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Abstract

Measure-valued and coalescent processes have a long and

rich history in the field of population genetics. Through

duality, these processes are intimately linked and the study

of one often leads to insights in the other. In this thesis we

investigate the small-time behaviour of backwards-in-time

genealogical processes to establish a diffusion limit at t = 0.

Forwards in time we consider linear combinations of an

i.i.d. collection of Fleming-Viot processes, describing LLN

and CLT style limits. In order to establish convergence in

the second chapter, we require tightness. The duality of

these processes and results from our first chapter are

essential in proving this and much of the second chapter.
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Notation

C(A,B) The set of continuous functions f : A→ B

B([0, 1]) The Borel σ-algebra on [0, 1]

P([0, 1]) The set of probability measures on [0, 1]

M([0, 1]) The set of signed measures on [0, 1]

D([0, 1]) The set of Schwartz distributions on [0, 1]

〈f, µ〉
∫ 1

0 f(x)µ(dx)

n(k) Rising factorial, n(n+ 1) . . . (n+ k − 1)

n[k] Falling factorial, n(n− 1) . . . (n− k + 1)

f(n) ∼ g(n) limn→∞
f(n)
g(n) = 1

f(n) = O(g(n)) lim supn→∞
|f(n)|
g(n) <∞

f(n) = o(g(n)) limn→∞
f(n)
g(n) = 0

X ∼ µ The RV X is distributed according to µ

vi



Introduction

Nearly every characteristic or behaviour exhibited in the

natural world is influenced by genetics. Understanding the

interplay between our biology and environment - as well as

the influence of random mutations - is the goal of the study

of population genetics. In this field there are a number of

models that intend to describe a number of phenomena,

several of which we study in this thesis.

The models in this field can be broadly divided into two

categories. The first are backwards-in-time models, like the

Kingman Coalescent, that describe the structure of the

ancestry of a population. The second are forward in time

models, like the Fleming–Viot (FV) process, that intend to

capture the effects of genetic drift, random mutations and

natural selection on the prevalence of different genetic types

in a population. One of the beautiful aspects of this theory

is that the forward and backwards in time models are often

dual to each other. We define this notion more concretely

in the following section but for now this can be thought of

as taking a question about models in one temporal

direction and answering it by studying the models in the

other. Indeed the two halves of the thesis concern models in

these two temporal directions and results from the first are

vital in proving results from the second.
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Backwards in Time

As mentioned, the first half of this thesis concerns models

that move backwards in time that represent the genealogy

of a population. In this thesis we are concerned with two of

these; namely the Kingman coalescent and the Ancestral

Selection Graph (ASG).

Firstly, the Kingman coalescent is a Markov process taking

values in the space of partitions of the natural numbers.

First proposed by Kingman [1, 2, 3], the dynamics are as

follows: when the process is at a partition with a finite

number of blocks, any two blocks merge at rate 1. This

means that when the process is at n blocks, it reduces to

n− 1 blocks at a rate of
(
n
2

)
. Genetically, two numbers in N

represent ancestral lineages and these numbers being in the

same block at time t > 0 indicate that those two lineages

have a common ancestor t units of time in the past. One

can show that in fact we can start this process from the

finest possible partition of N, {{1}, {2}, ...}, after which the

process instantly transitions to a partition with a finite

number of blocks. This phenomenon is called “coming

down from infinity” and is of particular interest in the first

chapter. Throughout this thesis we are mainly concerned

with the associated block-counting process (N 0,0
t )t≥0, with

N 0,0
0 = +∞.

To incorporate mutation into this model one allows any

2



single block to be deleted at a rate of θ/2 > 0, representing

that lineage mutating to a different type. The block

counting process of this model is denoted N 0,θ
t . This extra

linear push downwards does not affect how the speed at

which the process comes down from infinity. In fact, as we

will see later in Chapter 1, mutation does not affect the

asymptotic distribution of N 0,θ
t as t → 0 at all, as long as

the mutation rate is fixed.

The other important model we consider in Chapter 1 is the

Ancestral Selection Graph (ASG). First proposed by

Neuhauser and Krone [4, 5], it aims to include the notion of

natural selection into the coalescent framework. The way

selection is modelled forwards in time is by having

individuals with a selective advantage leave more offspring.

Going backwards in time then, some reproductive events

may or may not occur depending on the types of the

individuals involved. Since we do not know the types a

priori then we must consider both possibilities. This is

reflected in the ASG block-counting process - denoted Nσ,θ
t

- by introducing a birth rate of σ/2 per block, representing

that lineage splitting into two. This provides a linear push

upwards that turns the block-counting process into a

birth-death process. We will characterise Nσ,θ
t close to t = 0

and see that it in fact has the same limiting distribution

and second order asymptotics as the Kingman coalescent.
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Forwards in Time

The general way that forwards-in-time models have been

developed is as follows: start from a finite population,

define mechanisms by which individuals in subsequent

generations inherit genetic information and then, with a

suitable scaling of time and space, let the number of

individuals grow to infinity. In this limiting process

variables like mutation and selection rates also have to be

scaled appropriately to appear in the limit.

A simple starting point for this limiting procedure is the

Wright–Fisher model. In this model one starts with a finite

population of N individuals, each having one of a finite

number of genetic types, say A1, . . . , Ak. In the subsequent

generation, new individuals pick their type uniformly at

random from the previous generation. Mutation can be

added into this framework by changing (or not changing)

the type inherited from the original according to some

underlying probability distribution. If one scales time and

the mutation parameters appropriately, what results in the

infinite population limit is the Wright–Fisher diffusion.

This process models the prevalence of k ∈ N genetic types

in a population over time and lives on the k − 1-simplex

∆k−1 =

{
(p1, . . . , pk)

∣∣∣∣∣
k∑
i=1

pi = 1

}
,

4



and has the following generator:

L =
1

2

k∑
i,j=1

pi(δi,j − pj)
∂2

∂pi∂pj
+

k∑
j=1

(
k∑
i=1

qi,jpi

)
∂

∂pj
,

where qi,j is the rate at which individuals of type i mutate

to type j and the domain is simply twice

continuously-differentiable functions on Rk, restricted to

∆k. Generally, mutation is taken to be parent-independent

and qi,j is set to θj/2 > 0.

What one would like to do next is let the number of types k

grow to infinity. However, this is non-trivial. If we simply

let k → ∞ without any re-ordering of types then the mass

for any individual type would become zero. One way

around this is to construct the limiting process as a

measure-valued diffusion. This is what W. Fleming and M.

Viot did in 1979 [6]. This probability measure-valued

process gives, at each time t, the distribution of genetic

types at a single locus in the population. The types

themselves are normally contained in a compact metric

space S and the process, denoted (Ft)t≥0, has the following

generator:

(Lφ)(µ) =
1

2

∫
S

∫
S

∂2φ(µ)

∂µ(x)∂µ(y)
(δx(dy)− µ(dy))µ(dx)

+

∫
S

A

(
∂φ(µ)

∂µ(·)

)
(x)µ(dx), (0.1)

5



where A is the generator of a Feller semigroup on C(S,R)

and

∂φ(µ)/∂µ(x) = lim
ε→0+

ε−1 {φ(µ+ εδx)− φ(µ)} ,

where δx is the Dirac measure at x. The domain of L is

D(L) = {φ : φ(µ) = F (〈f1, µ〉, . . . , 〈fk, µ〉),

F ∈ C2(Rk,R), f1, . . . , fk ∈ D(A), k ≥ 1}.

The type space is generally taken to be any compact metric

space, though in this thesis we take it to be [0, 1].

In this thesis we wish to take this generalisation further,

hoping to describe a large number of loci at the same time.

Our approach to achieving this is to take a FV process for

each locus and consider scalings of linear combinations

giving rise to limit processes described respectively by a law

of large numbers (LLN) and central limit theorem (CLT).

In doing this we will attain processes in the spaces P([0, 1])

and D([0, 1]), probability measures and Schwartz

distributions on [0, 1] respectively. Furthermore we also

establish the continuity of the limiting Gaussian Schwartz

distribution-valued process that characterises the CLT

fluctuations. Finally, we drop the assumption of identical

starting measures and consider a Lyapunov-style CLT,

establishing tightness and convergence of finite-dimensional

distributions in that setting also.
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1 Diffusion Limits at Small Times for the

ASG

The Kingman coalescent [1, 2, 3] is one of the fundamental

models in the field of population genetics, though it has

many mathematical qualities that are of independent

interest. If one takes a large population of individuals

under random mating with no natural selection,

recombination or population structure and considers their

ancestry into the past, a process that models the structure

of this ancestry is the Kingman coalescent.

This partition-valued Markov process can be started from

the partition of singletons {{1}, {2}, . . . }, in which case the

associated block-counting process – (N 0,0
t )t≥0 – starts at

+∞ and instantly becomes finite almost surely [7]. This

phenomenon is called “coming down from infinity” (CDI)

and motivates investigation into the behaviour of N 0,0
t close

to t = 0.

When considering the CDI behaviour of the coalescent, a

natural question to ask is how quickly this happens. In

answering this, one looks for a function νt such that

lim
t↓0

N 0,0
t

νt
= 1, a.s. (1.1)

7



In [8] it is proved that for those general birth/death processes

which come down from infinity, one can define ν as

νt := inf{n ≥ 0; E∞[Tn] ≤ t}, (1.2)

where Tn is the first hitting time of n and the subscript on

E denotes that the process started from infinity. In [9],

Griffiths derives asymptotic expressions for N 0,0
t when t is

small. There it is shown that, as t → 0, N 0,0
t is

approximately Gaussian with mean 2/t and variance 2/(3t).

These approximations are often used when simulating the

Wright–Fisher diffusion [10]. For the coalescent then, the

function 2/t satisfies (1.1); see also [7, Theorem 4.9]. It

should be noted that any function which satisfies νt ∼ 2/t

as t→ 0 will also satisfy (1.1).

In [11] the authors fully characterised the fluctuations of

N 0,0
t as t→ 0 by proving the convergence of

X0,0
ε (t) := ε−1/2

(
εt

2
N 0,0
εt − 1

)
, t > 0, X0,0

ε (0) = 0,

to

Zt :=
1√
2t

∫ t

0

u dWu, t > 0, Z0 = 0, (1.3)

as ε→ 0, where W is a Brownian Motion. This convergence

is in law in the Skorokhod space D([0,∞),R) of real-valued

càdlàg functions equipped with the J1 topology that makes

it a completely separable metric space.

8



Two key genetic mechanisms not present in Kingman’s

original construction of the coalescent are mutation and

selection. Parent-independent mutation is incorporated by

having mutations occur at a constant rate θ/2 ≥ 0

independently on each line of ancestry. Moving forwards in

time, a mutation event causes a new individual to enter the

ancestry and start leaving descendants. Therefore, if we

look backwards in time a mutation event on a line of

ancestry causes it to end. This addition now means that

the number of lineages moves from n to n− 1 at rate

n(n− 1 + θ)

2
.

Here we see that the addition of mutation only slightly

affects the rate at which lineages are lost. Asymptotically

this expression is still O(n2) as n → ∞; as such, one

expects the same speed of coming down from infinity and

indeed we prove this in Section 1.2.

The basic mechanic of selection is that one genetic type

may have an evolutionary advantage over another. Forward

in time we model this by having fit types reproduce at a

higher rate. When looking backwards in time—without

knowing the types of all individuals—there is uncertainty as

to whether an offspring arose as a result of a normal

reproduction event or one involving a fit type. In the

ancestral process we model this by having lineages split into

two independently at rate σ/2 ≥ 0, tracking both

9



possibilities. Rather than a tree, the resulting genealogical

structure is a graph known as the Ancestral Selection

Graph (ASG), introduced to the coalescent framework by

Neuhauser and Krone in [4] and [5]. These additions result

in the number of lineages — denoted Nσ,θ
t — becoming a

birth/death process with the following transition rates:

n 7→ n− 1 at rate
n(n− 1 + θ)

2
,

n 7→ n+ 1 at rate
σn

2
.

In this chapter we show that, close to t = 0, the quadratic

rate of coalescence dominates both the linear rate of upward

jumps and the linear perturbation in the rate of downward

jumps, and in fact the ASG has the same limiting behaviour

as the coalescent in the following sense:

Theorem 1.1. Let (Nσ,θ
t )t≥0 be the number of lineages in the

ASG at time t. Then the process

Xσ,θ
ε (t) := ε−1/2

(
εt

2
Nσ,θ
εt − 1

)
, t > 0, Xσ,θ

ε (0) = 0, (1.4)

converges in law in D([0,∞),R) as ε → 0 to the Gaussian

process Z given by (1.3).

Note that if one sets σ = 0 then the above result implies

that the diffusion limit also holds for the Kingman

coalescent with mutation. Furthermore, since the number

of lineages in the Ancestral Recombination Graph (ARG)

has a similar birth/death structure — with a recombination

rate ρ ≥ 0 giving linear births — the above theorem also

10



applies to that model [12].

The duality between these coalescent processes and

corresponding diffusions is a well established and often used

tool in the study of population genetics. Indeed in [13] the

duality is exploited to express the transition function of the

Wright–Fisher (WF) diffusion in terms of

dθn(t) := P(N 0,θ
t = n),

and this offers a direct way to actually simulate the

diffusion [10, 14].

In the next section we outline a Poisson random measure

construction that allows us to consider all of these processes

together on the same probability space. Section 1.2

contains an analysis of hitting times of these processes with

Section 1.3 containing the necessary lemmas that will be

used to prove Theorem 1.1 in Section 1.4.

1.1 A Poisson Random Measure Construction

In order to analyse the number of lineages in the ASG and

Kingman coalescent, a construction of them via a Poisson

random measure (PRM) is very useful. Here we extend the

construction of [11] to account for mutation and selection.

11



First, we define the following spaces:

∆ := {(i, j) : i, j ∈ N, i < j},

and

∆̄ := ∆ ∪ {(i,∞); i ∈ N} ∪ {(i, 0); i ∈ N},

where a standard element of ∆̄ will be denoted k = (i, j).

On a probability space (Ω,F ,P) let π be a PRM on R+× ∆̄

with intensity measure

ν := `⊗

 ∑
(i,j)∈∆

δ(i,j) +
∑
i∈N

θ

2
δ(i,∞) +

∑
i∈N

σ

2
δ(i,0)

 ,

where ` is the Lebesgue measure.

The block-counting process of the ASG can be obtained

from π as follows: an arrival of type (t,k) = (t, (i, j))

represents a potential coalescence, mutation or selection

event. If 0 < j <∞ then the lineages i and j coalesce if the

process has at least j lineages at time t. If j = ∞ then the

ith lineage is lost — again if the process has at least i

lineages at time t. If j = 0 then the ith lineage is split into

two new lineages.

We also let π̂ := π − ν be the compensated PRM associated

12



with π and

∆n := {(i, j) ∈ ∆ : 1 ≤ i < j ≤ n},

∆̄n := ∆n ∪ {(i,∞) ∈ ∆̄ : 1 ≤ i ≤ n}

∪ {(i, 0) ∈ ∆̄ : 1 ≤ i ≤ n}.

If we consider starting the ASG with a finite number of

lineages n, we can express the number of lineages at time t

in the following way:

Nσ,θ
t,n := n−

∫ t

0

∫
∆̄

1∆̄
N
σ,θ
s−,n

(k) [1j>0(k)− 1j=0(k)] π(ds, dk).

(1.5)

We can then define the P-almost sure limit

Nσ,θ
t := lim

n→∞
Nσ,θ
t,n

whose existence is assured by the lookdown construction of

Donnelly and Kurtz [15, Section 6]; see also Section 1.4

later in this chapter, namely the proof of Lemma 1.13.

We can also obtain the Kingman coalescent with and

without mutation - denoted N 0,θ and N 0,0 - from this PRM

by thinning the different arrival types. We can do this by

considering a similar construction to (1.5) and letting

n→∞. However, simply doing this is not sufficient for our

analysis. Our main tool in investigating the small time

behaviour of the ASG is an analysis and comparison of

neutral and non-neutral hitting times. In the proof of

Proposition 1.11 we need the hitting times of our processes

13



to satisfy the following:

• T 0,θ
n,n−1 ≤ T σ,θn,n−1 almost surely, for each n ∈ N,

• T 0,θ
n,n−1 must be independent of T σ,θn for each n ∈ N.

Here T σ,θn,n−1 and T 0,θ
n,n−1 are the time taken for Nσ,θ and N 0,θ

respectively to move from n to n− 1 and T σ,θn := T σ,θ∞,n is the

time taken to get from infinity to n for the ASG.

With just the thinning applied to the PRM the first

inequality would only be true in distribution and the second

would not necessarily be true; for example if the neutral

process reaches n − 1 before the non-neutral process has

reached n, the two hitting times would rely on the same

Poisson arrivals and hence not be independent.

To rectify this we construct the pair of processes Nσ,θ and

N 0,θ from a series of separate couplings for each level n. To

achieve this we first construct Nσ,θ and a new death process

N̂ ; this process has similar behaviour to the coalescent but

will need a time-change in order to become N 0,θ.

Considering then these two processes started from n+ 1, we

wait until arrivals in the PRM cause N̂ to hit n; any arrival

of type (i, j) with i < j ≤ n + 1 or i ≤ n + 1, j =∞ will do

this. It could be the case that the non-neutral process will

hit n at the same time; at which point we stop and the

coupling for level n + 1 is complete. However if there is a

birth before a death then N̂ may hit n strictly before Nσ,θ

does. In this case we let T̂−n be the time that this happens

14



and hold N̂ at level n, ignoring further Poisson arrivals

until the non-neutral process has also hit n. The time that

this then happens is labelled T̂+
n . We can do this for each

level and represent N̂ started from n blocks in a similar

way to (1.5) as an integral with respect to the PRM:

N̂t,n := n−
∫ t

0

∫
∆̄

1∆̄N̂s−,n
(k)1j>0(k)1A(s)π(ds, dk),

where

A :=
⋂
k≥1

{s : T̂−k < s ≤ T̂+
k }

c.

