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The subcritical transition to turbulence, as occurs
in pipe flow, is believed to generically be a phase
transition in the directed percolation universality
class. At its heart is a balance between the decay rate
and proliferation rate of localized turbulent structures,
called puffs in pipe flow. Here, we propose the first-
ever dynamical mechanism for puff proliferation—the
process by which a puff splits into two. In the first
stage of our mechanism, a puff expands into a slug.
In the second stage, a laminar gap is formed within
the turbulent core. The notion of a split-edge state,
mediating the transition from a single puff to a two-
puff state, is introduced and its form is predicted. The
role of fluctuations in the two stages of the transition,
and how splits could be suppressed with increasing
Reynolds number, are discussed. Using numerical
simulations, the mechanism is validated within the
stochastic Barkley model. Concrete predictions to test
the proposed mechanism in pipe and other wall-
bounded flows, and implications for the universality
of the directed percolation picture, are discussed.

1. Introduction
How pipe flow becomes turbulent, a seemingly mundane
phenomenon, has been a lasting puzzle for more
than a century [1]. As first recognized by Reynolds,
pipes have a transitional flow regime, where localized
turbulent structures and laminar flow coexist [2–4].
However, a clear understanding of the nature of
these structures, called puffs, and of the transition to
turbulence with increasing Reynolds number Re, has
only emerged in the past decade [5–7]. The current
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Figure 1. Illustration of puff decay and splitting mechanisms. (a) Decay mechanism—starting from a puff the system passes
close to the decay edge before turning laminar. (b) Splitting mechanism—in the first stage, the puff expands into a slug with
a turbulent core; in the second stage, a laminar gap is formed within the core. The trajectory passes close to the split edge.
Trajectories are taken from the stochastic Barkley model. (Online version in colour.)

view is that it is an out-of equilibrium phase transition lying in the directed percolation
universality class [8], and moreover that it is the ubiquitous route to turbulence for wall bounded
flows.

For pipe flow, the extremely long time scales and length scales involved prevent a direct
confirmation of this picture [9]. It has, however, been confirmed in other wall-bounded flows—
which share much of the phenomenology of pipe flow [10,11], and where the critical point is more
accessible [11–15].

Puffs are the basic degrees of freedom in the transitional picture. The fraction of the pipe
occupied by puffs determines the level of turbulence, which is the order parameter for the
transition. The absorbing state, required for a directed percolation transition, is the laminar flow:
turbulent puffs cannot be spontaneously excited from it. The spatial proliferation of turbulence
can thus only occur through puff splitting—a rare and random process by which two puffs are
generated from a single puff. This process, however, competes with random decays of puffs,
returning the flow back to the laminar state. The opposing tendencies with Re of these two
processes bring about the critical point: decays become rarer with increasing Re, while splits
become more frequent, with the critical point occurring roughly where the rates of the two balance
[5,7].

The underlying dynamics controlling puff decays are relatively well understood, as sketched
in figure 1a. They are driven by rare chaotic fluctuations which push the system across a phase
space boundary between the laminar and puff state, the so-called edge of chaos [16–19]. On the
way, the system passes close to a state which lies on this edge [20–23], here termed the decay edge,
whose single unstable direction mediates the transition.

A comparable dynamical understanding of puff splitting is currently lacking. The directed
percolation picture is predicated on splits becoming more frequent than decays with increasing
Re; however, in the absence of a mechanism for puff splits, it remains unclear if that is the general
rule and under what circumstances this type of transition could be absent. In this work, we
propose the first-ever general mechanism for puff splitting and discuss how it can be suppressed.
The mechanism, sketched in figure 1b, is a two-stage process: in the first stage, fluctuations drive a
puff to expand through a structure called a slug. Slugs are observed at higher Re, where puffs are
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Figure 2. At Re< Reslug, puffs are stable (a). For Re> Reslug, turbulence expands via slugs (c). Slugs also exist for Re< Reslug,
but they retract into a puff instead of expanding (b). Realizations taken from the stochastic Barkley model. (Online version in
colour.)

