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Abstract. We consider the problem of finding a solution robust to dis-
turbances of its decision variables, and explain why this should be framed
as problem to identify all stochastically non-dominated solutions. Then
we show how this can be formulated as an unconventional multi-objective
optimization problem and solved using evolutionary computation. Be-
cause evaluating stochastic dominance in a black-box setting is computa-
tionally very expensive, we also propose more efficient algorithm variants
that utilize surrogate models and re-use historical data. Empirical results
on several test problems demonstrate that the algorithm indeed finds the
stochastically non-dominated solutions, and that the proposed efficiency
enhancements are able to drastically cut the number of required function
evaluations while maintaining good solution quality.

Keywords: Robust optimization · stochastic dominance · evolutionary
algorithm

1 Background and Motivation

In some real-world environments, the decision variables are subject to distur-
bances before implementation, e.g., due to manufacturing tolerances [2]. In such
cases, it is desirable that the solution is not only good, but also robust. Different
definitions of robustness have been proposed in the previous literature:

1. the solution with the best expected performance despite the disturbances.
This corresponds to a risk neutral decision maker. [13]

2. the solution with the best worst-case performance given the possible range
of disturbances. This corresponds to a highly risk sensitive decision maker,
willing to sacrifice expected performance for protection from risk. [2, 12]

3. the solution with the best weighted combination of expected performance
plus w times the standard deviation σ. The larger the weight w on the
standard deviation, the more risk averse this choice becomes. It has also
been suggested to treat this as a multi-objective problem [10, 1, 14].

The above definitions can be intuitively understood by the illustration of a
single-variable function shown in Fig. 1(a). The objective function is that of the
TP3 problem in [13]. The deterministic function is shown with a solid black line.
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Fig. 1. Illustration of the existing robustness measures. The image of the points A−E
in the fitness landscape of deterministic, 4σ robustness and worst-case robustness are
marked in red, magenta and green dots, respectively.

It is assumed that any given design x has an uncertainty uniformly distributed
in x∆ = [x − ∆,x + ∆] with ∆ = 0.025. Five points of interest (local optima)
A,B,C,D and E have been marked in the design space. For each of these points,
we show the region x∆ by 51 uniformly sampled points, shown as blue dots. The
resulting landscape of the robust formulation based on the worst case is shown
as dotted line, the landscape for a mean plus 4σ robust formulation is shown as
dashed line. Both robust formulations result in the solution C being identified
as the robust optimum design. However, it can be seen that the distribution of
objective values around design A yields (significantly) better performance under
the given variations for some values of x ∈ x∆. Even though the µ+4σ value and
the worst value obtained by the design C is better than that of A, design A yields
a better or equal performance compared to C with an 88.23% probability (based
on the uniform sampling shown)3.

Moreover, the formulation based on mean plus variance may distort the fit-
ness landscape in undesirable ways. If the uncertain region is slightly larger, say
∆ = 0.05, the fitness of solution A becomes even worse than the design x = 0.2,
whereas the objective value around design A is never worse than the latter. In-
creasing the value of w would magnify the penalty associated with the standard
deviation and a solution with extremely poor value but very low standard devi-
ation (e.g. x = 0.2, 0.8) is considered equivalent to a solution with much better
expected values but higher standard deviation (e.g., A,B,C). To remove the sen-
sitivity of the results to the choice of w, some works have suggested optimizing
the expected value and standard deviation as a bi-objective problem [10]. How-
ever, as shown in Fig. 1(b), the non-domination sorting based on µ and σ (of 951
uniform samples in [xmin + ∆,xmax −∆]) would also yield several undesirable
solutions that have poor objective value, on account of their low/zero variations.

