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Abstract. When the decision maker (DM) has unknown preferences,
the standard approach to a multi-objective problem is to generate an
approximation of the Pareto front and let the DM choose from the non-
dominated designs. However, if the evaluation budget is very limited,
the true best solution according to the DM’s preferences is unlikely to
be among the small set of non-dominated solutions found. We address
this issue with a multi-objective Bayesian optimization algorithm and
allowing the DM to select solutions from a predicted Pareto front, instead
of the final population. This allows the algorithm to understand the
DM’s preferences and make a final attempt to identify a more preferred
solution that will then be returned without further interaction. We show
empirically that significantly better solutions can be found in terms of
true DM’s utility than if the DM would pick a solution at the end.

Keywords: Preference Elicitation · Simulation Optimization · Gaussian
Processes · Bayesian Optimization.

1 Introduction

Many real-world optimization problems have multiple, conflicting objectives. A
popular way to tackle such problems is to search for a set of Pareto-optimal
solutions with different trade-offs, and allow the decision maker (DM) to pick
their most preferred solution from this set. This has the advantage that the DM
doesn’t have to specify their preferences explicitly before the optimization, which
is generally considered very difficult.

In case of expensive multi-objective optimization problems, where the num-
ber of solutions that can be evaluated during optimization is small, the Pareto
front, which may consist of thousands of Pareto-optimal solutions or even be
continuous, can only be approximated by a small set of solutions. It is thus un-
likely that the solution most preferred by the DM would be among the small
set of solutions found by the optimization algorithm, even if these are truly
Pareto-optimal solutions.

We suggest tackling this issue by using Bayesian Optimization (BO), a surro-
gate-based global optimization technique, and letting the DM choose a solution
from a predicted Pareto front rather than from the identified non-dominated
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solutions at the end of the run. BO is not only known to be very suitable for
expensive optimization as it carefully selects points to evaluate through an ac-
quisition function that explicitly balances exploration and exploitation. It also
generates a surrogate model of each objective function. These surrogate models
can be optimized by a multi-objective evolutionary algorithm to generate an
approximated Pareto front, and as evaluation of the surrogate model is cheap
relative to a fitness evaluation, we can generate a fine-granular representation
of the approximated Pareto front, consisting of very many solution candidates.
This approximated Pareto front with many hypothetical solutions can then be
shown to a DM to select from. While we cannot guarantee that the picked solu-
tion is actually achievable, the location of the picked solution should still give us
a very good idea about the DM’s preferences. Essentially, it provides a reference
point which we expect to be quite close to what should be achievable. We then
continue to run BO for a few more steps, aiming to generate the desired solution
or something better.

We believe that the cognitive burden for the DM is not much higher than in
standard multi-objective optimization: rather than having to identify the most
preferred solution from a discrete approximation of the Pareto front at the end
of the run, they now pick the most preferred out of the predicted (larger) set
of solutions, but the size of the set presented to the DM should not make a
big difference in terms of cognitive effort if the problem has only 2 (perhaps
3) objectives, where the interesting region can be identified easily by inspecting
the Pareto front visually. After the final optimization step, the algorithm has
to return a single recommended solution based on the elicited preference infor-
mation. Of course it would be possible to ask the DM again to choose from all
non-dominated solutions found, and this would probably further enhance the
quality of the identified solution. However, we deliberately limit the preference
elicitation in this paper to a single interaction.

Compared to the existing literature, we offer the following contributions:

– We are the first to question the common practice of returning the non-
dominated solutions after optimization.

– Instead, we demonstrate that it is beneficial to let the DM choose from an
approximated Pareto front before the end of optimization. While we cannot
guarantee to be able to find this solution, the found solution still has a better
utility than the best solution in the Pareto front obtained in the usual way.

– We examine the influence of the point in time when the DM is asked to pick
a solution and show that asking too early may be detrimental, while asking
too late may forfeit some of the benefits of the proposed approach.

– We explore the impact of a model mismatch between assumed and true
utility function and show that the benefit of our approach, while reduced,
remains significant despite model mismatch.