Similarly to the ASG construction we can then define the

P-almost sure limit

N̂t := lim
n→∞

N̂t,n,

which again is assured by [15]. This coupling then produces

the block counting process of the ASG and a version of the

Coalescent that is occasionally held still whilst waiting for

the ASG to “catch up”.

In order to obtain N 0,θ we need to skip over these periods

of time that N̂ is held still. To do this we let

φ(s) := s−
∫ s

0

∑
k∈N

1(T̂−k < r ≤ T̂+
k ) dr,

and define

φ−1(t) = inf{s ≥ 0 : φ(s) ≥ t}.

15



Running N̂ on the timescale of φ−1 now skips over the periods

of time when it is held still, producing the Coalescent; i.e.

we can define(
N 0,θ
t

)
t≥0

(ω) :=
(
N̂φ−1(t)

)
t≥0

(ω).

for each ω ∈ Ω. The following diagram illustrates one step

in the construction:

In this realisation N̂ hits n as soon as there is a death

arrival (red down arrow) in the PRM. When this occurs (at

time T̂−n ) the next two death arrivals are ignored since the

non-neutral process (Nσ,θ) hasn’t hit n yet. The final death

arrival that causes Nσ,θ to hit n is also ignored and after

this both processes are at n, completing the coupling for

this level. Since the PRM arrivals that govern T σ,θn are to

the left of T̂+
n and those governing T 0,θ

n,n−1 are to the right,

these two random variables are independent.

16



With this construction our hitting times have the two

desired qualities above. The first follows simply from the

fact that, for each n, any arrival that causes Nσ,θ to

decrease also causes N 0,θ to decrease. The second follows

because the behaviour of N 0,θ after it has hit level n does

not depend on Poisson arrivals that affect T σ,θn .

Furthermore, we also have the following inequalities

N 0,θ
t (ω) ≤ N 0,0

t (ω), t ≥ 0, (1.6)

N 0,θ
t (ω) ≤ Nσ,θ

t (ω), t ≥ 0, (1.7)

for almost every ω ∈ Ω. These inequalities follow

immediately from the fact that any arrival of type (i, j),

0 < j < ∞ that causes N 0,θ
t to decrease will also cause N 0,0

t

and Nσ,θ
t to decrease.

From here on, when used with any three of these processes,

E is the expectation operator of the probability space

outlined in this section.

1.2 An Analysis of Hitting Times

In the study of general birth/death processes one can learn

a lot about the behaviour of a process through analysis of

its hitting times. Of course in the case of the Kingman

coalescent with mutation, the time taken to get from n to

n− 1 is simply an exponential clock:

T 0,θ
n,n−1 ∼ Exp

(
n(n− 1 + θ)

2

)
,

17



which has a finite kth moment for all k ∈ N. The ASG

however experiences both births and deaths and so the

situation is more complex. A first-step analysis leads to the

following recurrence relation for the corresponding hitting

time for the ASG:

T σ,θn,n−1
d
= ξn + 1En

(
T̂ σ,θn+1,n + T̂ σ,θn,n−1

)
, (1.8)

where ξn ∼ Exp (n(n− 1 + θ + σ)/2) is the holding time at

level n, En is the event that the ASG jumps up after

reaching level n for the first time and T̂ σ,θn+1,n and T̂ σ,θn,n−1 are

independent copies of T σ,θn+1,n and T σ,θn,n−1 respectively. This

recurrence relation will be used to prove the asymptotic

behaviour of the moments of T σ,θn,n−1, but first we state a

lemma on conditions needed for the hitting times of a

general birth/death process to have finite kth moments for

all k ∈ N:

Lemma 1.2. Let T σ,θn,n−1 be the hitting time of n − 1 from n

for Nσ,θ. Then for all k ∈ N

lim
n→∞

E
[(
T σ,θn,n−1

)k]
= 0. (1.9)

Remark 1.3. It should be noted that this lemma is primarily

used as a starting point for the recursion in Proposition 1.4

where it is proved that in fact these moments are O(n−2k)

as n → ∞. There the starting point for the recursion is

that these moments are at least O(1) as n → ∞, a weaker

statement than the above.
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Proof. As a reminder, the birth and death rates at for Nσ,θ

at level n (conventionally denoted λn and µn) are

λn =
σn

2

µn =
n(n− 1 + θ)

2
.

We look to verify conditions (2.9) of Lemma 2.2 (ii) in [8].

These conditions are

sup
n,i≥1

µn
µn+i

<∞, (1.10)

λn
µn
→ 0 as n→∞, (1.11)∑
n≥1

1

µn
<∞. (1.12)

(1.11) and (1.12) are immediate from the form of λn and

µn. The fraction in (1.10) is maximised when i = 1. Since

µn/µn+1 → 1 as n → ∞, all three conditions are now

satisfied.

These conditions imply both (1.1) and (1.3) in [8]. (1.1) is

necessary and sufficient for the process Nσ,θ almost surely

to be absorbed at zero i.e. the random variable

T σ,θ∞,0 :=
∑
n≥1

T σ,θn,n−1

is almost surely finite. This in turn implies that the random

variables T σ,θn,n−1 tend to zero almost surely and by the

continuous mapping theorem so too the random variables
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(
T σ,θn,n−1

)k
.

Combining (1.1) and (1.3) with Proposition 2.2 in [8]

ensures that all moments of T σ,θn,n−1 and T σ,θ∞,0 are finite.

Finally, since the kth power of T σ,θn,n−1 is clearly smaller than

the corresponding power of T σ,θ∞,0 for all n, the dominated

convergence theorem is sufficient to ensure (1.9).

With this established we proceed by more accurately

determining the rate at which these moments tend to zero,

via a comparison with the neutral case. A lower bound,

E[(T 0,θ
n,n−1)

k] ≤ E[(T σ,θn,n−1)
k], is immediate. The following

proposition provides a corresponding upper bound:

Proposition 1.4. For sufficiently large n,

E
[(
T σ,θn,n−1

)k]
≤ E

[(
T 0,θ
n,n−1

)k]
+

Bσ,θ
k

n2k+1
. (1.13)

where Bσ,θ
k ∈ R+.

Proof. Recalling the definition of ξn from (1.8) we note that

E
[
ξkn
]
≤ E

[(
T 0,θ
n,n−1

)k]
. (1.14)

This substitution will be used in the recursion (1.8) since a

comparison of the ASG to the Kingman coalescent is the goal.

Now, we take both sides of (1.8) to the power k and apply

expectations, remembering the independence of the event En.

Using the inequalities (1.14) and (x + y)j ≤ 2j(xj + yj) for
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j ∈ N, x, y ≥ 0 this becomes

E
[(
T σ,θn,n−1

)k]
≤ E

[(
T 0,θ
n,n−1

)k]
+

k∑
j=1

(
k

j

)
2jσ

n− 1 + θ + σ

× E
[
ξk−jn

((
T̂ σ,θn+1,n

)j
+
(
T̂ σ,θn,n−1

)j)]
.

Applying the independence of the ξn random variable to

each term in the sum, using (1.14) again and letting

an,k := E[(T σ,θn,n−1)
k], xn,k := E[(T 0,θ

n,n−1)
k], we obtain the

following recursion formula:

an,k ≤ xn,k +
k∑
j=1

(
k

j

)
2jσ

n− 1 + θ + σ
xn,k−j (an+1,j + an,j) .

(1.15)

Next we need to show that an,k = O(n−2k) as n → ∞. We

start by noting that Lemma 1.2 implies that an,k = O(1) as

n → ∞, for all k ∈ N. We can now recursively use (1.15)

to improve these asymptotics. To this end, suppose that

an,k = O(n−i) for some 0 ≤ i ≤ 2k − 1 so that there exists

a constant Ci such that an,k ≤ Cin
−i for n large enough.

Furthermore assume that an,j = O(n−2j) for all 1 ≤ j < k

and let the constants Cj be such that an,j ≤ Cjn
−2j for n

large enough. Since xn,j = j!2jn−j(n − 1 + θ)−j there exists
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B0,θ
j such that

xn,j ≤
B0,θ
j

n2j
, ∀j, n ∈ N. (1.16)

Substituting these upper bounds into (1.15) we obtain the

following:

an,k ≤
k−1∑
j=0

(
k

j

)
2jσB0,θ

k−j

n2(k−j)(n− 1 + θ + σ)

(
Cj

(n+ 1)2j
+
Cj
n2j

)
+

2kσ

n− 1 + θ + σ

(
Ci

(n+ 1)i
+
Ci
ni

)
(1.17)

Multiplying this inequality by ni+1 we get

ni+1an,k

≤
k−1∑
j=0

(
k

j

)
2jσB0,θ

k−jn
i+1

n2(k−j)(n− 1 + θ + σ)

(
Cj

(n+ 1)2j
+
Cj
n2j

)
+

2kσni+1

n− 1 + θ + σ

(
Ci

(n+ 1)i
+
Ci
ni

)
Tallying up the indices of n we see that the largest term is

when j = k, which is O(1) as n → ∞. The summands with

j = 0 to k − 1 are all of order O(ni−2k) where i − 2k ≤ −1

thanks to the restriction on i. This means that in fact

an,k = O(n−i−1) and so we can recursively apply this

argument until we obtain an,k = O(n−2k). Performing this

iteration another time, where we would have i = 2k in

(1.17) and multiply by n2k+1, results in terms that diverge

as n→∞ and so this iterative process terminates here.
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To conclude the proof we multiply (1.15) by n2k:

n2kan,k ≤ n2kxn,k

+
k∑
j=1

(
k

j

)
2jσ

n− 1 + θ + σ
n2kxn,k−j (an+1,j + an,j)

and note that the summands are all O(n−1) as n→∞. Thus

we have

n2kan,k ≤ n2kxn,k +O(n−1),

yielding (1.13).

We now consider the hitting times T σ,θn := T σ,θ∞,n. Before

looking at this expression for the ASG we state a brief lemma

on the large n asymptotics of the hitting time T 0,θ
n for the

Kingman coalescent with mutation:

Lemma 1.5. For all k ∈ N there exists C0,θ
k ∈ R+ such that

E
[(
T 0,θ
n

)k] ≤ C0,θ
k

nk
∀n ∈ N. (1.18)

Proof. For this proof we will take advantage of the fact that

the hitting time T 0,θ
n can be written as a sum of the hitting

times T 0,θ
i,i−1:

T 0,θ
n =

∑
i≥n+1

T 0,θ
i,i−1.
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Taking the kth power of this expression we get

(
T 0,θ
n

)k d
=

( ∞∑
i=n+1

T 0,θ
i,i−1

)k

d
=

k∑
j=1

∑
n+1≤i1<···<ij

∑
m∈Nj
|m|=k

(
k

m

) j∏
l=1

(
T 0,θ
il,il−1

)ml

.

Since the il are distinct we can apply expectations to the

above and separate out each of the terms in the product by

independence. Doing so, along with applying (1.16), yields
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the following:

E
[(
T 0,θ
n

)k]
=

k∑
j=1

∑
n+1≤i1<···<ij

∑
m∈Nj
|m|=k

(
k

m

) j∏
l=1

E
[(
T 0,θ
il,il−1

)ml
]

≤
k∑
j=1

∑
n+1≤i1<···<ij

∑
m∈Nj
|m|=k

(
k

m

) j∏
l=1

B0,θ
ml

i2ml

l

≤
k∑
j=1

∑
m∈Nj
|m|=k

(
k

m

) j∏
l=1

∑
il≥n+1

B0,θ
ml

i2ml

l

≤
k∑
j=1

∑
m∈Nj
|m|=k

(
k

m

) j∏
l=1

∫ ∞
n

B0,θ
ml

x2ml
dx

=
k∑
j=1

∑
m∈Nj
|m|=k

(
k

m

) j∏
l=1

B0,θ
ml

(2ml − 1)n2ml−1

=
k∑
j=1

∑
m∈Nj
|m|=k

(
k

m

)
1

n2k−j

j∏
l=1

B0,θ
ml

(2ml − 1)

≤
C0,θ
k

nk
,

for some C0,θ
k ∈ R+,where |m| = m1 + · · ·+mj.

Using Proposition 1.4 and a similar approach as the

previous lemma we can analyse the large n asymptotics of

T σ,θn . Again we find that the hitting times for the coalescent

and the ASG are “close” in the sense that the immediate

bound E[(T 0,θ
n )k] ≤ E[(T σ,θn )k] is complemented by the

following result:
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Proposition 1.6. For n sufficiently large, we have

E
[(
T σ,θn

)k] ≤ E
[(
T 0,θ
n

)k]
+
Cσ,θ
k

nk+1

≤
C0,θ
k

nk
+
Cσ,θ
k

nk+1
(1.19)

where Cσ,θ
k ∈ R+.

Proof. As in the previous lemma, we can write the kth

moment of T σ,θn in the following way:

E
[(
T σ,θn

)k]
=

k∑
j=1

∑
n+1≤i1<···<ij

∑
m∈Nj
|m|=k

(
k

m

)

×
j∏
l=1

E
[(
T σ,θil,il−1

)ml
]
. (1.20)

Substituting the inequality from (1.13) into (1.20) we obtain

the following:

E
[(
T σ,θn

)k]
≤

k∑
j=1

∑
n+1≤i1<···<ij

∑
m∈Nj
|m|=k

(
k

m

)

×
j∏
l=1

(
E
[(
T 0,θ
il,il−1

)ml
]

+
Bσ,θ
ml

i2ml+1
l

)
.

From this point on we will use the shorthand

xi,m = E
[(
T 0,θ
i,i−1

)m]
and yi,m := Bσ,θ

m /i2m+1. We also let

B0,θ
m be the constant from (1.16) such that xi,m ≤ B0,θ

m /i2m

and consider n large enough so that xi,m > yi,m for all i ≥ n
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and 1 ≤ m ≤ k.

Thinking about expanding the brackets inside the product

we see that the leading term recovers exactly E
[(
T 0,θ
n

)k]
.

Meanwhile, we can encode the remaining terms as follows:

E
[(
T σ,θn

)k] ≤ E
[(
T 0,θ
n

)k]
+

k∑
j=1

∑
n+1≤i1<···<ij

∑
m∈Nj
|m|=k

(
k

m

)

∑
α∈{0,1}j
|α|6=j

j∏
l=1

xαlil,ml
y1−αl
il,ml

. (1.21)

Since we are considering n large enough so that, for il ≥
n, xil,ml

> yil,ml
, the largest term in the sum is the one of

the form xi1,m1
. . . xil−1,ml−1yil,ml

xil+1,ml+1
. . . xij ,mj

for some l =

1, . . . , j. We do not know which one of these terms will be

largest so we use the following upper bound:

E
[(
T σ,θn

)k] ≤ E
[(
T 0,θ
n

)k]
+

k∑
j=1

∑
n+1≤i1<···<ij

∑
m∈Nj
|m|=k

(
k

m

)
(2j − 1)

j∑
l=1

yil,ml

∏
p6=l

xip,mp
.

Note that the factor of 2j − 1 appears as this is the total

number of terms in the sum over α in (1.21). We can now

27



bound this above by separating out the sums over the

different indices, dropping the restriction of i1 < . . . < ij,

and using the bound xil,ml
≤ B0,θ

ml
/i2ml

l . This gives us

E
[(
T σ,θn

)k] ≤ E
[(
T 0,θ
n

)k]
+

k∑
j=1

∑
m∈Nj
|m|=k

(
k

m

)
(2j − 1)

j∑
l=1

∑
il≥n+1

Bσ,θ
ml

i2ml+1
l

∏
p 6=l

∑
ip≥n+1

B0,θ
mp

i
2mp
p

.

Using integral bounds on each of these sums we obtain the

following:

E
[(
T σ,θn

)k] ≤ E
[(
T 0,θ
n

)k]
+

k∑
j=1

∑
m∈Nj
|m|=k

(
k

m

)
(2j − 1)

j∑
l=1

∫ ∞
n

Bσ,θ
ml

x2ml+1
dx
∏
p 6=l

∫ ∞
n

B0,θ
mp

x2mp
dx

= E
[(
T 0,θ
n

)k]
+

k∑
j=1

∑
m∈Nj
|m|=k

(
k

m

)
(2j − 1)

j∑
l=1

Bσ,θ
ml

2mln2ml

∏
p6=l

B0,θ
mp

(2mp − 1)n2mp−1
.

Considering that all sums are now finite and the mi sum to
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k, the right hand side becomes

E
[(
T σ,θn

)k] ≤ E
[(
T 0,θ
n

)k]
+

k∑
j=1

∑
m∈Nj
|m|=k

(
k

m

)
(2j − 1)

j∑
l=1

Bσ,θ
mj

2mj

∏
i6=l

B0,θ
mi

(2mi − 1)

 1

n2k−j+1
.

Since all the sums above are finite then there exist Dσ,θ
j ∈ R+,

j = 1, . . . , k such that

E
[(
T σ,θn

)k] ≤ E
[(
T 0,θ
n

)k]
+

k∑
j=1

Dσ,θ
j

n2k−j+1
,

and so we have (1.19).

1.3 Controlling the ASG at Small Times

In this section we discuss the speed of coming down from

infinity for the ASG and establish the mode of its

convergence to that speed.

Before talking about the ASG we formally establish that

the Kingman coalescent with mutation has the same speed

of coming down from infinity as that without mutation. It

should be noted that we consider this an unsurprising result

but have not seen a formal proof, and so we present one

here:
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Proposition 1.7.

lim
t→0

tN 0,θ
t

2
= 1 a.s. (1.22)

Proof. In order to ensure that there exists a function νt

such that N 0,θ
t /νt converges to 1 almost surely, we turn to

[8, Theorem 5.1] where this limit is considered for general

birth/death processes with birth and death rates λn and µn

respectively. There, two conditions are sufficient to ensure

the existence of ν:

• limn→∞ λn/µn = 0

• (µn)n≥1 varies regularly with index ρ > 1.

