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Abstract

Randomised clinical trials (RCT) are the bedrock of evidence-based medi-

cine and remain the gold standard in determining the efficacy and safety of

investigational new drugs in well-defined populations. They have high internal

validity and remain crucial for securing regulatory approval. However, RCTs

potentially lack external validity because of the exclusion of subpopulations

such as the elderly or comorbidities. Time constraints limit assessing long-term

effects, and sample size may be inadequate to identify new biomarkers for

personalisation. Real-world evidence (RWE) can complement RCTs’ evidence

by providing effectiveness and safety data in a wide range of outcomes repres-

entative of the everyday clinical setting. Similarly, the concept of real-world

data (RWD) is typically associated with big datasets that advance current

medical practice towards personalisation. However, if used only to predict the

most beneficial treatment choice, the best-case scenario with RWE analysis

could match the current medical practice. The key challenge in analysing

RWD is that individualised treatment effects are never observed. Therefore,

its non-randomised, observational nature is prone to biases from unrecognised

factors. To properly use RWD requires finding better solutions to the unique

challenges of working with clinical data: (1) a significant amount of missing

data, (2) heterogeneous data, (3) seldom exist a ground truth. This dissertation

addresses these specialities constructing a formal causal inference framework

to enhance the statistical analysis of RWD. We focus on three problems:

• Missing data imputation

• Accurately predicting the consequences of treatment in biomarker-defined

populations
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• Assessing how conclusions might change in the presence of hidden factors

To appropriately tackle these problems, we propose new methodologies for

RWD analysis:

1. We formalise the missing data problem to design a machine-learning

algorithm to perform missing data imputation.

2. We develop Bayesian modelling techniques for treatment effects heterogen-

eity of survival outcomes introducing a new methodology named survival

Gaussian processes, which are particularly well-suited for distributed

varying treatment effects inference.

3. We extend the Bayesian approach to infer causal bounds for time-varying

effects probabilistically.

To demonstrate the technique’s utility, we analyse two large real-world cohorts

of non-small cell lung cancer patients with epidermal growth factor receptor

(EGFR), anaplastic lymphoma kinase (ALK), kirsten rat sarcoma (KRAS),

B-RAF proto-oncogene (BRAF), and immunotherapy marker programmed

death-ligand 1 receptor (PD-L1) status of biomarker and treated with immune

checkpoint inhibitors (ICI). The first study tackled the missing data problem by

developing a new imputation algorithm for multiple imputations in synthetic

and real-world examples of biomarker status missingness. The second study

covered the impact of ICI in the survival time of NSCLC patients stratified

by PD-L1 expression, handling missing data with the first study’s results, and

embracing the Bayesian approach for modelling heterogeneous treatment effects

and time-varying effects. We show that the proposed methods outperform

state-of-the-art methods for missing data imputation in complex datasets with

non-linearities, pooling across PD-L1 per cent staining difference with Gaussian

processes achieves better out-of-sample performance than conventional interac-

tion models and estimates of causal bounds are critical for understanding the

impact of unobserved confounding in analysing RWD.
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Chapter 1

Introduction

The rapid adoption of real-world data (RWD) presents unprecedented oppor-

tunities to advance clinical research in oncology. Since 2008, the adoption of

electronic health records in the United States has grown 9-fold, from 9.4% in

2008 to over 84% in 2016 [9]. The data collected as part of the clinical man-

agement of cancerous diseases include clinical assessments, patients’ general

well-being, laboratory tests such as biomarker tests, proteomics and genomics

data. These data represent the patient outcomes, and data scientists can

analyse them to address oncology research challenges and study the treatment

response to anticancer drugs.

In addition to having data, there have been notable breakthroughs in

machine learning and computational statistics to quantify real-world data

patterns, such as automatic differentiation [10], high-dimensional sampling

algorithms for automatic inference [11], and symbolic math libraries [12, 13].

However, it is only recently that we have started to see translations of these

research ideas into clinical practice [14]. To fully optimise the opportunities that

RWD present, researchers need to transform machine learning into discovery

tools by taking on complex problems such as conducting robust inference from

incomplete, missing data, censored survival analysis [15], and heterogeneous

data [16].

First, missing data is a universal problem in analysing RWE datasets. In

RWE datasets, there is a clinical interest to understand which covariates best

correlate with clinical outcomes, such as disease progression or survival. A

substantial difficulty in real-world settings is that several covariates may be

missing in the dataset, hiding meaningful information in the study. There are

many practical implications when missing data are present; for example, it can

lower the power, affect the precision of the confidence intervals for parameter

estimates, and lead to biased estimates. Hence, excluding the underlying value

of missing data may invalidate the results.

Second, analysing RWD requires reasoning about causality. Most research
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in machine learning has resulted in predictive problems [12]. However, if we

use the current clinical RWD to predict the most beneficial treatment choice,

the best-case scenario could potentially match the current medical practice.

Often the questions that we want to answer when it comes to RWD are not

predictive, but causal. Clinicians expect to predict patient outcomes based on

the consequences of treatment interventions and patient characteristics.

Third, clinicians place particular interest in biomarkers that modify the

treatment effect. These biomarkers can be effectively used for treatment

personalisation and are essential for developing new anticancer drugs [17].

RWE increasingly has the utility for biomarker sourcing and early patient

stratifications by analysing large datasets to adequately identify new biomarkers

for personalisation. However, individualised treatment effects are not available.

Therefore, one must design a causal model to use observational RWD to tackle

individualised treatment effects questions.

The work in this thesis tackles the problems introduced here in analysing

RWE datasets to enhance clinical research in oncology. We separate the thesis

into theoretical and applications chapters to define a framework to analyse

heterogenous treatment effects from observational data. The second part

advances the applications in RWD and their respective contributions.

1.1 Aims and Objectives

This thesis aims to enhance the usability of RWD by extending machine learning

methods for the inference of personalised treatment effects from observational

RWD. To do so, we explore how to use data-driven models with very flexible

functional forms, such as neural networks [12], ensemble learning [16], and

kernels [18] to model individualised treatment effects improving real-world

model performance.

Currently, several limitations exist for the adequate application of RWE,

especially when there are missing values, many interaction effects or unobserved

confounders. The optimal use of RWD needs the development of methods to

handle the following challenges:

• Missing data that appear as gaps in the dataset that hide meaningful

values for analysis.

• Patients may respond differently to treatments, and better methodologies

are necessary to model heterogeneous data.

• Unrecognised factors potentially overestimate bias of treatment effects.

Therefore, one must develop a bottom-up approach to tackling these challenges

by defining a fundamental causal framework with causal assumptions in a form
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that explicitly invokes the systems properties. Furthermore, the framework

must assess the sensitivity to violations of the assumptions, such as the impact of

unmeasured factors or confounders. To do so, we have the following objectives:

• Address the missing data imputation problem and propose a systematic

approach for the comparison of imputation methods on RWE datasets.

• Present a step-by-step strategy for developing a new imputation algorithm

by adapting state-of-the-art machine learning tools.

• Recognise the impact of heterogeneous treatment effects in new thera-

peutic modalities such as immunotherapy and develop new methods for

predicting treatment response making efficient use of the available data

with sparse biomarker measurements.

• Expand methods for modelling and simulation survival outcomes for

typical RWE datasets where non-linear treatment effects are present,

suggesting that treatment acts as a selection force.

• Develop a framework for conducting sensitivity to unrecognised factors

in survival analysis with censored data.

1.2 Summary and Contributions

The following sections summarises this thesis’ chapters and our contributions

therein:

Chapter 2 : Provides an introduction to causal inference by reviewing a

selection of papers in biomedical science. This thesis’s novelties include using

causal inference tools to evaluate new imputation algorithms and perform

survival analyses that are general for RWE studies. In chapter 2, the author

introduces the topics of causal inference, missing data and survival analyses,

conducting a background and literature review of a list of critical publications

on those topics.

Chapter 3 : Defines the building blocks of causal inference: causal estim-

ands with causal models, statistical estimands with data and corresponding

parameter estimation and identification. The foundations of causal inference

presented allow us to discuss average treatment effects, treatment effects modi-

fication, and individualised treatment effects, which will apply in the RWE

studies developed by the author. Further, we discuss the frequentist and

Bayesian paradigms to statistical inference with two pinnacle examples, the
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Hamiltonian Monte Carlo algorithm [11] and the backpropagation algorithm

[12, 13]. Finally, we discuss the topic of sensitivity analysis and causal bounds.

Chapter 4 : Develops a new imputation algorithm named MITABNET,

which extends recent advances in tabular learning with ANNs [19] for perform-

ing multiple imputations with mixed data types. The author contributes to

developing MITABNET and finding real-world applications in analysing a large

RWE dataset of more than 35,000 NSCLC patients with partially measured

biomarker statuses for epidermal growth factor receptor (EGFR), anaplastic

lymphoma kinase (ALK), kirsten rat sarcoma (KRAS), B-RAF proto-oncogene

(BRAF), and immunotherapy marker programmed death-Ligand 1 (PD-L1).

Using the RWE dataset, we compare the imputation performance of MITAB-

NET with state-of-the-art methods on missing data: predictive mean matching,

expectation-maximisation, factorial analysis, random forest and generative

adversarial networks. We also conduct extensive synthetic data experiments

with structural causal models.

Chapter 5 : Illustrates a causal survival analysis using a Bayesian general

formula to estimate treatment effects with censored outcomes. The author in-

vestigates the concept of non-linear covariate effects modelling with the survival

Gaussian process (GP). Furthermore, it discusses the pitfalls of conventional

proportional hazard models in analysing RWD examples and proposes solutions

by using flexible parametric hazard models and time-varying effects models

from recent literature. Finally, the author expands methods to assess the

impact of unobserved factors on RWE studies and contributes by extending the

optimal treatment selection causal bound in survival analyses. The author ap-

plies the new techniques to an RWE dataset cohort of advanced non-small cell

lung cancer (advNSCLC) patients treated with double-platinum chemotherapy

or immunotherapy.

Chapter 6 : Provides conclusions for this thesis by reviewing our contri-

butions in advancing the concept of personalised treatments in oncology by

enhancing the use of RWD. It provides a review of the most significant results in

our applications of new techniques for missing data and causal survival analysis

in RWE datasets and assesses the extent to which this work accomplishes its

aims and objectives. Finally, it discusses potential applications of the work

presented and future research directions.
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Chapter 2

Background and Literature

Review

The rapid adoption of RWD from the biomedical industry, research institutions

and regulatory bodies has enhanced cancer drug development by transforming

the generation of evidence, augmenting clinical decision making, and support-

ing medical management in oncology. RWD encompasses different data types

that are not collected in conventional randomised controlled trials, including

but not limited to medical records, hospital data and demographic and social

indicators. Researchers can leverage large real-world datasets with machine

learning tools to advance the concept of personalised therapies by, for instance,

identifying specific treatments’ unique biomarkers [20]. Statistical modelling

and machine learning techniques recognise and quantify real-world data pat-

terns, contributing to understanding cancerous diseases’ basis and trajectories.

In this way, real-world evidence provides valuable inputs to inform and im-

prove clinical pathways [21]. To fully optimise the opportunities that RWD

present, researchers need to transform machine learning into discovery tools by

taking on complex problems such as censored survival analysis [15], learning

from pharmacological time-series data [22], inclusively data that are missing

at random [23] and data that are not missing at random with informative

missingness.

2.1 Causal modelling

RWD are observational, regularly retrospective, and biased by clinical prac-

tice, experimentation with patients is limited, and hence, there are multiple

challenges in modelling. Often the questions that we want to answer when

it comes to RWD are not predictive but causal. Furthermore, if we use the

current RWD to predict the most beneficial treatment choice, the best-case

scenario could match the current medical practice [24]. To go beyond clinical
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practice and recognise the heterogeneity in treatment response, we need to

change the question to a causal one. Based on a causal model, we might

guide treatment decisions; however, individuals may respond differently to a

treatment. Therefore, we need to design how to use observational RWD to

answer cause and effect queries.

The causal modelling procedure aims to separate causal patterns from mere

associations [24–28]. To develop a causal model, we use a causal structure, rep-

resenting the directionality of cause and effect in a system. From the generated

causal model, we can reason about the impact of interventions or distribution

changes by eliciting potentially observed outcomes. Consequently, when assess-

ing the intervention’s effect, we assume that the causal model is known and

precisely compute the situations that have not occurred, or ”counterfactuals

outcomes” [29–31]. To be explicit in the difference between causation and as-

sociation, consider the following simple example adapted from [32] represented

in figure 2.1: a population with some individuals treated and some individuals

not treated. On the one hand, association compares the observed outcome on

the population’s treated part against the observed outcome on the population’s

not-treated part. On the other hand, causation compares the hypothetical

outcome of treating the entire population against the hypothetical outcome of

not treating the entire population, i.e. the counterfactual outcomes.

CAUSATION ASSOCIATION

vs. vs.

Population of Interest

Treated Untreated

Figure 2.1: Illustration of the difference between association and causation:
association compares the outcome observed on the population’s treated part
versus the outcome observed on the population’s not-treated part. Causation
compares the hypothetical outcome of treating the entire population versus
the hypothetical outcome of not treating the entire population.

To accurately answer these questions, we need to formulate them as struc-
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tural causal model (SCM) have equivalent formulations via causal graphs

[33–35] and structural equations [36, 37]. Classically, the SCM framework does

not consider feedback between variables, which is especially true for cross-

sectional studies, and outlines the SCM’s causal graph via DAG, first developed

by [33] and refined by [38]. 1 DAGs typically have two components: nodes

and arrows (directed edges). The nodes represent variables (unobservables),

and the arrows causal relationships between them. Analogously, we can derive

the SCM’s structural equation. In the simplest possible case, an SCM has two

random variables X and Y, its DAG takes the form X→ Y, and its structural

equation is given by:

X B fX (UX)

Y B fY (X,UY )
(2.1)

where X is the cause of Y, and UX , UY are independent and identically

distributed (i.i.d) random variables. Generally, Eq. 2.1 is solved by regressing

X on Y. Adding another node Z, and two arrows from Z to Y and to X

respectively,such that X← Z→ Y, gives another simple SCM known as the

”fork” diagram [40], its structural equation given by:

W B fW (UW )

A B fA (UA,W)

Y B fY (UY,W)
(2.2)

where W is a common cause of A and Y and generates a spurious correlation.

We say that the random variable W confounds the impact of A on Y. Once we

recognised the confounds in an SCM, we can de-confound each algorithmically

using the back-door criterion [41]. To de-confound Eq.2.2 we need to collect

data on W to correspondingly adjust, and show that A ⊥⊥ Y |W, read A is

independent of Y given W . Consequently, as long as we know the causal graph,

we can learn the treatments’ causal effect. Unfortunately, the causal graph is

not generally known [35]. Moreover, several SCM may give rise to the same

probability distribution and the same dataset, an inverse problem discussed

in [35, 42]. Research in causal inference is about being transparent about our

assumptions, such as drawing them graphically, so peers understand them and

minimise the number of assumptions we need.

1 Feedback may exist in nature, especially when considering the time-domain, e.g. on
time series [39], DAG is still a useful construct to outline complex SCM.
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Confounding bias

Confounders are variables that affect the treatment decision and also affect the

outcome independently of treatment, i.e. not through its impact on treatment.

Let us return to the toy SCM from equation 2.2, where there are three sets

of random variables: W, including all confounding factors and possibly high-

dimensional; A indicates a binary treatment; Y, the outcome of interest, e.g.

survival time. In this SCM, W is a confounder of the impact of A, which takes

values in [a, a′], on Y. If our interest is in evaluating the impact’s strength of

treatment A on outcome Y in the presence of confounder W, we obtain:

E
[
Ya −Ya′

]
= EW [E [Y |A = a,W] − [Y |A = a′,W]] (2.3)

also known as the adjustment formula, or the back-door criterion [38]. The

notation Ya indicates the outcome we would observe if we set the treatment

to A=a, and the notation E the expected value and denoted what to expect,

on average, over many repetitions.

Using the adjustment formula 2.3, one can identify causal effects such as the

average treatment effect (ATE), given that one measures all the confounders

W. Therefore, to de-confound one needs to collect data on W. The causal

modelling framework may be complex, including any number of variables to

describe more complicated scenarios. Still, only four kinds of confounding

arrangements can ever arise in a DAG, see depicted in figure 2.2 adapted from

[43].

Fork : The confounder figure 2.2a is a variable that is a common cause of two

others [43]. We have seen an example of this junction known as the fork already

back in equation 2.2. Our interest is in measuring the impact of A on Y in the

presence of confounders W. W causes a spurious association between A and Y

unless adjusted using the adjustment formula 2.3. To evaluate whether there

are unmeasured confounding variables, we need to cooperate with clinicians and

leading experts to learn what factors affect treatment decisions and measure

all confounding forks.

Collider : A collider C, shown in figure 2.2b is a common result of A, and Y.

Conditioning on C creates a statistical (spurious) association between A and Y,

such that A ⊥⊥ Y, but A 6⊥⊥ Y |C. A significant inferential effect of the collider

is selection bias [44]. Unmeasured variables can also create colliders [40, 43].

Mediator : A mediator M, shown in figure 2.2c mediates the association

between A and Y. Conditioning on M removes dependency between A and

Y, such that A ⊥⊥ Y |M. A significant inferential effect of controlling for M
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M

Y
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C
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S

(d)

Figure 2.2: Examples of typical SCM’s causal graphs: (a) represents the
structure of confounding where W is a common cause of A and Y; (b) a collider
C is a common result of W, and Y. Conditioning on C creates a statistical
(spurious) association between W and Y. A significant effect of the collider is
selection bias. (c) A mediator M mediates the association between W and Y.
A significant inferential effect of controlling for M is post-treatment bias. (d)
S is a descendant of C, and conditioning on S is like conditioning on C.
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is post-treatment bias, controlling for the consequence of treatment [43]. For

example, post-treatment bias is an inferential threat in RWD analysis [45] if

covariate adjustment is not principled in not including any post-treatment

variables or treatment consequence.

Descendant : The descendant S shown in figure 2.2d is a fourth variable

resulting from either a confound, mediator or collider. Conditioning on S is like

weakly conditioning on its parent variable. Descendants are akin to proxies

when information is not available on the confounder [43].

There is a framework that unites all these examples called the back-door

criterion [34, 38, 43]. The back-door criterion’s general idea is to solve the

causal graph given by a DAG and discover the causal impact of some exposure

on some outcome. Then we need to shut all back-door paths from that exposure

to the outcome. In experimental studies, one shuts back-doors by intervening

on variables, e.g. randomisation. In observational studies and RWD, we need

some criteria for which variables to include and shut the back-door paths.

2.1.1 Causal inference techniques utilised

Upmost related to our work is recent literature bringing together machine

learning techniques and causal inference for modelling treatment interventions

in RWD applications [46–48], which include applications of the central causal

techniques selected in our work:

1. Average treatment effect: This allows us to define a causal population-

level impact. It is helpful to determine the difference in the mean causal

effect of treatment over the whole population of interest in RWE studies.

2. Conditional average treatment effect: This allows us to stratify a popula-

tion into subpopulations by a covariate of interest in RWE studies. We can

conduct biomarker-based treatment effect modification or heterogeneity

of treatment effects.

3. Outcome modelling allows us to estimate treatment effects from observed

data in RWE studies by estimating the model parameters conditional on

the outcome.

4. The propensity score allows us to estimate treatment effects in a comple-

mentary way to the outcome modelling via inverse probability weighting.

5. Causal bounds and sensitivity analysis estimate the impact of unobserved

confounding bias on our treatment effects estimates.

10



Section 3.2 describes the central assumptions to allow identifiability of causal

effects, section 3.3 the method to build statistical estimands with data, and

section 3.4 parameter estimation and identification of treatment effects.

2.2 Missing data

One of the biggest challenges when working with RWD is how to handle

missing data. Missing data appear as gaps in the dataset that hide meaningful

values for analysis. Hence, excluding the underlying value of missing data may

completely invalidate the results. There are several other practical implications

when missing data are present; for example, it can lower the power and affect

the precision of parameter estimates’ confidence intervals.

Missing data analytical methods date back to the 1960s and 1970s when

[23, 49, 50] introduced the concept. [49] described a systematic approach using

a factored likelihood estimation for simple problems with missing data. [23],

on the other hand, established the concept of missing at random where the

central idea was to model the missingness mechanism. Before the seminal

work of [23, 51, 52], the tendency was to handle missing data with simple

ad-hoc methods: discarding the data with any missing values, plug-in the

mean or last-observation carried forward. However, [40, 53] brought attention

to the concerns with off the shelf handling of missing data methods such

as squandering information in excluding all cases with any missing values,

create confounds, and model misspecification.Missing data imputation for large

RWE datasets is a topic of active research [54, 55]. The field focus’ is in

complex models, such as latent class models for categorical data [56], bagging

of regression trees [57], random forest [58] and artificial neural networks [59].

2.2.1 Missingness mechanisms

In missing data, the observed covariates of interest X are incomplete. The

missingness mechanism RX places the missing values in Xobs masking the

actual value X, i.e. following [54] RX is a random variable taking values in

[0, 1], so that:

Xobs
i =


Xi if RX

i = 0

n.a. if RX
i = 1

Rubin [23] defined three possible scenarios for missing data: missing completely

at random (MCAR), missing at random (MAR), and missing not at random

(MNAR). All types of missingness can be classified usefully into this taxonomy,

which indicates the most appropriate procedure to make an unconfounded

inference [60].

11



h

Rx

W

X

Xobs

Y

X is Missing Completely At Random

h

Rx

W

X

Xobs

Y

X is Missing At Random

h

Rx

W

X

Xobs

Y

X is Missing Not At Random

h

Rx

W

X

Xobs

Y

X is Missing Not At Random 
with unobserved confounder h

Figure 2.3: Illustration of missigness mechanisms: Missingness Complete at
Random (MCAR), Missingness at Random (MAR), and Missingness Not at
Random (MNAR).
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MCAR

We say that the data are MCAR if the complete dataset X do not influence the

mask RX , i.e. X are independent of RX . In MCAR, the missingness mechanism

RX is ignorable because no causal back-door paths exist from the observed

variable Xobs to Y . Therefore, we can condition on Xobs for direct effect.

Imputation is not mandatory for unbiased estimation, yet it adds precision [60].

In large sample theory, we may test for MCAR from the data by conducting

Little’s test [61], which compares the change in the empirical mean of measured

variables Xobs if removing cases with missing values. Since in MCAR, the

missingness mechanism RX is independent of the actual value X, Little’s test

assumes that RX does not change the overall distribution of Xobs. Summing

up, a non-significant result of Little’s test suggests that the MCAR assumption

is valid. For our running example, see figure 2.3 top left, the SCM of MCAR

is given by:

Xobs B fXobs

(
RX, X

)
RX B fRX (URX )

X B fX (UX, h)

W B fW (UW, h)

h B fh (Uh)

Y B fY (UY,W, X)

(2.4)

where the missingness mechanism RX is i.i.d and h is an unobserved confounder

that does not impact the missingness mechanism.

MAR

In MAR, other observed variables W are influencing the missingness mechanism.

The consequences of MAR are diverse but addressable by controlling for other

known variables and imputation [40]. MAR is different to MCAR in terms of

its consequences. We need to impute to avoid polluting other variables with

the associated missingness pattern [60]. MAR is closely related to the concept

of confounding bias, see the section 2.1, where we collect data on W.

Nevertheless, the MAR assumption may not always hold. For example, a

hidden variable may confound the missingness mechanism. Such circumstances

propmpt the modeller to conduct sensitivity analyses, the topic of section 3.5.

For our running example, MAR opens a causal back-door path from Xobs to Y

that needs conditioning on W to d-separate and impute to de-bias estimates.

For our running example, see figure 2.3 top right, the SCM of MAR is given

13



by:

Xobs B fXobs

(
RX, X

)
RX B fRX (URX ,W)

X B fX (UX, h)

W B fW (UW, h)

h B fh (Uh)

Y B fY (UY,W, X)

(2.5)

where the missingness mechanism depends on measured variables W . In

analysing RWD, it is helpful to assume MAR because it allows handling

missing data with general-purpose imputation algorithms, the central topic of

chapter 4.

MNAR

In MNAR, unobserved values impact the missingness mechanism. These

unobserved values can be missing values of partially observed variables or

unobserved hidden variables. The MNAR scenario is a case of confounding

bias, where we have not got data available on the confounder. Therefore,

if MNAR is present, it means that Xobs may induce a systematic bias [60].

Possible resolutions are to model the MNAR mechanism from prior knowledge,

collect more data on the missing variable, or collect information on other child

variables, such as the number of visits or disease severity, to model MNAR as

a MAR scenario. For our running example, we show two MNAR situations

where the missingness mechanism depends on X itself, see figure 2.3 bottom

left, and another that arises through unobserved variables h, see figure 2.3

bottom right.

2.3 Censored data and time-to-event analysis

After handling missing data in section 2.2, we will discuss modelling treatment

interventions on patient outcomes, such as survival time. Given its longitud-

inal nature, RWD is often used for various types of time-to-event analyses

[62]. The time-to-event analysis also referred to as survival analysis, is a

modelling approach used for estimating the time to an event of interest in a

population-based or a sample from that population. Time-to-event methods

are instrumental when some samples are censored. Censoring occurs when the

event of interest does not occur in the window of observations. Censoring may,

for example, occur if:

14



1. The database release is before the event happened.

2. The patient is lost to follow-up.

3. The event record is upon consultation on a calendar basis.

Example 1 is administrative right censoring, 2 competing risks, and 3 interval

censoring. In the right censoring setting, some individuals’ observed times

T∗ are lower than their actual event time T . For example, figure 2.4.a shows

that enrollment to database release is shorter than the time-to-event for some

patients. Because from right-censored survival data, we can not estimate the

mean time-to-event directly, E
[
T̂
]
, we favour estimands that can accommodate

censoring such as survival, risk and hazard. The survival probability, or the
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Figure 2.4: Illustration of conventional survival analysis concepts: (a) illus-
trates the patient time for 18 patients in a time-to-event study, alive patients
at last-follow-up are right-censored; (b) outlines the estimates of risk or cumu-
lative and survival, which are respectively monotonic increasing and monotonic
decreasing; (c) shows conditional survival curves on a treatment level; (d), a
directed acyclic graph (DAG) depicting the selection bias incurred in analysing
hazard ratios, here X is a baseline exposure and Z a set of baseline covariates,
D1, D2, and D3 are event indicators for the discrete times 1,2, and 3.

survival at time t, is the proportion of patients that have survived beyond time

t, and is given by:

S (t) = Pr [T > t] (2.6)

A survival curve is a plot of the survivals at each observation time until the

last follow-up (database release) over time. Figure 2.4.b outlines such a survival

15



curve, which starts at Pr [T > 0] = 1 at time 0, to then decreases monotonically,

that is a survival curve stays flat or decreases. Similarly, we can define a risk

function, or cumulative incidence, see figure 2.4.b. The cumulative incidence

describes the proportion of patients that have developed the event before t,

and it is defined as one minus the survival probability:

1 − Pr [T > t] = Pr [T < t] (2.7)

Therefore, we say that the cumulative incidence increases monotonically or

that it is strictly non-decreasing.

A conventional approach to measure treatment effects is to compare survival

under each treatment group. A statistical procedure to compare survival curves

is the log-rank test [63], which assesses if the curves differ significantly. However,

in RWD with confounds, a comparison of survival curves may not have a causal

interpretation. We need to model the survival function S (t) instead. It turns

out that modelling the event rate, or hazard, is more straightforward than

directly modelling the survival.

The conventional definition of the hazard function h(t) is the event’s imme-

diate risk [64]. If we assume that time measurements are continuous, we can

use calculus to obtain the equality:

h(t) = −
d
dt

log (S (t)) (2.8)

However, time measurements are always discrete from finite data samples, e.g.

days, weeks, months. In this case, it is more intuitive to use the discrete-time

hazard 2 Pr [T = t |T > t − 1], which is the proportion of patients who develop

the event among those who have not developed it before t, such that:

h(t) =
S (td−1) − S (td)

S (td−1)
(2.9)

where S (td) is the survival at the dth measurement. Hence, the hazard may

increase or decrease over time because its numerator and its denominator

are time-varying, see equation 2.9. Its numerator is the number of events

at dth time step. Its denominator is the number of patients who have not

developed the event at d − 1, also known as the risk set, which changes with

time by definition. Hence, time-varying effects on the hazard scale are worth

considering even when analysing survival data from cross-sectional studies,

i.e. not considering time-varying treatments. For example, [15] considers

the interaction of baseline covariates with time-to-follow-up to adjust for the

time-varying confounding built-in in hazard models.

2 The relation between discrete-time hazard and discrete-time survival is similar to the
continuous case.
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A common approach to comparing treatment effects in RWD across one or

more covariates is to model the indiviudal hazard [65]. For example, consider

the Cox proportional hazard model [66], given by:

hi(t) = h0(t) exp

[
P∑

p=1

βpxip

]
(2.10)

where h0(t) is the baseline hazard, xip is an array of individual P individual

covariates, and β are the p regression coefficients, or the log−hazard ratios. The

hazard ratio is a popular measure of the association of treatment with patient

outcome [67]. The hazard ratios are obtained from exp
[
βp

]
. When comparing

treatment groups, xp is a categorical variable, and its hazard ratio is precisely

a ratio of hazards, e.g. the treatment arm’s hazard between the control arm’s

hazard. A hazard ratio lower than one indicates that the treatment is beneficial,

such that the treatment group survival is longer on average, while a hazard

ratio higher than one indicates that the treatment is harmful, such that the

treatment group survival is shorter on average. Regularly hazard ratios are

interpreted as a relative risk [68] but are not the same. Relative risk reduction

refers to the total amount of events at the end of the study, while the hazard

ratio represents an average of the difference in survival across all the follow-up

time points.

2.3.1 Parametric hazard modelling

As explained above, survival analysis models the time between an index date

and an event of interest. For the baseline hazard h0(t) that may vary in time,

one can evaluate canonical parametric distributions, such as exponential and

Weibull, which baseline hazard distributions are given by:

Exponential : h0(t) = 1

Weibull : h0(t) = γtγ−1
(2.11)

where γ denotes the Weibull shape parameter.

In analysing real-world survival data often is appropriate to make weaker

parametric assumptions about the underlying structure of the baseline survival

and hazard functions. Indeed, clinicians usually prefer non-parametric Kaplan-

Meier survival estimates [69] or semi-parametric Cox models [66] because they

make weak assumptions about the baseline hazard. Flexible parametric models

for survival analysis became popular with the seminal study of Royston, Parmar

et al. [70]. The Royston-Parmar model allows us to model unstructured log-

hazard function via baselines-splines (B-splines). The hazard function for the
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B-splines model is given by:

hi(Ti) = exp (B(Ti; θ, k0) + ηi) (2.12)

where ηi is the linear predictor, and B(Ti; θ, k0) denotes a B-spline with

regression coefficient θ and knots k0 evaluated at time t.