The paper is structured as follows. After a literature review, we formally define
the problem considered in Section 3. The proposed algorithm is described in
Section 4, followed by empirical results in Section 5. The paper concludes with
a summary.
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2 Literature Review

Depending on the involvement of the DM in the optimization process, multi-
objective optimization can be classified into a priori approaches, a posteriori
approaches, and interactive approaches [8, 21]. The field is very large, so we can
only mention some of the most relevant papers here. A priori approaches ask
the DM to specify their preferences ahead of optimization. This allows to turn
the multi-objective optimization problem into a single objective optimization
problem, but it is usually very difficult for a DM to specify their preferences
before having seen the alternatives. Most multi-objective EAs are a-posteriori
approaches, attempting to identify a good approximation of the Pareto frontier,
and the DM can then pick the most preferred solution from this set. This is much
easier for a DM, but identifying the entire Pareto front may be computationally
expensive. Interactive approaches attempt to learn the DM’s preferences during
optimization and then focus the search on the most preferred region of the Pareto
front. While this may yield solutions closer to the DM’s true preferences, it also
requires additional cognitive effort from the DM.

Our proposed algorithm lies in between a priori and interactive approaches:
It generates an initial approximation of the Pareto front, and only requires the
DM to pick a solution from this front. It then makes a final attempt to find
a more preferred solution based on what the DM has picked, and returns this
single final solution to the DM rather than an entire frontier.

BO is a global optimization technique that builds a Gaussian process (GP)
surrogate model of the fitness landscape, and then uses the estimated mean
and variance at each location to decide which solution to evaluate next. It uses
an acquisition function to explicitly make a trade-off between exploitation and
exploration (e.g., [17]). A frequently used acquisition function is the expected im-
provement (EI) [9] which selects the point with the largest expected improvement
over the current best known solution as the next solution to evaluate. Recently,
BO has been adapted to the multi-objective case, for a survey see [15]. One of
the earliest approaches, ParEGO [11] simply uses the Tchebychev scalarization
function to turn the multi-objective problem into a single objective problem,
but it uses a different scalarization vector in every iteration where the next so-
lution is decided according to EI. Other multi-objective algorithms fit separate
models for each individual objective. [5] trains a GP model for each objective,
then chooses the next solution to be evaluated according to a hypervolume-based
acquisition criterion. Other multi-objective BO approaches include [2, 10, 12].

Recently, a few interactive multi-objective BO approaches have also been
proposed [1, 7, 19]. Gaudrie et al. [6] allow the DM to specify a reference point a
priori, and use this to subsequently focus the BO search.

3 Problem Definition

The standard multi-objective optimization problem with respect to a particular
DM is defined as follows. We assume a D-dimensional real-valued space of pos-
sible solutions, i.e., x ∈ X ⊂ RD. The objective function is an arbitrary black
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box f : X → RK which returns a deterministic vector output y ∈ RK . The
(unknown) DM preference over the outputs can be characterized by a utility
function U : RK → R. Thus, of all solutions in X, the DM’s most preferred
solution is x∗ = argmaxx∈X U(f(x)). There is a budget of B objective function
evaluations, and we denote the n-th evaluated design by xn and the n-th out-
put by yn = f(xn) where, for convenience, we define the sampled solutions and
outputs as X̃n = {x1, . . . ,xn} and Ỹn = {y1, . . . ,yn}, respectively.

In a standard EMO procedure, after consuming the budget, the algorithm
returns the set of evaluated non-dominated solutions Γ ⊂ X̃n and the DM
chooses a preferred solution xp according to xp = argmaxx∈Γ U(f(x)). Figure 1
shows that a solution set may not contain any solution close to the DM’s true
preferred Pareto-optimal solution, and thus the DM will choose a sub-optimal
solution.

Interactive multi-objective optimization algorithms attempt to learn the DM’s
preferences and then focus the search effort onto the most preferred region of
the Pareto front, which allows them to provide a more relevant set of solutions.
However, the multiple interactions mean additional cognitive effort for the DM.
In this paper, we restrict the interaction to a single selection of a most preferred
solution from a non-dominated front, as in the standard, non-interactive case.
However, we allow to ask the DM for this information before the end of optimiza-
tion, after B − p evaluations. This allows the algorithm to identify potentially
more relevant solutions in the final p evaluations. At the end, the algorithm
has to return a single recommended solution xr (rather than asking the DM to
choose again), so that the cognitive effort is equivalent to the non-interactive
case. The aim is then to minimize the Opportunity Cost (OC) of the chosen
sample,

OC = U(f(x∗))− U(f(xr)).