3 Note that these probabilities will change if the uncertainty does not follow a uniform
random distribution; a scenario excluded from the scope of this work.
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Also to note is that some of these solutions (e.g., again x = 0.2, 0.8) which have
the worst possible objective value of f = 0, are preferred over the local minima
D,E since the latter get dominated by another point (C) in the search space.
The worst case formulation also masks the information regarding the better per-
formance achieved within the variable uncertainties, as seen between the designs
A and C. It also renders many of the designs indistinguishable in terms of their
fitness (flat regions in Fig. 1). Optimizing the worst case performance is also a
bilevel optimization which entails other characteristic challenges [9].

In order to overcome some of the shortcomings above, we propose a new way
of defining robustness that does not depend only on expected or extreme values,
but rather takes into consideration the distribution of the design performance
more comprehensively. In particular, we propose to identify all solutions that
are stochastically non-dominated. The concept of stochastic dominance is often
used to compare or rank probability distributions [11]. For two probability dis-
tributions gA(x) and gB(x), the corresponding cumulative distribution GA(x)
is said to first-order stochastically dominate GB(x) (GA(x) �sd GB(x)) if and
only if the following inequality holds:

GA(x) ≤ GB(x) ∀x. (1)

For any utility function u(x) that is strictly increasing and piece-wise differen-
tiable (which should be true for any rational DM), if GA(x) �sd GB(x)

GA(x) �sd GB(x)⇔ EA(u(X)) ≤ EB(u(X), (2)

where EA and EB are the expectations over the probability distributions gA
and gb, respectively. In other words, if we are able to identify all first-order
stochastically non-dominated solutions, then we would be sure that among the
identified solutions would be the most preferred solution for any rational decision
maker, irrespective of their risk preferences.

Our paper is structured as follows. After formulating the problem in Sec-
tion 2, we explain our baseline algorithm and strategies to reduce the number
of function evaluations in Section 3. Empirical results are reported in Section 4.
The paper concludes with a summary and some ideas for future work.

2 Proposed Problem Formulation

The proposed definition for robustness is based on the quantile function (QF)
of the objective computed within the given uncertain region x∆. This function
defines, for each possible probability p ∈ [0, 1] the fitness value that is obtained
at least with that probability. More formally,

QF (x, p) = inf{y ∈ R : p ≤ G(f(x))} (3)

where G(f(x)) is the cumulative probability density function of the fitness value
f(x) of solution x given the uncertainty of the disturbance.
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To identify all first-order stochastically non-dominated solutions, we are then
solving the following optimization problem.

min QF (x, p) ∀p (4)

s.t. xLi ≤ xi ≤ xUi , i = 1, . . . nx. (5)

Under the proposed definition, a solution xA is considered better than an-
other solution xB if QF (xA) yields a lower or equal value than QF (xB) (for
minimization) for all values of p ∈ [0, 1]. This is equivalent to xA first-order
stochastically dominating xB .

To understand the proposed measure intuitively, let us consider the QF func-
tions of the solutions A − E previously discussed, as shown in Fig. 2. A given
point on the curve, say (0.5,-0.4043) of curve D can be interpreted as: 50% of the
designs within the x∆ region of solution D have a better (lower) performance
value than -0.4043. From the observed QF curves, it can be inferred that A
dominates B,D,E, which means that for any quantile of fitness values A yields
a lower fitness than either B,D or E. On the other hand, (A,C) and (B,C)
are first order stochastically non-dominated pairs, implying that for each of the
pair, there exists a monotonic utility function that would lead to this being
the preferred solution. Thus, the set of first-order stochastically non-dominated
solutions out of these points is identified as A and C.
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Interestingly, the above formulation can be regarded as a multi-objective
problem with infinite number of objectives. Regardless of the nature of the
objective function f(x), QF is mathematically a continuous function. Thus, first-
order stochastic non-dominance is simply the non-domination criterion applied
to compare two continuous functions. For practical implementation of the idea,
we approximate QF by a finite (but large) set of objectives M , see below for
more details. At the same time, it should also be noted that QF is a strictly
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non-decreasing function. This characteristic can be used to circumvent some of
the scalability issues normally associated with non-domination based sorting for
problems with large number of objectives [8].

