
Please cite this article in press as: Voliotis et al., Steady-state running rate sets the speed and accuracy of accumulation of swimming bacteria, Biophysical Journal
Article

(2022), https://doi.org/10.1016/j.bpj.2022.08.012
Steady-state running rate sets the speed and
accuracy of accumulation of swimming bacteria
Margaritis Voliotis,1,* Jerko Rosko,2 Teuta Pilizota,3,* and Tanniemola B. Liverpool4,5,*
1College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom; 2School of Life Sciences,
University of Warwick, Coventry, United Kingdom; 3Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United
Kingdom; 4School of Mathematics, University of Bristol, Bristol, United Kingdom; and 5BrisSynBio, Life Sciences Building, University of Bristol,
Bristol, United Kingdom
ABSTRACT We study the chemotaxis of a population of genetically identical swimming bacteria undergoing run and tumble
dynamics driven by stochastic switching between clockwise and counterclockwise rotation of the flagellar rotary system, where
the steady-state rate of the switching changes in different environments. Understanding chemotaxis quantitatively requires that
one links the measured steady-state switching rates of the rotary system, as well as the directional changes of individual swim-
ming bacteria in a gradient of chemoattractant/repellant, to the efficiency of a population of bacteria in moving up/down the
gradient. Here we achieve this by using a probabilistic model, parametrized with our experimental data, and show that the
response of a population to the gradient is complex. We find the changes to the steady-state switching rate in the absence
of gradients affect the average speed of the swimming bacterial population response as well as the width of the distribution.
Both must be taken into account when optimizing the overall response of the population in complex environments.
SIGNIFICANCE In nature, bacteria live in complex environments such as themammalian gastrointestinal tract or the soil.
Understanding how bacteria achieve robust navigation in these environments while growing, and when multiple competing
stimuli are present, captures interest from a variety of disciplines, including biology, medicine, physics, and bio-inspired
design in engineering. Here, motivated by experimental findings showing that environmental conditions affect the effective
diffusion constant of swimming bacteria, we develop a probabilistic model of chemotaxis and use it to study how such
changes can affect the ability of bacteria to quickly and accurately find their targets.
INTRODUCTION

Bacterial self-propulsion, in particular flagellated motility,
is a phenomenon that captures interest from a variety of dis-
ciplines, ranging from physics (1), biology, and medicine (2)
to bio-inspired design in engineering (3). Interest in motility
is often in the context of chemotaxis, in which membrane-
bound proteins acting as chemo-receptors sense the pres-
ence of certain chemicals in the environment and affect
the flagellar rotation in order to move toward or away
from the source (4). Much of the research on chemotaxis fo-
cuses on dilute aqueous media with or without a single
chemical gradient (4,5). This reductionist approach has
been invaluable and generated a large body of knowledge
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about the underlying mechanisms. Briefly, and taking the
example of the model organism Escherichia coli, the bacte-
rium swims by rotating a flagellar filament bundle that pro-
pels its body through the environment (6,7). Each flagellum
consists of a long, thin, helical filament attached to a bacte-
rial flagellar motor (BFM), which drives its rotation at rates
exceeding 100 Hz. It spins predominantly in the counter-
clockwise (CCW) direction with occasional switches to
clockwise (CW) (8). As long as all the filaments are spun
CCW, they form a stable bundle. When one or more partici-
pating flagella switches to CW rotation, unbundling occurs,
resulting in a so-called tumble event that likely brings a
change in swimming direction once all the flagella resume
CCW rotation (7). In a homogeneous environment, tumbles
happen stochastically, whenever enough copies of the phos-
phorylated CheY protein (4) (CheY-P) diffuse to the motor
and increase the chance of a CCW-CW switch through their
interaction with the BFM (9,10). As a result, a single bacte-
rium moves in the pattern of a random walk (11). The
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effective diffusion constant of such a random walk is linked
to the tumble rate, usually considered a constant (12). The
intracellular fraction of CheY that is phosphorylated is
controlled by transmembrane proteins that act as chemosen-
sors (4). They are able to bind very specific chemicals in the
cell exterior and, in response, transiently increase or
decrease the concentration of phosphorylated CheY-P inside
the cell. This provides a mechanism for biasing the random
walk by making tumbles more or less probable and
ensuring, for example, that tumbles are less probable if
the cell is moving toward a source of food. Transiently
modifying its reorientation probability allows the bacterium
to quickly respond to new changes in its surroundings and
navigate gradients rather than just have a binary response
to presence or absence of a chemical (13). This behavior,
where the sensors modulate their own sensitivity to bring
the CheY-P concentration to baseline levels only seconds af-
ter responding to a stimulus, is called perfect adaptation
(14). It, however, works only if the successive stimuli are
in approximately the micromolar range and thus are not
over-saturating the sensors (15).

