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Abstract

The abrupt change of the size of the largest connected component is a central

quantity of interest in the study of random graphs. For the percolation model, it is

well known for a variety of families of finite regular graphs that the largest connected

component experiences an asymptotic phase transition marking the emergence of a giant

component (that is, one which contains a positive proportion of the total number of

vertices) when the edge weight is appropriately rescaled by the vertex degree. For the

random cluster model, a similar asymptotic phase transition was established by Bollobás,

Grimmett, and Janson on the complete graph in [6]. The problem of establishing a

similar phase transition on any family of finite graphs with more complicated geometry

had remained open.

In this thesis, we study the emergence of the giant component for the random

cluster model on two families of finite regular graphs. Our first result provides an

alternative analysis of the random cluster model on the complete graph using a thermo-

dynamic/large deviations approach introduced by Biskup, Chayes, and Smith to study

percolation on the complete graph in [3]. In particular, we compute the exponential rate

of the large deviations of the size of the largest connected component of the random

graph. Our second result establishes an asymptotic phase transition for the random

cluster model on the hypercube when the cluster weight is an integer. In particular, we

introduce a new concept which we call the sprinkled random cluster measure, which we

combine with results obtained from an analysis of the asymptotics of a corresponding

Potts model in order to extend the arguments of [1] to the random cluster model.

v



Chapter 1

Introduction

The initial objective of this thesis was to investigate a model of random permutations

known as the interchange process, which was introduced by Tóth in [39] as a probabilistic

representation of the quantum Heisenberg ferromagnet. In particular, one may show

that the expected phase transition of the magnetisation of the Heisenberg ferromagnet

on the lattice Zd (d ≥ 3) is closely related to the appearance of an infinite cycle in the

corresponding interchange process.

Establishing the appearance of an infinite cycle in the interchange process on Zd

is hard, so one may instead investigate long cycles in simpler graphs, beginning with

the complete graph Kn. This was first done by Schramm in [37], who investigated

an unweighted version of the interchange process and established that the size of the

largest cycle experiences an asymptotic phase transition in the limit n→∞ by arguing

that each cycle is contained within a component of an associated percolation model. In

particular, a giant cycle cannot appear in the unweighted interchange process before a

giant component appears in the corresponding percolation model. Similar arguments

were used by Kotecký, Mi loś, and Ueltschi in [33] to analyse the unweighted interchange

process on the hypercube Qn.

It has been conjectured that for graphs of diverging degree, a similar correspon-

dence exists between the largest cycle of the weighted interchange model and the largest

component of a weighted version of the percolation model, known as the random cluster

model. For the complete graph, this conjecture was proven by Björnberg in [4]. For the

hypercube, however, even the largest component of the random cluster model had not

yet been studied, and so we focused on this open problem.

The random cluster model was introduced by Fortuin and Kasteleyn in [21] as a

generalisation of several existing models in statistical physics satisfying certain series and
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parallel laws. Given an underlying graph G, the random cluster model samples a random

edge-set of a given graph G according to a probability measure φG,p,q which depends

on two parameters; the edge weight p ∈ [0, 1] and the cluster weight q > 0. When

q = 1, the random cluster measure reduces to the percolation measure φG,p, which was

introduced by Broadbent and Hammersley in [11] in order to study the percolation of

liquid through a porous medium. When q = 2, we instead recover the Ising model for

ferromagnetism from [28]. More generally, we may relate the random-cluster model to

the Potts model (introduced in [36]) when q ∈ N≥2 using the Edwards-Sokal coupling

given in [17]. By taking an appropriate limit as q → 0, we may recover the measure

for the uniform spanning tree, which was related to the theory of electrical networks by

Kirchhoff in [31].

When q ≥ 1, the random cluster model is stochastically ordered by the edge

weight p, and we investigate how the random graph defined by the sampled edge-set

evolves as p increases. One key quantity of interest in this investigation is the size of the

largest connected component of the random graph. This is motivated by the study of

percolation on a lattice, wherein one seeks a path of edges in the random graph which

spans the lattice, so that liquid may percolate in the underlying physical model. In the

limiting case of the infinite lattice, one seeks an infinite path - or equivalently, an infinite

component. Typically, one expects to find a critical probability pc = pc(G) such that

for p < pc, the largest component is finite, while for p > pc, the largest component is

infinite. For example, it was famously proven by Kesten in [29] that pc(Z2) = 1
2 . This

abrupt change in the size of the largest component is known as a phase transition. For

more general values of q, this phase transition is related to phase transitions in the Potts

model and other spin systems.

When G is finite, there is a positive probability that the random graph is con-

nected, so matters are more complicated. In this instance, one typically fixes a sequence

(Gn)n∈N of finite graphs, a sequence (pn)n∈N of edge weights, and investigates the largest

component of a sequence of random graphs drawn from the sequence (φGn,pn,q)n∈N of

measures. We will be particularly interested in the emergence of a giant component

containing a fixed proportion of the total number of vertices. One early result in this

direction is the groundbreaking paper [19], in which Erdős and Rényi studied the perco-

lation measure φKn,λ/n on the complete graph and established the existence of a critical

parameter λc = 1 marking the emergence of the giant component asymptotically almost

surely. More specifically, they showed that, with probability tending to one as n → ∞,

the largest component of the random graph is of order log n when λ < 1 and of order n

when λ > 1.
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The abrupt change in the size of the largest component (in the limit as n→∞)

established in [19] is known as an asymptotic phase transition, and is proven using an

exploration process whereby one chooses a vertex and sequentially inspects which ver-

tices are connected to it in the random graph. Provided one has not yet explored a large

fraction of the vertices, this exploration can be approximated by a Poisson branching

process with mean λ in the limit as n → ∞, and the vertex belongs to the giant com-

ponent if the corresponding branching process survives. Indeed, it can be shown that

the density of the giant component converges to the survival probability of a Poisson

branching process with mean λ. More detailed results, including the behaviour of the

largest component around the critical point λ = 1, may be found in e.g. [5] and [26].

The exploration process is not crucially dependent on the structure of the com-

plete graph, and has been successfully applied to the study of percolation on a variety

of families of finite, regular graphs. One key result is the paper [1], in which Ajtai,

Komlós, and Szemerédi studied the percolation measure φQn,λ/n on the hypercube by

combining the exploration process with a new technique known as the sprinkling method.

Consequently, they showed that, with probability tending to one as n→∞, the largest

component of the random graph is of order n when λ < 1 and of order 2n when λ > 1.

As for the complete graph, the density of the largest component converges to the survival

probability of a Poisson branching process with mean λ, and the behaviour around the

critical point λ = 1 has been investigated in detail in e.g. [7] and [10].

For q 6= 1, we encounter an additional complexity - the edges included in the

random graph are no longer independent, and it is no longer clear that the exploration

process can be used to study the component of a given vertex. Nevertheless, a complete

treatment of the random cluster model on the complete graph was given by Bollobás,

Grimmett, and Janson in [6], who considered the measure φKn,λ/n,q and established the

existence of a critical parameter λc (depending only on q) marking the emergence of the

giant component asymptotically almost surely. More specifically, they showed that, with

probability tending to one as n→∞, the largest component of the random graph is of

order log n when λ < λc and of order n when λ > λc. When q ∈ N≥2, this is related

to a phase transition in the mean-field Potts model investigated by Wu in [40], and the

limiting density of the giant component may be expressed in terms of the mean-field

magnetisation.

The asymptotic phase transition established in [6] is proven by randomly colour-

ing the vertices of Kn using two colours (say red and green) in a particular way so that

the distribution of edges on the red vertices is given by a percolation measure, to which

we may apply the exploration process used in [19]. This colouring argument relies on
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the observation that for a fixed set R of red vertices, the conditional distribution of

edges yields a random percolation on the complete graph induced on the set R. This is

a particular fact that does not generalise to more structured families of graphs. Con-

sequently, the complete graph is the only family of finite graphs for which the random

cluster model has been studied in detail.

In this thesis, we extend the study of the random cluster model on finite graphs

to a slightly more general setting. We have two main results, which both establish that

the largest component of a family of regular graphs undergoes an asymptotic phase

transition when we rescale the edge weight p by the vertex degree.

Our first result is a new analysis of the measure φKn,λ/n,q on the complete graph,

which omits the colouring arguments used in [6] in favour of a thermodynamic / large

deviations approach introduced by Biskup, Chayes and Smith in [3] in order to study

the percolation measure φKn,λ/n. In particular, we will compute the rate function for

large deviations of the size of the largest connected component, thereby recovering the

asymptotic phase transition proven in [6]. This rate function is new. In addition,

we obtain a limit for the free energy of the random cluster model on the complete

graph. This was also computed in [6] via the colouring argument, but used to study the

large deviations of the number of connected components, rather than their size. As a

byproduct of our analysis, we also obtain the exponential decay rate for the events that

the random graph is connected and acyclic, respectively.

Our second result is an analysis of the largest component of the random graph

for the measure φQn,λ/n,q on the hypercube, which uses a new analogue of the sprinkling

method for the random cluster model in order to extend the arguments employed in

[1]. As a substitute for the exploration process used in [1], we will also investigate

the free energy of the corresponding Potts model, using methods developed by Kesten

and Schonmann in [30] to study the Potts model on the lattice Zd. In particular, we

will show that the Potts model on the hypercube converges to a mean-field limit when

appropriately rescaled. Using this limit, we will establish that the largest connected

component of the random cluster model undergoes an asymptotic phase transition for

integer q, where the critical parameter λc(q) is the same parameter established for the

complete graph in [6].

Finally, we briefly discuss the structure of the thesis. To begin, we provide a dis-

cussion of the necessary mathematical prerequisites in Chapter 2. This includes a formal

introduction to the random cluster and Potts models, based upon the treatments given

in [16] and [30], and a discussion of some isoperimetric inequalities for the hypercube,

taken from [10] and [14]. Crucially, we will also state and prove the new analogue of
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the sprinkling method for the random cluster model in Section 2.1.2. With these pre-

requisites in hand, we discuss the main results of the thesis in Chapter 3. Section 3.1 is

another expository section which discusses the results established in [6], while Sections

3.2 and 3.3 discuss our new results for the random cluster model on the complete graph

and the hypercube, respectively. The remainder of the thesis is dedicated to the proofs

of these results. In particular, Chapters 4 and 5 deal with the complete graph, while

Chapters 6 and 7 are dedicated to the hypercube.

5



Chapter 2

Preliminaries

In this chapter, we present the preliminary definitions and results used in this thesis.

With the key exception of Section 2.1.2, the content of this chapter is not original, and

draws from a variety of sources.

We begin with a formal introduction to the random cluster model in Section 2.1,

based upon the formulation of the model given by Duminil-Copin in [16]. In Section

2.1.1, we show that the random cluster model is stochastically ordered in various appro-

priate ways, again following the methods of [16]. Then, in Section 2.1.2, we establish a

version of the sprinkling method (introduced by Ajtai, Komlós, and Szemerédi in [1] for

percolation) for the random cluster model. In particular, we introduce a new concept of

independent interest which we call the sprinkled random cluster measure.

Next, we discuss the Potts model in Section 2.2, using the formulation of the

model given by Kesten and Schonmann in [30]. In Section 2.2.1, we discuss the Edwards

Sokal coupling, which was introduced in [17] and provides a relationship between the

Potts and random cluster models. Then, in Section 2.2.2, we analyse the free energy of

the Potts model. The treatment of the Edwards Sokal coupling in Section 2.2.1 is based

upon [16], while the treatment of the free energy in Section 2.2.2 is adapted from that

of Friedli and Velenik in [23].
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2.1 The random cluster model

In this section, we provide a formal introduction to the random cluster model, based

upon the formulation of the model given by Duminil-Copin in [16].

Let G = (V,E) be a finite graph, and define ΩG = {0, 1}E . An element ω ∈ ΩG

is known as a percolation configuration, and corresponds to an assignment of a value

ωe ∈ {0, 1} to each edge e ∈ E. If ωe = 1, we say the edge e is open. Otherwise, e is

closed. Given ω ∈ ΩG, observe that the set E(ω) := {e ∈ E : ωe = 1} of open edges of

ω defines a subgraph G(ω) = (V,E(ω)) of G. As the map ω → G(ω) is a bijection, any

measure on the set ΩG induces a measure on the set of subgraphs of G. We define the

random cluster model by the following measure:

Definition 2.1.1 (Random cluster model). Let G = (V,E) be a finite graph, p ∈ [0, 1]

and q > 0. The random cluster model on G with edge weight p and cluster weight q is

defined by the measure

φG,p,q[ω] :=

{∏
e∈E p

ωe(1− p)1−ωe
}
qk(ω)

ZRC
G,p,q

, (2.1)

where

ZRC
G,p,q :=

∑
ω∈ΩG

{∏
e∈E

pωe(1− p)1−ωe}qk(ω) (2.2)

is the normalising partition function, and k(ω) is the number of connected components

in the graph G(ω).

When q = 1, the random cluster measure reduces to a percolation measure, in

which case we use the standard notation φG,p. For percolation, the states of edges are

independent, and one may sample a graph from the percolation measure by opening

each edge of G independently with probability p. This procedure may be used to extend

the percolation measure to infinite graphs in a natural way. Extending the random

cluster model to infinite graphs is possible, but more complicated. As this thesis is only

concerned with cases where the graph G is finite, we will not discuss the matter further.

2.1.1 Stochastic monotonicity of the random cluster model

Consider the following construction of a configuration ω under the measure φG,p:

1. To each edge e ∈ E, we associate a uniform random variable Ue on [0, 1].

2. If Ue ≤ p, we set ωe = 1. Otherwise, we set ωe = 0.
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Let p1 < p2 be two edge weights, and construct two configurations ω, ω̃ by setting ωe = 1

if Ue ≤ p1 and ω̃e = 1 if Ue ≤ p2 for each e ∈ E. Then ω, ω̃ are distributed according

to the measures φG,p1 , φG,p2 respectively. Moreover, this coupling has the additional

property that if ωe = 1 then ω̃e = 1. Informally speaking, the random graph associated

to the measure φG,p is growing as p increases.

The objective of this subsection is to provide a generalisation of the above idea for

the random cluster model. To begin, we will need a partial ordering on the set ΩG with

which to compare two configurations ω, ω̃ and their corresponding graphs G(ω), G(ω̃).