3 Solution using an Evolutionary Algorithm

The basic framework of our proposed algorithm is quite similar to a canonical EA
used to solve deterministic problems, but its components have been customized
to deal with the proposed robust problem formulation. The algorithm assumes no
prior information about the nature of the function, considering it as a black-box.
For brevity, we refer to the first-order stochastic domination as FOS-domination
in the following.

3.1 Discretization and evaluation of objectives

In many practical problems, the analytical form of the objective function is
unknown. A viable method to approximate the quantile function would then
be by sampling a finite number (say Ns) of designs within the uncertain region.
Furthermore, to practically compare between different solutions and to represent
them in a way that can be handled by EAs, a discretization of the quantile
function itself is needed. We propose to do so by using M uniformly sampled
values of p between 0 and 1. In order to evaluate a solution’s performance, the
quantile function value corresponding to the ith value of p is assigned as its ith

quantile, where i ∈ [1,M ]. This is illustrated in Fig. 3, where we chose M = 40
objectives and Ns = 1000 samples to construct the quantile function. Each
vertical dotted line in the figure corresponds to an objective (denoted on the
x-axis), and the red dots represent the corresponding robust objective values for
a solution (read from the y-axis).

3.2 Parent selection and evolution operators

For evolving offspring, the widely used crossover and mutation operators, simu-
lated binary crossover (SBX) and polynomial mutation (PM) [5] are used. Par-
ents are selected from the current population by pairwise tournament selection.
These mechanisms have been selected due to their widespread use in literature,
but can be easily substituted with other evolutionary operators.

3.3 Dominance calculation and ranking

The process of FOS-domination ranking for a given set S containing N solutions
and M objectives (quantiles) is outlined in Algo. 1 and the key steps are briefly
described below.

Firstly, a distance matrix d is computed. Each element of the matrix dij
denotes the minimum amount that needs to be added to all QF values of the
solution i for it to be dominated by solution j (Line 3 in Algo. 1).
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dij = max{max
q
{fq(j)− fq(i)}, 0} (6)

This quantity will correspond to the quantile in which solution i is better
than j by the maximum amount. For example when comparing solution A with
B in Fig. 3, dAB = f1(B) − f1(A). When comparing C and D, the maximum
difference occurs in the 40th objective, so dCD = f40(D) − f40(C). Note that
this measure is structurally similar to additive ε indicator [16], but applied in
quantile space instead of objective space.

Next, for each solution, dMin, the minimum of its distance values w.r.t.
all other solutions is identified (Line 5). This is the minimum value that needs
to be added to each objective of this solution to get dominated by any other
solution in the set S, i.e., dMin(i) = minj∈S dij . Thus, in the example above,
dMin(A) = dAB and dMin(C) = dCA. Note that dMin will be 0 for any solution
that is dominated by another solution (B, D, E in this case).

The sequence of elimination is then determined in the Lines 7-17. The solution
with the lowest dMin represents the solution that can be dominated most easily,
and is therefore added first to the elimination set. Then, the solution is removed,
and all corresponding d values (row and column) are set to∞. Thereafter, dMin
is updated, based on the updated d matrix. The solution with the lowest dMin
is again identified as the next solution to be added to the elimination list, and so
on. Once all solutions have been added to the list, the order is reversed (Line 18),
so as to rank the solutions from best to worst.

Note in the above ranking process that the dominated solutions are indis-
tinguishable from each other, since all of them will have a dMin = 0. In order
to obtain a full ordering, the FOS-domination ranking can be repeated only
on solutions that achieved dMin = 0 in the first pass. The solutions that get
dMin = 0 in the second pass can then be further segregated and ranked; until all
solutions have obtained a distinct ranking. Equivalently, one can first do a non-
domination sorting of the given solution set, and then apply FOS-domination
ranking front-by-front.