Time-varying effects hazard modelling

Furthermore, because the hazard is, by definition, time-varying, a hazard ratio

is also time-varying. For example, the hazard ratio might in the first months

of follow-up be significantly greater than one, indicating that the treatment is

harmful, but at the end of the study turn significantly lower than one, implying

that treatment is beneficial.

Non-proportional hazard modelling allows the regression coefficients to

be time-dependent, i.e. time-varying. As shown in equation 2.8, the hazard

function is time-varying. Hence, the hazard ratio is also time-varying, which

is remarkably relevant in the presence of proportional hazard violations [71].

Extending the regression hazard model from Equation 2.10, the hazard for the

time-varying effects model is given by:

hi(t) = h0(t) exp [ηi(t)] = h0(t)λi(t) (2.13)

where the linear predictor ηi(t) and the link function λi(t) may vary with time.

[72] proposed a model for the time-varying effects via B-splines, which allows

a smooth estimation of the time-dependent population parameters as depicted

in figure 2.5. For RWD analysis, the time-varying nature of hazard ratios is

relevant because confounding can occur by conditioning on the risk set at time t,

see figure 2.4.d. [71, 73, 74] described such a circumstance in a Women’s Health

Initiative study of hormone therapy’s effect in reducing coronary heart disease in

post-menopausal women. They noted that susceptible women were developing

coronary heart disease soon after hormone therapy initiation because hormone

therapy acted as a selection force of unsusceptible women to coronary heart

disease, thereby downwards biasing the conventional analysis’s hazard ratio

estimates. A series of papers [15, 75] discussed methodological approaches to

tackle the apparent paradox of hazard ratio change with time in observational

studies.

The counterfactuals approach of [71] emulated a trial using observational

data. As [71] had access to the randomised clinical trials data, they could

compare with the trial’s treatment effect estimates. [76] use time stratified

hazard ratios to evaluate the impact on survival of intrinsic breast tumour

subtypes. These studies used an arbitrary cut-off time to stratify by the time
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of follow-up. [15] suggested a more principled approach by modelling time-

to-follow up with a flexible parametric function and estimate product terms

of baseline exposure and time-to-follow up. A time-stratified approach was

suitable in these studies since the baseline exposures were not time-varying.

However, in RWD, treatment often is varying. Consequently, it is hard to

relate baseline exposure to survival.

2.4 Summary and perspectives

The rapid adoption of real-world clinical data presents unprecedented opportun-

ities for accelerating drug development in oncology by analysing cancer cohorts

for biomarker defined populations. However, we identify four methodological

challenges in analysing RWE studies:

1. The data is biased by clinical practice. We need a better methodology to

estimate unbiased parameter estimates because conventional summary

statistics cannot predict treatment effects even in large samples.

2. Missing data is a universal problem in RWE studies. Missing data appear

as gaps in the dataset that hide meaningful values for analysis.

3. Given its longitudinal nature, time-to-event is a typical analysis performed

in analysing RWD. However, because RWD is observational, considering

time-varying treatment effects is essential to avoid selection bias.

4. Analysing real-world clinical data poses the methodological challenge of

interpreting time-varying treatment effects. In most real-world analyses,

linear models are unreliable because of model misspecification and non-

constant treatment effects resulting in biased inference.

To answer these questions, we develop a causal inference framework in chapter

3. Chapter 4 tackles the missing data problem and introduces a new imputation

algorithm, MITABNET, conquering state-of-the-art imputation algorithms per-

formance. In addition, it presents a standardised evaluation of new algorithms

that allows advancing machine learning research in missing data imputation

algorithms. Chapter 5 provides a new approach for efficient estimation of treat-

ment effects in the presence of non-linear interactions with biomarkers using

GP survival regression. Finally, chapter 5 presents a Bayesian time-varying

effects model, benchmarked to conventional time-fixed and time-varying effects

models with several synthetic and real-world examples.
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Chapter 3

Causal Models and Statistical

Methods

This chapter illustrates how to perform causal inference for RWE studies. As

noted previously, causal inference is not a specific modelling tool but rather

considering a particular type of question, such as the causal effect of a treatment.

Nonetheless, there is a toolkit for causal inference. The chapter introduces a

causal inference framework that allows us to discuss average treatment effects,

treatment effects modification, and individualised treatment effects. Since

these methods’ applications are ultimately on real-world studies in clinical

research in oncology, various examples illustrate the ideas’ implementation.

The first section of this chapter covers inferring treatment effects on some

outcome in conventional RWD analyses. Central to these studies is the concept

of counterfactual outcomes, which allows us to define the causal treatment

effect. To estimate from data the counterfactual outcomes, however, we need

some assumptions or conditions. The second section of the chapter is devoted

to describing the four main causal assumptions: positivity, no interference,

consistency and exchangeability. These allow us to define a causal estimand

and turn it into a statistical estimand through association. The section will

focus on the Neyman − Rubin causal modelling framework [77, 78] since this

is the conventional approach within biomedical observational studies for more

than 30 years [79]. In the subsequent section, we will discuss estimation by

turning the statistical estimand of treatment effects into an estimate using

data. The bounds and sensitivity analyses section will focus on constituting a

framework in which we can conduct causal inference in situations where we

prefer to weaken the causal assumptions.
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3.1 A framework for defining treatment effects

Often in analysing real-world data, we are interested in study the main treatment

effect measured by a specific outcome, e.g. survival time, in a population of

interest. Let us consider the toy example depicted in figure 3.1. The graph

involves three sets of random variables: W, including all confounding factors

and possibly high-dimensional; A indicates the treatment, e.g. binary treatment;

Y, the outcome, or primary end-point of interest. Its structural equation is

given by:

W B fW (UW )

A B fA (W,UA)

Y B fY (W, A,UY )
(3.1)

The left-hand sides are the variables we might have data for W, A, and Y,

and get their value from the functions at the right-hand side, where UW , UA,

UY are unknown i.i.d. random variables.

A

W

Y

Figure 3.1: Example DAG with three sets of random variables: W, including
all confounding factors; A indicates the treatment; Y, the outcome.

We can define a potential outcome as the outcome we would see under each

of the treatments. For example, Y0(wi) is the potential outcome under the

treatment A = 0; Y1(wi) is the potential outcome under the treatment A = 1.

If A = 0 indicates no treatment, one also may refer to Y0(wi) as the control

outcome, and Y1(wi) as the treated outcome.

Counterfactual outcomes, or contrary-to-the-fact, are outcomes that would
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have been observed had treatment been different. For example, if the ith

individual was under treatment A = 1, the counterfactual outcome is Y0(wi).

Alternatively, if the ith individual was under treatment A = 0, the counterfactual

outcome is Y1(wi). Counterfactual outcomes are related to potential outcomes.

Both terms are used interchangeably in the literature [80, 81]. However, we

note that they have slightly different meanings. Counterfactuals outcomes

make explicit reference to the fact that the data collection is earlier than the

research purpose. Hence, they are more appropriate for retrospective RWD,

and we will refer to the counterfactual outcome framework moving forward.

We say that treatment had a causal effect on Y if the counterfactual outcome

Y1 differs from Y0, i.e. there is only a causal effect if Y1 , Y0.

3.1.1 Individualised treatment effects

Following [32, 38] we define the causal effect of a treatment on an individual

to be the individualised treatment effect (ITE) for individual wi, given by:

ITE(wi) = EY1 |wi

[
Y1 |wi

]
− EY0 |wi

[
Y0 |wi

]
(3.2)

where wi denote the individual covariates, and Y1,Y0 are the counterfactual

outcome under treatment A = 1, A = 0, respectively. For ITE, one computes

a difference in expectations of Y1(wi) from Y0(wi). Practically, a cross-over

study estimates individualised treatment effects under the assumptions that no

confounding variables exist between the periods, and the design is balanced [82].

Nevertheless, in clinical research in oncology, cross-over studies are limited, i.e.,

we will only see one counterfactual outcome for each individual.

3.1.2 Average treatment effects

Following [32, 38] we can estimate, with certain assumptions, a population

level (average) causal effects. The ATE is the difference in the mean causal

effect of treatment over the whole population, given by:

ATE =

E
[
Y1 −Y0

]
=

EW [E [Y |A = 1,W] − E [Y |A = 0,W]] =

Ew∼p(w) [ITE(w)]

(3.3)

where Y1 is the average value of Y if everyone is on treatment A=1, and

Y0 is the average value of Y if everyone is on treatment A=0. W is the

set of confounders, p(w) is the distribution of confounders, and ITE is the

individualised treatment effect.
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3.1.3 Conditional average treatment effects

The conditional average treatment effect (CATE) is very similar to ATE, but

following [32, 38] we condition on a set of variables of interest X, such that:

CATE =

E
[
Y1 −Y0 |X = x

]
=

EW [E [Y |A = 1, X = x,W] − E [Y |A = 0, X = x,W]]

(3.4)

where we are conditioning on X to be x. CATE estimation allows us to

investigate treatment modification for some set of variables X.

Biomarker-based treatment effect modification is an example of conditional

average treatment effects, also known in the literature as the heterogeneity of

treatment effects [17]. In biomarker-based treatment effect modification, we

define a subpopulation by a covariate of interest X, e.g. a predictive biomarker

that provides information on the likelihood that the patient benefits from the

treatment. Often in machine-learning literature [81, 83], the X are all the

observed covariates W so that the CATE are the ITE. Yet we will distinguish

between CATE for treatment modification and ITE for individualised treatment

effects, respectively.

3.1.4 Other measures of treatment effects

Other measures of causal effects on the population we might be interested in

include:

1. E
[
Y1

Y0

]
2. E

[
Y1 −Y0 |A = 1

]
3. E [y′(t)]

where 1, 2, and 3 are the causal relative risk, the treatment effect on the

treatead (TET) and the average treatment effect varying with time t. For

binary outcomes, instead of a difference in counterfactual outcomes, we take a

ratio, i.e. the causal relative risk 1. Like the CATE, the treatment effect on

the treated is the average individualised treatment effects for a sub-population,

particularly the treated sub-population. Time-varying effects allow treatment

effects to be dynamic and can reveal change over time in treatment effects.

1For any nonlinear functional of the causal effect, such as the relative risk or the hazard,
we resource to modelling to estimate the individual treatment effects because we never observe
both Y1(xi) and Y0(xi).
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3.2 Causal inference conditions

To estimate counterfactual outcomes from RWD, we need to make some

assumptions about the observed data. To estimate unbiased treatment effects,

we also need to make some untestable assumptions about the set of measured

variables on the population. We will need to accompany our analyses with

sensitivity analysis techniques to assess the robustness to violations of our

untestable assumptions. What follows is an account of the conditions for causal

inference, or causal assumptions, in analysing treatment effects from RWD.

The theory around causal inference conditions that we present builds on

Causal Inference: What If by Hernan and Robin [32], Causal Inference for

Statistics, Social and Biomedical Science by Imbens and Rubin [84], and

Introduction to Causal Inference by Neal [85, 86]. The section on confounds

builds on Statistical Rethinking by McElreath [40] and Causality by Pearl [38].

We refer the reader to those text for further theory around causal inference.

3.2.1 Exchangeability

Exchangeability means that there are no unmeasured confounding factors, i.e.

all confounding factors are present in the RWD. Under exchangeability the

counterfactual outcomes Ya are conditionally independent of the treatment

decision given the observation on individual wi, such that:(
Y0,Y1

)
⊥⊥ A|W (3.5)

where
(
Y0,Y1

)
are independent of A given W. Therefore, we have exchange-

ability conditional on a sufficient adjustment set of covariates W. In analysing

observational RWD, the exchangeability condition might be unrealistic, and

there may be situations where there is unmeasured confounding. A violation of

exchangeability arises if there are hidden variables h that impact the counter-

factual outcomes, and critically h also impacts the outcome. In this case, the

counterfactual outcomes Y0 and Y1 are not conditionally independent of the

treatment decision given the observation on individual wi, formally given by:(
Y0,Y1

)
6⊥⊥ A|W (3.6)

These hidden confounders may affect treatment decision and patient out-

come. A real-world example of hidden confounders are treatment guidelines

concerning comorbidities not recorded in our RWD. To evaluate whether the

problem setting is correct and exchangeability holds, we as data analyst need

to cooperate with clinicians to learn what factors affect treatment decisions

and measure any confounds.

25



In our work on RWE studies for cancerous diseases, exchangeability holds if

there is no unobserved confounding, i.e. all covariates are measured. Therefore,

it remains an assumption. In the study of missing data, the concept of

non-exchangeability motivates the study of missingness mechanisms and the

scenario where the MAR assumptions are adequate. For clinical outcome

interpretations of survival data, weaker assumptions than exchangeability, such

as causal bounds, allow for more credibility in the results of the causal survival

analyses. Analytical methods to assess robustness to hidden confounds and

exchangeability violations include sensitivity analyses [87], which we explain in

section 3.5.

3.2.2 No interference

The No interference assumption means that the counterfactual outcome for the

individual i, which could be a function of all the treatments in the population

of interest 1, . . . , n, is a function of only the treatment ti, i.e. the treatment

assignment on one patient does not affect another patient’s counterfactual

outcome, such that:

Yi (a1, . . . , ai−1, ai, ai+1, . . . , an) = Yi (ai) (3.7)

the no interference assumption is equivalent to the no interaction principle [88],

where patients do not interfere with each other. No interference forms part

of the stable unit treatment value assumption (SUTVA) from [89]. Violations

of no interference will not allow us to write counterfactual outcomes for the

individual xi in terms of only that individual’s treatment. In medical research, a

violation of no interference may happen in vaccine trials for contagious disease,

where one individual’s vaccination may impact other individuals outcome, e.g.

via herd immunity [90]. However, in our analysis of RWD for oncology, we

will assume that the no interference assumption holds throughout because it is

plausible that one individual’s treatment does not impact other individual’s

outcomes for cancer patients.

3.2.3 Consistency

Consistency means that if treatment A = a implies that the observed outcome

is the counterfactual outcome given by Ya, such that:

A = a⇒ Y = Ya (3.8)

Consistency implies well-defined treatments and outcomes. Although it may

seem that consistency is simple to accomplish, that may not necessarily always

be the case. For example, one conventional analysis of observational real-world
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data is inconsistent. In particular, [71] discuss the analyses that divide each

individual’s follow-up time into individual time, obtaining exposed person-time

or unexposed person-time, comparing incidence rates between them. Such

an analysis may be inconsistent because while analysing RWD in terms of

unexposed person-time and exposed person-time, we have lost the relation

to the causal question that is not in terms of person-time but a population

followed-up a pre-determined length of time. Hence, consistency may not hold

on RWD cohort survival analyses that do not consider the crucial elements

of study design. Another phrase for violating this aspect of the consistency

assumption is no multiple versions of treatment, which also forms part of the

SUTVA from [89]. The consistency assumption holds in our work on RWE

studies by delimiting and defining the study population by treatment, for

example, first line, second line, and outcome, for example, survival time or

duration of treatment.

3.2.4 Positivity

The positivity assumption means that there is always some stochasticity in the

treatment decision, such that:

Pr [A = a|W = w] > 0 ∀ a,w (3.9)

where Pr [A = a|W = w] is the probability that treatment A takes value a given

covariates W = w. Overlap, or common support, is another perspective on the

positivity assumption; see figure 3.2, where we define the overlap between the

distribution P(W|A = 0) and P(W|A = 1) in a binary treatment example. No

overlap of these distributions means severe positivity violation. Partial overlap

suggests no positivity violation among the covariates where there is overlap.

However, among the covariates where there is no overlap, then there is partial

positivity violation. Between a confounder’s levels, an overlap is also necessary

for treatment modification by a variable X on subpopulation analysis. More

generally, positivity assumes that the probability of receiving treatment for

each individual, known as the propensity score [91] and denoted as e(A|W), is

bounded between 0 and 1, such that:

ε < e(A|W) < (1 − ε) (3.10)

for some 0 < ε < 1. Positivity violations occur, for example, when patients

only receive treatment A = 1 and never receive treatment A = 0. Then, we can

never determine the counterfactual of what would have happened if patients

had received treatment A = 0. The positivity assumption is testable from

the data. With few categorical variables as confounders, we could summarise
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frequencies by strata. However, RWD is finite, and the strata may be high

dimensional, requiring resourcing on modelling to extrapolate by smoothing

over the strata [92]. In actual RWD obtained from clinical practice, positivity

may not hold because there are clinical guidelines. However, positivity may

hold if the treatment choice is not apparent, such as in second-line treatments

where clinicians might try different medicines [93]. Positivity may even hold

with established clinical guidelines if training varies between clinicians from

various locations generating stochasticity across clinicians. To test for positivity

in our RWE studies, we test for positivity in the distribution of covariates in

the study population using the propensity score e(A|W) and frequency tables.

No overlap Overlap Partial overlap

w

P
(w

 |
 a

)

P(W | A = 0)

P(W | A = 1)

Figure 3.2: Visualisation of another perspective of positivity, overlap, the
distribution P(W |A = a) for binary treatment. No overlap means severe
positivity violation. Partial overlap suggests no positivity violation on the
confounders where there is overlap, but there is no overlap on the confounders,
then there is severe positivity violation. Complete overlap suggests no positivity
violation.

The exchangeability-positivity trade-off

The exchangeability-positivity trade-off [85, 86, 94] says that the more covariates

we condition on, the more likely we have exchangeability. However, the more

covariates we condition on, the worst positivity becomes. To see this, we

consider the conditional distribution again from figure 3.2 adapted from [94],

where we have partial overlap and study its supports when increasing the

number of dimensions. Let us assume that each dimension’s overlap is constant,
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denoted by O, where 0 < O < 1. Then, the total overlap decreases exponentially

with the number of dimensions d by Od.

3.2.5 Treatment effects revisited

Now that we concluded the four main causal assumptions, we can derive the

proof for obtaining an unbiased estimate for the ATE. The relevance of this

derivation adapted from [38] is that it nicely ties together the main causal

assumptions used in this thesis: exchangeability, positivity and consistency.

Firstly, we use the No Interference assumption to justify that these counter-

factual outcomes are a function of each individuals’ treatment, and no other’s

treatment:

ATE = E
[
Y1 −Y0

]
(3.11)

then, we use linearity of expectations to give:

E
[
Y1

]
− E

[
Y0

]
(3.12)

Furthermore, we use the law of iterated expectations to give:

EW
[
E

[
Y1 |W

]
− E

[
Y0 |W

] ]
(3.13)

which is necessary to allow the application of conditional exchangeability, now

we use conditional exchangeability and positivity, such that:

EW
[
E

[
Y1 |A = 1,W

]
− E

[
Y0 |A = 0,W

] ]
(3.14)

Finally, we use consistency:

EW [E [Y |A = 1,W] − E [Y |A = 0,W]] (3.15)

where we make clear that applying consistency allows us to link the coun-

terfactual outcomes to the observed outcomes. Tying all this together we

obtain:

ATE =E
[
Y1 −Y0

]
=

E
[
Y1

]
− E

[
Y0

]
=

EW
[
E

[
Y1 |W

]
− E

[
Y0 |W

] ]
=

EW
[
E

[
Y1 |A = 1,W

]
− E

[
Y0 |A = 0,W

] ]
=

EW [E [Y |A = 1,W] − E [Y |A = 0,W]]�

(3.16)
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3.3 Statistical inference

So far, this chapter has focused on the conceptual, non-statistical aspects of

causal inference, see Sec. 3.1. However, from RWD and, indeed, also from

randomised trials, we only have access to a random sample from the population

of interest. Therefore, we must construct a framework for estimating the

treatment’s causal effects from observed data. Statistical inference concerns

itself with estimating a function (or parameter) of the population, formally

denoted as the estimand θ by taking a sample from the population and using an

estimator, which is a rule that takes data and yields a numerical value for the

estimand. This numerical value for a particular sample is the estimate θ̂ that

is our best guess of the estimand θ for that sample. Perhaps, most importantly,

we can use the sample from the population to compute the uncertainty on the

estimate θ̂, for example, by calculating the standard error of θ̂ and computing

a 95% Wald confidence interval [95] that contains θ in 95% of random samples.

3.3.1 Probability and inference

A fundamental question in statistics is the definition of probability. Frequentist

defines probability as fundamentally related to the frequencies of repeated

events. For Bayesians, probability instead is fundamentally related to the

certainty or uncertainty about the conditions for the events. The consequence

is that frequentist analyses variations of data and derived quantities in terms

of fixed model parameters, while Bayesians analyse variations of beliefs about

parameters in terms of fixed observed data. In the present thesis, we often

opt for the Bayesian definition of probability, yet we analyse our statistical

methods’ frequentist properties, too.

The following section will address different aspects of probability theory,

primarily Bayes’ theorem and its role in scientific discovery, machine learning,

and real-world data analysis. Bayes’ rule and Bayesian modelling will play a

crucial role in the RWE study analysis conducted in Chapter 5. Hence, we

introduced here the topic.

The concepts presented in this section builds on Bayesian data Analysis by

Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin [96], Bayesian Statistics

by Lambert [97] and Statistical Rethinking by McElreath [40]. The information

theory subsection has been adapted from Information Theory and Statistics

from Kullback [98]. We refer the reader to those text for further theory around

Bayesian inference.

The general situation where Bayes’ theorem is relevant is when we have

a hypothesis, observe new evidence, and want to know the probability that

the hypothesis holds given the evidence. A geometrical idea underlying Bayes’

theorem is that new evidence restricts possibilities’ space, see figure 3.3 adapted
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Figure 3.3: Visualisation of Bayes’ rule: new evidence Y restricts the space of
possibilities, and the ratio we need to consider p (θ |y).

from [99]. Bayes’ rule is the mathematical formula that defines the posterior

density as the ratio we need to consider to update one’s beliefs about a

hypothesis θ, given some observed data y, and takes the form:

p (θ |y) =
p (y |θ) p (θ)

p (y)
(3.17)

There are three essential quantities in equation 3.17. The quantity p (θ),

denoted as the ”prior”, is the probability that the hypothesis is true (before

any evidence). The quantity p (y |θ), denoted as the ”likelihood” or ”data

probability”, is the probability of seeing the evidence if the hypothesis is true,

i.e. the likelihood of the experimental new data given that the hypothesis

holds. Similarly, to apply Bayes’ rule, we need to consider the denominator

p (y), which is the unconditional probability of the evidence given by:

p (y) = p(θ)p (y |θ) + p(¬θ)p (y |¬θ) (3.18)

Concerning the term p (y |¬θ), the probability of the evidence given that the

hypothesis does not hold, i.e., how much of the complementary space includes

the evidence in figure 3.3, is, in practice, hard to estimate [100]. Moreover,

with the data y constant, we can derive an equivalent form of equation 3.17,

which yields the unnormalised posterior density given by:

p (θ |y) ∝ p (y |θ) p (θ) (3.19)

Because p (y) does not depend on θ, equation 3.19 determines the shape of the

posterior density. We regard equation 3.19 as a weighted geometric average 2,

2We say weighted geometric average because we are multiplying p (y |θ) and p (θ)
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which is sensitive to small values of either p (y |θ) or p (θ).

The posterior density, p (θ |y), is proportional to the product of the probab-

ility of the data and the prior probability. Intuitively, collecting more data will

make the posterior probability distribution narrower and resembling the data

probability mass, a process known as Bayesian updating, see figure 3.4. We

will use Markov chain Monte Carlo (MCMC) methods [101] for approximating

the posterior distribution of complex models in practice. The engine we will

use is Stan [102], which implements the No-U-Turn-Sampler extension of the

Hamiltonian Monte Carlo (HMC) algorithm [103].
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Figure 3.4: Graphical toy illustration of Bayesian updating for the mean of a
Normal distribution: Before the first observation, the model has a prior set
for µ given by Normal(0, 1). After each data point arrives, the model updates
transforming it into a posterior. Observing a sample contains information
about the parameter of interest µ.

3.3.2 Entropy and accuracy

The general idea of model evaluation is to assess the model’s ability to generalise

to out-of-sample by forecasting accurate predictions [104]. To do so, we appeal

to information theory, a framework in which we derive a rigorous and principled
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method to uncertainty in a probability distribution p, and its reduction by

learning an outcome. Formally, to measure the uncertainty in a probability

distribution, H(p), we can use information entropy [105], given by:

H(p) = −E [log(pi)] = −
n∑
i=1

pi log(pi) (3.20)

where pi log(pi) is the log-probability of an event. Intuitively, entropy is a

measure of the information in a distribution. In model evaluation, we score

our predictive model, q, on its predictive accuracy. We aim to minimise the

difference between the entropy of the model and the data. To do so, we use

the Kullbak-Leibler divergence [106], given by:

DKL(p, q) =
∑
i

pi (log(pi) − log(qi)) (3.21)

Considering we score q’s accuracy using the divergence, or distance in log-

probability from p to q, averaging over the events’ frequency. Notably, although

DKL is a distance, it is not symmetric. Therefore, DKL(p, q) , DKL(q, p), see

figure 3.5 adapted from [104].
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Figure 3.5: Illustration of the asymmetric property of DKL: we calculate DKL

using equation 3.21 for a grid of alternative models p. DKL = 0, denoted by a
dotted line, corresponds to p = q.

In practice, we do not know how to compute precisely equation 3.21, because

p is unknown. However, we do not need p when comparing models. In this

case, we only need the log-score, given by:

S(q) =
∑
i

log(qi) (3.22)
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where log(qi) denotes the log-probability for the ith event. The log-score is

straightforward to compute as the sum of log probabilities for each observation

i. Notably, the R2 is a special case of log-score [107]. Conventionally, we use

the deviance instead of the log-score, which we obtain by scaling the log-score

by −2. On the deviance scale, smaller deviance values are better, suggesting

less KL divergence.

In the Bayesian approach, instead of a single log-score, we have a distribution

of log-scores, or log-pointwise-predictive-density (lppd), given by:

lppd(y,Θ) =
∑
i

log
1

S

∑
s

p(yi |Θi) (3.23)

where for each data point i, we are taking the average log-probability of that

observation denoted by p(yi |Θi), conditional on the parameters Θi, and average

over samples S.

Arguably, we aim to obtain a higher log-score, lppd, and lower deviance in

making out-of-sample predictions. Ideally, we use a training set, holding out

a validation set to evaluate the model prediction. Similarly, we can conduct

cross-validation [108]. Moreover, even if we do not have an independent set

to evaluate our model, we can use heuristics to predict out-of-sample error by

applying information criteria [109].

3.3.3 Deep neural networks

Deep learning is a part of machine learning, a part of the broader field of

artificial intelligence that has revolutionised statistical inference. We can define

deep learning as a technique to extract patterns from data with deep neural

networks (DNN). As the name suggests, the brain arrangement inspired the

computational models that are artificial neural networks (ANN). DNN comprise

numerous connected neurons, each of which computes a simple operation. We

can use DNN to study complex functions directly from data by carefully setting

the network’s parameters.

The following section will address different aspects of deep learning, de-

scribing ANN’ architecture and the backpropagation algorithm. The deep

learning theory that we present builds on Deep learning by Goodfellow, Bengio,

and Courville [110], and Understanding machine learning: From theory to

algorithms by Shai and Shai [111]. We refer the reader to those textbooks for

further theory around deep learning. However, because deep learning is a field

of current active research, often innovations are in conferences proceeding. We

explore more recent innovations on DNN and their practical applications to

RWD analysis in Chapter 4 and 5.
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Neural Network’s architecture

A fundamental idea of deep learning is data representation [110]. In particular,

deep learning builds on the idea of repeated composition by taking iterated

simple transformations of the data, gradually abstracting meaningful patterns.

The insight of deep learning is that we can get from inputs to outputs gradually.

We describe DNN’ network architecture as a stack of computational units, or

neurons, that form a graph. We can describe the depth of architecture via the

path’s depth from the inputs to the computational graph’s outputs. Figure 3.6

shows a simple toy ANN’s architecture. The first stack of our ANN, or input

layer, is given by the raw input data, the last stack of our ANN is the output

layers, all the stacks in between are the hidden layers. The way the networks

operates activations in one layer determine the activations on the next layer.
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Figure 3.6: An artificial neural network (ANN) with information flowing from
left to right. The first layer represents the ANN’s inputs, the middle or hidden
layers represent neurons or computational units that act on the input, the last
layer represent the ANN’s output.

Neurons’ activation

For an ANN to capture the data patterns, it has to adjust its parameters

θ, which conventionally includes the weights −→w of the connections between
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subsequent layers neurons and the biases b that determine each neuron’s

activity. Each neuron’s activation is a composed weighted sum of the inputs,

i.e., a function g(x, θ), its output given by:

o = g
(
−→w · −→x + b

)
(3.24)

A fundamental part of equation 3.24 is the function g, which may involve non-

linear transformations such as sigmoid or rectified linear units [112, 113], given

by ReLU(x) = max(0, x). Therefore, we can see that a neuron is a function that

represents its inputs using possibly a non-linear transformation [113]. Every

other neuron in the network has its weight and bias associated. The entire

network, therefore, is also a complex function with numerous parameters θ.

Cost function

We define the cost function J(θ) as an average error function. Conventionally,

training proceeds by minimising the average empirical error function:

J(θ) =

E§,y∼p̂data
[L ( f (x; θ) , y)] =

1

N

N∑
i=1

L
(

f
(
x(i); θ

)
, yi

) (3.25)

where N are the number of training examples. The cost function J(θ) is a level

of complexity on top of the network function, as its inputs are the numerous

network’s parameters θ, and reduces its output to a scalar depending on the

many training data examples [113].

Optimisation

It rapidly becomes infeasible to compute the input that minimises J(θ) explicitly.

Instead, a more flexible tactic is to start at a random initial input and compute

the gradient of ∇θ J(θ), i.e. the direction of steepest increase of J(θ). Iteratively,

minimising ∇θ J(θ) allows us to approach some local minimum of the function

[113]. In principle, with numerical methods to approximate ∇θ J(θ), we can

use optimisation algorithms [114] to optimise J(θ) by updating θ. However,

there are many possible valleys, depending on the random input we started,

and there is no guarantee that the local minimum is the global minimum, i.e.

the smallest possible value of the cost function.
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Backpropagation

Backpropagation is the algorithm for computing the gradient ∇θ J(θ) by determ-

ining how a training example adjust the parameters θ not simply in terms of

gradient direction but also in terms of the relative proportion that determines

the steepest decrease to the cost J(θ). The notation in defining backpropagation

uses indexed to denote the layer. For example, wl
j,k

denotes a weight on layer

l, from the neuron k to the neuron j. Mathematically, the impact of how

sensitive the cost C is to the weights wl
j,k

is the derivative of J for wl
j,k

, which

takes the form:
∂J
∂wl

j,k

= al−1k δlj (3.26)

where we apply the chain rule. Similarly, the derivative of C for the bias blj
takes the form:

∂J
∂blj
= δlj (3.27)

The term δl is given by:

δl =

((
wl+1

)T
δl+1

)
· σ′

(
zl
)

(3.28)

where zl is the weighted sum given by:

zl = wlal−1 + bl (3.29)

where blj is the bias of neuron j in layer l and al−1 is the activation of neuron

j in layer l given by equation 3.24. We can write more compactly:

δL = ∇aJ · σ′
(
zL

)
(3.30)

Since the full cost function, ∂C
∂θL

involves averaging over all the training

examples. Its derivatives require averaging equation 3.26. We have then one

component of the gradient vector, which comprises the partial derivatives from

the cost function for all networks’ trainable parameters.