We will use the partial ordering on the set ΩG given by

ω ≤ ω̃ ⇐⇒ ∀ e ∈ E, ωe ≤ ω̃e. (2.3)

Equivalently, ω ≤ ω̃ if and only if G(ω) is a subgraph of G(ω̃). We say that a function

on ΩG is increasing if it respects this ordering. That is:

Definition 2.1.2 (Increasing functions). Let G = (V,E) be a finite graph and ≤ be the

partial ordering of ΩG defined in (2.3). We say a function f : ΩG → R is increasing

(with respect to the partial ordering ≤) if for any pair ω, ω̃ ∈ ΩG,

ω ≤ ω̃ ⇒ f(ω) ≤ f(ω̃). (2.4)

We say a set A ⊂ ΩG is increasing if its indicator function 1A is increasing. Equivalently,

A is increasing if for any pair ω, ω̃ ∈ ΩG,

ω ∈ A, ω ≤ ω̃ ⇒ ω̃ ∈ A. (2.5)

In particular, we see that an event A ⊂ ΩG is increasing if it still holds whenever

we open additional edges in G. Note that {ωe = 1} is an increasing event, and for any

p1 < p2, our earlier coupling shows that

φG,p1 [ωe = 1] ≤ φG,p2 [ω = 1]. (2.6)

In fact, (2.6) holds if we replace the event {ωe = 1} with any increasing event A. This

motivates the following definition:

Definition 2.1.3 (Stochastic monotonicity). Let Ω be a set equipped with a partial

ordering ≤ and let µ, ν be two probability measures on Ω. We say that µ is stochastically

dominated by ν, written µ ≤st ν, if µ[A] ≤ ν[A] for any increasing event A.

8



Our goal is to establish various forms of stochastic monotonicity for the random

cluster model as we vary the edge weight p and/or the cluster weight q. This will be

done using the following criterion, taken from [16]:

Lemma 2.1.4 ([16, Lemma 1.5]). Let µ, ν be two strictly positive measures on ΩG.

Suppose that for any e ∈ E and any pair of configurations ψ,ψ′ ∈ {0, 1}E\{e} such that

ψ ≤ ψ′, we have

µ[ωe = 1 | ωE\{e} = ψ] ≤ ν[ωe = 1 | ωE\{e} = ψ′]. (2.7)

Then, there exists a measure Pµ,ν on pairs (ω, ω̃) such that the marginals of Pµ,ν on ω, ω̃

are equal to µ, ν respectively, and Pµ,ν(ω ≤ ω̃) = 1. In particular, µ is stochastically

dominated by ν.

Proof. We follow the proof of [16, Lemma 1.5], constructing the measure Pµ,ν using a

continuous time Markov chain on pairs (ωt, ω̃t) ⊂ ΩG defined in the following way:

1. At time t = 0, let ω0 be the configuration identically equal to 0 (i.e. all edges are

closed) and ω̃0 be the configuration identically equal to 1 (i.e. all edges are open).

2. To each edge e ∈ E, associate an exponential clock and a sequence (Uk,e)k∈N of

independent uniform random variables on [0, 1].

3. Suppose the clock associated to the edge e rings for the kth time at time t, at

which time the configurations of ωE\{e}, ω̃E\{e} are given by ψe,k, ψ̃e,k respectively.

Then, set:

ωte =

1 if Ue,k ≤ µ[ωe = 1 | ωE\{e} = ψe,k]

0 otherwise

ω̃te =

1 if Ue,k ≤ ν[ωe = 1 | ωE\{e} = ψ̃e,k]

0 otherwise

As ωt is an irreducible continuous time Markov chain, its distribution converges to

a stationary measure, which is necessarily µ due to the choice of jump probabilities.

Similarly, the distribution of ω̃t converges to the stationary measure ν. Moreover, as

ω0 ≤ ω̃0, the choice of jump probabilities ensures that ωt ≤ ω̃t for every t. Consequently,

we see that the measure for the pair (ωt, ω̃t) converges to a stationary distribution Pµ,ν
with marginals µ, ν such that Pµ,ν(ω ≤ ω̃) = 1 in the limit as t→∞. Finally, we observe
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that for any increasing event A,

µ[A] = Pµ,ν [ω ∈ A] = Pµ,ν [ω, ω̃ ∈ A] ≤ Pµ,ν [ω̃ ∈ A] = ν[A]. (2.8)

In particular, µ is stochastically dominated by ν.

The first major stochastic domination result for the random cluster model is the

Fortuin-Kasteleyn-Ginibre (FKG) inequality, introduced in [22]:

Theorem 2.1.5 (FKG Inequality). Let p ∈ [0, 1] and q ≥ 1. Then, for any pair of

increasing events A,B ⊂ ΩG, we have

φG,p,q[A ∩B] ≥ φG,p,q[A]φG,p,q[B]. (2.9)

Proof. We follow the proof of [16, Theorem 1.6]. If φG,p,q[B] = 0 then (2.9) is trivial, so

without loss of generality we may assume that φG,p,q[B] > 0. As the configuration which

is identically equal to 1 belongs to any non-empty increasing event, we may construct

the same continuous time Markov chain as in the proof of Lemma 2.1.4 with µ = φG,p,q[·]
and ν = φG,p,q[· | B]. Observing that

ν[ωe = 1 | ωE\{e} = ψ] =

1 if ψ(0) /∈ B

µ[ωe = 1 | ωE\{e} = ψ] if ψ(0) ∈ B

we see that µ and ν satisfy the condition of (2.7), so we may follow the proof of Lemma

2.1.4 to deduce that µ is stochastically dominated by ν. In particular, for any increasing

event A we see that φG,p,q[A] ≤ φG,p,q[A | B], which is equivalent to (2.9).

Note that the condition q ≥ 1 is important, and the FKG inequality fails without

it. A counterexample showing that the FKG inequality fails for q < 1 on a graph

involving only two vertices with two edges between them is given by Grimmett in [24,

Equation 3.9]. We provide an alternative counterexample on a simple graph (that is,

one without multiple edges between the same vertices) using only three vertices:

Example (FKG fails for q < 1) Let G = C3 be the cyclic graph on three vertices

and three edges. If we set p = 1
2 , then the weight of any configuration ω ∈ {0, 1}E with

respect to the random cluster measure φG,p,q is given by

ZRC
G,p,qφG,p,q[ω] = 1

8q
k(ω). (2.10)
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Label the edges of G as e1, e2 and e3, and consider the events A = {ωe1 = 1} and

B = {ωe2 = 1} ∩ {ωe3 = 1}. Then, one may check that

ZRC
G,p,q = 1

8(q3 + 3q2 + 4q),

φG,p,q[A] =
q2 + 3q

q3 + 3q2 + 4q
,

φG,p,q[B] =
2q

q3 + 3q2 + 4q
,

φG,p,q[A ∩B] =
q

q3 + 3q2 + 4q
. (2.11)

In particular, the FKG inequality φG,p,q[A] ≤ φG,p,q[A | B] may be written as

q2 + 3q

q3 + 3q2 + 4q
= φG,p,q[A] ≤

φG,p,q[A ∩B]

φG,p,q[B]
=

1

2
. (2.12)

Rearranging (2.12) yields the inequality

q(q + 2)(q − 1) ≥ 0 (2.13)

which fails for 0 < q < 1.

In light of Lemma 2.1.4, it will be useful to calculate the probability that an edge

e is open when conditioned on the states of the edges in E \ {e} for the measure φG,p,q.

This is the content of the following proposition:

Proposition 2.1.6 ([16, Equation 1.3]). Let p ∈ [0, 1] and q > 0. Then, for any

e = {x, y} ∈ E and ψ ∈ {0, 1}E\{e}, we have

φG,p,q[ωe = 1 | ωE\{e} = ψ] =

p if x↔ y in ψ

p
p+q(1−p) otherwise

(2.14)

Proof. Let ψ(0) and ψ(1) denote the configurations on Ω given for each f ∈ E by

ψ
(i)
f =

i if f = e

ψf otherwise
(2.15)

Then, observe that

φG,p,q[ωe = 1 | ωE\{e} = ψ] =
φG,p,q[ψ

(1)]

φG,p,q[ψ(0)] + φG,p,q[ψ(1)]
. (2.16)
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There are two cases to consider:

1. If x↔ y in G(ψ), then qk(ψ(1)) = qk(ψ(0)) and so φRC
G,p,q[ψ

(1)] = p
1−pφ

RC
G,p,q[ψ

(0)].

2. If x= y in G(ψ), then qk(ψ(1)) = qk(ψ(0))−1 and so φRC
G,p,q[ψ

(1)] = p
q(1−p)φ

RC
G,p,q[ψ

(0)].

In either case, we recover (2.14).

In the remainder of this subsection, we prove various stochastic orderings for the

random cluster model by applying Proposition 2.1.6 in conjunction with Lemma 2.1.4.

We begin with the following result, which establishes that for fixed q ≥ 1, the measure

φG,p,q is stochastically increasing with respect to p:

Proposition 2.1.7 ([16, Theorem 1.6]). Let p1 ≤ p2 and q ≥ 1. Then

φG,p1,q ≤st φG,p2,q. (2.17)

Proof. We apply Lemma 2.1.4 to the measures µ = φG,p1,q and ν = φG,p2,q. In order

to do this, we need to show that for any edge e = {x, y} ∈ E and any configurations

ψ,ψ′ ∈ {0, 1}E\{e} such that ψ ≤ ψ′, we have

φG,p1,q[ωe = 1 | ωE\{e} = ψ] ≤ φG,p2,q[ωe = 1 | ωE\{e} = ψ′]. (2.18)

There are two cases to consider:

1. If x↔ y in G(ψ), then x↔ y in G(ψ′), as ψ ≤ ψ′. Thus

φG,p1,q[ωe = 1 | ωE\{e} = ψ] = p1 ≤ p2 = φG,p2,q[ωe = 1 | ωE\{e} = ψ′].

2. If x= y in G(ψ), then using the inequality p
p+q(1−p) ≤ p for q ≥ 1, we have

φG,p1,q[ωe = 1 | ωE\{e} = ψ] =
p1

p1 + q(1− p1)

≤ p2

p2 + q(1− p2)
≤ φG,p2,q[ωe = 1 | ωE\{e} = ψ′].

In either case, (2.18) holds and (2.17) follows by Lemma 2.1.4.

Intuitively, Proposition 2.1.7 says that for q ≥ 1, the random graph associated to

the measure φG,p,q (and in particular, its largest component) grows as p increases. The

next proposition establishes a similar stochastic ordering for the measure φG,p,q when

we instead fix p and vary q:
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Proposition 2.1.8. Let p ∈ [0, 1] and q1 ≥ q2 ≥ 1. Then

φG,p,q1 ≤st φG,p,q2 . (2.19)

Proof. We apply Lemma 2.1.4 to the measures µ = φG,p,q1 and ν = φG,p,q2 . In order

to do this, we need to show that for any edge e = {x, y} ∈ E and any configurations

ψ,ψ′ ∈ {0, 1}E\{e} such that ψ ≤ ψ′, we have

φG,p,q1 [ωe = 1 | ωE\{e} = ψ] ≤ φG,p,q2 [ωe = 1 | ωE\{e} = ψ′]. (2.20)

There are two cases to consider:

1. If x↔ y in G(ψ), then x↔ y in G(ψ′), as ψ ≤ ψ′. Thus

φG,p,q1 [ωe = 1 | ωE\{e} = ψ] = p = φG,p,q2 [ωe = 1 | ωE\{e} = ψ′].

2. If x= y in G(ψ), then using the inequality p
p+q(1−p) ≤ p for q ≥ 1, we have

φG,p,q1 [ωe = 1 | ωE\{e} = ψ] =
p

p+ q1(1− p)

≤ p

p+ q2(1− p)
≤ φG,p,q2 [ωe = 1 | ωE\{e} = ψ′].

In either case, (2.20) holds and (2.19) follows by Lemma 2.1.4.

Proposition 2.1.8 states that the random cluster model is stochastically decreasing

with respect to q. Intuitively, this is because the weight qk(ω) provides larger biases

towards configurations with more components for larger values of q, and the number of

components is negatively correlated with their size.

It will be useful to directly compare the random cluster model to the percolation

model, as the states of the edges in the latter model are independent, which greatly

simplifies calculations. In order to do this, we will use the following proposition:

Proposition 2.1.9 ([24, Theorem 3.21]). Let p ∈ [0, 1] and q ≥ 1. Then

φG,p/q ≤st φG,p,q ≤st φG,p. (2.21)

Proof. The right hand side of (2.21) is a consequence of Proposition 2.1.8, so it will

suffice to prove the left hand side by applying Lemma 2.1.4 to the measures µ = φG,p/q
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and ν = φG,p,q. In order to do this, we need to show that for any edge e = {x, y} ∈ E
and any configurations ψ,ψ′ ∈ {0, 1}E\{e} such that ψ ≤ ψ′, we have

φG,p/q[ωe = 1 | ωE\{e} = ψ] ≤ φG,p,q[ωe = 1 | ωE\{e} = ψ′], (2.22)

which follows as

φG,p/q[ωe = 1 | ωE\{e} = ψ] =
p

q
≤ p

p+ q(1− p)
≤ φG,p,q[ωe = 1 | ωE\{e} = ψ′]. (2.23)

Thus (2.21) follows by Lemma 2.1.4.

In percolation, it is a common technique to restrict the measure to a subgraph

of the original graph. This is possible as the states of edges inside and outside of the

subgraph are independent for the percolation model. In order to apply the same tech-

nique to the random cluster model, where the states of edges are no longer independent

in general, we will need the following proposition:

Proposition 2.1.10 (Comparison between boundary conditions). Let p ∈ [0, 1] and

q ≥ 1. Let H be a subgraph of G with edge-set F , and let ∆ = E \ F . Then, for any

pair of configurations η, η′ ∈ {0, 1}∆ satisfying η ≤ η′, we have

φG,p,q[· | ω∆ = η] ≤st φG,p,q[· | ω∆ = η′]. (2.24)

In particular, if we write ∅ for the configuration on ∆ where every edge is closed, then

for every configuration η ∈ {0, 1}∆ we have

φH,p,q = φG,p,q[· | ω∆ = ∅] ≤st φG,p,q[· | ω∆ = η]. (2.25)

Proof. We write each configuration ω ∈ ΩG as a pair (ωF , ω∆), and apply Lemma 2.1.4

to the measures µ = φG,p,q[· | ω∆ = η] and ν = φG,p,q[· | ω∆ = η′]. In order to do this, we

need to show that for any edge e = {x, y} ∈ F and any configurations ψ,ψ′ ∈ {0, 1}F\{e}

such that ψ ≤ ψ′, we have

φG,p,q[ωe = 1 | ωE\{e} = (ψ, η)] ≤ φG,p,q[ωe = 1 | ωE\{e} = (ψ′, η′)]. (2.26)

There are two cases to consider:

1. If x↔ y in G((ψ, η)), then x↔ y in G((ψ′, η′)), as (ψ, η) ≤ (ψ′, η′). Thus

φG,p,q[ωe = 1 | ωE\{e} = (ψ, η)] = p = φG,p,q[ωe = 1 | ωE\{e} = (ψ′, η′)].
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2. If x= y in G((ψ, η)), then using the inequality p
p+q(1−p) ≤ p for q ≥ 1, we have

φG,p,q[ωe = 1 | ωE\{e} = (ψ, η)] =
p

p+ q(1− p)
≤ φG,p,q[ωe = 1 | ωE\{e} = (ψ′, η′)].

In either case, (2.26) holds and (2.24) follows by Lemma 2.1.4.