As changes in the rotational direction of single motors are
at the root of this kind of directed motility in bacteria, the
experimental quantity that is commonly used to express
how often cells change direction is the CW bias, the fraction
of time the motor spends rotating CW in a long enough time
interval (10,14,16). As mentioned, in homogeneous envi-
ronments, BFM switching events happen stochastically,
and, since most studies on E. coli’s biased random walk
have been done in dilute environments it is generally consid-
ered a fixed quantity (12). However, bacteria in nature have
evolved, and typically live in complex environments such as
the mammalian gastrointestinal tract or the soil. Conse-
quently, interest is now shifting toward understanding how
robust bacterial navigation is, when multiple competing
stimuli are present, and when bacteria simultaneously
swim and grow (5,17,18). For example, recent reports
show higher steady-state CW bias in nutrient-rich environ-
ments compared with the commonly cited value found in
dilute environments (12,18), lack of return of the CW bias
to its pre-stimulus levels (19), and long-term increases in
CW bias following shifts in osmolarities similar to values
typical for the gastrointestinal tract (16). Because the biased
random walk arises from transient changes in the CW bias
due to the concentration gradient, and on the level of indi-
vidual bacteria, changing the steady-state CW bias can
affect the motion of the bacterial population in a complex
manner.

Here, we therefore look to better characterize experi-
mentally the changes in steady-state CW bias in different
media, and subsequently explore, using a coarse-grained
model of bacterial chemotaxis, the effects of these changes
on the ability of bacteria to quickly and accurately
find their target. The model describes the chemotactic tra-
jectory within a concentration field as a chain of random
2 Biophysical Journal 121, 1–10, September 20, 2022
steps. At each step, the state of the bacterium is represented
in terms of its chemotactic behavior (either run or
tumble) and its direction of movement, and updated
problematically.

The biased random walk is not restricted to bacteria but is
ubiquitous in the biosphere. Variations of it describe the
movement patterns that arise when large herbivores search
for new grazing patches (20) and the way Drosophila larvae
search for optimal environmental temperatures (21). Our
theoretical and experimental findings show that how it is
biased becomes important. Thus, our results can be of wider
relevance, e.g., for bio-inspired swarm robotics, either to
design target search strategies (3) or as a means of control-
ling the spatial extent of swarms (22).
MATERIALS AND METHODS

E. coli growth and culturing

KAF84 cells were grown in tryptone broth (1% Bacto tryptone, 0.5%

NaCl) at 30�C while being shaken at 200 rpm (1,10), supplemented

with 100 mg mL�1 of ampicillin, and grown to optical density 600

(OD600) between 0.7 and 1.0 (Spectronic 200E Spectrophotometer;

Thermo Scientific) (16). After growth, cells were washed in volume recov-

ery buffer (VRB) composed of sodium motility buffer (NMB), which is a

10 mM sodium phosphate buffer, pH 7.1 (an aqueous solution with

6.1 mM Na2HPO4, 3.9 mM NaH2PO4 and 0.01 mM EDTA), with added

glycine betaine, potassium chloride, and choline chloride to final concen-

trations of 10, 20, and 10 mM, respectively (23). These compounds are os-

molytes needed for the cell to maintain its volume at higher osmolarities

(24). NMB is a variant of the motility buffer, commonly used in flagellar

motor and chemotaxis experiments (25), with sodium phosphates

substituted for potassium phosphates. The latter is done to gain full control

of potassium content in the buffer because potassium is also an osmolite

(24). For experiments, cells were washed three times by centrifuging

them into a pellet and replacing the supernatant with the buffer of choice.

For experiments in VRB, all three washes were performed using VRB. For

experiments with VRB þ 200 mM sucrose and VRB þ 400 mM sucrose,

the final (third) wash was into those respective buffers. Cells were left to

rest for approximately 15–70 min before microscopy (e.g., of the 237 re-

corded in VRB þ 200 and VRB þ 400 mM sucrose buffers, 77 were left to

rest in the buffer between 15 and 30 min and 160 for 60–70 min), leaving

enough time to dissipate any transient changes due to the sudden increase

in extracellular osmolality (16) (for a summary of buffer compositions, see

also Table 1).
Microscopy and data collection

As before, for BFM experiments, we used back-focal-plane interferometry

(16,27,28). Briefly, the rotating bead is attached to a flagellar stub and

placed into the focus of the heavily attenuated focused laser. The back-

focal plane of the condenser is then imaged onto a position-sensitive de-

tector (PSD Model 2931; New Focus). The voltage signal from the PSD

was filtered and sampled as described before (16). The experiments

were performed at room temperature (21�C 5 1�C). In Figs. 1, S1, and

S2, we include 118, 95, and 23 cells recorded as part of our previous

work (16) in the VRB buffer, VRB þ 200 mM sucrose, and VRB þ
400 mM sucrose conditions, respectively. In this work, we also expand

the latter-most condition with 119 single-cell recordings, bringing the total

number of motors assayed in VRB þ 400 mM sucrose to 142. We record

one motor trace per cell, so we refer to them as single-cell motor traces.