Moreover, the same principle applies to measure the sensitivity to the

previous activation aL−1 by computing the derivative for the previous layer, i.e.,

back-propagating. Hence, following [113] we intuitively define backpropagation

as propagating backwards the chain rule. Backpropagation is the workhorse of

how state-of-the-art DNN learn, such as those implemented with TensorFlow

and Torch libraries [13, 115].
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3.4 Estimation of treatment effects

Most of the scepticisms around causal inference on observational non-randomised

studies [116, 117], argue that:

1. In observational studies, each subject characteristics influence its treat-

ment selection.

2. Baseline characteristics can differ systematically between treatment

groups.

The following section will address different aspects of treatments’ causal effects

estimation. We introduced the classical concepts of outcome regression mod-

elling, inverse probability weighting and doubly robust methods to estimate

unbiased treatment effects. The general idea in treatments’ causal effects

estimation will be to take a causal estimand and turn it into a statistical esti-

mand through association, then turn the statistical estimand into an estimate

through estimation.

3.4.1 Outcome modeling

Outcome modelling, also known as covariate adjustment, also related to the

concepts of parametric g-formula, standardisation, single learners, or response

surface modelling [83], is a very natural way to estimate treatment effects.

Recall the causal diagram in figure 3.1. The toy problem included some

treatment A, a set of confounders W, and an outcome of interest Y. Prominently,

from RWD, we have confounds W that impact the treatment assignment

mechanism and determine the outcome. Under the consistency assumption,

the counterfactual outcome Y a was the value that Y would take when setting

A to A by intervention.

The g-formula approach [118] allows us to estimate the expected value of

the counterfactual outcome Y a given a sufficient adjustment set of covariates

W, and takes the form:

E [Y a] =
∑
w

E [Y |A = a,W = w] P(W = w) (3.31)

where on the left-hand side, there is a causal estimand, and on the right-hand

side, there is a statistical estimand. Naturally, the g-formula is a standard-

isation formula allowing us to compute unbiased methods-of-moments for

the distribution of the counterfactual outcomes Y a, where the treated and

control populations are different for the set of confounders W. We read the

”g” in g-formula meaning generalisation because the g-formula generalises the

adjustment formula we defined in 2.3.
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Intuitively, outcome modelling is capturing the mechanism that assigns

Y by modelling the data generating process f (A, w̃), and averaging over the

covariate W distribution.

Adopting parametric models indexed by the finite number of parameters θ,

following [47], we define the Bayesian g-formula by drawing samples for the

counterfactual outcomes after conditioning on the observed data o, such that:

p(ỹa |o) =
∫ ∫

p(ỹ |a, w̃, θ)p(w̃|θ)p(θ |o)dθdw̃ (3.32)

We integrate over the observed confounder w̃ and the uncertainty on the

model parameters θ. Therefore, we estimate the counterfactual outcomes

Y a from their posterior predictive draws, p(ỹa |o). Finally, we can compute

causal estimands, for example, the ATE by comparing the means of p(ỹ1 |o)

and p(ỹ0 |o).

Model misspecification

Let us briefly consider the modelling choices of what f (A, w̃) should be. We

consider the following hypothetical linear structural causal model from [119]

to be the ground truth of our running example, given by:

A B α1W

Y B β1W + γA
(3.33)

where W is a sufficient adjustment set, A is a binary treatment, Y is the

outcome, α is the regression coefficient of W on A, β the regression coefficient

of W on Y , and γ the regression coefficient of A on Y . Importantly, we consider

no interactions, i.e. the SCM is entirely linear in W and A. We know that from

equation 3.2 the ITE, for this counterfactual outcome model takes the form:

ITE(wi) =

E
[
Y1(wi) −Y0(wi)

]
=

E [(β1wi + γ) − (β1wi)] =

γ

(3.34)

where we plug-in the counterfactual outcomes Y1(wi) and Y0(wi) according to

the assumed form in equation 3.33. Similarly, the ATE, see equation 3.3, is

given by the average of ITE over all the individuals wi, such that:

ATE = Ep(w) [ITE(wi)] = γ (3.35)

We conclude that the ATE value is also equal to the γ term, i.e. the regression

coefficient for A is the ATE.
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A well-known vulnerability of assuming a linear model for treatment effects

is that the linear model may be misspecified [119]. For example, let us consider

that the ground truth data generating process f (A, w̃), instead takes the form:

A B α1W + α2W2

Y B β1W + β2W2 + γA
(3.36)

where α2W2 and β2W2 are quadratic terms in the regression of covariates

on treatment and outcome, i.e. the counterfactual outcomes are still linear on

treatment. The target causal estimand is again the ATE, given by:

ATE = E
[
Y1 −Y0

]
= γ (3.37)

If following [119] we hypothesised a model from equation 2.2 instead, and we

only adjusted for W, given the relation between W, W2 and A in the ground

truth data generating process from equation 3.36, it is straightforward to show

that our estimate of the ATE takes the form:

γ̂ = γ + β2
E [wa]E

[
w2

]
− E

[
a2

]
E [wa]

E [wa]2 − E
[
w2

]
E

[
a2

] (3.38)

where we have a bias term that can be arbitrarily large or small depending on

β2.

In conventional statistical analysis, the regression coefficients play a central

role, sometimes interpreted with causal lens [120]. The rationale for the

long-standing tradition of paying attention to the regression coefficients is to

interpret the prediction problem in terms of the feature of relevance being a

treatment, the treatment being linear for the counterfactual outcome, and the

treatment’s coefficient as having a relationship with the ATE. Moreover, that

also explains the rationale behind estimating confidence intervals to measure

the impact of sampling variability. In contrast, in data-driven applications

with high-dimensional models, it is well-known that there are redundancies

between the features that can bias estimates towards zero [121].

Other severe limitations of the linear parametric regression approach are

that the treatment causal effect is constant among all individuals, as we showed

in equation 3.34, which can be an unnatural assumption in most cases. For an

extended critique of regression coefficients’ application as having a relationship

with the ATE, see, [120] and references within. We conclude that we can get

the wrong results if we make the wrong assumptions about the estimator’s

form. Furthermore, Chapter 5 explore methods that can help in avoiding model

misspecification.
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3.4.2 Inverse probability weighting

In RWD, the probability of receiving a treatment depends on confounders,

variables that affect the outcome. Expert doctors may prescribe the optimal

treatment given the conditions of each patient, for example, more potent

treatments for sicker patients. As we described above, confounders may

potentially bias treatment effect estimates. Under conditional exchangeability

and positivity, we can reweight the data using the expectation of treatment

assignment to match a randomised experiment better [122]. We already defined

the expectation of treatment assignment and denoted it as the propensity score

back in equation 3.10.

Propensity score The propensity score is the probability of taking treatment

A = a, given the sufficient adjustment set of covariates W, and is given by:

e(W) = Pr (A = a|W) (3.39)

where e(W) describes the propensity for taking treatment, i.e. how likely

the patient i is to take treatment given wi. The propensity score theorem

[91] asserts that under conditional exchangeability and positivity, given e(W)

implies unconfounded treatment effects, mathematically is written as:

Y (A) ⊥⊥ A|W⇒ Y (A) ⊥⊥ A|e(W) (3.40)

figure 3.7 adapted from [123] shows a visual DAG proof of the propensity

score theorem.

A

W

Y

(a)

A

e(W)
W

Y

(b)

Figure 3.7: DAG proof of the propensity score theorem. (a) W is a sufficient
adjustment set of covariates. (b) Conditioning on the propensity score e(W)
block the back-door path A←W→ Y.
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The inverse probability weighting (IPW) general idea is reweighing the

data to match a randomised experiment better [123, 124]. To do so, IPW

weights down individuals that were very likely to receive the treatment and

weights up individuals that were very unlikely to receive the treatment. To

do so, we reweight using the reciprocal of the propensity score e(W). Notably,

after reweighting, treatment A does not depend on W anymore. Hence, by

multiplying by the propensity score’s reciprocal, we have removed W’s impact

on A. The IPW estimand takes the form:

E [Y a] = E

[
I(A = a)Y

P(a|W)

]
(3.41)

where I(A = a) denotes an indicator that treatment A takes value a, and

P(a|W) denotes the unknown propensity score. Under exchangeability, the IPW

estimand is equivalent to the g-formula estimand from equation 3.31. However,

the statistical estimand suggests a different estimation method. Applying IPW

to the binary treatment example, a frequentist ATE estimator takes the form:

�ATE IPW =
1

N

N∑
i=1

[
yiAi

ê (wi)
−

yi (1 − Ai)

1 − ê (wi)

]
(3.42)

Even if W is high-dimensional, the propensity score e(W) is only one dimen-

sional, i.e. a scalar. However, we do not have access to the e(W) directly,

which means it needs a model. Hence, the high-dimensionality and model

misspecification obstacles shift from modelling the outcome Y to modelling

e(W). However, we can model for e(W) without predefined assumptions on its

parametric form, for example, a neural network.

3.5 Bounds and sensitivity analyses

In the previous section, we discussed estimation of treatment effect assuming

exchangeability, i.e., we observed all the confounders. We have noted previously

in introducing the concept of exchangeability, see Section 3.2, that in RWD,

there may exist hidden variables h. Although h are confounders by affecting the

potential treatment outcomes and critically impacting the treatment decision,

we have not measured them in our RWD see figure 3.8. In this case, the

adjustment formula presumes that we should also adjust for h, such that:

E
[
Y1 −Y0

]
=

EW [E [Y |A = 1,W, h] − [Y |A = 0,W, h]] ≈

EW [E [Y |A = 1,W] − [Y |A = 0,W]]

(3.43)
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However, we can not adjust for h because the RWD did not collect it. Therefore,

we would be limited to adjust for W and speculate that by doing so, we are

roughly approximating the treatment’s effect.

This section evaluates how conclusions about treatment’s effect might

have changed in the presence of hidden confounding factors, h. We will first

tackle the problem with minimal assumptions and the no-assumptions bound

approach, allowing us to find an interval that contains the treatment’s effect. In

chapter 5, we will demonstrate how we can tighten this interval by appending

the optimal treatment selection assumption. The second part of the section

is on sensitivity analysis, wherein we cast the treatment’s effect estimate as a

function of the robustness to hypothetical h and its sensitivity to variations of

the input.

A

Y
0

Y
1

W

Exchangeability

h
A

Y
0

Y
1

W

No Exchangeability

Figure 3.8: Left: exchangeability, Y0 and Y1 are conditionally independent
of A given W. Right: no exchangeability, Y0 and Y1 are not conditionally
independent of A given W because the confound h opens a back-door path
from A to Y0 and Y1.

3.5.1 Bounds

The work on bounds is motivated mainly by the idea that the assumption of no

unobserved confounding is unrealistic. The theory around causal bounds that

we present builds on the work of Manski [125, 126]. Neal [85, 86, 127] presents

a straightforward adaptation of Manski’s work on causal bounds. Chapter 5

develops the theory of causal bounds for survival analyses in RWD. Here, we

review the background necessary for developing survival causal bounds.

A helpful concept defined in [125] is the law of decreasing credibility,

which states: ’the credibility of inference decreases with the strength of the

assumptions maintained’. Although exchangeability is very useful because it

allows us to estimate the treatment’s effect by using the adjustment formula
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from equation 3.16, it is a relatively extreme assumption. Moreover, ignoring

random variability, we consider estimating the average treatment’s effect as

a point. However, we could make weaker assumptions than exchangeability,

trading precision for credibility in our inference by bounding the treatment’s

effects.

We can regard bounding the treatment’s effect as a trade-off between

precision and credibility [86]. If we are willing to use strong assumptions such

as exchangeability, we can estimate the treatment’s effect very precisely, as a

point, but because we used such strong assumptions, our conclusions are not

that credible. In contrast, we can get more credible conclusions by making

weaker assumptions. However, in exchange, we have to trade-off precision by

identifying an interval rather than a point.

A trivial bound on treatment’s effect is straightforward to obtain if coun-

terfactual outcomes are naturally bounded [127]. For example, if our potential

outcomes Y0 and Y1 are survival probabilities, we know that the bounds are

between 0 and 1. Then we know that:

−1 ≤ Y1
i − Y0

i ≤ 1 (3.44)

We consider that we take the maximum value of the outcome, which is 1, and

the minimum value of the outcome, which is 0. Therefore, we know that the

treatment’s effect bounds are:

−1 ≤ E
[
Y1
i − Y0

i

]
≤ 1 (3.45)

From equation 3.45, following [127] we can obtain the trivial bound with an

interval of length 2. We can generally use β denoting imphimum or lower

bound as the minimal counterfactual outcome and α denoting supremum or

upper bound as the maximal counterfactual outcome, such that:

α − β ≤ E
[
Y1
i − Y0

i

]
≤ β − α (3.46)

where we can obtain a trivial bound of length 2 (α − β).

In order to derive more interesting bounds, we need to use the observational-

counterfactual decomposition [85, 86]. We will define it in terms of the average

treatment’s effect. First, we will use linearity of expectation to get:

E [Y (1) − Y (0)] = E [Y (1)] − E [Y (0)] (3.47)

Then, we separate each counterfactual outcome into two components each,
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conditioning on treatment and marginalising it out:

P(T = 1)E
[
Y1 |T = 1

]
+ P(T = 0)E

[
Y1 |T = 0

]
−P(T = 1)E

[
Y0 |T = 1

]
− P(T = 0)E

[
Y0 |T = 0

] (3.48)

Then, using consistency, we can obtain:

P(T = 1)E [Y |T = 1] + P(T = 0)E
[
Y1 |T = 0

]
−P(T = 1)E

[
Y0 |T = 1

]
− P(T = 0)E [Y |T = 0]

(3.49)

Tying all together, we obtain the observational-counterfactual decomposition

[127], with observational terms and counterfactual terms, which takes the

form:

E [Y (1) − Y (0)] =

E [Y (1)] − E [Y (0)] =

P(T = 1)E [Y |T = 1] + P(T = 0)E
[
Y1 |T = 0

]
− P(T = 1)E

[
Y0 |T = 1

]
− P(T = 0)E [Y |T = 0]

(3.50)

No assumptions bound

The no-assumptions bound only assumes that the counterfactual outcomes

are bounded [127]. In the no-assumptions bound, we apply the observational-

counterfactual decomposition from equation 3.50. We obtain bounds for the

decomposition’s counterfactual parts because we can not compute them from

the observational distribution. We plug in the observational quantities to the

bounds because we can compute them from the observational distribution. For

the upper-bound, the counterfactuals’ positive quantity takes the maximum

outcome possible, α, and the counterfactuals’ negative quantity takes the

minimum outcome possible, β. Then, the upper-bound takes the form:

E [Y (1) − Y (0)] ≤

P(T = 1)E [Y |T = 1] + P(T = 0)α−

P(T = 1)β − P(T = 0)E [Y |T = 0]

(3.51)

The reverse reasoning works for the lower-bound. The counterfactuals’ positive

quantity takes the minimum outcome possible β and the counterfactuals’

negative quantity takes the maximum outcome possible α. Then, the lower-
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bound takes the form:

E [Y (1) − Y (0)] ≥

P(T = 1)E [Y |T = 1] + P(T = 0)β−

P(T = 1)α − P(T = 0)E [Y |T = 0]

(3.52)

It is straightforward to calculate the length of the interval of the no assumptions

bound by subtracting the lower bound from the upper bound, giving:

P(T = 0)α + P(T = 1)α − P(T = 1)β − P(T = 0)β = α − β (3.53)

The no assumptions interval length, without making any additional assump-

tions, is half of the trivial bound interval length from equation 3.46. In our

running example, where the potential outcomes are survival probabilities nat-

urally bounded between 0 and 1. The no assumptions interval length is 1,

which is half of the naive bound. However, the no assumptions bound is still

unsatisfactory because it will always contain zero, i.e. it does not allow us to

estimate the sign of the treatment’s effect. Below, we will introduce another

assumption that will allow us to construct bounds that can precisely estimate

the sign of the treatment’s effect.

Optimal treatment selection bounds

A pertinent consideration in analysing real-world data is that the data’s

originators are expert doctors prescribing treatment. In this setting, patients’

treatment selection is optimal, a fact we can use to improve our bounds

framework to precisely estimate the sign of the treatment effect. For example, in

analysing RWD for Oncology, we must consider that the doctor selects the best

treatment for each patient. Recently, [128] described a related scenario where

the convalescent plasma’s impact of coronavirus(COVID-19) patients statistical

significance in an observational RWD study disappeared in a randomised

clinical trial (RCT).

The optimal treatment selection (OTS) assumption [86, 125–127] says

that we have expert doctors prescribing the treatment, and the doctor always

prescribes the best available option for each patient. In this scenario, the

doctor gives the best treatment for each individual. Therefore, this ”Perfect

Doctor” acts as a confounder of the treatment effects.

Formally, the OTS assumption says that if an individual is in a given

treatment group Ai = a, her expected potential outcome under this treatment

is best or equal to her expected potential outcome in another treatment group

Ai = ¬a. Furthermore, if an individual is not in a given treatment group

Ai = ¬a, her expected potential outcome in the treatment group Ai = a would
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be lower. Mathematically:

Ai = a⇒ Y a
i ≥ Y¬ai , Ai = ¬a⇒ Y¬ai ≥ Y a

i (3.54)

Therefore, the general OTS assumption implies two inequalities: the direct

OTS assumption and the contrapositive OTS assumption.

For simplicity, let us consider the conventional treatment-control setting

a ∈ [0, 1]. Then, the first inequality implied by the OTS assumption is that

the expected potential outcome under treatment in the control group is worst

or equal to the expected potential outcome under no treatment in the control

group, which by consistency is the observed outcome in the control group, such

that:

E
[
Y1 |A = 0

]
≤ E

[
Y0 |A = 0

]
= E [Y |A = 0] (3.55)

The second inequality implied by the contrapositive of the OTS assumption

Ai = 1 ⇐ Y0
i ≤ Y1

i , is that the expected potential outcome under treatment

in the control group is less or equal to the expected potential outcome under

treatment in the treatment group, which by consistency is the observed outcome

in the treatment group, such that:

E
[
Y1 |A = 0

]
≤ E

[
Y1 |A = 1

]
= E [Y |A = 1] (3.56)

We can use equation 3.55 to derive an upper bound with the OTS assumption

applying the observational-counterfactual decomposition from equation 3.50,

such that:

E [Y (1) − Y (0)] =

P(T = 1)E [Y |T = 1] + P(T = 0)E
[
Y1 |T = 0

]
− P(T = 1)E

[
Y0 |T = 1

]
− P(T = 0)E [Y |T = 0] ≤

P(T = 1)E [Y |T = 1] + P(T = 0)E [Y |T = 0]

− P(T = 1)β − P(T = 0)E [Y |T = 0] =

P(T = 1)E [Y |T = 1] − P(T = 1)β

(3.57)

Similarly, we can get a lower bound. To do so, we flip the inequality from

equation 3.54, such that:

E
[
Y1 |A = 0

]
≤ E

[
Y0 |A = 0

]
= E [Y |A = 0] (3.58)
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We then plug in equation 3.58 to obtain:

E [Y (1) − Y (0)] =

P(T = 1)E [Y |T = 1] + P(T = 0)E
[
Y1 |T = 0

]
− P(T = 1)E

[
Y0 |T = 1

]
− P(T = 0)E [Y |T = 0] ≥

P(T = 1)E [Y |T = 1] + P(T = 0)β

− P(T = 1)E [Y |T = 1] − P(T = 0)E [Y |T = 0] =

P(T = 0)β + P(T = 0)E [Y |T = 0]

(3.59)

Tying all together, we obtain the complete bound:

E
[
Y1 − Y0

]
≤ P(T = 1)E [Y |T = 1] − P(T = 1)β

E
[
Y1 − Y0

]
≥ P(T = 0)β + P(T = 0)E [Y |T = 0]

(3.60)

Likewise, we can use equation 3.56 to derive another set of upper and lower

bound with the contrapositive OTS assumption:

E
[
Y1 − Y0

]
≤ E [Y |T = 1] − P(T = 1)β − P(T = 0)E [Y |T = 0]

E
[
Y1 − Y0

]
≥ P(T = 1)E [Y |T = 1] + P(T = 0)β − E [Y |T = 0]

(3.61)

Because both intervals follow from the OTS assumption, we can choose from

which set of intervals take the lower and upper bound, thereby obtaining a

more precise interval that potentially determines the treatment’s effect sign.

3.5.2 Sensitivity analysis

In conducting sensitivity analysis, we aim to ascertain if our inference is robust

to the decisions made in obtaining it. Such decisions comprise data inputs

and assumptions. Hence, we distinguish two sensitivity analyses approaches:

sensitivity to hidden unobserved confounders and variations of the inputs.

Sensitivity analysis of omitted variable bias

Sensitivity analysis of omitted variable bias [84] constitutes a modelling frame-

work that quantifies the bias for gradual levels of exchangeability violations.

As mentioned above, in estimating treatments effects, it is helpful to assume

exchangeability because it allows us to obtain unbiased estimates. Sensitivity

analysis of omitted variable bias questions how far from exchangeability we

have to move to see the results we saw in the data. In a sensitivity analysis of

omitted variable bias, we conventionally allow for exchangeability conditional

on the hidden covariate h, such that:(
Y0,Y1

)
⊥⊥ A|W, h (3.62)
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However, as we have noted before, we can not estimate the impact of h because

we have not collected data on them. Instead, we conventionally assume that h

is a confounder and compute the treatment effects for different coefficients of

h. Beyond linear settings, presented sensitivity analysis of omitted for logistic

regression on the propensity score [87]. More recently, [129] advanced a more

flexible approach that does not presume a simple parametric form for the

propensity score, allow h to be multivariate and not necessarily binary, only

assuming a parametric form for the outcome model.

Sensitivity analysis to variations of the input

Sensitivity analysis to variations of the input is a modelling and simulation

framework that quantifies the robustness of our inference to changes in the

input data. A local sensitivity analysis (LSA) quantifies the impact of variations

of the input in models that use ordinary differential equations [130]. For a

model f (A, w̃, θ), and an estimated treatment effect Y a, we analyse:

∂ f (A, w̃, θ)
∂Y a

����
Ya

(3.63)

or
∂ f (A, w̃, θ)

∂w̃i

����
Ya

(3.64)

for one parameter θi, or data input xi at-a-time.

3.6 Summary

This chapter illustrated the tools of causal modelling that we will use in

analysing real-world data in the following applications chapters. We start by

defining treatment and outcome of interest with consistency. To do so, we

need to define inclusion and exclusion criteria to collect data on the defined

populations that meet those, ensuring that treatment is well-defined. To ensure

exchangeability and thereby allow the estimation of unbiased treatment effects,

we need to cooperate with clinicians and use their domain expert knowledge

to collect all potential confounders. Testing for positivity ensures that the

counterfactuals are practically identifiable from data. In real-world applications,

usually, we will need to resource for modelling to smooth over the strata of

almost continuous categories and high-dimensional space of the confounders.

This chapter showed diverse methods for statistical modelling, including:

1. Frequentist methods to estimate parameter’s mode and compute Wald

confidence intervals.
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2. Bayesian methods to estimate the posterior distribution, prior regularisa-

tion, and hierarchical models.

3. Deep learning methods to approximate non-linear associations of inputs

and outputs.

Here, we demonstrated how to convert the causal estimand into a statistical

estimand either by outcome modelling or IPW. Dependent on the complexity

of the actual data generating process, model misspecification is a challenge for

estimating the counterfactual outcomes. For our inference to be reliable and

have external validity, we might need to weaken our exchangeability assumption.

We presented two different methods that allow for weaker assumptions and

studied assumptions’ impact on our inference, bounds and sensitivity analysis,

respectively. We can use the assumptions that the treatment selection is optimal

to tighten our bounds and estimate the unbiased sign of the treatment effect.

We can apply sensitivity analysis to study the impact of parameter variations

using modelling and simulation of the generative data process. Although

we present the different methods in sequential order, we recognise that the

modelling and analysing workflow may have loops. We may often iterate on

the different steps, and, for example, assuring positivity may require expanding

the population to ensure that parameters are practically identifiable from data.
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Chapter 4

Multiple Imputations for

Missing Values in Machine

Learning - a comparative

study

Missing data is a universal problem in analysing RWE datasets. In RWE

datasets, there is a need for understanding which features best correlate with

clinical outcomes. In this context, several biomarkers status may appear as

gaps in the dataset that hide meaningful values for analysis. Using the Flatiron

NSCLC dataset, including more than 35,000 subjects, we compare the imputa-

tion performance of six such methods: predictive mean matching, expectation

maximisation, factorial analysis, random forest, generative adversarial networks

and multivariate imputations with tabular networks. We also conduct extensive

synthetic data experiments with structural causal models. Statistical learning

from incomplete datasets should consider several imputation algorithms, the

impact of missing data, and the distribution shift induced by the imputation

algorithm. For our synthetic data experiments, tabular networks had the best

overall performance. Methods using tabular networks can become part of the

data integration techniques for data cleaning in RWE studies.

This chapter focuses on developing a new multivariate imputation algorithm

that performs multiple imputations and supports mixed data types. We

define the causal mechanism of missing data and explain the rationale for

considering imputation algorithms in real-world data. Following best practices

in developing a new algorithm for imputation [131], we aim to find an accurate

imputation algorithm that provides unbiased parameter estimates and covers

the uncertainty on the parameter estimates determined from sampling and

missing data variance.
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We implement the tabular networks (TABNET) approach [19] within the

multivariate imputations by emplying a chained equations framework [132].

Hence, we named our new imputation algorithm MITABNET. We conduct

a comparative study of MITABNET with several state-of-the-art imputation

algorithms. We show improvements in imputation accuracy and parameter

estimation in censored survival analysis. Besides, by using MITABNET, we

obtain the benefit of performing interpretable imputations, allowing us to

investigate which values had more bearing for the imputation process. To

conduct the head-to-head comparison of MITABNET and state-of-the-art

imputation algorithms, we conduct several simulation studies under different

missing data mechanisms and real-world scenarios.

4.1 Background

Missing data are a universal problem in structured tabular datasets arising

from RWE datasets. As Little put it, the best resolution for handling missing

data is not to have missing data [133]. However, analysing RWE datasets

poses the challenge of handling missing values. Indeed, missing data are found

not only in observational RWE datasets but also in controlled clinical trials

[134]. There are many practical implications when missing data are present; for

example, it can lower the power and affect the precision of parameter estimates’

confidence intervals, leading to biased estimates. In RWE datasets, there is a

need for understanding which biomarkers best correlate with clinical outcomes.

A substantial difficulty in this context is that several biomarkers status may

appear as gaps in the dataset that hide meaningful values for analysis. Hence,

excluding the underlying value of missing data may completely invalidate the

results.

4.1.1 Multiple imputations

A conventional ad-hoc method to handle missing data is the complete case

analysis, to delete any rows or columns with missing variables. The problem

with complete case analysis is that it squanders information reducing the

sample size considerably. Imputation algorithms are general strategies that

replace missing values with plausible values. Nevertheless, replacing missing

values with static values cannot be correct in general. After all, imputed values

are estimated, not observed. Therefore, it is often more appropriate to apply a

random variable approach to represent missing values. In his seminal paper,

Rubin [135] proposed multiple imputations (MI) for survey non-responders

to tackle the uncertainty in the missing values that single imputation cannot

represent with a point estimate. The general idea of MI is to generate multiple
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complete datasets, analyse each dataset separately, and summarise the results,

see. figure 4.1 and [136]. Imputation algorithms that perform MI must replace

missing values with samples of the missing values’ joint probability density

function. Therefore, the MI approach embraces the uncertainty in the missing

values that single imputation with a point estimate cannot represent. Early

studies proposing imputation algorithms for MI often apply conventional

statistical methods like expectation maximisation [137]. More sophisticated

methods, adapting ideas from MCMC [57], dimension reduction [58], ensemble

learning [58] and DNN [54], have been proposed. However, there is a lack of

literature on validation, and systematic comparison of imputation methods

[138]. Furthermore, the importance of considering missingness patterns and

the data distribution when comparing methods has received little attention

[139]. Neglecting to do this may lead to biased results concerning the relative

performance of imputation methods [40].

Missing
data

m=1

m=2

...

m=M

...

Final
Results

Imputation phase Analysis phase Pooling phase

Figure 4.1: Illustration of multiple imputations: in the imputation phase,
we generate multiple (M) complete datasets using a stochastic imputation
algorithm. Each complete dataset is analysed separately. Therefore, we obtain
M θ parameters of interest. Finally, we combine the results to obtain the
parameter estimates and the uncertainty on the missing data.

4.1.2 Related work

Different approaches to drawing multiple imputations exist in the literature.

Van Buuren et al [140] suggest a Gibbs sampler for the multivariate imputations

by chained equations (MICE) algorithm to draw from an approximate posterior

distribution after evaluating the ”complete data” replacing missing values for

placeholders. MICE is an iterative method to use regression strategies such
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Algorithm Imputation Data types Reference

MICE multiple mixed [132, 140]
RF single/multiple mixed [58, 138]

PCA single/multiple mixed [56, 141]
EM multiple continuous/mixed [137]

GAIN single/multiple continuous [54]

Table 4.1: Summary of state-of-the-art imputation methods: MICE, multiple
imputations by chained equations; RF, random forest; PCA, prinicpa com-
ponent analysis; EM Expectation Maximisation; GAIN generator-adversarial
imputation networks.

as generalised linear model (GLM), predictive mean matching for continuous

variables, logistic regression for binary variables, and polytomous logistic

regression for categorical variables.

Stekhoven et al [58] suggested multiple imputation random forest (MIRF), a

random forest algorithm for missing data imputation that can perform multiple

imputations by running the algorithm with different random seeds. In contrast,

[138] used the Gibbs sampler from [140] to perform MI with random forest

expanding MICE to use non-parametric regression.

Honaker et al [137] built on the expectation-maximisation (EM) approach

to impute missing values and performed multiple imputations using a bootstrap-

based design. [141] proposed multiple imputation principal component analysis

(MIPCA) methods that exploit the global similarity between individuals and

the correlation between variables to impute missing datasets. The MIPCA al-

gorithm is flexible enough to perform multiple imputations via a non-parametric

bootstrap.

Yoon et al [54] adopted the generative adversarial networks (GAN) frame-

work from [142] to develop a generative adversarial imputation networks

(GAIN), which is a non-stochastic neural network constituted by a gener-

ator and a discriminator network trained in a zero-sum game. We summarise

published algorithms that perform multiple imputations in Table 4.1.