4 Proposed Approach

This section describes details of the proposed algorithm. Section 4.1 and Section
4.2 show the statistical models used for the objectives and the utility, respec-
tively. Then, Section 4.3 provides background on EI-UU and Section 4.4 consid-
ers the case when the DM utility model is different from the model assumed by
EI-UU. Finally, Section 4.5 provides a summary of the algorithm.

4.1 Statistical Model of the Objectives

Let us denote the set of evaluated points and their objective function values up
to iteration n as Fn= {(x,y)1, . . . , (x,y)n}. To model each objective function
yj = fj(x),∀j = 1, . . . ,K, we use an independent GP defined by a mean function
µ0
j (x) : X → R and a covariance function k0j (x,x

′) : X × X → R. Given Fn,
predictions at new locations x for output yj are given by the posterior GP mean
µn
j (x) and covariance knj (x,x

′). We use the popular squared exponential kernel
that assumes fj(x) is a smooth function, and we estimate the hyper-parameters
from Fn by maximum marginal likelihood. Details can be found in [13].
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Fig. 1. HOLE test problem (b=0). (orange triangles) Solution set Γ shown to the DM.
(red cross) Solution picked by the DM xp. (red dot) True most preferred solution of
the DM.

4.2 Statistical Model over the Utility

After B−p evaluations, the DM selects a point µ∗ from an estimated Pareto front
P. Therefore, an interaction I is defined by the generated front and the selected
solution, I = (P, µ∗). The estimated front is generated using an evolutionary
algorithm (NSGA-II [3]) on the posterior mean response surfaces of the Gaussian
processes.

Let us assume that the DM’s utility can be described by a parametric utility
function U(x, θ) with parameters θ ∈ Θ. Similar to [1] and [16], we adopt a
Bayesian approach to obtain a distribution over parameters θ ∈ Θ. Commonly
used likelihood functions include probit and logit [20]. However, for simplicity we
assume fully accurate preference responses. Then, if we consider a utility model
U(θ), we would only accept a candidate parameter θ if the best solution from
the generated front P according to µ(θ) = argmaxµ∈P U(µ, θ) is the solution
selected by the DM. The likelihood for θ is then

L (θ) = Iµ(θ)=µ∗ .

Figure 2.b shows the above process by drawing three randomly generated
linear utility functions.

Depending on the utility function model, the set of “compatible” (L (θ) = 1)
parameterizations can be determined easily and in a deterministic way. More
generally, if we assume a flat Dirichlet prior on the parameter space Θ, then a
posterior distribution over θ is given by Bayes rule as

P[θ|I] ∝ L (θ)P[θ].

We may obtain samples from the posterior distribution P[θ|I] by simply gen-
erating Dirichlet samples from P[θ] and accepting only those that are compatible
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(a) (b)

Fig. 2. (a) Estimated Pareto front shown to the DM (white dots) and a single point
selected by the DM (red dot). (b) Three scalarizations are generated using a Linear
utility function. Some are compatible with the information elicited from the decision
maker (dashed green), and thus accepted. Scalarizations that are not compatible would
be rejected (dashed red).

with the DM interaction (L (θ) = 1). This approach may also be immediately
extended to multiple and independent interactions where L may be expressed as
the product of all different interactions. Thus, only those parameters compatible
with all interactions would be accepted.

4.3 EI-UU with Preference Information

EI-UU [1] is a recently proposed multi-objective BO algorithm that is able to
include uncertain preference information. Similar to ParEGO [11] it translates
the multi-objective problem into a single-objective problem using an achievement
scalarization function. However, ParEGO uses Tchebycheff scalarizations and
randomly picks a different scalarization in every iteration to ensure coverage
of the entire Pareto front, EI-UU uses linear scalarizations and integrates the
expected improvement over all possible scalarizations, so it takes into account
different scalarizations simultaneously rather than sequentially over iterations.