absent, and are similar to puffs except for their expanding core of homogeneous turbulence, see
figure 2c. At the transitional Re we are considering here, we argue that such structures still exist
and would contract as illustrated in figure 2b. To expand, they must be driven by rare fluctuations.
In the second stage, when the slug is wide enough, a laminar pocket forms within the core,
separating it into two parts, each of which evolves its own puff. We suggest that this transition is
mediated by a state we call the split edge, lying at the boundary between a one-puff and a two-puff
state. In the following, we motivate the viability of this picture for pipes and other wall-bounded
flows sharing the same phenomenology. Some of the ingredients in our mechanism have not been
directly observed in these flows; we explain why we believe they should be present. We validate
the proposed mechanism within the stochastic Barkley model [6,7], presenting results taken from
simulations, and leave a dedicated study of shear flows by direct numerical simulations to future
work. Finally, we identify how the proposed split mechanism could be suppressed, discussing
possible signatures.

2. The slug-gap-split mechanism

(a) Expansion stage
We begin by motivating a regime of Re where slugs and puffs coexist for pipe (and duct) flow.
A slug is a structure interpolating in space between a homogeneous turbulent state at its core,
where turbulence production balances turbulence dissipation, and laminar base flow at its sides.
Slugs are observed at Re > Reslug, where they replace puffs. It is also observed that the expansion
rate of a slug grows continuously with Re, starting from zero at Re = Reslug [6,24]. We argue that
this continuous transition implies that homogeneous turbulence can first be sustained at Re <

Reslug (referred to as a masked transition in [6]), here denoted by Returb, see figure 3. Indeed,
that the relative front speed for slugs continuously increases from zero at Reslug implies that the
transition from slugs to puffs with decreasing Re has to do with a change in front speed, rather
than with the disappearance of homogeneous turbulence below Reslug. If Reslug was indeed the
point where homogeneous turbulence is first sustained, one would not generically expect front
speeds to match there.
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Figure 3. Bifurcation diagram (sketch) for transitional pipe flow. Green shaded region: applicability region of the proposed
split mechanism. Attracting states are solid lines, unstable edge states are dotted. Right column: sketches of the corresponding
states. In the deterministic Barkley model used here rturb = 0.667 and rslug = 0.726. (Online version in colour.)

Thus, slugs should be well defined dynamical states also in the range Returb < Re < Reslug,
developing when homogeneous turbulence and laminar flow are brought into spatial contact.
The transition from slugs to puffs with decreasing Re is then a consequence of the expansion rate
of a slug becoming negative in this range, as is consistent with a continuous decrease in relative
front speed starting from zero at Reslug. We thus expect that, once excited, a slug would contract
and turn into a puff, as is illustrated in figure 2b. Such a contraction of slugs means that laminar
flow overtakes homogeneous turbulence for this range of Re, implying that the turbulent state is
metastable [8].

Note that we expect contracting slugs to be hard to observe in direct numerical simulations or
experiments: chaotic fluctuations would quickly split a slug, through the mechanism explained
below, if it is too wide. Indeed, contracting slugs have not been observed in shear flows to date.
They are also hard to observe in the Barkley model for the classical parameters used in [7], where
the noise level is much higher than the one we use in figure 2. However, if narrow enough, a
contracting slug should be an observable dynamical state below Reslug.

For the split mechanism, we propose that the most likely way to expand a puff is for random
fluctuations to overcome the retraction of the slug. The first stage of our mechanism is thus the
expansion of a puff, via rare chaotic fluctuations, into a slug with a wide enough turbulent core.
This first stage is accessible at Returb < Re < Reslug.

(b) Gap formation stage
The second stage corresponds to the transition from a slug with a turbulent core to a state with two
puffs. For this stage, only the centre of the slug, namely its turbulent core, is relevant. Within this
core, to end up with two separated puffs, a laminar gap must be formed by chaotic fluctuations.

When viewed locally, the creation of a laminar gap within turbulent flow is a transition in
its own right. Namely from spatially homogeneous turbulence everywhere in the pipe, into a
state with some laminar flow present. Indeed, homogeneous turbulence should be metastable for
Re < Reslug: a laminar-turbulent front would overtake the homogeneous turbulent flow, so that an
opened laminar gap would expand and the state would not return to homogeneous turbulence.
Along this transition, there should exist a minimal local perturbation of the homogeneous
turbulence which will open a gap, and a corresponding mediating edge state: the gap edge, see
figure 3.