2.1.2 The sprinkling method

In the previous subsection, we showed that for q ≥ 1, the random cluster measure φG,p,q

is stochastically increasing with respect to p. The objective of this subsection is to

quantify the rate of this increase. In particular, we will introduce a new concept which

we call the sprinkled random cluster measure, which may be used to extend arguments

developed by Ajtai, Komlós, and Szemerédi in [1] in order to study percolation on the

hypercube.

Let p1 < p2 be edge weights, and let δ > 0 satisfy (1− p1)(1− δ) = 1− p2. The

sprinkling method constructs a random graph in two steps. In the first step, we open

each edge e ∈ E independently with probability p1. Then, in the second step, we open

any remaining closed edges independently with probability δ. At the end of the first

step, the random graph is distributed according to the measure φG,p1 , and at the end of

the second step, it is distributed according to the measure φG,p2 .

The sprinkling method allows us to investigate how a random graph changes

as we increase p by independently adding edges with some probability δ. We seek an

analogue of this technique for the random cluster measure φG,p,q with q ≥ 1. To this

end, we define the following measure:

Definition 2.1.11 (Sprinkled random cluster measure). Let p, δ ∈ [0, 1] and q ≥ 1.

Given a pair (ξ, ω) ∈ ΩG × ΩG, define the function

Πδ[ξ, ω] =

{ ∏
e∈E:ξe=0

δωe(1− δ)1−ωe
}
1ξ≤ω (2.27)

and note that ∑
ω∈ΩG

Πδ[ξ, ω] = (δ + (1− δ))|E\E(ξ)| = 1. (2.28)

We now introduce the probability measure ΨG,p,q,δ on ΩG × ΩG defined by

ΨG,p,q,δ[ξ, ω] := φG,p,q[ξ]Πδ[ξ, ω]. (2.29)
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The ξ-marginal of the measure ΨG,p,q,δ is given by the random cluster measure φG,p,q[ξ].

The sprinkled random cluster measure φG,p,q,δ is defined to be the ω-marginal of the mea-

sure ΨG,p,q,δ, given by

φG,p,q,δ[ω] :=
∑
ξ∈ΩG

ΨG,p,q,δ[ξ, ω] =
∑
ξ∈ΩG

φG,p,q[ξ]Πδ[ξ, ω], (2.30)

More concretely, we may construct the sprinkled random cluster measure φG,p,q,δ

by first generating a random graph under the measure φG,p,q, and then opening any

closed edges in the random graph independently with probability δ.

Let p1 < p2 and q ≥ 1. We claim that for δ > 0 sufficiently small, the measure

φG,p2,q stochastically dominates the measure φG,p1,q,δ. First, we compute the probability

that an edge e ∈ E is open when conditioned on the states of the edges in E \ {e} for

the measure φG,p,q,δ:

Proposition 2.1.12. Let p, δ ∈ [0, 1] and q ≥ 1. Then, for any e = {x, y} ∈ E and

ψ ∈ {0, 1}E\{e}, we have

φG,p,q,δ[ωe = 1 | ωE\{e} = ψ] ≤


p+ δ(1− p) if x↔ y in ψ

p
p+q(1−p) + δ

(
1− p

p+q(1−p)

)
otherwise

(2.31)

To prove Proposition 2.1.12, we essentially condition on the states of the edges in

E \ {e} after the first step, before the sprinkling is applied. Indeed, the first inequality

of (2.31) says that if x ↔ y in G(ψ) then we have probability at most p of the edge e

being open under the measure φG,p,q, and if not, then a further probability δ of being

opened during the sprinkling.

Proof. Let e = {x, y} ∈ E and F = E \ {e}. For a configuration ω ∈ {0, 1}F , write

ω(0), ω(1) for the configurations on {0, 1}E agreeing with ω on F and taking values 0, 1

respectively on e. We decompose the conditional probability as

φG,p,q,δ[ωe = 1 | ωF = ψ] =
φG,p,q,δ[ψ

(1)]

φG,p,q,δ[ψ(0)] + φG,p,q,δ[ψ(1)]
. (2.32)

We may rewrite the numerator by summing over ξ ≤ ψ ∈ {0, 1}F to obtain

φG,p,q,δ[ψ
(1)] =

∑
ξ∈{0,1}F

{
φG,p,q[ξ

(0)]Πδ[ξ
(0), ψ(1)] + φG,p,q[ξ

(1)]Πδ[ξ
(1), ψ(1)]

}
. (2.33)
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Next, we decompose each of these terms as

φG,p,q[ξ
(0)]Πδ[ξ

(0), ψ(1)] = φG,p,q[ωe = 0 | ωF = ξ]φG,p,q[ωF = ξ]Πδ[ξ
(0), ψ(1)], (2.34)

φG,p,q[ξ
(1)]Πδ[ξ

(1), ψ(1)] = φG,p,q[ωe = 1 | ωF = ξ]φG,p,q[ωF = ξ]Πδ[ξ
(1), ψ(1)]. (2.35)

Write pξ,e = φG,p,q[ωe = 1 | ωF = ξ]. As the δ sprinkling amongst edges is independent,

we have the relation

Πδ[ξ
(0), ψ(1)] = δΠδ[ξ

(1), ψ(1)], (2.36)

which allows us to rewrite (2.33) as

φG,p,q,δ[ψ
(1)] =

∑
ξ∈{0,1}F

{
pξ,e + δ(1− pξ,e)

}
φG,p,q[ωF = ξ]Πδ[ξ

(1), ψ(1)], (2.37)

If x = y in G(ψ), then x = y in G(ξ) for any ξ ≤ ψ. Thus pξ,e = p
p+q(1−p) and we may

extract a factor of p
p+q(1−p) + δ(1− p

p+q(1−p)) from (2.37). Otherwise, we may uniformly

bound pξ,e by p and extract the uniform bound p + δ(1 − p) + p from (2.37). In either

case, we are left with a sum S given by

S =
∑

ξ∈{0,1}F
φG,p,q[ωF = ξ]Πδ[ξ

(1), ψ(1)]

=
∑

ξ∈{0,1}F

{
φG,p,q[ξ

(0)]Πδ[ξ
(1), ψ(1)] + φG,p,q[ξ

(1)]Πδ[ξ
(1), ψ(1)]

}
. (2.38)

Similarly to (2.36), we have the relation

Πδ[ξ
(0), ψ(0)] = (1− δ)Πδ[ξ

(1), ψ(1)], (2.39)

which may be combined with (2.36) to obtain the relation

Πδ[ξ
(1), ψ(1)] = Πδ[ξ

(0), ψ(1)] + Πδ[ξ
(0), ψ(0)]. (2.40)

Plugging (2.40) into the first summand of (2.38) allows us to rewrite S as

S =
∑

ξ∈{0,1}F
φG,p,q[ξ

(0)]

(
Πδ[ξ

(0), ψ(1)] + Πδ[ξ
(0), ψ(0)]

)
+

∑
ξ∈{0,1}F

φG,p,q[ξ
(1)]Πδ[ξ

(1), ψ(1)]

=φG,p,q,δ[ψ
(0)] + φG,p,q,δ[ψ

(1)]. (2.41)
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We thus obtain an upper bound on φG,p,q,δ[ωe = 1 | ωF = ψ] corresponding to the bound

on the quantity pξ,e + δ(1− pξ,e) extracted earlier.

We use Proposition 2.1.12 to prove the following result:

Lemma 2.1.13. Let p1 ≤ p2, q ≥ 1, and choose δ ≤ 1
q (p2 − p1). Then

φG,p1,q,δ ≤st φG,p2,q. (2.42)

Proof. We apply Lemma 2.1.4 using the measures µ = φG,p1,q,δ and ν = φG,p2,q. In order

to do this, we need to show that for any edge e = {x, y} ∈ E and any configurations

ψ,ψ′ ∈ {0, 1}E\{e} such that ψ ≤ ψ′, we have

φG,p1,q,δ[ωe = 1 | ωE\{e} = ψ] ≤ φG,p2,q[ωe = 1 | ωE\{e} = ψ′]. (2.43)

There are two cases to consider:

1. If x↔ y in G(ψ), then x↔ y in G(ψ′), as ψ ≤ ψ′. Thus

φG,p1,q,δ[ωe = 1 | ωE\{e} = ψ] ≤ p1 + δ(1− p1)

≤ p1 + 1
q (p2 − p1)(1− p1)

≤ p2

= φG,p2,q[ωe = 1 | ωE\{e} = ψ′].

2. If x= y in G(ψ), then using the inequality p
p+q(1−p) ≤ p for q ≥ 1, we have

φG,p1,q[ωe = 1 | ωE\{e} = ψ] ≤ p1

p1 + q(1− p1)
+ δ

(
1− p1

p1 + q(1− p1)

)
≤ p1 + (p2 − p1)(1− p1)

p1 + q(1− p1)

≤ p2

p2 + q(1− p2)

≤ φG,p2,q[ωe = 1 | ωE\{e} = ψ′].

In either case, (2.43) holds and (2.42) follows by Lemma 2.1.4.

In fact, the bound δ ≤ 1
q (p2 − p1) is tight:

Example (Tightness of δ): Let p1 = 0, p2 ∈ [0, 1] and fix q ≥ 1. Let G be any graph

containing a bridge e - that is, an edge e whose removal disconnects the graph. By
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Proposition 2.1.6, we know that

φG,p2,q[ωe = 1] =
p2

p2 + q(1− p2)
. (2.44)

Fix ε > 0 and suppose δ = p2

q + ε. Then

φG,p1,q,δ[ωe = 1] =
p2

q
+ ε (2.45)

and this exceeds (2.44) provided one chooses p2 < q
√

ε
q−1 .

Lemma 2.1.13 allows us to mimic the arguments used by Ajtai, Komlós, and

Szemerédi in [1] to analyse increasing functions and events by generating an initial con-

figuration according to the random cluster model, before randomising remaining closed

edges independently with probability δ. In order to achieve an independent sprinkling,

we must take an additional factor of 1/q in the sprinkling constant δ compared to perco-

lation. This additional factor compensates for the weight of q lost when an edge connects

two disjoint connected components.

2.2 The Potts model

In this section, we provide a formal introduction to the Potts model, based upon the

formulation of the model given by Kesten and Schonmann in [30]. Throughout, we write

N≥2 for the set of integers greater than or equal to 2.

Let G = (V,E) be a finite graph, fix q ∈ N≥2 and define ΣG = {v1, · · · , vq}V ,

where v1, · · · , vq are the co-ordinate vectors of Rq. An element σ ∈ ΣG is known as a

spin configuration, and corresponds to an assignment of a spin σx ∈ {v1, · · · , vq} to each

vertex x of the graph G. By applying a probability measure to ΣG, we may randomly

assign a spin configuration to G. We will be interested in the following measure:

Definition 2.2.1 (Potts Model). For x ∈ V , let λx denote the counting measure on

{v1, · · · , vq} and define the product measure νG :=
∏
x∈V λx. The q-state Potts model

with inverse temperature β > 0 assigns a spin configuration to the vertices of G according

to the measure

µG,β,q[σ] :=
1

ZP
G,β,q

exp{−βHG(σ)}νG(σ), (2.46)
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where the Hamiltonian HG(σ) is given by

HG(σ) := −
∑
{x,y}∈E

σx · σy (2.47)

and the scalar product is the usual Euclidean product on Rq. The partition function

ZP
G,β,q ensures that these probabilities are appropriately normalised, and is given by

ZP
G,β,q =

∫
νG(dσ) exp{−βHG(σ)} =

∑
σ∈ΣG

exp{−βHG(σ)}. (2.48)

We write 〈f〉G,β,q for the expectation of a function f : V → R with respect to this

measure.

Let Eσ = {{x, y} ∈ E : σx 6= σy}. Then we may write the Hamiltonian as

HG(σ) = |Eσ| − |E|. (2.49)

It is common to define the Potts model by assigning each vertex x a numerical spin

σx ∈ {1, · · · , q}, rather than a vector. We adopt a vector representation so that we may

leverage certain vector arguments. One may also define a vector representation using

the vertices of a (q − 1)-dimensional tetrahedron. This was done by Duminil-Copin in

[16], and is equivalent up to rescaling, but will be less convenient than the co-ordinate

vector representation for our purposes.

2.2.1 The Edwards Sokal coupling

In this subsection, we couple the Potts model with an appropriate random cluster model

by constructing them on the same probability space. This will be done using the famous

Edwards Sokal coupling, introduced in [17].

To begin, we fix q ∈ N≥2 and define ΞG = {0, 1}E × {v1, · · · , vq}V = ΩG × ΣG.

Each configuration ξ ∈ ΞG may be decomposed into a pair (ω, σ), where ω ∈ ΩG is a

percolation configuration and σ ∈ ΣG is a spin configuration. We say that the pair (ω, σ)

is compatible if ωe = 0 for every e ∈ Eσ.

Theorem 2.2.2 (Edwards Sokal coupling [17]). Define a measure ΦG,p,q on the set ΞG

by

ΦG,p,q[(ω, σ)] =
1

ZRC
G,p,q

{∏
e∈E

pωe(1− p)1−ωe
}
1{(ω,σ) are compatible}. (2.50)
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Then ΦG,p,q is a probability measure with marginal distributions φG,p,q on ω and µG,β(p),q

on σ, where β(p) := − log(1− p).

All logarithms in this thesis should be assumed to be natural unless specified

otherwise. We may sample a pair (ω, σ) according to the measure ΦG,p,q in one of the

two following ways:

1. Sample ω according to the measure φG,p,q, and then assign a spin from the set

{v1, · · · , vq} uniformly and independently to each connected component of G(ω).

2. Sample σ according to the measure µG,β(p),q, and then open any edge in E \ Eσ
independently with probability p.

These two alternative methods of sampling underpin the following proof of Theorem

2.2.2, which is taken from [16, Proposition 1.2]:

Proof of Theorem 2.2.2. First, we compute the marginal of ΦG,p,q on ω. Given a per-

colation configuration ω, a spin configuration σ is compatible with ω if and only if σ is

constant on each connected component of G(ω). Moreover, every compatible spin con-

figuration is equally probable. As there are k(ω) connected components with q choices

of spin for each component, it follows that

ΦG,p,q[ω] =
1

ZRC
G,p,q

{∏
e∈E

pωe(1− p)1−ωe
}
qk(ω). (2.51)

Next, we compute the marginal of ΦG,p,q on σ. Given a spin configuration σ, recall

the definition of the set Eσ = {{x, y} ∈ E : σx 6= σy} and observe that a percolation

configuration ω is compatible with σ if and only if ωe = 0 for every e ∈ Eσ. Thus

ΦG,p,q(σ) =
(1− p)|Eσ |

ZRC
G,p,q

∑
ω′∈{0,1}E\Eσ

{ ∏
e∈E\Eσ

pω
′
e(1− p)1−ω′e

}
. (2.52)

As the sum in (2.52) evaluates to 1, we may substitute e−β(p) = 1− p to obtain

ΦG,p,q(σ) =
1

ZRC
G,p,q

exp{−β(p)|Eσ|}

=
e−β(p)|E|

ZRC
G,p,q

exp{−β(p)HG(σ)} (2.53)

Where we recall that HG(σ) = |Eσ| − |E| to obtain the final equality.
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We will use the following two corollaries of Theorem 2.2.2:

Corollary 2.2.3. Fix q ∈ N≥2 and p ∈ [0, 1]. Then

ZRC
G,p,q = e−β(p)|E|ZP

G,β(p),q. (2.54)

Proof. (2.54) can be seen in the computation of the marginal on σ in the proof of

Theorem 2.2.2.

