ ≡ ESg for some g ∈ G0 where there exists a ∈ R and b > 0 such that

g(x) ≥ a+ b/x.

Of particular interest is the case when the penalty function is linear in

∥Z∥∞. By the fact that g(1) = 0, this implies that g(x) = −b+b/x = b(1/x−1)

for some b > 0.

Definition 4.3.20. Let b > 0 be a sensitivity parameter. The Loss Sensitive

Expected Shortfall (LSES) of X ∈ L1 at level b is defined by

LSESb(X) := sup
α∈(0,1]

{
ESα(X)− b

(
1

α
− 1

)}
(4.19)

= sup
Z∈D∩L∞

{E[−ZX]− b(∥Z∥∞ − 1)} , (4.20)

where (4.20) follows from Proposition 4.3.15.

Remark 4.3.21. To the best of our knowledge, the risk measure LSESb has

first been considered in [26, Example 8.3], where it was introduced as an ex-

ample (without name) in the class of so-called Delta spectral risk measures.

The smaller the parameter b, the more conservative LSESb is. The following

result shows that the supremum in (4.19) is attained at some α∗ ∈ (0, 1] and

LSESb is a convex combination between ESα∗
(X) and VaRα∗

(X), where the

confidence level α∗ is chosen endogenously depending on b and X.
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Proposition 4.3.22. Let X ∈ L1 and b > 0. Then

LSESb(X) = max
α∈(0,1]

{ESα(X)− b( 1
α
− 1)},

where the maximum is attained for α∗ given by

α∗ := sup

{
α ∈ (0, 1] :

∫ α

0

(
VaRu(X)− VaRα(X)

)
du ≤ b

}
. (4.21)

Moreover, if X has a continuous distribution, then α∗ is the unique maximum

and

LSESb(X) = α∗ESα∗
(X) + (1− α∗)VaRα∗

(X). (4.22)

Proof. First, note the supremum in the definition of LSESb is attained be-

cause the function α 7→ ESα(X) is continuous on (0, 1] (by the definition of

Expected Shortfall) and limα→0(ES
α(X) − b( 1

α
− 1)) = −∞ (by the fact that

limα→0 αES
α(X) = 0).

Next, we show that the maximum is attained for α∗ defined by (4.21). To

that end, consider the function IX : (0, 1] → R+ given by

IX(α) := αESα(X) + αVaRα(X) =

∫ α

0

(VaRu(X)− VaRα(X)) du.

Since u 7→ VaRu(X) is nonincreasing, it follows IX is nondecreasing. By the

definition of Expected Shortfall, and the fundamental theorem of calculus for

absolutely continuous functions, it follows that

GX(α) := ESα(X)− b( 1
α
− 1) = E[−X] +

∫ 1

α

1

u2
(IX(u)− b) du.

By the definitions of α∗ and the fact that IX is nondecreasing, it follows that

GX attains its maximum at α∗.

Finally, if X has a continuous distribution, then α 7→ VaRα(X) and α 7→
IX(α) are continuous and strictly monotone on (0, 1]. Hence, the maximal

α∗ is unique. If α∗ = 1, then (4.22) is automatically satisfied. Otherwise, if

α∗ ∈ (0, 1), then IX(α
∗) = b and

LSESb(X) = ESα∗
(X)− (α∗ESα∗

(X)− α∗VaRα∗
(X))

(
1

α∗ − 1

)
= α∗ESα∗

(X) + (1− α∗)VaRα∗
(X).
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Remark 4.3.23. (a) It is not difficult to check that α ∈ (0, 1] is a maximiser

of (4.19) if and only if α ∈ [α∗
−, α

∗
+] where

α∗
− := inf

{
α ∈ (0, 1] :

∫ α

0

(
VaRu(X)− VaRα(X)

)
du ≥ b

}
,

α∗
+ := sup

{
α ∈ (0, 1] :

∫ α

0

(
VaRu(X)− VaRα(X)

)
du ≤ b

}
,

with the convention that inf ∅ := 1.

(b) Since Z 7→ 1
β
(∥Z∥∞−1) is convex and σ(L∞, L1)-lower semi-continuous,

it follows from [25, Theorem 4.3] that the supremum in (4.20) is also a maxi-

mum.

The following example computes LSESb(X) for a normal distribution and

illustrates the dependence of α∗ on b.

Example 4.3.24. Let X ∼ N(µ, σ2), where µ ∈ R and σ2 > 0. Denote by ϕ

and Φ the pdf and cdf of a standard normal distribution. Then for any b > 0,

by (4.21), it is not difficult to check that the corresponding α∗ ∈ (0, 1) satisfies

ϕ(Φ−1(α∗))− α∗Φ−1(1− α∗) =
b

σ
.

Figure 8 gives a graphical illustration of the dependence of α∗ on b
σ
. In par-

ticular it shows that for fixed b, α∗ is decreasing in σ as expected.

0 0.005 0.01 0.015 0.02
0

0.01

0.02

0.03
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Figure 8: Dependence of α∗ on b/σ.
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Closing Remarks

The goal of this thesis has been to answer the three questions posed in

the introduction. We have seen that essentially (Q1) and (Q2) have positive

answers if and only if ρ satisfies weak and strong sensitivity to large losses on

the set of excess returns, respectively.

En passant, we have also discovered the key relationship between mean-ρ

portfolio selection and mean-ρ∞ portfolio selection, where ρ∞ is the smallest

positively homogeneous risk functional that dominates ρ. This relationship

is in particular crucial for the dual characterisation of ρ-arbitrage (and hence

“no-ρ-arbitrage” pricing, cf. Remark 4.2.10(b)) when ρ is a convex risk measure

that admits a dual representation. Indeed, under mild assumptions on the dual

set Q, the market does not admit ρ-arbitrage if and only if P ∩Q̃ ≠ ∅ for some

nonempty Q̃ ⊂ Q satisfying POS, MIX and INT. We have also demonstrated

that Q̃ can be computed explicitly for a large variety of risk measures.

But most importantly, the relationship between mean-ρ portfolio selection

and mean-ρ∞ portfolio selection has allowed us to fully answer (Q3), which is

arguably the most important question, both in a primal and a dual fashion,

culminating in Theorem 4.2.13. As a key example of a risk measure suitable

for portfolio selection on L1, we have introduced the new risk measure Loss

Sensitive Expected Shortfall which is “close” to ES but strongly sensitive to

large losses.

Future Directions

The results and methodology in this thesis open the way for many advances

in risk management. For example the interplay between ρ (star-shaped) and

ρ∞ (positively homogeneous) is interesting, and has the potential to be utilised

in other applications. Furthermore, the axioms of weak and strong sensitivity

to large losses lead to a new class of risk measures that are suitable for risk
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management/portfolio selection. It would be interesting to apply these risk

measures to other problems in financial mathematics. In particular, it would

be very worthwhile to study the properties of Loss Sensitive Expected Shortfall

in more detail.

As for mean-ρ portfolio selection, there is a large literature when working

under a fixed probability measure. However, in practise the exact distribution

of the future outcomes is difficult to get. Incorporating model uncertainty is a

natural next step. Robust mean-variance portfolio selection has already been

considered in the literature, cf. [67, 20]. But to the best of our knowledge,

there is so far no work on robust mean-risk portfolio selection for a coherent

or convex risk measure.
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A

Appendix

A.1 Expected Shortfall Deviation

In this appendix we recall the definition and key properties of the so-called

Expected Shortfall Deviation, using general results on deviation risk measures

from [81, Sections 3 and 4]. We then apply these properties to show that the

set Πα
ν from Definition 2.1.4 is nonempty, compact and convex.

Definition A.1.1. Let α ∈ (0, 1) be a confidence level and X an integrable

random variable. The Expected Shortfall Deviation (ESD) of X at level α is

given by

ESDα(X) := ESα(X − E[X]) = ESα(X) + E[X], (A.1)

where the second equality follows from cash-invariance of ES.

It is shown in [79, Example 4] that ESD is an example of a so-called de-

viation risk measure, which generalises the notion of the standard deviation.

(Note that ESD is referred to as CVaR∆
α in [79].) It therefore satisfies the

following axioms:

(D1) ESDα(X + c) = ESDα(X) for all X ∈ L1 and c ∈ R,

(D2) ESDα(λX) = λESDα(X) for all X ∈ L1 and λ ≥ 0,

(D3) ESDα(X1 +X2) ≤ ESDα(X1) + ESDα(X2) for all X1 and X2 in L1

(D4) ESDα(X) ≥ 0, for all X ∈ L1, where the inequality is strict if and only

if X is not P-a.s. constant.
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Note that (D4) together with (A.1) implies in particular that

ESα(X) ≥ E[−X] (A.2)

where the inequality is strict if and only if X is not P-a.s. constant.

For α ∈ (0, 1), we define the function fESDα : Rd → R+ by

fESDα(π) := ESDα(π ·R). (A.3)

The following result is a special case of [81, Proposition 4].

Proposition A.1.2. Fix α ∈ (0, 1). Then the function fESDα is convex. More-

over, it has the following properties:

(a) fESDα(π) = 0 if and only if π = 0.

(b) fESDα(λπ) = λfESDα(π) for π ∈ Rd and λ ≥ 0.

(c) fESDα(π + π′) ≤ fESDα(π) + fESDα(π′) for all π, π′ ∈ Rd

(d) For each δ ≥ 0, the set {π ∈ Rd : fESDα(π) ≤ δ} is compact.

We proceed to show the sets Πα
ν of optimal portfolios from Definition 2.1.4

are minimum level sets of fESDα restricted to Πν .

Lemma A.1.3. Let α ∈ (0, 1), ν ∈ R and π ∈ Πν. Then π ∈ Πα
ν if and only

if π ∈ argmin
π∈Πν

fESDα(π).