Tabnet

DNN traditionally work with continuous numerical data. For example, for

image classification, DNN uses the intensity of each pixel, basically a continuous

measurement, a number between 0 and 255. In contrast, tree-based methods

such as random forest [58] can handle mixed data types, including discrete

categorical and continuous numerical data. The TABNET is a front-end deep

learning architecture that can handle mixed data types. At the time of writing,

TABNET is a developing algorithm published in the preprint paper attentive

interpretable tabular learning [19].
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The general idea of TABNET is that performance and explainability are

both valuable in neural networks. The main concepts of TABNET comprise

attention transformer blocks, which perform instance-wise feature selection

that allows having a built-in explainability, feature transformer block, which is

a multilayer perceptron with gated linear unit activation sharing layers across

different levels, and sequential steps, which mimics ensembling and increases

model capacity.

4.1.3 Contributions

This chapter makes several contributions that we summarise as follows:

1. We review the imputation techniques mentioned above, explain their

differences in detail, and give recommendations depending upon the

missing data problem at hand.

2. We develop a new type of imputation algorithm, which we call MIT-

ABNET, expanding the Gibbs sampler from [140] to perform MI with

TABNET [19].

3. We modify the architecture of TABNET [19] to perform multiple imputa-

tions allowing us to replace missing values with samples of the missing

values’ joint probability density function estimated with MITABNET.

4. We propose a systematic approach for comparison of imputation methods

on RWE datasets.

5. We apply this approach to compare the model performance of seven

imputation methods. The six methods are EM, predictive mean matching

(PMM) with MICE, bootstrap-based MIPCA, MIRF, GAIN and a method

that uses MICE with MITABNET.

6. We conduct a comparative study of the state-of-the-art imputation al-

gorithms in simulations and RWE data benchmarks with clinical oncology

applications.

7. We provide Python and R implementations of MITABNET and all the

discussed methods.
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Table 4.2: Biomarker status and characteristics of the population cohort of
NSCLC patients followed-up for the present study.

Characteristic N N = 35,012

ALK 28,583 971 (3.4%)
Unknown 6,429

EGFR 31,124 5,196 (17%)
Unknown 3,888

KRAS 17,025 4,778 (28%)
Unknown 17,987

BRAF 16,426 847 (5.2%)
Unknown 18,586

PD-L1 17,353 6,052 (35%)
Unknown 17,659

Time at risk 35,012 288 (112, 648)
Deceased 35,012 23,773 (68%)

4.2 Methods

4.2.1 RWE dataset analysed

The RWE data source used in the present chapter was the NSCLC Flatiron

database[143], a dataset of de-identified patient-level electronic medical records

in the United States spanning 280 community practices seven sizeable academic

research institutions. In RWE datasets, clinical interest is often on biomarkers

that help identify sub-populations that most benefit the targeted treatments.

For NSCLC, clinical practice guidelines recommendations include testing the

genomic biomarkers EGFR, ALK, KRAS, BRAF, and immunotherapy marker

PD-L1. The Flatiron cohort analysed consists of patients who received a

diagnosis of advanced NSCLC. The inclusion criteria are patients aged ≥ 18,

pathological confirmation of NSCLC obtained from tumour cytology or biopsy,

documented diagnosis of unresectable stage III-IV NSCLC, and at least one

biomarker status of EGFR, ALK, KRAS, BRAF, or PD-L1. The dataset

analysed includes 35,012 individuals, see Table 4.2.

This chapter analyses the impact of biomarker status ALK, BRAF, EGFR,

KRAS, and PD-L1 on real-world survival analysis. Even though one can use

unknown status as a predictive marker in a multivariate survival model, we

argue that such an analysis would not be helpful for clinicians seeking to

understand the impact of biomarker status on clinical outcomes. Figure 4.2

displays the combinations of missingness for the biomarkers EGFR, ALK,

KRAS, BRAF, PD-L1 in the RWE dataset.

The survival analysis had the following relevant parameters: index date

and the end date. We define the index date as the start date of treatment

anchoring the survival analysis. We define the end date as the death date for

patients for whom this is known or the last confirmed activity for patients for
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Figure 4.2: EGFR, ALK, KRAS, BRAF, PD-L1 status missingness and its
combinations of missingness using the UpSet visualisation method.

whom it is not known. The time at risk is the difference between the end date

and the index date.

4.2.2 Benchmark methods for multiple imputations

Different approaches to drawing multiple imputations exist in the literature.

The following is a brief description of the battery of algorithms compared in

the present chapter.

Expectation-maximisation Honaker et al. [137] built on the EM approach

to impute missing values and performed multiple imputations using a bootstrap-

based design. The EM algorithm iteratively starts with an expectation step

that calculates the likelihood function given by the expected complete data

conditional on current parameter estimates. The expectation step is hence, a

form of imputation. Then, the maximisation step chooses the model parameters

by optimising the likelihood function. For a detailed explanation of the EM

imputation algorithm, we refer to [137]. We used the implementation of EM in

the R package Amelia [137].

Predictive mean matching Gerko et al. [144] suggest a Gibbs sampler

for the MICE algorithm to draw from an approximate posterior distribution

after evaluating the complete data replacing missing values for placeholders.
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MICE is an iterative method to use regression strategies such as PMM for any

variable. For a detailed description of the MICE -PMM algorithm, we refer to

[144]. We use the stable R release package mice for PMM [57].

Random forest Stekhoven et al. [58] suggested a random forest algorithm

for missing data imputation that can perform MIRF by running the algorithm

with different random seeds. The missing random forest algorithm issues

predictions for missing values by weighing many relatively uncorrelated trees.

[138] implements the random forest algorithm iteratively by fitting the observed

values and updating the missing values until meeting a model performance

stopping criterion. We use the implementation of missing random forest in the

R package missRanger [145].

Principal component analysis Josse et al [141] proposed MIPCA methods

that exploit the global similarity between individuals and the correlation

between variables to impute missing datasets. The MIPCA algorithm starts

calculating the MIPCA components and then projects each principal component

using the MIPCA prediction. Iterative MIPCA repeats these steps until

convergence. The MIPCA algorithm is flexible enough to perform multiple

imputations via a non-parametric bootstrap. We estimate the number of

components for MIPCA using cross-validation. For a detailed explanation

of the regularised iterative MIPCA algorithm, we refer to [141]. We use the

regularised iterative MIPCA in the R package missMDA [141].

Generative adversarial imputation networks Yoon et al. [54] adopted

the generative adversarial framework from [142] to develop a GAIN, which is a

non-stochastic neural network constituted by a generator and a discriminator

network trained in a zero-sum game. The discriminator attempts to distinguish

the imputed values from the actual ones, which predicts the mask. The

generator, on the other hand, attempts to deceive the discriminator. The

generator inputs are the mask and the original data with missing values that

are substituted by noise, e.g., from a Normal random variable. We use the

Python implementation of GAIN [54].

4.2.3 Multiple imputations with tabnet

This section describes our approach for generating samples from the missing

values’ joint distribution with MITABNET. We highlight the two separate

components of the algorithm, estimate a specified conditional model with

TABNET using dropout, and update one step in the MICE algorithm.
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Tabnet with dropout

Tabnet takes the raw input features and applies dropout and batch normal-

isation. Then, there are consecutive steps that are identical. Each step starts

with a feature transformer block, followed by an attentive transformer block

that creates the mask, its output is passed to another feature transformer

block, which creates both predictions and the input for the next step’s at-

tentive transformer block. The predictions are the sum of the step’s outputs,

passed to a final fully connected layer to resolve any regression or classification

problems. Moreover, we can use each step’s mask to provide information about

the feature’s attributes.

Figure 4.3: Illustrates TABNET’s global architecture with the dropout layer.
We adopt the TABNET architecture and add dropout to the inputs allowing
us to perform multiple imputations.

The main steps and layers in TABNET are as follows:

Embeddings We use an approach similar to that in [146], we apply entity

embeddings in TABNET to represent categorical variables. The general idea

of embedding is to retain meaning by transposing large vectors to lower-

dimensional space. Hence, the categories group the outcome.

Dropout With dropout, we randomly switch-off inputs in each example used

to train MITABNET. The implementation is straightforward: it is a regular

TABNET with an additional dropout layer applied to the input. The hyper-

parameter that controls the rate of dropout is a tuning parameter denoted

α.
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Batch normalisation Applying batch normalisation normalises the output

from the inputs layer per batch, hence the name batch normalisation. The

batch normalisation layer has two additional sets of trainable parameters, the

mean and the standard deviation.

Feature transformer The feature transformer block comprises four consec-

utive gated linear units (GLU) blocks. Each GLU block is a fully connected

layer, followed by a batch normalisation layer and a GLU activation, given by:

GLU(x) = σ(x) � x (4.1)

In addition, there are two shared and two independent blocks. Hence the

model shares the first two GLU blocks across decision steps. Moreover, there

are skip connections at every GLU block, allowing the training of deeper

models.

Attentive transformer The attention transformer block comprises a fully

connected layer, batch normalisation layer, and a prior scale. At the initial

state, the prior setting is P0 = 1 for all features, which is similar to placing a

non-informative prior on the feature attention process. For the following steps,

the prior is given by:

Pi =

p∏
j=1

(
γ − Mj

)
(4.2)

γ is a tuning hyper-parameter. Setting γ close to one allows the model to

select different features for each step while setting γ to a higher number will

make the model use the same features at all steps. The output of the prior

scales is the input to the sparsemax activation function, which projects the

probability distribution onto probability simplex such that:

p(x) = argmin
p∈∆K−1

‖ p − x ‖22 (4.3)

In brief, the sparse max outputs probabilities that sum to one and induces

regularisation.

The cost function of TABNET is given by:

J (θ) =

(x ′ − x)2 , if x is continuous

−
∑K

k xk log
(
x ′
k

)
, if x is categorical

We define the cost function as the squared error for continuous variables

and cross-entropy for categorical variables. The optimisation algorithm that

we use is the Adams optimiser [12], an extension to stochastic gradient descent

explained in section 3.3.3.
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Predictions are the output of a fully connected layer which inputs are the

sum of the outputs across the steps. Predictions with the X−j inputs for the

missing values allows us to perform a single imputation for the features Xj ,

which for classification are a sample from the outputs of a softmax activation

function.

MITABNET

Developing the imputation model was done sequentially, starting with random

draws from the observed data Xobs
j . The MITABNET algorithm, see the

pseudo-code in algorithm 1, is repeated for each m = 1, . . . , M imputed datasets

as follows:

Step I Initialise the complete dataset with random samples from the observed

dataset Xobs.

Step II For each variable, split the missing and observed datasets, split the

observations into train and validation sets, we recommend 80:20, use TABNET

to learn the distribution P(Xj |X−j, R, θ).

Step III Use the trained TABNET to predict the missing values in Xj .

Step I to III are repeated a prespecified number of iterations for each K

feature with missing values.

Algorithm 1: Pseudo-code of MITABNET

Result: M complete datasets
for m = 1, . . . , M do

initialisation;
for j = 1, . . . , p do

Random Draw from Xobs
j to fill in initial imputations X0

j .

end
for j = 1, . . . , p do

Define X0
−j as the currently complete dataset;

switch Xj do
case Continuous do

Xj = TabnetRegressor (X0
−j);

end
case Categorical do

Xj = TabnetClassifier (X0
−j);

end

end

end

end
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4.2.4 Strategy for comparing methods

A head-to-head comparison of imputation algorithms involves the ability of

the algorithms to recover the actual value from an ”amputated” dataset. By

amputation, we refer to the concept developed in [139], where a simulation

algorithm generates the missingness mechanism to obtain datasets that have

missing values following a specific pattern. Besides, for inference, a reliable

multiple imputations algorithm needs to preserve parameter estimates’ mo-

ments having low bias, high coverage, and distributional characteristics for the

multiply imputed datasets.

Synthetic data generation

A

A1

A2

A3

B

B1

B2

B3

Hypothetical SCM

Figure 4.4: Hypothetical DAG depicts the running example structural causal
model (SCM).

The following running example is a standard SCM with real-world applica-

tions in gene networks [147] used here for demonstration, see Figure 4.4. Let

A and B be latent variables, i.e. not observed. A causes B. A also causes

three manifest variables A1, A2, A3 and partially causes B1. B causes three

manifest variables B1, B2, B3. The variables A1, A2, A3, B1, B2, B3 are manifest,

i.e. observable. We generate sample datasets with:
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B B fB (A)

A1 B fA1

(
A,UA1

)
A2 B fA2

(
A,UA2

)
A3 B fA3

(
A,UA3

)
B1 B fB1

(
A, B,UB1

)
B2 B fB2

(
B,UB2

)
B3 B fB3

(
B,UB3

)
(4.4)

Notably, A1, A2, A3, B1, B2, B3 have random noise attached. From this model,

we adjust the linear coefficients to obtain two different datasets with different

levels of correlation between the manifest variables, such that:

1. Dataset type I has a high correlation ρ ≈ 0.8.

2. Dataset type II has a low correlation ρ ≈ 0.2.

To understand the impact of sample size on the imputation accuracy of the

compared algorithms, we generate various datasets, progressively decreasing

the sample size with the geometric sequence: 10000, 5000, 2500, 1250, 625.

We generate 200 datasets of each type and proceed to ”amputate” values. We

amputate using MAR, the most commonly accepted missingness mechanism in

analysis RWD [148]. Reproducible code is included in appendix A.1.

For MAR, we use a multivariate missingness simulation method based on

a multivariate amputation algorithm [139]. Multivariate amputation’s general

idea is to define the probability that the nth individual’s ith variable is missing

conditional on the nth individual’s other variables’ missingness or observed

value such that:

Pm
i =

pm(i) · N · exp
(
−

∑
j,i wjmj(n)xj(n)

)
∑N

l=1 exp
(
−

∑
j,i wjmj(l)xj(l)

) (4.5)

pm(i) corresponds to the proportion of missingness, and the wj are pre-specified

weights. The linear combination of weights and variable’s value or missingness

gives a weighted sum score determining each variable’s missingness probability.

wssi =
∑
j,i

wjmj(n)xj(n) (4.6)

where wssi denoted the weighted sum score for the ith variable. We introduce

MAR by setting the probability of missingness according to a standard right-
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Figure 4.5: Right and left-logistic functions to generate datasets with MAR
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tailed logistic function, i.e. the likelihood of a given variable missing is positively

correlated with the weighted sum wssi, see Figure 4.5.

Single imputation accuracy

To evaluate the imputation accuracy for single imputations, we report the root

mean squared error (RMSE), given by:√√√
N∑
i=1

(
x ′i − xi

)2
N

(4.7)

where x ′i is the actual amputated value for the ith individual’s x variable, and

xi is the imputed value.

Generative survival model

In the context of survival modelling, the survival function S(t) is the probability

of surviving to time t and is given by equation 2.6. Our approach to model

survival datasets is to define the time-to-event process to be a system of two

states (initial and end states), where the survival function (S) is the transition

from the initial state to the end state, then given by:
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dS

dt
= −S · h(t, θ, xi)

S(0) = 1

(4.8)

h denotes the hazard function, and xi is a vector of individual covariates.

The survival time results from an inverse transform sampling (ITS) process,

which is an efficient method to generate independent samples from a given

probability density [97]. Equation 4.8 gives the survival function, which is

the complementary cumulative distribution function. Hence, the cumulative

distribution function is given by:

CDF(T) = 1 − S(T) (4.9)

Generally, the CDF for a given time point t is equal to:

CDF(t) =
∫ t

0
p(u)du (4.10)

where we integrate with respect to t and u is a dummy variable. For time

t = 0 the CDF is 0, and the S(T) is 1. As time approaches infinite the CDF

approaches 1, and the S(t) approaches 0. Hence, both the CDF(t) and the S(T)

are given in the interval (0, 1). Therefore, given the survival function from

Algorithm 2: Pseudo-code of survival generative model

Result: N individuals, event time T , and censoring indicator d, where
E is the administrative time.

for n = 1, . . . , N do
Generate u ∼ Uniform(0, 1) ;
T = S−1T (u) ;
if T > E then

d ← False ;
T ← E ;

end
else

d ← True ;
end

end

Equation 4.8 we can generate independent samples with algorithm 2, such

that:

1. Generate a random number u from the standard uniform distribution (in

the interval (0, 1)).

2. Set the event time to T , ST (u).
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3. If the event time occurs during follow-up, set as an observation, otherwise

introduce a censored record.

To perform ordinary differential equation (ODE) simulations of survival models,

we developed simtte [149] an open-source R package that allows for flexible,

hierarchical and bespoke survival models, see appendix A.2. For proof of the

ITS algorithm, see [96]. Our new R package simtte [149] allows specifying S(t)

flexibly with ODE and use ITS to sample from the solution of the S(t).

4.2.5 Analysis of interest

The analysis of interest is survival analysis. We used Effron’s likelihood [150]

to handle tied death times as implemented in the rms R package [151]. To

be consistent with all imputation methods, we use the same multivariate Cox

proportional hazards model [66], given by equation 2.10, where the prognostic

index (µ) is given by:

µi = βALK·ALKi+βBRAF·BRAFi+βEGFR·EGFRi+βKRAS·KRASi+βPD-L1·PD-L1i

(4.11)

where βP are the log-hazard ratios of each P biomarker ALK, BRAF, EGFR,

KRAS and PD-L1. The pairs plot matrix in figure 4.6 shows the kernel density

estimates of µ in the Flatiron NSCLC data for each imputation method with

pairwise scatter plots calculated on the off-diagonal. The pairs plot shows that

the different imputation methods’ µ are positively correlated but not collinear,

indicating that there may be practical differences in the post-imputation

prediction performance.

To combine inference in the frequentist Cox proportional hazard model,

equation 4.11 above, we calculate a parameter estimate for each imputed

dataset (βm) and use Rubin’s rule [152] to average over the estimates. The

formula for the point estimate of each parameter estimate (β̄) is an average

over the point estimates of each imputed dataset, such that:

β̄ =
1

M

(
M∑
m=1

βm

)
(4.12)

Furthermore, multiple imputations allow us to compute the total variance,

which is helpful for constructing confidence intervals for the parameter estimates.

To do so, we must consider the sampling variability within each complete

dataset, denoted as σw, and related to the conventional estimation of variance,

which is given by:

σw =
1

M

(
M∑
m=1

σm

)
(4.13)

Besides, we must consider the variability between complete datasets, denoted
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first random imputation sample of the Flatiron NSCLC analytical cohort.
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as σb, regarded as being the result of missing values, such that:

σb =

√∑M
m=1

(
βm − β̄

)2
M − 1

(4.14)

Finally, to compute the total variance of the parameter estimates, we apply

the formula adapted from [153] by combining σw and σb, such that:

σ = σw +

(
1 +

1

M

)
σb (4.15)

Using the adjusted formula from [152] to calculate the degrees of freedom

[152], it is straightforward to compute a confidence interval for β̄ with α value,

given by:

β̄ ± tdf, 1−α2
√
σ (4.16)

where β̄ is the pooled estimate obtained from equation 4.12, σ is the total

variance obtained from equation 4.15, df is the degrees of freedom and t is the

t-statistic.

Imputation models

Imputation models included the five biomarkers status EGFR, ALK, KRAS,

BRAF, and PD-L1. Additionally, we use the target survival as a predictor

variable as suggested before [58] to improve the data efficiency of the imputation

model. The marginal Nelson-Aalen cumulative hazard [154] estimate (H) was

perfectly correlated with time at risk (T); see figure 4.7. Hence, we used H to

improve the imputation model. The correlation among the biomarkers ranges

from 0 to 0.2. To be consistent with all imputation methods, we used the same

multivariate Cox proportional hazards model in all cases; see equation 4.11.

Imputations performance

Accuracy use is a convenient yardstick for benchmarking imputation algorithms

[54]. However, for inference, our interest is in the distributional characteristics

of the multiply imputed datasets, such as preserving parameter estimates’

moments having low bias, high coverage of confidence intervals, and the

robustness to missingness mechanisms such as MAR. Let a survival dataset

given by Y the outcome space comprised by the survival time and the censoring

indicator, and Xp the feature space with 1, . . . , p features.

Once we compute β̄ and σ for each parameter estimate, we evaluate

the imputation performance of each imputation algorithm, see table 4.1, by

evaluating the following heuristics:

1. Percentage Bias : An optimal imputation algorithm should be unbiased.
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EGFR, KRAS, PD-L1, cumulative death hazard H, survival time T, and death
status in the Flatiron NSCLC dataset.

We compute the parameter estimate β̂ from the complete dataset before

running the amputation algorithm, see section 4.2.4. For each parameter,

the percentage bias is given by:

100 ·

�������
∑P

p=1

(
β̄p − β̂p

)
∑P

p=1

(
β̂p

)
������� (4.17)

where β̂ is the parameter estimate before amputating the dataset with

missing values, and β̄ is the point estimate obtained with equation 4.12.

Therefore, the best imputation algorithm will have a lower percentage

bias, with a value of 0 being a perfect imputation model.

2. Width of Confidence Intervals : With σ computed with equation

4.15 we compute 95% confidence interval with equation 4.16. A narrow

confidence interval that covers the parameter of interest β̂ are prefered.

However, smaller confidence intervals that cover the parameter interest

β̂ indicate sharper inference.

3. Coverage : The coverage is the probability that the low (θlow) and upper

(θupp) bounds of the confidence interval include the actual parameter

estimate θ. With a 95% confidence interval, we compute if it includes the

original parameter of interest β̂. We repeat this computation 200 times

and compute the proportion of times that β̂ is inside the 95% confidence
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interval, which is given by:

1

N

N∑
i=1

I
( �θlow,i ≤ θ ≤�θupp,i) (4.18)

where I denotes the indicator function, �θlow,i denotes the lower bound of

the confidence interval for the ith sample, and �θupp,i denotes the upper

bound of the confidence interval for the ith sample The coverage values

range between the interval (0, 1) or in percentage, 0% to 100% — 0%

indicating no coverage of the actual parameter and 100% showing a

perfect coverage.

4. Convergence : For MITABNET we need to monitor convergence. To

do so, we use the trace-plot and the R̂ metric [155]. In general, the R̂

metric evaluates how well Markov chains mixed, within and between

chains. Therefore, we suggest it is a helpful statistic for imputation

algorithms that rely on the Gibbs sampler, such as MITABNET.

Generation of sample datasets for multiple comparisons

We will not know the resulting criteria for the comparison study based on the

data distribution from only the available complete data because of the severity

of the missing values in RWE datasets. Instead, one can impute the original

data with each of the imputation algorithms (home imputation), which will

generate a concept drift that we define as the shift in the data distribution

induced by the imputation method. Then, one can sample amputated datasets

with a MAR mechanism similar to the original data by using the original mask

matrix given by the indicators of the cells that were missing in the original

data, see figure 4.8. We suggest using a Bernouilli random variable since is the

maximum entropy distribution for binary events. We set the probability of

missingness p to 0.25 for the initially observed cells and 1 − p = 0.75 for the

initially missing cells. The value of p = 0.25 strikes a balance in bootstrapping

the missingness pattern from the original dataset while conducting a fair head-

to-head comparison among the imputation algorithms (visiting imputation).

Note that setting p to 0.5 would yield an MCAR mechanism of missingness.

The method has been used for benchmarking imputation algorithms [58].

To illustrate the dependence on the concept drift, we evaluate the im-

putation performance using three imputation methods on amputated datasets

samples of the Flatiron NSCLC cancer biomarker data. Table 4.3 shows the

percentage bias results for two such samples. Let us look at the first re-imputed

sample. The percentage bias varies depending on the imputation algorithm
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Algorithm 3: Algorithm for evaluating the performance of imputa-
tion methods in real-world datasets.

for each imputation method do
initial single imputation of Xobs;

end
for each imputation method do

for each of S random amputations do
Draw an amputated datasets.

end

end
for each imputation method as Home do

for each of S random amputations do
for each imputation method as Visiting do

Draw multiple imputations.
Calculate the single and mutiple criteria on the masked
values.

end

end

end
Compare the different imputation methods in terms of the average over
the multiply imputed datasets and the spread of the criteria values.

Table 4.3: Values of the percentage bias for three imputation methods using
two imputed bootstraps from the NSCLC Flatiron dataset.

Method
Sample 1 Sample 2
EM PMM MITABNET EM PMM MITABNET

EM 34.7 18.6 54 27 19.2 46.8
GAIN 53.6 61.6 8.5 57.4 69 4.9
PMM 90.5 20.3 99 79.3 7.8 75.8

MIPCA 64.9 8.5 66.1 61.1 14 83
MIRF 117.3 24.4 119.2 96.1 15.3 133

MITABNET 6 24.5 13.4 6.9 28.4 2.2

used to obtain the complete dataset. Moreover, EM obtains the lowest percent-

age bias for the dataset imputed originally with MITABNET, which contrasts

with the results from the amputated sample 2, where MITABNET obtained

the lowest bias for the dataset imputed originally with MITABNET. The

inconsistent results from samples 1 and 2 illustrate that one needs several

samples to evaluate the performance of the imputation methods. Another

drawback of investigating only one sample is that we do not entirely take

advantage of all the available information on the data. Therefore, we sample

S amputated datasets and calculate the criteria for each sample, yielding S

different values for each of the criteria. We then compute the average of the

multiply imputed datasets and their total variance. We sample S independent

datasets correlated to the NSCLC Flatiron biomarker data distribution. We
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will use S = 200, a number seeking to support uncertainty due to few samples

and long computational time.

4.3 Results

4.3.1 Synthetic data experiments

Using equations 4.4 we experiment with increasing sample size: 625, 1250,

2500, 5000 and 10000. In the high correlation setting (ρ ≈ 0.8), every method

performs better than in the low correlation setting (ρ ≈ 0.2). The trend implies

that MITABNET and GAIN consistently outperform each benchmark across

sample size and correlation settings. Figure 4.9 shows the RMSE for each

imputation algorithms. Figure 4.10 shows that the MICE algorithm converges

both in the mean of the parameter estimates θ̂ and the variance σ. In the table

4.4 we report the value R̂ that is ≈ 1 confirming that the Markov chains mixed

well. We now compare the same benchmarks considering the bias in the

Table 4.4: Convergence of MITABNET in synthetic dataset, R̂ statistic

Feature θ̄ R̂ σR̂

A1 0.991 1.003
A2 1.006 0.992
A3 1.016 1
B1 1.01 1.03
B2 0.997 1.004
B3 1.02 0.995

estimate of the log-hazard ratio for the synthetic data. The log-hazard ratio

β̄ after imputation should be as near to the original β̂ as possible. Table 4.5

shows the results of percentage bias for a sample size of 10,000.

Table 4.5: Percentage bias in high and low correlation scenario for a sample
size of 10,000.

Percentage Bias
model ρ = 0.8 ρ = 0.2

EM 11.5 ± 0.6 74.9 ± 1.5
GAIN 10.5 ± 1.3 41.5 ± 1.7
PMM 10.1 ± 1.2 74.8 ± 1.7

MIPCA 15.7 ± 1.3 95.2 ± 1.7
MIRF 10.8 ± 0.7 74.3 ± 1.7

MITABNET 2.6 ± 1.4 36.2 ± 1.4
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Figure 4.8: Generation of datasets with artificial missingness from a population
of patients with NSCLC in the Flatiron database. datasets B1, B2, ..., B6
are imputed datasets with the imputation algorithms (PMM, MIRF, EM,
MIPCA, MITABNET, GAIN) serving as host to the comparison or imputing
at home. datasets C1, C2, ..., C600 are amputated dataset 100 for each B
dataset. datasets D1, D2, ..., D3600 are imputed datasets 6 for each C dataset,
the imputation algorithms are visiting.
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Figure 4.9: Head-to-head comparison of imputation algorithms in post-
imputation accuracy in high and low correlation scenario and increasing sample
sizes.

4.3.2 Real-world data experiments

MCAR test

We test the common MCAR assumption from the observed data in the following

experiment. To do so, we implement Little’s test of MCAR [61], and include

one variable at a time. We interpret as evidence that the MCAR assumption

does not hold a statistically significant result (p < 1e − 5). The test results

depicted in figure 4.11 suggests that MCAR does not hold for the RWE Flatiron

NSCLC cohort analysed (p < 1e − 5).

MAR imputation performance

In the next experiment, we assume that MAR hols, as explained in Section 3.2

the MAR assumption is untestable from the data and relies on the assumption of

exchangeability of the missingness mechanism given all the observed variables.

Evaluating the imputation performance for MAR in RWE datasets is diffi-

cult since ground truth parameters are often unknown. We, therefore, cannot

use MRSE to evaluate the performance of the imputation algorithms on the

RWE dataset. In our real-world data experiment, we instead focus on compar-

ing bias and coverage of parameter estimates and the impact of missingness

for each imputation algorithm, see section 4.2.5. We also analyse the interval

width. For methods that rely on the Gibb sampler, such as MITABNET,

the convergence of the methods was visually checked and evaluated, see fig-

ure 4.12. In this experiment, we first evaluate the percentage bias of using

each imputation algorithm to impute 200 Flatiron NSCLC datasets. We first
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Table 4.6: Percentage bias for each imputation algorithm in the Flatiron
NSCLC dataset.

Home EM GAIN MIPCA MIRF MITABNET PMM

EM 33.9 ± 5.8 121.5 ± 111 13.5 ± 3.6 28.6 ± 13.6 47.6 ± 4 16.7 ± 3.4
GAIN 53.1 ± 4.1 81.9 ± 36 69.3 ± 2.4 66.6 ± 3.4 95.8 ± 90.6 66 ± 5

MIPCA 62.8 ± 7.2 123.3 ± 116.6 26.8 ± 8.1 8.4 ± 7.8 71.1 ± 16.2 9.2 ± 4.6
MIRF 106.8 ± 7.1 100.8 ± 87.8 55.2 ± 5.5 9.1 ± 3.4 130 ± 15.5 25.8 ± 5.6

MITABNET 3.8 ± 3.3 80 ± 74.1 4.3 ± 3.7 57 ± 3.9 9.8 ± 5.7 27.5 ± 4.9
PMM 85.9 ± 8.2 52.5 ± 43.5 47.1 ± 11.7 11 ± 9.6 102.3 ± 19.5 10.8 ± 7

perform multiple imputations from the original Flatiron NSCLC dataset for

each method, obtaining 5 datasets, generate 200 (40 × 5) amputated datasets

using algorithm 3, in section 4.2.5.

Table 4.6 shows the percentage bias as given by equation 4.17. Each

method outperforms row-wise if it has the lowest percentage bias in each

imputed dataset. Theoretically, the lowest value is zero, which indicates a

perfect model. As explained in section 4.2.5 the imputation performance

and the percentage bias depend on the missingness and the concept drift.

For instance, the on-diagonal elements of table 4.6 indicate the impact of

missingness for each imputation algorithm because it is estimating the values

imputed with the same algorithm. The off-diagonal elements indicate the

algorithm’s additional difficulty in learning the concept drift generated by

evaluating the values imputed with a different algorithm. The model is re-

imputing a dataset that was imputed originally with another algorithm. The

percentage bias does not indicate a superior method, with MIRF (9.1 ± 3.4)

and PMM (10.8 ± 7) performing best in on-diagonal elements. MITABNET

has a low percentage bias (9.8 ± 5.7), but the best row-wise is EM (3.8 ± 3.3).