We expect the gap edge to take the form of a local decrease of turbulence down to a threshold
value. A further decrease of turbulence would widen the gap until laminar flow is formed, while
an increase of turbulence would close it back. In that sense, the gap edge is the minimal nucleus
of laminarity to create a lasting gap, mirroring the decay edge between laminar flow and a puff,
which is the minimal nucleus of turbulence to create a turbulent puff.
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Figure4. Sketchof thephase space, transitions andedge-states. Fromthepuffbasin (red region), the systemcandecay through
the decay edge state into the laminar basin (green region). Alternatively, a puff can split, transitioning through the split edge
state into the two puff basin (orange region). The split transition (blue line) consists of: (i) a slug driven by noise to expand,
otherwise deterministically contracting (black dotted line), (ii) gap formation within the slug. This gap creation (red dotted) is
the same as in the transition out of the homogeneous turbulence basin (blue region). (Online version in colour.)

The terminology gap edge implies that we expect this state to lie on a leaky basin boundary
between two long-lived states. Indeed, for periodic boundary conditions, that would be the leaky
boundary between a puff and a homogeneous turbulent state (which can thus be thought of as
the edge of homogeneous chaos). Such a leaky boundary could form as a result of a boundary
crisis, where the homogeneous turbulence state touches its basin boundary with the puff, making
transitions to the puff state possible. A boundary crisis is also the mechanism believed to give
rise to puff decays. Those are mediated by the decay edge, passing through the leaky boundary
between the laminar and puff state [16,17]. From this point of view, a contracting slug is a
dynamically favourable direction from the boundary between homogeneous turbulence and a
puff, where the gap edge lies, to the puff see figure 4.

To summarize, we argue that after the expansion into a slug, the second stage on the way to a
puff split is the above-described gap creation, occurring in the turbulent core of the slug.

(c) The split edge state
Viewed as a whole, the split transition requires crossing the boundary between one and two puffs,
motivating yet another edge state—the split edge, see figure 4. Combining the two stages of the
mechanism, the split edge should roughly take the form of a slug with a gap edge in its core,
exactly wide enough to fit it, as sketched in figure 1. Indeed, local chaotic fluctuations of the gap
edge along its unstable direction can either widen it, inducing a split, or close the gap, forming
the core of a slug, which would then retract into a puff.

Here, we are suggesting the existence of a leaky boundary between a single puff and a two-
puff state. Transitions from the two-puff state to a one-puff state are quite natural: they could
occur through a decay of one of the puffs, implying an edge state of the form of a puff + decay
edge. Such transitions would then be related to a boundary crisis where the two-puff state
touches the boundary. However, such an edge state does not necessarily allow the opposite
transition, from a single puff to two, since the decay edge cannot be spontaneously excited from
laminar flow. Instead, we expect such transitions to be mediated by the proposed split-edge state,
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corresponding to a boundary crisis where the two-puff state touches the boundary. This might
explain the exponential distribution of transitions times from the one-puff to the two-puff state
observed for puff splitting [5]. The leaky boundary between a one-puff and a two-puff state can
thus include two embedded edge states, one for each direction. This complicates splitting events,
since after reaching the two-puff basin, the system can recross the boundary back to a single puff
state, giving rise to near-split events.

(d) Role of fluctuations
In the proposed mechanism, fluctuations have a double role: first, they drive the puff to become
a slug and subsequently expand it. Second, when the core of the slug is wide enough to facilitate
a gap edge, fluctuations drive the turbulence in the slug core below a threshold. It then generates
an expanding laminar hole, with the two remaining segments of turbulence naturally evolving
into puffs. Clearly, the expansion stage becomes more likely as Re increases, slugs contracting
increasingly slower as Reslug is approached. On the other hand, gap creation becomes less likely
with increasing Re, since the homogeneous turbulent state becomes more stable. The latter trend
is opposite to observations in straight pipes [5], implying that if our mechanism is at play, the gap
creation is not the limiting factor in its splits. Finally note that the sustainment of the two-puff
state at the end of the transition may also depend on fluctuations: the decay probability of the
downstream puff is increased by close proximity to an upstream puff [7,25], causing near-split
events [26] (electronic supplementary material).