Given a parameterization θ, it is possible to determine the utility of the
most preferred solution out of the solutions sampled so far, Fn, as u∗(θ) =
maxi=1,...,n U(xi, θ). Then, EI-UU simply computes the expected improvement
over all possible realizations for θ and outputs y = f(x) , i.e.,

EI-UU(x) = Eθ,y[max{U(x, θ)− u∗(θ), 0}].

Figure 3 provides an example in two-dimensional solution space, showing two
EI landscapes for different θ (part a and b), as well as the corresponding overall
improvement over several such realizations (c).

If the utility is linear (as suggested in [1]), the computations are essentially
reduced to standard expected improvement, where we integrate over θ using a
Monte-Carlo (MC) approximation. Otherwise, the whole expectation must be
computed using Monte-Carlo with realisations of each objective at x generated
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Fig. 3. Expected Improvement over the solution space, with brighter colors indicat-
ing higher expected improvement. Circles indicate sampled solutions. (a-b) Expected
Improvement according to two different realizations of θ. Most preferred solution ac-
cording to the specific θ is highlighted in red. (c) shows the MC average over several
realizations of θ to obtain EI-UU. The recommended solution by the algorithm is se-
lected according to the maximum value of EI-UU.

as fj(x) = µn
j (x)+ knj (x,x)Z, where Z ∼ N(0, 1). Then, the overall expectation

over θ and Z is computed using a MC average,

EI-UU(x) ≈ 1

NΘNZ

∑
w=1,t=1

max {U(x, θw, Zt)− u∗(θw)}.

It is straightforward to accommodate preference information in this approach
simply by adapting the distribution of the different scalarizations considered.

4.4 Utility Mismatch

All proposed approaches require a parameterized model of the utility function.
In reality, this assumed model may not be able to accurately represent the true
utility function of the DM. To mitigate the risk of the DM being misrepresented,
we can use more flexible models (e.g., Cobb-Douglas utility function, Choquet
Integral, or artificial neural network) or simply allow any of a set of simple
models, which is the approach we take below. In general, there is a trade-off:
The more restrictive the utility model, the more informative the elicited DM
preference information, and the more focused the search in the final p steps may
be. On the other hand, if the assumed utility model was wrong, the focus would
be put on the wrong area, and the approach could fail. Thus, a more flexible
model will provide less benefit, but also smaller risk of getting it wrong.

In this paper, let us consider a given set of L utility model candidates, as
{U1(θ1), . . . , Ul, . . . , UL(θL)}. In the Bayesian framework, one complete utility
model Ul is formed by a likelihood function LUl

(θ) and a prior probability
density function P(θ|Ul), where now we explicitly emphasize the dependence
of a model Ul on the likelihood and prior distribution. Therefore, to obtain a
posterior distribution over models given the interaction I, i.e., P(Ul|I), we must
compute the marginal likelihood, or Bayesian evidence, as
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P[I|Ul] =

∫
θl∈Θl

LUl
(θl)P(θl|Ul)dθl.

This quantity represents the probability of the data collected, I, given a util-
ity model assumption Ul. However, we rely on approximating each term P[I|Ul]
through MC integration. Hence, a posterior distribution over the different can-
didate utilities may be computed as

P[Ul|I] =
P[I|Ul]P[Ul]∑L
i=1 P[I|Ui]P[Ui]

,

where P[Ul] represents a prior distribution for the candidate utility models. If
we also consider a uniform distribution over the candidate models as P[Ul] = 1/L,
then the posterior distribution only depends on the likelihood distribution terms.
This shows that models with higher evidence values tend to have higher weight
than other competing candidate models. Finally, EI-UU may be adapted by
simply taking the expectation over the posterior P[Ul|I],

EI-UU(x) =

L∑
i=1

Eθi,y[max{Ui(x, θi)− u∗
i (θi), 0}]P[Ui|I]

4.5 Algorithm

The proposed algorithm follows the standard EI-UU algorithm with a single
exception. Instead of letting the DM choose their most preferred solution at the
end of optimization (after the budget of B samples has been depleted), we let the
DM choose their most preferred solution from an approximated frontier already
after B − p samples. This approximated frontier is generated by NSGA-II on
the posterior mean function obtained from the GPs for each objective. From
the interaction, we derive user preferences as explained above, and evaluate an
additional p solutions using this preference information. Finally, at the end of
the optimization run, the algorithm returns to the DM the single solution xr

that it thinks has the best expected performance.