Corollary 2.2.4. Fix q ∈ N≥2 and p ∈ [0, 1]. Then, for any pair x, y ∈ V :

〈σx · σy〉G,β(p),q =
1

q
+
q − 1

q
φG,p,q[x↔ y]. (2.55)

Proof. Observe that

〈σx · σy〉G,β(p),q = ΦG,p,q[σx · σy]

= ΦG,p,q[σx · σy1{x↔y}] + ΦG,p,q[σx · σy1{x=y}]. (2.56)

On the event {x ↔ y}, σx and σy are equal. Otherwise, they are independent, and so

their product has expectation 1/q. Thus

〈σx · σy〉G,β(p),q = ΦG,p,q[1{x↔y}] +
1

q
ΦG,p,q[1{x=y}]

= φG,p,q[x↔ y] +
1

q
(1− φG,p,q[x↔ y]), (2.57)

which re-arranges to give (2.55).

The Edwards Sokal coupling has many uses. For example, one may apply Propo-

sition 2.1.7 to Corollary 2.2.4 to deduce that spin correlations are increasing with respect

to β. This is difficult to prove directly, as the Potts model lacks a natural ordering.

2.2.2 Free energy, convexity and differentiability

One often analyses the Potts model through a property known as its free energy. In this

subsection, we define the free energy of the Potts model and introduce some of its basic

properties.
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Definition 2.2.5 (Free energy). Let G be a finite graph, q ∈ N≥2, and β > 0. Then,

the free energy of the q-state Potts model with inverse temperature β is given by

ψG,q(β) =
1

|V |
logZP

G,β,q. (2.58)

We view the free energy as a function of β, and use it to extract information

about how the properties of spin configurations change as the temperature of the system

varies. This will be particularly useful provided the underlying graph is edge-transitive:

Definition 2.2.6 (Edge transitive graphs). Let G = (V,E) be a finite graph and ψ :

V → V be a bijection. Then:

1. An automorphism of G is a bijection ψ : V → V of the vertices which preserves

edges i.e. if {x, y} ∈ E then {ψ(x), ψ(y)} ∈ E.

2. We say that G is edge-transitive if for every pair of edges e1, e2 ∈ E there exists

an automorphism ψ of G for which ψ(e1) = e2.

We say a graph is n-regular if every vertex of the graph has precisely n neighbours.

Consider the following calculation:

Proposition 2.2.7 (Derivative of free energy). Let G = (V,E) be a finite, n-regular,

edge-transitive graph, q ∈ N≥2, and β > 0. Then, for any pair x, y ∈ V such that

{x, y} ∈ E, we have
∂

∂β
ψG,q(β) =

n

2
〈σx · σy〉G,β,q. (2.59)

Proof. Observe that

∂

∂β
ψG,q(β) =

∂

∂β

1

|V |
logZP

G,β,q

=
1

|V |
∑
σ∈Σ

∑
{x,y}∈E

σx · σy
e−βHG(σ)

ZP
G,β,q

=
1

|V |
∑
{x,y}∈E

〈σx · σy〉G,β,q, (2.60)

where we have exchanged the order of summation in the final line. For an edge-transitive

graph, the spin correlation 〈σx · σy〉G,β,q does not depend on the choice of the pair x, y.

If G is n-regular, then |E| = n
2 |V | (as each vertex has n edges, and each edge has two
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vertex endpoints) and so for any fixed x, y ∈ V such that {x, y} ∈ E, we have

∂

∂β
ψG,q(β) =

|E|
|V |
〈σx · σy〉G,β,q =

n

2
〈σx · σy〉G,β,q. (2.61)

We may use Proposition 2.2.7 to extract information about the spin correlations

from the free energy, which can then be translated into information regarding connection

probabilities in the random cluster model via Corollary 2.2.4.

Another particularly useful property of the free energy is its convexity:

Lemma 2.2.8 ([23, Lemma 3.5]). The function β → ψG,q(β) is convex. That is, for

any β1, β2 ≥ 0 and α ∈ (0, 1),

ψG,q(αβ1 + (1− α)β2) ≤ αψG,q(β1) + (1− α)ψG,q(β2). (2.62)

Proof. By applying Hölder’s inequality with exponents α, 1− α, we see that

ZP
G,αβ1+(1−α)β2,q

=
∑
σ∈ΣG

exp

{
− αβ1HG(σ)− (1− α)β2HG(σ)

}

≤
( ∑
σ∈ΣG

exp{−β1HG(σ)}
)α( ∑

σ∈ΣG

exp{−β2HG(σ)}
)1−α

. (2.63)

Convexity follows upon taking the logarithm.

In light of Lemma 2.2.8, it will be useful to recall the following standard result

from elementary analysis:

Lemma 2.2.9 (Convergence of convex derivatives [35]). Let (fn)n∈N : R → R be a

sequence of convex differentiable functions, and suppose limn→∞ fn(x) = f(x) for every

x ∈ R and some function f : R→ R. If f is differentiable at x, then

lim
n→∞

f ′n(x) = f ′(x). (2.64)

Note that the free energy is clearly differentiable on any finite graph. Moreover,

it can be shown that the free energy converges to a differentiable limit on a variety of

families of graphs when the inverse temperature is appropriately rescaled. In light of

Proposition 2.2.7, Lemma 2.2.9 implies that the spin correlations will converge to the

derivative of the limit of the free energy on suitably well behaved graphs.
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Chapter 3

The random cluster model on

finite graphs

In this chapter, we discuss the random cluster model on two families of finite graphs of

diverging degree. In both cases, we see that the largest component undergoes an asymp-

totic phase transition in the limit as n→∞ provided the vertex degree is appropriately

rescaled.

In the case of the complete graph Kn, the random cluster model was first studied

by Bollobás, Grimmett, and Janson in [6] using a colouring argument which does not

readily extend to graphs with more complicated geometry. Section 3.1 provides a brief

overview of these results, and serves to introduce and motivate some important quantities

which recur throughout the rest of the thesis.

In Section 3.2, we detail a new analysis of the random cluster model on the

complete graph which extends arguments developed by Biskup, Chayes and Smith in [3]

for percolation. In particular, we will obtain the large deviations rate function for the

size of the largest component in terms of the exponential rates of the events that the

random graph is connected and acyclic, respectively. Crucially, this analysis does not use

the colouring argument developed in [6], and thus admits the prospect of generalisation

to more complicated families of graphs.

In Section 3.3, we discuss the random cluster model on the hypercube. In par-

ticular, we analyse the largest component using the tools developed in Section 2.1.2 in

order to extend the arguments employed in [1] to study percolation. As a substitute for

the exploration process used in [1], we will also investigate the free energy of a corre-

sponding Potts model, using methods developed by Kesten and Schonmann in [30] to

study the Potts model on the lattice Zd.
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3.1 Random cluster model on the complete graph via colour-

ing arguments

In this section, we discuss the analysis of the random cluster model on the complete graph

given by Bollobás, Grimmett, and Janson in [6]. This will introduce several quantities

which reappear in our analyses of the random cluster model on both the complete graph

and the hypercube, given in Sections 3.1 and 3.2 respectively.

We begin with the following definition:

Definition 3.1.1. Let (Ωn,Fn, Pn)n∈N be a sequence of probability spaces and (An)n∈N

be a sequence of events with An ∈ Fn for every n ∈ N. We say that the sequence (An)n∈N

happens asymptotically almost surely (written a.a.s.) if

lim
n→∞

Pn[An] = 1. (3.1)

More concretely, let (Gn)n∈N be a sequence of finite graphs, define Ωn = {0, 1}E(Gn)

and let Fn be the set of all subsets of Ωn. For fixed λ > 0 and q > 0, let φn,λ,q denote

the random cluster probability measure on Gn with edge weight p = λ/n and cluster

weight q. We will take Pn = φn,λ,q and investigate the size of the largest component of

Gn(ω) in the limit as n→∞.

WhenGn = Kn, this was first studied in [6] by randomly colouring each connected

component of Kn(ω) red independently with probability 1/q, so that the distribution of

edges on the red vertices is given by a percolation measure (with the same edge weight).

As the subgraph of red vertices is necessarily complete, it may be studied using the

same exploration processes used in [19]. Consequently, one may find a critical value λc

(depending only on q) such that the following statements hold:

1. For λ < λc(q), the largest component of Kn(ω) is of order log n a.a.s..

2. For λ > λc(q), the largest component of Kn(ω) is of order n a.a.s..

The value λc is given by

λc(q) =


q if q ≤ 2

2

(
q−1
q−2

)
log(q − 1) if q > 2

(3.2)

Furthermore, the density of the largest connected component of Kn(ω) is asymptotically
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almost surely equal to

θ(λ, q) =

0 if λ < λc(q)

θmax if λ ≥ λc(q)
(3.3)

where θmax is the largest solution of the mean field equation

e−λθ =
1− θ

1 + (q − 1)θ
. (3.4)

When q = 1, we recover the results of [19]. In particular, we see that λc(1) = 1, and

that the mean-field equation reduces to the equation

e−λθ = 1− θ (3.5)

governing the survival probability of a Poisson branching process with mean λ. Heuris-

tically, (3.4) may be obtained from (3.7) by conditioning on the event that the largest

component of Kn(ω) is coloured red in the aforementioned colouring process. Indeed,

suppose that the largest component of Kn(ω) has density θ. On the event that the largest

component is coloured red, the red subgraph has [θ + 1
q (1 − θ)]n vertices on average,

and so the edges on the red subgraph are distributed according to a φn′,λ′ percolation

measure, where

n′ = [θ + 1
q (1− θ)]n, λ′ = [θ + 1

q (1− θ)]λ. (3.6)

In particular, the density θ′ = θ/[θ + 1
q (1 − θ)] of the largest component in the red

subgraph satisfies the equation

e−λ
′θ′ = 1− θ′, (3.7)

which yields (3.4) after substitution. This argument is formalised in [6, Lemma 4.2].

It remains to analyse the solutions of (3.4). To do this, define the function

f(θ) =
1

θ
[log(1 + (q − 1)θ)− log(1− θ)]. (3.8)

and observe that θ ∈ [0, 1] is a solution to (3.4) if and only if f(θ) = λ. In order to

understand this latter equation, we use the following basic properties of the function f :

Lemma 3.1.2 ([6, Lemma 2.4]). The function f defined in (3.8) is strictly convex on

(0, 1), with limθ↓0 f(θ) = q and limθ↑1 f(θ) =∞. Moreover:

1. If 0 < q ≤ 2, then f is strictly increasing.

2. If q > 2, then there exists θmin ∈ (0, 1) such that f is strictly decreasing on (0, θmin)
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and strictly increasing on (θmin, 1).

Proof. We follow the proof of [6, Lemma 2.4], beginning by writing f in the form

f(θ) =

∫ q−1

−1
(1 + tθ)−1dt. (3.9)

For t > −1 and θ ∈ (0, 1), the integrand of (3.9) is a strictly convex function of θ, and

thus f is convex. Next, we apply a Taylor expansion of f about θ = 0 to obtain

f(θ) = q +
q(2− q)

2
θ +O(θ2). (3.10)

In particular, it follows that limθ↓0 f
′(θ) = q(2−q)

2 . As this is positive for q ≤ 2 and

negative for q > 2, the statements of the lemma follow.

Using Lemma 3.1.2, the solutions of (3.4) may be summarised as follows:

Lemma 3.1.3 ([6, Lemma 2.5]). In addition to the root θ = 0, (3.4) has the following

roots:

1. Suppose 0 < q ≤ 2. Then:

(a) If λ ≤ λc(q) = q, there are no non-zero roots.

(b) If λ > q, there is a unique positive root θmax(λ, q). In addition, limλ↓q θmax(λ, q) =

0.

2. Suppose q > 2, and write λmin = f(θmin). Then:

(a) If λ < λmin, there are no non-zero roots.

(b) If λ = λmin, there is a unique positive root θmin.

(c) If λmin < λ < q, there are two positive roots θ1(λ, q) and θmax(λ, q).

(d) If λ > q, there is a unique positive root θmax(λ, q).

It remains to show that λc > λmin when q > 2, so that θ(λ, q) > 0 for λ > λc. As

f is convex, it will suffice to check that f( q−2
q−1) = λc(q) and that the derivative f ′( q−2

q−1)

is strictly positive. Indeed, one may even show that

θ(λc(q), q) =

0 if q ≤ 2

q−2
q−1 if q > 2

(3.11)
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When q ≤ 2, (3.11) follows from the fact that f is strictly increasing and f(0) = q.

In particular, (3.11) implies that the (asymptotic) phase transition for the size of the

largest component is continuous if and only if q ≤ 2.

For integer values of q, the asymptotic phase transition established in [6] may be

interpreted in terms of the Potts model by expressing the probability φn,λ,q[x↔ y] (for

any pair {x, y} ∈ E) in terms of the size of the largest component Cmax. In particular,

we may write

φn,λ,q[x↔ y] = φn,λ,q[{x↔ y} ∩ {x ∈ Cmax}] + φn,λ,q[{x↔ y} ∩ {x /∈ Cmax}]. (3.12)

We know that |Cmax|/n converges to θ(λ, q) a.a.s. as n→∞. As Kn is edge-transitive,

it follows that

lim
n→∞

φn,λ,q[{x↔ y} ∩ {x ∈ Cmax}] = θ(λ, q)2. (3.13)

On the other hand, it is known (see e.g. [6, Lemma 3.2]) that the second largest com-

ponent has order at most n3/4, leading to the result

lim
n→∞

φn,λ,q[{x↔ y} ∩ {x /∈ Cmax}] = 0. (3.14)

Combining (3.13) and (3.14) yields

lim
n→∞

φn,λ,q[x↔ y] = θ(λ, q)2. (3.15)

Observing that β(λn) = − log(1− λ
n) = λ

n +O(n−2), the Edwards Sokal coupling may be

applied via Corollary 2.2.4 to 3.15 to see that

lim
n→∞

〈σx · σy〉Kn,λ/n,q =
1

q
+
q − 1

q
θ(λ, q)2. (3.16)

In fact, (3.16) is a classical result, and has been proven independently by e.g. Kesten

and Schonmann in [30]. By reversing the above argument, it is possible to deduce the

limit (3.15) of the connection probabilities for the random cluster model from the limit

(3.16) of the spin correlations for the corresponding Potts model. This connection is

the premise of our results for the hypercube Qn in Section 3.3, which goes one step

further and deduces an asymptotic phase transition for the largest component from the

asymptotic phase transition for the nearest neighbour connection probabilities.
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3.2 Random cluster model on the complete graph via large

deviations

Fix q > 0, λ > 0, and let φn,λ,q denote the random cluster probability measure with

edge weight p = λ/n and cluster weight q on the complete graph Kn. In addition, let

V>r be the set of vertices in Kn(ω) belonging to components of size larger than r. The

objective of this section is to calculate a function I(θ, λ, q) such that

lim
ε↓0

lim
n→∞

1

n
log φn,λ,q

[
|V>εn| = bθnc

]
= −I(θ, λ, q). (3.17)

In the language of large deviations, (3.17) says that in the limit ε ↓ 0, the sequence

of random variables |V>εn|/n satisfies the large deviations principle in [0, 1] with rate

function I(θ, λ, q). If the function I(θ, λ, q) is minimised at a point θ∗ with respect to θ,

then (3.17) implies that for θ 6= θ∗, the probability of the large deviation |V>εn| = bθnc
is exponentially small, and the random variable |V>εn|/n concentrates around θ∗ in the

limit as n→∞.