Proof. The definitions of ESDα in (A.1), (1.1), the fact that π ∈ Πν , property

(D1) of ESDα and the definition of fESDα in (A.3) give

ESα(Xπ) = ESDα(Xπ)− E[Xπ] = ESDα(π · (R− r1))− ν

= ESDα(π ·R)− ν = fESDα(π)− ν (A.4)

Since π ∈ Πα
ν if and only if π ∈ argmin

π∈Πν

ESα(Xπ), the claim follows.

The following Corollary follows from combining Proposition A.1.2 and

Lemma A.1.3.

Corollary A.1.4. Fix ν ∈ R. Then Πα
ν is non-empty, compact and convex.

Moreover, Πα
0 = {0} and Πα

ν = νΠα
1 .
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A.2 Coherent Risk Measures on Orlicz Spaces

The goal of this appendix is to recall some key definitions and results on

Orlicz spaces and summarise the main results on the dual representation of a

real-valued coherent risk measure defined on an Orlicz space.

Key Definitions and Results on Orlicz Spaces

We begin by recalling some key definitions and results relating to Orlicz

spaces and Orlicz hearts; see [90, Chapter 10] and [39, Chapter 2] for details.

• A function Φ : [0,∞) → [0,∞] is called a Young function if it is convex

and satisfies limx→∞ Φ(x) = ∞ and limx→0Φ(x) = Φ(0) = 0. A Young

function Φ is called superlinear if Φ(x)/x→ ∞ as x→ ∞. (Note that a

Young function is continuous except possibly at a single point, where it

jumps to ∞. Thus a finite Young function is continuous.)

• Given a Young function Φ, the Orlicz space corresponding to Φ is given

by

LΦ := {X ∈ L0 : E[Φ(c|X|)] <∞ for some c > 0},

and the Orlicz heart is the linear subspace

HΦ := {X ∈ LΦ : E[Φ(c|X|)] <∞ for all c > 0}.

• LΦ and HΦ are Banach spaces under the Luxemburg norm given by

∥X∥Φ := inf
{
λ > 0 : E

[
Φ
(∣∣X

λ

∣∣)] ≤ 1
}
.

• For any Young function Φ, its convex conjugate Ψ : [0,∞) → [0,∞]

defined by

Ψ(y) := sup
x≥0

{xy − Φ(x)}

is also a Young function and its conjugate is Φ.

• If X ∈ LΦ and Y ∈ LΨ, we have the generalised Hölder inequality:

E[|XY |] ≤ 2∥X∥Φ∥Y ∥Ψ. (A.5)
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• Using the conjugate Ψ and (A.5), we may define the Orlicz norm on LΦ

by

∥X∥∗Ψ := sup{E[XY ] : Y ∈ LΨ, ∥Y ∥Ψ ≤ 1}.

This norm is equivalent to the Luxemburg norm on LΦ.

• When Φ jumps to infinity, then LΦ = L∞ (and ∥ · ∥Φ is equivalent to

∥ · ∥∞) and HΦ = {0}.

• When Φ is finite, the norm dual of the Orlicz heart (HΦ, ∥·∥Φ) (with the

Luxemburg norm) is the Orlicz space (LΨ, ∥·∥∗Φ) (with the Orlicz norm).

• Φ is said to satisfy the ∆2-condition if there exists a finite constantK > 0

such that Φ(2x) ≤ KΦ(x) for all x ∈ [0,∞). Φ satisfies the ∆2 condition

if and only if LΦ = HΦ.

Dual Representation of Coherent Risk Measures on Or-

licz Spaces

After these preparations, we consider the following setup: Let Φ : [0,∞) →
[0,∞] be a Young function and ρ : LΦ → R a coherent risk measure. To give a

review of when ρ admits a dual representation, we first consider two versions

of the Fatou property.

Definition A.2.1. Let Φ : [0,∞) → [0,∞] be a Young function and ρ : LΦ →
(−∞,∞] a map. Then ρ is said to satisfy the

• Fatou property on LΦ, if Xn → X P-a.s. for Xn, X ∈ LΦ and |Xn| ≤ Y

P-a.s. for some Y ∈ LΦ implies that ρ(X) ≤ lim infn→∞ ρ(Xn).

• strong Fatou property on LΦ, if Xn → X P-a.s. for Xn, X ∈ LΦ and

∥Xn∥Φ ≤ K <∞ implies that ρ(X) ≤ lim infn→∞ ρ(Xn).

The strong Fatou property implies the Fatou property but the converse is

not true. Note, however, that the two are equivalent if LΦ = L∞.

Remark A.2.2. The notion of strong Fatou property has been introduced

by [49] who noted in [50] that for a general normed vector space L, the Fatou

property for risk measures (which was originally only formulated on L∞) could

either be understood in terms of order bounded sequences (giving the Fatou

property) or norm bounded sequences (giving the strong Fatou property).

114



A. Appendix

We proceed to summarise the existing dual representation results for (finite)

coherent risk measures on Orlicz spaces from the literature. (For Orlicz hearts,

the representation result for (finite) coherent risk measures is given in [25,

Corollary 4.2].)

Theorem A.2.3. Let Φ : [0,∞) → [0,∞] be a Young function with conjugate

Ψ and ρ : LΦ → R a coherent risk measure. Then ρ admits a dual representa-

tion under the following conditions:

(a) Φ satisfies the ∆2-condition.

(b) Ψ satisfies the ∆2-condition and ρ satisfies the Fatou property.

(c) Φ is a superlinear Young function and ρ satisfies the strong Fatou prop-

erty.

Proof. (a) In this case LΦ = HΦ and the result follows from [25, Corollary

4.2].

(b) This follows from [49, Theorem 2.5] or [36, Proposition 2.5] and Fenchel-

Moreau duality. (Note that for “(4) ⇒ (1)” in [49, Theorem 3.7], the assump-

tion of an atomless probability space is not needed.)

(c) This follows from [35, Theorem 3.2] in the case that LΦ = L∞ and from

[50, Theorem 2.4] in the general case.

Remark A.2.4. (a) If a coherent risk measure ρ : LΦ → R admits a dual

representation, it is straightforward to check that it satisfies the Fatou prop-

erty. The converse is false if both Φ and Ψ fail to satisfy the ∆2-condition; see

[49, Theorem 4.2] for a generic counterexample. (Note, however, that ρ in [49,

Theorem 4.2] is (−∞,∞]-valued.)

(b) A coherent risk measure that admits a dual characterisation does not

need to satisfy the strong Fatou property; in fact if Φ is a superlinear Young

function and ρ : LΦ → R admits a dual characterisation such that Qρ ̸⊂ HΨ,

then ρ fails to satisfy the strong Fatou property by [50, Theorem 2.4].

Finally, we show that all coherent risk measures on Orlicz spaces that

satisfy a dual representation (independent of whether one of the conditions of

Theorem A.2.3 is satisfied) have a nice maximal dual set.

Proposition A.2.5. Let Φ : [0,∞) → [0,∞] be a Young function with con-

jugate Ψ and ρ : LΦ → R a coherent risk measure. If ρ admits a dual rep-

resentation, then the maximal dual set Qρ is LΨ-closed and LΨ-bounded if Φ
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is finite. If Φ satisfies the ∆2-condition, Qρ is also L1-closed. Moreover, if

Q ⊂ Qρ has LΨ-closure Qρ, then Q represents ρ, and if Q ⊂ Qρ represents ρ,

then Qρ ⊂ Q̄, where Q̄ denotes the L1-closure.

Proof. If Φ jumps to ∞, i.e., LΦ = L∞, then the result follows from [35,

Theorem 3.2]. So assume for the rest of the proof that Φ is finite. Denote by

ρH the restriction of ρ to HΦ. Then AρH ⊂ Aρ and hence QρH ⊃ Qρ. It follows

from [25, Corollary 4.2] and Proposition A.6.5(a) that QρH is LΨ-bounded and

L1-closed. Hence, Qρ is LΨ-bounded. This together with the definition of Qρ

and the generalised Hölder inequality (A.5) implies that Qρ is LΨ-closed. If

Φ satisfies the ∆2-condition then AρH = Aρ and so Qρ = QρH is L1-closed.

Moreover, if Q ⊂ Qρ has L
Ψ-closure Qρ, then Q represents ρ by the generalised

Hölder inequality (A.5) and if Q ⊂ Qρ represents ρ, then Q̄ρ = Q̄ because

otherwise by the Hahn-Banach separation theorem (for the pairing (L∞, L1)),

there exists X ∈ L∞ such that supZ∈Q̄ρ
E[−ZX] ̸= supZ∈Q̄ E[−ZX].

A.3 Counterexamples

In this appendix, we give counterexamples to complement our theory.

Example A.3.1. In this example we show that if all assumptions of Theorem

3.1.9 hold, but {0} ⊊ Πρ
0, the result fails.

Let Ω = [−5, 5] × [1, 7] ⊂ R2 with the Borel σ-algebra and the uniform

probability measure P. Let r = 0 and assume there are two risky assets with

returns Ri(ω) := ωi for ω = (ω1, ω2) ∈ Ω and i ∈ {1, 2}. Let C be the closed

ball of radius 2 centred at (2, 4), and for each (x, y) ∈ C, let C(x,y) be the closed

ball of radius 1 centred at (x, y), and Z(x,y) the Radon-Nikodým derivative of

the uniform probability measure on C(x,y) with respect to P. Define the risk

measure ρ via its dual set

Q = {Z(x,y) : (x, y) ∈ C},

and note that E[Z(x,y)R
1] = x and E[Z(x,y)R

2] = y. For this financial market

(that is nonredundant and nondegenerate), E[R1] = 0, E[R2] = 4, and Π1 =

{(π1, π2) : π1 ∈ R, π2 = 1/4}. Thus, for every π ∈ Π1 and (x, y) ∈ C,

E[−Z(x,y)Xπ] = −π · (x, y) = −(π1x+ 1
4
y).
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It follows that for any π ∈ Π1,

ρ(Xπ) = sup
(x,y)∈C

−(π1x+ 1
4
y) = 1

2

√
16(π1)2 + 1− 2π1 − 1 =: g(π1).