3.4 Strategies to reduce computational effort

For the above algorithm, an adequate number of samples needs to be sampled in
x∆ to replicate the quantile function accurately. If the population size is N , the
number of generations NG and the number of samples evaluated in the vicinity
of each solution x is Ns, then the total number of function evaluations (calls to
the original function f(x)) can be calculated as NFE = N ×NG×Ns. In order
to reduce the NFE, we propose two strategies below.

Use of approximation models: The use of surrogate models is prevalent
in the literature for solving computationally expensive problems with stringent
limits on NFE [15]. The basic idea is that based on a few available or prudently
sampled designs, a surrogate model can be built and used to partially guide the
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Algorithm 1 FOS-domination ranking

Input: Solution set S = N ×M matrix, where N = No. of solutions to be ranked,
M = No. of quantiles considered

1: for i = 1 to N do
2: for j = 1 to N do
3: Compute dij according to Eq. 6
4: end for
5: dMini = min(di,j ; j = 1 : N)
6: end for
7: Initialize ranklist = ∅;
8: for i = 1 to N do
9: if i 6= N then

10: j = argmin(dMinj)
11: else
12: j = 1 : N − ranklist {Set difference}
13: end if
14: ranklist = [ranklist j];
15: d(:, j) =∞; d(j, :) = infty
16: dMini = min(dij ; j = 1 : N)
17: end for
18: Return final ranks R = reverse(ranklist)

search in lieu of true evaluations. The true evaluation is then evoked only for
relatively few solutions during the search that have been identified as promising
based on the predictions from the surrogate model.

We use the Kriging model [4] to approximate the function f(x), and by
extension, the quantile function and associated quantiles in the neighborhood
of any candidate solution x. Instead of using a large sample size, say Ns = 100
points in x∆, we use much fewer samples, say Nss = 10. A Kriging model is
built using the set of data (x, f(x)) such that for any unknown x, the value of
f(x) can be predicted. The required number of samples (Ns = 100) are then
extracted using this surrogate model to construct the quantile function based on
predicted f(x) values.

Re-using samples from neighboring solutions: Another way to reduce the
computation is to reuse the previously evaluated samples that fall under the x∆

of the solution currently under consideration. The sample and its fitness value
can be inherited in such cases in lieu of evaluating a new sample. However, the
number of available solutions could be unevenly distributed, and have larger or
smaller size than the required number of samples Ns. This would adversely affect
the quality of the surrogate built in the region, as consequently the quantile
function and objectives. To counter this, we propose a simple strategy that
augments the existing points (if any), with new samples required to reach the
required number Ns, while maintaining relative uniformity between the samples.
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The process is illustrated in Fig. 4. Suppose that the point currently under
consideration is x = 5.5, let Ns = 10, and ∆ = 0.5. This implies that 11
points (including x = 5.5) need to be sampled uniformly in [5.0,6.0] to estimate
the quantile values of the point. These are labeled as ‘Ideal’ points, shown with
black dots. If two other points, x = 5.18 and 6.354 have previously undergone
robustness evaluation, this means that 11 uniformly sampled solutions (each) are
available in x ∈ [4.68, 5.68] and x ∈ [5.854, 6.854], respectively, shown as blue
dots. We examine each of the uniformly distributed samples (black dots) and
check if its closest existing sample (blue dot) is ≤ 2∆

Ns
away. If so, this original

sample and its f value are directly used. If not, then the sample is evaluated
instead. Moreover, the point under the robustness evaluation, i.e., x = 5.5 is
evaluated unless an exact copy of it exists already. Thus, in this case only 2
samples needed to be evaluated (shown in red circles), whereas the remaining 9
samples are picked from an archive. It is also possible to use more sophisticated
mechanisms to select the new sample locations, e.g., the one proposed in [6].

4.8 4.9 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2

x

Ideal

Available

Used as is

New samples

Fig. 4. Re-using the samples to reduce NFE

4 Numerical experiments

In this section, we evaluate the proposed approach on a range of benchmark
problems. Please note that due to the space limitations, the results for the full
set of problems are included in supplementary online material (SOM), which
is available at http://www.mdolab.net/Hemant/Research-Data/ppsn22sup.zip;
while only a few representative figures are included in this main manuscript.