5 Results and Discussion

To assess the performance of the proposed approach, we investigate the Op-
portunity Cost (OC) dependence on the time when the DM is asked to pick a
solution.

5.1 Experimental setup

In all experiments, EI-UU is seeded with an initial stage of evaluations using
2(D+1) points allocated by Latin hypercube sampling overX. These evaluations
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Algorithm 1: Overall Algorithm.

Input: black-box function, size of Monte-Carlo NΘ and NZ for EI-UU, and the
number of function evaluations B − p before asking the DM.

0. Collect initial simulation data, Fn, and fit an independent Gaussian process for
each black-box function output.

1. While b < B do:

2. If b = B − p do:

3. Generate approximated Pareto frontier.

4. DM selects preferred solutions.

5. Compute posterior distribution P[θ|I].
7. Compute xn+1 = argmaxx∈X EI-UU(x;NΘ, NZ).

8. Update Fn, with sample {(x,y)n+1}
9. Update each Gaussian process with Fn

10. Update budget consumed, b← b+ 1

11. Return: Recommend solution, xr = argmaxx∈X

∑L
i=1 Eθl [Ui(x, θ)]P[Ui|I]

are in addition to the budget B. NSGA-II is run for 300 generations with a
population size of 100 to produce a Pareto front approximation.

We use four different test functions:

1. The HOLE function [14] is defined over X = [−1, 1]2 and has K = 2 objec-
tives. We use b > 0, which produces two unconnected Pareto fronts, and the
following function parameters: q = 0.2, p = 2, d0 = 0.02, and h = 0.2.

2. An instance of the DTLZ2 function [4] with K = 3 objectives and defined
over X = [0, 1]3.

3. The ZDT1 function [4] with k = 2 objectives and defined over X = [0, 1]3.

4. The rocket injector design problem [18]. This problem consists of minimizing
the maximum temperature of the injector face, the distance from the inlet,
and the maximum temperature on the post tip over X = [0, 1]4.

All results are averaged over 20 independent replications and the figures below
show the mean and 95% confidence intervals for the OC.

5.2 Preference Elicitation without model mismatch

In this subsection, we look at the benefit that can be gained from letting the DM
choose from the approximated Pareto front. We assume the DM has a Tcheby-
chev utility with true underlying (but unknown to the algorithm) parameters
θ. The true underlying parameters are generated randomly for every replication
of a run using a different random seed. We include an optimistic setting (“Per-
fect Information”), such that once we interact with the DM, we receive the true
underlying parameter θ and use this information in the following optimization
steps. This represents the best performance we can hope for.
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Figure 4 (first column) shows results depending on when the DM selects
a point from the Pareto front. The benchmark is the case where the DM picks
from the final set of non-dominated solutions after B − p = 100 iterations. The
figure clearly indicates a trade-off about when the preference information should
be elicited. The earlier the DM is involved, the longer it is possible for EI-UU to
exploit the preference information gained. On the other hand, the earlier the DM
is shown an approximated Pareto front, the less accurate is this Pareto front, and
thus the learned preference information may be wrong. For the HOLE function,
asking the DM too early (small B − p values) even leads to substantially worse
results than letting the DM pick a solution after the end of the optimization
(B− p = 100). However, for all four functions considered, there is a broad range
of settings that yield a significantly better result than when asking the DM after
optimization. The intuitive explanation of the above trade-off is confirmed when
comparing results with the case when perfect preference information is obtained.
In this case, it is best to interact as early as possible, as there is no risk of learning
something wrong or less informative due to a poor approximation of the Pareto
front.