Therefore, ρ1 = inf{ρ(Xπ) : π ∈ Π1} = inf{g(π1) : π1 ∈ R} = −1 is not

attained, since g is strictly decreasing. Thus, Πρ
1 is empty, even though ρ

satisfies the Fatou property on {Xπ : π ∈ Rd} and ρ1 ∈ R. The reason

Theorem 3.1.9 fails is because Πρ
0 = {(π1, π2) : π1 ≥ 0, π2 = 0} ⊋ {0}.

Example A.3.2. In this example we show that when Condition I is not satis-

fied, the set CQ from (3.7) may fail to be a convex subset of Rd and (3.8) may

break down.

Take Ω = [0, 1], with the Borel σ-algebra and the Lebesgue measure P.
Suppose r = 0 and there are two risky assets with returns

R1(ω) :=

 3√
ω
, if ω < 1

16
,

− 8
15
, if ω ≥ 1

16
,

and R2(ω) :=

− 1√
ω
, if ω < 1

16
,

24
15
, if ω ≥ 1

16
.

Let Q := {λZ + (1− λ) : λ ∈ [0, 1]}, where

Z(ω) :=

 2√
ω
, if ω < 1

16
,

0, if ω ≥ 1
16
.

Note that E[−R1] = E[−R2] = −1, E[−ZR1] = −∞ and E[−ZR2] = ∞.

Thus,

CQ = {(−1, 1), (−∞,∞)},

which is neither convex nor a subset of R2.

Moreover, the portfolio π = (1
4
, 3
4
) satisfies ρ(Xπ) = E[−ZXπ] = 0 but

sup
c∈CQ

(π · c) = max{−1,−∞1
4
+∞3

4
} ≠ 0 = ρ(Xπ),

and so (3.8) does not hold.

Example A.3.3. In this example we show that when only Condition I is

satisfied but Condition UI is not, the set CQ̄ from (3.9) may fail to be a subset

of Rd, whence (3.10) breaks down.

Take Ω = [0, 1], with the Borel σ-algebra and the Lebesgue measure P.
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Suppose r ̸= 0 (so the market is nondegenerate) and there is one risky asset

with return

R(ω) :=


1√
ω
, if ω ∈ (0, 1

2
),

− 1√
ω−1/2

, if ω ∈ (1
2
, 1).

Note that R(ω) = −R(ω + 1
2
) for ω ∈ (0, 1

2
). Let Q = {Z ∈ D ∩ L∞ :

Z(ω) = Z(ω + 1
2
) for all ω ∈ (0, 1/2)}. Then Condition I is satisfied and

E[−Z(R − r)] = r for all Z ∈ Q, whence CQ = {r}. Moreover, Q̄ = {Z ∈ D :

Z(ω) = Z(ω + 1
2
) for all ω ∈ (0, 1/2)} and |R|√

8
∈ Q̄. Since E[R(R)−] = +∞, it

follows that CQ̄ = {r,∞}, which is neither convex, compact, nor a subset of

R. Finally, for π = 1, supc∈CQ
(π · c) = r ̸= ∞ = supc∈CQ̄

(π · c).

Example A.3.4. In this example we show that the converse of Proposition

3.2.17 fails.

Take Ω = [0, 1], with the Borel σ-algebra and the Lebesgue measure P.
Let r = 0 and assume there is one risky asset whose return R1 is uniformly

distributed on [0, 1]. Let ρ be the worst-case risk measure, cf. Section 3.3.1.

Then Condition I is satisfied, Q ∩ M = ∅ (because M = ∅), but ρ(Xπ) ≥ 0

for any portfolio π. Therefore, by Theorem 3.1.16, this market does not admit

strong ρ-arbitrage, even though Q∩M = ∅.

Example A.3.5. In this example we show that whenQ is uniformly integrable

but RQ is not, Theorem 3.2.14 may fail.

Take Ω = [0, 1], with the Borel σ-algebra and the Lebesgue measure P. Let
the risk-free rate be given by r = 1+12c, where c :=

∫ 1/3

1/4
log(1/x) dx. Suppose

there is one risky asset whose return is given by

R(ω) =


ln
(
1
ω

)
, if ω < 1

3
,

0, if ω ∈ [1
3
, 2
3
],

−1, if ω > 2
3
.

Next, for n ≥ 4, set

Zn(ω) =



n
ln(1/ω)

, if ω < 1
n
,

0, if ω ∈ [ 1
n
, 1
4
],

kn, if ω ∈ (1
4
, 1
3
],

0, if ω > 1
3
,
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where kn is chosen so that E[Zn] = 1. Note that kn ↑ 12, and that Zn converges

in L1 to Z = 121(1/4,1/3]. Therefore, (∪n≥4{Zn})∪{Z} is uniformly integrable,

and whence, if we let Q be the L1-closed convex hull of (Zn)n≥4, Z and 1, it

will also be uniformly integrable. Moreover,

E[ZnR] = 1 + knc ↑ 1 + 12c but E[ZR] = 12c.

It follows that the set CQ is given by

CQ = {E[−Y (R− r)] : Y ∈ Q} = (0, d],

where d := E[−(R − r)] > 1. Thus Condition I is satisfied, Q is uniformly

integrable and Q̄ ∩M = Q ∩M = ∅, but the market does not admit strong

ρ-arbitrage:

ρ(Xπ) = sup
c∈CQ

(π · c) ≥ 0, for any portfolio π ∈ R.

Example A.3.6. In this example we show that when RQ is uniformly inte-

grable but Q is not, Theorem 3.2.14 may fail.

Take Ω = [0, 1], with the Borel σ-algebra and the Lebesgue measure P. Let
r = 0 and suppose there is one risky asset whose return is given by

R(ω) =


1, if ω ≤ 1

4
,

0, if ω ∈ (1
4
, 3
4
),

−1
2
, if ω ≥ 3

4
.

For n ≥ 2, define the intervals An := (1
2
, 1
2
+ 1

2n
) and set

Zn(ω) =


2n − 1

n
, if ω ∈ An,

0, if ω ∈ (1
4
, 3
4
) \ An,

kn, if ω ∈ [0, 1
4
] ∪ [3

4
, 1],

where kn is chosen so that E[Zn] = 1. Note that kn ↓ 0. Let Q be the closed

convex hull of (Zn)n≥2 and 1. Then Q is not uniformly integrable but RQ is.

Moreover, E[R] = 1
8
, E[ZnR] =

1
2
kn ↓ 0 and 1

2
k2 <

1
8
. It follows that

CQ = {E[−Z(R− r)] : Z ∈ Q} = [−1
8
, 0).
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Thus Q̄∩M = Q∩M = ∅, but the market does not admit strong ρ-arbitrage:

ρ(Xπ) = sup
c∈CQ

(π · c) ≥ 0, for any portfolio π ∈ R.

Example A.3.7. In this example we show that when Q̃max = ∅, Theorem
3.2.18 fails.

Take Ω = [0, 1], with the Borel σ-algebra and the Lebesgue measure P.
Consider the financial market described in Example A.3.6. Let Q be the

convex hull of the two densities 1 and Y (ω) = 21(1/2,1](ω),

Q = {µY + (1− µ) : µ ∈ [0, 1]}.

Then E[Y R] = −1
4
and E[R] = 1

8
, so CQ = [−1

8
, 1
4
] and there is no ρ-arbitrage.

However, Q̃ ∩ P = ∅ because Q̃max = ∅. Indeed, any Z ∈ Q is of the form

Z(ω) =

1− µ, if ω ≤ 1
2
,

1 + µ, if ω > 1
2
,

for some µ ∈ [0, 1]. Therefore if Z ∈ Q and λ > 0, then λZ + (1 − λ)Z̃ ∈ Q
for some Z̃ ∈ D∩L∞ implies that Z̃ ∈ Q and since Q is not dense in D∩L∞,

the result follows.

Example A.3.8. This example shows that without convexity the shape of the

ρ-optimal boundary can be very irregular even though ρ satisfies the Fatou

property and weak sensitivity to large losses on X .

Consider a two-dimensional market, where r = 0 and the risky asset has

return R ∈ L1 with P[R < 0] > 0 and E[R] = 1. Let X := {νR : ν ∈ R},
l := ess sup(−R) and define η : X → (−∞,∞] by

η(νR) =

f(ν), if ν ≥ 0,

−ν, if ν < 0,

where f : R+ → (−∞,∞] is a lower semi-continuous function with f(0) = 0

and for all ν ∈ R+ and λ ≥ 1, f(ν) ≤ lν and f(λν) ≥ λf(ν). It is not difficult

to check that η can be extended to a risk measure ρ : L1 → (−∞,∞] such

that ρ|X = η. Moreover, ρ satisfies the Fatou property and weak sensitivity to
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large losses on X . The ρ-optimal boundary is given by

Oρ = {(f(ν), ν) : ν ∈ R+}.

This can be very irregular. For example when l = 1 and

f(ν) =− ν1[0,10](ν) + (ν
2
− 15)1(10,15](ν)− 61(15,20](ν)− ν

4
1(20,40](ν)

+ ( 1
10
(ν − 39)2 − 8)1(40,47](ν) + (10− (ν − 53)2)1(50,53](ν)

+ (ν − 40)1(53,∞)(ν),

the ρ-optimal boundary takes the form in Figure 9.

Figure 9: The ρ-optimal boundary corresponding to Example A.3.8

Example A.3.9. This example shows that in the absence of convexity, ρ-

arbitrage and ρ∞-arbitrage may not be equivalent.

Consider the two-dimensional market and risk measure ρ : L1 → (−∞,∞]

defined in Example A.3.8 with f : R+ → (−∞, 0] given by f(ν) = −ν1[0,1].