4.1 Test problems

We demonstrate the proposed approach on the set of problems (TP1-9) formu-
lated in [13]. Moreover, one problem, TP10, is additionally created for this study,
and defined as f = x sin(2πx− π) with x ∈ [0, 10] and ∆ = 0.5. The interesting
feature of the problem is that (by design) the set of stochastically non-dominated
solutions can be readily inferred from observation as x = {1, 2, . . . 9}.
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4.2 Experimental Setup

The algorithmic parameters used for solving the problems considered are given in
Table 1. Four versions of the algorithm are used to solve each problem, configured
by setting the use of surrogates and re-use of the previous samples as ON/OFF.

– V1: This is the baseline version, where both the surrogates and re-use of
previous points is set to OFF.

– V2: Surrogates ON, re-use previous points OFF
– V3: Surrogates OFF, re-use previous points ON
– V4: Surrogates ON, re-use previous points ON

For each problem, 21 independent runs are conducted using each each algo-
rithm variant. The quality of the resulting solutions are assessed visually as well
as via unary metrics (discussed in next sub-section). In addition to the quality
of solutions, the savings incurred in the cheaper versions (V2-V4) compared to
the baseline (V1) version are also observed.

Table 1. Parameters used for the EA

Parameter Value

Number of quantiles (M) 11
Population size (N) 20
No. of generations (G) 50
Crossover probability (pc) 0.9
Mutation probability (pm) 0.1
SBX Crossover index (ηc) 10
Polynomial Mutation index (ηm) 20
Neighborhood sampling points (Ns) 100 (1000 for TP10)
Reduced sampling size for surrogate-based ver-
sions (V3/V4) (Nss)

10

4.3 Performance measurement

In order to quantify the performance of the proposed algorithm and its variants,
we resort to the inverted generational distance (IGD) metric[3]. IGD is com-
monly used in evolutionary multi-objective optimization for benchmarking the
performance of algorithms. IGD compares the Pareto front (PF) approximation
P obtained by an algorithm with a given reference set Q, which is the best esti-
mate of the PF. Both sets P and Q refer to a set of points in the objective space.
To compute the IGD, for each point in Q, the nearest point in P is identified
and the corresponding Euclidean distance is recorded. Then, IGD is calculated
as the mean of these distances; with a lower IGD indicating better performance.

For many of the standard benchmark problems, the true PF is known an-
alytically, so a given number of points can be sampled on it to generate the
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reference set. If the true optimum of the problem under consideration may not
be exactly known, a reference set is constructed e.g. by accumulating a large set
of non-dominated solutions by combining solutions examined in multiple runs
of all compared algorithms. Among the problems considered in this study, the
theoretical optimum can be readily inferred only for three problems - TP1, TP7,
and TP10. For TP1 and TP7, the function is monotonically decreasing in the
range of x = [2, 8]. The only deterministic (global) optimum lies at x = 8, and
the function value then steps up to 0 (its maximum value) thereafter. Therefore,
in terms of stochastic non-dominance, x = 8−∆ = 7.5 is the true optimum solu-
tion for the problem. As for TP10, it is defined in a way as to have multiple peaks
with the same periodicity but different, monotonically increasing, amplitudes.
The ∆ value chosen for the problem is 0.5, which is half the cycle of the function,
thereby making 2∆ the full cycle. By observation, the points at the middle of the
cycles, i.e., x = {1, 2, 3, . . . 9} therefore form the true optimum (stochastically
non-dominated) solutions to the problem.

For the remainder of the problems, approximate reference sets have been gen-
erated by considering a set of uniformly sampled 1001 solutions within ±0.5∆ of
their local and global optimum solutions. Then, the stochastically non-dominated
solutions among these are considered to be the reference set.