Additionally, in Fig. S3 we included two CCW-biased motors observed



TABLE 1 Table of buffers used in this work, together with

their composition, osmolarity, and pH

Medium/

buffer Components Osmolarity pH

NMB 6.1 mM Na2HPO4 3.9 mM NaH2PO4 24 mOsm/kg 7.12

VRB NMB þ 20 mM KCl 10 mM choline

chloride 10 mM glycine betaine

92 mOsm/kg 7.04

MB0 NMB þ 40 mM KCl 40 mM glycine

betaine 40 mM NaCl

286 mOsm/kg 6.90

MB1 NMB þ 80 mM KCl 80 mM glycine

betaine 80 mM NaCl

501 mOsm/kg 6.87

All buffers are built on a sodium phosphate buffer, termed sodium motility

buffer (see section ‘‘materials and methods’’). To change the osmolarity of

the buffers we used sucrose, as it is a sugar most laboratory E. coli strain do

not metabolize (26). MB0, modified buffer 0; MB1, modified buffer 1.

Algorithm 1: Particle filter for sampling from the
p r o b a b i l i t y d i s t r i b u t i o n s e q u e n c e
PthP ðs1:t;bt1:tjcðxÞ Þ, t ¼ 1, .,T
Input: number of time-points, T; number of particles, N; concentration

field, c(x); initial distribution, p1ðs;btÞ, transition kernel, Mðs0 ; bt 0 js; btÞ.
Output: sample chemotactic trajectories fsi1:T ; btðiÞ1:Tg for i ¼ 1, ., N.

set t ¼ 1

sample from initial distribution:

ðsðiÞt ; btðiÞt Þ � p1 for i ¼ 1, ., N;

calculate weights:

w
ðiÞ
t ¼ wtðsðiÞt ; btðiÞt Þ ¼ 1=N for i ¼ 1,.N;

for t ¼ 2 to T do

for t ¼ 1 to N do

sample from previous (i.e., t � 1) population:

a
ðiÞ
t� 1 � Pðwð1Þ

t� 1;/;w
ðMÞ
t� 1Þ

perturb state:�
s
ðiÞ
t ; btðiÞt �

� M

�
,

����sðaðiÞt�1 Þ
t ; btðaðiÞt�1 Þ

t

�
;

calculate weight: w
ðiÞ
t ¼ expð�Hðs1:t ;bt1:t ;cðxÞ ÞþHðs1:t� 1 ;bt1:t� 1 ;cðxÞ Þ Þ

M

�
s
ðiÞ
t ;bt ðiÞt

����sðaðiÞt�1 Þ
t ;btðaðiÞt�1 Þ

t

� ;

end
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in VRB buffer condition (these motors spend the majority of the time

rotating in the CCW direction and occasionally switch to the CW direc-

tion). A small number of CCW-bias motors was observed before when

cells were kept in 10 mM potassium phosphate buffer (12). The number

of these is so small that it will not influence the population dynamics,

so we have not included them in the CW bias distribution in Fig. 1. In

Fig. S4 we included an additional 30 and 29 cells for the two new buffer

conditions, respectively.
Data analysis

X and Y signals obtained from voltages from the PSD were analyzed as

before (16,23). Briefly, time-course traces were passed through a mov-

ing-window discrete Fourier transform to extract the motor speed as a

function of time. These were then processed to calculate the CW bias,

defined as the fraction of time the motor rotates CW in a given interval.

Namely,

CWBias ¼ Ncw

Ntot

;

where Ncw is the number of data points corresponding to CW rotation and

Ntot is the total number of data points in a given time interval. For every

single cell examined, 60 s of single-motor speed was taken as the interval

for calculating CW bias (see also Fig. S2). The selection of the recording

window maximizes our throughput and minimizes any photo damage (29)

or sensitivity to slow fluctuations in CW bias (30). The single-cell motor

switching frequency was calculated as the number of CCW / CW tran-

sitions per our 60-s interval (Fig. 2 B). In free-swimming cells, these

transitions would most likely correspond to the initiation of a tumble

event. CW / CCW events, corresponding to a resumption of a run,

were not included in the count, and doing so would simply multiply the

result by a factor of two. To obtain mean CW interval distributions, in

Fig. 2 C we averaged the lengths of CW intervals from each single-cell

motor trace in a given condition. These intervals serve as a proxy for tum-

ble durations.
Model simulation

To evaluate the path integrals (see also section ‘‘results’’), we employ a

particle filter (or sequential Monte Carlo) algorithm (31,32) to

sample from the sequence of probability distribution Pðs1:t bt1:tjcðxÞÞf
exp ð�Hðs1:t bt1:t ; cðxÞÞÞ, t ¼ 2;.; T that describe the time evolution of

a population of chemotactic agents in a concentration field cðxÞ. The sam-

pling algorithm proceeds as follows (see section ‘‘results’’ for definitions of

parameters):
For the purpose of our numerical experiments, we set p1ðs; btÞf
exp

��h0
sþ1
2

�
,UðbtÞ, and Mðs0 ; bt 0 js; btÞ ¼ Uðs0 ; bt 0 Þ, where Uð ,Þ is

the uniform distribution over all admissible states. A Matlab implementa-

tion of the algorithm can be found at https://git.exeter.ac.uk/mv286/

chemotaxis-model.