Then ρ is a risk measure that satisfies the Fatou property and weak sensitivity

to large losses on X , but it is not convex. Moreover, Eρ = {(−1, 1)} ̸= ∅ and

the market does not satisfy ρ-arbitrage. However, ρ∞ satisfies

ρ∞(νR) =

0, if ν ≥ 0,

−ν, if ν < 0,

and it follows that Eρ∞ = ∅, i.e., the market admits ρ∞-arbitrage.
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A.4 Star-Shapedness, Recession Cones and Recession

Functions

The goal of this appendix is to state some results that relate star-shaped

sets and functions (about the origin) with their corresponding recession cone

and function, respectively. For a recent survey on star-shaped sets, see [53].

The definition of star-shaped functions varies in the literature. We follow [83]

and view them as natural generalisations of convex functions. Finally, for an

overview on recession cones and recession functions see [75, Chapter 8].

Let V be a vector space, S a nonempty subset of V and f : V → [−∞,∞]

a function that is not identically infinity so that its epigraph, epi f := {(x, t) ∈
X × R : f(x) ≤ t} is nonempty. Note that any function can be reconstructed

from its epigraph.

• Given two points x, y ∈ S, we say x sees y via S if λx+ (1− λ)y ∈ S for

all λ ∈ [0, 1]. The set S is called star-shaped if there exists x ∈ S which

sees every point y ∈ S via S. We say the set S is star-shaped about s ∈ S

if s sees every point y ∈ S via S. Clearly, if S is convex, it is star-shaped

about every one of its elements.

• The recession cone of the set S is defined by

S∞ := {y ∈ V : for all x ∈ S and λ ≥ 0, x+ λy ∈ S}.

It contains all y ∈ V such that S recedes in that direction. When S is

star-shaped about the origin, then its recession cone is the largest cone

contained in S, i.e., S∞ = ∩λ∈(0,∞)λS.

• The function f is called star-shaped if its epigraph is star-shaped. Of

particular importance is when f is star-shaped about the origin, that is,

when its epigraph is star-shaped about the origin. This is equivalent to

the condition that f(λx) ≥ λf(x) for all x ∈ V and λ ≥ 1.

• The recession function of f is the function f∞ : V → [−∞,∞] whose epi-

graph is the recession cone of the epigraph of f , i.e., epi (f∞) = (epi f)∞.

When f is star-shaped about the origin, f∞ is the positively homoge-
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neous majorant of f and explicitly given by

f∞(x) = lim
t→∞

f(tx)

t
.

Note that because f is star-shaped about the origin, for any x ∈ V , k ≥ 1

and s > 0,

f((ks)x)/(ks) ≥ kf(sx)/(ks) = f(sx)/s.

Whence, f(tx)/t is nondecreasing in t and so f∞ is well-defined as a

[−∞,∞]-valued map on V .

A.5 Key Definitions and Results on Convex Analysis

In this appendix, we recall some key definitions and results regarding con-

vex functions and convex conjugates.

Let X be a topological vector space and f : X → [−∞,∞] a function.

• The epigraph of f is given by

epi f := {(x, t) ∈ X × R : f(x) ≤ t}.

Note that f can be recovered from its epigraph, f(x) = inf{t ∈ R :

(x, t) ∈ epi f}. Also, a function g : X → [−∞,∞] is dominated by f if

and only if epi f ⊂ epi g.

• The effective domain of f is given by

dom f := {x ∈ X : f(x) <∞}.

We say f is proper if dom f ̸= ∅ and f(x) > −∞ for all x ∈ X.

• We say f is convex if epi f is a convex subset of X × R. Note that if f

is convex, dom f is a convex subset of X.

• We say f is quasi-convex if {x ∈ X : f(x) ≤ t} is a convex subset of X

for all t ∈ R. Every convex function is quasi-convex, but the converse is

not true. However, if f is quasi-convex, dom f is a convex subset of X.

• We say f is lower semi-continuous if epi f is a closed subset of X × R.
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• The convex hull of f , co f : X → [−∞,∞], is the largest convex function

majorised by f ,

co f(x) := sup{g(x)| g : X → [−∞,∞] is convex and g ≤ f}.

By [76, Equation (3.5)],

epi co f = {(x, t) ∈ X × R : (x, s) ∈ co epi f for all s > t}

where co epi f :=
⋂
{C ⊂ X × R : epi f ⊂ C and C is convex}. More-

over, one can check that dom co f = co dom f , where co dom f =
⋂
{C ⊂

X : dom f ⊂ C and C is convex}.

• The quasi-convex hull of f , qco f : X → [−∞,∞], is the largest quasi-

convex function majorised by f ,

qco f(x) := sup{g(x)| g : X → [−∞,∞] is quasi-convex and g ≤ f}.

Since every convex function is quasi-convex, it follows co f ≤ qco f ≤ f .

Moreover, one can verify that dom co f = domqco f = co dom f .

• The lower semi-continuous hull of f , lsc f : X → [−∞,∞] is the largest

lower semi-continuous function majorised by f ,

lsc f(x) := sup{h(x)|h is lower semi-continuous and dominated by f}.

By [76, Equation (3.6)], epi lsc f = cl epi f , or equivalently we have [76,

Equation (3.7)],

lsc f(x) = inf{lim inf
i∈I

f(xi) : lim
i∈I

xi = x}. (A.6)

In particular, this implies that dom lsc f ⊂ cl dom f .

• The lower semi-continuous convex hull of f , co f : X → [−∞,∞] is

given by co f := lsc co f (which may not be the same as co lsc f). Since

the closure of a convex set is again convex and epi co f = cl co epi f , it

follows that co f is the largest lower semi-continuous convex function
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majorised by f . Moreover,

dom co f ⊂ cl co dom f. (A.7)

• If Y is a nonempty subset of X and f : Y → [−∞,∞] a function, we can

extend f to X by considering the function f̄ : X → [−∞,∞] defined by

f̄(x) =

f(x), if x ∈ Y,

∞, if x ∈ X \ Y.

This extension is natural in that epi f̄ ⊂ Y × R, dom f̄ ⊂ Y , dom co f̄ ,

domqco f̄ ⊂ Y if Y is convex, dom lsc f̄ ⊂ Y if Y is closed and also

dom co f̄ ⊂ Y if Y is convex and closed. For this reason, if Y is convex,

we may define the functions co f, qco f : Y → [−∞,∞] by co f(x) :=

co f̄(x), qco f(x) := qco f̄(x) and call this the convex hull and quasi-

convex hull of f , respectively. Similarly, if Y is closed (and convex), we

may define the functions lsc f : Y → [−∞,∞] (and co f : Y → [−∞,∞])

by lsc f(x) := lsc f̄(x) (and co f(x) := co f̄(x)) and call this the lower-

semi-continuous (convex) hull of f .

In order to discuss convex conjugates, we assume that ⟨X,X ′⟩ is a dual pair

under the duality ⟨·, ·⟩ : X×X ′ → R, i.e., X and X ′ are vector spaces together

with a bilinear functional (x, x′) 7→ ⟨x, x′⟩ such that

• If ⟨x, x′⟩ = 0 for each x′ ∈ X ′, then x = 0;

• If ⟨x, x′⟩ = 0 for each x ∈ X, then x′ = 0.

We endow X with the weak topology, σ(X,X ′),

xα
w−→ x in X if and only if ⟨xα, x′⟩ −→ ⟨x, x′⟩ in R for each x′ ∈ X ′,

and X ′ with the weak* topology, σ(X ′, X),

x′α
w∗
−→ x′ in X ′ if and only if ⟨x, x′α⟩ −→ ⟨x, x′⟩ in R for each x ∈ X.

They are locally convex and Hausdorff; the topological dual of (X, σ(X,X ′))

is X ′; and the topological dual of (X ′, σ(X ′, X)) is X; see [6, Section 5.14] for

details.
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• The convex conjugate of f , f ∗ : X ′ → [−∞,∞] is defined as

f ∗(x′) := sup{⟨x, x′⟩ − f(x) : x ∈ X}

and the biconjugate of f , f ∗∗ : X → [−∞,∞] is defined as

f ∗∗(x) := sup{⟨x, x′⟩ − f ∗(x′) : x′ ∈ X ′}.

• It follows from [76, Theorem 5] that epi f ∗∗ is the intersection of all the

“non-vertical” closed half spaces in X × R that contain epi f , i.e.,

f ∗∗(x) = sup{a(x) | a : X → R is affine, continuous and a ≤ f}, (A.8)

where a function a : X → R is affine and continuous if it is of the form

a(x) = ⟨x, x′⟩+ c for some x′ ∈ X ′ and c ∈ R.

• If co f(x) > −∞ for all x ∈ X, then f ∗∗ = co f by [76, Theorems 4 and

5]. In particular if f is convex, lower semi-continuous and proper, then

f = f ∗∗, which is the famous Fenchel-Moreau theorem.

A.6 Additional Results

Proposition A.6.1. For Q ⊂ D, set

L1(Q) := {X ∈ L0 : lim
a→∞

sup
Z∈Q

E[Z|X|1{|X|>a}] = 0}.

If Q is UI and X ∈ L1, the following are equivalent:

(a) X ∈ L1(Q)

(b) XQ is UI.

Proof. First assume that XQ is uniformly integrable. Then, for any a > 0 and

Z ∈ Q,

E[Z|X|1{|X|>a}] = E[Z|X|1{|X|>a}1{Z≤1}] + E[Z|X|1{|X|>a}1{Z>1}]

≤ E[|X|1{|X|>a}] + E[Z|X|1{Z|X|>a}].
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Taking the supremum over Q on both sides, letting a → ∞ and using that

X ∈ L1 and XQ is UI yields

lim
a→∞

sup
Z∈Q

E[Z|X|1{|X|>a}] ≤ lim
a→∞

E[|X|1{|X|>a}]+ lim
a→∞

sup
Z∈Q

E[Z|X|1{Z|X|>a}] = 0.