In order to state our main result, we must introduce some notation. Firstly, recall

the entropy function, defined for θ ∈ (0, 1) by

S(θ) = −θ log θ − (1− θ) log(1− θ). (3.18)

In addition, we define two functions on [0,∞) by

π1(x) = 1− e−x, Ψ(x) =

(
log x− 1

2

[
x− 1

x

])
∧ 0. (3.19)

Using (3.18) and (3.19), we may define the function

Φ(θ, λ, q) = S(θ)− λθ(1− θ) + θ log π1(λθ)

+ (1− θ){Ψ(λ(1−θ)
q )− ( q−1

2q )λ(1− θ) + log q}.
(3.20)

Our main result says that the large deviation principle (3.17) holds, with rate function

I(θ, λ, q) := sup
θ∈[0,1]

Φ(θ, λ, q)− Φ(θ, λ, q). (3.21)

Theorem 3.2.1. Fix q > 0 and λ > 0. Then, for every θ ∈ [0, 1],

lim
ε↓0

lim
n→∞

1

n
log φn,λ,q

[
|V>εn| = bθnc

]
= Φ(θ, λ, q)− sup

θ∈[0,1]
Φ(θ, λ, q). (3.22)
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If θ∗ ∈ [0, 1] maximises Φ(θ, λ, q), then Theorem 3.2.1 implies that approximately

θ∗n vertices of Kn(ω) belong to components of order n. Let N>r be the number of

connected components in Kn(ω) of size larger than r. The following lemma says that,

in fact, all of the vertices in the set |V>εn| belong to a single component of size θ∗n:

Lemma 3.2.2. Fix q > 0 and λ > 0. Then, for every ε > 0 there exists a constant

c = c(λ, ε) > 0 such that for every θ > ε > 0,

φn,λ,q[|V>εn| = bθnc, N>εn = 1] ≥ (1− e−cn)φn,λ,q[|V>εn| = bθnc]. (3.23)

It remains to specify the maximiser θ∗. In Chapter 5, we will see that the value

θ∗ maximising Φ(θ, λ, q) is equal to the value θ(λ, q) defined in (3.3). Consequently,

Theorem 3.2.1 implies that the largest component of the graph Kn(ω) is of order n

asymptotically almost surely when λ > λc. In this way, we recover the asymptotic

phase transition for the size of the largest connected component established in [6]. The

behaviour for λ = λc is more complicated, and will not be discussed here.

The existence of the rate function I(θ, λ, q) was first established for percolation

(the special case q = 1) in [3] by conditioning on the set of vertices A contained in

the largest component. To this end, define the events K that Kn(ω) is connected and

Br that Kn(ω) contains no components of size larger than r. Then, assuming θn is an

integer for simplicity, we have the relation

φn,λ[|V>εn| = θn, N>εn = 1] =

(
n

θn

)(
1− λ

n

)θ(1−θ)n2

φθn,λθ[K]φ(1−θ)n,λ(1−θ)[Bεn]. (3.24)

Indeed, the first term of (3.24) is precisely the number of choices for the set A, and the

second term is the probability that A is disconnected from Ac. Conditionally on this

event, the measure φn,λ restricts to two independent percolation measures φθn,λθ and

φ(1−θ)n,λ(1−θ) on the sets A and Ac respectively. In particular, the term φθn,λθ[K] cor-

responds to the event that A is connected, and the term φ(1−θ)n,λ(1−θ)[Bεn] corresponds

to the event that Ac does not contain any large components.

For more general values of q, we encounter an additional complexity when we

calculate the probability that the sets A and Ac are disconnected:

Proposition 3.2.3. Fix q > 0 and λ > 0. Let A ⊂ [n], and suppose that |A| = k. Let

E(A,Ac) be the set of open edges between A and Ac in Kn(ω). Then

φn,λ,q[E(A,Ac) = ∅] =
ZRC
k,λk/n,qZ

RC
n−k,λ(1−k/n),q

ZRC
n,λ,q

(1− λ/n)k(n−k). (3.25)
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Proof. Given a set of edges F ⊂ E, write ωF for the restriction of ω to F . Observe that

ω ∈ {E(A,Ac) = ∅} if and only if ωE(A,Ac) = 0, in which case we may decompose ω into

the pair (ωE(A), ωE(Ac)). Noting further that k(ω) = k(ωE(A)) + k(ωE(Ac)), we have

φn,λ,q[E(A,Ac) = ∅] =
∑
ωE(A)

qk(ωE(A))
∏

e∈E(A)

(λn)(ωE(A))e(1− λ
n)1−(ωE(A))e

×
∑
ωE(Ac)

qk(ωAc )
∏

e∈E(Ac)

(λn)(ωE(Ac))e(1− λ
n)1−(ωE(Ac))e

×
(1− λ

n)k(n−k)

ZRC
n,λ,q

.

We recover (3.25) by observing that the sums on the first two lines yield the partition

functions ZRC
k,λk/n,q and ZRC

n−k,λ(1−k/n),q respectively.

In order to accommodate the additional ratio of partition functions introduced

in (3.25), we introduce the notation ZRC
n,λ,q[·] := ZRC

n,λ,qφn,λ,q[·] for the random cluster

measure before normalisation. We may then write

Zn,λ,q[|V>εn| = θn, N>εn = 1] =

(
n

θn

)
(1− λ

n)θ(1−θ)n
2
Zθn,λθ,q[K]Z(1−θ)n,λ(1−θ),q[Bεn].

(3.26)

We now estimate each of these factors. To estimate the first, we apply Stirling’s Formula

√
2πnnne−n ≤ n! ≤

√
e2nnne−n (3.27)

to each of the factorials in the binomial coefficient
(
n
k

)
to show that(

n

k

)
= eo(n)enS

(
k
n

)
. (3.28)

The second factor of (3.26) may be estimated as

(1− λ
n)θ(1−θ)n

2
= eo(n)e−λθ(1−θ)n. (3.29)

To estimate the remaining two terms of (3.26), we have the following three theorems,

which generalise [3, Theorems 2.3, 2.4 and 2.5]:

Theorem 3.2.4. Fix q > 0 and λ > 0. Then

lim
n→∞

1

n
logZRC

n,λ,q

[
K
]

= log π1(λ). (3.30)
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Moreover, convergence is uniform for λ belonging to compact subsets of [0,∞).

Observe that the quantity log π1(λ) computed in (3.30) is independent of q. This

is no coincidence, as on the event K the weight qk(ω) is constant and disappears when

taking the appropriate limit.

As in [3], one may prove that the exponential rate of the event Bεn coincides with

the exponential rate F of the event that Kn(ω) is a forest (i.e. acyclic) in the limits as

n→∞ and ε ↓ 0. This is not surprising, as in [6] it was shown that almost all vertices

outside of the largest component belong to trees. This argument is summarised in the

following analogue of [3, Theorem 2.5]:

Theorem 3.2.5. Fix q > 0 and λ > 0. Then

lim
r→∞

lim inf
n→∞

1

n
logZRC

n,λ,q

[
Br
]

= lim
r→∞

lim sup
n→∞

1

n
logZRC

n,λ,q

[
Br
]

= lim
n→∞

1

n
logZRC

n,λ,q

[
F
]

(3.31)

and

lim
ε↓0

lim inf
n→∞

1

n
logZRC

n,λ,q

[
Bεn

]
= lim

ε↓0
lim sup
n→∞

1

n
logZRC

n,λ,q

[
Bεn

]
= lim

n→∞

1

n
logZRC

n,λ,q

[
F
]
.

(3.32)

Moreover, convergence is uniform for λ belonging to compact subsets of (0,∞) \ {q}.

On the event F , we have the correspondence k(ω) = n − |En(ω)| between the

number of components and edges of the graph Kn(ω). In particular, it is possible to

absorb the cluster weight q into the edge weight and extend [3, Theorem 2.4] in the

following form:

Theorem 3.2.6. Fix q > 0 and λ > 0. Then

lim
n→∞

1

n
logZRC

n,λ,q

[
F
]

= lim
r→∞

lim
n→∞

1

n
logZRC

n,λ,q

[
Br ∩ F

]
= Ψ(λq )− ( q−1

2q )λ+ log q. (3.33)

Moreover, convergence is uniform for λ belonging to compact subsets of (0,∞) \ {q}.

By combining the preceding three theorems, we may compute the rate function

for the size of the largest connected component in the following form:

Theorem 3.2.7. Fix q > 0 and λ > 0. Then, for every θ ∈ [0, 1],

lim
ε↓0

lim
n→∞

1

n
logZRC

n,λ,q

[
|V>εn| = bθnc

]
= Φ(θ, λ, q). (3.34)

Moreover, convergence is uniform for λ belonging to compact subsets of (0,∞) \ {q}.
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In order to turn these theorems into statements about probabilities in the random

cluster model, we must reintroduce the partition function. This will be done using the

following theorem:

Theorem 3.2.8. Fix q > 0 and λ > 0. Then

lim
n→∞

1

n
logZRC

n,λ,q = sup
θ∈[0,1]

Φ(θ, λ, q). (3.35)

By combining Theorems 3.2.7 and 3.2.8, we obtain Theorem 3.2.1. The limit of

equation (3.35) is known as the free energy of the random cluster model, and is not a

new quantity of interest; it was computed in [6, Theorem 2.6]. In Lemma 5.3.2, we show

that our computation agrees with theirs.

The structure of the free energy provides some hint as to its derivation. Indeed,

for fixed ε > 0, one may decompose the partition function ZRC
n,λ,q according to the number

of vertices in components of size at least εn to obtain

ZRC
n,λ,q =

n∑
k=0

ZRC
n,λ,q

[
|Vεn| = ( kn)n

]
. (3.36)

We seek to apply Theorem 3.2.7 to each of the terms on the right hand side of (3.36).

We may then dominate the sum in (3.36) in terms of its largest summand, and apply the

Laplace Principle when taking the appropriate limit. However, these steps involve some

technicalities, which we will address in Chapter 5. In particular, uniform convergence

of the rate function is required in order to pass to a supremum in the limit. This is

the reason why it is specified in our theorems, while it was not required for the random

graphs in [3].

3.3 Random cluster model on the hypercube

In this section, we formally state the results obtained in this thesis for the random cluster

model on the hypercube Qn. Fix q ∈ N and λ > 0. We denote the random cluster

probability measure on Qn with edge weight p = λ/n and cluster weight q by φn,λ,q.

Similarly, we denote the q-state Potts model on Qn with inverse temperature β = λ/n

by µn,λ,q, and the corresponding partition functions as ZRC
n,λ,q and ZP

n,λ,q, respectively.

Let Cmax denote the largest connected component of Qn(ω). Our first result

says that the size of the largest connected component undergoes an asymptotic phase

transition at the value λc(q) defined in (3.2):
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Theorem 3.3.1. Fix q ∈ N≥2 and λ > 0. Then

1. If λ < λc(q), then for any ε > 0 we have

lim
n→∞

φn,λ,q[|Cmax| ≥ ε2n] = 0. (3.37)

2. If λ > λc(q), then there exists an ε > 0 (depending only on λ) such that

lim
n→∞

φn,λ,q[|Cmax| ≥ ε2n] = 1. (3.38)

When q = 1, the asymptotic phase transition in Theorem 3.3.1 has been studied

in much greater detail. In particular, for λ < λc, it has been shown in e.g. [7] that Cmax

is of order n asymptotically almost surely, while for λ > λc it was shown in [1] that

Cmax has density θ(λ, 1) asymptotically almost surely. The behaviour for λ = λc is more

complicated, and we will not discuss it here.

For q ∈ N≥2, our results are less detailed. For λ < λc, we expect Cmax to be

of order n, but can only argue by contradiction that Cmax cannot be of order 2n. For

λ > λc, we expect Cmax to have density θ(λ, q), but our arguments only provide a lower

bound on the density of θ(λ, q)4, which can be improved to θ(λ, q)2 with some care.

When q is not an integer, we may apply Proposition 2.1.8 to compare the mea-

sure φn,λ,q with the measures φn,λ,bqc and φn,λ,dqe, obtaining the following corollary of

Theorem 3.3.1:

Corollary 3.3.2. Fix q ≥ 1 and λ > 0. Then

1. If λ < λc(bqc), then ∀ ε > 0, we have

lim
n→∞

φn,λ,q[|Cmax| ≥ ε2n] = 0. (3.39)

2. If λ > λc(dqe), then there exists an ε > 0 depending only on λ such that

lim
n→∞

φn,λ,q[|Cmax| ≥ ε2n] = 1. (3.40)

The previous best bounds for general q assert that asymptotically almost surely,

the largest component of Qn(ω) is of sizen if λ < 1

2n if λ > q
(3.41)
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Figure 3.1: A plot of λc(q), with dashed sections representing λc(bqc) and λc(dqe). We
see that for q > λc(4), the bounds in Corollary 3.3.2 are a strict improvement on the
bounds obtained via comparisons with percolation.

The bounds in (3.41) are obtained by comparing the random cluster measure

φn,λ,q with the percolation measures φn,λ/q and φn,λ, using the stochastic inequality

φn,λ/q ≤st φn,λ,q ≤st φn,λ given in Proposition 2.1.7. The bounds in Corollary 3.3.2 are

much tighter, establishing the size of the largest component everywhere except for an

interval around the critical point of size

λc(dqe)− λc(bqc) = 2

[(
bqc
bqc − 1

)
logbqc −

(
bqc − 1

bqc − 2

)
log(bqc − 1)

]
≤ 2

(
bqc − 1

bqc − 2

)[
logbqc − log(bqc − 1)

]
= O(bqc−1). (3.42)

The proof of Theorem 3.3.1 is based upon the methods used by Ajtai, Komlós,

and Szemerédi in [1] for percolation. In particular, [1] shows that under the measure

φn,λ with λ > 1, Qn(ω) contains a component of order 2n asymptotically almost surely,

using the following two steps:

1. Given a vertex x, the size of the component Cx containing x may be approximated

by the size of a Poisson branching process with mean λ. For λ > 1, there is a

positive probability that the branching process survives. As a result, most of the
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vertices in Qn(ω) belong to components of order at least n.

2. Increasing λ slightly causes most of the components of order n in Qn(ω) to merge,

resulting in a single giant component of order 2n.