Table 4.7 shows the coverage of the 95% confidence interval constructed

using Rubin’s rules, as given by equation 4.18. The extreme coverage values

are 0 and 1, 0 indicating no coverage of the actual parameter and 1 indicating

a perfect coverage of 100%. Similarly to the percentage bias experiment, the

on-diagonal elements of table 4.7 indicate the impact of missingness on coverage

and the off-diagonal the impact of concept drift. The best methods considering

the on-diagonal elements of the coverage table 4.7 are PMM (0.9 ± 0.02),

MITABNET (0.88 ± 0.02) and MIRF (0.68 ± 0.03).

As we can see in table 4.8, the interval width for each imputation algorithm

depends more on the concept drift than on the missingness. In general, an al-

gorithm is best if it has a smaller confidence interval width with higher coverage.

Therefore, table 4.8 interpretations need to consider together table 4.7, which

showed coverage results. Finally, figure 4.13 depicts the ground truth para-

meter estimates beta, regarding the different concept drifts and the parameter
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Table 4.7: Coverage for each imputation algorithm in the Flatiron NSCLC
dataset.

home/visit EM GAIN MIPCA MIRF MITABNET PMM

EM 0.5 ± 0.04 0.38 ± 0.03 0.72 ± 0.03 0.56 ± 0.04 0.52 ± 0.04 0.68 ± 0.03
GAIN 0.18 ± 0.03 0.22 ± 0.03 0.32 ± 0.03 0.34 ± 0.03 0.14 ± 0.02 0.5 ± 0.04

MIPCA 0.36 ± 0.03 0.4 ± 0.03 0.5 ± 0.04 0.9 ± 0.02 0.4 ± 0.03 0.94 ± 0.02
MIRF 0.32 ± 0.03 0.2 ± 0.03 0.4 ± 0.03 0.68 ± 0.03 0.22 ± 0.03 0.62 ± 0.03

MITABNET 0.68 ± 0.03 0.12 ± 0.02 0.62 ± 0.03 0.32 ± 0.03 0.88 ± 0.02 0.7 ± 0.03
PMM 0.22 ± 0.03 0.22 ± 0.03 0.1 ± 0.02 0.32 ± 0.03 0.24 ± 0.03 0.9 ± 0.02

Table 4.8: Interval width for each imputation algorithm in the Flatiron NSCLC
dataset.

Home EM GAIN MIPCA MIRF MITABNET PMM

EM 0.09 0.11 0.11 0.13 0.10 0.19
GAIN 0.11 0.11 0.12 0.12 0.13 0.16

MIPCA 0.10 0.12 0.12 0.14 0.11 0.30
MIRF 0.12 0.12 0.14 0.15 0.12 0.20

MITABNET 0.08 0.08 0.09 0.09 0.10 0.16
PMM 0.11 0.12 0.12 0.15 0.12 0.28

estimates considering each algorithm.

4.4 Discussion

Several methods have recently been proposed to perform multiple imputations

with missing data for RWE observational datasets [54, 138]. To our knowledge,

few studies have systematically compared the statistical properties of the

various methods, considering the impact of missing data and the concept drift.

To help potential research on RWE datasets choose an imputation method, we

have studied six methods that perform multiple imputations.

All methods draw multiple imputations using different but comparable

methods. PMM and MITABNET use a Gibbs sampler approach; MIRF

uses different random seeds to initialise a random forest; EM and MIPCA

use bootstrap-based approach; GAIN uses generative adversarial networks.

A DNN powers both GAIN and MITABNET. Hence, multiple imputations

may be drawn by applying dropout layers [156] at training and predicting

imputations time. To our knowledge, we are the first to investigate the

usefulness of TABNET as an algorithm for multiple imputations (MITABNET)

and systematically compared it with state-of-the-art methods. MITABNET can

become part of the pre-processing step of covariates for RWE dataset analysis,

combining the interpretation of multiply imputed datasets for more robust

inference. Methods using MITABNET are promising for complex datasets with

indirect associations among variables as depicted in Figure 4.4.

78



EM GAIN MIPCA MIRF MITABNET PMM

A
L

K
B

R
A

F
E

G
F

R
K

R
A

S
P

D
L

1

EM
G
A
IN

M
IP

CA

M
IR

F

M
IT

A
B
N
ET

PM
M

EM
G
A
IN

M
IP

CA

M
IR

F

M
IT

A
B
N
ET

PM
M

EM
G
A
IN

M
IP

CA

M
IR

F

M
IT

A
B
N
ET

PM
M

EM
G
A
IN

M
IP

CA

M
IR

F

M
IT

A
B
N
ET

PM
M

EM
G
A
IN

M
IP

CA

M
IR

F

M
IT

A
B
N
ET

PM
M

EM
G
A
IN

M
IP

CA

M
IR

F

M
IT

A
B
N
ET

PM
M

0.25

0.32

0.4

0.5

0.63

0.79

0.63

1

1.6

2.5

4

0.4

0.5

0.63

0.79

1

1.3

0.4

0.63

1

1.6

0.25

0.4

0.63

1

1.6

H
a

z
a
rd

 r
a
ti

o

Figure 4.13: Estimates of hazard ratios for ALK, BRAF, EGFR, KRAS, and
PD-L1. The solid line indicated the hazard ratio estimated for the imputation
algorithm, dashed line 95% confidence interval. Boxplot shows the point
estimates of over 100 amputated and re-imputed samples for each imputation
algorithm.
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In this chapter, we have focused on finding the best imputation method for

realistically complex analysis. Our synthetic data experiment used a structural

causal model to sample multivariate datasets with different levels of correlation

among the observed features. As seen in Figure 4.9 and Table 4.5, all methods

perform best when the correlation among variables is high. While MITABNET

performed better than other methods for synthetic datasets, the evaluation on

RWD Table 4.6 and Table 4.7 did not indicate a superior method by the criteria

defined in Section 4.2.5. We suspect that the discrepancy is because of the

low correlation seen in the RWD analysed, as depicted in Figure 4.7. Further

work may explore how the imputation algorithms perform when adding more

correlated features to the imputation model, including demographic variables

that might share information with biomarkers such as smoking history, history

of malignancies or histology.

Our results agree with previous research showing that the best-case setting

for applying off-the-shelve imputation algorithms is the MAR mechanism with

a high correlation between variables. The synthetic data experiment found that

MITABNET and GAIN outperformed every other algorithm in high and low

correlation settings, using accuracy and percentage bias. However, analysing

the RWE NSCLC Flatiron dataset did not find conclusive results of the best

method considering missingness impact and concept drift. Only three methods,

MIRF, MITABNET and PMM, achieved low percentage bias for the scenario

where the concept drift was in favour of them, also showing low percentage bias

for the impact of missing data < 20%. As seen in Table 4.6, PMM achieved

consistently acceptable coverage > 50%, only outperformed under the concept

drift of MIRF and MITABNET. On the other hand, PMM also had the most

extensive confidence intervals across all imputation algorithms.

We analysed the bias and coverage of parameter estimates after imputing

with several imputation algorithms, extending the approach for a standardised

evaluation of imputation algorithms from [54, 138], which concluded that

MIRF or GAIN result in more accurate imputation and sharper inference

than other imputation algorithms. Our synthetic data results indicate that

MITABNET may outperform randomised decision trees and GAIN for low and

high correlated datasets with the structural causal model used previously by

[147], being less biased and hence, prefered for sharper inference.

Limitations

Although we performed the present comparative study with realistically complex

analyses and real-world data, it has limitations. The most critical limitation

is that our results are dataset-dependent. A limitation of our imputation

algorithm is that to avoid an excessive computational burden, we only performed
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five multiple imputations for each method in each bootstrap sample, leading to

potentially noisy between-imputation variability. For realistic analysis, [153]

recommended estimating the number of imputations necessary to produce

efficient estimates by conducting a relative efficient analysis of the fraction

of missing information [52]. Nevertheless, the default choice for the most

popular multiple imputations packages is five [57], and although we evaluated

the convergence of the algorithms, it is possible that analysing RWE datasets

need more imputations to produce efficient estimates.

Finally, our study focused on MAR missingness patterns. However, an

MNAR missing data pattern may be unknown in practice, and results should

be generalised with caution. Alternatives to pre-canned algorithms, such as full

information maximum likelihood [157], and full Bayesian imputation [40], where

the missing values’ model assumptions are explicit in the model formulation,

may be more appropriate for MNAR settings. However, full information

maximum likelihood and fully Bayesian approaches require extra engineering

steps to include the missing variables in the model and are out of the scope of

this analysis. Algorithms for multiple imputations such as MITABNET work

well for MAR and remain the standard approach for handling missing data

with imputation algorithms [57, 158].

4.5 Conclusions

The multiple imputations approach is the standard approach for handling

missing data in RWE datasets, and we have shown a new method to compare

algorithms that perform multiple imputations. MITABNET is a promising

algorithm to draw multiple imputations for complex datasets. Conventional

methods such as multiple imputations with PMM still perform well for RWE

datasets examples, such as the Flatiron NSCLC dataset.
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Chapter 5

Bayesian Survival Analysis - a

real-world case study

This chapter introduces the field of causal inference for analysing RWE datasets

with a time-to-event outcome. We aim to develop a causal design that allows

for statistical procedures to elucidate causal questions of interest in RWE

datasets, such as understanding how biomarkers modify a treatment effect

and the impact of unobserved confounders. To do so, we implement Bayesian

computational methods to conduct parameter estimation with finite samples

in right-censored survival data. We show improvement over state-of-the-art

methods for heterogeneous treatment effects modelling and non-proportional

hazards using synthetic data and real-world examples. We apply our new

approach to an RWE dataset cohort of advanced advNSCLC patients treated

with double-platinum chemotherapy or immunotherapy.

5.1 Introduction

The chapter starts by reviewing the role of immuno-oncology and the RWE

dataset analysed. Then, we develop the concepts of average treatment effects

and heterogeneous treatment effects using Bayesian survival analysis. Finally,

we develop a technique for head-to-head comparison with a utility function

based on personalised treatment effects and analyse the sensitivity of our results

to unobserved confounding, i.e. violations of exchangeability, defining the OTS

bounds for survival outcomes. The following section is a brief clinically-oriented

introduction to the field of immuno-oncology (IO).

5.1.1 Clinical background in immuno-oncology

IO focuses on developing therapies that promote an immune response against

cancer by counteracting the tumour’s mechanism to evade the immune system.

A wide variety of mechanisms of action have been investigated [159] with varying
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degrees of success. A very intuitive model for understanding IO is the cancer

immunity cycle initially described by [160], see figure 5.1. In a very simplified

manner, T-cells are the main components of the adaptive immune system

that can recognise cancer cell formation and unleash a cytotoxic response

that can lead to cancer cell death. Cancer cells undergo spontaneous cell

death in the tumour microenvironment, releasing tumour antigens trafficked

by dendritic cells, antigen presentation cells (APC) to the lymph nodes. In the

lymph node, dendritic cells present the antigen to T cells leading to priming

and activation. The T cells travel back to the tumour microenvironment

via blood vessels, and in the tumour microenvironment, the activated T

cells infiltrate into tumours, recognise cancer cells and unleash a cytotoxic

response killing cancer cells. T cells’ recognition of cancer cells needs two

activation signals, a T Cell receptor and a co-stimulation signal. In the early

1990s [161], researchers recognised that cancer cells are not soliciting immune

response because they could not provide co-stimulation. Cancer cells can

evade recognition by the immune system, which allows them to survive by

expressing PD-L1, which binds to programmed death co-receptor 1 (PD-1)

and halts anti-tumour responses. Certain crucial classes within the IO space

have resulted in approved medicines, including immune checkpoint inhibitors

(ICI) [162], such as PD-1 inhibitors (e. g. pembrolizumab, nivolumab) and

PD-L1 inhibitors (e. g. durvalumab). There are several agents available for

the management of advNSCLC ; the recommendations include monotherapy

and combination therapy. The monotherapy may be chemotherapy or an ICI,

while the combination may be a doublet of chemotherapy, such as carboplatin

and pemetrexed, or a triplet including ICI [163]. Table 5.1 summarises the

results of the pivotal clinical trials that demonstrated the efficacy of ICI in

advNSCLC patients prolonging overall survival.

PD-L1 is a biomarker of interest for clinical research in oncology because

its expression may be associated with different ICI treatment outcomes in

advNSCLC. Clinicians may consider factors including staining intensity and per

cent staining, defined as the per cent of stained tumour cells, when assessing

PD-L1 status. The approaches to testing, reporting and interpreting PD-L1

results have evolved with the science around PD-L1 and everyday clinical

practice [164]. Initial recommendations set a > 50% staining threshold to

determine PD-L1 ”positivity”. However, data is emerging suggesting that

advNSCLC patients with lower per cent staining may respond to ICI [165].

5.1.2 RWE study design

The data source used was the Flatiron database [143], which is a dataset of de-

identified patient-level electronic medical records in the United States spanning
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Figure 5.1: The cancer immunity cycle: T-cells are the main components of the
adaptive immune system that can recognise cancer cell formation and unleash
a cytotoxic response that can lead to cancer cell death.

Table 5.1: Summary of pivotal clinical trials in immune checkpoint inhibitors
(ICI) and chemotherapeutics in advanced NSCLC patients on progression-free
survival (PFS) and overall survival (OS).

Study Agent nivolumab (N) PFS (months) OS (months) Reference

KEYNOTE-24 Pembrolizumab 154 10. 3 21 [166]
KEYNOTE-24 Chemotherapy 151 6 12 [166]
KEYNOTE-189 Pembrolizumab 637 7. 1 20 [167]
KEYNOTE-42 Chemotherapy 637 6. 4 12. 2 [167]
CheckMate-227 Nivolumab 396 5. 6 15. 7 [168]
CheckMate-227 Chemotherapy 396 4. 2 14. 9 [168]

PACIFIC Durvalumab 476 17. 2 > 24 [169]
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280 community practices and seven sizeable academic research institutions.

The inclusion criteria are patients aged ≥ 18, pathological confirmation

of NSCLC obtained from tumour cytology or biopsy, documented diagnosis

of unresectable stage III-IV advNSCLC. The exclusion criteria are patients

participating in a clinical trial for stage III-IV advNSCLC and patients that

did not receive any treatment for stage III-IV unresectable advNSCLC.

The primary research questions are the real-world overall survival (rwOS)

and the real-world time to treatment discontinuation (rwTTD). The relevant

parameters for the time-to-event analysis are the index date and the end

date. We define the index date as the start date of treatment anchoring the

survival analysis. We define the end date as the death date for rwOS, treatment

discontinuation date for rwTTD for patients for whom this is known or last

confirmed activity for patients for whom it is unknown. The term line of

therapy refers to the first eligible drug administration plus other administered

drugs within a defined time frame. Following Flatiron Health rules for line

of therapy definition [170], we set the time frame to be the first 28 days of

starting a line. Figure 5.2 depicts the definition of line of treatment, rwTTD

and rwOS. Overall survival that relates to rwOS has been described as a gold

Diagnosis date Index date

Time

Treatment A
Treatment B
Treatment C

End date
(rwTTD)Start date

End follow-up
(rwOS)

Figure 5.2: Illustration of line of therapy, real-world overall survival analysis
(rwOS) and the real-world time-to-treatment discontinuation analysis (rwTTD).

standard primary endpoint to evaluate the efficacy of most drugs, biologics,

interventions, or procedures in oncology clinical trials [62]. As an endpoint, it

is clearly defined, recorded based on objective assessment, and is a clinically

meaningful measure that provides confirmatory evidence that a given treatment

extends the life of a patient [62]. However, some studies may have insufficient

data to generate sufficiently robust estimates of rwOS (e. g. , when rwOS

time is long and thus the RWE studies require extended follow-up). In these

cases, rwTTD has proven to be a practical surrogate endpoint for regulatory

approval and provides direct clinical benefit evidence. As such, rwTTD is a

common endpoint for utilising RWD.
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5.1.3 Average treatment effects in survival analysis

As explained above in section 2.3, the survival analysis objective is to analyse

treatment’s impact on a possibly censored event time of interest, such as rwOS

and rwTTD. Its analytical goal is to contrast the distribution of the survival

time between treatment groups, i.e. analysing whether the survival times

distributions are stochastically longer or shorter between treatment groups.

A traditional approach to survival analysis is modelling the survival function

S(t) using the hazard function h(t), which is the limit of the conditional

probability that the event of interest will occur and is given by:

h(t) = lim
dt→0

P (t ≤ T < t + dt)
dt · S(t)

=
f (t)
S(t)

(5.1)

where f (t) is the event time density function, assuming a continuous density

function. Note that the hazard function is, therefore, mathematically an

infinite-dimensional parameter space. However, when comparing the survival

distribution between treatments, or hazard functions, ideally, we summarise

the treatment effect with a single or a limited number of parameters.

The proportional hazard approach [66] summarises the treatment effects

using the hazard ratio. The proportional hazard model is given by:

h1(t) = h0(t) exp(β) (5.2)

where exp(β) is the hazard ratio. A hazard ratio < 1 suggests that the treatment

stochastically increases survival probability by decreasing the hazard; hence, it

is beneficial in preventing the event of interest. Conversely, a hazard ratio ≈ 1

suggests that both treatments impact the hazard similarly, i.e. treatment effects

are equivalent. In his seminal paper, Cox [66] noted that the proportional

hazard model is an unbiased estimator of hazard ratios under the assumption

of proportional hazards. However, non-proportional hazards are common in

RWD analysis. A typical violation of the proportional hazards assumptions

occurs when two survival curves cross, implying that the corresponding survival

functions cross. If the proportional hazard assumption holds, the survival curves

proportionally diverge from each other over time, and the average hazard ratio

remains constant. However, if the survival curves cross or the separation of

survival curves is not constant, the hazard ratio estimate is not constant across

time. Figure 5.3 depicts the contraposition of a proportional hazard (PH) and

non proportional hazard (NPH) scenario. It is apparent that when the hazard

ratio is not constant, the survival curves cross, suggesting NPH.

Additionally, the use of hazard ratios alone may have other disadvantages.

The lack of a reference hazard function limits the practical interpretation of

an estimated hazard ratio. A hazard ratio may not align well with the visual
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Figure 5.3: Illustration of proportional hazard (PH), where the survival curves
separation is constant, and non-proportional hazard (NPH), where the survival
curves separation is not constant, and cross.
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assessment of survival curves. Moreover, proportional hazard assumption

violations make the hazard ratios dependent on the censoring distribution [75],

making them more challenging to interpret. Alternatives to the hazard ratio

Table 5.2: Difference between hazard ratios (HR) and restricted mean survival
time (RMST(τ)).

HR RMST(τ)

Without reference level Uninterpretable Interpretable
Censoring distribution Dependent Independent
Actual survival time Independent Dependent

Study duration Dependent (implicit) Dependent (explicit)

approach in an uncensored time-to-event analysis include the mean and median

survival time. However, in the presence of censoring, mean and median survival

times are not immediately accessible. Instead, following [171] we may define

the restricted mean survival time (RMST) as the expectation of the truncated

survival time by a timepoint τ, which is given by:

RMST(τ) = E [min (T, τ)] (5.3)

Given time-to-event data, one can obtain an estimate �RMST(τ), which is

given by: �RMST(τ) =

∫ τ

0
Ŝ(t)dt (5.4)

The interpretation of the RMST is more straightforward than that of hazard

ratios because mathematically it can be shown that it is the average survival

time during the interval of time [0, τ]. Besides, a visual assessment of the�RMST(τ) is also available via the area under the survival curve, see figure

5.4. Moreover, we argue that there are several additional advantages in using

RMST over hazard ratios, which we summarise in Table 5.2. RMST has an

interpretable reference level, while hazard ratios have not. Hazard ratios do

not depend on the actual survival time but only on the ranking of event times.

On the other hand, RMST depends on the actual survival times. Both RMST

and hazard ratios depend on the study duration, which is explicit for RMST,

but it is often overlooked in reporting hazard ratios.

Counterfactual outcomes for survival analysis

In Section 3.1 we introduced counterfactual outcomes. The following is a

running example that demonstrates a counterfactual outcomes framework to

compute ATE using RMST. For convenience, we will use the notation Y instead

of RMST, however, note that as explained above, we measure the outcome

with RMST. Let us consider two possible treatments (A = 0, 1). Given a sample
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Example of Restricted Mean Survival Time

Figure 5.4: Illustration of survival functions for two groups: the area under
the survival function is the �RMST(τ) for each group.

of subjects and a treatment, we have two counterfactual outcomes:

Y0,Y1 (5.5)

representing the RMST outcomes under each treatment. However, in practice

taking both measurements is impractical because we only observe one outcome:

I (A = 0)Y0 + I (A = 1)Y1 (5.6)

where I indicates if the observations belong to the treatment A = 0 group

or the treatment A = 1 group. Therefore, there exists a factual observation

and a counterfactual one that we can tackle as a missing value problem.

Opportunely, we can adapt the techniques introduced in Chapter 4 for missing

value problems. Let us consider a population of four patients and the two

treatment options (A = 0, A = 1). For clarity, we may disregard sampling

variability in this example by considering that each sample comes from a very

large hypothetical super-population and represents a large number of identical

individuals. Subjects 1 and 2 had treatment 0, and subjects 3 and 4 had

treatment 1. The outcome Y is given by:

Y B fY (W, A,UY )
(5.7)
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Table 5.3: Illustration of hypothetical results from a survival study showing
counterfactuals.

Subject Y1 Y0 Y1 − Y0 W

1 2 8∗ -6 1
2 4 10∗ -6 1
3 11∗ 7 4 0
4 14∗ 5 9 0

Population mean 7. 75 7. 5 1
Observed mean 3 6

where UY is an i. i. d random variable. We have not measured the coun-

terfactuals, i.e. the denoted ∗. Let us consider that doctors give the best

treatment for each individual given unobserved covariates W . In this case, if

we only analyse the observations, we would come to the opposite conclusion

about the best treatment because of the confounding variable W , i.e. the

doctor’s action. Therefore, in observational studies, we need counterfactuals

to analyse treatment effects. We adopted the perfect doctor example above

from [79] to illustrate the need for the counterfactual outcomes framework

introduced by Rubin and Neyman [77, 78], which is very helpful for analysing

causal questions from RWD. We discuss the problem of confounding by perfect

doctors in section 5.2.2 where we compute the OTS bounds defined in section

3.5.1.

To complete our running example for ATE, we need to compute counterfac-

tuals in censoring for survival analysis. To do so, we need a model to compute

the expected RMST given the treatment A and the confounders W for each

individual. Substituting in table 5.3 the missing counterfactual outcomes, de-

noted by ∗ with results for the estimate of the (�RMST(τ)) allows us to compute

counterfactuals for survival censored outcomes. Interestingly, the raw data

do not show in our estimator of treatment effects; such an approach would

deliver a biased estimator. Because of censoring, we can not use the observed

event times in our dataset. Moreover, to obtain an estimator that is robust

to proportional hazard violations, we need to fully model non-proportional

hazards, which we define in section 5.2.

5.1.4 From ATE to treatment effects heterogeneity

The term heterogeneity of treatment effects refers to how treatment effects vary

with observable characteristics of individuals [172]. Estimating heterogeneous

treatment effects implies that there is not a unique ATE but a treatment effect

conditional on a set of covariates X, i.e. a CATE. The covariates of interest X

might impact the outcome via interactions with treatment. Mathematically,

heterogeneous treatment effects are the conditional expectation of the difference
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in counterfactual outcomes given that a variable of interest X takes a pre-

specified value. Heterogeneous treatment effects are denoted as CATE and are

given by:

CATE = E
[
Y0 −Y1 |X = x

]
(5.8)

Let us consider a hypothetical population stratifying by a variable X into

subpopulations with counterfactual outcomes that are different, adapted from

[32] and depicted in figure 5.5. The outcome Y is given by: The outcome Y is

given by:

Y B fY (W, X, A,UY )
(5.9)

where UY is an i. i. d random variable, and the variable X is a variable of

interest because it modifies the treatment effect, for example, a biomarker for

treatment personalisation.

Further, let us consider a population of eight patients and two treatment

options (A = 0, A = 1). X denotes the treatment modifier measured for each

individual. For clarity, we ignore sampling variability in this example and

assume that each sample comes from a very large hypothetical super-population

and represents many identical individuals. Table 5.4 shows the results of this

thought experiment. In particular, the sign of the CATE is potentially opposite

to the observed mean between strata of X. This exercise echoes the analysis of

ATE conducted above. To complete our running example for CATE, we need

to compute conditional counterfactuals in censoring for survival analysis. To

do so, we need a model to compute the (�RMST(τ)) given the treatment A, the

biomarker X and the confounders W for each individual. Substituting in Table

5.3 the missing conditional counterfactual outcomes, denoted by ∗ with results

for the estimate of the (�RMST(τ)) allows us to compute the CATE, given by

equation 5.8.

5.1.5 Related work

There is a vast, fast-growing literature on treatment effects heterogeneity. The

study of treatment effect heterogeneity covers several topics, including but not

limited to biomarker discovery [17], subpopulation stratification [173], multiple

hypothesis testing [174], identifying the highest individualised treatment effects

[175], estimating OTS [176], and causal model discovery [37]. Each question

has its own set of methods. One crucial question is that of stratification. Early

literature on stratification focused on non-parametric analysis methods [32].

Rothman et al. [177] reviewed the most common methods for stratification.

More recently, Athey et al. [173] explored low-dimensional parameter estim-
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Effect in X=1 Effect in X=0

vs.

Population of Interest

X=1 X=0

vs.Treated TreatedUntreated Untreated

Stratification

Figure 5.5: Illustration of treatment modifiers by stratifying a hypothetical
population into subgroups based on a covariate of interest X the treatment
effect is the difference between the outcomes of treated and untreated for each
sub-group.

Table 5.4: Illustration of hypothetical results from an observational study
showing counterfactuals with stratification by variable X.

Subject Y1 Y0 Y1 − Y0 A X

1 2 8∗ -6 1 1

2 10 10∗ 0 1 0

3 6 4∗ 2 1 1

4 10 6∗ 4 1 0

5 2∗ 3 -1 2 1

6 8∗ 6 2 2 0

7 4∗ 5 -1 2 1

8 2∗ 10 -8 2 0

Population mean 5.5 6. 5 -1

Observed mean 7 6 1

Population mean |X = 1 3. 5 5 -1. 5

Population mean |X = 0 7. 5 8 -0. 5

Observed mean |X = 1 4 4 0

Observed mean |X = 0 10 8 2
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ates via random forest for heterogeneous treatment effects estimation and

stratification.

More recent literature extends these methods to ITE. Kunzel et al. [121]

suggested a metalearner architectured dubbed X-learner that combines two

models, one to predict the CATE, and another to impute ITE by predicting the

counterfactual outcomes from all the individual measured covariates, assuming

exchangeability, see section 3.2. [121] suggested using the propensity score to

weight the two estimators in the X-Learner. Yoon et al. [178] suggested an GAN

architecture simulate counterfactual outcomes. Hill et al. [179, 180] showed

applications of GP to estimate time-varying effects and spatial correlated effects.

However, there is a lack of literature on applying GP regression for estimation

of heterogeneous treatment effects in survival analysis. Our research uses

Bayesian survival regression for non-proportional hazards and GP regression

for heterogenous treatment effects in survival analysis.

5.1.6 Contributions

This chapter makes several contributions that we summarise as follows:

1. Introduces a counterfactual approach to estimate treatment effects in

the presence of non-proportional hazards under the Bayesian survival

outcome modelling framework.

2. Develops an OTS Bound for non-proportional hazards using RMST.

3. Conducts simulation studies to evaluate the Bayesian survival outcome

modelling approach in the non-proportional hazard setting.

4. Applies the Bayesian survival outcome modelling approach and the OTS

bounds in several real-world examples.

5. Introduces Weibull GP hazard regression for heterogeneous treatment

effects analysis advancing the concept of treatment personalisation.

6. Discusses methods for comparing causal models related to personalisation

and treatment effects heterogeneity.

7. Lastly, we provide Stan implementations of our Weibull GP hazard

regression model.

5.2 Methods

In analysing RWE datasets, we need to distinguish between the data we observe

and the data we would like to have i.e. the factual and counterfactual outcomes.
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The following section introduces the dataset analysed and the research questions

for our RWE study. Next, we explain the modelling techniques and the

sensitivity analysis method.

5.2.1 Dataset Analysed

Our RWE study is a retrospective cohort study assessing the rwOS during

or immediately after starting chemotherapy or immune therapy. A secondary

objective was to assess the rwTTD as the start of a subsequent line of therapy

or death and the correspondence between rwTTD and rwOS. The data source

used was the Flatiron database [143], which is a dataset of de-identified patient-

level electronic medical records in the United States spanning 280 community

practices and seven sizeable academic research institutions.

In addition to the inclusion-exclusion criteria described in Section 5.1.2,

the study excludes therapy lines where maintenance therapy is clinically rel-

evant, e. g. given for an indication approved as maintenance therapy. The

analysis includes patients that are in the first line of therapy for the following

immunotherapy, chemotherapy and combination treatments: carboplatin, pem-

brolizumab, pemetrexed (CPP); carboplatin, pemetrexed (CP); durvalumab

(D); N; and pembrolizumab (P). The follow-up for the advNSCLC cohort is

four years.

Table 5.5 summarise the time to overall survival, treatment discontinuation

and PD-L1 per cent staining for the first-line. Note the unbalanced treatment

groups in the first line cohort: CPP (N = 3,198), CP (N = 857), D (N = 108),

N (458), and P (N = 2,945). Class imbalance is typical for RWE datasets

obtained from daily clinical practice and hints using the techniques explained

below to estimate treatment effects. The advNSCLC cohort also includes

baseline and longitudinal individually measured covariates, see table 5.6. We

study which covariates may be confounders of treatment effects and those

that may be mediators of treatment effects (post-treatment bias). We classify

the following covariates as likely confounders and attempt to adjust for them

using the below-mentioned modelling techniques. Let us denote the potential

confounders by W , which comprise:

1. Histology: squamous cell carcinoma (SCC), non squamous cell carcinoma

(NSCC), and not otherwise specified (NOS).

2. Smoking: a binary variable indicating if the individual ever smoked.

3. Gender: male or female.

4. Ethnicity: asian, hispanic or latino, black or african american, white or

caucasian, and other race.
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5. Body weight: standardised.

6. Biomarker status of ALK, EGFR, KRAS, and BRAF.

7. Age at diagnosis.

8. Patient performance status as measured by the Easter Cooperative On-

cology Group (ECOG) performance status.

Numbers at risk

Table 5.7 summarises the individuals at risk by year of follow-up for the

rwTTD and rwOS cohorts. We can see that patients drop out earlier in the

rwTTD cohort and that the maximum follow-up time is near four years for

both cohorts.