Conversely, assume that X ∈ L1(Q). For any a, b > 0 and Z ∈ Q,

E[Z|X|1{Z|X|>a2}] ≤ E[Z|X|1{Z>a}] + E[Z|X|1{|X|>a}] ≤ E[Z|X|1{Z>a; |X|≤b}]

+ E[Z|X|1{Z>a}1{|X|>b}] + E[Z|X|1{|X|>a}]

≤ bE[Z1{|Z|>a}] + E[Z|X|1{|X|>b}] + E[Z|X|1{|X|>a}].

Taking the supremum over Q on both sides, letting a→ ∞ and using that Q
is UI and X ∈ L1(Q) yields

lim
a→∞

sup
Z∈Q

E[Z|X|1{Z|X|>a}] ≤ sup
Z∈Q

E[Z|X|1{|X|>b}].

Now, the result follows when letting b→ ∞ and using again X ∈ L1(Q).

Proposition A.6.2. Suppose Condition UI is satisfied.

(a) The set Q̄ and RiQ̄ for i ∈ {1, . . . , d} are uniformly integrable.

(b) The Rd-valued map F : Q̄ → Rd given by F (Z) = E[−Z(R − r1)] is

weakly continuous.

Proof. (a) Fix i ∈ {1, . . . , d}. The Dunford-Pettis theorem implies that Q̄ and

RiQ are UI. It suffices to show that RiQ̄ ⊂ RiQ. So let Z ∈ Q̄. Then there

exists a sequence (Zn)n∈N ⊂ Q such that Zn converges to Z in L1 and hence

in probability. It follows that RiZn converges to RiZ in probability and hence

also in L1 as (RiZn)n∈N ⊂ RiQ is UI. It follows that RiZ ∈ RiQ.

(b) Since F (λZ1+(1−λ)Z2) = λF (Z1)+(1−λ)F (Z2) for Z1, Z2 ∈ Q̄ and

λ ∈ [0, 1], preimages under F of convex sets are convex. Since Q̄ is convex as

Q is convex, it therefore suffices to show that F is strongly continuous. So let

(Zn)n∈N ⊂ Q̄ be a sequence that converges to Z in L1 and hence in probability.

Then −Zn(R
i − r) converges to −Z(Ri − r) in probability and hence also in

L1 by part (a) for each i ∈ {1, . . . , d}.

Lemma A.6.3. Assume Q̃ ⊂ D satisfies Conditions POS and INT. Let Z̃ ∈ Q̃
and X ∈ L1 be a non-constant random variable. If E[−Z̃X] = 0, then there

exists Z ∈ Q such that E[−ZX] > 0.
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Proof. Note that Z̃ > 0 P-a.s. by Condition POS. Define Q̃ ≈ P by dQ̃
dP := Z̃

and A := {X < 0}. Since X is non-constant and EQ̃[X] = 0, it follows that

Q̃[A] ∈ (0, 1). Seeking a contradiction, suppose that E[−ZX] ≤ 0 for all Z ∈
Q. Let E be an L∞-dense subset of D ∩ L∞ corresponding to Z̃ in Condition

INT. Let Z ′ ∈ E . Then there exists λ > 0 such that λZ ′ + (1 − λ)Z̃ ∈ Q.

Thus, Since Z ′ was chosen arbitrarily, we may deduce that

sup
Z∈E

(E[−ZX]) ≤ 0,

which together with Proposition A.6.6 below implies that X ≥ 0 P-a.s. Since
Q̃ ≈ P, it follows that Q̃[A] = 0 and we arrive at a contradiction.

Proposition A.6.4. Let Φ : [0,∞) → [0,∞] be a Young function. Let (Yn)n∈N

be a sequence in LΦ that converges in probability to some random variable Y .

Then

∥Y ∥Φ ≤ lim inf
n→∞

∥Yn∥Φ.

Proof. Set K := lim infn→∞ ∥Yn∥Φ. We may assume without loss of generality

that K < ∞. After passing to a subsequence, we may assume without loss of

generality that (Yn)n∈N converges to Y P-a.s. If Φ jumps to infinity, then ∥ · ∥Φ
is equivalent to ∥ · ∥∞ and the result follows. So assume that Φ is finite and

hence continuous. For any ε > 0, we can pass to a further subsequence and

assume without loss of generality that ∥Yn∥Φ ≤ K + ε for all n. Then by the

definition of the Luxemburg norm, E[Φ(|Yn/(K + ε)|)] ≤ 1 for all n. Fatou’s

lemma gives

E
[
Φ
(∣∣ Y

K+ε

∣∣)] ≤ lim inf
n→∞

E
[
Φ
(∣∣ Yn

K+ε

∣∣)] ≤ 1.

This implies ∥Y ∥Φ ≤ K + ε. By letting ε→ 0, we conclude ∥Y ∥Φ ≤ K.

Proposition A.6.5. Let Φ : [0,∞) → [0,∞) be a finite Young function with

conjugate Ψ. Let ρ : HΦ → R be a coherent risk measure. Denote by Qρ the

maximal dual set. Then

(a) Qρ is L1-closed and LΨ-bounded.

(b) If R ∈ HΦ, then RQρ is uniformly integrable.

Proof. (a) It follows from [25, Corollary 4.2] that Qρ ∩ LΨ is LΨ bounded

and represents ρ. It suffices to show that Qρ ∩ LΨ is L1-closed. Indeed,
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this implies that Qρ ⊂ LΨ because otherwise, by the Hahn-Banach sepa-

ration theorem (for the pairing (L1, L∞)), there exists X ∈ L∞ such that

supZ∈Qρ∩LΨ E[−ZX] < supZ∈Qρ
E[−ZX], in contradiction to the fact that both

Qρ ∩ LΨ and Qρ represent ρ on L∞.

Set K := supZ∈Qρ
∥Z∥Ψ < ∞. Let (Zn)n≥1 be a sequence in Qρ ∩ LΨ that

converges to Z ∈ L1. Then Z ∈ D and ∥Z∥Ψ ≤ K by Proposition A.6.4. Let

X ∈ Aρ ⊂ HΦ. We have to show that E[ZX] ≥ 0. Since E[ZnX] ≥ 0 by the

fact that Zn ∈ Qρ∩LΨ, it suffices to show that E[ZX] = limn→∞ E[ZnX]. For

any n ∈ N and an > 0, the generalised Hölder inequality (A.5) yields

|E[ZnX]− E[ZX]| ≤ E[|X||Zn − Z|]

= E[|X||Zn − Z|1{|X|>an}] + E[|X||Zn − Z|1{|X|≤an}]

≤ E[|X|Zn1{|X|>an}] + E[|X|Z1{|X|>an}] + an∥Zn − Z∥1
≤ (2K + 2K)∥X1{|X|>an}∥Φ + an∥Zn − Z∥1. (A.9)

Now if we choose an := min(n, 1√
∥Zn−Z∥1

) and let n→ ∞, the right hand side

of (A.9) converges to 0 by order continuity of of HΦ (see e.g. [39, Theorem

2.1.14]).

(b) First, consider the case that R = 1. If Φ is not superlinear, then Ψ

jumps to infinity, and hence Qρ is L∞-bounded by part (a) and therefore UI.

If Φ is superlinear (and finite), then Ψ is superlinear and finite. Set K :=

supY ∈Q∥Y ∥Ψ <∞ and define the superlinear function Ψ̃ by Ψ̃(y) := Ψ(y/K).

By the definition of the Luxemburg norm,

E[Ψ̃(Y )] = E[Ψ(Y/K)] ≤ 1, for all Y ∈ Qρ.

This implies supY ∈Qρ
E[Ψ̃(Y )] ≤ 1 < ∞. Since Ψ̃ is superlinear, the de la

Vallée-Poussin theorem implies that Qρ is UI.

Next, assume that R ∈ HΦ. By Proposition A.6.1, it is enough to show

that R ∈ L1(Qρ) where

L1(Qρ) := {X ∈ L0 : lim
a→∞

sup
Z∈Qρ

E[Z|X|1{|X|>a}] = 0}.

Since R ∈ HΦ, the generalised Hölder inequality and order continuity of HΦ
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give

lim
a→∞

sup
Z∈Q

E[Z|X|1{|X|>a}] ≤ lim
a→∞

2 sup
Z∈Q

∥Z∥Ψ∥X1{|X|>a}∥Φ = 0.

Proposition A.6.6. Let E be an σ(L∞, L1)-dense subset of D∩L∞. Then for

all X ∈ L1.

sup
Z∈E

E[−ZX] = WC(X).

Proof. Define the coherent risk measure ρ : L1 → (−∞,∞] by

ρ(X) := sup
Z∈E

(E[−ZX]).

To show that ρ = WC, let X ∈ L1 and set c := ess sup(−X) = WC(X).

First, assume that c < ∞. Then monotonicity of the expectation gives

ρ(X) ≤ WC(X). For the reverse inequality, let ε > 0 and set

Z := 1{−X≥c−ε}/P[−X ≥ c− ε] ∈ D ∩ L∞.

Then E[−ZX] ≥ c − ε. Since E is σ(L∞, L1)-dense in D ∩ L∞, there exists a

net (Zi)i∈I in E which converges to Z in σ(L∞, L1). Thus,

ρ(X) ≥ lim
i∈I

E[−ZiX] = E[−ZX] ≥ c− ε = WC(X)− ε.

Letting ε→ 0 yields ρ(X) ≥ WC(X).

Finally, assume that c = ∞. Let N > 0 be given. Set XN := max(X,−N).

Then XN ≥ X and WC(XN) = N . By monotonicity of ρ and the first part,

ρ(X) ≥ ρ(XN) = WC(XN) = N.

Letting N → ∞ yields ρ(X) = ∞ = WC(X).