4.4 Results

The median IGD values obtained using all variants of the proposed algorithms (V1-
V4) are listed in Table 2, while the corresponding median function evaluations
across 21 runs are listed in Table 3. Moreover, the convergence plots for the
median runs for some representative problems are visualized in Fig. 5. Shown in
Fig. 6 are the solutions obtained for TP3 in both x and quantile space; with the
full set of problems included in the SOM Figs. 2-5.

Table 2. Median IGD values obtained by the proposed algorithm. The numbers in
parenthesis denote the ratio of IGD compared to baseline (V*/V1), with ↑ or ↓ indi-
cating the ratio to be higher or lower than 1, respectively.

Problem V1 V2 V3 V4

TP1 0.0002 0.0006 (2.45× ↑) 0.0021 (9.23× ↑) 0.0054 (23.59× ↑)
TP2 0.0002 0.0004 (2.82× ↑) 0.0006 (3.93× ↑) 0.0006 (3.54× ↑)
TP3 0.0012 0.0012 (1.05× ↑) 0.0019 (1.62× ↑) 0.0012 (1.05× ↑)
TP4 0.0004 0.0004 (1.21× ↑) 0.0007 (1.90× ↑) 0.0004 (1.16× ↑)
TP5 0.0012 0.0022 (1.78× ↑) 0.0019 (1.61× ↑) 0.0023 (1.89× ↑)
TP6 0.0072 0.0065 (0.91× ↓) 0.0083 (1.15× ↑) 0.0061 (0.85× ↓)
TP7 0.1421 0.5141 (3.62× ↑) 1.3860 (9.75× ↑) 6.6902 (47.09× ↑)
TP8 0.0384 0.0395 (1.03× ↑) 0.0450 (1.17× ↑) 0.0436 (1.13× ↑)
TP9 0.0051 0.0051 (1.01× ↑) 0.0088 (1.73× ↑) 0.0055 (1.08× ↑)
TP10 0.0117 0.0124 (1.06× ↑) 0.0137 (1.17× ↑) 0.0124 (1.06× ↑)
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Table 3. Median function evaluations used by the proposed algorithm. The numbers
in parenthesis denote the ratio of evaluations compared to baseline (V1/V*).

Problem V1 V2 V3 V4

TP1 1.01e+05 13020 (7.76× ↓) 3721 (27.14× ↓) 2824 (35.76× ↓)
TP2 1.01e+05 13020 (7.76× ↓) 3958 (25.52× ↓) 2845 (35.5× ↓)
TP3 1.01e+05 13020 (7.76× ↓) 4000 (25.25× ↓) 2845 (35.5× ↓)
TP4 1.01e+05 13020 (7.76× ↓) 3241 (31.16× ↓) 2341 (43.14× ↓)
TP5 1.01e+05 13020 (7.76× ↓) 3984 (25.35× ↓) 2892 (34.92× ↓)
TP6 1.01e+05 13020 (7.76× ↓) 4869 (20.74× ↓) 3180 (31.76× ↓)
TP7 1.01e+05 13020 (7.76× ↓) 3742 (26.99× ↓) 2776 (36.38× ↓)
TP8 1.01e+05 13020 (7.76× ↓) 5315 (19.00× ↓) 3217 (31.4× ↓)
TP9 1.01e+05 13020 (7.76× ↓) 3927 (25.72× ↓) 2949 (34.25× ↓)
TP10 1.001e+06 31020 (32.27× ↓) 30849 (32.45× ↓) 21031 (47.6× ↓)
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Fig. 5. Convergence plots corresponding to the median IGD run
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Fig. 6. Representative median IGD results obtained for TP3 using all versions (V1-V4)
of the proposed algorithm. Results for all problems included in the SOM.
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To provide context to Fig. 6, please note that there are two types of solutions
shown. Those in blue represent the non-dominated solutions (based on quantiles)
in the final population obtained after executing the EA run. However, some of
these solutions are what is referred to in the literature as dominance resistant
solutions (DRS)[7]. DRS are those that are significantly poor on one/some objec-
tive(s), but are non-dominated in the population due to a marginal improvement
over another solution in one/some of the objectives. This particularly comes into
play when the number of objectives is high, such as is the case here. To elimi-
nate the DRS, we first normalise all objective values between the maximum and
minimum values obtained among all objectives. Then, any differences between
the normalized objective values that are less than 1% of the range are eliminated
by rounding the values to two digits. These subsets of non-dominated solutions
are shown in red color in the figures, and used for computation of the metrics.