In our case λn = 0 so there is only the second condition to

check; that the death rate µn varies regularly with an index

ρ > 1 as n → ∞. Recall that a sequence of real nonzero

numbers (an)n≥1 varies regularly with index ρ 6= 0 if, for all

b > 0,

lim
n→∞

a[bn]

an
= bρ.

Since our death rates are a quadratic polynomial they

satisfy the above condition with ρ = 2. This gives us our

a.s. convergence.

We proceed to verify the form of ν by recalling (1.2) and

considering the expected hitting time of n by N 0,θ:

E
[
T 0,θ
n

]
=

∞∑
k=n+1

2

k(k − 1 + θ)
.
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We can then sandwich this moment between the following

sums: ∑
k>n+θ+1

2

k(k − 1)
≤ E

[
T 0,θ
n

]
≤

∞∑
k=n+1

2

k(k − 1)

which are both 2/n + O(n−2) as n → ∞ and so E[T 0,θ
n ] has

these asymptotics as well. To see that this implies that νt is

asymptotically equivalent to 2/t as t → 0 we use the

definition of νt to get the following set of inequalities:

E
[
T 0,θ
νt

]
≤ t < E

[
T 0,θ
νt−1

]
(1.23)

2

νt
+O((νt)

−2) ≤ t <
2

νt − 1
+O((νt)

−2)

2

t
+O((νtt)

−1) ≤ νt <
2

t

(
νt

νt − 1

)
+O((νtt)

−1).

Now, when we divide the error term on either side by 2/t we

get a function that grows at most like (νt)
−1 and so tends

to zero as t → 0. This tells us that νt is asymptotically

equivalent to 2/t as t→ 0.

Thanks to the asymptotics established in the previous

section, the equivalent result for the ASG is now simple to

prove:

Proposition 1.8.

lim
t→0

tNσ,θ
t

2
= 1 a.s. (1.24)

Proof. Again we appeal to [8, Theorem 5.1] in order to

verify the above limit. For the ASG, the death rates are the
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same as Kingman’s coalescent with mutation so µn still

varies regularly with index 2. Furthermore, since our birth

rates are linear in n we still have that λn/µn → 0 as

n → ∞. Thus [8, Theorem 5.1] gives us our almost sure

convergence.

Looking at the equivalent of equation (1.23) for the ASG

we can use (1.19) to state the following series of inequalities

for sufficiently small t:

E
[
T 0,θ
νt

]
≤ E

[
T σ,θνt

]
≤ t < E

[
T σ,θνt−1

]
≤ E

[
T 0,θ
νt−1

]
+

Cσ,θ
1

(νt − 1)2

2

νt
+O((νt)

−2) ≤ t <
2

νt − 1
+O((νt)

−2)

2

t
+O((νtt)

−1) ≤ νt <
2

t

(
νt

νt − 1

)
+O((νtt)

−1).

In the same way as in the previous proof we have that νt ∼
2/t as t→ 0 and so (1.24) is verified.

In order to establish Theorem 1.1 the above almost sure

convergence is not enough. In fact, in order to verify the

convergence of (1.4) to (1.3) we need more control over

Nσ,θ
t near zero. Namely we need a result analogous to [16,

Theorem 2] for the ASG. We first establish separately the

result under neutrality as it will be used in the proof of the

equivalent statement when selection is present:

Proposition 1.9.

lim
t→0

E

[
sup
s≤t

(
sN 0,θ

s

2
− 1

)k]
= 0, ∀k ∈ N. (1.25)
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Proof. Using [16, Theorem 2] with d = k on N 0,0
s , there exists

a time t1 > 0 such that

E

[
sup
s≤t1

(
sN 0,0

s

2
− 1

)k]
≤ 1.

This combined with the fact that (sN 0,0
s /2)k can grow at

most like sk for s > t1 ensures that we have

E
[
sup
s≤t

(s
2
N 0,0
s

)k]
<∞,

for all t ≥ 0, k ∈ N. This now immediately gives us

E
[
sup
s≤t

(s
2
N 0,θ
s

)k]
<∞, (1.26)

for all k ∈ N thanks to (1.6). In order to establish (1.25) we

first show the almost sure convergence of

sup
s≤t

(
sN 0,θ

s

2
− 1

)k
(1.27)

to zero as t → 0. This is easily done with an application

of the continuous mapping theorem and (1.22); in fact since

we are considering a right limit we rely only on the right

continuity of the function and the supremum from the right.

With this, we then bound (1.27) above by sups≤t(sN
0,θ
s /2)k∨

1 and use the dominated convergence theorem together with

(1.26) to obtain (1.25).

In order to obtain the same result for the ASG we need to

take a closer look at the behaviour of the process (sNσ,θ
s /2)k.
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We consider what happens to this process between successive

hitting times T σ,θn and T σ,θn−1. Between these times the process

will sit on one of the curves in Figure 1.

Figure 1: Possible trajectories of the function (sNσ,θ
s /2)k between the

first hitting times of level n and n− 1.

Here the random variable Hσ,θ
n is defined as

Hσ,θ
n := #{s ∈ [T σ,θn , T σ,θn−1) : Nσ,θ

s −N
σ,θ
s− > 0}

or simply the number of times the ASG jumps up in this

time window. From the diagram we see that the highest
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point that the process can reach in this time window is(
n+Hσ,θ

n

)k
2k

(
T σ,θn−1

)k
=

k∑
j=0

(
k

j

)
nk−j

2k
(
Hσ,θ
n

)j (
T σ,θn−1

)k
.

(1.28)

We can now proceed by looking at the supremum of the above

random variables over all n since

sup
s≤t

(
sNσ,θ

s

2

)k
≤ sup

n∈N

(
n+Hσ,θ

n

)k
2k

(
T σ,θn−1

)k
, (1.29)

for any t ≥ 0. Before stating our result however, we need

to know more about the moments of Hσ,θ
n . In the proof of

[8, Lemma 4.1] it is shown that, for a general birth/death

process Nt with birth/death rates λn and µn, if

lim sup
n→∞

λn
µn

< 1 (1.30)

holds then the associated Hn random variable

Hn := #{s ∈ [Tn, Tn−1) : Ns −Ns− > 0}

satisfies

E∞
[
H2
n

]
≤ C

λn
µn
,

for some constant C ≥ 0, for all n ∈ N, where Tn are the

first hitting times of level n for the process Nt. Since we

need to consider higher moments of Hσ,θ
n , this inequality is

not enough. As such, we extend the above inequality to all

moments of Hn for general birth/death processes:

Lemma 1.10. Let (Nt)t≥0 be a birth/death process with
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birth/death rates λn and µn respectively. If (1.30) holds

then for each k ∈ N there exists ck > 0 such that

E∞
[
Hk
n

]
≤ ck

λn
µn
, n ≥ 1. (1.31)

Proof. We follow a similar method of proof as in [8, Lemma

4.1] by first noting the random variable Hn is simply the

number of positive jumps before Tn−1 of a discrete-time

random walk started at n with transition probabilities

pi,i+1 = λi/(λi + µi) and pi,i−1 = µi/(λi + µi).

Next, we note that (1.30) gives us the existence of n0 ∈ N
such that

p = sup
n≥n0

λn
λn + µn

<
1

2
.

Thus Hn, for n ≥ n0, is stochastically dominated by T ; the

hitting time of n− 1 by a discrete-time simple random walk

started at n with up/down transition probabilities p, 1 − p
respectively. Since p < 1/2, all moments of T—and thus

Hn for n ≥ n0—are finite. Finiteness of moments of Hn

for n < n0 can be obtained through the following recursive

relationship:

Hn
d
= 1En(1 + Ĥn+1 + Ĥn),

where En is the event that the first jump after Tn was an

upward one. We now consider the Laplace transform of Hn,

denoted Ĝn(a) := E∞ [exp(−aHn)], and the recursion
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formula (4.3) from [8]:

Ĝn(a) =
µn

λn + µn
+

λn
λn + µn

e−aĜn(a)Ĝn+1(a),

with a ≥ 0, n ≥ 1. Differentiating k times with respect to t

gives us

Ĝ(k)
n (a) =

λn
λn + µn

∑
|m|=k
m∈N3

0

(
k

m

)
(−1)m1e−aĜ(m2)

n (a)Ĝ
(m3)
n+1 (a),

where N0 = N ∪ {0}. If we now evaluate the above at a = 0

we get

E∞
[
Hk
n

]
=

λn
λn + µn

∑
|m|=k
m∈N3

0

(
k

m

)
E∞ [Hm2

n ]E∞
[
Hm3
n+1

]
,

since a factor of (−1)k can be cancelled from both sides.

Rearranging this we see that

µn
λn

E∞
[
Hk
n

]
=

∑
|m|=k

m 6=(0,k,0)

(
k

m

)
E∞ [Hm2

n ]E∞
[
Hm3
n+1

]
.

Now, the right hand side of this equation is a finite

combination of moments; each of which are bounded by the

respective moment of T . Thus the right hand side can be

bounded by some constant ck ≥ 0. This then gives us

(1.31).

With this we now know enough about the asymptotic

behaviour of the random variables in (1.28) to state the
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following:

Proposition 1.11.

lim
t→0

E

[
sup
s≤t

(
sNσ,θ

s

2
− 1

)k]
= 0, ∀k ∈ N. (1.32)

Proof. The first thing to note is that as soon as the right

hand side of (1.29) is bounded in expectation the result

follows thanks to an application of (1.24) and the

dominated convergence theorem in a similar way to the

proof of Proposition 1.9.

We start by looking at the terms on the right hand side of

(1.28) for j 6= 0. The aim here is to show that the

expectations of these random variables are summable in n

and hence their supremum over n has finite mean.

Applying (1.19), (1.31), and the Cauchy-Schwarz inequality

to these terms we obtain the following:

E
[(
k

j

)
nk−j

2k
(
Hσ,θ
n

)j (
T σ,θn−1

)k]
≤
(
k

j

)
nk−j

2k
E
[(
Hσ,θ
n

)2j
]1/2

E
[(
T σ,θn−1

)2k
]1/2

≤
(
k

j

)
nk−j

2k
c

1/2
2j

n1/2

(
C0,θ

2k

n2k
+

Cσ,θ
2k

n2k+1

)1/2

= O
(
n−j−1/2

)
.

This then gives us that the expectation of the terms on the

right hand side of (1.28) are summable in n as long as
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j 6= 0. Thus we have that their supremum over n is finite in

expectation.

Next we need to deal with the first term on the right hand

side of (1.28); i.e. the term corresponding to j = 0. Since

sup
n∈N

nk

2k

(
T σ,θn−1

)k
≤ sup

n∈N

[
nk

2k

(
T σ,θn−1

)k
− nk

2k

(
T 0,θ
n−1

)k]
+ sup

n∈N

nk

2k

(
T 0,θ
n−1

)k
(1.33)

it suffices to show that the right hand side of the above is

finite in expectation. For the second term this follows

immediately from (1.26) since nk(T 0,θ
n−1)

k/2k are the right

end points of the continuous pieces of the process

tk(N 0,θ
t )k/2k. For the first term we consider the increments

in n of these random variables and show they are absolutely

summable. This gives the desired result since, for any real

sequence xn,

sup
n∈N

xn ≤ x1 +
∑
n≥1

|xn+1 − xn|. (1.34)
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For us, the corresponding increment is∣∣∣∣(n+ 1)k

2k
(
T σ,θn

)k − (n+ 1)k

2k
(
T 0,θ
n

)k
−n

k

2k

(
T σ,θn−1

)k
+
nk

2k

(
T 0,θ
n−1

)k∣∣∣∣
=

∣∣∣∣((n+ 1)k

2k
(
T σ,θn

)k − nk

2k

(
T σ,θn−1

)k)
−
(

(n+ 1)k

2k
(
T 0,θ
n

)k − nk

2k

(
T 0,θ
n−1

)k)∣∣∣∣ . (1.35)

Now, the terms inside the brackets are just the difference

between successive right endpoints of continuous pieces of

the processes
(
sNσ,θ

s /2
)k

and
(
sN 0,θ

s /2
)k

respectively. These

can be expressed in the following way:

(n+ 1)k

2k
(
T σ,θn

)k − nk

2k

(
T σ,θn−1

)k
=
[
(n+ 1)k − nk

] (T σ,θn

)k
2k

− nk

2k

((
T σ,θn−1

)k
−
(
T σ,θn

)k)
=

(
T σ,θn

)k
2k

(
k∑
j=1

(
k

j

)
nk−j

2k

)

− nk

2k

(
k∑
j=1

(
k

j

)(
T σ,θn

)k−j (
T σ,θn,n−1

)j)
,

(1.36)

since (T σ,θn−1)
k = (T σ,θn + T σ,θn,n−1)

k. Note that one can set σ =

0 in the above meaning these equalities apply to both the

Kingman coalescent and the ASG. Using the substitution
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(1.36), (1.35) is then equal to∣∣∣∣∣
k∑
j=1

(
k

j

)
nk−j

2k

[(
T σ,θn

)k − (T 0,θ
n

)k]
− nk

2k

k∑
j=1

(
k

j

)((
T σ,θn

)k−j (
T σ,θn,n−1

)j
−
(
T 0,θ
n

)k−j (
T 0,θ
n,n−1

)j)∣∣∣∣ ,
which we bound above by

≤
k∑
j=1

(
k

j

)
nk−j

2k

∣∣∣(T σ,θn

)k − (T 0,θ
n

)k∣∣∣ (1.37)

+
nk

2k

k∑
j=1

(
k

j

) ∣∣∣∣(T σ,θn

)k−j (
T σ,θn,n−1

)j
−
(
T 0,θ
n

)k−j (
T 0,θ
n,n−1

)j∣∣∣∣ .
If we now apply expectations to (1.37), then the expectation
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of (1.35) is bounded above by

k∑
j=1

(
k

j

)
nk−j

2k
E
[∣∣ (T σ,θn

)k − (T 0,θ
n

)k ∣∣]
+
nk

2k

k∑
j=1

(
k

j

)
E
[∣∣∣ (T σ,θn

)k−j (
T σ,θn,n−1

)j
−
(
T 0,θ
n

)k−j (
T 0,θ
n,n−1

)j ∣∣∣]
≤

k∑
j=1

(
k

j

)
nk−j

2k
E
[∣∣ (T σ,θn

)k − (T 0,θ
n

)k ∣∣]
+
nk

2k

k∑
j=1

(
k

j

)
E
[(
T σ,θn

)k−j ∣∣∣ (T σ,θn,n−1

)j
−
(
T 0,θ
n,n−1

)j ∣∣∣]

+
nk

2k

k∑
j=1

(
k

j

)
E
[(
T 0,θ
n,n−1

)j ∣∣∣ (T σ,θn

)k−j − (T 0,θ
n

)k−j ∣∣∣] .
Recalling equations (1.6) and (1.7) from Section 1.1, we see

that on the joint probability space we have constructed the

hitting times for the ASG are almost surely longer than the

corresponding hitting times for the Kingman coalescent with

mutation. This allows us to drop modulus signs from inside

the above expectations. Utilising the independence of T 0,θ
n,n−1

and T σ,θn established in Section 1.1 along with (1.13), (1.18),
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and (1.19) results in the following set of inequalities:

E
[∣∣∣(n+ 1)k

2k
(
T σ,θn

)k − (n+ 1)k

2k
(
T 0,θ
n

)k
−n

k

2k

(
T σ,θn−1

)k
+
nk

2k

(
T 0,θ
n−1

)k ∣∣∣]
≤

k∑
j=1

(
k

j

)
nk−j

2k
Cσ,θ
k

nk+1

+
nk

2k

k∑
j=1

(
k

j

)[(
C0,θ
k−j

nk−j
+

Cσ,θ
k−j

nk−j+1

)
Bσ,θ
j

n2j+1

+
j!2j

nj(n− 1 + θ)j
Cσ,θ
j

nk−j+1

]

=
1

2k

k∑
j=1

(
k

j

)
Cσ,θ
k

nj+1

+
1

2k

k∑
j=1

(
k

j

)[(
C0,θ
k−j +

Cσ,θ
k−j

n

)
Bσ,θ
j

nj+1

+
j!2jCσ,θ

j

n(n− 1 + θ)j

]
= O(n−2).

From this we can conclude that the expectation of (1.35)

is summable in n. This then means that, thanks to (1.34),

the left hand side of (1.33) is finite in expectation; when

combined with (1.29) this gives (1.32).
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1.4 Proof of Theorem 1.1

In order to prove Theorem 1.1 we extend the arguments of

Limic and Talarczyk [11] with modifications where needed.

Lemmas 1.13 and 1.15 are analogues of Lemmas 2.2 and 2.3

from [11] for the ASG. Though the methods of proof are

similar, they rely heavily on our PRM construction of the

ASG and the results from Section 1.3; most importantly

Proposition 1.11. Regardless of the similarities we present

the results here in full in order to keep the proof

self-contained.

Before establishing the key lemmas needed to prove

Theorem 1.1 we state a technical lemma from [16] that is

used repeatedly in what follows.

Lemma 1.12 ([16, Lemma 10]). Suppose f, g : [a, b] → R
are càdlàg functions such that

sup
x∈[a,b]

∣∣∣∣f(x) +

∫ x

a

g(u) du

∣∣∣∣ ≤ K,

for some K < ∞. If, in addition f(x)g(x) > 0, x ∈ [a, b],

whenever f(x) 6= 0, then

sup
x∈[a,b]

∣∣∣∣∫ x

a

g(u) du

∣∣∣∣ ≤ K and sup
x∈[a,b]

|f(x)| ≤ 2K. (1.38)

The first lemma we establish gives a formula for tNσ,θ
t /2

which helps us in analysing its small time behaviour.