3. Results for the Barkley model
In the remainder, we will demonstrate the relevance of the slug-gap-split mechanism focusing
on transitional turbulence in the Barkley model. Each step of the analysis we perform could
also be applied to direct numerical simulations of the Navier–Stokes equation, with appropriate
adjustments. However, as it is significantly more computationally expensive to generate samples
for the latter, here we limit the investigation to the Barkley model. This model is known to
successfully reproduce both qualitative and quantitative features of pipe and duct flow [6], relying
on minimal modelling ingredients. Moreover, in the presence of stochastic noise, the model also
goes through a directed percolation transition, facilitated by puff decays and splits [7]. Note
that the deterministic Barkley model does not exhibit chaos nor proper turbulence, but rather
captures the underlying phase space structure. In particular, puffs and homogeneous turbulence
are deterministic states in the model. Transitions between basins of attraction are then made
possible by the inclusion of the noise, which models chaotic fluctuations and allows for leaky
boundaries.

The model is one-dimensional, describing the coarse-grained dynamics along the pipe
direction x, and employs two variables: the mean shear u(x, t) and turbulent velocity fluctuations
q(x, t) [27]. Alternatively, u(x, t) can be interpreted as the local centerline velocity, which becomes
smaller in the presence of turbulence—namely dropping down to the mean flow rate Ū, and is
largest for laminar flow at U0.

The Barkley model is given by{
∂tq + (u − ζ )∂xq = fr(q, u) + D∂2

x q + σqη

∂tu + u∂xu = ε[(U0 − u) + κ(Ū − u)q],
(3.1)

where fr(q, u) = q(r + u − U0 − (r + δ)(q − 1)2). The parameter r is the most important, and plays
the role of Re. The parameter D controls the strength of turbulence diffusion, ε the (slow)
relaxation of the mean flow to the base laminar profile, κ the influence of turbulence on the mean
flow profile (blunting it), and δ provides a finite threshold keeping the laminar base flow stable in
the limit r → ∞. Lastly, η is a spatio-temporal white noise with amplitude σ . It is multiplicative to
mimic the proportionality of chaotic fluctuations in actual flow to the turbulence level present at
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Figure 5. Deterministic edge state between one and two puffs, the split edge (solid), overlaid are a slug (dashed) and a gap
edge (dotted). Configurations are shown in space (a) and in the u-q-plane (b). (Online version in colour.)

that point (importantly, turbulence cannot be excited from laminar flow where q = 0). The values
of parameters we choose for our numerical experiments is discussed in §5. The Barkley model
has been demonstrated to quantitatively capture features of transitional pipe flow remarkably
well [6,7].

In the model, the base laminar flow and homogeneous turbulent state (as is present in the
core of the slug) are fixed points: q = 0, u = U0 and (qt, ut) correspondingly. Our focus is the range
rturb < r < rslug where the turbulent fixed point coexists with puffs. As sketched in figure 3, in the
model the turbulent fixed point appears in a saddle node bifurcation at r = rturb together with an
unstable travelling wave—the gap edge state described above. See [28] for a full classification of
states.

Before turning to stochastic transitions, we analyse the split edge state lying at the boundary
between a one-puff and a two-puff state. We locate the split edge state using edge tracking within
the deterministic model. Spatial profiles of q, u for the split edge are shown in figure 5a. To confirm
the proposed mechanism is at play, we have also obtained the gap edge for the model via edge
tracking. Superposing the gap edge and a slug with a (momentarily) equal spatial extent onto the
split edge indeed gives an almost exact match. This match between the three objects is also shown
in a plot in the q-u-plane in figure 5b.

4. Stochastic transitions in the Barkley model
Decay and split transitions are made possible via random fluctuations—chaotic in pipe flow and
stochastic in the Barkley model—whose rare realizations bring them about. These transitions
are thus probabilistic in nature, and so must be the comparison to an underlying dynamical
mechanism. We first demonstrate our method of analysis and the required probabilistic notions
for decay transitions, which are simpler in nature and are already well understood. We then apply
these ideas to test the slug-gap-split mechanism.