Proposition A.6.7. Fix α ∈ (0, 1). Then

Q̃α := {Z ∈ D : Z > 0 P-a.s. and ∥Z∥∞ < 1
α
}

is a nonempty subset of Qα satisfying Conditions POS, MIX and INT.

Proof. It is clear that 1 ∈ Q̃α ⊂ Qα, and by definition Q̃α satisfies POS. If

Z ∈ Qα, Z̃ ∈ Q̃α and λ ∈ (0, 1), then λZ + (1 − λ)Z̃ > 0 P-a.s., and by the

130



A. Appendix

triangle inequality

∥λZ + (1− λ)Z̃∥∞ ≤ λ∥Z∥∞ + (1− λ)∥Z̃∥∞ < 1
α
,

so Q̃α satisfies Condition MIX. To show Condition INT, let Z̃ ∈ Q̃α. Set

E := D ∩ L∞ and let Z ∈ E . Since ∥Z∥∞ < ∞ and ∥Z̃∥∞ < 1
α

there is

λ ∈ (0, 1) such that λ∥Z̃∥∞ + (1− λ)∥Z∥∞ ≤ 1
α
. By the triangle inequality it

follows that λZ̃ + (1− λ)Z ∈ Qα.

Proposition A.6.8. Assume µ is a probability measure on ([0, 1],B[0,1]) and

ρµ the corresponding spectral risk measure.

(a) ρµ is represented by

Qµ =

{∫
[0,1]

ζα µ(dα) : ζα(ω) is jointly measurable; there is 1 > ε > 0

such that ζα ∈ Qα for α ≤ 1− ε and ζα ≡ 1 otherwise

}
.

(b) If µ does not have an atom at 1, the set

Q̃µ =

{∫
[0,1)

ζ̃α µ(dα) : ζ̃α(ω) is jointly measurable; there is ε ∈ (0, 1),

δ ∈ (0, ε
1−ε

) such thatζ̃α ∈ Q̃α(1+δ) for α ≤ 1− ε and else ζ̃α ≡ 1

}
,

is nonempty and satisfies Conditions POS, MIX and INT.

Proof. (a) It follows from [27] that ρµ is represented by

Qρµ =

{∫
[0,1]

ζα µ(dα) : ζα(ω) is jointly measurable and ζα ∈ Qα for all α

}
.

Let Z =
∫
[0,1]

ζα µ(dα) ∈ Qρµ . Set Zn :=
∫
[0,1−1/n]

ζα µ(dα) + µ((1− 1/n, 1]) ∈
Qµ. Then

lim
n→∞

∥Zn − Z∥∞ ≤ lim
n→∞

n

n− 1
µ((1− 1/n, 1)) = 0.

This implies that E[−ZX] = limn→∞ E[−ZnX] for all X ∈ L1.

(b) Since 1 ∈ Q̃β for all β ∈ [0, 1) and Q̃β only contains positive random

variables, it follows that 1 ∈ Q̃µ and Condition POS is satisfied.
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To show Condition MIX, let Z ∈ Qµ, Z̃ ∈ Q̃µ and λ ∈ (0, 1). Then there

is ε ∈ (0, 1) and δ ∈ (0, ε
1−ε

) such that Z =
∫
[0,1−ε]

ζα µ(dα) + µ((1 − ε, 1))

and Z̃ =
∫
[0,1−ε]

ζ̃α µ(dα) + µ((1 − ε, 1)), where ζα ∈ Qα and ζ̃α ∈ Q̃α(1+δ)

for α ∈ [0, 1 − ε]. Set δ′ := δ(1−λ)
1+δλ

∈ (0, δ). A simple calculation shows that

λζα + (1− λ)ζ̃α ∈ Q̃α(1+δ′) for all α ∈ [0, 1− ε]. Thus,

λZ + (1− λ)Z̃ =

∫
[0,1−ε]

λζα + (1− λ)ζ̃α µ(dα) + µ((1− ε, 1)) ∈ Q̃µ.

Finally, to show Condition INT, let Z̃ ∈ Q̃µ and set

E :=
{∫

[0,1)

ζα µ(dα) : ζα(ω) is jointly measurable and there is 1 > γ, ε > 0

such that ζα ∈ Qγ for α ≤ 1− ε and ζα ≡ 1 for α > 1− ε
}
.

It is straightforward to check that E is a dense subset of D ∩ L∞. Let Z ∈ E .
Then there exists ε, γ ∈ (0, 1) and δ ∈ (0, ε

1−ε
) such that Z̃ =

∫
[0,1−ε]

ζ̃α µ(dα)+

µ((1− ε, 1)) and Z =
∫
[0,1−ε]

ζα µ(dα) + µ((1− ε, 1)), where ζ̃α ∈ Q̃α(1+δ) and

ζα ∈ Qγ for α ∈ [0, 1− ε]. Set λ′ := δγ
(2+δ)(1+δ−γ)

∈ (0, 1). A simple calculation

shows that λ′ζα + (1− λ′)ζ̃α ∈ Q̃α(1+δ/2) for all α ∈ [0, 1− ε]. Thus,

λ′Z+(1−λ′)Z̃ =

∫
[0,1−ε]

λ′ζα+(1−λ′)ζ̃α µ(dα)+µ((1−ε, 1)) ∈ Q̃µ ⊂ Qµ.

Proposition A.6.9. Let g : [0,∞) → R be a convex function and β > g(1).

Let Qg,β := {Z ∈ D : E[g(Z)] ≤ β}. Then

Q̃g,β := {Z ∈ D : Z > 0 P-a.s. and E[g(Z)] < β}

is nonempty and satisfies Conditions POS, MIX and INT.

Proof. It is clear that Q̃g,β satisfies Condition POS and 1 ∈ Q̃g,β since β > g(1).

To show condition MIX, let Z ∈ Qg,β, Z̃ ∈ Q̃g,β and λ ∈ (0, 1). By the

convexity of g,

E[g(λZ̃+(1−λ)Z)] ≤ E[λg(Z̃)+(1−λ)g(Z)] = λE[g(Z̃)]+(1−λ)E[g(Z)] < β.

To show Condition INT, let Z̃ ∈ Q̃g,β. Set E := D ∩ L∞ and let Z ∈ E . Since
E[g(Z)] < ∞ and E[g(Z̃)] < β there is λ ∈ (0, 1) such that λE[g(Z̃)] + (1 −
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λ)E[g(Z)] ≤ β. Now convexity of g implies that λZ̃ + (1− λ)Z ∈ Qg,β.

Proposition A.6.10. Let ρ be a risk functional and assume there exists an

unbounded sequence of portfolios (πn)n≥1 ⊂ Rd with Xπn ∈ Aρ for all n ∈ N.

(a) If ρ satisfies the Fatou property on X , then there exists a portfolio π ∈
Rd \ {0} with ρ(λXπ) ≤ 0 for all λ > 0. Moreover, if E[Xπn ] = 0 for all

n, we may further assume E[Xπ] = 0.

(b) If the market (S0, S) satisfies no-arbitrage, then there exists Y ∈ Aρ∞

such that P[Y < 0] > 0.

Proof. (a) By passing to a subsequence and relabelling the assets, we may

assume without loss of generality that |π1
n| ≥ |πi

n| for all n ∈ N and i ∈
{1, . . . , d}. As ∥πn∥ → ∞ we must have that |π1

n| → ∞, and by shifting the

sequence we may assume |π1
n| > 0 for all n ∈ N. Then for all i ∈ {1, . . . , d} we

have πi
n/π

1
n ∈ [−1, 1] and by compactness we can pass to a further subsequence

and assume that πi
n/|π1

n| → πi ∈ [−1, 1], where π1 ∈ {−1, 1}. It follows that

Xπn/|π1
n| → Xπ P-a.s., (A.10)

where π ̸= 0 since π1 ∈ {−1, 1}. Since |π1
n| → ∞, for any λ > 0, there exists

N such that λ/|π1
n| ∈ (0, 1) for all n ≥ N . Now star-shapedness of ρ gives

ρ(λXπn/|π1
n|) ≤ λρ(Xπn)/|π1

n| ≤ 0, n ≥ N.

By the Fatou property (L ⊃ X being a Riesz space),

ρ(λXπ) ≤ lim inf
n→∞

ρ(λXπn/|π1
n|) ≤ 0.

Hence ρ(λXπ) ≤ 0 for all λ > 0.

If in addition E[Xπn ] = 0 for all n, then linearity of the expectation and the

dominated convergence theorem gives E[Xπ] = 0. Indeed, since πi
n/π

1
n ∈ [−1, 1]

we have

|Xπn/|π1
n|| = |X1 + π2

n

|π1
n|
X2 + . . . πd

n

|π1
n|
Xd| ≤ |X1|+ |X2|+ . . . |Xd|

where X i := Ri − r ∈ L1 for i ∈ {1, . . . , d}. This, together with (A.10) and

the dominated convergence theorem gives E[Xπ] = limn→∞ E[Xπn/|π1
n|] = 0.
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(b) By passing to a subsequence, relabelling the assets and multiplying

their corresponding excess return by −1 if necessary, we may assume without

loss of generality that π1
n ≥ πi

n ≥ 0 for all n ∈ N and i ∈ {1, . . . , d}. As

∥πn∥ → ∞ this means π1
n → ∞, and by shifting the sequence we may assume

π1
n > 0 for all n ∈ N. Then for all i ∈ {1, . . . , d} we have πi

n/π
1
n ∈ [0, 1],

and by compactness we can pass to a further subsequence and assume that

πi
n/π

1
n → πi ∈ [0, 1], where π1 = 1. By relabelling the assets we may assume

there exists k ∈ {1, . . . , d} such that for i > k, πi = 0 and for i ≤ k, πi > 0.

And by passing to another subsequence, we may assume for i > k, πi
n/π

1
n ↘ 0.