Lemma 1.13. Under the assumptions of Theorem 1.1 we
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have

tNσ,θ
t

2
= 1−

∫ t

0

(
sNσ,θ

s

2
− 1

)
1

s
ds−Mσ,θ

t +Rσ,θ
t , t ≥ 0,

(1.39)

where

Mσ,θ
t =

1

2

∫ t

0

∫
∆̄

s1∆̄
N
σ,θ
s−

(k) [1j>0(k)− 1j=0(k)] π̂(ds, dk),

(1.40)

t ≥ 0, and Rσ,θ is a continuous process such that for any

T > 0 there exists C1 > 0 such that

E
[
sup
s≤t
|Rσ,θ

s |
]
≤ C1t, t ≤ T. (1.41)

Remark 1.14. It should be noted that C1 and several of the

constants in this section have an implicit dependence on T .

Fortunately, we are only concerned with behaviour close to

t = 0 and so this dependence is unimportant.

Proof. Letting 0 < r ≤ t, the PRM construction in Section
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1.1 allows us to write Nσ,θ
t as:

Nσ,θ
t

=Nσ,θ
r −

∫
(r,t]

∫
∆̄

1∆̄
N
σ,θ
s−

(k) [1j>0(k)− 1j=0(k)]π(ds, dk),

=Nσ,θ
r −

∫
(r,t]

∫
∆̄

1∆̄
N
σ,θ
s−

(k) [1j>0(k)− 1j=0(k)] ν(ds, dk)

−
∫

(r,t]

∫
∆̄

1∆̄
N
σ,θ
s−

(k) [1j>0(k)− 1j=0(k)] π̂(ds, dk),

=Nσ,θ
r −

∫
(r,t]

Nσ,θ
s (Nσ,θ

s − 1 + θ − σ)

2
ds

−
∫

(r,t]

∫
∆̄

1∆̄
N
σ,θ
s−

(k) [1j>0(k)− 1j=0(k)] π̂(ds, dk).

Since all jump times are isolated and countable then this

representation is permissible. From integration by parts we

also get that

tNσ,θ
t = rNσ,θ

r +

∫
(r,t]

Nσ,θ
s ds+

∫
(r,t]

s dNσ,θ
s .

Combining these we obtain

tNσ,θ
t

2
=
rNσ,θ

r

2
+

∫
(r,t]

(
Nσ,θ
s

2
− sN

σ,θ
s (Nσ,θ

s − 1 + θ − σ)

4

)
ds

−
∫

(r,t]

∫
∆̄

s

2
1∆̄

N
σ,θ
s−

(k) [1j>0(k)− 1j=0(k)] π̂(ds, dk).

(1.42)

Next we need to check that one can formally let r = 0 in

the above expression, recognise that the final term is then

equal to Mσ,θ
t , and rearrange the drift term to reflect the
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formula in (1.39).

Starting with the final term in (1.42), we first need to fix

T ≥ 0 and use (1.32) to find that, for t ≤ T

E

[
sup
s≤t

(
sNσ,θ

s

2

)k]
<∞. (1.43)

We can then use properties of the compensated Poisson

integral to bound the second moment of the martingale

(1.40):

E[(Mσ,θ
t )2] = E

[∫ t

0

∫
∆̄

s2

4
1∆̄

N
σ,θ
s−

(k)ν(ds, dk)

]
= E

[∫ t

0

s2N
σ,θ
s (Nσ,θ

s − 1 + θ + σ)

8
ds

]
≤ E

[∫ t

0

s2 (Nσ,θ
s )2

8
+ Ts

(θ + σ)Nσ,θ
s

8
ds

]
≤ C2t, t ≤ T, (1.44)

where C2 ≥ 0 comes from (1.43) with k = 1, 2. Thanks to [17,

Theorem 8.23] and (1.44) we get that Mσ,θ given by (1.40)

is a well defined square integrable martingale. Moreover,

Doob’s L2 maximal inequality gives us the following bound:

E
[
sup
s≤t

(Mσ,θ
s )2

]
≤ 4C2t, ∀t ≤ T. (1.45)

We note that the final term in (1.42) is equal to

Mσ,θ
t − Mσ,θ

r and by (1.45) we have Mσ,θ
r → 0 in L2 as

r → 0.
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Next, we rewrite the integral with respect to s in (1.42) as

Aσ,θ
r (t) :=

1

2

∫
(r,t]

Nσ,θ
s ds− 1

2

∫
(r,t]

s
Nσ,θ
s (Nσ,θ

s − 1 + θ − σ)

2
ds

= −
∫

(r,t]

Nσ,θ
s

2

(s
2
Nσ,θ
s − 1

)
ds

+

∫
(r,t]

s(1− θ + σ)

4
Nσ,θ
s ds.

This allows us to rearrange (1.42) into the following:

t

2
Nσ,θ
t − 1 +

∫
(r,t]

Nσ,θ
s

2

(s
2
Nσ,θ
s − 1

)
ds

=
r

2
Nσ,θ
r − 1 +

∫
(r,t]

(1− θ + σ)s

4
Nσ,θ
s ds

− (Mσ,θ
t −Mσ,θ

r ).

Applying (1.38) with f(s) = sNσ,θ
s /2 − 1,

g(s) = Nσ,θ
s (sNσ,θ

s /2− 1)/2, a = r, and b = t we find that

sup
r≤s≤t

∣∣∣s
2
Nσ,θ
s − 1

∣∣∣
≤ 2

(∣∣∣r
2
Nσ,θ
r − 1

∣∣∣+ |Mσ,θ
r |

+ sup
r≤s≤t

|Mσ,θ
s |+

∫
(r,t]

∣∣∣∣(1− θ + σ)s

4
N θ
s

∣∣∣∣ ds

)
.
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Letting r → 0 in the above and using (1.24) gives us

sup
s≤t

∣∣∣s
2
Nσ,θ
s − 1

∣∣∣
≤ 2

(
sup
s≤t
|Mσ,θ

s |+
∫ t

0

∣∣∣∣(1− θ + σ)s

4
Nσ,θ
s

∣∣∣∣ ds

)
, (1.46)

where letting r = 0 in the integral on the right hand side is

permissible thanks to (1.43) with k = 1. Squaring both sides

of (1.46), applying expectations and using (1.45) and (1.43)

gives us that there exists C3 > 0 such that

E

[
sup
s≤t

(
sNσ,θ

s

2
− 1

)2
]
≤ C3t, ∀t ≤ T. (1.47)

We can now use this bound, which improves on (1.32), to

ensure the integral term in (1.39) is well-defined. Letting

Xσ,θ
t := Xσ,θ

1 (t) = tNσ,θ
t /2 − 1, (1.47) (along with Cauchy-

Schwarz) allows us to control |Xσ,θ
t | as follows:

E
[
|Xσ,θ

t |
]
≤
√
C3t, t ≤ T. (1.48)

If we now consider the integral term in (1.39) we see that by

(1.48)

E
[∫ t

0

∣∣Xσ,θ
s

∣∣ 1

s
ds

]
=

∫ t

0

E
[
|Xσ,θ

s |
] 1

s
ds

≤
∫ t

0

√
C3√
s

ds

= 2
√
C3t.

This shows that the integral with respect to s in (1.39) has
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finite expectation and thus is finite a.s. and so is

well-defined.

Next, we can express Aσ,θ
r (t) as

Aσ,θ
r (t) = −

∫
(r,t]

(s
2
Nσ,θ
s − 1

)2 1

s
ds−

∫
(r,t]

(s
2
Nσ,θ
s − 1

) 1

s
ds

+
1

2

∫
(r,t]

(1− θ + σ)s

2
Nσ,θ
s ds.

Using (1.47) along with (1.43) we find that

E
[∣∣∣Aσ,θ

r (t) +

∫
(r,t]

(s
2
Nσ,θ
s − 1

) 1

s
ds
∣∣∣] ≤ C4t, ∀t ≤ T,

where C4 > 0 does not depend on r. This shows that, as

r → 0, Aσ,θ
r (t) converges in L1 to

−
∫ t

0

(
sNσ,θ

s

2
− 1

)
1

s
ds+Rσ,θ

t ,

where

Rσ,θ
t := −

∫ t

0

(s
2
Nσ,θ
s − 1

)2 1

s
ds+

1

2

∫ t

0

(1− θ + σ)s

2
Nσ,θ
s ds.

(1.49)

To conclude, (1.47) applied to the first term on the right

hand side of (1.49) and (1.43) applied to the second term

yield the bound in (1.41).

Next, we will reduce the problem of convergence of (1.4) to

convergence of the following process defined via the
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martingale (1.40):

Y σ,θ
t := −1

t

∫ t

0

u dMσ,θ
u , t > 0, Y σ,θ

0 = 0,

Y σ,θ
ε (t) := ε−1/2Y σ,θ

εt .

Lemma 1.15. The process (Y σ,θ
t )t≥0 satisfies the equation

Y σ,θ
t = −

∫ t

0

Y σ,θ
s

1

s
ds−Mσ,θ

t . (1.50)

Moreover, there exists C5 > 0 such that for any t ≤ T

E
[
sup
s≤t

(
Y σ,θ
s

)2
]
≤ C5t. (1.51)

Finally, we have that

lim
ε→0

E
[
sup
s≤t

∣∣Xσ,θ
ε (s)− Y σ,θ

ε (s)
∣∣] = 0. (1.52)

Proof. First we consider Lσ,θt := tY σ,θ
t so that Lσ,θ is a square

integrable martingale with quadratic variation

[
Lσ,θ

]
t

=
1

4

∫ t

0

∫
∆̄

s4
1∆̄

N
σ,θ
s−

(k)π(ds, dk),
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which has expectation

E
[
[Lσ,θ]t

]
=

1

4
E
[∫ t

0

∫
∆̄

s4
1∆̄

N
σ,θ
s−

(k)ν(ds, dk)

]
=

1

4
E
[∫ t

0

s2

(
s2N

σ,θ
s (Nσ,θ

s − 1 + θ + σ)

2

)
ds

]
(1.53)

≤ C2

∫ t

0

s2 ds =
C2

3
t3,

where we use the same bound from (1.44) on the

expectation of the bracketed term in (1.53).

This now gives us that

E
[(
Y σ,θ
t

)2
]

=
1

t2
E
[(
Lσ,θt

)2
]

=
1

t2
E
[
[Lσ,θ]t

]
≤ C2

3
t. (1.54)

In order to obtain (1.50) we first use integration by parts to

write

Y σ,θ
t − Y σ,θ

r =

∫
(r,t]

1

s2

∫ s

0

u dMσ,θ
u ds−

∫
(r,t]

dMσ,θ
s

= −
∫

(r,t]

1

s
Y σ,θ
s ds−Mσ,θ

t +Mσ,θ
r ,

and let r → 0; using (1.54) and Jensen’s inequality to

bound E[
∫

(r,t] |Y
σ,θ
s |/s ds] uniformly in r > 0 by 2

√
Ct/
√

3,

ensuring that
∫ t

0 Y
σ,θ
s /s ds exists almost surely in the same

way as
∫ t

0 X
σ,θ
s /s ds.

Now, we apply (1.38) with f(s) = Y σ,θ
s , g(s) = Y σ,θ

s /s,
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a = 0 and b = t to get that

sup
s≤t
|Y σ,θ
s | ≤ 2 sup

s≤t
Mσ,θ

s .

We can then square both sides and apply expectations

along with (1.45) to obtain (1.51).

Finally, we prove (1.52) by recalling that Xσ,θ
t = tN θ

t /2 − 1

and so by Lemma 1.13 and (1.50),

Xσ,θ
t − Y

σ,θ
t = −

∫ t

0

(Xσ,θ
s − Y σ,θ

s )
1

s
ds+Rθ

t .

Applying (1.38) to the above we find that

sup
s≤t
|Xσ,θ

s − Y σ,θ
s | ≤ 2 sup

s≤t
|Rσ,θ

s |.

This leads to

E
[
sup
s≤t

∣∣Xσ,θ
ε (s)− Y σ,θ

ε (s)
∣∣]

= ε−1/2E
[
sup
s≤t

∣∣Xσ,θ(εs)− Y σ,θ(εs)
∣∣]

≤ 2ε−1/2E
[
sup
s≤t
|Rσ,θ

εs |
]

≤ 2C1

√
εt,

using (1.41) for the final inequality. Letting ε → 0 in the

above gives us (1.52).

We now have everything in place to prove Theorem 1.1. The

proof consists of first checking the conditions of [18, Chapter
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7, Theorem 1.4] are satisfied for the process

Lσ,θε (t) := −tY σ,θ
ε (t) =

1

ε3/2

∫ εt

0

u dMσ,θ
u , t ≥ 0,

and proving its convergence to (tZt)t≥0 as ε → 0. Then, as

in [11], we take advantage of Steps 2–4 in the proof of [19,

Lemma 4.8] to extend this to the convergence of Y σ,θ
ε to Z as

ε→ 0. Essentially, the continuity of t 7→ 1/t away from zero

along with the control we have over these processes near zero

is what ensures this convergence. Finally, (1.52) then gives

us the convergence of (1.4) to (1.3).

Proof of Theorem 1.1. Starting with the process Lσ,θε , we

first note that, since Lσ,θε (t) = −ε−3/2Lσ,θ(εt), it is an

L2-martingale of the form

Lσ,θε (t)

= ε−3/2 1

2

∫ εt

0

∫
∆̄

s2
1∆̄

N
σ,θ
s−

(k) [1j>0(k)− 1j=0(k)] π̂(ds, dk).

(1.55)

The compensator of the square of this process is given by

〈Lσ,θε 〉t =
1

4ε3

∫ εt

0

∫
∆̄

s4
1∆̄

N
σ,θ
s−

(k)ν(ds, dk),

=
1

4ε3

∫ εt

0

s4N
σ,θ
s (Nσ,θ

s − 1 + θ + σ)

2
ds

=
1

2

∫ t

0

s2(εs)2N
σ,θ
εs (Nσ,θ

εs − 1 + θ + σ)

4
ds. (1.56)

We now wish to verify that the assumptions (b) in [18,

Theorem 1.4, Chapter 7] are satisfied with Mn
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corresponding to Lσ,θε , An corresponding to 〈Lσ,θε 〉 and

Ct =
∫ t

0 u
2 du/2. A simplified version of this theorem can be

found in Appendix A.

First, we note that since 〈Lσ,θε 〉 is continuous we only need

to show (i) that 〈Lσ,θε 〉t converges as ε → 0 to
∫ t

0 u
2/2 du in

probability for each t > 0, and (ii) that for any T > 0,

lim
ε→0

E
[
sup
t≤T
|Lσ,θε (t)− Lσ,θε (t−)|2

]
= 0. (1.57)

The first claim (i) follows from the representation (1.56)

along with Proposition 1.11. To address (ii): the limit in

(1.57) holds since, thanks to the representation (1.55), the

jumps of Lσ,θε on [0, T ] are isolated and uniformly bounded

by ε−3/2(εT )2/2 which converges to zero as ε → 0. Thus we

have the convergence of Lσ,θε → (tZt)t≥0 in law in

D([0,∞),R).

Before concluding the proof one needs the following bound

on the limiting process Z:

E
[
sup
s≤t

Z2
s

]
≤ C6t, C6 ≥ 0. (1.58)

This bound follows from the formula

Zt = −
∫ t

0

Zs
1

s
ds+

1√
2
Wt,

in combination with (1.38), similarly to the proof of (1.51).
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Now, thanks to continuity away from zero of t 7→ 1/t we

have the desired convergence of Y σ,θ
ε → Z, but not at zero.

To get the full convergence we consider the processes

Y σ,θ,(b)
ε (t) := −

(
1

b
1[0,b](t) +

1

t
1(b,∞)(t)

)
Lσ,θε (t),

and

Z(b)(t) :=

(
t

b
1[0,b](t) + 1(b,∞)(t)

)
Z(t)

and look at what happens as b → 0. Again, thanks to the

continuity of t 7→ 1/t away from zero we have that Y
σ,θ,(b)
ε

converges in law in D([0,∞),R) to Z(b) as ε→ 0. Applying

the triangle inequality twice yields

E
∥∥Y σ,θ

ε − Z
∥∥
∞ ≤ E

∥∥∥Y σ,θ
ε − Y σ,θ,(b)

ε

∥∥∥
∞

+ E
∥∥∥Y σ,θ,(b)

ε − Z(b)
∥∥∥
∞

+ E
∥∥∥Z(b) − Z

∥∥∥
∞
, (1.59)

where ‖ · ‖∞ denotes the sup norm in D([0,∞),R).

Considering the first term on the right hand side of (1.59)

we see that∥∥∥Y σ,θ
ε − Y σ,θ,(b)

ε

∥∥∥
∞

= sup
t≤b

(
1

t
− 1

b

) ∣∣Lσ,θε (t)
∣∣

= sup
t≤b

(
1− t

b

)
|Y σ,θ
ε (t)|

≤ sup
t≤b
|Y σ,θ
ε (t)|.

Applying expectations and (1.51) this goes to zero as b→ 0,

independently of ε. The same calculation can be performed

with the third term in (1.59) thanks to (1.58). As discussed,
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the middle term in (1.59) goes to zero thanks to continuity

away from zero and so we have the desired convergence.
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2 A Central Limit Theorem for the

Fleming–Viot Process

Moving now onto processes that model populations forward

in time, we have objects like the Wright–Fisher (WF)

diffusion and the Fleming–Viot (FV) process that represent

the distribution of genetic types in the population at a

single locus over time; with the former modelling a finite

number of types and the latter an infinite number of types.

There have even been extensions to two and n locus models.

These have been defined through Markov generators and

can be characterised as couplings of one locus models with

a degree of interaction between loci (either through

recombination or gene conversion, see [20] for details).

Here our motivation comes from the field of Quantative

Genetics. Understanding how genetic differences determine

complex traits is one of the fundamental questions in this

field. Though there are examples of areas of the human

genome that contribute heavily to a single phenotype - for

example the HLA (human leukocyte antigen) locus for

several inflammatory diseases [21] - it is largely believed

that most phenotypes for complex traits are influenced by

small contributions from a large number of loci [22, 23].