(a) Puff decay
We set out to confirm that the decay transition is a trajectory connecting the puff state to the
laminar state, crossing the boundary through the decay edge. To that end, we collect many decay
trajectories in the stochastic Barkley model. The average decay path is shown in figure 6 as a
space–time plot of the average value of q along the transition. It is presented in the frame of
reference moving at the average speed of a puff. A visual signature that the trajectory goes
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Figure 6. Transitions in the puff regime, rturb < r < rslug in the Barkley model where r is a proxy for Re. (a) Left: q(x, t) of the
average stochastic decay trajectory in space–time. Right: average committor along the transition. (b) Left: average stochastic
decay edge, corresponding to the dashed line in (a), on top of individual realizations in transparent colour. Right: deterministic
decay edge. (c) Left: average stochastic split trajectory. Right: average committor. Inset: average spatial profile at an initial
stage of the transition, having a slug-like structure, along with an average puff. (d) Left: average stochastic split edge, on top of
individual realizations. Right: deterministic split edge.

through the decay edge is the increase in speed during the decay, the decay edge moving at a
speed ≈ U0 − ζ [7,22,24].

In order to speak about an edge between different states in noisy, stochastic datasets, we further
introduce the notion of the stochastic decay edge: this is the set of configurations with the property
of having an equal probability to transition to laminar flow or to become a puff. Since all observed
decay events happen in a very similar manner, the average of these stochastic decay edge states is
a meaningful state itself. Specifically, we obtain the stochastic edge in the following way: given an
observed decay trajectory we initiate many stochastic simulations from configurations along it,
and measure the likelihood of continuing on the transition. This defines the committor for the given
trajectory (see §5). We then identify the configuration from which there is an equal probability to
transition or return back, i.e. where the value of the committor is 1/2. Repeating this for many
decay trajectories yields the set of configurations defining the stochastic edge.

We expect the average stochastic edge state to be similar in structure to the deterministic
decay edge. This is confirmed in our numerical experiments. Figure 6b (left) shows the spatial
profiles of the average stochastic decay edge, averaged over the different trajectories, on top of
individual realizations. For comparison, a deterministic decay edge is shown in figure 6b (right).
In figure 6a, we show the average transition path alongside the committor, averaged over decay
trajectories. Examples of the committor for individual trajectories are presented in the electronic
supplementary material.

(b) Puff splitting
We can now apply these same ideas to the puff splitting transition. Concretely, to test the relevance
of the slug-gap-split mechanism to stochastic transitions in the Barkley model, we will use the
average transition path obtained from random puff splits. In figure 6c, we present this average
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path, where trajectories are aligned according to the location of the stochastic split edge. The
latter is obtained using the same algorithm as for the stochastic decay edge; the corresponding
average committor is shown in figure 6c. Note the striking resemblance of the average transition
to a single realization of a band split in channel flow in a narrow domain [26,29]. The average
transition presented in figure 6c indeed reflects the typical splitting trajectory in the Barkley
model, such as that in figure 1b; outliers were included in the averaging but had a negligible
effect. Examples of outlier splitting trajectories are shown in the electronic supplementary
material.

The average transition path clearly shows the expansion stage of the slug-gap-split
mechanism: as seen in the inset of figure 6c, prior to the creation of the laminar hole the puff
extends into a wider turbulent structure. Moreover, this average structure resembles a slug,
containing a small homogeneous region most clearly seen in the u profile. Furthermore, the
structure always has the same spatial extent right before gap formation, indicating an expansion
stage up to the necessary length. To test the gap formation stage, we now compare the average
stochastic split edge state to the deterministic split edge. The stochastic split edge is presented in
figure 6d (left) on top of individual realizations, while the deterministic edge is shown figure 6d
(right). There is very good qualitative agreement between the two. Note that the stochastic noise
induces parameter shifts, e.g. of rslug, compared with the deterministic model [7] (electronic
supplementary material); thus we keep the comparison qualitative.

For the parameters used here, we observe that the main bottleneck for the transition is the first
stage, expansion of the slug. Indeed, once the slug is wide enough, a laminar gap is likely to form,
which smears the gap within the stochastic split edge in figure 6d (left). The likelihood of splits is
thus dominated by the expansion stage, whose likelihood increases with r, as is consistent with
observations for the model.