The second step of the above argument uses the sprinkling method, described in Section

2.1.2, and may be extended to the random cluster measure using the generalisation of

the sprinkling method proved in Lemma 2.1.13. The first step is more complicated,

as the branching process approximation used for the percolation measure φn,λ depends

crucially on the fact the states of the edges are independent, which is not true for the

random cluster measure φn,λ,q in general. In order to prove Theorem 3.3.1, we will

replace the use of branching processes with an analysis of a corresponding Potts model.

In particular, we will show that the free energy of the measure µn,λ,q converges to a

mean field limit:

Theorem 3.3.3. Fix q ∈ N≥2 and λ > 0. Then

lim
n→∞

1

2n
logZP

n,λ,q = ψ(λ) (3.43)

where the function ψ(λ) is defined by

ψ(λ) = max
v∈Rq

log

[ ∫
λ0(dσ) exp

{
− ‖v‖

2

2λ
+ vT · σ

}]
. (3.44)

We claim that ψ(λ) is well defined and increasing. To this end, we introduce the

notation

ψ(λ, v) = log

[ ∫
λ0(dσ) exp

{
− ‖v‖

2

2λ
+ vT · σ

}]
. (3.45)

and check that

lim
‖v‖→∞

ψ(λ, v) = −∞. (3.46)

Consequently, ψ(λ, v) is maximised for some vλ ∈ Rq, and ψ(λ) = ψ(λ, vλ) is well defined.

Moreover, for any ε > 0, we may write

ψ(λ+ ε)− ψ(λ) ≥ ψ(λ+ ε, vλ)− ψ(λ, vλ). (3.47)

As ψ(λ, v) is increasing in λ, it follows that ψ(λ) is increasing. In fact, we may compute

the maximum in (3.44) explicitly:
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Theorem 3.3.4. Fix q ∈ N≥2 and λ > 0. Then

ψ(λ) =
g(θ(λ, q))

2q
+

λ

2q
+ log q (3.48)

where θ(λ, q) was defined in (3.3) and the function g is given by

g(θ) = −(q − 1)(2− θ) log(1− θ)− [2 + (q − 1)θ] log[1 + (q − 1)θ]. (3.49)

In (3.11), we showed that the function θ(λ, q) is discontinuous at the point λc(q)

when q > 2. Otherwise, it is continuous, and the free energy ψ(λ) inherits this continuity.

In particular, we may apply the Edwards Sokal coupling (in the form of Corollary 2.2.3)

to show that the free energy of the random cluster model on Qn converges to the same

limit computed for the random cluster model on the complete graph in [6, Theorem 2.6]:

Corollary 3.3.5. Fix q ∈ N≥2 and λ > 0 with λ 6= λc(q). Then

lim
n→∞

1

2n
logZRC

n,λ,q =
g(θ(λ, q))

2q
−
(
q − 1

2q

)
λ+ log q. (3.50)

An analysis of the limit obtained in Theorem 3.3.3 shows that for any edge

{x, y} ∈ E, the spin correlations 〈σx · σy〉n,λ,q converge to the following limit:

Lemma 3.3.6. Fix q ∈ N≥2 and λ > 0 with λ 6= λc(q). Then for any pair of vertices

x, y ∈ Qn with {x, y} ∈ E, we have

lim
n→∞

〈σx · σy〉n,λ,q =
1

q
+
q − 1

q
θ(λ, q)2. (3.51)

By applying the Edwards Sokal coupling (in the form given by Corollary 2.2.3)

to Lemma 3.3.6, we establish a similar result regarding connection probabilities for the

random cluster measure φn,λ,q:

Lemma 3.3.7. Fix q ∈ N≥2 and λ > 0 with λ 6= λc(q). Then for any pair of vertices

x, y ∈ Qn with {x, y} ∈ E, we have

lim
n→∞

φn,λ,q[x↔ y] = θ(λ, q)2. (3.52)

Lemma 3.3.7 serves as the starting point for our analysis of the random cluster

model of the hypercube. In particular, it will be shown that the asymptotic phase

transition in nearest neighbour connection probabilities corresponds to an asymptotic
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phase transition in the size of the largest connected component using the following

arguments:

1. For λ > λc, we apply Markov’s inequality to the set of vertices in the neighbourhood

of a given vertex x to compute a lower bound on the probability that a given vertex

x belongs to a component of order n in Qn(ω). This will allow us to substitute

for the exploration process arguments used in [1, Lemma 1], after which we may

apply the sprinkling method developed in Section 2.1.2.

2. For λ < λc, we argue that if a component of order 2n exists, then the probability

that two adjacent vertices both belong to it (and hence are connected in Qn(ω))

is bounded away from 0. As the probability φn,λ,q[x ↔ y] vanishes in the limit

n→∞, this presents a contradiction.

Finally, we compute the exponential rate of the event K that Qn(ω) is connected

under the measure φn,λ,q:

Theorem 3.3.8. Fix q > 0 and λ > 0. Then

lim
n→∞

1

2n
logZRC

n,λ,q[K] = log π1(λ). (3.53)

Moreover, convergence is uniform for λ belonging to compact subsets of [0,∞).

Theorem 3.3.8 is analogous to Theorem 3.2.4 from Section 3.1, and will be proven

in Section 4.1 using the same methods. Ultimately, we hope the methods of Section 3.1

may be extended to the hypercube more fully, in order to generalise the asymptotic

phase transition for the size of the largest component from Theorem 3.3.1 to non-integer

values of q.
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Chapter 4

The complete graph I: connected

and acyclic graphs

In this chapter, we continue the analysis of the random cluster model on the complete

graph which began in Section 3.2. Throughout, we will adopt the notation used in Section

3.2, writing φn,λ,q for the random cluster measure on Kn with edge weight p = λ/n and

cluster weight q. If q = 1, we use the standard notation φn,λ for the percolation measure.

First, we prove Theorem 3.2.4 in Section 4.1, which gives the exponential rate

of the event K that the graph Kn(ω) is connected under the measure φn,λ,q. As the

weight qk(ω) is constant on the event K, the exponential rate of the event K is actually

independent of q, and so Theorem 3.2.4 is an immediate consequence of the rate function

given in [3, Theorem 2.3] for the case q = 1.

Next, we prove Theorem 3.2.6 in Section 4.2, which gives the exponential rate of

the event F that the graph Kn(ω) is acyclic under the measure φn,λ,q. In particular, we

will analyse the measure ZRC
n,λ,q[F ∩Br] of the event that Kn(ω) is acyclic and contains no

components of size greater than r, and then take the limit r →∞, as was done for the

case q = 1 in [3, Section 4]. The additional weight qk(ω) is dealt with using an explicit

correspondence between the number of components and number of edges of the acyclic

random graph.

Finally, we prove Theorem 3.2.5 in Section 4.3, which shows that the exponential

rates of the event that Kn(ω) is acyclic and the event that Kn(ω) contains only compo-

nents of size o(n) coincide, by extending the arguments used when q = 1 in [3, Section

5]. In particular, this will allow us to assume the complement of the largest component

of Kn(ω) under the measure φn,λ,q is acyclic, which makes the weight qk(ω) much easier

to deal with.
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4.1 Connected graphs

In this section, we prove Theorem 3.2.4. In particular, we compute the exponential

rate of the event K that the graph Kn(ω) is connected under the measure φn,λ,q. This

extends the following result, due to Biskup, Chayes and Smith:

Theorem 4.1.1 ([3, Theorem 2.3]). Fix λ > 0. Then

φn,λ[K] = (1− e−λ)neO(logn), (4.1)

where O(log n) is bounded by a constant times log n uniformly for λ belonging to compact

subsets of [0,∞).

In fact, Theorem 3.2.4 may be proven as a direct corollary of Theorem 4.1.1:

Proof of Theorem 3.2.4. Observe that Kn(ω) is connected if and only if k(ω) = 1. Thus

ZRC
n,λ,q[K] =

∑
ω∈K

{∏
e∈E

pωe(1− p)1−ωe
}
qk(ω)

= q
∑
ω∈K

∏
e∈E

pωe(1− p)1−ωe

= qφn,λ[K].

In particular,
1

n
logZRC

n,λ,q[K] =
1

n
log φn,λ[K] +

1

n
log q. (4.2)

The first term converges uniformly to log π1(λ) for λ belonging to compact subsets of

[0,∞) by Theorem 4.1.1. The second is independent of λ, and hence converges uniformly

to 0.

We devote the remainder of this section to reproducing the proof of Theorem

4.1.1 from [3] in more generality. In particular, we will show that for any finite connected

graph G, one may compute the probability that the random graph is connected under

percolation by instead considering a simpler problem on a directed random graph. For

the complete graph Kn, this was proven in [3, Lemma 3.2]. Using this generalisation,

we will also compute the rate function for connectedness on the hypercube in Section

7.3. We begin by introducing the problem of inhomogeneous percolation:

Definition 4.1.2 (Inhomogeneous percolation). Let G = (V,E) be a finite, simple graph,

ΩG = {0, 1}E and p ∈ [0, 1]E be a vector. The inhomogeneous percolation measure with
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weight p is defined by

φG,p[ω] =
∏
e∈E

pωee (1− pe)1−ωe , (4.3)

Equivalently, the measure declares each edge e ∈ E to be open with probability pe, inde-

pendently of every other edge.

As in the homogeneous case, the measure φG,p gives a measure on the set of

random subgraphs of G via the bijection ω → G(ω).

Next, we consider a directed version of the percolation problem. Let G = (V,E)

be a finite, simple graph, and define the directed graph ~G = (V, ~E) using the set of

directed edges

~E = {(x, y), (y, x) : {x, y} ∈ E}. (4.4)

In other words, ~G is the directed graph which replaces each edge e ∈ E with directed

edges in both directions. Let Ω ~G = {0, 1} ~E , and observe that an element ω ∈ Ω ~G

corresponds to a directed subgraph ~G(ω) of ~G. We sample a directed subgraph of ~G

according to the following measure:

Definition 4.1.3 (Inhomogeneous directed percolation). Let G = (V,E) be a finite,

simple graph, and ~G = (V, ~E) be the corresponding directed graph. Let Ω ~G = {0, 1} ~E and

~p ∈ [0, 1]
~E be a vector. The inhomogeneous directed percolation measure with weight ~p

is defined by

φ ~G,~p[ω] =
∏
e∈ ~E

pωee (1− pe)1−ωe , (4.5)

Equivalently, the measure declares each directed edge e ∈ ~E to be open with probability

pe, independently of every other edge.

In practice, we will only be interested in probability vectors satisfying the ad-

ditional constraint that for every {x, y} ∈ E, we have p(x,y) = p(y,x). Given a vector

p ∈ [0, 1]E , we write φ ~G,p for the directed measure where for every {x, y} ∈ E, we define

p(x,y) = p(y,x) = p{x,y}. We study the following property of ~G(ω) under the measure

φ ~G,p:

Definition 4.1.4. A directed graph is grounded at a vertex v ∈ V if for every other

vertex w ∈ V , there exists a path of directed edges from w to v.

The following lemma, which generalises [3, Lemma 3.2], says that for any finite,

simple graph G, the probability that G(ω) is connected under the measure φG,p is equal

to the probability that ~G(ω) is grounded at a given vertex under the measure φ ~G,p:
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Lemma 4.1.5 ([3, Lemma 3.2]). Let G = (V,E) be a finite, simple graph and let

p ∈ [0, 1]E. Let K be the event that G(ω) is connected, and for v ∈ V , let Gv be the

event that ~G(ω) is grounded at v. Then

φG,p(K) = φ ~G,p(Gv). (4.6)

The proof of Lemma 4.1.5 is based heavily upon the proof of [3, Lemma 3.2]:

Proof. We will prove the result by induction on the number of edges e ∈ E(G) for which

pe > 0. If pe = 0 for every e ∈ E(G), then φG,p(K) = φ ~G,p(Gv) = 0, and so the base

case is clear.

Next, let F ⊂ E and suppose that φG,p(K) = φ ~G,p(Gv) when pe = 0 for every

e ∈ F . Fix an edge e = {x, y} ∈ F . We claim that (4.6) still holds when pe > 0.

To prove this claim, it will suffice to show that the partial derivatives of φG,p(K) and

φ ~G,p(Gv) with respect to pe are equal for every pe ∈ [0, 1].

As K and Gv are increasing events, we may compute these partial derivatives

using Russo’s formula. In particular, let A be an increasing event which depends only

on a finite number of edges. Given an edge e, recall that e is pivotal for the event A if

A occurs when e is open, and does not occur when e is closed. Let N(A) be the number

of edges which are pivotal for A. Then, Russo’s formula says that

∂

∂pe
φG,p(A) = φG,p(N(A)). (4.7)

For the event K, Russo’s formula becomes

∂

∂pe
φG,p(K) = φG,p(e is pivotal for K), (4.8)

where e is pivotal for K if and only if we may partition V into two sets, each containing

an endpoint of e, such that each set is connected in G(ω) and every other edge between

them is closed.

For the event Gv, Russo’s formula instead becomes

∂

∂pe
φ ~G,p(Gv) = φ ~G,p((x, y) is pivotal for Gv) + φ ~G,p((y, x) is pivotal for Gv). (4.9)

Let Cv be the set of vertices which are grounded at v in G(ω) \ e. By construction, no

directed edge from Ccv to Cv other than (x, y) may be open, and so (x, y) is pivotal for

Gv if and only if:
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1. y ∈ Cv,

2. x ∈ Ccv,

3. Ccv is grounded at x.

It is not possible for both of the directed edges (x, y) and (y, x) to be pivotal, as this

would imply that x ∈ Cv and x ∈ Ccv. In particular, (4.9) becomes

∂

∂pe
φ ~G,p(Gv) = φ ~G,p((x, y) is pivotal for Gv or (y, x) is pivotal for Gv). (4.10)

Write Ae = {(x, y) is pivotal for Gv or (y, x) is pivotal for Gv}. Observe that Ae

corresponds to the event that we may partition ~G(ω) into two components Cv and Ccv,
one containing x and one containing y, such that Cv is grounded at v and Ccv is grounded

at w, where w ∈ {x, y} is the endvertex of e belonging to Ccv. Conditioning on the set

Cv, we have

φ ~G,p(Ae) =
∑
C⊂V

v∈C,|{x,y}∩C|=1

φ ~C,p(Gv)φ ~Cc,p(Gw)
∏

f∈E(C,Cc)\e

(1− pf ). (4.11)

By induction, φ ~C,p(Gv) = φC,p(K) and φ ~Cc,p(Gw) = φCc,p(K), and so (4.11) becomes

φ ~G,p(Ae) =
∑
C⊂V

v∈C,|{x,y}∩C|=1

φC,p(K)φCc,p(K)
∏

f∈E(C,Cc)\e

(1− pf ). (4.12)

Observing that the right hand side of (4.12) is precisely φG,p(e is pivotal for K), the

partial derivatives are equal and Lemma 4.1.5 follows by induction.