With this viewpoint in mind, we look to use the existing

single locus processes to model long genomes with a large

number of loci. To do this we consider a growing number of

loci each with negligible effect on the overall genotype and
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let the number of loci tend to infinity, considering LLN and

CLT limits.

Mathematically we start with a collection of i.i.d. neutral

FV processes ((Fi,t)t≥0)i∈N with parent-independent

mutation defined on a probability space (Ω,F ,P). With our

space of genetic types being [0, 1], these processes take

values in P([0, 1]) where Fi,t represents the genotypic

distribution at the ith locus in the population. The

mutation mechanism has two parameters,

(θ, ν0) ∈ [0,∞) × P([0, 1]), that represent the total

mutation rate and the distribution from which new types

are picked, respectively. We also enforce that all of the

starting points Fi,0 are independent draws from the same

distribution Q0 ∈ P(P([0, 1])), with shared mean µ0.

Along with independence of these loci, assuming that all of

the FV processes start from the same probability

distribution is less than desirable; however establishing this

simple case is useful in order to expand these ideas further.

Alongside this discussion of genotypes is an attempt to

describe phenotypes - i.e. the expressed characteristics of

organisms, like eye and hair colour for example. One can

think of a phenotype as a function of genotypes, plus some

environmental noise. In our case, we track genotypes via

probability distributions so it makes sense to think of
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phenotypes as integrals:

Phenotype =

∫
f(x)Genotype(dx) + Noise.

The function f here assigns a value to each genetic type

that represents its contribution to the phenotype. If we

replace “Genotype(dx)” with F1,t(dx) then we will only see

the contributions to a phenotype from a single locus. With

our model though we hope to capture the aggregate

behaviour of all loci.

We start this chapter by considering the LLN and CLT

limits

S
(N)
t :=

1

N

N∑
i=1

Fi,t (2.1)

and

η
(N)
t :=

1√
N

N∑
i=1

Fi,t −
√
NEQ0

[F1,t] (2.2)

for a finite number of time points, ensuring that the finite

dimensional distributions of our processes converge as the

number of loci grows to infinity. Since we are concerned with

weak convergence we will mainly be considering integrals of

continuous functions against these measures. From here on

we will use the following notation:

〈f, µ〉 :=

∫
[0,1]

f(x)µ(dx).

With this established we then look to prove tightness of

both the LLN and CLT collections. The CLT object will at
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first be considered as a signed measure in M([0, 1]), though

later will be considered as a Schwartz distribution in the

space D([0, 1]) as there it is easier to obtain tightness. This

lifting argument is outlined in Section 2.3.

The transition function of the FV process is essential in

proving tightness and will be utilised to analyse the

process’s small-time behaviour. This transition function

exploits the duality between these processes and the

Kingman coalescent with mutation - denoted (Nt)t≥0 in this

chapter as it is the only coalescent used - to control how

much the process can change over a small time window.

The first three sections of this chapter will constitute the

proof of the following theorem:

Theorem 2.1. Let (Fi)
∞
i=1 ⊂ C([0,∞),P([0, 1])) be an i.i.d.

collection of FV processes, all started at independent draws

from Q0 ∈ P(P([0, 1])), with parent-independent mutation,

parameters (θ, ν0) ∈ [0,∞) × P([0, 1]). Then the processes

S(N) ∈ C([0,∞),P(0, 1)) and η(N) ∈ C([0,∞),D([0, 1]))

defined by (2.1) and (2.2) respectively converge in

distribution in their respective spaces to µ and η which are

characterised via Propositions 2.3 and 2.5.

After this, we investigate the continuity of the Gaussian

Schwartz distribution-valued process η further; considering

its continuity in the strong dual topology. We will then

conclude by considering the situation where our collection

of FV processes, (Fi,t)i∈N, are started from different random
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probability measures and prove the non-identical version of

the above theorem in Section 2.6. First though, we start

with some background on the Dirichlet process and

parent-independent mutation.

2.1 The Dirichlet Process and Parent-Independent

Mutation

One of the fundamental building blocks of the Fleming-Viot

process is the Dirichlet Process. We will see in Section 2.4

the precise way in which these interact but first we start with

the definition of a Dirichlet process from [24]:

Definition 2.2. A random probability measure F is

distributed as a Dirichlet Process on a Polish Space (S,F)

with parameter µ (a positive, finite measure on S) if, for

every A1, ..., Ak a measurable partition of S, we have that

(F (A1), ..., F (Ak)) ∼ Dirµ(A1),...,µ(Ak)

where Dir(α1, ..., αk) is the Dirichlet distribution on the

simplex ∆k−1

∆k−1 =

{
(p1, . . . , pk)

∣∣∣∣∣
k∑
i=1

pi = 1

}
,

and

Dirα1,...,αk(dy1, ..., dyk) ∝
k∏
i=1

yαi−1
i dyi.

We denote this as F ∼ Πµ.

An equivalent definition of the Dirichlet distribution on
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the real line found in [24] uses the gamma distribution -

denoted G(α, β) with shape parameter α ≥ 0 and scale

parameter β > 0. When α = 0 the distribution is

degenerate at zero, with α > 0 the distribution has a

density with respect to Lebesgue measure on R as follows:

f(z|α, β) =
1

Γ(α)βα
e−z/βzα−1

1(0,∞)(z).

If we let Z1, ..., Zk be independent with Zj ∼ G(αj, 1) (where

at least one of the αj > 0) then the Dirichlet distribution

with parameter (α1, ..., αk) can be defined as the distribution

of (Y1, ..., Yk), where

Yj =
Zj∑k
i=1 Zi

, j = 1, ..., k.

If (Y1, ..., Yk) has a Dirichlet distribution with parameter

(α1, ..., αk) then, defining α :=
∑k

i=1 αi we have the

following moments of the Yi:

• E[Yi] = αi
α ,

• E[Y 2
i ] = αi(αi+1)

α(α+1) ,

• E[YiYj] =
αiαj

α(α+1) .

Oftentimes we decompose the measure µ down to µ = θν0

where θ = µ(S) > 0 and so ν0 is a probability measure on

S. In this case we use the notation F ∼ Πθ,ν0. The above

definition is quite abstract so we will highlight an

alternative characterisation of the Dirichlet Process (DP).

These characterisations also highlight an important feature
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of DPs in that any realisation of a DP is almost surely a

discrete measure.

With θ > 0 and ν0 as above, consider a Poisson point

process (PPP) on (0,∞) with intensity θx−1e−xdx. Almost

surely, we can order the points of this process Γ1 > Γ2 > ....

Letting Σ =
∑

i Γi, Pi = Γi/Σ and

F =
∞∑
i=1

Piδ(Xi), (2.3)

where the Xi are i.i.d(ν0) (and are independent of the PPP),

F is then distributed as a Dirichlet Process with parameters

(θ, ν0) [18, 25]. In this case the (Pi) are said to have a Poisson-

Dirichlet (PD) distribution with parameter θ. We also have

that Σ ∼ G(θ, 1) and is independent of F [24]. Alternatively,

one can construct the PD(θ) distribution via stick-breaking.

Here one needs a collection (Wi)i≥1 of i.i.d. Beta(1,θ) random

variables and then defining P̃j as

P̃j =

[
j−1∏
i=1

(1−Wi)

]
Wj

we obtain a collection such that
∑∞

i=1 P̃i = 1 and we say

that the (P̃j) have the GEM(θ) distribution. If we then

rank a GEM(θ) distribution and re-label the sequence

P1 ≥ P2 ≥ ... we now have that (Pi) has the PD(θ)

distribution [26].
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Parent-independent mutation is often the preferred model

used in population genetics due to its mathematical

tractability. In the infinitely-many alleles model, every time

a mutation occurs it is to a new allelic type never before

seen in the population. The way this is incorporated into

the generator of the FV process (0.1) is by setting

(Af)(x) :=
θ

2

∫
S

(f(ξ)− f(x))ν0(dξ),

henceforth this is referred to as parent-indpendent mutation

with parameters (θ, ν0) ∈ R+ ×P(S). Here mutations occur

with intensity θ/2 and the new type is picked according to

the probability measure ν0. ν0 is assumed to be non-atomic

so that, when a new type is picked, it is almost surely a

new one; in-line with the infinitely-many alleles model.

We will see in Section 2.4 that, at any time t > 0, the FV

process is distributed according to a Dirichlet Process. The

first parameter (from R+) will be of the form Nt + θ where

Nt ∈ N0 is the number of blocks in the Kingman coalescent

at time t. The probability measure parameter is the

measure θν0 plus an Nt number of atoms from the starting

distribution F0 divided by (Nt + θ) (to ensure it has total

mass 1). From the representation (2.3) we see that, since

the Xi will be picked from a mixture of these atomic and

non-atomic measures, there will be an influence from the

past dependent on the strength of mutation. If mutation is

strong (corresponding to a large value of θ) then Nt will be

65



smaller (since mutations cause this process to decrease) and

more weighting will be given to the new types picked by ν0.

If mutation is weak then it will take longer to get away from

the influence of the ancestors in the original population.

With this in place we move now to set up our LLN and

CLT constructions and ensure their convergence.

2.2 A Law of Large Numbers for the Fleming–Viot

Process

In this section we consider the sequence of probability

measure-valued stochastic processes

(
S

(N)
t

)
t≥0

:=

(
1

N

N∑
i=1

Fi,t

)
t≥0

(2.4)

and wish to show that, as N →∞, these converge weakly in

C([0,∞),P([0, 1])) to the deterministic limit (µt)t≥0 where

µt :=
∞∑
n=0

dθn(t)

n+ θ
(nµ0 + θν0) = EQ0

[F1,t] , (2.5)

where µ0 = EQ0
[F1,0], with the subscript denoting the

distribution of the starting measure.

It should be noted that, behind the scenes, there is an

intermediate step in obtaining equation (2.5). First, we
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condition on knowing the starting measure:

E [F1,t|F1,0] =
∞∑
n=0

dθn(t)

n+ θ
(nF1,0 + θν0) .

Then we apply expectations to both sides of the above

expression to obtain (2.5) via the tower law; where the

expectation operator can be taken through the sum since

the collection (dθn(t))n∈N forms a probability distribution.

This mechanism is implicitly working behind the scenes

whenever we state expressions for higher and mixed

moments of a Fleming-Viot process at time t > 0.

The presence of dθn(t) = P∞(Nt = n) allows us to write the

above as

µt = E∞
[

Nt

Nt + θ

]
µ0 + E∞

[
θ

Nt + θ

]
ν0. (2.6)

Tavaré [27] in fact provides a way to exactly solve these

moments. There at the bottom of page 157 they define a

process

Zm(t) =
ρ−1
m (t)(Nt)(m)

(Nt + θ)(m)

for N0 = i, where ρm(t) = exp(−m(m+ θ − 1)t/2). The top

of page 158 tells us that

E [Zm(t)] =
i[m]

(i+ θ)(m)
.
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Letting i→∞ and setting m = 1 then results in

E∞
[

Nt

Nt + θ

]
= ρ1(t) = e−θt/2.

This in turn gives us

µt = e−θt/2µ0 + (1− e−θt/2)ν0.

As in Chapter 1 the subscripts here indicate that the

coalescent in question starts from infinity. The above

relationship is due to the moment duality between the FV

process and the Kingman coalescent; this is best

exemplified in the transition function of the FV process

which is discussed in Section 2.4.

In order to obtain weak convergence of probability

distributions over C([0,∞),P([0, 1])) we needs two things:

weak convergence of finite dimensional distributions and

relative compactness of the collection over N [18, Chapter

3, Theorem 7.8]. We start by considering the

finite-dimensional distributions:

Proposition 2.3. Let k ∈ N and 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk.

Then

(S
(N)
t1 , . . . , S

(N)
tk )

d→ (µt1, ..., µtk) (2.7)

as N →∞.

Proof. In order to show the above weak convergence of finite

dimensional distributions we let f1, . . . , fk ∈ C([0, 1],R) and
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consider the object(
〈f1, S

(N)
t1 〉, . . . , 〈fk, S

(N)
tk 〉

)
. (2.8)

The Portmanteau Theorem now means that in order to

determine (2.7) we just need to ensure that (2.8) converges

to the corresponding object for (µt)t≥0. Using (2.4) and the

linearity of integrals we see that (2.8) is equal to

1

N

N∑
i=1

(〈f1, Fi,t1〉, . . . , 〈fk, Fi,tk〉) ,

which, thanks to the i.i.d. nature of the Fi, converges to

(〈f1, µt1〉, . . . , 〈fk, µtk〉)

by the Classic Law of Large Numbers.

Now onto relative compactness. Using Theorem II.4.1 in [28]

we can reduce the problem of showing relative compactness

of (
(S

(N)
t )t≥0

)
N∈N

in C([0,∞),P([0, 1])) to showing relative compactness of(
(〈f, S(N)

t 〉)t≥0

)
N∈N

in C([0,∞),R) for all f ∈ C([0, 1],R).

To establish relative compactness of these real-valued

processes we will appeal to Theorem I.4.3 of [29] and show

that, for each f ∈ C([0, 1],R), 〈f, S(N)
t 〉 satisfies the
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following:

E
[∣∣∣〈f, S(N)

t 〉 − 〈f, S(N)
s 〉

∣∣∣4] ≤ CT |t− s|2, (2.9)

for all s, t ∈ [0, T ], T = 1, 2, 3, ..., where CT > 0 is a constant

that depends only on T . Before ensuring this condition is

satisfied, we fix f ∈ C([0, 1],R), let Xt−s := 〈f, F1,t〉−〈f, Fi,s〉
and bound (2.9) above by the following:

1

N 4
E

( N∑
i=1

〈f, Fi,t〉 − 〈f, Fi,s〉

)4


=
1

N 4

{
NEQ0

[
X4
t−s
]

+ 4N[2]EQ0

[
X3
t−s
]
EQ0

[Xt−s]

+ 3N[2]EQ0

[
X2
t−s
]2

+ 6N[3]EQ0

[
X2
t−s
]
EQ0

[Xt−s]
2

+N[4]EQ0
[Xt−s]

4
}

≤ EQ0

[
X4
t−s
]

+ 4
∣∣EQ0

[
X3
t−s
]
EQ0

[Xt−s]
∣∣ (2.10)

+ 3EQ0

[
X2
t−s
]2

+ 6EQ0

[
X2
t−s
]
EQ0

[Xt−s]
2

+ EQ0
[Xt−s]

4 .

Here we are using the i.i.d. nature of the summands along

with bounding the powers of N outside the expectations

above by 1. This simplification now allows us to instead

consider the regularity of a continuous function integrated

against a single FV process.

We move now to consider the convergence of the finite

dimensional distributions of the corresponding CLT object

before concluding tightness of the LLN object. Once this is
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completed we will return to the notion of tightness and

show relative compactness for both the LLN and CLT

collections together in Section 2.4.

2.3 A Central Limit Theorem for the Fleming–Viot

Process

In this section we define and investigate the limiting

behaviour of the CLT object

η
(N)
t :=

1√
N

N∑
i=1

Fi,t −
√
Nµt. (2.11)

This is a signed measure and the corresponding process

lives in the space C([0,∞),M([0, 1])), with M([0, 1])

endowed with the weak* topology; the coarsest topology

that ensures that the map

µ 7→ 〈f, µ〉

is continuous for all f ∈ C([0, 1],R). The continuity in t of

these objects for N ∈ N is assured by the continuity of the

summands Fi,t and their shared mean µt.

Unfortunately for us, there seem to be no equivalents to

Theorem 9.1.VI in [30] or Theorem II.4.1 in [28] that allow

us to consider

〈f, η(N)
t 〉, f ∈ C([0, 1],R),
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instead of the signed measures themselves when proving

convergence of finite dimensional distributions and

tightness. Furthermore, due to the nature of the FV

process, at any time t > 0, Ft is almost surely an atomic

measure. Its mean however is diffuse and so η
(N)
t is already

in its Hahn decomposition and its total variation is 2
√
N ;

which of course is unbounded as N tends to infinity.

Since compact sets of M([0, 1]) are difficult to characterise,

and the total variation of our object blows up as N →∞, it

seems we need to consider a less restrictive topology so that

the distributions of ((η(N))t≥0)N∈N are uniformly tight.

Before doing this we briefly note that the space of finitely

additive signed measures with bounded variation can be

viewed as the topological dual to the space of continuous

functions, C([0, 1],R) [31]. The space M([0, 1]) is then of

course a subspace of this dual space. C([0, 1],R) is a very

large collection of functions (including almost every possible

path of a Brownian motion of length 1) and induces a

relatively restrictive topology when we take its dual. If

however we consider a much smaller space of functions and

take its dual we end up with a more general class of

operators known as Distributions.

This smaller space of functions we will consider is

C∞([0, 1],R), the space of infinitely differentiable

real-valued functions on [0, 1]. Distributions are then
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continuous linear functionals on this space when it is

endowed with the Canonical LF-Topology. This topology is

difficult to describe directly, though Trèves [32] provides the

following general proposition to check if a linear functional

on C∞c (U,R) (continuous functions on U with compact

support, U an open subset of Rn) is a distribution:

Proposition ([32], Proposition 21.1). A linear functional T

on C∞c (U,R) is a distribution if and only if it possesses the

following equivalent properties:

1) To every compact subset K of U there is an integer m ≥ 0

and a constant C > 0 such that, for all f with support in the

set K,

|T (f)| ≤ C sup
|p|≤m

(
sup
x∈U
{∂pf(x)}

)
,

where p is a multi-index.

2) If a sequence of functions {fn}n∈N converge uniformly to

zero, as well as all their derivatives, and if the functions fn

have support contained in a compact subset K of U ,

independent of the index n, then T (fn)→ 0.

Using these conditions one can see that any signed measure

can be considered as a distribution. In our case, since our

underlying space is compact, our space of distributions are

in fact Schwartz Distributions. We refer to this space as

D([0, 1]). For more details on these objects, see [33].