5. Methodology for the Barkley model analysis
In the following, we will describe the numerical algorithms we implemented in order to obtain
critical points of the dynamics (i.e. stable fixed points and edge states), as well as the methodology
used to obtain information about the stochastic transition, the ensemble of transition trajectories,
the committor function, and the stochastic edge state.

(a) Stable states
In order to find the stable states (turbulent, puff, laminar) of the Barkley model, we
numerically integrate it with parameters ζ = 0.8, δ = 0.1, ε = 0.1, κ = 2, U0 = 2, Ū = 1 and
D = 0.5, additionally with small diffusion coefficient for the velocity Du = 10−2 which is not
expected to affect the results [7]. The noise amplitude σ is σ = 0 for deterministic simulations
and σ = 0.5 for stochastic simulations, except in figure 2 where σ = 0.2 for demonstration
purposes. All numerical simulations are performed in a periodic spatial domain x ∈ [0, L], with
L = 100.

The functions q(x) and u(x) are discretized on an equidistant computational grid with Nx =
128 or Nx = 256 grid points. Spatial derivatives are computed pseudo-spectrally, by using the
fast Fourier-transform. We use exponential time differencing (ETD) [30] as a temporal integrator,
which is exact for all linear terms, and first order for the nonlinear (reaction) terms. The time-
step is chosen between 	t = 10−2 and 	t = 10−3. In order to include stochasticity, we generalize
first-order ETD to include the stochastic increment, similar to [31,32].

The puff, gap edge and split edge are travelling at fixed speed along the pipe, and are therefore
not proper fixed points but instead limit cycles of the dynamics. We fix for that by transforming
into a moving reference frame adaptively, so that the centre of turbulent mass of the objects
remains stationary.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

17
 O

ct
ob

er
 2

02
2 



10

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220218

..........................................................

(b) Edge tracking algorithm
To find the unstable fixed points, i.e. the edge states between puff and laminar flow (the decay
edge), between puff and two puffs (the split edge) and between turbulent flow and puff (the
gap edge), we employ edge tracking. This algorithm integrates forward in time two copies of
the system, one in each basin of attraction between which the edge state is to be found. The
two copies are kept close via a bisection procedure to converge back to the separating manifold
should the states drift too far apart. Effectively, this procedure integrates the system’s dynamics,
but restricted to the separating manifold between two stable states. The individual fixed points
(laminar, puff, turbulent, two puffs) are identified via their turbulent mass q̄ = ∫L

0 q(x) dx.

(c) Stochastic transitions
(i) Ensemble of transition trajectories

Including stochasticity into the Barkley model, σ �= 0, allows the model to transition between
different metastable states. For example, the puff state is always coexistent with the laminar state,
and fluctuations can drive the puff into eventual decay. Numerically, we generate an ensemble
of transitions between two states by initializing in one state, and then simulating the stochastic
dynamics until another state is observed.

For decays, we identify whether a configuration has entered the laminar state or the turbulent
state by checking whether its turbulent mass q̄ is within an interval of the expected turbulent
mass of the laminar state q̄ = 0 or the turbulent state q̄ = qt. For the one puff state, we similarly
compare the configuration’s turbulent mass to that of the average puff. It is less straightforward
to identify the two-puff state. Here, we flag a potential puff split event if the fifth Fourier-mode of
q exceeds a threshold, which for our parameters was empirically identified to be sensitive to the
formation of a gap. Whether a split has indeed taken place is then later checked when computing
the committor along the transition and seeing whether it ever reaches one; see §ii. This way, we
avoid flagging ‘near-split’ events, where a turbulent region separates from the main puff, but is
too small to eventually survive.