end
RESULTS

Steady-state CW bias changes in different media

We begin by experimentally characterizing CW bias in a
range of different media. We know from previous work
that step changes of some attractant/repellent concentrations
can lead to new steady-state CW bias values in E. coli (33)
and, similarly, that at higher osmolarities steady-state CW
bias increases (16,23). While step changes in some attrac-
tant/repellent concentrations resulted in a change in CW
bias (33), there was no obvious concentration dependency,
but steady-state CW bias increased with the osmolarity for
the previously measured three osmotic conditions (16).
We, thus, focused on testing whether the increase in
steady-state CW bias is an osmotic effect, as well as exper-
imentally determining the steady-state CW bias distribu-
tions in different media. The latter will enable us to
theoretically investigate the role of changes in the CW
bias on chemotactic accumulation. The table of different
buffers, their compositions, as well as the osmolarity we
used are given in Table 1.

Fig. 1 A shows CW bias mean value and distribution
measured in three media differing only in osmolarity (16),
which show a clear change. Next, in Fig. 1 B and C, we
confirm that the change in CW bias is due to more frequent
BFM switching events rather than longer periods spent
rotating in the CW direction, and it is therefore relevant
Biophysical Journal 121, 1–10, September 20, 2022 3
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FIGURE 1 Variation in the parameters describing single bacterial

flagellar motor rotational direction changes for the VRB buffer (top),

VRB with addition of 200 mM sucrose (middle), and VRB supplemented

with 400 mM sucrose (bottom). (A) Distributions of CW motor bias. (B)

Distributions of the single motor CCW / CW switching frequency. (C)

Distributions of mean single motor CW interval length. The VRB,

VRB þ 200 mM, and VRB þ 400 mM sucrose conditions comprise 118,

95, and 142 single-cell, single-motor recordings respectively. See support-

ing material for experimental setup and Table 1 for buffer composition. To

see this figure in color, go online.

Voliotis et al.

Please cite this article in press as: Voliotis et al., Steady-state running rate sets the speed and accuracy of accumulation of swimming bacteria, Biophysical Journal
(2022), https://doi.org/10.1016/j.bpj.2022.08.012
for the motion of bacteria. In Fig. S4, we perform the CW
bias measurements in additional media different in compo-
sition as well as in osmolarity and conclude that osmolarity
of the media plays a role in setting the CW bias but does not
uniquely define it. A possible explanation for the role of os-
4 Biophysical Journal 121, 1–10, September 20, 2022
molarity is the increased crowding in an already crowded
intracellular environment (34). If osmotic pressure is kept
constant at higher external osmolarities, for which there is
experimental evidence (35), the concentration inside would
be higher thus slowing down the diffusion of macro-mole-
cules (36). Theoretical studies demonstrate that changes in
macro-molecular diffusion can even slow down the growth
rate (37). Changes in protein expression (up to sixfold), on
the other hand, were shown to have little effect on the CW
bias (38).
Statistical mechanics description of bacterial
chemotaxis gives description of whole
chemotactic trajectories

Having characterized clear changes in the steady-state CW
bias, we next theoretically study how these reflect on the
speed and accuracy of finding the target. For the purpose,
we propose a statistical mechanical description of chemo-
taxis of individual bacteria (Fig. 2). In contrast with previ-
ous models of chemotaxis that describe the stochastic
phenomenology of CCW-CW switching and predict how
cell density evolves over time (39–45), our model is built
on a statistical description of chemotactic trajectories. In
particular, single-cell trajectories are treated as stochastic
sequences of runs and tumbles, allowing us to calculate
probability distributions of any function of these trajectories
as a path integral. This framework has mathematical similar-
ities to wormlike chain (WLC) models describing semi-flex-
ible biopolymers (46,47), and similar path-integral
representations of bacterial chemotaxis have been used in
the past to study chemotactic drift velocity (48,49).