With this in place we can now consider (η(N))N∈N as

distribution-valued processes and utilise Theorem 5.3 of

[34]. This theorem allows us to invoke the existence of a
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process in C([0, 1],D([0, 1])) which is the weak limit of

(η
(N)
t )0≤t≤1 as N → ∞. We state part 1 of this theorem

here with our notation as it is an integral part of our CLT

convergence. It is appealed to several times; not only to

prove convergence of our processes but also to invoke the

existence of the limiting process η:

Theorem ([34],Theorem 5.3). Suppose that the sample paths

of Xn are elements of C([0, 1],D([0, 1])) for every n ∈ N.

Further suppose that for each f in C([0, 1],R) the sequence

of distributions of (〈f,Xn
t 〉)t≥0 is tight in C([0, 1],R) and for

any finite elements f1, . . . , fk ∈ C([0, 1],R) and points t1 <

· · · < tk in [0, 1], the distribution of

(〈f1, X
n
t1
〉, . . . , 〈fk, Xn

tk
〉)

converges in law to some k-dimensional probability

distribution. Then there exists the limit process X whose

sample paths are elements in C([0, 1],D([0, 1])) such that

Xn d→ X.

Remark 2.4. Note here that this theorem only relates to

continuous paths of length 1. For our purposes, we invoke

this theorem repeatedly for the time periods [m,m + 1] for

m = 0, 1, 2, . . . . The continuity of our process then ensures

that the concatenation of these time periods results in a well

defined process on C([0,∞),D([0, 1])).

The convergence of finite dimensional distributions is one

requirement of this theorem. Before stating and proving
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this convergence we note that, from here on, (Ft)t≥0 denotes

a generic Fleming–Viot process with parent-independent

mutation, parameters (θ, ν0), with starting measure F0.

When seen inside an expectation or covariance operator,

the subscript on the operator indicates the distribution of

F0. With that we move onto the proposition:

Proposition 2.5. Let (η
(N)
t )t≥0 be as in (2.11), fix k ∈ N,

f1, . . . , fk ∈ C∞([0, 1],R) and 0 ≤ t1 < · · · < tk ≤ 1. Then,

as N →∞,(
〈f1, η

(N)
t1 〉, . . . , 〈fk, η

(N)
tk 〉

)
d→ (〈f1, ηt1〉, . . . , 〈fk, ηtk〉) ,

(2.12)

where the object on the right is a k-dimensional Gaussian

random variable with covariance matrix

Σ2
t := (CovQ0

(〈fj, Ftj〉, 〈fl, Ftl〉))kj,l=1.

Proof. Since the pre-limiting object on the left hand side of

(2.12) is equal to

1√
N

N∑
i=1

(〈f1, Fi,t1〉, . . . , 〈fk, Fi,tk〉)

−
√
N (〈f1, µt1〉, . . . , 〈fk, µtk〉)

then an application of the classic CLT is all we need; provided

the moments,

EQ0

[
〈fj, Ftj〉

]
and

EQ0

[
〈fj, Ftj〉〈fl, Ftl〉

]
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are finite for 1 ≤ j, l ≤ k. Thankfully, the fact that these

are integrals of continuous functions against probability

measures over a compact space ensures this fact.

The other requirement of [34, Theorem 5.3] is tightness of

the collection of R-valued processes(
〈f, η(N)

t 〉
)
t≥0

, f ∈ C∞([0, 1],R).

Similarly to Section 2.2, we show this via Kolmogorov

continuity; i.e. we show that there exists constants CT > 0

such that

E
[∣∣∣〈f, η(N)

t 〉 − 〈f, η(N)
s 〉

∣∣∣4] ≤ CT |t− s|2, (2.13)

for all N ∈ N with s, t ∈ [0, T ], T = 1, 2, 3, . . . . Before

proceeding to the analysis of conditions (2.9) and (2.13) we

let Xi,t−s := 〈f, Fi,t〉 − 〈f, Fi,s〉 and bound the left hand side
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of (2.13) above by the following:

1

N 2
E

( N∑
i=1

Xi,t−s − EQ0
[Xi,t−s]

)4


=
1

N

(
EQ0

[
X4

1,t−s
]
− 4EQ0

[
X3

1,t−s
]
EQ0

[X1,t−s]

+6EQ0

[
X2

1,t−s
]
EQ0

[X1,t−s]
2 − 3EQ0

[X1,t−s]
4
)

+ 3
N[2]

N 2

(
EQ0

[
X2

1,t−s
]2 − 2EQ0

[
X2

1,t−s
]
EQ0

[X1,t−s]
2

+EQ0
[X1,t−s]

4
)

≤ EQ0

[
X4

1,t−s
]

+ 4
∣∣EQ0

[
X3

1,t−s
]
EQ0

[X1,t−s]
∣∣

+ 6EQ0

[
X2

1,t−s
]
EQ0

[X1,t−s]
2 + 3EQ0

[
X2

1,t−s
]2

+ 3EQ0
[X1,t−s]

4 . (2.14)

As with (2.10), we use the i.i.d nature of the summands to

simplify the expression along with bounding fractions

involving N above by 1. More details on the cancellations

that occur above can be found in Appendix B. As with

(2.10), this upper bound allows us to analyse the small time

behaviour of the CLT object by considering what happens

to a single FV process between times s and t.

2.4 The Transition Function and Tightness

With these simplifications in place we are ready to tackle

the regularity in time of a continuous function integrated

against a single FV process. In order to analyse the moments

in (2.10) and (2.14) we will utilise the process’s transition

function. First discovered in 1993 by Ethier and Griffiths
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[35], it has the following form:

P (t, µ, dν) = dθ0(t)Πθ,ν0(dν)

+
∞∑
n=1

dθn(t)

∫
[0,1]n

µn(dx1 × · · · × dxn) (2.15)

Πn+θ,(n+θ)−1{nζn(x1,...,xn)+θν0}(dν),

where µ is the starting measure, Πλ,ν is the distribution of a

Dirichlet Process with parameters λ > 0 and ν ∈ P([0, 1]),

ζn(x1, . . . , xn) :=
1

n

n∑
i=1

δxi ∈ P([0, 1])

is the empirical distribution of the points x1, . . . , xn and

dθn(t), as in Section 2.2, are the transition probabilities of

the Kingman coalescent with mutation.

With the form of this transition function, the duality with

the coalescent is clear. Heuristically what happens is that if

one wishes to determine the state of a FV process at some

time t > 0 you effectively follow this simple procedure:

• Run a Kingman coalescent, starting from infinity, for

t > 0 units of time.

• The number of ancestors that survive, Nt, all have types

drawn from the initial distribution µ ∈ P([0, 1]).

• These ancestors then influence the present day

population by having their types incorporated into the

parameters of the Dirichlet Process from which we
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draw the FV process.

• Types in the FV process at time t can now be one of the

Nt original types from µ or are new types, drawn from

the distribution ν0.

• The size of the θ partly determines how prevalent the

old types are; a higher total mutation parameter means

the types in the new population are more likely to be

drawn from ν0 than ζn(x1, . . . , xn).

This Kingman coalescent-induced mixture of Dirichlet

Processes is precisely the reason for the form of (2.6) where

the expectation of Ft is a mixture of the expected starting

and base measures µ0 and ν0 respectively. For a more

precise description of higher moments of the FV process at

a single time we have the following formula from [35] which

concerns moments of the form

EQ0
[〈f1, Ft〉 . . . 〈fm, Ft〉]
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for some f1, . . . , fm ∈ C([0, 1],R):

EQ0
[〈f1, Ft〉 . . . 〈fm, Ft〉] =

∞∑
n=0

dθn(t)
∑

M⊂{1,...,m}

1

(n+ θ)(m)

×


|M |∑
k=1

n[k]

∑
β∈π(M,k)

|β1|! · · · |βk|!
k∏
j=1

〈∏
i∈βj

fi, µ0

〉
×


|M c|∑
l=1

∑
γ∈π(M c,l)

(|γ1| − 1)! · · · (|γl| − 1)!θl
l∏

j=1

〈∏
i∈γj

fi, ν0

〉 ,

(2.16)

where π(A, i) is the set of all possible partitions of A that

have i elements and an empty sum is considered to be equal

to 1.

This formula, with m = 1 and f ranging over all continuous

functions, is how we derive equation (2.5). If we consider m

up to 4 and let all fi be the same function f we can analyse

higher moments of the FV process and show the following

inequalities:

Proposition 2.6. Let 0 ≤ s < t, then there exist constants
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depending on f and θ such that

EQ0
[〈f, Ft〉 − 〈f, Fs〉] ≤C(1,1)

f,θ E∞
[

1

Nt−s + θ

]
(2.17)

EQ0

[
(〈f, Ft〉 − 〈f, Fs〉)2

]
≤C(2,1)

f,θ E∞
[

1

Nt−s + θ

]
+ C

(2,2)
f,θ E∞

[
1

(Nt−s + θ)2

]
(2.18)

EQ0

[
(〈f, Ft〉 − 〈f, Fs〉)3

]
≤C(3,1)

f,θ E∞
[

1

(Nt−s + θ)2

]
+ C

(3,2)
f,θ E∞

[
1

(Nt−s + θ)3

]
(2.19)

EQ0

[
(〈f, Ft〉 − 〈f, Fs〉)4

]
≤C(4,1)

f,θ E∞
[

1

(Nt−s + θ)2

]
+ C

(4,2)
f,θ E∞

[
1

(Nt−s + θ)3

]
+ C

(4,3)
f,θ E∞

[
1

(Nt−s + θ)4

]
(2.20)

Proof. Considering the first moment, we start by

conditioning on the event {Fs = µ}, µ ∈ P([0, 1]), and use

(2.15) with m = 1 and f1 = f , along with the Markov
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property to obtain the following:

EQ0
[〈f, Ft〉 − 〈f, Fs〉|Fs = µ]

= E [〈f, Ft−s〉 − 〈f, µ〉 |F0 = µ ]

=
∞∑
n=0

dθn(t− s)
n+ θ

[n〈f, µ〉+ θ〈f, ν0〉 − (n+ θ)〈f, µ〉]

=
∞∑
n=0

θdθn(t− s)
n+ θ

[〈f, ν0〉 − 〈f, µ〉]

= θ(〈f, ν0〉 − 〈f, µ〉)E∞
[

1

Nt−s + θ

]
. (2.21)

Since f is a continuous function on a compact space, its

integral against any probability measure is bounded by

sup{f(x), x ∈ [0, 1]} <∞. Thus we can bound the constant

in front of the expectation on the right hand side of (2.21)

by

C
(1,1)
f,θ := 2θ sup(|f |(x)).

Note that this bound is independent of µ and so if we take

expectations on both sides and apply the tower law on the

left we obtain (2.17).

Applying the same tactic to higher moments, again

conditioned on the event {Fs = µ}, we get similar (though

more complicated) expressions with different coalescent

moments on the right hand side. The constants in front of

these moments are mixtures of integrals of powers of f

against µ and ν0. These can again be bounded above

independently of the measures, leading to the constants
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C
(i,j)
f,θ for i = 2, 3, 4, j = 1, 2, and (i, j) = (4, 3). The

coalescent moments there are not yet in the correct form

though. For the second moment we have

Eµ0

[
(〈f, Ft〉 − 〈f, Fs〉)2 |Fs = µ

]
≤ C

(2,1)
f,θ E∞

[
Nt−s

(Nt−s + θ)(2)

]
+ C

(2,2)
f,θ E∞

[
1

(Nt−s + θ)(2)

]
,

but these are trivially bounded above by (2.18). The third

and fourth moments have similar expressions, and the exact

same tactics are used to produce the formulas (2.19) and

(2.20). For the complete calculations, see Appendix C.

We now have upper bounds on the Kolmogorov continuity

conditions (2.9) and (2.13) via the simplifications (2.10)

and (2.14) in terms of inverse moments of the Kingman

coalescent. The next step is to show that these expressions

behave asymptotically as we expect them to. As we know

from Chapter 1, Nt ∼ 2/t as t→ 0 and indeed

E∞
[
Nk
t

]
∼ 2k/tk

as t→ 0 for all k ∈ N (Proposition 1.9). We would like this

to also be true for k = −1,−2,−3,−4; more specifically we

need

E∞
[
(Nt + θ)k

]
∼ 2k/tk (2.22)

as t → 0 for k = −1,−2,−3,−4. Once this is in place we

can then substitute the asymptotic expressions for these
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coalescent moments into the right hand sides of (2.17),

(2.18), (2.19) and (2.20) in combination with (2.10) and

(2.14) to obtain the required Kolmogorov continuity. The

following proposition proves a more general form of (2.22),

taking advantage of an expression for d
dtd

θ
n(t) from [35] and

L’Hôpital’s rule:

Proposition 2.7. Let (Nt)t≥0 be the block-counting process

of the Kingman coalescent with parent-independent mutation,

rate θ > 0. Let k ∈ N and define an as

an = n−k +
∞∑
j=1

Aj,kn
−k−j, (2.23)

where Aj,k is a polynomial in k of order at most j. Then,

lim
t→0

E∞ [aNt]

tk/2k
= 1. (2.24)

Proof. We first express the moment in (2.24) as follows:

E∞ [aNt] =
∞∑
n=0

and
θ
n(t). (2.25)

In order to analyse this moment close to t = 0 we will

utilise the above representation along with several parts of

[35, Lemma 2.5]. In the following we fix a T > 0 and only

consider t ≤ T , since we are considering a limit as t → 0

this T is arbitrary.

Firstly, the fact that an ≤ 1 for sufficiently large n and

(dθn(t))n∈N is a probability mass function tells us that the
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series in (2.25) is convergent for all t ≥ 0 and so the

moment is well-defined. Part (ii) of [35, Lemma 2.5] then

tells us that

lim
t→0

E∞ [aNt] = lim
n→∞

an = 0.

Thus, in order to analyse the limit in (2.24) we will look

to apply L’Hôpital’s rule several times. In doing this we

would like to differentiate (2.25) and exchange this with the

infinite sum, differentiating term by term. In order for this

to be permissable we must (along with the convergence of

the original series) have uniform - in t - convergence of the

partial sums of the derivatives

N∑
n=0

an
d

dt
dθn(t).

Part (iv) of [35, Lemma 2.5] tells us that this is equal to

∞∑
n=0

an
d

dt
dθn(t) =

∞∑
n=0

an(λn+1d
θ
n+1(t)− λndθn(t))

=
∞∑
n=1

λn(an−1 − an)dθn(t),

where λn = n(n− 1 + θ)/2 is the death rate of Nt when it is

equal to n. If we now consider the following upper bound

sup
t≥0

∣∣∣∣∣
∞∑

n=N+1

λn(an−1 − an)dθn(t)

∣∣∣∣∣
≤ sup

t≥0

( ∞∑
n=N+1

(λn(an−1 − an))2

)1/2( ∞∑
n=N+1

(
dθn(t)

)2

)1/2

,
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we see that on the right hand side, if k ≥ 2, the second term

is bounded by 1 and the first term tends to zero as N tends

to infinity, since it is the tail of a convergent series (we will

see later that λn(an−1 − an) ∼ n−k+1 as n → ∞). If k = 1

then λn(an−1 − an) = O(1) as n → ∞ and so there exists a

constant C > 0 such that

∞∑
n=1

λn(an−1 − an)dθn(t) ≤
∞∑
n=1

Cdθn(t) = C,

and thus we have uniform convergence, in t, of the sequence

of partial sums of the derivatives.

If we want to characterise the above as t → 0 we need to

consider what happens to λn(an−1 − an) as n → ∞. First

considering an−1 − an we see that

an−1 − an

=(n− 1)−k − n−k +
∞∑
j=1

Aj,k

[
(n− 1)−k−j − n−k−j

]
=kn−k−1 +

∞∑
j=2

(
k

j

)
n−k−j +

∞∑
j=1

Aj,k

∞∑
i=1

(
k + j

i

)
n−k−j−i

=knk−1 +

[(
k

2

)
A1,k(k + 1)

]
n−k−2

+

[(
k

3

)
+ A2,k(k + 2) + A1,k

(
k + 1

2

)]
n−k−3 + . . .

=kn−k−1 +
∞∑
j=2

Bj,kn
−k−j,
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where we define(
k

j

)
:=

k(k + 1) . . . (k + j − 1)

j!
=
k(j)

j!

for all k, j ∈ N and

Bj,k :=

(
k

j

)
+

j−1∑
i=1

Ai,k

(
k + i

j − i

)
.

Note that Bj,k is a polynomial in k of order at most j.

Now, λn = n2/2 + n(θ − 1)/2 and so

λn(an−1 − an) =
k

2
n−k+1 +

k(θ − 1)

2
n−k

+
∞∑
j=2

Bj,k

2

[
n−k−j+2 + (θ − 1)n−k−j+1

]
=
k

2
n−k+1 +

∞∑
j=2

Cj,kn
−k−j+2 =: bn,

where

C2,k :=
k(θ − 1)

2
+
B2,k

2

and

Cj,k :=
Bj,k

2
+
Bj−1,k(θ − 1)

2

for j ≥ 3.

Having now applied L’Hôpital’s rule once we have that

lim
t→0

∑∞
n=0 and

θ
n(t)

tk/2k
= lim

t→0

∑∞
n=0 bnd

θ
n(t)

ktk−1/2k
.
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where

bn =
k

2
n−k+1 +

∞∑
j=2

Cj,kn
−k−j+2,

and again Cj,k is a polynomial in k of order at most j.

We look to repeat this procedure k − 1 more times in order

to analyse our limit. Though the power of n has shifted by

one our justification for moving the differential inside the

infinite sum is the same as before. Due to the nature of the

an, repeating this procedure k − 1 more times results in

dk

dtk

∞∑
n=0

and
θ
n(t) =

∞∑
n=0

cnd
θ
n(t)

where

cn =
k!

2k
+

∞∑
j=k+1

Dj,kn
−j+k

and Dj,k is a polynomial in k of order at most j.