(ii) Stochastic edge tracking

In order to compare edge states between the deterministic model (where edge states can be exactly
found, but transitions never happen), and the stochastic model (where noise-induced transitions
can be observed, but fixed points can only be identified on average), we develop the notion of the
stochastic edge. The underlying intuition comes from the forward committor function known in
transition path theory [33,34]: given a stochastic process Xt on some state space Ω , consider two
subsets A ⊂ Ω the reactant state, and B ⊂ Ω the product state. We are interested in transitions
of the process from A to B. The (forward) committor p+ : Ω �→ [0, 1] for the transition A → B
denotes the probability that the process visits B next, before visiting A. Intuitively, the committor
measures how much the system is ‘committed’ to performing the transition. While the committor
can be precisely defined for both stochastic and deterministic processes [34], its computation
through solving a Fokker–Planck type equation is prohobitive for any large system. Instead, for
stochastic systems such as the Barkley model, the committor can be estimated by sampling many
realizations of the process and counting the occurrences of the transition event.

After generating an ensemble of transitions between two attractors as described above in §i,
we can set out to numerically compute the committor along these transition trajectories. One can
numerically find the committor of a configuration (q, u) via sampling: initialize the simulation at
(q, u) and sample many times, measuring whether we visit the product state before the reactant
state. We do so for many states along each individual transition trajectory. For example, for a
stochastic transition between the puff and laminar flow, close to the puff the committor will be
almost zero. Close to the laminar state, the committor will be almost one. In between, there is a
region where the committor takes intermediate values. We define the stochastic edge of a transition
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to be a state at which the committor takes the value 1
2 . Note that for a stochastic transition a

committor value of 1
2 can be attained multiple times per transition. In our case, we pick as the

relevant stochastic edge the state where the committor is closest to 1
2 throughout the transition,

and take the first such state if there are several.
In practice, for the puff decay transition, we define both the set A, the puff, and the set B, the

laminar state, by thresholding its turbulent mass q̄. For the puff split transition, we define the
set A, the one puff state, and the set B, the two puff state, by thresholding the second cumulant
under q, i.e. 〈x2〉q − 〈x〉2

q . This quantity measures to what degree turbulent mass is distributed
away from the centre of turbulent mass, 〈x〉q. It is therefore small for the localized one-puff state,
but large for the two-puff state, where the centre of mass is located somewhere between the two
puffs. The quantity is also large for extended slugs without a gap which might occur during a
transition event. To avoid mis-identifying a slug for two puffs, we check the threshold criterion
for a prolonged time interval. If the configuration remains above the threshold very long, then it
is almost guaranteed to be in the (long lived, stationary) two-puff state, instead of the (short-lived,
transient) extended slug state or other mixed states, which quickly decay.

(iii) Averaged stochastic transition path

In order to obtain an average stochastic transition path, we average all individual trajectories of
our ensemble of transition trajectories obtained as described in (i). We average the committor
of individual trajectories over the ensemble of transition trajectories, by aligning in time the
numerically measured committor at the stochastic edge. Note, though, that the average committor
is not identical to the committor of the average transition trajectory. We nevertheless show the
average committor to give an impression of how fast the transition happens: the sharpness of the
transition from 0 to 1 indicates the time scale of the transition itself.

6. Conclusion and discussion
The subcritical transition to turbulence is generically characterized by the appearance of localized
turbulent patches, called puffs in pipe flow, whose proliferation brings about a sustained
turbulent phase. Here, we have presented the first detailed proposal for the dynamics underlying
the proliferation process: a dynamical puff-splitting mechanism termed the slug-gap-split
mechanism. We have motivated the relevance of this mechanism for pipe flow, and confirmed
its presence in the Barkley model. The proposed slug-gap-split mechanism implies concrete
predictions, making the proposal testable. Moreover, it introduces a novel framework within
which previous observations could be interpreted, and alternatives for other wall-bounded flows
could be explored. We now discuss these issues in detail.