Now for all n ∈ N,

ρ(π1
nX

1 + · · ·+ πd
nX

d) = ρ(π1
n(X

1 + π2
n

π1
n
X2 + · · ·+ πd

n

π1
n
Xd)) ≤ 0.

If we can construct a random variable Y ∈ L such that P[Y < 0] > 0 and for

which there exists M ∈ N such that

Y ≥ X1 + π2
n

π1
n
X2 + · · ·+ πd

n

π1
n
Xd P-a.s., n ≥M,

then we would be done. Indeed, by the monotonicity of ρ, ρ(π1
nY ) ≤ 0 for all

n, and this would imply Y ∈ Aρ∞ . To that end, for N ∋ N > max{ 1
π1 , . . . ,

1
πk }

and i ∈ {1, . . . , k} define

V i
N :=

(πi − 1
N
)X i, if X i ≤ 0,

(πi + 1
N
)X i, if X i > 0,

noting that there exists MN ∈ N such that V i
N ≥ πi

n

π1
n
X i P-a.s. for all n ≥ MN .

And for N ∈ N and i ∈ {k + 1, . . . , d} define

W i
N :=

0, if X i ≤ 0,

πi
N

π1
N
X i, if X i > 0,

noting that W i
N ≥ πi

n

π1
n
X i P-a.s. for all n ≥ N . Now for N > max{ 1

π1 , . . . ,
1
πk },

let

YN :=
k∑

i=1

V i
N +

d∑
i=k+1

W i
N .

As N → ∞, YN → Xπ P-a.s. where π = (1, π2, . . . , πd) ∈ Rd \ {0}. Since the
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market is nonredundant and satisfies no-arbitrage, P[Xπ < 0] > 0. Therefore,

there exists N∗ such that P[YN∗ < 0] > 0. Furthermore,

YN∗ ≥ X1 + π2
n

π1
n
X2 + · · ·+ πd

n

π1
n
Xd P-a.s.

for all n ≥ max{MN∗ , N∗}. Setting Y = YN∗ completes the proof.

Proposition A.6.11. Suppose X is a topological space and K ⊂ X is compact.

Then for any nondecreasing sequence of lower semi-continuous functions ft :

K → [−∞,∞] with f(x) := limt→∞ ft(x) for all x ∈ K, we have

min
x∈K

f(x) = lim
t→∞

min
x∈K

ft(x).

Furthermore, if (xt)t≥1 is a sequence where minx∈K ft(x) = ft(xt), then any

limit point is a minimiser for f .

Proof. First note that f is lower semi-continuous because it is the supremum

of lower semi-continuous functions. By the compactness of K and lower semi-

continuity, f and ft attain their minimum values. Now since ft is a nonde-

creasing sequence, it is easy to see that

min
x∈K

f(x) ≥ lim
t→∞

min
x∈K

ft(x) =: m.

For the reverse inequality, consider the sets At := {x ∈ K : ft(x) ≤ m}.
These are nonempty (because ∅ ≠ argmin ft ⊂ At), closed (by the lower semi-

continuity of ft) and compact (since K is compact and At is closed). Moreover,

they are nested in the sense that At ⊃ At+1. It follows by Cantor’s intersection

theorem that

A :=
∞⋂
t=1

At ̸= ∅,

i.e., there exists x∗ ∈ K such that ft(x
∗) ≤ m for all t. Taking the limit as

t→ ∞ yields

min
x∈K

f(x) ≤ f(x∗) ≤ m = lim
t→∞

min
x∈K

ft(x).

To prove the final claim, note that argmin f = A because f(x) ≤ m if and

only if ft(x) ≤ m for all t. Whence, any limit point of a sequence of minimisers

(xt)t∈N – that is where xt ∈ argmin ft for all t ≥ 1 – is contained in A, and

hence, is a minimiser for f .
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Proposition A.6.12. Let E be a convex subset of D ∩ LΨ. Then for all

X ∈ HΦ,

sup
Z∈E

E[−ZX] = WC(X),

if and only if E is a σ(LΨ, HΦ)-dense subset of D ∩ LΨ.

Proof. Note that D ∩ LΨ is σ(LΨ, HΦ)-closed. Suppose E is a σ(LΨ, HΦ)-

dense subset of D ∩ LΨ. Define the risk measure ρ : HΦ → (−∞,∞] by

ρ(X) := supZ∈E(E[−ZX]). To show that ρ ≡ WC|HΦ , let X ∈ HΦ and set

c := ess sup(−X) = WC(X).

First, assume that c < ∞. Then monotonicity of the expectation gives

ρ(X) ≤ WC(X). For the reverse inequality, let ε > 0 and set

Z := 1{−X≥c−ε}/P[−X ≥ c− ε] ∈ D ∩ L∞ ⊂ D ∩ LΨ.

Then E[−ZX] ≥ c− ε. Since E is σ(LΨ, HΦ)-dense in D ∩ LΨ, there exists a

net (Zi)i∈I in E which converges to Z in σ(LΨ, HΦ). Thus,

ρ(X) ≥ lim
i∈I

E[−ZiX] = E[−ZX] ≥ c− ε = WC(X)− ε.

Letting ε→ 0 yields ρ(X) ≥ WC(X).

Now assume that c = ∞. Let N > 0 be given and set XN := max(X,−N).

Then XN ≥ X and WC(XN) = N . By monotonicity of ρ and the first part,

ρ(X) ≥ ρ(XN) = WC(XN) = N.

Letting N → ∞ yields ρ(X) = ∞ = WC(X).

The converse is an application of the Hahn-Banach separation theorem

(for the pairing (LΨ, HΦ)). Indeed, if the σ(LΨ, HΦ)-closure of E , E∗ (which is

convex), is not equal to D ∩ LΨ, then there exists X ∈ HΦ such that

sup
Z∈E∗

E[−ZX] < sup
Z∈D∩LΨ

E[−ZX],

i.e., supZ∈E E[−ZX] <WC(X).

Proposition A.6.13. (a) The expected weighted loss risk measure EWl is

strongly sensitive to large losses on HΦl if and only if limx→∞ l(x)/x = ∞
or limx→−∞ l(x)/x = 0.

136



A. Appendix

(b) When EWl is not strongly sensitive to large losses on HΦl, then there

exists X ∈ HΦl with E[X] > 0, P[X < 0] > 0 and EWl(λX) → −∞ as

λ→ ∞.

Proof. Assume first that limx→∞ l(x)/x = ∞ and suppose that X ∈ HΦl and

P[X < 0] > 0. Then for any λ > 0,

EWl(λX) = E[l(−λX)] ≥ E[−λX1{X≥0}] +E[l(−λX)1{X<0}] ≥ λk1 + pl(λk2)

where k1 := E[−X1{X≥0}] ≤ 0, k2 := min{1,− ess inf(X)/2} > 0 and p :=

P[X ≤ −k2] > 0. Now as λ → ∞, (λk1 + pl(λk2))/λ → ∞ since l(x)/x → ∞
as x→ ∞. Therefore, there exists λ̃ ≥ 1 such that EWl(λ̃X) > 0 and so EWl

is strongly sensitive to large losses on HΦl .

Now assume that limx→−∞ l(x)/x = 0 and suppose X ∈ HΦl and P[X <

0] > 0. If X ≤ 0, then since l(x) ≥ x for all x ∈ R, EWl(X) ≥ E[−X] > 0. So

assume ess sup(X) > 0. Then for any λ > 0,

EWl(λX) = E[l(−λX)] ≥ E[−λX1{X<0}] + E[l(−λX)1{X≥0}] ≥ λc1 + ql(λc2)

where c1 := E[−X1{X<0}] > 0, c2 := max{−1,− ess sup(X)/2} < 0 and

q := P[X ≥ −c2] > 0. As λ → ∞, (λc1 + ql(λc2))/λ → c1 > 0 since

limx→−∞ l(x)/x = 0. Therefore, there exists λ̃ ≥ 1 such that EWl(λ̃X) > 0

and so EWl is strongly sensitive to large losses on HΦl .

On the other hand, if β := limx→∞ l(x)/x ̸= ∞ and α := limx→−∞ l(x)/x ̸=
0, then by the properties of l, it must be that β ∈ [1,∞) and α ∈ (0, 1]. Define

the loss function l̃ : R → R by

l̃(x) =

βx, if x ≥ 0,

αx, if x < 0.

Then l̃ ≥ l, so to complete the proof, it suffices to find X ∈ HΦl = HΦl̃ = L1

such that P[X < 0] > 0, E[X] > 0 and EWl̃(λX) → −∞ as λ → ∞. To

that end, let A ∈ F be a nontrivial event, p := P[A] ∈ (0, 1) and consider the

random variable X = a1A − b1Ac where a, b > 0 satisfy −pαa+ (1− p)βb < 0

and pa− b(1− p) > 0. Then X ∈ L1, E[X] > 0, P[X < 0] > 0 and as λ→ ∞,

EWl̃(λX) = E[l̃(−λX)] = λ[−pαa+ (1− p)βb] → −∞.
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Proposition A.6.14. Suppose Φ is a Young function and X ≥ 0. Then,

∥X∥Φ ≤ 1 + E[Φ(X)].

Proof. Set k := 1 + E[Φ(X)] ≥ 1. We may assume without loss of generality

that k < ∞. Since Φ(X/k) ≤ Φ(X)/k by nonnegativity of X, Φ(0) = 0 and

convexity of Φ, we obtain

E[Φ(X/k)] ≤ E[Φ(X)]/k ≤ 1.

Thus, ∥X∥Φ ≤ k by the definition of the Luxemburg norm.

Proposition A.6.15. Let l be a loss function and assume that

0 < al = lim
x→−∞

l(x)/x < bl = lim
x→∞

l(x)/x <∞.

Consider the penalty function αl(Z) = infλ>0
1
λ
E[l∗(λZ)]. Then

Q̃αl

= {Z ∈ D : there is k > 0 and ε > 0 such that al+ε < kZ < bl−ε P-a.s.}

is a nonempty subset of Qαl
satisfying Conditions POS, MIX and INT.