Finally, if we consider the left hand side of (2.24) and apply

L’Hôpital’s rule k times we have that

lim
t→0

E∞ [aNt]

tk/2k
= lim

t→0

∑∞
n=0 cnd

θ
n(t)

k!/2k
,

=
2k

k!
lim
t→0

∞∑
n=0

cnd
θ
n(t),

=
2k

k!
lim
n→∞

cn = 1.
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Since

(n+ θ)−k = n−k +
∞∑
j=1

(−1)j
(
k

j

)
θjn−k−j

the moments in (2.17) to (2.20) satisfy Proposition 2.7 and

become:

Eµ0
[〈f, Ft〉 − 〈f, Fs〉] ≤C(1,1)

f,θ (t− s) + o(t− s) (2.26)

Eµ0

[
(〈f, Ft〉 − 〈f, Fs〉)2

]
≤C(2,1)

f,θ (t− s) + C
(2,2)
f,θ (t− s)2

+ o(t− s) (2.27)

Eµ0

[
(〈f, Ft〉 − 〈f, Fs〉)3

]
≤C(3,1)

f,θ (t− s)2 + C
(3,2)
f,θ (t− s)3

+ o((t− s)2) (2.28)

Eµ0

[
(〈f, Ft〉 − 〈f, Fs〉)4

]
≤C(4,1)

f,θ (t− s)2 + C
(4,2)
f,θ (t− s)3

+ C
(4,3)
f,θ (t− s)4 + o((t− s)2)

(2.29)

as (t − s) → 0. Letting ε > 0, we can choose t − s small

enough so that the o(t − s) and o((t − s)2) terms above are

smaller than ε(t − s) and ε(t − s)2 respectively. Reminding
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ourselves of (2.10) we have:

1

N 4
E

( N∑
i=1

〈f, Fi,t〉 − 〈f, Fi,s〉

)4


≤ EQ0

[
(〈f, Ft〉 − 〈f, Fs〉)4

]
+ 4EQ0

[
(〈f, Ft〉 − 〈f, Fs〉)3

]
EQ0

[〈f, Ft〉 − 〈f, Fs〉]

+ 3EQ0

[
(〈f, Ft〉 − 〈f, Fs〉)2

]2

+ 6EQ0

[
(〈f, Ft〉 − 〈f, Fs〉)2

]
EQ0

[〈f, Ft〉 − 〈f, Fs〉]2

+ EQ0
[〈f, Ft〉 − 〈f, Fs〉]4 .

Now, substituting (2.26) to (2.29) into the above yields

(2.9), with CT equal to a polynomial in ε and C i,j
f,θ,

i = 1, 2, 3, 4, j = 1, 2, 3. A similar procedure ensures that

substituting (2.26) to (2.29) into (2.14) yields (2.13).

For t− s large, say t− s ≥ ε > 0, we can bound Nt−s below

by zero and attain the bound

E∞
[

1

(Nt−s + θ)k

]
≤ 1

θk

for k = 1, 2, 3, 4. This can then be used in (2.17) to (2.20)

to bound these expressions independently of Nt−s. Then,

using these in (2.10) and (2.14) bound them above by

constants, say, B1 and B2. Choosing CT to be larger than

both B1/ε
2 and B2/ε

2 then gives us (2.9) and (2.13).

All of this work to obtain tightness and convergence of
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finite dimensional distributions of these processes

constitutes the proof of Theorem 2.1, which we restate here

for completeness:

Theorem 2.1. Let (Fi)i∈N ⊂ C([0,∞),P([0, 1])) be an i.i.d.

collection of FV processes, all started at independent draws

from Q0 ∈ P(P([0, 1])), with parent-independent mutation,

parameters (θ, ν0) ∈ [0,∞) × P([0, 1]). Then the processes

S(N) ∈ C([0,∞),P(0, 1)) and η(N) ∈ C([0,∞),D([0, 1]))

defined by (2.1) and (2.2) respectively converge in

distribution in their respective spaces to µ and η which are

characterised via Propositions 2.3 and 2.5.

2.5 Continuity

What we have shown up to this point is the existence of

and convergence to two stochastic processes that are meant

to characterise the “mean” genotype of a population and

the fluctuations of that genotype around its mean via a

Gaussian Schwartz distribution-valued process. In this

section we investigate the continuity of the latter process.

To investigate the continuity of η we need to decide upon a

topology on D([0, 1]). The most natural choice is the strong

dual topology induced by the space’s duality with

C∞([0, 1]). Fortunately, for a sequence to converge in the

strong dual topology it is necessary and sufficient for it to

converge in the weak* topology [32, p351-359]. As far as

Schwartz distributions are concerned this is simply
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pointwise convergence. Using the Kolmogorov continuity

theorem (also known as the Kolmogorov-Chentsnov

theorem) and the implications above, we can establish the

continuity of η:

Proposition 2.8. (ηt)t≥0 has a modification that is sample

continuous, taking values in D([0, 1]) endowed with the strong

dual topology.

Proof. As established above, a Schwartz distribution µn

converges to µ in the strong dual topology if

〈f, µn〉 → 〈f, µ〉

as n → ∞, for all f ∈ C∞([0, 1],R). A D([0, 1])-valued

process (µt)t≥0 then has continuous sample paths if, for

almost all ω ∈ Ω, (µt(ω))t≥0 is a continuous process; i.e.

(〈f, µt〉(ω))t≥0

is continuous in t for all f ∈ C∞([0, 1],R) . Thus we wish

to show the above for a D([0, 1])-valued process η̃ that is a

modification of η; i.e.

∀t ≥ 0,P(η̃t = ηt) = 1.

We proceed then by defining, for f ∈ C∞([0, 1],R),

Y
(N),f
t := 〈f, η(N)

t 〉,

and

Y f
t := 〈f, ηt〉.
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As established in Section 2.4, for any T > 0 there exists a

constant C > 0 such that

E
[(
Y

(N),f
t − Y (N),f

s

)4
]
≤ C(t− s)2, (2.30)

for 0 < t, s ≤ T . Since the bound (2.30) is independent of

N , we let N →∞ and obtain

E
[(
Y f
t − Y f

s

)4
]
≤ C(t− s)2.

By the Kolmogorov continuity theorem we then have that

there exists a continuous modification of Y f , denoted Ỹ f ,

where the finite-dimensional distributions of the two

processes are equal.

The collection (Ỹ f
t )f∈C∞([0,1],R) for a single time t ≥ 0 defines

a random linear operator η̃t on the space C([0, 1],R) by

η̃t(f) := Ỹ f
t ,

provided that Ỹ af+bg
t = aỸ f

t + bỸ g
t for constants a, b ∈ R.

This additivity is assured by the fact that Y af+bg
t = aY f

t +bY g
t

and that Ỹ is a modification of Y . If we consider Proposition

21.1 [32] (a statement of which can be found in Section 2.3)

then we see that η̃t satisfies 2, since if the collection {fn}n∈N
converge uniformly to zero as n→∞, along with all of their

derivatives, then η̃t(fn)→ 0 since

η̃t(fn) ∼ N (0,VarQ0
(〈fn, Ft))
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converges to zero almost surely as n→∞.

If we now let {fn}n∈N ⊂ C∞([0, 1],R) be the collection of

polynomials with rational coefficients, this class is rich

enough so as to be separating since, if T, T̃ ∈ D([0, 1]) and

T (fn) = T̃ (fn)

for all n ∈ N then for a general f ∈ C∞([0, 1],R), there

exists a subsequence (fnk)k∈N that converges to f uniformly

as k →∞ and so

T (f) = lim
k→∞

T (fnk) = lim
k→∞

T̃ (fnk) = T̃ (f),

and T = T̃ .

In order to establish sample-continuity of η̃ it is sufficient to

find a set A ⊂ Ω such that, for all f ∈ C∞([0, 1],R),

(〈f, η̃t〉(ω))t≥0 is continuous in t for all ω ∈ Ω \ A with

P(A) = 0.

For each fn we let An be a set such that

(Ỹ fn
t (ω))t≥0 = (〈fn, η̃t〉(ω))t≥0 is continuous in t for every

ω ∈ Ω \ An, where P(An) = 0. The existence of this set

comes from the sample-continuity of Ỹ fn. Our set A will

then be the union of all of these, ∪n∈NAn.

To establish continuity of 〈f, η̃t〉 for a general

f ∈ C∞([0, 1],R), let ε > 0 and fn be such that
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||f − fn||∞ < ε/3. Furthermore, let δ > 0 be such that

|〈fn, η̃t〉 − 〈fn, η̃s〉| <
ε

3

for all |t− s| < δ. Then we have that, for |t− s| < δ

|〈f, η̃t〉 − 〈f, η̃s〉| ≤ |〈f, η̃t〉 − 〈fn, η̃t〉|+ |〈fn, η̃t〉 − 〈fn, η̃s〉|

+ |〈fn, η̃s〉 − 〈f, η̃s〉|

≤ ε

3
+
ε

3
+
ε

3
= ε.

Thus, (〈f, η̃t〉(ω))t≥0 is continuous in t for every ω ∈ Ω \ A.

This then gives us continuity in t of (η̃t(ω))t≥0 for every

ω ∈ Ω \ A.

Finally, we fix t ≥ 0 and let the set Bn be such that

P(Bn) = 0 and

〈fn, ηt〉(ω) = Y fn
t (ω) = Ỹ fn

t (ω) = 〈fn, η̃t〉(ω)

for all ω ∈ Ω \ Bn. Taking the union of these sets to be

B = ∪n∈NBn, we have that

P(〈fn, η̃t〉 = 〈fn, ηt〉,∀n ∈ N) = 1− P(B) = 1

and so since the collection {fn}n∈N is separating we have that

η̃t is equal to ηt almost surely.

2.6 Different Starting Measures

The last section of this chapter will focus on the setting in

which each of the independent FV processes start from
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different starting measures.

The set up is similar to before; we have an independent

collection of FV processes ((Fi,t)t≥0)i∈N which now each

start at probability measures Fi,0 each distributed according

to Qi,0 ∈ P(P([0, 1])), with EQi,0[Fi,0] = µi,0, and consider

the collections (〈f, Fi,t〉)t≥0 for f ∈ C([0, 1],R).

The LLN case is relatively simple: we define

(
S̄

(N)
t

)
t≥0

:=

(
1

N

N∑
i=1

Fi,t

)
t≥0

, (2.31)

and require that

1

N

N∑
i=1

Fi,0 → F 0, (2.32)

weakly as N → ∞ for some F 0 ∼ Q0 ∈ P(P([0, 1])). Note

that this also implies that the means converge

1

N

N∑
i=1

µi,0 → µ̄0,

where µ̄0 = EQ0
[F0].

With this we state the analogue of Proposition 2.3 in this

case:

Proposition 2.9. Let k ∈ N and 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk.

Then

(S̄
(N)
t1 , . . . , S̄

(N)
tk )

d→ (µ̄t1, ..., µ̄tk)
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as N →∞, where

µ̄t := EQ0
[Ft] =

∞∑
n=0

dθn(t)

n+ θ
{nµ̄0 + θν0} .

Proof. As with the proof of Proposition 2.3, we start by

letting f1, . . . , fk ∈ C([0, 1],R) and consider the object

〈f, S̄(N)
t 〉 :=

(
〈f1, S̄

(N)
t1 〉, . . . , 〈fk, S̄

(N)
tk 〉

)
. (2.33)

as N →∞, checking that this converges to the corresponding

object for (µ̄t)t≥0 . For this we appeal to Kolmogorov’s strong

law [36]; a slightly modified LLN in which the sequence of

independent random variables are not identically distributed.

The result states that the sequence of differences between the

sample mean and the expected sample mean tend to zero. In

our case this means that

〈f, S̄(N)
t 〉 −

1

N

N∑
i=1

EQi,0 [(〈f1, Fi,t1〉, . . . , 〈fk, Fi,tk〉)]→ 0,

as N → ∞. This convergence holds if each 〈fj, Fi,tj〉 has

finite second moment and

∞∑
i=1

1

i2
CovQi,0(〈fj, Fi,tj〉, 〈fl, Fi,tl〉) <∞,

for each 1 ≤ j, l ≤ k. The above holds since, as used several

times in this chapter, these moments can be bounded

uniformly in i using the suprema of the functions

f 2
1 , . . . , f

2
k , hence leaving the above sum finite.
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Let us now consider the expected sample mean for a single

function f and time t ≥ 0:

1

N

N∑
i=1

EQi,0 [〈f, Fi,t〉]

=
1

N

N∑
i=1

∞∑
n=0

dθn(t)

n+ θ
{n〈f, µi,0〉+ θ〈f, ν0〉}

=
∞∑
n=0

dθn(t)

n+ θ

{
n

1

N

N∑
i=1

〈f, µi,0〉+ θ〈f, ν0〉

}
N→∞→

∞∑
n=0

dθn(t)

n+ θ
{n〈f, µ̄0〉+ θ〈f, ν0〉} ,

= EQ0
[〈f, Ft〉] .

Considering a similar limit for the components of (2.33),

ranging over all collections f1, . . . , fk ∈ C([0, 1],R) we

obtain our result.

In order to investigate the equivalent of η(N) when we have

different starting measures we again have to lift the CLT

object into distribution space and appeal to Theorem 5.3 of

[34] to obtain our convergence. However, since the starting

measures are different we have to consider a Lindeberg-Feller

CLT. The formulation of this that we will appeal to can be

found in [37, Proposition 2.27]. Our pre-limiting object is

the following:

η̄
(N)
t :=

1√
N

N∑
i=1

Fi,t − EQi,0 [Fi,t] .

In order to prove the convergence of finite dimensional
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distributions we let k ∈ N, 0 ≤ t1 < · · · < tk ≤ 1,

f1, . . . , fk ∈ C([0, 1],R) and define

〈f, Fi,t〉 := (〈f1, Fi,t1〉, . . . , 〈fk, Fi,tk〉) ,

〈f, µi,t〉 := EQi,0
[
〈f, Fi,t〉

]
,

Σ2
i,t :=

(
CovQi,0(〈fj, Fi,tj〉, 〈fl, Fi,tl〉)

)k
j,l=1

,

〈f, η̄(N)
t 〉 :=

1√
N

N∑
i=1

〈f, Fi,t〉 − 〈f, µi,t〉. (2.34)

We can now state and prove the following proposition:

Proposition 2.10. As N → ∞ (2.34) converges to a

k-dimensional Gaussian distribution with mean zero and

Covariance Matrix

Σ
2
t :=

(
CovQ0

(〈fj, Ftj〉, 〈fl, Ftl〉)
)k
j,l=1

, (2.35)

if (2.32) and the following condition are met:

lim
N→∞

1

N

N∑
i=1

〈f, µi,0〉〈g, µi,0〉 = 〈f, µ̄0〉〈g, µ̄0〉, (2.36)

for all f, g ∈ C([0, 1],R).

Remark 2.11. Condition (2.36) may seem unintuitive at

first so we offer an alternative interpretation. If we let

(Xi)i∈N be a collection of independent random variables,

each distributed according to µi,0 and X be distributed as µ̄0

then (2.36) is equivalent to:

1

N

N∑
i=1

Covµi,0(f(Xi), g(Xi))→ Covµ̄0
(f(X), g(X))
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Proof. Two conditions are needed in order to ensure the

convergence of (2.34) to a Gaussian random variable. The

first is that the sum of covariance matrices converges to

(2.35) as the sum tends to infinity. The (j, l)th entry in this

sum is the following:

1

N

N∑
i=1

CovQi,0(〈fj, Fi,tj〉, 〈fl, Fi,tl〉)

=
1

N

N∑
i=1

∞∑
n,m=0

dθn(tl − tj)dθm(tj)

(n+ θ)(m+ θ)(2)
(2.37)

× {2mn〈fjfl, µi,0〉+ nm(m− 1)〈fl, µi,0〉〈fj, µi,0〉

+ nmθ〈fl, µi,0〉〈fj, ν0〉+ nθ〈fjfl, ν0〉

+mθ(n+m+ θ + 1)〈fj, µi,0〉〈fl, ν0〉

+θ2(n+m+ θ + 1)〈fl, ν0〉〈fj, ν0〉
}

− 1

N

N∑
i=1

∞∑
n,m=0

dθn(tj)d
θ
m(tl)

(n+ θ)(m+ θ)

× {nm〈fj, µi,0〉〈fl, µi,0〉+ nθ〈fl, µi,0〉〈fj, ν0〉

+mθ〈fj, µi,0〉〈fl, ν0〉+ θ2〈fj, ν0〉〈fl, ν0〉
}
,

with j < l. The derivation of this formula via

Chapman-Kolmogorov can be found in Appendix D.

Switching the order of summation, we see that condition

(2.36), along with (2.32), ensures that (2.37) converges to

(2.35).

The second condition needed is that the collection of
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random variables (
1√
N
〈f, Fi,t〉

)
i∈N

satisfy Lindeberg’s condition. This is implied by Lyapunov’s

condition which we opt to show instead (see Appendix E for

a brief proof of this implication). Thus we wish to show that

there exists a δ > 0 such that

1

(
√
N)2+δ

N∑
i=1

EQi,0
[
||〈f, Fi,t〉||2+δ

] N→∞→ 0, (2.38)

where || · || denotes the Euclidean norm. If we let δ = 2 then

the left hand side of (2.38) is bounded above by

1

N 2

N∑
i=1

(
k∑
j=1

( sup
x∈[0,1]

fj(x))2

)2

,

which, since the summand in i is uniformly bounded,

converges to zero as N →∞.

With these two conditions met, Proposition 2.27 in [37]

gives us our result.