Previously, splitting had been observed to occur through the following process [5,9,35]: the
puff continuously emits vortices (turbulence) from its downstream edge, then, if this patch of
vortices manages to persist and sufficiently separates from the parent puff, it seeds a new puff.
These observations could be consistent with the slug-gap-split mechanism, with the growth of
the daughter puff occurring after the crossing of the phase space boundary between a single
puff and two. The possible subsequent decay would then correspond to a near-split event, a
recrossing of this boundary. Still, such observations could also imply that a different mechanism
is at play, whereby a puff emits a turbulent patch without going through an expansion stage first.
An expansion stage where a small core of balanced turbulence forms within the puff is thus a
distinct prediction of the slug-gap-split mechanism. Only then does a laminar gap appear in this
picture, and the structure evolves towards two puffs. The latter process can then sometimes fail
if the downstream puff is snuffed out by the upstream one. It is worth noting that the splitting
process looks much less symmetric in pipe flow compared to that in the Barkley model. That,
however, might be a visual artefact: the Barkley model does not capture the very steep increase in
turbulence level observed at an upstream front, making the puff appear more symmetric and thus
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also the splitting process.1 This quantitative feature should not influence the applicability of the
slug-gap-split mechanism, which does not rely on it. In fact, the results presented in [35] for the
centerline velocity during a split in pipe flow do seem to indicate a split through the formation of
a laminar gap within turbulent flow, though further study is needed.

To distinguish between the different mechanisms that could be at play for splits, the analysis
outlined above for the Barkley model could be carried out in direct numerical simulations. First,
the split edge state could be located using edge tracking, as previously done for the decay edge
state [20,22,24]. Second, a probabilistic analysis of split transitions using the committor between
one and two puffs, akin to the one introduced here, could also be carried out. It would reveal
the average transition path and the stochastic edge state, which could be compared with the
expectations from the slug-gap-split mechanism. Note that the stochastic edge state, defined
here directly via transitional trajectories, is not a priori identical to the split edge state found via
edge tracking. The comparison between the two would test the role played by the latter in the
transitions.

The slug-gap-split mechanism is restricted to the range Returb < Re < Reslug. This suggests
a novel possibility that more than a single splitting mechanism exists, and that different
mechanisms could dominate at different Re. It would thus be interesting to assess Returb for pipe
flow, e.g. using a minimal flow unit [36,37], and comparing it to the Reynolds number at the
directed percolation critical point. Indeed, while we expect our mechanism to dominate close to
Reslug, it is not guaranteed to survive down to the critical point. At lower Re it could in principle
be replaced by a process whereby a puff emits a turbulent patch, as described above. The split
edge state would then take a different character (electronic supplementary material).

While we have focused on pipe flow so far, other wall-bounded flows which exhibit a
subcritical transition to turbulence (and have a single extended direction) are captured within the
same framework. Indeed, splits in Couette and channel flow in a narrow domain seem to follow
the proposed mechanism: an expansion stage is observed, followed by the formation of a laminar
gap [12,26,29]. Generally, the key condition for the slug-gap-split mechanism to be relevant is
for the expansion rate of turbulence to continuously increase with Re, starting from zero at the
transition from puffs to slugs.

Our work offers a novel point of view on how the phenomenology of other wall-bounded
flows could differ from that of pipe flow. In particular, we now discuss a mechanism by
which splits could be suppressed compared to decays, and therefore a directed-percolation-type
transition would be impossible. This could be relevant for slightly bent pipes [38,39]. In the slug-
gap-split mechanism, the likelihood of the transition is the multiplication of that of the expansion
stage, which increases with Re, and of the gap creation stage, which decreases with Re. If the
latter is sufficiently high close to Reslug then transitions would become more likely with Re, as
observed in pipes. However, splitting could be limited by gap creation if such creation becomes
improbable at a sufficiently low Re. Then, splits would become less likely with increasing Re and
would be most difficult to observe close to Reslug. The occurrence of a directed percolation critical
point requires that the probability of puff splitting roughly balances that of puff decay. Such a
balance is not guaranteed if, for large enough Reynolds numbers, both decays and splits become
increasingly improbable with Re. Splits could then remain less probable than decays for the entire
range of Re.

A signature that gap creation is indeed a limiting factor for puff splits would be the absence
of an intermittent turbulent regime above Reslug. This regime, observed in pipe flow [40], is
characterized by laminar gaps randomly opening within the homogeneous turbulent state,
persisting and randomly closing. Indeed, if reaching the gap edge is prohibitively improbable
for splits, such laminar gap excitations would also be suppressed [28]. In fact, such a correlation
seems to exist for slightly bent pipes [38], providing a tantalizing connection to the suggested
scenario.

1Indeed, when the turbulence level at the upstream front is accentuated for the Barkley model, as done in [7], splits in the
Barkley model look very similar to those in pipe flow
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