Proof. It is clear that 1 ∈ Q̃αl ⊂ Qαl
, and by definition Q̃αl

satisfies Condition

POS.

To show Condition MIX, let Z ∈ Qαl
, Z̃ ∈ Q̃αl

and λ ∈ (0, 1). Then there

exists k, k̃, ε̃ > 0 such that al ≤ kZ ≤ bl P-a.s. and al + ε̃ ≤ k̃Z̃ ≤ bl − ε̃ P-a.s.
It follows that

al + ε∗ < k∗(λZ + (1− λ)Z̃) < bl − ε∗

where k∗ := kk̃/(λk̃ + (1 − λ)k) > 0 and ε∗ := (1 − λ)k∗ε̃ > 0. Therefore,

λZ + (1− λ)Z̃ ∈ Q̃αl
and Q̃αl

satisfies Condition MIX.

Finally we show Condition INT is satisfied. Let Z̃ ∈ Q̃αl
, set E := D∩L∞

and Z ∈ E . Then there exists k > 0 such that ess inf kZ̃ > al and ess sup kZ̃ <

bl. Let

λ1 :=


bl−k∥Z̃∥∞

k(∥Z∥∞−∥Z̃∥∞)
, if ∥Z∥∞ > ∥Z̃∥∞,

1
2
, otherwise,

and λ2 := 1−al/ ess inf kZ̃. Then setting λ := min{λ1, λ2} yields ess inf k(λZ+
(1−λ)Z̃) ≥ al and ess sup k(λZ+(1−λ)Z̃) ≤ bl. Therefore, λZ+(1−λ)Z̃ ∈ Qαl
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and Q̃αl
satisfies INT.

Proposition A.6.16. Let l be a loss function and assume that

0 < al = lim
x→−∞

l(x)/x < bl = lim
x→∞

l(x)/x <∞.

Consider the penalty function αl(Z) = infλ>0
1
λ
E[l∗(λZ)]. Then Qcoαl

= Qαl
.

Proof. We first show αl is bounded on its effective domain. So let Z ∈ Qαl

and note that there exists k > 0 such that kZ ∈ [al, bl] P-a.s. Now for any

λ ∈ (0, al), E[l∗(λZ)] = ∞ since P[Z ≤ 1] > 0 and dom l∗ = [al, bl]. Similarly,

since P[Z ≥ 1] > 0, for any λ ∈ (bl,∞), E[l∗(λZ)] = ∞. Thus, k ∈ [al, bl] and

since l∗ is nondecreasing on [al, bl]

αl(Z) ≤ 1

k
E[l∗(kZ)] ≤ 1

al
l∗(bl) <∞.

It follows by Remark 4.2.5(a) that Qcoαl
= Q̄αl

, and so to complete the proof

we must show that Qαl
is L1-closed. To that end, let (Zn)n≥1 ⊂ Qαl

and

assume the sequence converges in L1 to Z∗. We must show Z∗ ∈ Qαl
. Clearly

Z∗ ∈ D, and by what we have shown above, there exists kn ∈ [al, bl] such that

knZn ∈ [al, bl] P-a.s. By restricting to a subsequence we may assume without

loss of generality that kn converges to k∗ ∈ [al, bl] and knZn converges to k∗Z∗

P-a.s. Thus, k∗Z∗ ∈ [al, bl] P-a.s., and Z∗ ∈ Qαl
as desired.

Proposition A.6.17. Let l be a loss function where al := limx→−∞ l(x)/x > 0

or bl := limx→∞ l(x)/x < ∞, and al < 1 < bl. Consider the penalty function

αl(Z) = E[l∗(Z)]. Then

Q̃αl

= {Z ∈ Qαl

: al + ε < Z < bl − ε P-a.s. for some ε > 0},

is a nonempty subset of Qαl
satisfying Conditions POS, MIX and INT.

Proof. It is clear that 1 ∈ Q̃αl ⊂ Qαl
, and by definition Q̃αl

satisfies POS.

To show Condition MIX, let Z ∈ Qαl
, Z̃ ∈ Q̃αl

and λ ∈ (0, 1). Since l∗ is

convex, E[l∗(λZ+(1−λ)Z̃)] <∞ so λZ+(1−λ)Z̃ ∈ Qαl
. Furthermore, since

al ≤ Z ≤ bl P-a.s. and al+ ε < Z̃ < bl− ε P-a.s. for some ε > 0, it follows that

al + (1− λ)ε < λZ + (1− λ)Z̃ < bl − (1− λ)ε P-a.s.
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Therefore, λZ + (1− λ)Z̃ ∈ Q̃αl
and Q̃αl

satisfies Condition MIX.

Finally we show Condition INT is satisfied. Assume first that bl = ∞ and

let Z̃ ∈ Q̃αl
. Set E := D ∩ L∞ and Z ∈ E . Then there exists ε > 0 such that

Z̃ > al + ε P-a.s. By choosing λ ∈ (0, ε/(al + ε)], it follows that

λZ + (1− λ)Z̃ ≥ (1− λ)(al + ε) ≥ al P-a.s.

Now since l∗ is convex, l∗(y) ≥ Ψl(y) ≥ 0 for all y ≥ 0 and l∗ is real-valued on

[al,∞), it follows that there exists c ∈ [al,∞) such that l∗ is nonincreasing on

[al, c) and nondecreasing on (c,∞). Whence, setting A := {λZ+(1−λ)Z̃ ≤ c},
B := {Z ≤ Z̃} and Y := λZ + (1− λ)Z̃ have

E[l∗(Y )] = E[l∗(Y )1A] + E[l∗(Y )1Ac ]

≤ l∗(al) + E[l∗(Y )1Ac∩B] + E[l∗(Y )1Ac∩Bc ]

≤ l∗(al) + E[l∗(Z̃)] + l∗(∥Z∥∞)P[Z > c] <∞.

Therefore, λZ+(1−λ)Z̃ ∈ Qαl
and Q̃αl

satisfies Condition INT when bl = ∞.

Now assume 1 < bl <∞ and let Z̃ ∈ Q̃αl
. Set E := D ∩ L∞ and Z ∈ E . Then

there exists ε > 0 such that al+ε < Z̃ < bl−ε. By choosing λ ∈ (0, ε/(al+ε)]

if ∥Z∥∞ ≤ bl and choosing λ ∈ (0,min{ε/(al+ε), ε/(ε+∥Z∥∞−bl)}] otherwise,
it follows that

al ≤ λZ + (1− λ)Z̃ ≤ bl P-a.s.

Therefore, λZ + (1− λ)Z̃ ∈ Qαl
and Q̃αl

satisfies Condition INT.

Proposition A.6.18. Let β ∈ (0, 1) and g ∈ Gβ \ G∞
β . Define ĝ : (0, 1] →

[0,∞] by ĝ(x) = co g̃(1/x) where g̃ : [1,∞) → [0,∞] is given by g̃(x) = g(1/x).

Then ĝ ∈ Gβ \ G∞
β and ĝ(β) = ∞.

Proof. Since g ∈ Gβ, it follows that g̃ is nondecreasing, real-valued on [1, 1/β),

∞ on (1/β,∞) and g̃(1) = 0. By the definition of the lower semi-continuous

convex hull, it is not difficult to check that co g̃ has the same properties and

so ĝ ∈ Gβ. It remains to show that co g̃(1/β) = ∞.

Seeking a contradiction, suppose that co g̃(1/β) =: k < ∞. As co g̃ is a

proper lower semi-continuous convex function, the Fenchel-Moreau theorem

gives co g̃ = g̃∗∗ where g̃∗∗ is the biconjugate of g̃. Since g̃ is nondecreasing

and limx↑1/β g̃(x) = ∞, there exists c ∈ [1, 1/β) such that g̃(x) > k + 1 for all

x ∈ [c, 1/β). Thus, the affine (and continuous) function a : [1,∞) → R with
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a(c) = 0 and a(1/β) = k + 1 satisfies a ≤ g̃ and a(1/β) > k = g̃∗∗(1/β). This

is in contradiction to the fact that by (A.8), g̃∗∗ dominates any affine (and

continuous) function dominated by g̃.

Proposition A.6.19. Let β ∈ (0, 1) and g ∈ Gβ. Let coαg be the L1-lower

semi-continuous convex hull of αg. Then its effective domain is given by

Qcoαg

=

{Z ∈ D : ∥Z∥∞ ≤ 1
β
}, if g ∈ G∞

β ,

{Z ∈ D : ∥Z∥∞ < 1
β
}, if g ∈ Gβ \ G∞

β .

Proof. If g ∈ G∞
β , then the result follows from Remark 4.2.5(a). So assume

g ∈ Gβ \ G∞
β . Define the function ĝ : (0, 1] → [0,∞] by ĝ(x) = co g̃(1/x) where

g̃ : [1,∞) → [0,∞] is given by g̃(x) = g(1/x). By Proposition A.6.18, ĝ ∈ Gβ \
G∞
β and ĝ(β) = ∞. Moreover, ĝ(x) ≤ g̃(1/x) = g(x) for x ∈ (0, 1]. Moreover,

by the fact that co g̃ is convex and lower semi-continuous, nondecreasing, real-

valued on [1, 1/β) and ∞ on [1/β,∞], it follows αĝ : D → [0,∞], given by

αĝ(Z) =

ĝ(∥Z∥−1
∞ ) = co g̃(∥Z∥∞), if Z ∈ Qĝ = {Z ∈ D : ∥Z∥∞ < 1/β},

∞, otherwise,

is convex and L1-lower semi-continuous. Thus, αg ≥ coαg ≥ coαĝ = αĝ, which

implies Qαg ⊂ Qcoαg ⊂ Qαĝ
. Since Qαg

= Qαĝ
= {Z ∈ D : ∥Z∥∞ < 1/β}, the

result follows.
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