Handling of missing data

Back in section 4.2, we comprehensively explained and investigated imputation

methods for handling missing data. We discussed the three possible mechanisms

of missing data: MCAR, MAR, and MNAR. For our first analysis, we assume

that a MAR mechanism is in play, which means that missing PD-L1 status

values are not caused by the actual PD-L1 per cent staining values, but other

measured variables can explain them. Our results in section 4.3 suggested that

PD-L1 status is low correlated (ρ ≤ 0.2) with other variables in the advNSCLC

Flatiron dataset.

All the rest of the measured individual variables also have varying levels of

missingness. Hence, to not squander information, we use multiple imputations

to handle missing variables in the confounders. To analyse multiple imputa-

tions in Bayesian modelling, we obtain Bayesian estimates, i.e. the posterior

distribution over parameters, for each imputed dataset (θm) and combine the

posterior distributions to average over the estimates. Combining results after

multiple imputations is helpful because it visualises uncertainty in imputations

via credible intervals and the combined posterior predictive distribution.

5.2.2 Bayesian hazard regression modelling

Following [72], we suggest a Bayesian outcome regression model using a para-

metric model that estimates the hazard, i.e. the immediate risk of death, rather

than the survival function directly. The proportional hazard regression model

is given by:

hi(t) = h0(t) exp [ηi] = h0(t)λi (5.10)
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Table 5.5: Patient outcome, PD-L1 per cent staining, EGFR, KRAS, ROS1,
BRAF status for the followed-up cohorts: Carboplatin, Pembrolizumab, Pe-
metrexed (CPP); Carboplatin, Pemetrexed (CP); Durvalumab (D), Nivolumab
(N), and Pembrolizumab (P).

AdvNSCLC
CPP,
N = 3,1981

CP,
N = 8571

D,
N = 1081

N,
N = 4581

P,
N = 2,9451

OS time 266 (120, 539) 280 (130, 551) 350 (181, 545) 233 (110, 567) 280 (101, 607)
OS status 1,881 (59%) 566 (66%) 49 (45%) 326 (71%) 1,749 (59%)
TTD time 63 (62, 84) 63 (42, 84) 99 (56, 226) 112 (56, 266) 154 (63, 357)
Unknown 288 123 19 66 386

TTD status 2,623 (90%) 694 (95%) 73 (82%) 332 (85%) 1,915 (75%)
Unknown 288 123 19 66 386

PD-L1 staining
0% 827 (26%) 272 (32%) 23 (21%) 163 (36%) 79 (2. 7%)
≤ 1% 373 (12%) 129 (15%) 9 (8. 3%) 71 (16%) 37 (1. 3%)
1% 208 (6. 5%) 61 (7. 1%) 8 (7. 4%) 28 (6. 1%) 67 (2. 3%)

2%-4% 134 (4. 2%) 46 (5. 4%) 8 (7. 4%) 11 (2. 4%) 39 (1. 3%)
5%-9% 209 (6. 5%) 49 (5. 7%) 9 (8. 3%) 37 (8. 1%) 86 (2. 9%)

10%-19% 244 (7. 6%) 62 (7. 2%) 1 (0. 9%) 35 (7. 6%) 80 (2. 7%)
20%-29% 205 (6. 4%) 36 (4. 2%) 9 (8. 3%) 23 (5. 0%) 66 (2. 2%)
30%-39% 117 (3. 7%) 30 (3. 5%) 2 (1. 9%) 19 (4. 1%) 77 (2. 6%)
40%-49% 87 (2. 7%) 17 (2. 0%) 4 (3. 7%) 7 (1. 5%) 50 (1. 7%)
50%-59% 101 (3. 2%) 26 (3. 0%) 5 (4. 6%) 13 (2. 8%) 341 (12%)
60%-69% 106 (3. 3%) 18 (2. 1%) 4 (3. 7%) 6 (1. 3%) 271 (9. 2%)
70%-79% 102 (3. 2%) 25 (2. 9%) 9 (8. 3%) 13 (2. 8%) 323 (11%)
80%-89% 137 (4. 3%) 16 (1. 9%) 4 (3. 7%) 8 (1. 7%) 364 (12%)
90%-99% 248 (7. 8%) 44 (5. 1%) 5 (4. 6%) 16 (3. 5%) 721 (24%)

100% 100 (3. 1%) 26 (3. 0%) 8 (7. 4%) 8 (1. 7%) 344 (12%)
EGFR
− 2,732 (95%) 712 (93%) 77 (93%) 330 (96%) 2,323 (98%)
+ 135 (4. 7%) 55 (7. 2%) 6 (7. 2%) 12 (3. 5%) 58 (2. 4%)

Unknown 331 90 25 116 564
KRAS
− 1,277 (61%) 306 (63%) 42 (76%) 164 (74%) 892 (60%)
+ 807 (39%) 176 (37%) 13 (24%) 59 (26%) 607 (40%)

Unknown 1,114 375 53 235 1,446
ROS1
− 2,665 (99%) 669 (100%) 70 (98. 6%) 302 (99. 7%) 2,122 (99. 8%)
+ 6 (0. 2%) 2 (0. 3%) 1 (1. 4%) 1 (0. 3%) 4 (0. 2%)

Unknown 527 186 37 155 819
BRAF
− 2,243 (94. 4%) 505 (94. 6%) 69 (94. 5%) 245 (97. 2%) 1,632 (94. 3%)
+ 132 (5. 6%) 29 (5. 4%) 4 (5.5%) 7 (2. 8%) 99 (5. 7%)

Unknown 823 323 35 206 1,214
1 Statistics presented: Median (IQR); n (%)
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Table 5.6: Patient histology (SCC: squamous cell carcinoma, NSCC : non-
squamous cell carcinoma, NOS: NSCLC not otherwise specified), smoking
history, gender, race, body weight and age for the followed-up cohorts: Car-
boplatin, Pembrolizumab, Pemetrexed (CPP); Carboplatin, Pemetrexed (CP);
Durvalumab (D), Nivolumab (N), and Pembrolizumab (P).

AdvNSCLC
CPP,
N = 3,1981

CP,
N = 8571

D,
N = 1081

N,
N = 4581

P,
N = 2,9451

Histology
NSCC 4,023 (95%) 1,321 (96%) 800 (50%) 596 (55%) 3,272 (66%)
NOS 147 (3. 5%) 44 (3. 2%) 67 (4. 2%) 48 (4. 4%) 210 (4. 2%)
SCC 46 (1. 1%) 17 (1. 2%) 728 (46%) 445 (41%) 1,500 (30%)

Smoking history
Yes 3,742 (89%) 1,226 (89%) 1,513 (95%) 1,009 (93%) 4,617 (93%)

Gender
Female 1,953 (46%) 682 (49%) 713 (45%) 486 (45%) 2,390 (48%)

Race
White 2,809 (76%) 927 (75%) 1,118 (78%) 749 (76%) 3,529 (79%)
Asian 63 (1. 7%) 27 (2. 2%) 22 (1. 5%) 8 (0. 8%) 80 (1. 8%)
Black 410 (11%) 120 (9. 7%) 150 (10%) 109 (11%) 400 (9. 0%)
Other 433 (12%) 157 (13%) 148 (10%) 118 (12%) 446 (10%)

Unknown 499 149 156 105 524

Body weight (Kg) 73 (62, 86) 74 (63, 87) 74 (62, 86) 73 (60, 87) 72 (61, 85)
Unknown 1,118 410 355 389 1,329

Age 68 (61, 75) 69 (62, 76) 69 (61, 75) 72 (64, 78) 72 (64, 79)

1 Statistics presented: Median (IQR); n (%)

Table 5.7: Numbers at risk for the rwTTD and rwOS cohort.

Cohort 0 year 1 year 2 year 3 year 4 year

rwTTD 3331 656 149 25 1
rwOS 3410 1660 595 157 5
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where ηi is the linear predictor and λi is the link function for individual ith.

For the baseline hazard h0(t) that may vary in time, we evaluate canonical

parametric distributions, such as exponential and Weibull, which baseline

hazard distribution are given by:

Exponential : h0(t) = 1

Weibull : h0(t) = γtγ−1
(5.11)

where γ denotes the Weibull shape parameter.

Likelihood

Let Ti be a random variable indicating the observed time and di be a censoring

indicator, denoting observed events by di = 1 and right-censoring by di = 0.

Allowing for right censoring, the data probability p(D) is the likelihood of this

survival model, given by:

p(Di |θ) = [hi(Ti |θ)]I (di=1) × [Si(Ti |θ)]I (di ∈{0,1}) (5.12)

where θ are the model parameters. For example, for the Weibull hazard model

the likelihood takes the form:

p(Di |λi , γ) = γTγ−1λi
I (di=1)

× exp
(
−Tγi λi

) I (di ∈{0,1}) (5.13)

Regression Coefficients Priors

We denote the prognostic index for the effects of the time-constant covariates

by:

ηi(t) = β0 +
P∑

p=1

βpwi (5.14)

where β0 is the intercept parameter, and βp are the regression coefficient. We

evaluate the following prior distributions for the regression coefficients: vague

prior, flat prior distribution; weakly informative prior distribution (WIP) with

Normal and Student’s t distributions; specific informative prior distribution
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(SIP). Mathematically, the prior distributions for β0 and βp are given by:

Vague :

β0 ∼ Normal(0, 20); βp ∼ Normal(0, 2.5)

Normal WIP :

β0 ∼ Normal(0, 1); βp ∼ Normal(0, 0.5)

Student WIP :

β0 ∼ Normal(0, 1); βp ∼ Student’s t(3, 0, 1)

Normal SIP :

β0 ∼ Normal(0, 1); βp ∼ Normal(0.5, 0.2)

(5.15)

Weibull shape parameter prior For the Weibull hazard model, one also

needs to specify a prior for the shape parameter. The shape parameter allows

the Weibull model to change the rate and fit closer to real-world measurements.

A value near 1 implies an exponential distribution. Therefore, instead of using

a flat prior on the linear scale of shape, which would not be a flat prior on

the probability space, we choose a scaled prior strictly positive, such as the

half-Normal, the half-student and the exponential distribution, which are given

by:

Half-Normal :

γ ∼ Half-Normal(1, 1)

Half-Student :

γ ∼ Half-Student(3, 1, 1)

Exponential :

γ ∼ Exponential(1)

(5.16)

Note that we make the Half-Normal and the Half-student to peak at one by

design. Figure 5.6 show that the probability density for these priors.

5.2.3 Gaussian process Weibull hazard regression

PD-L1 per cent staining is a proxy for the PD-L1 expression in the tumour

cells that patients with similar tumours have. However, PD-L1 expression is a

continuous variable. Note that not any patient has the same PD-L1 expression.

Researchers have begun studying the clinical relevance of PD-L1 per cent

staining instead of simply using a binary positive or negative interpretation
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Figure 5.6: Probability distributions for chosen priors for Weibull’s γ parameter.
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of PD-L1 status [164]. Part of it is related to margin of error and difficulties

in defining a threshold for predicting treatment response. Moreover, new

treatment guidelines have since shifted the staining threshold values associated

with PD-L1 biomarker positive status to a ≥ 1% framework for many use cases

[163].

Although there is no obvious cutpoint in continuous variables such as

PD-L1 expression, PD-L1 per cent staining close values may potentially share

interactions with ICI treatment. For example, before the data arrives, we

know that PD-L1 50% and PD-L1 60% are more similar PD-L1 expression

levels than PD-L1 1%. We want to exploit pooling between proximate PD-L1

expression levels than between distant ones. It is possible to discretise PD-L1

expression and build interaction with treatment, such as everybody with a

PD-L1 50% staining and treatment CP has the same intercept. However,

nothing in the interaction model informs that PD-L1 50% is more similar to

PD-L1 60% than PD-L1 1%, because all the discretised variables in varying

effects models are unordered. Mathematically, we can define the expression

levels to be continuous categories, and a standard approach for continuous

categories is GP regression [40].

In regression, we are interested in estimating the association between

variables. Equation 5.10 shows that one can use a linear function to fit the

data to a hazard model using a log transformation. However, with higher-order

polynomials, one can obtain a closer fit to the data points. As the data gets

complex, one may need a higher-order polynomial to obtain a satisfactory fit.

Although higher-order polynomials can fit the data, they do not generalise

new covariate measurements, a classical problem in machine learning known

as overfitting the original data, see section 3.3. The difficulty is in choosing

the functional form to use for regression.

In practice, an infinite number of functions can provide a good fit for a

given set of data. GP assign each of the different functions a probability, and

the mean over the probability distribution provides the most credible fit to the

data. Hence, a GP is a probabilistic method that tackles the uncertainty for the

predicted prognostic index, given by a prior over function P( f ) used for Bayesian

regression. Similar to a multivariate Gaussian distribution, parameterised by a

mean vector µ and covariance matrix Σ, a GP is parameterised by:

P( f ) = GP (µ (x) ,K (x |θ)) (5.17)

where x is the input, in our use case, the measured PD-L1 per cent staining.

µ is the mean function, i.e. the contribution of the GP to the prognostic index.

Sampled functions from the GP will recover µ, µ is defined for ∈ R. K is the

covariance function or kernel, and θ are the parameters specific to the kernel.
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K is a covariance kernel applied to all pairwise datapoints, which determines

the variation in the functions of the GP. K must produce a positive definite

matrix for the input x.

The time-to-event observations may be modelled with a suitable survival

model. We suggest a Weibull likelihood, see Equation 5.13, since the Weibull

distribution assumptions are uncomplicated and have proven to do well in

practice [67]. The observations of a GP Weibull hazard model are given by:

y ∼Weibull (P( f ), γ) (5.18)

Since we are not using a Gaussian likelihood, we use MCMC to fit the model.

We use the advanced No-U-Turn-Sampler for HMC as implemented in Stan

Math [181], see Appendix A.5.

Gaussian process prior

The GP prior is a multivariate Gaussian prior. The Gaussian distribution is

appealing because one can model the covariance between observations instead

of the mean and have exact predictions [40]. We set µ to zero, implying that

P( f ) are offsets on the hazard model. We expect that individuals with similar

PD-L1 expression will have similar outcome. We do not have a priori any reason

to believe that the impact of PD-L1 expression on the hazard will be more

complex, such as cyclical. Therefore to model K, we can use the conventional

exponentiated quadratic kernel, also known as radial basis function (RBF)

kernel [11]. The resulting covariance matrix is given by:

K (x |α, ρ)i, j = α
2 exp

(
−

1

2ρ2

D∑
d=1

(
xi,d − xj,d

)2)
(5.19)

where xi,d−xj,d is the difference in PD-L1 per cent staining between individuals

i and j with treatment d. For clarity, we denote the difference in PD-L1 per

cent staining by ∆xPD−L1. α2 is the maximum covariance, or amplitude, for two

observations with the same PD-L1 expression. ρ is the length scale, or volatility,

and denotes the rate of decline in correlation with ∆xPD−L1, such as for small

ρ the covariation between individuals with different PD-L1 expression may be

higher. Since decay is non-linear, the squared distance ∆x2PD−L1 encapsulates

the prior information that for individuals with similar PD-L1 expression, the

correlation is higher and declines rapidly with ∆xPD−L1, see Figure 5.7. Figure

5.8 depicts the analytical steps that we perform for the survival analyses with

GP Weibull hazard models. We model the heterogeneous treatment effect

with a GP prior from a survival dataset stratified by PD-L1 and treatment.

We adjust the outcome model for individual characteristics such as additional
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biomarkers, age and race, see table 5.6. We update GP prior distribution using

the observed data to obtain a posterior prediction of the rwTTD and rwOS

that we summarise with RMST.

Figure 5.8: It depicts a graphical summary of methods for computing Weibull
GP, which assumes a heterogeneous treatment effect on survival time from the
observed survival data stratified by PD-L1 and treatment.

Methods to benchmark the GP Weibull

Cox penalised splines non-linear model The Cox penalised splines model

is a regression hazard model that estimates the impact of a categorical, con-

tinuous covariate non-linearly [182]. Let us consider PD-L1 per cent staining to

be categorical, continuous. We can estimate the parameters of the smoothing

splines by the maximum likelihood approach choosing the degrees of freedom

that improve the fit to the dataset as evaluated by the Akaike information

criterion (AIC) [98]. We fit the Cox hazard model maximising the penalised

partial likelihood as implemented in the R survival package [183], which is our

benchmark for the baseline Weibull GP model that only regresses on PD-L1

per cent staining.
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Bayesian Weibull interaction effects The Weibull GP builds up an ex-

tended model that measures the influence of treatment conditional on PD-L1

per cent staining. The interaction effects model is a conventional approach to

measuring the influence of a covariate conditional on another covariate [40].

Therefore, to benchmark the Weibull GP model, let us consider a Weibull

baseline hazard model where the effect of treatment depends upon PD-L1 per

cent staining, its link function given by:

λi = exp
[
αxPD−L1[i] + βxPD−L1[i]Ai

]
(5.20)

where xPD−L1[i] indicates the PD-L1 per cent staining for individual i.

5.2.4 Bayesian flexible parametric hazard models

Recall that the hazard function for the flexible parametric B-spline model is

given by equation 2.12. Hence, the survival function for the B-splines model is

given by:

Si(Ti) = exp

(
−

∫ Ti

0
hi(u)du

)
(5.21)

A significant computational burden of the B-splines model is that the survival

function has no tractable analytical solution. Hence, it requires a costly

numerical integration for each iteration in the HMC algorithm. Brilleman

et al. [72] studied this problem and proposed a more convenient form of the

Royston-Parmar model where instead of B-splines, one can use non-negative

splines (M-splines) to calculate the survival function in closed form. From a

computational perspective, using the M-spline formulation is advantageous

because one can pre-compute the integral of the M-splines (I-splines), which is

handy for integrating the hazard to obtain the survival function. The M-splines

hazard model is given by:

M-splines : h0(t) =
L∑
l=1

θlMl (t; k; δ) (5.22)

where k denotes the knots, θ the coefficients, and δ the degree of the M-splines.

Since the M-splines coefficients θ must sum to one, we use a simplex vector of

values that must sum to one and give θ a Dirichlet uniform prior, given by:

θ ∼ Dirichlet (1) (5.23)

We evaluate cubic M-splines with 5 and 10 degrees of freedom, respectively,

as a compromise between underfitting and overfitting errors [40].
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5.2.5 Bayesian non proportional hazard models

Building on the above idea of having a flexible parametric hazard model, we

model treatment effects varying with time. The time-dependent regression

coefficients are given by:

βp(t) = θp0 +
M∑
m=1

θpmB (t; k; δ) (5.24)

where θp0 is the covariate effect at time zero, B (t; k; δ) denotes a B-spline with

regression coefficients θp,m, k knots and degree δ. Because our RWE study

design’s exclusion criteria exclude patients with resectable advNSCLC, see

Section 5.2.1, we do not have reasons to believe that the time-varying effects

vary rapidly, such a surgical procedure that would cause an accelerated change

in the hazard. Therefore, we assume a smooth change of the hazard at the

population level.

To encapsulate our assumption, we set the parameters of the B-splines to

evolve smoothly by using a random walk prior distribution of the form:

θp,1 ∼ Normal(0, 1)

θp,m ∼ Normal(θp,m−1, τp)

τp ∼ Exponential (1)

(5.25)

where τ is a hyper-parameter for the standard deviation in the adaptive prior

for the B-splines regression coefficients θp,m. For regularisation, we assume a

weakly exponential informative prior [96] for τ.

5.2.6 Standardised survival curves

Back in section 3.1 we introduced the fundamental problem of causal inference

that counterfactuals are never observable outcomes and discussed several

workarounds using causal assumptions, such as excahgeability and positivity.

We showed that using consistency, the counterfactual outcomes are the expected

outcome values under treatments A = a, a′, such that:

E [Y a] ,E
[
Y a′

]
(5.26)

We introduced the parametric g-formula [118], which under the exchangeability

assumption gives an unbiased estimate of the treatment effect. Here, we

extend the parametric g-formula to survival analysis to estimate the ATE with

observational RWE survival data and the CATE for heterogenous treatment

effects.

Recall section 3.4, where adopting parametric models indexed by the finite
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number of parameters θ, following [47], we defined the Bayesian g-formula by

drawing samples for the counterfactual outcomes after conditioning on the

observed data o, such that:

p(ỹa |o) =
∫ ∫

p(ỹ |a, w̃, θ)p(w̃|θ)p(θ |o)dθdw̃ (5.27)

where we integrate over the observed confounder w̃ and the uncertainty on the

model parameters θ. Hence, for a finite sample N we estimate the standardised

survival curve such that:

p(Ŝa (t) |w̃, θ) =
1

N

N∑
i=1

p(Ŝ (t) |a, w̃i, θ) (5.28)

where we estimate the counterfactual survival curves Sa, Sa′ by drawing samples

from the posterior distribution evaluated for each i individual in the population

of interest. We can visualise the full posterior counterfactual distribution or

summarise it conveniently using point estimates such as the mean, median

and quantiles. Finally, for summarising treatment effects, we can integrate

the posterior survival function up to a pre-specified time τ to compute the

counterfactual RMST(τ)a,a′, as described in equation 5.4.

For CATE estimation, we can condition on a variable of interest X when

computing standardised survival curves. A population estimate of the stand-

ardised survival curve conditional on X is given by:

p(Ŝa (t) |w̃, θ, X = x) =
1

NX=x

∑
i∈X=x

p(Ŝ (t) |a, w̃i, θ, X = x) (5.29)

where we condition on the variable X to take the value x. For example, X

can be the PD-L1 biomarker taking the 50% staining value. Similarly, we

can compute the posterior counterfactual distribution for the RMST up to a

pre-specified time τ given covariate X = x, denoted by RMST(τ)a,a′ |X=x.

IPW non-parametric estimates

As explained in section 3.4, IPW is an alternative method to estimate treatment

effects. IPW estimation of survival curves is a popular method to estimate

treatment effects in survival analysis [124] because it allows for direct non-

parametric modelling of the baseline survival function. In conventional IPW

estimation, one first estimates the propensity scores and uses them to compute

a weighted Kaplan and Meier maximum likelihood (KM) method.

Although standardisation and IPW estimation may yield by definition

similar results [32], we take a pragmatic view and use conventional IPW to

check deviations of the model predicted estimates from the non-parametric IPW
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estimate. However, one must consider that IPW does not include time-varying

covariate effects in the computation of the propensity score; hence, deviations

can be misleading. Still, we consider it a helpful starting point for model

checking.

We use the conventional multinomial log-linear regression model with a

vanilla neural network [184], which is the maximum entropy model for multi-

label classification to estimate the propensity scores. For obtaining IPW

estimates of survival, we compute adjusted survival curves by adapting the

KM method [185] weighting the individual contributions by the inverse of the

propensity score. A disadvantage of using IPW survival is that estimation of

confidence intervals for multiply imputed datasets are unavailable, and the

authors are not aware of any appropriate method to compute the between

imputations variance from survival curves. In contrast, Bayesian outcome

regression modelling supports combining posterior distributions to visualise

within and between imputation uncertainty. For IPW, one only has immediately

available the average counterfactual of the survival estimate S̄(t)a, and the

average ¯RMST(τ), and bootstraped 95% confidence interval.

5.2.7 Model comparison: accuracy and utility

This chapter aims to estimate treatment effects, ATE and CATE. To do so, we

focus on treatment and covariate effect modelling, adjustment by confounders,

circumventing several types of potential bias, and assessing unobserved con-

founding bias. However, for the modelling part, we need to avoid the under-

fitting and overfitting pitfalls, see section 3.3. Hence, we want our models to

perform well on out-of-sample data, not simply reproducing the training data

but learning valuable patterns for predicting new unseen observations, such

as counterfactuals. Using regularising priors, such as the weakly informative

priors defined in equation 5.15 is a helpful Bayesian technique to shield against

overfitting. However, we can improve on it by conducting a Bayesian model

comparison [109], as explained below.

Prediction model performance comparison

A simple definition of accuracy for model-based prediction of survival data

would be the difference between actual and predicted time-to-event. However,

as discussed above, events of interest, such as death or disease progression, are

sometimes not observed during the study, i.e. , censored. Hence, the above

definition of accuracy would throw away costly data on subjects who have

survived up to the follow-up. Instead, we use a more precise definition of

accuracy based on the event’s probability and survival up to the last observed

time, including censored observations. That is the probability of the data for
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deriving the likelihood. Let T be a random variable designating the event time,

and d a censoring indicator. A censored individual (d = 0) will contribute to

the likelihood via the survival probability (S) up to the censored time; otherwise

an event (d = 1) will contribute via the hazard function (h) evaluated at the

time of the event. Computing the accuracy amounts to multiplying all of the

individual likelihoods to get the joint probability, which is given by:

p(D|θ) =
N∏
i=1

[hi(Ti |θ)]I (di=1) × [Si(Ti)|θ]I (di ∈{0,1}) (5.30)

The joint likelihood allows us to benchmark competing models up to a

proportional constant, although there are some caveats because we aim to

evaluate the out-of-sample accuracy. For example, the widely applicable

information criterion (WAIC) introduces a penalty term for selection bias. The

WAIC is given by:

−
1

N

N∑
i=1

log
1

S

S∑
j=1

p(Di |θ j) +
1

N

N∑
i=1

VS
j log p

(
Di |θ j

)
(5.31)

The first term is a measure of fit over all the posterior samples. The second

term is the penalty term measures the degree of uncertainty in parameter

values. If it is vast, it indicates that the model is too complex, suggesting

overfitting.

Consider again the data D1, . . . ,Dn, where the fundamental unit of ob-

servation is a subject. We collapse the data probability within each subject

D1, . . . ,DN and decompose the likelihood into a product of subject-wise likeli-

hoods, given by:

p(D|θ) =
N∏
i=1

p(Di |θ) (5.32)

After the subject-data D have been observed, we can predict a new subject

given a prior distribution p(θ) and a posterior predictive distribution, given by:

p(D̃ |D) =
∫

p(D̃i |θ)p(θ |D) dθ. (5.33)

Therefore, the expected log-predictive density (elpd) for a new subject is given

by:

elpd =
N∑
i=1

∫
pt (D̃i) log p(D̃i |D) dD̃i, (5.34)

where pt (D̃i) is the likelihood of the left-out-subject D̃i. Estimating pt (D̃i)

via cross-validation approximated by Pareto-smoothed importance sampling

[186] allows for fast and optimal targeted predictions. We use the survival elpd
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leave-one-subject-out cross-validation (elpdloso), given by:

elpdloso =

n∑
i=1

log p(Di |D−i), (5.35)

where Di denotes the group of observations of subject i. It is an extension

of the method proposed by [187], where similar to [109], the data division is

subject-wise.

Causal model performance comparison

Similarly to evaluating model-based predictions, comparing models for causal

inference needs a yardstick to assess model performance. Conventionally, to

compare and evaluate causal models, researchers use synthetic data. By using

a generative model, one can simulate survival outcomes using the technique

explained in section 3.2. The helpfulness of synthetic data relies on the fact that

the technique allows generating data on the factual and counterfactual outcomes

and, therefore, allows for comparing how accurate are the models in estimating

the treatment effect and the effect modifiers, respectively. See section 5.3.1

for such a synthetic data comparison for proportional and non-proportional

hazard models.

However, for the causal inference task, the definition of accuracy in real-

world data is truly unobservable because, as explained above, the counterfactual

outcomes are never available. Therefore, the likelihood of the causal survival

model which is given by:

p(D|θ, A) =
N∏
i=1

[
hi(T A=a

i |θ)
] I (di=1)

×
[
Si(T A=a

i |θ)
] I (di ∈{0,1})

(5.36)

where A = a is a treatment indicator, is inaccessible for modelling and

conventional train-test splitting criterion or cross-validation.

Instead, we need to define a different utility function that is computable.

Such a heuristic should be determinable for all survival models and incorporate

model usefulness in predicting treatment interventions. We propose a head-to-

head model comparison based on the utility of the model for OTS. We assume

exchangeability and positivity and hence based the heuristic on observable

characteristics of individuals. The key is that the model has to estimate

how the treatment effects vary to make accurate predictions of the outcome

and be helpful for subpopulation stratification in treatment individualisation.

Mathematically, the utility function is given by:

U(x) =
N∑
i=1

EY1 |xi

[
Y1 |xi

]
− EY0 |xi

[
Y0 |xi

]
(5.37)
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where U(x) is the utility of separating the individualised factual and counter-

factual outcomes. That is conditional on a set of covariates of interest X, such

as the biomarker PD-L1 expression, equation 5.37 maximises the accuracy of

predicitng the CATE, such that:

arg max
A∈{a,a′ }

{
E

(
Y a |X − Y a′ |X

)}
(5.38)

The heuristic U(x) is only helpful for comparing models that handle inter-

actions with treatment because models that fail in estimating how treatment

varies with covariates will give a value of zero, by definition. Therefore, we

only apply U(x) for comparing causal models for heterogeneous treatment

effects. To evaluate equation 5.37 we use a stratified cross-validation seeking

to ensure that each fold is representative of the target defined in equation 5.38.

5.2.8 Optimal treatment selection bounds for survival end-

points

As explained above, the ATE is the expected difference between the coun-

terfactual outcome under treatment A = a and treatment A = a′, such that:

E
[
Y a − Y a′

]
(5.39)

Hence, applying equation 5.28, we define the ATE for survival outcomes as the

expected difference in the counterfactual RMST(τ)A=a,a
′

between treatments

(A = a, a′). We estimate the survival ATE by drawing samples from the posterior

distribution for the difference in counterfactual RMST for a population with

measured confounders w, after conditioning on the observed data, such that:

�ATE =

∫ τ

0
ŜA=a(t |w̃, θ) − ŜA=a′(t |w̃, θ)dt (5.40)

where ŜA=a(t |w, θ) is a parametric estimate of SA=a(t |w, θ).

Nevertheless, as noted in section 3.5 the exchangeability assumption is

strong. Hence, the credibility of the results may be weak. To assess the impact

of exchangeability violations on one’s results, one can consider OTS bounds on

the ATE. The OTS assumption says that a ”perfect doctor” always prescribes

the best treatment available for each patient. We argue that for RWD, the

OTS assumption may hold, and hence, it is a valuable technique for estimating

causal bounds on the ATE with weaker assumptions than exchangeability

[86, 125, 126]. For an in-depth explanation of the OTS assumption, we refer

to section 3.5, below we define OTS bounds for survival end-points.