The path integral is defined as the weighted sum over all
possible individual trajectories of the bacteria; thus, the
model naturally links the CW bias of individual bacteria
with the behavior of the population. The underlying
biochemistry is abstracted away but it is easy to generalize
the model to incorporate more complex intracellular dy-
namics. The relevant length-scales in this framework are in-
termediate between those of PDE (partial differential
equation) models (50), which capture average properties
of populations but are insensitive to microscopic details,
and mechanistic models that link behavior of individual bac-
teria to intracellular biochemistry (51–54) but are more
difficult to scale to experimentally realistic large popula-
tions. Furthermore, the path-integral approach is well suited
to studying chemotaxis in complex, time-varying environ-
ments and could easily be extended to incorporate cell-to-
cell interactions in space and time. Finally, it provides an
efficient tool for the analysis of chemotaxis dynamics
from time-lapse movies of swimming bacteria, or time-se-
ries recordings of motor rotational direction and speed.

In our model, we describe a chemotactic trajectory within
a concentration field of chemoattractant/repellant, cðxÞ, as a
chain of random steps (indexed by i; Fig. 2 A). Each step i



FIGURE 2 Persistent trajectory model of chemotaxis captures its basic

features. (A) A chemotactic trajectory is modeled as a stochastic sequence

of states, describing bacterial behavior (either s ¼ þ1 for ‘run’ or s ¼
� 1 for ‘tumble’) and direction of movement (bt). (B) Distribution of

steady-state tumbling bias (fraction of time spent tumbling) for different

values of the basal running rate, h0, fitted to match the mean CW bias under

different experimental conditions (see Fig. 1). Distributions were calculated

from 10-s trajectories of N ¼ 105 cells. (C) Perfectly adapting cells (B ¼
5) accumulate up a one-dimensional chemical gradient (0.01 AU, mm�1),

whereas non-responding cells (B ¼ 0) are incapable of performing chemo-
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represents the state of the bacterium over a time window
Dti ¼ tiþ1 � ti in terms of 1) its chemotactic behavior si,
either run (si ¼ þ1) or tumble (si ¼ � 1); and 2) its di-
rection of movement, bt i. The chemotactic signaling cascade
is thus condensed and considered from the point of view of
its final outcome. Furthermore, bacteria move only when in
the run state at speed v. Hence, the bacterial position, xi, fol-
lows from the chain description of the chemotactic trajec-
tory and the initial position x1:

xi ¼ x1 þ v
Xi� 1

j ¼ 1

bt j
�
1þ sj

�
2

Dt:

State transitions, i/iþ 1, from si; bt i to siþ1; bt iþ1

depend only the states, i; iþ 1. Hence, starting in state
x1, the probability of observing the sequence ðs1; bt1; s2;bt2.sTbtTÞhfs1:T ; bt1:Tg, where T[ 1, is given by

Pðfs1:T; bt1:Tgjx1Þ ¼ p1
YT
i ¼ 1

pi/iþ1f expð� Hðfs1:T; bt1:TgÞÞ
with weight defined by:
Hðfs1:T ;bt1:TgÞ ¼ ε

2

XT
i ¼ 2

ð1 � sisi� 1Þ �
XT
i ¼ 2

hi
2
ð1þ siÞ

þ
XT
i ¼ 2

kðsi� 1Þð1 � bt i , bt i� 1Þ

Increasing ε(> 0) in the first term of H penalizes transi-
tions between run and tumble states, noting that a typical
run could extend for several steps. In the second term, hi
controls the preference for running over the tumbling, which
in general will depend on the exposure of the bacterium to
the chemoattractant/repellent as it moves through the con-
centration profile, cðxÞ. Here, we enforce perfect adaptation
by making hi depend linearly on the concentration gradient;
i.e., hi ¼ h0 þ Bbt i,VcðxiÞ. Parameter h0, hereafter referred
to as the basal running rate, controls the distribution of
steady-state tumbling bias (fraction of time a bacterium
spends tumbling) (Fig. 2 B). Furthermore, parameter B con-
trols the strength of the chemotactic response to the chemi-
cal gradient, with B ¼ 0 indicating non-responding cells
and B> 0 (B< 0) perfectly adapting cells to chemoattractant
(chemorepellent) concentrations (Fig. 2 C). Thus, ε, hi, and
B represent the tuning of the bacterial swimming that is a
result of the action of the entire chemotactic network,
without considering the detailed protein interactions. For
example, to achieve perfect adaptation, chemotactic net-
works ensure an efficient dephosporylation of CheY-P
taxis. Cell distributions were calculated from 20-s trajectories of N ¼ 5000

cells. Model parameters:Dt ¼ 0:1 s, v ¼ 20mm,s�1, ε ¼ 1, k > ¼ 1, and

k < ¼ 0:1. To see this figure in color, go online.
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shortly after it has been phosporylated. The effect is that the
cell is ready to sense and respond to a new changes in the
environment. Here we achieve the same by making the hi
dependent on the position in the gradient. For simplicity,
and without the loss of generalization, we assume every
change in rotational direction of a motor results in a tumble;
hence, hereafter we use the terms CW bias and tumbling
bias interchangeably. The model could be extended to
include any mathematical relation between a cell’s run/tum-
ble bias and the number and CW bias of the motors, such as
the one experimentally observed previously (55). Finally,
the third term of H controls the change of orientation be-
tween steps, which depends on the chemotactic state. Since
reorientation is significantly larger during tumbling,

kðsiÞ ¼
	
k > si ¼ � 1

k < si ¼ þ1

with k > [ k <. The final bacterial position is given by

xðtTÞ ¼ xj; j ¼ T.