Using Lemma 4.1.5, we may obtain Theorem 4.1.1 as a consequence of the fol-

lowing lemma, which gives appropriate upper and lower bounds:

Lemma 4.1.6 ([3, Lemmas 3.3 and 3.4]). Fix λ > 0. Then, we have the upper bound

φn,λ[K] ≤
(
1− (1− λ/n)n−1

)n−1
(4.13)

and the lower bound

φn,λ[K] ≥ 1

n

(
1− (1− λ

n)n−1
)n−1

. (4.14)

In particular, Theorem 4.1.1 holds.
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Proof. We follow the proof of [3, Lemmas 3.3 and 3.4], analysing the directed graph

~Kn(ω) under the measure φ ~Kn,p where pe = λ/n for every e ∈ E.

We begin with the upper bound (4.13). Fix a vertex v ∈ Kn and let Ev denote

the event that every vertex of the graph, except possibly the vertex v, has at least one

outgoing edge in ~Kn(ω). If another vertex with no outgoing edge exists, ~Kn(ω) cannot

be grounded at v, and so Gv ⊂ Ev. It follows that

φ ~Kn,p(Gv) ≤ φ ~Kn,p(Ev) =
(
1− (1− λ/n)n−1

)n−1
. (4.15)

Applying Lemma 4.1.5 to (4.15) yields (4.13).

For the lower bound, we condition on the event Ev to obtain

φ ~Kn,p(Gv) = φ ~Kn,p(Ev)φ ~Kn,p(Gv|Ev). (4.16)

The factor φ ~Kn,p(Ev) was calculated in the upper bound. Define the event Fv that every

vertex of the graph, except possibly v, has exactly one outgoing edge. We claim that

the other factor satisfies the lower bound

φ ~Kn,p(Gv|Ev) ≥ φ ~Kn,p(Gv|Fv). (4.17)

To see (4.17), let ω ∈ Ev. To each vertex w 6= v, choose an outgoing edge uniformly at

random, colour it red, and let G′v be the event that Gv occurs using only these red edges.

Then

φ ~Kn,p(Gv|Ev) ≥ φ ~Kn,p(G′v|Ev). (4.18)

Observing that conditionally on Ev or Fv, the red edges are distributed identically (in-

deed, uniformly), we have

φ ~Kn,p(G′v|Ev) = φ ~Kn,p(G′v|Fv). (4.19)

Moreover, as there is only one choice of red edge on Fv, the events Gv and G′v coincide,

giving

φ ~Kn,p(G′v|Fv) = φ ~Kn,p(Gv|Fv). (4.20)

It remains to estimate the conditional probability on the right hand side of (4.20). As

Gv does not depend on the outgoing edges from v itself, we may ignore them. To each of

the remaining n− 1 vertices, we have n− 1 possible outgoing edges, yielding (n− 1)n−1

equally weighted configurations for Fv. The number of these configurations which result
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in Kn(ω) being grounded at v is precisely the number of spanning trees of Kn, which is

given by nn−2. Thus

φ ~Kn,p(Gv|Fv) =
nn−2

(n− 1)n−1
≥ 1

n
. (4.21)

It follows that

φ ~Kn,p(Gv) ≥
1

n

(
1− (1− λ

n)n−1
)n−1

. (4.22)

Applying Lemma 4.1.5 to (4.22) yields (4.14).

4.1.1 Connected subgraphs of the hypercube

In this subsection, we prove Theorem 3.3.8, which gives the exponential rate of the event

that the random graph is connected for the random cluster model on the hypercube Qn.

We include this result here because the proof is very similar to that of Theorem 4.1.1,

and extends the arguments introduced in Lemma 4.1.6. To begin, we will need the

following lower bound on the number of spanning trees of the hypercube:

Proposition 4.1.7. Let an denote the number of spanning trees of the hypercube Qn.

Then, for any ε > 0, we have the lower bound

a2
n ≥

4n2

22n
[(1− 4ε2)n2]2

n(1−2e−ε
2n/2). (4.23)

Proof. It is known (e.g. [38]) that the number of spanning trees of Qn is given by

an =
2n

2n

n−1∏
k=1

(2k)(
n
k). (4.24)

By squaring (4.24) and applying symmetry of the binomial coefficients, we obtain

a2
n =

4n2

22n

n−1∏
k=1

(4k(n− k))(
n
k). (4.25)

Given ε > 0, we may bound (4.25) below by

a2
n ≥

4n2

22n

(
1
2 +ε)n∏

k>(
1
2−ε)n

(4k(n− k))(
n
k)

≥ 4n2

22n
[(1− 4ε2)n2]sn , (4.26)
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where

sn =

(
1
2 +ε)n∑

k>(
1
2−ε)n

(
n

k

)
. (4.27)

Using an exponential Markov inequality (e.g. Lemma 7.1.8), we may bound sn below by

sn ≥ 2n(1− 2e−ε
2n/2), (4.28)

which yields the bound (4.23).

Theorem 3.3.8 is then analogous to the following result:

Lemma 4.1.8. Fix λ > 0 and let φn,λ denote the percolation measure with edge weight

p = λ/n on Qn. Then, we have the upper bound

lim sup
n→∞

1

2n
log φn,λ[K] ≤ log π1(λ). (4.29)

and the lower bound

lim inf
n→∞

1

2n
log φn,λ[K] ≥ log π1(λ). (4.30)

Proof. We follow the proof of Lemma 4.1.6, analysing the directed graph ~Qn(ω) under

the measure φ ~Qn,p where pe = λ/n for every e ∈ E and producing upper and lower

bounds on the probability φ ~Qn,p(Gv). Throughout this proof, we denote the percolation

measure on Qn with edge weight λ/n by φn,λ.

We begin with the upper bound (4.29), recalling the definition of the event Ev
from the proof of Lemma 4.1.6 and using the inclusion Gv ⊂ Ev to obtain the bound

φ ~Qn,p(Gv) ≤ φ ~Qn,p(Ev) =
(
1− (1− λ/n)n

)2n−1
. (4.31)

(4.29) follows upon applying Lemma 4.1.5 to (4.31) and taking the appropriate limit.

For the lower bound (4.30), we recall the definition of the event Fv from the proof of

Lemma 4.1.6 and use the inequality

φ ~Qn,p(Gv|Ev) ≥ φ ~Qn,p(Gv|Fv) (4.32)

to obtain the lower bound

φ ~Qn,p(Gv) ≥ φ ~Qn,p(Ev)φ ~Qn,p(Gv|Fv). (4.33)
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We now estimate the second factor. As Gv does not depend on the outgoing edges from v

itself, we may ignore them. To each of the remaining 2n− 1 vertices, we have n possible

outgoing edges, yielding n2n−1 equally weighted configurations for Fv. The number of

these configurations which result in Qn(ω) being grounded at v is precisely the number

an of spanning trees of Qn. By Proposition 4.1.7, it follows that for any ε > 0, we have

log

(
an

n2n−1

)
≥ 1

2n
log

2n

2n
+ (1− 2e−ε

2n/2) log
√

1− 4ε2 − 2e−ε
2n/2 log n. (4.34)

Taking the limits as n→∞ and ε ↓ 0 in that order, we see that

lim inf
n→∞

1

2n
log φ ~Qn,p(Gv|Fv) ≥ 0 (4.35)

which may be combined with (4.31) to yield the lower bound (4.29).

4.2 Acyclic graphs

In this section, we prove Theorem 3.2.6, which gives the exponential rate of the event F

that the graph Kn(ω) is acyclic under the measure φn,λ,q.

Let ω ∈ F be a percolation configuration, and let ml be the number of connected

components of size l in Kn(ω). Observe that each component of size l has l − 1 open

edges, and there are
∑

l(l− 1)ml = n−
∑

lml open edges in total. As
∑

lml = k(ω), it

follows that the weight of the configuration ω is given by

ZRC
n,λ,q[ω] = q

∑
lml(1− λ

n)(
n
2)−n+

∑
lml
∏
l≥1

(λn)(l−1)ml . (4.36)

We will use (4.36) to obtain a representation of the quantity ZRC
n,λ,q[F ∩Br] by summing

over the possible choices of the numbers m1, · · · ,mn. Given a set m1, · · · ,mn, there are
n!∏

lml!(l!)
ml

ways of partitioning Kn(ω) into appropriately sized components. As ω ∈ F ,

each component is a tree. There are al = ll−2 possible spanning trees for each component

of size l, yielding
∏
l a
ml
l possible spanning forests. Thus

ZRC
n,λ,q[F ∩Br] =

∑
∑
lml=n

ml=0∀l>r

n!∏
l[ml!(l!)ml ]

q
∑
ml(1− λ

n)(
n
2)−n+

∑
ml
∏
l

[
al(

λ
n)l−1

]ml
. (4.37)

By factoring out the terms which do not depend on the choice of the numbersm1, · · · ,mn,
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we may rewrite (4.37) as

ZRC
n,λ,q[F ∩Br] = n!(λn)n(1− λ

n)(
n
2)−n

n∑
k=1

(λn)−k[q(1− λ
n)]kQn,k,r (4.38)

where

Qn,k,r =
∑

∑
lml=n∑
ml=k

ml=0∀l>r

∏
l≥1

(
al
l!

)ml 1

ml!
. (4.39)

The equation (4.38) is the same re-arrangement employed for percolation in [3], with the

random cluster model introducing an extra factor of qk in the summand. In order to

estimate this summand, we use the following proposition, which expresses the asymptotic

behaviour of the quantity Qn,k,r in terms of the generating function for the number of

spanning trees:

Proposition 4.2.1 ([3, Proposition 4.1]). Consider the generating function

Gr(s) =

r∑
l=1

slal
l!
. (4.40)

Then for all n, k, r ≥ 1

Qn,k,r ≤
1

k!
inf
s>0

Gr(s)
k

sn
. (4.41)

Moreover, for each η > 0 there is an n0 <∞ and a sequence (cr)r≥1 of positive numbers

such that for all n ≥ n0, k ≥ 1 and r ≥ 2 such that k < (1− η)n and rk > n(1 + η), we

have

Qn,k,r ≥
cr√
n

1

k!
inf
s>0

Gr(s)
k

sn
. (4.42)

The upper bound (4.41) of Proposition 4.2.1 may be understood by expanding

Gr(s)
k as ( r∑

l=1

slal
l!

)k
=

rk∑
i=0

bis
i. (4.43)

Each of the coefficients (bi)
rk
i=0 is positive, and the coefficient bn of sn is given by k!Qn,k,r.

It follows that Gr(s)
k > k!Qn,k,rs

n, and the upper bound is obtained by optimising over

s > 0. The lower bound requires more control over the additional terms, and we will

not discuss it here, instead citing the proof from [3, Proposition 4.1].

We now return to (4.38). Using (4.41), we may obtain an upper bound on the
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summand of

(λn)−k[q(1− λ
n)]kQn,k,r ≤ (λn)−k[q(1− λ

n)]k 1
k! inf
s>0

Gr(s)
k

sn
. (4.44)

Applying the inequality 1−x ≤ e−x to the factor (1− λ
n)k in (4.44) and Stirling’s Formula

to the factorial yields a further bound of

(λn)−k[q(1− λ
n)]kQn,k,r ≤ eo(n) inf

s>0
exp{nΘr(s, k/n, λ/q)} (4.45)

where the error term is bounded uniformly for λ belonging to compact subsets of (0,∞),

and the function Θr(s, θ, α) is given by

Θr(s, θ, α) = −θ logα− θ log θ + θ + θ logGr(s)− log s. (4.46)

As a sum of n terms is bounded above by n times its maximal term, (4.38) may be

bounded above by

ZRC
n,λ,q[F ∩Br] ≤ n!(λn)n(1− λ

n)(
n
2)−n × n sup

1≤k≤n
(λn)−k[q(1− λ

n)]kQn,k,r

≤ n!(λn)n(1− λ
n)(

n
2)−neo(n) sup

1≤k≤n
inf
s>0

exp{nΘr(s, k/n, λ/q)}. (4.47)

Similarly, we may bound a sum of n positive terms below by its maximal summand.

In particular, the lower bound of Proposition 4.2.1 (for fixed η > 0) and the inequality

1 − x ≥ e−x−x
2

(valid for sufficiently small x) may be applied to (4.38) to obtain the

lower bound

ZRC
n,λ,q[F ∩Br] ≥ n!(λn)n(1− λ

n)(
n
2)−neo(n) sup

k
inf
s>0

exp{nΘr(s, k/n, λ/q)}, (4.48)

where the supremum is now taken over k satisfying 1
r (1 + η)n < k < (1− η)n. If we can

show that the supremum of Θr is contained in this interval (for sufficiently small η and

sufficiently large r) then the bounds (4.47) and (4.48) will coincide. This supremum is

evaluated in [3, Lemma 4.2]. We reproduce their lemma here, as it will be important to

check that any convergence is uniform:

Lemma 4.2.2 ([3, Lemma 4.2]). Let α > 0 and r ≥ 2. Then there is a unique (sr, θr) ∈
(0,∞)× (1/r, 1) for which

Θr(sr, θr, α) = sup
1/r≤θ≤1

inf
s>0

Θr(s, θ, α). (4.49)
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Moreover, sr ∈ (0,∞) satisfies the limit

lim
r→∞

sr =

αe−α if α ≤ 1

1
e if α > 1

(4.50)

and θr ∈ (1/r, 1) satisfies the limit

lim
r→∞

θr =

1− α
2 if α ≤ 1

1
2α if α > 1

(4.51)

Combining these facts yields the limit

lim
r→∞

Θr(sr, θr, α) =

1 + α
2 − logα if α ≤ 1

1 + 1
2α if α > 1

(4.52)

Moreover, convergence is uniform for α belonging to compact subsets of (0,∞) \ {1}.

As α = λ/q, the convergence in r of the above three limits will be uniform for λ

belonging to compact subsets of (0,∞) \ {q}, which is precisely the claim of Theorem

3.2.6. We may rewrite the final limit as

lim
r→∞

Θr(sr, θr, α) = 1 + α
2 − logα+ Ψ(α). (4.53)

Proof. We follow the proof of [3, Lemma 4.2]. By setting the partial derivatives of Θr

equal to 0, we see that the maximising pair (sr, θr) is a solution of the equations

sG′r(s) = α, Gr(s) = αθ. (4.54)

We will obtain the limits (4.50) and (4.51) by analysing the above equations, beginning

with the equation sG′r(s) = α. By definition, sG′r(s) is equal to the sum

r∑
l=1

al
sl

(l − 1)!
=

r∑
l=1

1

l

ll

l!
sl. (4.55)

When s > 1
e , we may apply Stirling’s Formula to the factorial in (4.55) to see that the

sum diverges. When s ≤ 1
e , the sum instead converges to the Lambert function W (s)

satisfying We−W = s (a fact which we cite from [15]). We now consider two cases,

depending on the value of α:
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1. Suppose first that α belongs to a bounded interval [α0, α1] with α1 < 1. Define

r1 = inf{r : (1/e)G′r(1/e) > α1} (4.56)

and observe that for every r ≥ r1 and α ≤ α1, we must have sr < 1/e. In

particular, the error

∆r(s) := W (s)− sG′r(s) (4.57)

may be uniformly bounded by ∆r := ∆r(1/e), which converges to 0 as r → ∞.