Let us consider an OTS bound for the comparison of two treatments. Let

RMST(τ)A∈a,a
′

be the RMST under each treatment. According to the OTS
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assumptions, the following inequalities hold:

Ai = a⇒ RMST(τ)ai ≥ RMST(τ)ai ,

Ai = a′⇒ RMST(τ)a
′

i ≥ RMST(τ)a
′

i

(5.41)

The first inequality is known as the direct OTS inequality. The second

inequality is the contrapositive OTS inequality. Let us consider that 0 days in

time is the worst possible RMST outcome, and the maximum time of follow-up

τ is the best possible RMST outcome. From equation 5.41, we can show that

the upper and lower direct OTS bounds are given by:

E
[
RMST(τ)a − RMST(τ)a

′
]
≤ P(A = a)E [RMST(τ)|A = a]

E
[
RMST(τ)a − RMST(τ)a

′
]
≥ P(A = a′)E [RMST(τ)|A = a′]

(5.42)

Similarly, from equation 5.41, we can show that using the contrapositive

OTS we can derive a second set of upper and lower OTS bounds, which are

given by:

E
[
RMST(τ)a − RMST(τ)a

′
]
≤ E [RMST(τ)|A = a] − P(A = a′)E [RMST(τ)|A = a′]

E
[
RMST(τ)a − RMST(τ)a

′
]
≥ P(A = a)E [RMST(τ)|A = a] − E [RMST(τ)|A = a′]

(5.43)

Because both sets of OTS bounds derive from the same OTS assumption,

we can derive a narrow interval for the OTS bounds. Figure 5.10 depicts the

analytical steps that we perform for computing ATE and causal OTS bounds

on the ATE. We develop a Bayesian non-proportional hazard model from the

survival data, which we use to compute the ATE via the Bayesian g-formula.

Finally, we compute the OTS assumption’s causal bounds to estimate the

robustness of the ATE to unobserved confounding.

5.3 Results

5.3.1 Synthetic data experiments

The following sub-section presents a synthetic data experiment to compare the

proportional hazard and the non-proportional hazard models in the presence

of time-varying effects and observed confounders.
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Figure 5.10: It depicts a graphical summary of the methods used for computing
ATE and causal OTS bounds for rwTTD and rwOS.
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Experimental settings

For our first set of experiments, we use the synthetic data generation model to

validate the performance of the Bayesian non-proportional hazard model under

randomised and observational data scenarios. Let us assume the SCM depicted

in figure 5.11. A denotes a treatment variable impacting a right-censored

survival outcome Y , and two sets of confounders W1,W2 act as forks affecting

both treatment A and outcome Y . The structural equation of this hypothetical

scenario is given by:

W1 B fW1

(
UW1

)
W2 B fW2

(
UW2

)
A B fA (UA,W1,W2)

Y B fY (UY, A,W1,W2)

(5.44)

We draw the two sets of confounds W1 and W2 adapting the data generating

process described in section 4.2.4 to allow for relatively low correlation ρ ≈ 0.2

between and within the observable variables of the sets W1 and W2.

A

W1

W2

Y

RCT setting

A

W1

W2

Y

Observational setting

Figure 5.11: Hypothetical SCM’s DAG for randomised clinical trial (RCT) and
Observational non-randomised simulation scenarios.

Treatment assignment Let the treatment variable A take on three different

values for the synthetic data experiment: A = 1, 2, 3. We set our non-randomised
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(Observational) simulation experiments such as the set of confounders W1 and

W2, denoted by W , to impact the treatment assignment variable A. To do so,

we define the following multinomial logistic transformation given by:

Pr(A = 1) =
exp (β1W)

1 +
∑K−1

k=1 exp (βkW)

Pr(A = 2) =
exp (β2W)

1 +
∑K−1

k=1 exp (βkW)

Pr(A = 3) =
exp (β3W)

1 +
∑K−1

k=1 exp (βkW)

(5.45)

We simulate each treatment assignment using a multinomial random variable

with size one, given by Multinomial (1, Pr(A = a)) since it is the maximum

entropy distribution for multiclass variables. For the randomised clinical trial

scenario, we sample treatment assignment independently from W1,W2, using

a multinomial random variable with size one, given by Multinomial
(
1, 13

)
,

assuring class balance and exchangeability.

Generation of event times Let us assume that the event times are Weibull

distributed, y ∼ Weibull(λ(t), γ). We set the shape parameter of the Weibull

distribution to γ = 1.1, generating a baseline hazard that increases with time.

The constant-time log-link function is given by:

log(λi) = ηi = β0 +
P∑

p=1

βpwi (5.46)

where the regression coefficients β are set to appropiate values. We define the

non-proportional hazard via a time-varying treatment effect weighted by the

set of parameters φ. To simulate event times we use the following non-linear

hazard model:

dS
dt
= − · λ · γ · tγ−1 · exp (φ1 · A2 · t) · exp (φ2 · A3 · t)

S(0) = 1

(5.47)

The model is non-linear on the impact of treatment A; hence, the hazard

function between treatment arms is non-proportional. We integrate equation

5.47 using an LSODA ODE solver [188] and use ITS to simulate event times,

see algorithm 2, for a synthetic population of N = 10, 000 and administrative

censoring set to five months.

Outcome regression models for the synthetic dataset We present a

head-to-head comparison of three parametric survival models for simulated

116



0%

25%

50%

75%

100%

0 1 2 3 4 5

Time [months]

S
u

rv
iv

a
l 

e
s

ti
m

a
te

Treatment A1 A2 A3

RCT setting

Simulation study of non-proportional hazards

Figure 5.12: The figure shows the non-parametric survival estimate and 95%
confidence interval for the scenario of non-proportional hazards impacting
survival in a simulated randomised clinical trial (RCT), where exchangeability
holds.
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observational data, where the model of the baseline hazard (h0) is a Weibull

baseline model. The unadjusted model (Unadjusted) is a proportional hazard

model regressed on treatment variables, whose hazard is given by:

h(t) = h0 (t) exp (β2A2 + β3A3) (5.48)

The PH adjusts for the set of confounders W1 and W2 by regressing the hazard

on treatment, W1 and W2, whose hazard function is given by:

h(t) = h0 (t) exp (βA2A2 + βA3A3 + βW1W1 + βW2W2) (5.49)

The NPH includes a time-varying effect component for the treatment variables

with natural cubic B-splines that model the impact of A on the hazard as a

smooth function of time, as explained in the section 5.2.

Model comparison on synthetic data

Figure 5.12 illustrates the survival curve plot for the simulated randomised

PH NPH

RCT Unadjusted
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Comparison of hazard models

Figure 5.13: Comparison of survival estimates for the NPH, PH and Unadjusted
models. Only NPH can recover the non-linearity observed in the non-parametric
estimate from the simulated randomised clinical trial (RCT). NPH: Non-
proportional hazards. PH: Proportional hazards. Unadjusted: Unadjusted
proportional hazards.

118



Table 5.8: Comparison of of the probability mass included within the simulated
RCT confidence intervals for the RMST(τ) counterfactual outcomes. NPH:
Non-proportional hazards. PH: Proportional hazards. Unadjusted: Unadjusted
proportional hazards.

Model A1 A2 A3

Unadjusted 0 0 0
NPH 0. 8625 1 0. 9925
PH 1 0 0. 9625

A1 A2 A3
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Figure 5.14: Comparison of the restricted mean survial time estimates
(RMST(τ)) for NPH, PH and Unadjusted models. Vertical lines show RMST(τ)
for the RCT. NPH: Non-proportional hazards. PH: Proportional hazards. Un-
adjusted: Unadjusted proportional hazards. RCT: randomised clinical trial.
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clinical trial. We obtained estimates for the survival curve using the non-

parametric KM method [69] and the asymptotic 95% confidence interval.

Figure 5.13 illustrates the survival curve plots for the simulated follow-up

time, constituting the survival estimates, the model predicted mean, and 95%

credible intervals [40] comparing the randomised clinical trial setting (RCT)

and the observational setting. Neither the PH nor the Unadjusted model can

capture the non-linearity of the survival curves and non-proportionality of the

survival ratios seen in the simulated RCT data. We see visually that the NPH

model can recover the actual survival curves seen in the RCT data.

Figure 5.14 illustrates the counterfactual RMST for all models. For the RCT

setting, vertical lines show the mean RMST (solid line) and the 95% confidence

intervals (dashed lines) for each treatment arm. For the causal models, we

show 400 samples from the posterior distribution after determining convergence

and unimodality. Table 5.8 compares the models by evaluating the proportion

of the posterior distribution included within the RCT 95% CI. In summary,

the Unadjusted model does poorly in recovering the actual counterfactual

outcomes. The NPH outperforms the PH model for non-proportional survival

ratios.

5.3.2 RWD experiments

The following sub-section presents our real-world experiments:

1. We compare the predictive performance of the canonical parametric

baseline hazards exponential and Weibull.

2. We report the results for the CATE on PD-L1 expression modelled

with the GP are shown compared to current state-of-the-art interaction

models.

3. The predictive performance of the flexible parametric Royston-Parman

survival models is compared to canonical parametric survival models.

4. We experiment with post-treatment bias.

5. We report the results for the ATE of the PH and NPH models on the

Flatiron RWE dataset.

6. We compute the causal OTS bounds for the ATE.

Baseline hazard model

Let us examine the results for the predictive performance of the canonical
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Table 5.9: Comparison of fit to data in the rwTTD cohort for canonical
baseline hazard models. ELPD: expected log-predictive distribution. LOSO:
Leave-one-subject-out cross-validation. SE: Standard error.

Model ∆ ELPD SE ∆ ELPD LOSO SE ELPD LOSO

Weibull 0. 0 0. 0 -1799. 0 94. 7
Exponential -71. 9 12. 7 -1870. 9 103. 2

Table 5.10: Comparison of fit to data in the rwOS cohort for canonical baseline
hazard models. ELPD: expected log-predictive distribution. LOSO: Leave-one-
subject-out cross-validation. SE: Standard error.

Model ∆ ELPD SE ∆ ELPD LOSO SE ELPD LOSO

Weibull 0. 0 0. 0 -7113. 0 45. 9
Exponential -49. 7 8. 4 -7162. 7 44. 9

baseline models exponential and Weibull. Tables 5.9 and 5.10 compare the

baseline survival model for rwTTD and rwOS, respectively. The first column

of the comparative tables is the difference in expected log-predictive density (∆

ELPD) from the best model. The second column is the standard error for the

contrast ∆ ELPD. The third column is the value of the ELPD leave-one-subject-

out cross-validation (ELPD LOSO), whose standard error showing in the fourth

column. The results suggest that for both rwTTD and rwOS, the Weibull

baseline hazard model obtains a better fit to the dataset (∆ELPD = −49.7±8.4).

Figure 5.15 depicts the KM and the Weibull baseline survival functions

comparing the RMST(4 years) for the rwTTD and rwOS cohorts. We can see

that the Weibull model is in good agreement with the non-parametric approach

(∆RMST(4 years) < 0.1 years).

Regression prior predictive checks

Let us review the results for the prior predictive checks (PriorPC), a Bayesian

workflow technique to assess the suitability of the prior distribution. We

consider the PriorPC for the Weibull parametric survival model with time-

constant covariates comprising the confounders listed in section 5.2. In short,

we sample from the prior distribution to obtains draws for the survival function

and compute the RMST. Let us set τ to 4 years, approximately the maximum

survival time of the dataset analysed. Figure 5.16 shows the results as 400

samples for the RMST(4 years) density. The results suggest bumps on the

edges for the RMST(4 years) for the vague prior. The specific informative prior

may not be adequate for our use case. The Student-t WIP and Normal WIP

produce similar RMST(4 years), and for simplicity, we will use the Normal
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Figure 5.15: Kaplan and Meier non-parametric and Weibull parametric estim-
ates of the survival function for the rwTTD cohort (bottom) and rwOS cohort
(top).
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WIP for the time-constant covariates in the rest of the analysis.
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Figure 5.16: Illustration of prior predictive checks (PriorPC) for vague prior,
weakly informative prior (WIP), Normal WIP and Student’s t WIP, and specific
informative prior (SIP) on the hazard scale.

Comparison of non-linear effects models for PD-L1 per cent staining

impact on survival

Continuing to analyse the survival dataset marginally on PD-L1 expression,

we compare the inference of the GP Weibull model and a Cox penalised splines

model. Figure 5.17 and figure 5.18 visualises the term contribution of PD-L1

per cent staining in the prognostic index for the Weibull GP model and the

Cox proportional hazard model in the rwTTD and rwOS, respectively. We can

see that both models are in good agreement in the mean predictions.

In addition, the Weibull GP model produces a 95 % credible interval that

we can use to quantify the uncertainty about the model predictions. The R2

correlation between the f̂ (xPDL1) from the Cox proportional hazard model and

the Weibull GP model is 0. 973 for the rwTTD cohort and 0. 903 for the rwOS

cohort. We see that the non-linear effect of PD-L1 is decreasing, implying that

higher PD-L1 per cent staining is associated with longer time-to-event in the

rwOS and rwTTD cohorts, which is in good agreement with the non-parametric

KM analysis above but is harder to interpret.

Covariance between PD-L1 per cent staining impact on survival

The parameters of the GP are not very easy to interpret. In particular, α2

and ρ define a covariance on the log scale and only have meaning in combination.

To understand the covariance implied by the model with individuals with
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Figure 5.17: Cox penalised splines and GP Weibull log-linear link function,
rwTTD.
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Figure 5.18: Cox penalised splines and GP Weibull log-linear link function,
rwOS.
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Figure 5.19: Draws from the posterior distribution of covariance functions,
rwTTD. Patients with similar PD-L1 expression have similar rwTTD time but
not identical.
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Figure 5.20: Draws from the posterior distribution of covariance functions,
rwOS. Patients with similar PD-L1 expression have less similar rwOS than
rwTTD from figure 5.19.
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different PD-L1 expressions, we sample from the posterior distribution of α2

and ρ and compute the covariance with ∆xPD−L1, see section 5.2.3 for the

covariance function definition.

Figure 5.19 for rwTTD and figure 5.20 for rwOS depict 100 draws from the

posterior distribution of covariance functions, where the dark line is the mean

covariance over 2000 draws. On the x-axis, we plot ∆xPD−L1, the difference

between PD-L1 per cent staining, and on the y-axis, the covariance. We can see

that the covariance decreases with ∆xPD−L1 more rapidly for rwTTD than for

rwOS. Patients with similar PD-L1 expression have similar outcomes but not

identical. Patients with similar PD-L1 expression have less similar rwOS than

rwTTD. In general, there is little residual covariance between patients with

differences of 50% PD-L1 expression or greater. For rwTTD, the covariance

is 0.25 for two individuals with the same PD-L1 expression (∆xPD−L1 = 0),

and decreases to almost 0 for two individuals with ∆xPD−L1 of 100 %, and at

∆xPD−L1 = 50% is approximately 0.1. For rwOS, the maximum covariance

is approximately 0.125 for individuals with the same PD-L1 expression and

decreases to approximately 0. 025 for individuals with ”positive” PD-L1 (100%

PD-L1 staining) considering individuals with ”negative” PD-L1 (0% PD-L1

staining).

CATE and confronting confounding

So far, we have discussed a model that regresses only on PD-L1 per cent

staining. However, the goal of Weibull GP is to regress PD-L1 per cent staining

by treatment group. In the next experiment, we fit the Weibull GP varying

treatment effects model and analyse the impact of the potential confounders W ,

listed in the section 5.2. Previously, we discussed that the coefficient f̂ (xPDL1)

are a bit opaque. For regressing the Weibull GP on treatment groups, the

coefficients of the GP are less interpretable, as we absorb the intercept on

the first treatment group for identifiability. Therefore, for interpretations, we

focus on the predictive posterior distribution for the RMST. We set τ to four

years because it is approximately the maximum follow-up time for the dataset

analysed.

We compute the Bayesian parametric g-formula for the CATE stratified by

PD-L1 per cent staining and plot the median and 95% credible intervals. In

addition, we fit a second model where we additionally regress on the confounders

defined in the section 5.2, denoted by W . Figure 5.21 for rwTTD and Figure 5.22

for rwOS depict the expectations of RMST(4 years) for each treatment group

in blue, the unadjusted model, and in red, the model that attempts to adjust

for W .

For rwTTD, figure 5.21 does not reveal significant changes in the inference

for the CATE after adjusting for W . For rwOS, Figure 5.22 suggests that W is
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Figure 5.21: RMST(4 years) for unadjusted and adjusted model, rwTTD.
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Figure 5.22: RMST(4 years) for unadjusted and adjusted model, rwOS.
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Table 5.11: Comparison of fit to data in the rwTTD cohort for Weibull GP
model and interaction model. ELPD: expected log-predictive distribution.
LOSO: leave-one-subject-out cross-validation. SE: Standard error.

Model ∆ ELPD SE ∆ ELPD LOSO SE ELPD LOSO

GP 0. 0 0. 0 -371. 3 98. 5
Interaction -7. 6 2. 9 -378. 8 99. 1

Table 5.12: Comparison of fit to data in the rwOS cohort for Weibull GP model
and interaction model. ELPD: expected log-predictive distribution. LOSO:
leave-one-subject-out cross-validation. SE: Standard error.

Model ∆ ELPD SE ∆ ELPD LOSO SE ELPD LOSO

GP 0. 0 0. 0 -7042. 9 46. 8
Interaction -16. 6 6. 6 -7059. 5 47. 9

somewhat confounding the effect of P, adjusting for W effectively decreases the

RMST(4 years) for each treatment except for P. The effect of P is increased

by 0. 1 years in the range of 10% to 50% PD-L1 expression. The 95% credible

interval is the broadest for D treatment because the sample size is smaller.

Model comparison Let us now review the predictive performance of

the GP Weibull model and how it compares with the benchmark interaction

model to estimate heterogeneous treatment effects. Table 5.11 for rwTTD and

table 5.12 for rwOS suggest that the GP Weibull model has better predictive

performance than the interaction model. A higher ELPD LOSO cross-validation

value implies that the GP Weibull model has better out-of-sample performance

and is potentially more helpful for issuing predictions. Figures 5.23 for rwTTD

and figure 5.24 depict the CATE given the PD-L1 per cent staining. We can

see that the GP Weibull model predicts smoother counterfactual outcomes.

The GP outperformed the interaction model (rwTTD, ∆ELPDCV = −7.6 ±

2.9; rwOS, ∆ELPDCV = −16.6± 6.6). Using the Weibull model, some estimates

of the survival function under-predicted the survival estimate using the KM

methods, see figure 5.29. Likely, the low number of individuals at risk at the

end of the follow-up contributes less to the likelihood of the Weibull model,

see equation 5.13.

Flexible parametric hazard model

Let us review the results for the flexible parametric modelling. We conduct a

head-to-head comparison of predictive performance for the M-splines model

and the Weibull model. Table 5.13 and Table 5.14 suggest that for both rwTTD

and rwOS, a more flexible baseline hazard model, such as the M-splines, obtains
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Figure 5.23: RMST(4 years) for Weibull GP and Interaction model, rwTTD.
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Figure 5.24: RMST(4 years) for Weibull GP and Interaction model, rwOS.
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Table 5.13: Comparison of fit to data in the rwTTD cohort for canonical
baseline hazard models. ELPD: expected log-predictive distribution. LOSO:
Leave-one-subject-out cross-validation. SE: Standard error.

Model ∆ ELPD SE ∆ ELPD LOSO SE ELPD LOSO

MS 0. 0 0. 0 -687. 4 103. 4
Weibull -1111. 5 30. 9 -1799. 0 94. 7

Table 5.14: Comparison of fit to data in the rwOS cohort for canonical baseline
hazard models. ELPD: expected log-predictive distribution. LOSO: Leave-one-
subject-out cross-validation. SE: Standard error.

Model ∆ ELPD SE ∆ ELPD LOSO SE ELPD LOSO

MS 0 0 -6887. 55 52. 30
Weibull -225. 48 16. 4 -7113. 03 45. 85

a better fit to the dataset.

Using ELPD, we have shown that the M-splines model obtains a better

fit (∆ELPDCV = −225.5 ± 16). Likely, the M-splines is more flexible and can

learn more complex survival distributions. Besides, in agreement with previous

research [72] the visual predictive checks (VPC) in figure 5.29 suggest, more

accurate survival functions are obtained using the M-splines approach.

Post-treatment bias

As mentioned in section 2.1 in observational studies such as RWE datasets, one

must be cautious about what variables are included in the survival regression

model. Post-treatment bias results from conditioning on variables that are a

consequence of the treatment, and are on the path to the outcome of interest.

For example, cancer therapy may impact neutrophils count. At the same

time, neutrophils count may be a mediator of patient outcome, see figure 5.25.

It has been argued that an initial impact on neutrophils may be positively

associated with treatment response [189]. Therefore, adjusting for neutrophils

count measured later to the start of treatment may alter the treatment effect

estimate, �RMST(τ). We present the results for two flexible M-splines survival

models in figure 5.26: the first model regresses treatment on time-to-event,

the second includes the first reading of neutrophils count after treatment.

We see that all the estimates of �RMST(4 years) have higher uncertainty after

conditioning on neutrophils post-treatment, which is likely because of the

correlation between treatment and neutrophils count. In addition, we see that

the double-platinum (CP) �RMST(4 years) is the one that changes the most,

potentially because CP impacts neutrophil count more extremely.
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Time varying effects model

Let us review now the results for the time varying effect (TVE) model. We

implemented the model described in the section 5.2, using B-splines to estimate

the treatment effects varying with time. Above, we have seen that TVE is

superior to PH modelling in synthetic data. Let us consider now the RWE

dataset and the fit to the RWE dataset. We use a flexible parametric M-splines

model of the baseline hazard function and compare the PH and the TVE

approach. Figure 5.27 and Figure 5.28 shows the estimate for the hazard
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Figure 5.27: Hazard estimate, rwTTD, comparison of M-splines proportional
hazard (MS PH) and M-splines time-varying effects (MS TVE).

function for the rwOS and rwTTD cohort, respectively. The results suggest

that the TVE may provide a better fit, especially for P, where the TVE estimate

crosses the PH estimate of the hazard.

Comparison of standardised survival and IPW estimate In the next

experiment, we compare the Bayesian parametric g-formula and the non-

parametric frequentist IPW estimate. The yardstick is the prediction of the
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Figure 5.28: Hazard estimate, rwOS, comparison of M-splines proportional
hazard (MS PH) and M-splines time-varying effects (MS TVE).
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survival curve for each method. For the Bayesian parametric g-formula, we

sample draws from the posterior distribution of the TVE model, integrate

the survival function up to τ and summarise the results. Figure 5.29 and

Figure 5.30 depicts the survival estimates for the rwTTD and rwOS cohorts,

respectively. We can see that both methods are in good agreement. Tables
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Figure 5.29: Survival estimate, rwTTD. KM : Kaplan-Meier with inverse
probability weighting, TVE: Bayesian Time-varying Effect model.

5.15 and 5.16 compare the TVE model for rwTTD and rwOS, respectively. As

explained in section 5.2.5, we compare a TVE approach with quadratic (degree

= 2) and cubic B-splines (degree = 3). For rwTTD, the TVE approach with

quadratic B-splines obtains better out-of-sample predictions. For rwOS, the

time fixed effect (TFE) approach gives good predictions, suggesting that the

TVE approach might overfit. Therefore, we choose the best model for rwTTD

to be a TVE model with quadratic B-splines, and for rwOS, a TFE model

with flexible baseline hazard via M-splines with 10 degrees of freedom.
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Figure 5.30: Survival estimate, rwOS. KM : Kaplan-Meier with inverse prob-
ability weighting, TVE: Bayesian Time-varying Effect model.

Table 5.15: Comparison of fit to data in the rwTTD cohort for tested time-
varying effects models. ELPD: expected log-predictive distribution. LOSO:
Leave-one-subject-out cross-validation. SE: Standard error.

Model ∆ ELPD SE ∆ ELPD LOSO SE ELPD LOSO

TFE 0. 0 0. 0 -279990. 4 524. 8

B-splines (degree = 2) -656. 4 104. 5 -280646. 8 514. 5

B-splines (degree = 3) -777. 3 98. 7 -280767. 6 516. 4

Table 5.16: Comparison of fit to data in the rwOS cohort for tested time-varying
effects models. ELPD: expected log-predictive distribution. LOSO: Leave-one-
subject-out cross-validation. SE: Standard error. TVE: Time-varying effect.
TFE: Time fixed-effect.

Model ∆ ELPD SE ∆ ELPD LOSO SE ELPD LOSO

B-splines (degree = 2) 0. 0 0. 0 -269851. 7 817. 9

TFE -64. 0 18. 8 -269915. 6 818. 0

B-splines (degree = 3) -71. 9 11. 0 -269923. 6 818. 1
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Counterfactual survival outcomes

In the next experiment, we contrast the counterfactual RMST(4 years) estimate

via Bayesian parametric g-formula with the TVE model. Figure 5.31 for

rwOS and figure 5.32 for rwTTD depict samples from the posterior predictive

distribution standardised by treatment line. Our experiment with synthetic
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Figure 5.31: Real-world RMST(4 years) in the rwTTD cohort by treatment
line.

data showed that Bayesian non-proportional hazard outperforms conventional

proportional hazard models (∆Bias > 0.1). The observed reduction in bias

makes the Bayesian g-formula attractive to the analysis of observational data

from both Bayesian and frequentist perspectives. For the RWE dataset, the

truth is not available; hence, one must use heuristics to justify the modelling

choices that suggest using the non-proportional hazard approach with B-splines.

OTS Bounds on the ATE

In the next experiment, we compute the Bayesian ATE using the TVE

model. We define the ATE as the expected difference in RMST(4 years),
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Figure 5.32: Real-world RMST(4 years) in the rwOS cohort by treatment line.
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∆RMST(4 years) from the combination CPP treatment line. Note that any

posterior density for ATE that is greater than zero suggests that the treatment

positively impacts the patient outcome because it increases the RMST(4 years)

considering CPP. On the other hand, if the ∆RMST(4 years) posterior distribu-

tion overlays the zero dashed lines, we can not identify the ATE sign from the

RWE dataset, and it implies that the RMST(4 years) is similar to the CPP.

Finally, we weaken the assumptions of our modelling by evaluating the

OTS bounds. Doubling down on our Bayesian approach, we can sample draws

from the ATE posterior and each OTS bounds, obtaining a credible interval

for the ATE and the OTS bounds. Figure 5.33 for rwTTD and figure 5.34 for

rwOS visualises the results and shows that under exchageability violations and

OTS assumption, it is unlikely we could identify the sign of the effect for any

of the treatments, except the positive P monotherapy impact on rwTTD and

perhaps the negative N monotherapy impact on rwOS.
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Figure 5.33: Real-world ATE with considering CPP treatment line and OTS
Bounds in the rwTTD cohort. Dashed line highlighting the null effect.
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Figure 5.34: Real-world ATE with considering CPP treatment line and OTS
Bounds in the rwOS cohort. Dashed line highlighting the null effect.
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5.4 Discussion

In this chapter, we proposed a Bayesian framework for causal survival analysis,

and applied the Bayesian survival modelling approach to a unique RWE dataset

comprising a large retrospective cohort of more than 10,000 US Flatiron

advNSCLC patients in ICI or chemotherapy treatment. Intending to estimate

treatment effects heterogeneity, we model the varying treatment effect of

immunotherapy with PD-L1 expression using a GP. All information regarding

the covariance in PD-L1 expression was included to examine the helpfulness of

the survival GP approach. The aim was to develop a general model for future

analyses of RWD to predict treatment effects in distributed biomarker-defined

populations.

GP regression has much application by modelling the covariance in a high-

dimension distribution. Interactions can be helpful to understand treatment

modifications by binary biomarkers. However, for biomarkers that are measured

continuously as PD-L1, we demonstrated that GP is accurate and may be

helpful to advance the concept of personalised therapies. For example, research

by [190] suggests that for tumour mutational burden (TMB), the average

percentage of mutations in a sample of cancerous cells may predict treatment

response in ICI therapy. The clinical advNSCLC dataset analysed did not

include TMB. However, new RWE datasets named clinical-genomic datasets

comprised several genomic markers, including TMB. TMB, as defined above,

is generated as a percentage or a distributed variable, hence, applying the

survival GP approach presented in this work could be helpful for treatment

effects interpretations.

Several RCT have demonstrated the efficacy and safety of ICI and immuno-

chemotherapy. Table 5.1 summarised the recent pivotal trials for IO in advN-

SCLC. Starting with the initial approval of P in 2016 based on the KEYNOTE-

24 trial with a median progression-free survival (PFS) of 10.3 months for P and

six months for chemotherapy [166]. Similarly, KEYNOTE-189 demonstrated

the efficacy of triplet immuno-chemotherapy CPP with overall survival of 20

months for the intent to treat population [191]. Similar to our RWE study,

[191] found that ICI increases the survival across all the expression levels of

PD-L1, [166] demonstrating the utility of ICI in untreated locally advanced or

metastatic advNSCLC patients, including SCC histology, see table 5.6.

The results from the figures 5.29 and 5.30 combined with the biomarker

status summary in the table 5.5 suggest that ICI therapy is effective when

regarding as confounders the advNSCLC biomarkers: ALK, EGFR, KRAS, and

BRAF. Using the section 3.2 positivity condition, the remark about considering

biomarker status a confounder is valid. However, from a clinical point of view,

with targeted therapies for ALK, EGFR, and BRAF, it is usual to start with
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targeted therapies [93]. In our RWE study, the most balanced biomarker

was the KRAS status, which at the time of writing has no approved targeted

therapy, as seen in table 5.5.

RCT datasets [168] have previously suggested a non-proportional hazard

effect for ICI, i.e. the survival curves cross at around six months. Our results

in Table 5.16 support a non-proportional hazards model for the rwOS cohort

in the present study, ∆(E LPD) = −64.0 ± 18.8. Moreover, our work highlights

the benefit of using the Bayesian non-proportional approach for modelling the

non-proportional time-varying effect flexibly with B-splines, supported by the

results in table 5.16. In addition, the present study demonstrated the use of

RMST to summarise the ATE in comparing treatment effects. For example, the

figure 5.31 shows the ATE as the difference in RMST between each treatment

and the combination of CPP, suggesting that there are significant differences

if the exchangeability condition of the section 3.2 holds between treatment

groups. Note that any distribution for ATE greater than 0 indicates that

the treatment positively impacts the patient outcome because it increases the

RMST.

Finally, the present study is completed by evaluating the OTS bounds and

weakening the exchangeability assumption. We highlight the benefits of using

Bayesian survival analysis to estimate the posterior distribution for the causal

OTS bounds. We, therefore, can sample draws from the ATE posterior and

each of the OTS bounds, obtaining a credible interval for the ATE and the OTS

bounds. Figure 5.33 visualises the results and shows that under exchageability

violations and OTS assumption, it is unlikely we could identify the sign of the

effect for any of the treatments in the rwOS cohort, and only the positive P

monotherapy impact on rwTTD. Figure 5.35 explores a possible explanatory

reason for the difference observed between rwTTD and rwOS cohorts. In short,

a proportion of patients that discontinue a treatment will start the second line

of therapy with IO, which may increase their overall survival.