Setting ε ¼ h ¼ 0 and k constant reduces this model to
the classic wormlike chain of polymer physics. We evaluate
the path integral numerically (see also section ‘‘materials
and methods’’), using a constant time step equal to the dura-
tion of a typical tumble event; i.e., Dt ¼ 0:1 s (11,56); con-
FIGURE 3 Bacterial chemotaxis speed and accuracy are influenced by the bas

in one-dimensional space. Chemotactic bacteria will seek to move toward the opt

bacteria to x�, and population-average distortion for the distance between the pop
distortion; PV, population variance; SP, squared population distortion. (B) Accum

gular chemical profile. Each population consists of N ¼ 106 cells, initialized at

squared single-cell distortion, (D) PV, and (E) squared population distortion as

profile. Markers correspond to different gradients of the triangular profile; i.e.,

0:1 s, B ¼ 5, v ¼ 20mm, s�1, ε ¼ 1, k > ¼ 1, and k < ¼ 0:1. To see this fi
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stant speed corresponding to the average running speed on
glucose (i.e., v ¼ 20mm, s�1 (1,11)); and ε ¼ 1, B ¼
5, k > ¼ 1, k < ¼ 0:1.
We next select the environment, by taking into account

that, if we wish to characterize how well chemotaxis
‘‘maps’’ the environment to find (un)favourable regions,
we need a profile with more structure than a concentration
gradient. We select a triangular-shaped profile in one-
dimensional space (Fig. 3 A) and for it define ‘‘perfect
chemotaxis’’ as all the bacteria going to the peak (and stay-
ing there). While achieving this is impossible, we can study
how close the bacteria can get to this situation given
different steady-state tumbling bias values. For the purpose,
we follow the chemotactic response of bacterial populations
initially positioned at the tip of the base of the triangular
profile (Fig. S5), and each with a different basal running
rate (h0). Fig. 3 B illustrates how the basal running rate mod-
ulates the speed and accuracy with which cells find the
target. Lower values of h0 (Fig. 3 B; blue population)
achieve consistent exploration of the chemical profile and
hence less cell-to-cell variability. However, this comes at a
cost of a slower average movement of the bacterial popula-
tion toward the target. As h0 is increased, a fraction of the
cells approach the target, but the dispersion of the popula-
tion increases, with a portion of cells completely missing
al running rate. (A) Schematic illustration of a triangular chemotactic profile

imal position (x�). We use the term distortion to denote the distance of single

ulation-average position and x�. MS-SC distortion, mean squared single-cell

ulation of bacterial populations with different basal running rates in a trian-

the left base point of the triangular profile and followed over 10 s. (C) Mean

a function of the basal running rate for different heights of the triangular

0.005 (B), 0.01 (,), and 0.02 (>) AU,mm�1. Model parameters: Dt ¼
gure in color, go online.
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the chemoattractant-rich area (left tail of the red population
in Fig. 3 B). Higher values of h0 give rise to higher levels of
heterogeneity, as prolonged running periods enable cells to
disperse faster and miss the target (Fig. 3 B, yellow
population).

To quantify these observations, we introduce the mean
squared single-cell (MS-SC) distortion, which is the mean
squared distance of a single-cell position, xi, from the
optimal position; i.e., the peak of the triangular profile, x�

(see Fig. 3 A). The MS-SC distortion can be decomposed
into a sum of two terms: 1) the population variance (PV;
proxy for positional entropy), and 2) the squared population
distortion (SP distortion; proxy for aggregate chemotactic
effectiveness):

Cðxi � x�Þ2D|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
MS� SC

¼ Cðxi � CxDÞ2D|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
PV

þ ðCxD � x�Þ2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
SP

where C ,D ¼ 1
N

PN
i¼ 1, denotes averaging over the bacterial
population. We note that the MS-SC distortion decreases as
the population becomes concentrated around the optimal
position and becomes zero in the case of ‘‘perfect chemo-
taxis.’’ The equation also highlights that chemotactic strate-
gies that achieve the same SP distortion levels can
demonstrate varying MS-SC distortion levels and vice versa.