From Table 2, it can be observed that the median IGD values are generally
small, indicating that all four versions of the proposed algorithm were able to
locate the correct regions of stochastically non-dominated solutions. The over-
all accuracy decreases successively when moving from V1 to V4. The % in-
crease (V*/V1) in the IGD value is listed alongside the median IGD for each
of the variants. The factors lie in the range of ≈ [1, 4]. The notable exception
to this are TP1 and TP7, for the versions V3 and V4, i.e. those that operate
with surrogate-assistance. These two functions have their optimum exactly at
x = 7.5, and at the edge of x∆, i.e, at x = 8 there is a significant discontinuity,
stepping from the lowest to the highest value of the function instantaneously.
However, given that the surrogate models assume a continuous function, the
predicted step by the model at x = 8.0 will not be exactly vertical, leading to an
overestimation of some quantile values. This also implies that any solution right
of x = 7.5, even slightly, i.e., x = 7.5 + δ; δ → 0 will have at least one quantile
value as 0 (the highest value taken by the objective function). Note this, for
example, for the population members (marked blue) in SOM Figs. 2-5 for TP7.
The results for V3 and V4 of TP7 are also affected by the fact that the range
of function values is very large ([-216,0]), so small errors will lead to large IGD
values. A closer look at SOM Figs. 2-5 reveal that the solutions from the median
run obtained by V3 and V4 are quite close to those obtained using V1 and V2.
The same observations apply to TP1, as evident from SOM Figs. 2-5.

For other problems with multiple stochastically nondominated solutions, such
as TP3, TP6 shown in Fig. 6, the algorithm shows commendable performance
by identifying solutions in all the relevant regions. The same extends to other
problems (shown in the SOM), with possible exception of TP8 where the solu-
tions were found typically in 4 out of 5 regions in the median run. Reflecting
back on Figs. 2-3, it can be seen that the algorithm converged to the two correct
regions near points A and C - those with the non-dominated quantile func-
tions among the multiple optima. Notably, the above solutions were obtained
with significantly reduced number of evaluations compared to the baseline algo-
rithm (V1/V*). The reduction in function evaluations is typically about 8-fold
for V2 in the range of 20-40 folds for V3 and V4 to obtain solutions that are
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only marginally worse in quality compared to V1. Fig. 5 further provides a vi-
sualization of how quickly the computationally efficient variants of the proposed
algorithm are able to converge relative to the baseline version.

5 Conclusions and future work

We proposed a new paradigm for black-box robust optimization, providing first
order stochastically non-dominated solutions to a decision-maker. Towards this
end, we formulated an underlying multi-objective optimization problem with
discretized quantile functions and proposed an evolutionary approach to solve
the problem. Since the process is computationally expensive in terms of NFEs
consumed, strategies to reduce the NFEs substantially were also proposed, in-
cluding the use of surrogate approximation and re-use of historical data. The
results are encouraging and demonstrate the capability of the proposed algo-
rithm in achieving the targeted solutions, as well as reducing the computational
effort in doing so with relatively small compromise in solution quality.

In the future, we would like to make the proposed technique scalable for
higher numbers of variables by using more efficient sampling methods, and ex-
tend the approach to deal with second order stochastic dominance. Also, the
impact of the number of quantiles used for discretization and the density of
samples used for performance estimation also needs further investigation to as-
sess the proposed approach more comprehensively.
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