Most research on survival analysis such as the development of RMST [192]

has been carried out in the context of randomised clinical trials. However,

we have argued the benefits of using RMST in RWD, such as interpretability

and benchmarking. In particular, RMST is a helpful measure of treatment

effects for assessing the assumptions of exchangeability. OTS bounds with

RMST have analytical appeal because it allows for more credibility and inter-

pretability in the results. To this end, we developed an OTS bound analysis

for the ATE in Bayesian survival analysis using RMST. We demonstrated

that Bayesian survival modelling makes causal bounds uncertainty estimation

possible, suggesting multiple future directions in analysing RWD advancing

the concept of personalised medicines towards uncertainty quantification and

policy optimisation.
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A limitation of the present study is that it does not model the subsequent

lines of treatment in the rwOS cohort. Future research may investigate the

application of the GP survival approach, Bayesian g-formula and OTS bounds

considering the switch on treatment lines through the patient follow-up. Figure

5.35 explores the scenario where the patient switch from the first line to the

second line. A new time-dependent model may summarise that scenario by

helping in informing a mechanistic model of the impact of PD-L1 expression

on rwOS.
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Figure 5.35: The alluvial plot depicts the dynamic treatment strategies from
the first line to the second line in the present RWE study. Censored: remains
in the first line. Dead: dead event occurred.

5.5 Conclusions

This chapter argued that causal models of survival analysis are necessary to in-

terpret RWE studies. Besides, it demonstrated Bayesian techniques for survival

analysis that are bespoke for analysing RWD where the frequentist framework

of null hypothesis testing is not standard. It introduced a counterfactual
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approach to estimate treatment effects in the presence of non-proportional

hazards under the Bayesian survival outcome modelling framework, developed

an OTS Bound for non-proportional hazards using RMST.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

This thesis has demonstrated new methods for RWE generation and RWD

interpretations. We have defined the causal framework for drawing inferences

about treatment effects from observational, non-randomised clinical RWD by

using characterisation by example to introduce the application of RWE in

clinical oncology. Our primary aims stated in the section 1.2 were to address

characteristics of RWD analysis, including:

1. The systematic treatment of missing data.

2. The prediction of treatment effects for biomarker-defined populations.

3. The explanation of treatment discontinuation in the presence of unrecog-

nised factors.

These research aims have been achieved by conducting a comprehensive

review of the basic principles of causal inference and RWE study design,

providing specific examples of RWD analyses with missing data and applying

GP regression methods for estimating heterogeneous treatment effects. Figure

6.1 depicts a summary of our overall aims, results and achievements.

The use of large datasets from RWE studies offers an opportunity for

oncology researchers. However, we have identified challenges in analysing

clinical data from RWE studies: missing data, heterogeneous treatment effects

and unobserved confounding. We proposed:

1. MITABNET, a new machine-learning algorithm to perform MI, and a

new method to compare imputation algorithms in RWE studies.

2. Weibull GP for modelling heterogeneous treatment effects in survival

data.

3. OTS bounds to assess unobserved confounding.
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The rest of this chapter summarises the core conclusions that can be drawn

from the work presented in this thesis and provides concluding remarks on the

modelling/data analysis experiments conducted. The central section discusses

the applications to RWD analysis examining the methods and results used.

Finally, we give suggestions for future research.

RWE studies can be critical in drug development with rich insights provided

from a more inclusive patient population. RWE presents an opportunity to

bridge the gap between research and clinical practice, specifically, by sourcing

new biomarkers (for example, clinical-genomics RWE datasets), stratifying early

patient populations (for example, biomarker-based treatment modification),

and identifying unmet medical needs (for example, rare cancerous diseases).

To reason about these clinical questions, we need to be able to construct

unobserved counterfactual outcomes. For example:

• What would have been the treatment response for a sub-population with

a different biomarker expression?

• What if the population had been treated with a combination of targeted

therapy and chemotherapy?

To tackle these questions, we have aligned this thesis with the causal inference

framework, which proposes that one can simulate the counterfactual outcomes

to predict the impact of treatment interventions or explain the reason for past

treatment failure. In chapter 3, we defined a causal estimand, i.e the treatment

effect (section 3.1), specifying our causal assumptions via a causal model (section

3.2), then turn it into a statistical estimand which we can use to estimate

the parameter of interest with data (section 3.3 and 3.4). Consequently, we

can simulate the counterfactual outcomes using the generative model, thereby

predicting the impact of treatment on the population of interest.

Section 2.2 showed that one could use causal lenses to understand the

missing data problem in RWD applications and decide the best procedure in

order to make an unbiased inference. Moreover, under the exchangeability (non-

unobserved confounding) assumption, we can use off-the-shelf machine learning

algorithms to perform multiple imputations, the central topic of chapter 4.

For censored survival data, chapter 5 expanded the use of the RMST in RWD,

which is more suitable and interpretable than the conventional hazard ratio,

see section 5.1.3. Furthermore, one can use RMST effectively to communicate

the results of multi-level models for heterogeneous treatment effects, such as

survival GP models, see section 5.2.3. We have demonstrated the applicability

of our new methods with synthetic data experiments and several real-world

experiments, see section 5.3.

The comparative study of missing data imputations in chapter 4 starts with

the assumption of MAR, i.e., no unobserved variable impacts the missingness
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mechanisms. Using the RWE Flatiron NSCLC dataset, including more than

35,000 subjects, the imputation performance of six state-of-the-art algorithms

to perform multiple imputations was compared, see section 4.3. The battery of

algorithms compared is not exhaustive. Instead, the focus is on the methodology

to benchmark imputation algorithms in RWE datasets with missing data. To

our knowledge, this work is the first to study the concept of the data distribution

shift induced by the imputation algorithm and the impact of missing data on

the performance of the imputation algorithms, see algorithm 3.

Additionally, we have expanded the TABNET approach [19] for developing

MITABNET that automatically handles non-linearities and feature selection

in the imputation model, see section 4.2.3. Assuming MAR, however, has

limitations. There is a connection here with the final chapter: the credibility

of an inference decreases with the strength of the assumptions maintained,

see section 5.2.8. MAR, though weaker than MCAR, is a strong assumption.

Critically, for handling missing values in RWD, one may need to consider

unmeasured variables. In this case, one may use past medical history to make

informed assumptions about the possible values and conduct an appropriate

form of sensitivity analysis.

Moreover, one can use full maximum likelihood or Bayesian imputation to

set the probability statement about the missingness mechanism. However, for

handling the missingness of the binary biomarker status of ALK, EGFR, KRAS,

BRAF and PD-L1, the combinatorial nature of the setting explodes to 25 = 32

possible imputation models. The appeal of machine learning techniques for

multiple imputations is to handle the missing data problem as a pre-processing

step. In this context MITABNET appears to outperform state-of-the-art

methods in complex synthetic datasets (percentage bias = 2.6 ± 1.4%), see

table 4.5.

However, for the Flatiron NSCLC dataset, using our new benchmark method

for imputations in RWD, MITABNET was met by state-of-the-art imputation

algorithms such as PMM, EM and MIRF. The results suggest that for imputing

binary biomarkers in the Flatiron NSCLC dataset, one can use PMM with

limited loss in imputation accuracy (percentage bias = 10.8%, coverage = 90%),

see table 4.6 and table 4.7. On the other hand, for more complex datasets

with indirect associations among the covariates, a more elaborate imputation

algorithm such as MITABNET may perform more accurate imputations, and

hence would be preferred for sharper inference.

Moving on to the real-world case study of ICI in a cohort of 5,000 NSCLC

patients treated with ICI, see section 5.1.2 for the study design. The study

aimed to understand the impact of PD-L1 expression on treatment response.

PD-L1 per cent staining is a proxy for the PD-L1 expression in the tumour

cells that patients with similar tumours have. Moreover, although there is
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no obvious cut-point in continuous variables such as PD-L1 expression, close

PD-L1 per cent staining values may potentially share interactions with ICI

treatment because they promote an immune response against cancer [161]. A

survival GP to model the covariance in varying treatment effects with PD-L1

was presented, see section 5.2.3. Essentially the survival GP model predicted all

the interactions between treatment and PD-L1 per cent staining, setting a prior

joint distribution for all of the model parameters. For the survival function,

we assumed a Weibull model since the Weibull distribution assumptions are

uncomplicated and have proven to perform well in practice [67]. It was shown

that the Weibull GP outperformed the conventional survival interaction model

in identifying the interaction effects between PD-L1 and ICI treatment with

better prediction of treatment response in cross-validation stratified by PD-L1

per cent staining (∆ELPDCV = −7.6 ± 2.9), see table 5.11.

It would be straightforward to develop a survival GP model with another

baseline hazard distribution, including flexible parametric distribution with

M-splines. Modifying the link function modelling with the GP would involve

a similar approach with the new baseline hazard model. On the other hand,

modelling the time-varying effects of the survival GP model would be difficult,

and it is likely that there is not enough information to learn more elaborate

distributions than the treatment varying effects model. Subsequently, the

real-world experiments considered time-varying effects on the interaction of

treatment and biomarker status. These did not outperform or significantly

change the predictions of treatment interventions (∆ELPD = −1.0 ± 2.5).

Our real-world experiment with the Flatiron NSCLC ICI dataset also

considered several definitions of accuracy and utility for predictive and causal

survival analysis. Our results agree with previous research [40] that the

probability of the survival data best describe the definition of accuracy in

survival predictive modelling. On the other hand, we have shown that this

definition of accuracy does not satisfy the causal survival analysis approach

because the counterfactual outcomes are not immediately available from the

data, see section 5.2.7. The comparison of causal models, in general, is a topic

of active research and does not yet have a definite established answer. From

proposals of weighting a cross-validation scheme with the propensity score [81]

to using measures of cumulative elasticity in the literature [193] aspects of this

debate are still open. For heterogeneous treatment effects models, we have

proposed a stratified cross-validation scheme where one stratifies by treatment

and biomarker stratum while performing splits of the data. The ingenuity

of the approach is that under the no unmeasured confounding assumption

and overlap (positivity), the utility function evaluates how well the model

predicts treatment interventions, stratifying by a variable of interest, such as

a biomarker. Therefore, this approach can benchmark causal models in their
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utility for personalised treatment decisions and biomarker discovery. We have

demonstrated such an approach in comparing the survival GP model with the

survival interaction model in stratifying the Flatiron NSCLC ICI dataset by

PD-L1 expression.

Following this, we compared the proportional hazard ratio and the RMST to

summarise treatment effects in the Flatiron NSCLC ICI survival dataset. Our

results show that proportional hazard ratios’ limitations are most acute when

the proportional hazard assumption is not sound. For instance, if treatment

acts as a selection force for non-susceptible patients, the time-varying nature of

the hazard function is relevant in modelling the treatment effect. With synthetic

data experiments, we have shown that the non-proportional hazard approach

is less biased and preferred for sharper inference (bias < 0.01), see figure 5.14.

To model non-proportional hazards, we adopted a B-splines modelling of the

time-varying effects [72].

Moreover, we have further shown that an ODE system can describe the

non-linear hazard model. The B-splines approach fits the data well for the

analyses presented here. However, the ODE approach may be helpful for more

complex survival datasets with various end-points forming a Markov process

potentially providing greater mechanistic insight [6].

Next, our experiments have examined the differences between standardisa-

tion and IPW in predicting the survival function for several ICI treatments.

We have seen that under exchangeability, the two estimators yield similar

inferences (RMST(τ) = 0.9), see figure 5.29. However, with standardisation and

the application of the Bayesian g-formula in survival analysis, our results have

shown that one can quantify the uncertainty in the survival model predictions.

Moreover, the posterior distribution can be updated when more data arrive in

the RWE database. Finally, but no less importantly, we have shown how to

apply the OTS bounds in survival analysis using the RMST and computing the

posterior predictive distribution, see figure 5.33 and figure 5.34. The results

suggest that class unbalance tends to move the treatment effect estimate near

the upper OTS bound, which is likely because treatments considered optimal

by prescribing doctors are most frequent in the RWE dataset. These causal

bounds are a particular case of sensitivity analysis to unobserved confounders.

We suggest cooperating with clinicians to assess all confounders in the RWE

dataset and conducting sensitivity analysis based on their recommendations.

In conclusion, RWD complements RCT by bridging the research and clinical

practice gap with large datasets measuring many biomarkers. However, to go

beyond current clinical practice and recognise the heterogeneity in treatment

response, RWD analyses need not focus on predictive questions but causal ones.

Since missing data are typical in RWE datasets, we need to consider model-

based or algorithms to impute missing values. We have studied six different
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methods that perform multiple imputations to help potential research on RWE

datasets in choosing an imputation method. Given its longitudinal nature,

RWD are often used for various types of time-to-event analyses. We have applied

a causal framework to survival analysis and shown the limitations of inferring

treatment effects from observational RWD. Since RWD is not controlled in

contrast to RCT, the model’s bias in treatment effect estimates is expected

to increase. When comparing the results of the synthetic RCT and RWD

experiments, it was shown that adjusting for confounders and time-varying

effects was sufficient in order to obtain unbiased estimates. However, given

these limitations, RWE studies predictions need to be carefully interpreted,

possibly, using small sample RCT datasets when available or assessing the

models performance in predicting treatment interventions in biomarker-defined

populations.

6.2 Future Work

The adoption of RWE has grown dramatically in the last decade in particular

for the evaluation of drug safety and effectiveness [143], thereby modernising

the approach to clinical research in oncology. However, more studies are

needed to understand how can we better leverage RWE to support drug

development. There are several open directions in analysing RWD for clinical

research, the methods we described in the present thesis, and extending these

to new settings. The following section encompasses several extensions to this

work. First, covering limitations and alternative approaches to the RWE

studies conducted in this thesis. Second, the development of a causal inference

methodology. Third, exploration of different areas of application for RWE in

clinical research in oncology.

6.2.1 Extensions of the RWE studies presented

Expanding the RWD study of missing data: In chapter 4 we performed

a comparative study of missing data, where we attempted to perform multiple

imputations using the survival outcome and the binary status (”positive” or

”negative”) of five commonly tested biomarkers in NSCLC: ALK, EGFR,

KRAS, BRAF and PD-L1. However, it would be interesting to see how the

imputation algorithms perform when adding more features to the imputation

model, including demographic variables that might share information with

biomarkers such as smoking history, history of malignancies or histology.

Analysing the impact of longitudinal variables on imputation al-

gorithms: Another possible extension of the algorithms for imputation of
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missing data is to consider variables measured longitudinally, such as neutro-

phils, lymphocytes and albumin, which also have significant missing values and

are sparse in RWD. Moreover, longitudinal observations, such as haematology

data, that vary over time may share information with the treatment inter-

ventions that occur across time. In particular, past observations may impact

current treatment interventions, which may impact future observations. To

this end, the model could, in principle, impute missing values while being used

to predict dynamic treatment interventions.

Tackling the MNAR scenario: We demonstrated the application of tests

of MCAR applicable to any clinical dataset, which suggested that the MCAR

assumption is untenable in our examples of RWE studies in section 4.3.2. The

MAR framework is, therefore, more appropriate for the RWE dataset analysed

under the assumption of exchangeability of the missingness mechanism, as

explained in section 2.2.1. However, as studied in section 3.5 the exchangeability

assumption may be relatively extreme, and an MNAR missing data pattern

may be unknown in practice, and results should be generalised with caution.

The algorithms presented for multiple imputations, including MITABNET,

need further work to be helpful in an MNAR framework. One key concept in

MNAR is the need for a model that helps explain the unobserved confounding.

Suppose there is a small sample of cases representing the MNAR mechanism. In

that case, a potential solution is to use up-sampling [194] in the MI algorithm

1 to adapt the machine learning algorithms to the MNAR framework.

Adding new genomic biomarkers to model the varying effect of ICI:

In the study of survival data in chapter 5, we attempted to model the varying

effect of ICI by PD-L1 expression. However, research by [190] suggests that

for TMB, the average percentage of mutations in a sample of cancerous cells

may predict treatment response in ICI therapy. The clinical NSCLC dataset

analysed did not include TMB. However, new RWE datasets named clinical-

genomic datasets comprised several genomic markers, including TMB. TMB,

as defined above, is generated as a percentage or a distributed variable, hence,

applying the survival GP approach presented in this work could be helpful for

treatment effects interpretations.

Modelling the hazard function with ODE and GP: On the develop-

ment side, time-varying effects modelling is an important field of research

that bridges the gap between the modelling and statistical analysis of survival

data. In particular, it resolves the problem of too simple proportional hazard

models that may induce bias in RWE studies. In this work, we expanded

on the B-splines model for non-proportional hazards. However, as mentioned
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above, non-linear ODE models and GP models of the time-varying hazard

function may potentially generalise better than the B-splines approach and are

fascinating areas of applied research.

Adding time-varying covariates: Longitudinal time-varying covariates

are of increasing mechanistic importance and may inform the clinical develop-

ment of new investigational drugs. In RWE studies, the treatment strategy

may change depending on evolving characteristics. For example, treatment

discontinuation may happen because a contraindication occurs, where the

patient may stop treatment and decide with the doctor whether to switch to an

alternate treatment. These sustained treatment strategies are clinically relevant

in screening test interpretations, and treatment interventions [195]. Application

of the parametric g-formula, see equation 3.32 in dynamic treatment strategies

can help in the task of sequential decision making. To extend the RWE study

to include time-varying covariates, one must specify the RWE study design

(consistency), measure covariates adequately (exchangeability), and apply an

appropriate method under the exchangeability assumption.

Construct OTS bounds for CATE from censored survival data: Fi-

nally, in this work, we used the OTS bound to assess the impact of non-observed

confounding for the ATE. However, one could generalise the OTS bound to

determine the effect of non-observed confounding on the CATE. Similarly, a

time-varying causal bound may be essential for interpreting dynamic predictions

of treatment interventions.

6.2.2 Development of causal inference

Comparison of causal models: The field of research related to causal

inference has had a significant upswing in the last decade, with particular

interest in wrapping the recent advances in machine learning within a causal

framework. For example, adversarial attacks showed that neural networks

might be unreliable in the real world in terms of recognising objects by tricking

the state-of-the-art Inception V3 Google AI algorithm [196] into predicting that

a cat was an avocado, a baseball was a coffee machine [35, 197] etc. Although

complex predictive models identify patterns in the data, they may not be

suitable for recognising ”good” patterns for RWD analysis. Hence, an area

of active research is the comparison of causal models [81, 193]. In particular,

further development of this technology with applications to survival analysis

and clinical data will help the applicability of RWE studies.

Causal graph discovery: Most of the methods described in this thesis

focused on the simple setting where the causal model was assumed to be known.
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For example, we had the set of covariates W , a treatment A and the patient

outcome Y . We recognised that the treatment effects affected the patient

outcome, and the question was its strength. Moreover, the development of

causal inference includes causal discovery, for example, learning the causal

graph from data in genetic networks that may enable N = 1 studies, which

help in drug development for rare cancerous diseases.

6.2.3 Examining RWE in new areas

Over the last decade, a variety of studies have studied the problem of applying

machine learning techniques to RWE studies for advancing medicine [143].

We see that RWE studies can support drug development, informing trial

design, and biomarker sourcing. As mentioned above, an exciting area of

research is the modelling of gene networks to individualised treatment and the

development of therapies for rare cancerous diseases. Such gene networks may

model the genomic and transcriptomic processes that underlie therapeutics

at the molecular level. With the rapid advancements in DNA sequencing

technology and the wealth of anonymised RWD available for basic and applied

research, it may be possible to develop more personalised treatments in the

next decade.
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Appendix A

Result Reproduction

A.1 R code-simulation of missing data

The following R code was used for generating the synthetic data in the simula-

tion experiments in chapter 4.

Load the simstandard, mice, and simtte package:

library(simstandard)

library(mice)

library(simtte) # https://github.com/csetraynor/simtte

Define the function that generates datasets from an SCM with a high

correlation between manifest variables:

# Simulation of high correlated datasets

# s: sample number (1 to 200)

# N: number of individuals to simulate

sample_data_sim_high_cor <- function(s, N) {

# lavaan syntax for model (high correlation)

m <- "

A =~ 0.7 * A1 + 0.9 * A2 + 0.9 * A3 + 0.3 * B1

B =~ 0.7 * B1 + 0.9 * B2 + 0.9 * B3

B ~ 0.9 * A

"

# Simulate data

d <- sim_standardized(m,

n = N,

latent = FALSE,

errors = FALSE)
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}

Define the function that generates datasets from an SCM with a low

correlation between manifest variables:

# Simulation of low correlated datasets

# s: sample number (1 to 200)

# N: number of individuals to simulate

sample_data_sim_low_cor <- function(s, N) {

# lavaan syntax for model (low correlation)

m <- "

A =~ 0.4 * A1 + 0.4 * A2 + 0.4 * A3 + 0.3 * B1

B =~ 0.4 * B1 + 0.5 * B2 + 0.4 * B3

B ~ 0.5 * A

"

# Simulate data

d <- sim_standardized(m,

n = N,

latent = FALSE,

errors = FALSE)

}

Define the function to amputate datasets:

# Amputation of datasets

# d : dataset object

# prop : proportion of missingness

# cor_level : correlation id

# mech : mechanism of missingness (MCAR, MAR, MNAR)

ampute_sim <- function(d, prop, mech) {

d_miss <- mice::ampute(d, prop = prop, mech = mech)

# writeLines(paste0("Percentage of newly generated missing values: ",

100*sum(is.na(d_miss$amp))/prod(dim(d_miss$amp)), " %"))

}

Define the function to simulate event times:
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# Simulation of event times

# simdata : dataset object

simTteData <- function(simdata) {

# set true coefficients

beta <- c(-2, -1, 0, 1, 2, 3)

# compute linear predictor

lp <- as.matrix(simdata) %*% beta

res <- sim_tte(pi = lp,

mu = -1,

coefs = 1.1,

type = "weibull",

obs.only = F,

obs.aug = T,

delta = 0.05,

end_time = 500)

return(loo::nlist(res, simdata))

}

A.2 CPP code - proportional hazards

The following CPP code was used for the Weibull ODE proportional hazard

model used in chapter 4:

Model file: weibull.txt

[PROB]

# Model: ‘Simulate Weibull parametric proportional hazard model‘

- Forward Kolmogorov differential equation

- Author: Carlos Traynor

- Date: ‘r Sys.Date()‘

- Version: ‘r packageVersion("mrgsolve")‘

Define the time-to-event parameters:

[PARAM] @annotated

lp : 0.15 : linear predictor

mu : 0.1 : intercept
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shape : 1 : shape parameter

List of state vector with initial conditions:

[INIT]

p11 = 1

Define the link function:

[MAIN]

double eta = exp(mu + lp);

Define the ODE system:

[ODE]

if(SOLVERTIME >= 1E-3) {

dxdt_p11 = - p11 * shape * pow (SOLVERTIME, shape - 1) * eta;

} else {

dxdt_p11 = - p11 * eta; // approximation

}

A.3 Python code - MITABNET

The following Python code was used for MITABNET in chapter 4.

Load necessary packages:

# Necessary packages

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import argparse

import sys

import os

from pathlib import Path
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from pytorch_tabnet_dropout.tab_model import TabNetRegressor

import torch

import pandas as pd

import numpy as np

from pytorch_tabnet.pretraining import TabNetPretrainer

Define the main function and read features:

def main(args):

# call parameters

data_dir = args.data_dir

perc = args.perc

dropout = args.dropout

data_dir = os.path.join("..", data_dir)

x = pd.read_csv( os.path.join(data_dir, ’x.csv’) )

ry = pd.read_csv( os.path.join(data_dir, ’ry.csv’) )

wy = pd.read_csv( os.path.join(data_dir, ’wy.csv’) )

y = pd.read_csv( os.path.join(data_dir, ’y.csv’) )

y = y.values

x = x.values

ry = (ry.values)[:,0]

wy = (wy.values)[:,0]

xobs = x[ry, :]

xmis = x[wy, :]

yobs = y[ry]

Pre-train MITABNET:

# TabNetPretrainer

unsupervised_model = TabNetPretrainer(

optimizer_fn=torch.optim.Adam,

optimizer_params=dict(lr=2e-2),

mask_type=’entmax’ # "sparsemax"
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)

max_epochs = 1000 if not os.getenv("CI", False) else 2

Set = np.random.choice(["train", "valid"], p =[perc, 1-perc], size=len(yobs))

X_train = xobs[Set == "train"]

X_valid = xobs[Set == "valid"]

y_train = yobs[Set == "train"]

y_valid = yobs[Set == "valid"]

unsupervised_model.fit(

X_train=X_train,

eval_set=[X_valid],

max_epochs=max_epochs , patience=20,

batch_size=512, virtual_batch_size=64,

num_workers=0,

drop_last=False,

pretraining_ratio=0.8)

Specify MITABNET options and train the model:

# Training

clf = TabNetRegressor(optimizer_fn=torch.optim.Adam,

optimizer_params=dict(lr=2e-2),

scheduler_params={"step_size":10,

"gamma":0.9},

scheduler_fn=torch.optim.lr_scheduler.StepLR,

mask_type=’sparsemax’,

dropout = dropout

)

clf.fit(X_train=X_train, y_train=y_train,

eval_set=[(X_train, y_train), (X_valid, y_valid)],

eval_name=[’train’, ’valid’],

eval_metric=[’rmse’],

max_epochs=max_epochs,

patience=50,

batch_size=256, virtual_batch_size=64,

num_workers=0,

drop_last=False,
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from_unsupervised=unsupervised_model)

Issue imputations for missing values:

preds = clf.predict(xmis)

preds = pd.DataFrame(preds)

preds.to_csv(os.path.join(data_dir, ’y_pred.csv’) , index = False)

Set up arguments for main function:

if __name__ == ’__main__’:

# Inputs for the main function

parser = argparse.ArgumentParser()

parser.add_argument(

’--data_dir’,

default=".",

type=str)

parser.add_argument(

’--perc’,

default=0.8,

type=float)

parser.add_argument(

’--dropout’,

default=0.1,

type=float)

args = parser.parse_args()

# Call main function

main(args)

A.4 CPP code - non-proportional hazards

The following CPP code was used for the Weibull ODE non-proportional

hazard model used in chapter 5:

Model file: weibull_tve.txt
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[PROB]

# Model: ‘Simulate Weibull parametric non proportional

hazard model with two tve‘

- Forward Kolmogorov differential equation

- Author: Carlos Traynor

- Date: ‘r Sys.Date()‘

- Version: ‘r packageVersion("mrgsolve")‘

Define the time-to-event parameters:

[PARAM] @annotated

X1 : 1 : First variable with tve

X2 : 1 : Second variable with tve

coeftv1 : 0.5 : Coefficient tve 1

coeftv2 : 0.5 : Coefficient tve 1

lp : 0.15 : linear predictor

mu : 0.1 : intercept

shape : 1 : shape parameter

List of state vector with initial conditions:

[INIT]

p11 = 1

Define the link function for the proportional hazard component:

[MAIN]

double eta = exp(mu + lp);

Define the ODE system:

[ODE]

if(SOLVERTIME >= 1E-1) {

dxdt_p11 = - p11 * shape * pow (SOLVERTIME, shape - 1) * eta *
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exp( X1 * coeftv1 * SOLVERTIME) * exp(X2 * coeftv2 * SOLVERTIME);

} else {

dxdt_p11 = - p11 * eta; // approximate via exponential model

}

A.5 Stan code-Weibull GP

The following Stan code [11] was used for the Weibull GP hazard model used

in chapter 5.

Define the log-survival and log-hazard function for the Weibull model:

functions {

/**

* Log survival for Weibull distribution

*

* @param eta real, prognostic index, aka linear predictor

* @param t real, event or censoring time

* @param shape real, Weibull shape

* @return A real

*/

real weibull_log_surv(real eta, real t, real shape) {

real res;

res = - pow(t, shape) * exp(eta);

return res;

}

/**

* Log hazard for Weibull distribution

*

* @param eta real, prognostic index, aka linear predictor

* @param t real, event or censoring time

* @param shape Real, Weibull shape

* @return A real

*/

real weibull_log_haz(real eta, real t, real shape) {

return log(shape) + (shape - 1) * log(t) + eta;

}

Compute the GP latent state:
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/**

* GP: computes sigma_yless Gaussian Process

* @param volatility volatility of gaussian process

* @param amplitude

* @param GP_z_scores

* @param n_x number of x

* @param x

* @return A vector

*/

vector GP(real volatility, real amplitude, vector GP_z_scores,

int n_x, real[] x ) {

matrix[n_x,n_x] cov_mat ;

real amplitude_sq_plus_jitter ;

amplitude_sq_plus_jitter = amplitude^2 + 0.001 ;

cov_mat = gp_exp_quad_cov(x, amplitude, 1/volatility) ;

cov_mat = add_diag(cov_mat, amplitude_sq_plus_jitter);

return(cholesky_decompose(cov_mat) * GP_z_scores ) ;

}

}

Define the data inputs:

data {

int<lower=1> N; // N: number of individuals

vector<lower = 0>[N] time_at_risk; // time:

int<lower=0, upper = 1> event_status[N]; // status indicator

int K;

matrix[N, K] x; // set of individual covariates

real log_crude_event_rate; // helps center the intercept

/*** GP inputs ***/

// n_w: number of groups in predictor array

int n_w;

// data matrix fore regression should include intercept
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matrix[N, n_w] w; // array of GP weights

// n_gp_x: number of unique x values

int<lower=1> n_gp_x ;

// x: unique values of x

// should be scaled to min=0,max=1

real gp_x[n_gp_x] ;

// x_index: vector indicating which x is associated with each y

int gp_x_index[N] ;

}

Define the model parameters:

parameters {

real<lower=0> shape;

vector[K] beta;

// volatility_helper: helper for cauchy-distributed volatility

vector<lower=0,upper=pi()/2>[n_w] volatility_helper ;

// amplitude: amplitude of GPs

vector<lower=0>[n_w] amplitude ;

// f_GP_z_scores: helper variable for GPs

matrix[n_gp_x,n_w] f_GP_z_scores;

}

Define operations on model parameters:

transformed parameters {

// volatility: volatility of GPs (a.k.a. inverse-lengthscale)

vector[n_w] volatility ;

// f: GPs

matrix[n_gp_x,n_w] f ;

//next line implies volatility ~ cauchy(0,1)

volatility = tan (volatility_helper) ;
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// loop over predictors, computing GPs for each treatment

for(wi in 1:n_w){

f[,wi] = GP (volatility[wi] , amplitude[wi] ,

f_GP_z_scores[ ,wi] , n_gp_x , gp_x);

}

}

Define the model likelihood and the prior distributions for the model

parameters:

model {

vector[N] eta = x * beta;

for ( i in 1:N ) {

real mu = 0;

mu += log_crude_event_rate; //helps center the intercept

mu += eta[i];

mu += sum(w[i,] .* f[gp_x_index[i], ]);

// weibull survival likelihood

if(event_status[i] == 1) {

target += weibull_log_haz (mu, time_at_risk[i], shape);

target += weibull_log_surv(mu, time_at_risk[i], shape);

} else {

target += weibull_log_surv(mu, time_at_risk[i], shape);

}

} // close for loop of individuals!

/*** priors for survival model ***/

shape ~ normal(1, 1); // Half-normal peaks at 1

/*** priors for GP stuff ***/

// normal(0,1) priors on GP_z_scores

target += std_normal_lpdf( to_vector(f_GP_z_scores));

// amplitude prior

target += exponential_lpdf (amplitude | 1);

}
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