Fig. 3 C–E shows the three terms in the equation (MS-SC
distortion, PV, and SP distortion) as a function of the basal
running rate (h0), quantifying the connection between
response accuracy and population heterogeneity. For
example, when faced with shallow gradients (Fig. 3 C–E,
black circles), single cells suffer on average from higher
distortion as we increase the basal running rate (Fig. 3 C).
The effect could go unobserved if we focus only on the
mean of the population coming closer to the target (Fig. 3
E), disregarding the fact that, at the same time, the vari-
ability in the population is increasing rapidly (Fig. 3 D).
Furthermore, for the range of gradients we examined, the
SP distortion demonstrates a non-monotonic behavior as a
function of h0. This optimal value suggests that the basal
running rate is another chemotactic variable that bacterial
populations could use to adapt to different environmental
conditions. This adaptation process could be direct, via
running rate (color coded). The optimal basal running rate achieves the lo

correspond to different heights of the triangular profile. To see this figure in co
regulation of intracellular components, or indirect, as cells
with lower distortion levels will have a growth advantage.
Interestingly, the values of h0 inferred from the CW bias
data (0.82–1.17; see Fig. 2) are around the values achieving
minimum distortion levels in Fig. 3.

Fig. 4 A illustrates that basal running rate can be
controlled to maximize chemotactic speed and accuracy.
Low h0 gives rise to low population velocity due to the
increased times spent in the tumble state. High h0, on the
other hand, enables cells to run for longer, but obstructs
them from integrating adequate information about the che-
moattractant concentration. The latter gives rise to higher
MS-SC distortion as well as lower average velocity. For in-
termediate values of h0, the system demonstrates optimal
levels of velocity and accuracy. This finding highlights the
system’s two competing requirements (57): fast response
to environmental changes (leading to high velocity) versus
robust longer-term accumulation at chemoattractant peaks
(i.e, low MS-SC distortion). Similarly, Fig. 4 B illustrates
that successful chemotactic strategies for the entire bacterial
population involve intermediate values of h0, where the PV
remains low as the population mean comes close to the
target (low population distortion).

To further test our theoretical result, which states h0 is
another chemotactic variable that can be optimized, we
consider a more complex chemical profile. Specifically,
two peaks in one dimension with the bacterial population
initially positioned between them (Fig. 5 A). Here, we quan-
tify the chemotactic efficiency of individual bacteria by
calculating the single-cell distortion (Dsc), which is defined
as the squared distance to the closest peak (x�) weighted by
the relative peak height:

Dsc ¼ h�

hl þ hr
ðxi � x�Þ2

where xi is the position of the cell; xð,Þ, hð,Þ is the position
� �
and the height of each peak (l or r); and x , h correspond

to the position and height of the peak closest to the xi.
Fig. 5 B illustrates how the bacterial population disperses
in space for different basal running rates, and once again
the basal running rate controls the speed and accuracy of
FIGURE 4 Trade-off on chemotactic speed and

accuracy imposed by different running rates. (A)

Mean squared single-cell distortion versus mean

velocity of a bacterial population in a triangular

profile as the basal running rate (color coded) is

varied. Optimal basal running rate achieves the

highest mean velocity and lowest distortion.

Markers correspond to different gradients of the

triangular profile (0.005 (B), 0.01 (,), and 0.02

(>) AU,mm�1). (B) Squared population distor-

tion versus populational variance of a bacterial

population in a triangular profile at different basal

west distortion and positional variance simultaneously. Different lines

lor, go online.
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FIGURE 5 Chemotactic efficiency in a double-peak chemical profile. (A) Schematic illustration of a chemical profile in one dimension consisting of two

peaks. To quantify the chemotactic accuracy at the single-cell level, we define the single-cell distortion as the squared distance to the closest peak weighted by

the relative peak height. (B) Accumulation profiles of bacterial populations with different basal running rates. Each population consists of N ¼ 105 cells,

initialized between the two peaks and followed over 30 s. (B) Mean single-cell distortion as a function of the basal running rate. Markers correspond to

different heights (AU,mm�1) of the two triangles:B 0.005 (left) and 0.01 (right);, 0.0025 (left) and 0.01 (right);> 0.00125 (left) and 0.01 (right). Model

parameters: Dt ¼ 0:1 s, B ¼ 5, v ¼ 20m m,s�1, ε ¼ 1, k > ¼ 1, and k < ¼ 0:1, xl ¼ �100 mm, xr ¼ 100 mm. To see this figure in color, go online.
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bacterial chemotaxis: low values of h0 result in slow explo-
ration of the chemical profile, while high values of h0 result
in faster but less accurate search. Hence, we observe that in-
termediate basal running rates present an optimum strategy
allowing cells to reach closer to the peak in a time-efficient
manner (Fig. 5 B). We note that precise optimum value of h0
will depend on the relevant time scale, since, at longer time-
scales, lower h0 strategies enable a more thorough search of
the space.