Figure 4 (second column) looks at the dependence of the observed ben-
efit of letting the DM pick a solution early on the budget B, comparing B =
20, 100, 200. As expected, the OC decreases with increasing number of function
evaluations. If the budget is very small (B = 20), it seems not possible to gain
much by asking the DM early. Following the intuition above this is not really
surprising, as after a very short optimization run the Pareto front is not well
approximated and any information gained from the DM may be misleading. For
a large budget (B = 200), there is still a small benefit to be gained for some of
the test functions. However, intuitively, as the available budget tends to infinity,
we can expect that the algorithm will return a very dense and accurate Pareto
frontier, so the DM will be able to choose their true most preferred solution (or
some solution very close to that), and so it is not possible to improve over that.
The figure also allows us to appreciate the magnitude of the benefit of letting
the DM choose earlier. For example, using a medium budget of B = 100 for the
HOLE function and letting the DM choose after 80%=80 samples yields an OC
almost as small as increasing the budget to B = 200 samples and letting the
DM choose at the end of the run.

5.3 Preference Elicitation with model mismatch

If the DM’s true utility model is different from the parameterized model used
by the algorithm there is a mismatch between the DM’s true utility model (un-
known to the algorithm) and the learned utility model in the algorithm. The
consequences of model mismatch are explored next.

So far, we assumed that the true DM utility model is Tchebychev, and this
model is used when the DM picks a solution from the approximated Pareto
front, and again to evaluate the OC at the end. Now, in each replication of the
algorithm, a random true linear utility model is generated for the DM. However,
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Fig. 4. First column: Final true utility of the generated solution set after B = 100
iterations, depending on how many iterations from the start the DM was presented with
an approximation of the front (B − p). True and assumed DM utility was Tchebychev.
Second column: Final true utility of the generated solution set after different budgets,
depending on the percentage of consumed budget before presenting an approximation
of the front to the DM. True and assumed DM utility was Tchebychev. Third column:
Final true utility of the generated solution set after B = 100 iterations, depending on
how many iterations from the start the DM was presented with an approximation of the
front (B−p). The DM has a Linear utility and we show results for three different utility
model assumptions (Linear, Tchebychev, and a model average). The dashed horizontal
lines show the OC when the DM selects the best solution after optimization.
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all approaches still assume a Tchebychev utility function and use this to focus
the search over the last p iterations and also to recommend a final solution.

We consider two candidate utility functions to average EI-UU, Tchebychev
and Linear. As Figure 4 (third column) shows, model mismatch (orange) leads
to substantially worse solutions, even when the DM only picks a solution after
optimization. This seems counter-intuitive at first, but actually, EI-UU implicitly
assumes a distribution of utility functions for scalarization, even if the distribu-
tion of parameter values θ is uniform. It appears that even with this relatively
weak assumption, a model mismatch leads to significantly worse solutions. It
is also clear that if there is a severe model mismatch (the algorithm assumes
Tchebychev but the true utility is linear), letting the DM choose a solution be-
fore the end of the optimization is not always helpful (for the HOLE and DTLZ2
function, no setting of B−p leads to significantly better results than B−p = 100).
On the other hand, except for letting the DM choose very early, it is also not
significantly worse. For the correct and the more flexible model encompassing
Tchebychev and Linear, better results can be obtained for all four test problems
by letting the DM choose before the end of optimization. But as expected, the
benefit is smaller with the more flexible model, as its flexibility means it can
focus less narrowly than if a less flexible but correct model is assumed.

6 Conclusion

For the case of expensive multi-objective optimization, we show how the surro-
gate models generated by Bayesian optimization can be used not only to speed
up optimization, but also to show the DM a predicted Pareto front before the end
of optimization, rather than the sampled non-dominated solutions at the end of
the optimization run. Then, the information on the most preferred solution can
be used to focus the final iterations of the algorithm to try and find this pre-
dicted most preferred solution, or even a better solution, which is then returned
to the DM as recommended solution (no more interaction from the DM required
- as in the standard case for EMO, the DM only once picks a most preferred
solution from a frontier). We demonstrate empirically on four test problems that
for various scenarios, the benefit in terms of true utility to the DM is significant.

Future directions of research may include the evaluation on a wider range of
test problems, making the time to ask the DM self-adaptive, and to turning the
approach into a fully interactive approach with multiple interactions with the
DM during the optimization.
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