To conclude the convergence of our LLN and CLT objects

in the non-identical case we only have to deal with

tightness. Fortunately this follows very quickly from the

bounds we have already established. As in the identical

case we only need tightness of our processes integrated

against (certain) continuous functions.
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In a similar way to (2.10) and (2.14) we can simplify the

expressions

E
[(
〈f, S̄(N)

t 〉 − 〈f, S̄(N)
s 〉

)4
∣∣∣∣Fi,0 ∼ Qi,0, 1 ≤ i ≤ N

]
and

E
[(
〈f, η̄(N)

t 〉 − 〈f, η̄(N)
s 〉

)4
∣∣∣∣Fi,0 ∼ Qi,0, 1 ≤ i ≤ N

]
using the independence of the summands. If we let 0 ≤ s < t

and Xi,t−s := 〈f, Fi,t〉 − 〈f, Fi,s〉 then the above expressions

simplify to

1

N 4
E

( N∑
i=1

Xi,t−s

)4
 (2.39)

=
1

N 4

 N∑
i=1

E[X4
i,t−s] + 4

∑
i6=j

E[X3
i,t−s]E[Xj,t−s]

+ 6
∑
i<j

E[X2
i,t−s]E[X2

j,t−s]

+ 12
∑
i 6=j<k
i 6=k

E[X2
i,t−s]E[Xj,t−s]E[Xk,t−s]

+24
∑

i<j<k<l

E[Xi,t−s]E[Xj,t−s]E[Xk,t−s]E[Xl,t−s]
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and

1

N 2
E

( N∑
i=1

Xi,t−s − E[Xi,t−s]

)4
 (2.40)

=
1

N 2

N∑
i=1

EQi,0[X4
i,t−s]− 4EQi,0[X3

i,t−s]EQi,0[Xi,t−s]

+ 6EQi,0[X2
i,t−s]EQi,0[Xi,t−s]

2 − 3EQi,0[Xi,t−s]
4

+
6

N 2

∑
i<j

EQi,0[X2
i,t−s]EQi,0[X2

j,t−s]

− EQi,0[X2
i,t−s]EQi,0[Xj,t−s]

2

− EQi,0[Xi,t−s]
2EQi,0[X2

j,t−s]

+ EQi,0[Xi,t−s]
2EQi,0[Xj,t−s]

2

≤ 1

N 2

N∑
i=1

EQi,0[X4
i,t−s] + 4

∣∣EQi,0[X3
i,t−s]EQi,0[Xi,t−s]

∣∣
+ 6EQi,0[X2

i,t−s]EQi,0[Xi,t−s]
2

+
6

N 2

∑
i<j

EQi,0[X2
i,t−s]EQi,0[X2

j,t−s]

+ EQi,0[Xi,t−s]
2EQi,0[Xj,t−s]

2

where the conditioning on {Fi,0 ∼ Qi,0, 1 ≤ i ≤ N} is

implicit and dropped here for readability. For more details

on the cancellations and simplifications that occur in (2.40),

see Appendix B.

In the same way as in Section 2.4 we can apply the bounds

(2.26), (2.27), (2.28) and (2.29) to (2.39) and (2.40). We

can apply these bounds equally to all of the summands
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since they are independent of the starting measure. In the

LLN case the number of summands is at most N[4] (the last

sum over i, j, k and l) and so the factor of 1/N4 ensures

that any terms involving N can be bounded above by 1.

Similarly in the CLT case, the number of terms in each sum

is less than N[2] so the fractions 1/N2 and 6/N2 ensure that

we can again bound the terms in N above by 1. This

ensures that the collections

((〈f, S̄(N)
t 〉)t≥0)N∈N

and

((〈f, η̄(N)
t 〉)t≥0)N∈N

are tight in C([0,∞),R) thanks to Theorem I.4.3 of [29].

With this complete we can now state the final theorem in

this thesis:

Theorem 2.12. Let (Fi)
∞
i=1 ⊂ C([0,∞),P([0, 1])) be an

independent collection of FV processes, each started at

Fi,0 ∼ Qi,0 with means µi,0, with parent-independent

mutation, parameters (θ, ν0) ∈ [0,∞)× P([0, 1]).

If there exists a F 0 ∈ P([0, 1]) and Q0 ∈ P(∈ P([0, 1])) such

that F 0 ∼ Q0 and the following are satisfied:

1

N

N∑
i=1

〈f, Fi,0〉
N→∞−→ 〈f, F 0〉

1

N

N∑
i=1

〈f, µi,0〉〈g, µi,0〉
N→∞−→ 〈f, µ̄0〉〈g, µ̄0〉
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for all f, g ∈ C([0, 1],R) then the processes

S̄(N) ∈ C([0,∞),P(0, 1)) and η̄(N) ∈ C([0,∞),D([0, 1]))

defined by (2.31) and (2.34) respectively converge in

distribution in to µ̄ and η̄ which are characterised via

Propositions 2.9 and 2.10.
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A Simplified Martingale Convergence

Theorem

Here we state a simplified version of Theorem 1.4 from

Chapter 7 of [18] (namely we only consider one dimensional

processes and condition (b)) which is used to verify the

convergence of Y σ,θ
ε to Zt:

Theorem. For n = 1, 2, ... let {Fn
t } be a filtration and Mn

be an Fn
t local martingale with sample paths in D([0,∞),R)

and Mn(0) = 0. Let An be a process with sample paths in

D([0,∞),R) such that An(t) − An(s) ≥ 0 for t > s ≥ 0.

Assume the following conditions hold:

• For each T > 0, limn→∞ E
[
supt≤T |An(t)− An(t−)|

]
=

0,

• limn→∞ E
[
supt≤T |Mn(t)−Mn(t−)|2

]
= 0,

• M 2
n(t)− An(t) is an Fn

t -local martingale

• An(t)→ Ct in probability,

where C is a deterministic continuous process such that

C0 = 0 and Ct − Cs ≥ 0 for t > s ≥ 0.

Then Mn ⇒ L = (W (Ct))t≥0 in law in D([0,∞),R), where

W is a standard Brownian motion.
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B CLT Simplifications

Let (Xi)i∈N be an independent collection of random variables

with means µi ∈ R. Letting Sn :=
∑n

i=1Xi − µi we look to

find the fourth moment of Sn. First, we calculate the fourth

power of Sn:

S4
n =

(
n∑
i=1

Xi − µi

)4

(B.1)

=
n∑
i=1

(Xi − µi)4 + 4
∑
i 6=j

(Xi − µi)3(Xj − µj)

+ 6
∑
i<j

(Xi − µi)2(Xj − µj)2

+ 12
∑
i6=j<k
i6=k

(Xi − µi)2(Xj − µj)(Xk − µk)

+ 24
∑

i<j<k<l

(Xi − µi)(Xj − µj)(Xk − µk)(Xl − µl).

Pairwise independence within each sum means that, when

applying expectations to both sides of (B.1), any linear term

will be equal to zero since

E[Xi − µi] = µi − µi = 0.
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Thus, the fourth moment of Sn can be simplified to the

following:

E
[
S4
n

]
=E

( n∑
i=1

Xi − µi

)4


=
n∑
i=1

E
[
(Xi − µi)4

]
+ 6

∑
i<j

E[(Xi − µi)2(Xj − µj)2]

=
n∑
i=1

E[X4
i ]− 4E[X3

i ]µi + 6E[X2
i ]µ2

i − 3µ4
i

+ 6
∑
i<j

E[X2
i ]E[X2

j ]− E[X2
i ]µ2

j − µ2
iE[X2

j ] + µ2
iµ

2
j

C Fleming-Viot Regularity Calculations

For completeness we re-state the general formula for

moments of a Fleming-Viot process (2.16) as it is used

several times here:

EQ0
[〈f1, Ft〉 . . . 〈fm, Ft〉] =

∞∑
n=0

dθn(t)
∑

M⊂{1,...,m}

1

(n+ θ)(m)

×


|M |∑
k=1

n[k]

∑
β∈π(M,k)

|β1|! · · · |βk|!
k∏
j=1

〈∏
i∈βj

fi, µ0

〉
×


|M c|∑
l=1

∑
γ∈π(M c,l)

(|γ1| − 1)! · · · (|γl| − 1)!θl
l∏

j=1

〈∏
i∈γj

fi, ν0

〉 .
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Considering the second moment regularity we have

EQ0

[
(〈f, Ft〉 − 〈f, Fs〉)2

∣∣∣Fs = µ
]

= E
[
(〈f, Ft−s〉 − 〈f, µ〉)2

∣∣∣F0 = µ]

= E
[
〈f, Ft−s〉2

∣∣F0 = µ]− 2〈f, µ〉E [〈f, Ft−s〉|F0 = µ] (C.1)

+ 〈f, µ〉2

=
∞∑
n=0

dθn(t− s)
(n+ θ)(2)

G2(n, θ, f, µ, ν0)

= E∞
[

1

(Nt−s + θ)(2)
G2(Nt−s, θ, f, µ, ν0)

]
, (C.2)

where

G2(n, θ, f, µ, ν0) = 2n[〈f 2, µ〉 − 〈f, µ〉2] + θ〈f 2, ν0〉

+ θ2〈f, ν0〉2 − 2θ(θ + 1)〈f, ν0〉〈f, µ〉

+ θ(θ + 1)〈f, µ〉2.

For the third and fourth moments we have

EQ0

[
(〈f, Ft〉 − 〈f, Fs〉)3

∣∣∣Fs = µ
]

= E
[
(〈f, Ft−s〉 − 〈f, µ〉)3 |F0 = µ

]
= E

[
〈f, Ft−s〉3|F0 = µ

]
− 3〈f, µ〉E

[
〈f, Ft−s〉2|F0 = µ

]
+ 3〈f, µ〉2E [〈f, Ft−s〉|F0 = µ]− 〈f, µ〉3 (C.3)

=
∞∑
n=0

dθn(t− s)
(n+ θ)(3)

G3(n, θ, f, µ, ν0)

= E∞
[

1

(Nt−s + θ)(3)
G3(Nt−s, θ, f, µ, ν0)

]
, (C.4)

109



and

EQ0

[
(〈f, Ft〉 − 〈f, Fs〉)4

∣∣∣Fs = µ
]

= E
[
(〈f, Ft−s〉 − 〈f, µ〉)4 |F0 = µ

]
= E

[
〈f, Ft−s〉4|F0 = µ

]
− 4〈f, µ〉E

[
〈f, Ft−s〉3|F0 = µ

]
+ 6〈f, µ〉2E

[
〈f, Ft−s〉2|F0 = µ

]
(C.5)

− 4〈f, µ〉3E [〈f, Ft−s〉|F0 = µ] + 〈f, µ〉4

=
∞∑
n=0

dθn(t− s)
(n+ θ)(4)

G4(n, θ, f, µ, ν0)

= E∞
[

1

(Nt−s + θ)(4)
G4(Nt−s, θ, f, µ, ν0)

]
, (C.6)

where

G3(n, θ, f, µ, ν0)

= n[6〈f 3, µ〉 − 6(θ + 3)〈f 2, µ〉〈f, µ〉+ 6(θ + 2)〈f, µ〉3

+ 6θ〈f 2, µ〉〈f, ν0〉 − 6θ〈f, µ〉2〈f, ν0〉]

+ 2θ〈f 3, ν0〉+ 3θ2〈f 2, ν0〉〈f, ν0〉+ 3θ3〈f, ν0〉3

− 3θ(θ + 2)〈f, µ〉〈f 2, ν0〉 − 3θ2(θ + 2)〈f, µ〉〈f, ν0〉2

+ 3θ(θ + 1)(θ + 2)〈f, µ〉2〈f, ν0〉 − θ(θ + 1)(θ + 2)〈f, µ〉3,
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and

G4(n, θ, f, µ, ν0)

=12n2[〈f 2, µ〉2 − 2〈f 2, µ〉〈f, µ〉2 + 〈f, µ〉4 + θ〈f 3, µ〉〈f, ν0〉]

+ 2n[12〈f 4, µ〉 − 12(θ + 4)〈f, µ〉〈f 3, µ〉 − 6〈f 2, µ〉2

+ (6θ2 + 42θ + 73)〈f 2, µ〉〈f, µ〉2

− 6(θ2 + 5θ + 7)〈f, µ〉4 + 12θ〈f 3, µ〉〈f, ν0〉

− 12θ(θ + 4)〈f, µ〉〈f 2, µ〉〈f, ν0〉

+ 12θ(θ + 3)〈f, µ〉3〈f, ν0〉 − 6θ2〈f, µ〉2〈f, ν0〉2

− 6θ〈f, µ〉2〈f 2, ν0〉 − 4θ3〈f, µ〉〈f, ν0〉3

+ 6θ〈f 2, µ〉〈f 2, ν0〉+ 6θ2〈f 2, µ〉〈f, ν0〉2]

+ 6θ〈f 4, ν0〉+ 8θ2〈f, ν0〉〈f 3, ν0〉3θ2〈f 2, ν0〉2

+ 6θ3〈f, ν0〉2〈f 2, ν0〉+ θ4〈f, ν0〉4

+ θ(θ + 1)(θ + 2)(θ + 3)〈f, µ〉4

− 4θ(θ + 1)(θ + 2)(θ + 3)〈f, µ〉3〈f, ν0〉

− 8θ(θ + 3)〈f, µ〉〈f 3, ν0〉

− 12θ2(θ + 3)〈f, µ〉〈f, ν0〉〈f 2, ν0〉

− 12θ3(θ + 3)〈f, µ〉〈f, ν0〉3

+ 6θ(θ + 2)(θ + 3)〈f, µ〉2〈f 2, ν0〉

+ 6θ2(θ + 2)(θ + 3)〈f, µ〉2〈f, ν0〉2.

The important thing about these calculations is not the exact

values of the functions G2, G3 and G4. The crucial fact

that allows us to obtain tightness is the absence of n2 or

higher terms in G2 and G3 and n3 or higher terms in G4.

These higher order terms cancel when applying the formula
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for moments of a FV process (see the start of this appendix

or (2.16)) to (C.1), (C.3) and (C.5). This cancellation is

essential since it leaves the terms inside the expectation of

(C.2) as approximately N−1
t−s as Nt−s → ∞, t − s → 0. The

terms inside the expectations of (C.4) and (C.6) are of order

N−2
t−s as Nt−s →,∞, t − s → 0. It is these asymptotics

combined with Proposition 2.7 that lead us to the bounds

(2.26) - (2.29).

D Autocovariance Calculations

Utilising the Chapman-Kolmogorov equation we can re-write

EQ0
[〈f, Ft〉〈g, Fs〉]

where t > s, as∫
P([0,1])

∫
P([0,1])

〈f, µ〉〈g, ν〉P (t− s, ν, dµ)P (s, µ0, dν),

where P is the transition function of the FV process, as in

(2.15). From this we can perform the following string of
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equalities∫
P([0,1])

∫
P([0,1])

〈f, µ〉〈g, ν〉P (t− s, ν, dµ)P (s, µ0, dν)

=

∫
P([0,1])

[∫
P([0,1])

〈f, µ〉P (t− s, ν, dµ)

]
〈g, ν〉P (s, µ0, dν)

=

∫
P([0,1])

∞∑
n=0

dθn(t− s)
n+ θ

(n〈f, ν〉+ θ〈f, ν0〉) 〈g, ν〉P (s, µ0, dν)

=
∞∑
n=0

dθn(t− s)
n+ θ

(
n

∫
P([0,1])

〈f, ν〉〈g, ν〉P (s, µ0, dν)

+θ〈f, ν0〉
∫
P([0,1])

〈g, ν〉P (s, µ0, dν)

)
.

If we now apply (2.16) (see also the formula at the start of

Appendix C) then we obtain the following:

EQ0
[〈f, Ft〉〈g, Fs〉]

=
∞∑

n,m=0

dθn(t− s)dθm(s)

(n+ θ)(m+ θ)(2)
G(m,n, f, g, µ0, ν0), (D.1)

where

G(m,n, f, g, µ0, ν0) =2mn〈fg, µ0〉+ nm(m− 1)〈f, µ0〉〈g, µ0〉

+ nmθ〈f, µ0〉〈g, ν0〉+ nθ〈fg, ν0〉

+mθ(n+m+ θ + 1)〈g, µ0〉〈f, ν0〉

+ θ2(n+m+ θ + 1)〈f, ν0〉〈g, ν0〉.

(D.1) minus the product

EQ0
[〈f, Ft〉]EQ0

[〈g, Fs〉]
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then gives the formula for CovQ0
(〈f, Ft〉, 〈g, Fs〉).

E Lyapunov and Lindeberg

Let (Yn,i)n,i∈N be random variables in Rk. We wish to show

that the Lyapunov condition

∃δ > 0 such that lim
n→∞

n∑
i=1

E
[
||Yn,i||2+δ

]
= 0 (E.1)

implies the Lindeberg condition

lim
n→∞

n∑
i=1

E
[
||Yn,i||21{||Yn,i|| > ε}

]
= 0, ∀ε > 0, (E.2)

where || · || denotes the Euclidean norm. To see this first note

that, on the event {||Yn,i|| > ε},

||Yn,i||δ

εδ
> 1.

Then, if we consider the Lindeberg condition we can bound

it above by the following:

n∑
i=1

E
[
||Yn,i||21{||Yn,i|| > ε}

]
≤ 1

εδ

n∑
i=1

E
[
||Yn,i||2+δ

1{||Yn,i|| > ε}
]

≤ 1

εδ

n∑
i=1

E
[
||Yn,i||2+δ

]
→ 0,

and so (E.1) implies (E.2).
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[33] L. Schwartz, Théorie des distributions. Hermann, Paris,

1966.

[34] I. Mitoma, “Tightness of Probabilities on C([ 0, 1 ]; Y’)

and D([ 0, 1 ]; Y’),” The Annals of Probability, vol. 11,

pp. 989–999, 1983.

[35] S. N. Ethier and R. C. Griffiths, “The transition function

of a Fleming-Viot process,” The Annals of Probability,

vol. 21, pp. 1571–1590, 07 1993.

[36] P. K. Sen and J. M. Singer, Large Sample Methods in

Statistics (1994). CRC Press, 11 2017.

[37] A. W. van der Vaart, Asymptotic Statistics. Cambridge

University Press, 10 1998.

119


	Insert from: "WRAP_Coversheet_Theses_new1.pdf"
	http://wrap.warwick.ac.uk/169248