Finally, we note that, similarly to experimentally observed
changes in CW bias (i.e., changes in basal running rate), bac-
terial running speed can also change, either metabolically or
in response to attractants (1,58), which can affect the speed
and accuracy of bacterial accumulation and must be taken
in account to optimize the chemotactic response in complex
environments (see supporting material and Fig. S6).
DISCUSSION

Our experimental results highlight that studying bacterial
motility in environments closer to their natural habitat can
uncover adaptations, which can be relevant for their accu-
mulation, as suggested by our model results. Our model
also provides a novel, parsimonious description of bacterial
chemotaxis at the single-cell level, capturing all the key fea-
tures of its phenomenology. The statistical character of the
model provides access not only to single-cell chemotactic
dynamics as other agent-based chemotaxis models do
(54,59) but also allows computationally efficient estimation
of population measures, bridging the gap between the two
scales of description. Despite its simplicity, the model can
be straightforwardly extended to capture more realistic
modes of chemtotaxis (for example, in two- or three-dimen-
sional space, or accounting for changes in the running speed
of cells and responses that are not perfectly adapting), and
study how such modes affect bacterial accumulation. With
advancements in observational techniques and manipulation
8 Biophysical Journal 121, 1–10, September 20, 2022
methods used to probe bacterial chemotaxis in complex en-
vironments, our model could provide an efficient inference
tool for identifying tumble/run events and characterizing
single-cell chemotactic responses in more realistic sce-
narios. Finally, the influence of the reorientation frequency
of individuals within a population on the population level
speed and accuracy of reaching a target could inspire search
algorithms used in unmanned aerial vehicles (60,61).
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2022.08.012.
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Figure S1: 2D histograms showing lack of dependency between the CW Bias
and the speed of flagellar motors in the experimental conditions presented in
the main text Fig. 1. The CW Bias is presented on the Y-axis, and the motor
speed on the X. The color map, above each panel, represents the number of mo-
tors having a rotational speed and CW Bias in the bin defined around a given
speed and CW Bias. The bin widths are 10 Hz for speed and 0.025 for CW
Bias. Speeds were extracted from single cell measurements as described in Data
Analysis and the value presented here is the average CCW (run) speed over a
60 s interval. CW Bias was calculated using the same interval, using Eq. 1 in the
main text. The panels (A), (B), and (C) represent the ”VRB”, ”VRB+200 mM
sucrose” and the ”VRB + 400 mM sucrose” experimental conditions, respec-
tively. The number of single cells analysed in each of these conditions is 118, 95
and 142.
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Figure S2: Histograms showing that the mean CW Bias and the shape of the
distribution do not significantly change if the sampling interval, described under
Methods in the main text, is increased from 60 s to 120 or 180 s. Panels (A-C)
contain the histograms for VR Buffer (VRB), constructed from single cell/single
motor recordings lasting 60, 120 or 180 s, respectively. Bin width is 0.033.
Panels (D-F) are analogous but for the VRB + 200 mM sucrose condition.
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Figure S3: CW Bias distribution from the main text Figure 1, reproduced with
inclusion of two CW Biased motors in the ’VRB’ Buffer condition. The condi-
tions (top to bottom) are VRB Buffer (Blue), VRB with addition of 200 mM
sucrose (Orange) and VRB supplemented with 400 mM sucrose (Yellow).The
VRB, VRB+200 mM sucrose and VRB+400 mM sucrose conditions comprise
120, 95 and 142 single cell, single motor recordings respectively. Buffer compo-
sitions are given in Table 1 in the main text.
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Buffer:

C
W

 B
ia

s

VRB VRB+200 MB0 VRB+400 MB1

Osmolality:
[mOsmol/kg]

92 230 286 488 501

Figure S4: Box plots of CW Motor Biases for buffers from the main text, ’VRB’,
’VRB + 200 mM sucrose’, and ’VRB + 400 mM sucrose’, as well additional two
buffers, termed MB0 and MB1. The plots are in order of increasing buffer
osmolality, and contain 120, 95, 30, 142 and 29 single cell measurements, re-
spectivelly. For more information of buffer compositions consult Table 1 and
Methods in the main text.
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Figure S5: Sample bacterial trajectories in a triangular chemical profile. (Right)
Accumulation of a bacterial population (N = 106 cells) after 10 s and schematic
illustration of the chemical profile. The gradient of the triangular chemical
profile is 0.01 AU·µm−1

.
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Figure S6: Effect of swimming velocity on the accumulation of bacterial popu-
lations. (A) Accumulation of bacterial populations with different velocities (10,
20, and 30 µms−1) in a triangular chemical profile (gradient 0.01 AU·µm−1).
Each population consists of N = 5 · 105 cells, initialised at the left base point
of the triangular profile and followed over 10 s. (B) Mean squared single-cell
distortion, (C) population variance and (D) squared population distortion as a
function of the basal running rate for different heights of the triangular profile.
Different markers correspond to different gradients of the triangular profile, i.e.,
0.005 (©), 0.01 (�), and 0.02 (♦) AU·µm−1.
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