As srG
′
r(sr) = α, we see that |W (sr) − α| ≤ ∆r. Moreover, by the Mean Value

Theorem, we have

|sr − αe−α| = |W (sr)e
−W (sr) − αe−α| ≤ ce−c|W (sr)− α| (4.58)

for some c ∈ (α − ∆r, α + ∆r). As ce−c ≤ 1, we deduce that |sr − αe−α| ≤ ∆r,

which converges to 0 uniformly.

2. Next, suppose that α belongs to a bounded interval [α0, α1] with α0 ≥ 1. As

srG
′
r(sr) < W (sr) for sr <

1
e and W (1

e ) = 1, it follows that sr ≥ 1
e . Conversely,

we may discard lower order terms in the sum (4.55) to obtain the bound

sG′r(s) ≥ r−3/2(es)r. (4.59)

If we write s = γ/e, then (4.59) exceeds α1 if

γ ≥ exp(1
r logα1 + 3

2r log r) := γr. (4.60)

Thus |sr − 1
e | ≤ (γr − 1)/e, which converges to 0 uniformly.

We have proven (4.50). Next, we analyse the equation Gr(s) = αθ in order to

prove (4.51). As before, we consider two cases, depending on the value of α:

1. Suppose first that α belongs to a bounded interval [α0, α1] with α1 < 1. To find a

limit for θr, we find a limit for Gr(sr) by integrating the equation

sG′r(s) = W (s)−∆r(s). (4.61)

Using the identity We−W = s and its derivative W ′(1−W )e−W = 1 with respect
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to s, we obtain the differential equation

G′r(s) = W ′(1−W )− ∆r(s)

s
, (4.62)

which has the solution

Gr(s) = W − 1
2W

2 −
∫ s

0

∆r(t)
t dt. (4.63)

Plugging in the equations Gr(sr) = αθr and W (sr) = α+ ∆r(sr) yields

θr = 1− 1
2α+ 1

α

(
∆r(sr)− α∆r(sr)− 1

2∆r(sr)
2 −

∫ sr

0

∆r(t)
t dt

)
. (4.64)

As α is bounded away from 0, sr is bounded below 1/e for r sufficiently large, and

∆r(t)/t converges to 0 as r →∞, the error term in (4.64) converges to 0 uniformly.

2. Next, suppose that α belongs to a bounded interval [α0, α1] with α0 ≥ 1, and recall

that in this case, sr converges to e−1 uniformly. By the triangle inequality, we have

|Gr(sr)− 1
2 | ≤ |Gr(sr)−Gr(e

−1)|+ |Gr(e−1)− 1
2 |. (4.65)

The second term converges to 0 independently of α. For the first, we apply the

Mean Value Theorem to obtain

|Gr(sr)−Gr(e−1)| ≤ G′r(c)|sr − e−1| (4.66)

for some c ∈ (e−1, sr). Noting that G′r(s) is increasing and G′r(sr) = α/sr is

bounded, we deduce that the first term must also converge to 0 uniformly. The

result follows after substituting Gr(sr) = αθr.

Thus the limit (4.51) holds. Finally, we observe that

Θr(sr, θr, α) = θr − log sr. (4.67)

The limit (4.52) then follows from the limits (4.50) and (4.51).

In the above Lemma, we computed the supremum of the function Θr over the

entire interval θ ∈ [1/r, 1]. However, the supremums in the bounds (4.47) and (4.48) are

taken over discrete subsets of this interval. We claim that the supremums over these

sets coincide in the limit as n → ∞. To this end, define θr,n = 1
nbθrnc and let sr,n be
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the number s satisfying

Θr(sr,n, θr,n, α) = inf
s>0

Θr(s, θr,n, α). (4.68)

It will be sufficient to prove that the pair (sr,n, θr,n) converges to the pair (sr, θr) as

n→∞:

Lemma 4.2.3. Fix α > 0 and r ≥ 2. Then

lim
n→∞

Θr(sr,n, θr,n, α) = Θr(sr, θr, α). (4.69)

Moreover, convergence is uniform for α in compact subsets of (0,∞) \ {1}.

To prove Lemma 4.2.3, we will need the following proposition:

Proposition 4.2.4. Let P (x) =
∑n

r=0 arx
r be a polynomial with non-negative coeffi-

cients, and consider the function

Q(x) =
P (x)

xP ′(x)
. (4.70)

Then for x > 0, Q(x) is decreasing.

Proof. Differentiation yields

Q′(x) =
1

x2P ′(x)2

(
xP ′(x)2 − P (x)P ′(x)− xP (x)P ′′(x)

)
. (4.71)

It will be sufficient to show that

x3P ′(x)2Q′(x) =
n∑
s=0

n∑
t=0

[stasat − tasat − t(t− 1)asat]x
s+t (4.72)

is negative. Writing m = s+ t (and noting that the sum is the same when interchanging

the order of summation of s and t) this may be rewritten as

x3P ′(x)2Q(x) = 1
2

2n∑
m=0

n∑
r=0

[2r(m− r)−m− r(r − 1)− (m− r)(m− r − 1)]aram−rx
m

= −1
2

2n∑
m=0

n∑
r=0

(m− 2r)2aram−rx
m (4.73)

where we have set al = 0 for any l < 0. This is negative, as required.
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Proof of Lemma 4.2.3. Recall that

Θr(s, θ, α) = −θ logα− θ log θ + θ + θ logGr(s)− log s. (4.74)

Using the triangle inequality, we may bound the difference between Θr(sr,n, θr,n, α) and

Θr(sr, θr, α) by the sum of the differences of the terms in (4.74). If we can show that

each of these differences converges to 0, we will be done:

1. First, consider the term |1 − logα||θr − θr,n|, and note that |θr − θr,n| ≤ 1/n by

definition. As the function 1 − logα is uniformly bounded on compact subsets of

α ∈ (0,∞) \ {1}, this term converges uniformly to 0 as n→∞.

2. Next, consider the term |θr log θr−θr,n log θr,n|. By the triangle inequality, we have

|θr log θr − θr,n log θr,n| ≤ |θr(log θr − log θr,n)|+ |(θr − θr,n) log θr,n|, (4.75)

where both of the terms in the right hand side converge uniformly to 0 by uniform

continuity of the logarithm away from 0.

3. Next, consider the term |log sr − log sr,n|. Recall that, at a stationary point, θ is

given by

θ =
Gr(s)

sG′r(s)
. (4.76)

By Proposition 4.2.4, θ is decreasing when viewed as a function of s. Fix a < b

such that, on our chosen compact subset of α ∈ (0,∞) \ {1},

θ(b) < θr,n < θr < θ(a). (4.77)

On [a, b], θ(s) is continuous and injective. In particular, it has a uniformly con-

tinuous inverse s = h(θ) on the compact set [θ(b), θ(a)], and so sr − sr,n converges

uniformly to 0. As the logarithm is uniformly continuous on intervals bounded

away from 0, the same holds for log sr − log sr,n.

4. Finally, consider the term |θr logGr(sr)−θr,n logGr(sr,n)|. By the triangle inequal-

ity, we have

|θr logGr(sr)− θr,n logGr(sr,n)| ≤|θr logGr(sr)− θr logGr(sr,n)|

+ |θr logGr(sr,n)− θr,n logGr(sr,n)|. (4.78)
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The second term converges to 0 as n→∞ by continuity of Gr. For the first term,

we observe that

logGr(sr,n)− logGr(sr) =

∫ sr,n

sr

G′r(t)

Gr(t)
dt ≤ r

∫ sr,n

sr

t dt ≤ rsr,n(sr,n − sr). (4.79)

For n sufficiently large, sr,n is uniformly bounded and so this converges to uni-

formly.

We have established that θr converges to a limit uniformly for λ belonging to

compact subsets of (0,∞) \ {q}. Moreover, this limit belongs to a compact subset of

(0, 1). In particular, one may choose η > 0 sufficiently small and r > 0, n > 0 sufficiently

large such that θr,nn belongs to the interval [1
r (1 + η)n, (1− η)n]. Then, we may apply

Proposition 4.2.1 to the bounds of equations (4.47) and (4.48) to obtain

ZRC
n,λ,q[F ∩Br] = eo(n) exp{n(−1− 1

2λ+ log λ+ Θr(sr,n, θr,n, λ/q))}, (4.80)

where the o(n) term is bounded uniformly for λ in compact subsets of (0,∞) \ {q}.

Proof of Theorem 3.2.6. From (4.80), we have that

1

n
logZRC

n,λ,q[F ∩Br] = Θr(sr,n, θr,n, λ/q)−Θr(sr, θr, λ/q)

+ Θr(sr, θr, λ/q)− 1− 1
2λ+ log λ

+ o(n)
n . (4.81)

As the event Bn holds for every possible graph, one may set r = n, take the limit as

n→∞, and apply Lemmas 4.2.3 and 4.2.2 to obtain an upper bound of

lim sup
n→∞

1

n
logZRC

n,λ,q

[
F
]
≤ Ψ(λq )− ( q−1

2q )λ+ log q. (4.82)

Conversely, for fixed r ≥ 2, we may apply the inclusion F ⊃ F ∩ Br and take the limit

as n→∞ to obtain the lower bound

lim inf
n→∞

1

n
logZRC

n,λ,q

[
F
]
≥ lim inf

n→∞

1

n
logZRC

n,λ,q

[
F ∩Br

]
= Θr(sr, θr, λ/q)− 1− 1

2λ+ log λ,

which converges to Ψ(λq )− ( q−1
2q )λ+ log q in the limit as r →∞ by Lemma 4.2.2.
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4.3 Correspondence between acyclic subgraphs and small

components

In this section, we prove Theorem 3.2.5. In particular, we show that for the random

cluster measure φn,λ,q, the exponential rates of the event F that Kn(ω) is acyclic and

the event Br that Kn(ω) contains no components of size greater than r coincide in an

appropriate limit. For the percolation measure φn,λ, this was first done in [3, Theorem

2.5]. We need one preliminary lemma, corresponding to [3, Lemma 5.1]:

Lemma 4.3.1 ([3, Lemma 5.1]). Fix q > 0 and λ > 0. Then

ZRC
n,λ,q[Br] ≤ ZRC

n,λ,q[F ](1− λ
n)−

1
2 rn. (4.83)

Proof. We follow the proof of [3, Lemma 5.1], showing that

φn,λ,q[Br] ≤ φn,λ,q[F ](1− λ
n)−

1
2 rn. (4.84)

Given a set of vertices S ⊂ {1, · · · , n}, let CS denote the restriction of the graph Kn(ω)

to S, and let T be a tree on S. Conditionally on the event CS ⊃ T , all vertices of S

belong to the same component of Kn(ω). In particular, any edge in E(S) \ T is open

independently with probability λ/n, and so

φn,λ,q[CS = T ]

φn,λ,q[CS ⊃ T ]
= (1− λ

n)(
|S|
2 )−|S|+1 ≥ (1− λ

n)
1
2 |S|

2

. (4.85)

Let KS be the event that CS is connected. Then

φn,λ,q[KS ] ≤
∑
T

φn,λ,q[CS ⊃ T ] ≤ (1− λ
n)−

1
2 |S|

2

φn,λ,q[CS is a tree]. (4.86)

Now, let Fr denote the event that each component of Kn(ω) is either acyclic or has

size at most r, and note that Br ⊂ Fr. Let {Sj} be a partition of {1, · · · , n} and let

φn,λ,q[{Sj}] denote the probability that {Sj} are the connected components of Kn(ω).

Conditioning the event Fr on the partition {Sj} of connected components, we have

φn,λ,q[Fr] =
∑
{Sj}

φn,λ,q[{Sj}]φn,λ,q[Fr | {Sj}]. (4.87)

Moreover, conditionally on the partition {Sj} of connected components, the states of

edges in different components are independent. In particular, we may write
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φn,λ,q[Fr|{Sj}] =
∏

j:|Sj |>r

φn,λ,q[CSj is a tree | KSj ]

=
∏
j

φn,λ,q[CSj is a tree | KSj ]
∏

j:|Sj |≤r

φn,λ,q[CSj is a tree | KSj ]
−1

≤
∏
j

φn,λ,q[CSj is a tree | KSj ]
∏

j:|Sj |≤r

(1− λ
n)−

1
2 |Sj |

2

where the inequality in the third line is a consequence of (4.85). As |Sj | < r for every

factor in the second product and the sum over |Sj | is at most n, we obtain

φn,λ,q[Fr | {Sj}] ≤ φn,λ,q[F | {Sj}](1− λ
n)−

1
2 rn. (4.88)

Finally, we see that

φn,λ,q[Br] ≤ φn,λ,q[Fr]

=
∑
{Sj}

φn,λ,q[{Sj}]φn,λ,q[Fr | {Sj}]

≤
∑
{Sj}

φn,λ,q[{Sj}]φn,λ,q[F | {Sj}](1− λ
n)−

1
2 rn

= φn,λ,q[F ](1− λ
n)−

1
2 rn

which establishes (4.84). We obtain the claim (4.83) by multiplying both sides of (4.84)

by the partition function.

Proof of Theorem 3.2.5. The theorem is a consequence of the following inequalities:

lim
n→∞

1

n
logZRC

n,λ,q[F ] ≤ lim
r→∞

lim inf
n→∞

1

n
logZRC

n,λ,q[Br],

lim
r→∞

lim inf
n→∞

1

n
logZRC

n,λ,q[Br] ≤ lim
ε↓0

lim inf
n→∞

1

n
logZRC

n,λ,q[Bεn],

lim
r→∞

lim sup
n→∞

1

n
logZRC

n,λ,q[Br] ≤ lim
ε↓0

lim sup
n→∞

1

n
logZRC

n,λ,q[Bεn],

lim
ε↓0

lim sup
n→∞

1

n
logZRC

n,λ,q[Bεn] ≤ lim
n→∞

1

n
logZRC

n,λ,q[F ].

(4.89)

To prove the first inequality, we apply the inclusion Br ⊃ Br ∩ F and Theorem 3.2.6 to

see that
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lim inf
n→∞

1

n
logZRC

n,λ,q[Br] ≥ lim inf
n→∞

1

n
ZRC
n,λ,q[Br ∩ F ]→ lim

n→∞

1

n
logZRC

n,λ,q[F ] (4.90)

as r → ∞. To prove the second inequality, fix r ≥ 2, ε > 0, and let N = dr/εe. Then,

for every n ≥ N , we have εn ≥ εdr/εe ≥ r. As a result, Bεn ⊃ Br, and

1

n
logZRC

n,λ,q[Br] ≤
1

n
logZRC

n,λ,q[Bεn]. (4.91)

Taking the limit inferior as n→∞ on both sides of (4.91) yields

lim inf
n→∞

1

n
logZRC

n,λ,q[Br] ≤ lim inf
n→∞

1

n
logZRC

n,λ,q[Bεn]. (4.92)

As r and ε were arbitrary, we may take the limits as r → ∞ and ε ↓ 0 to obtain the

second inequality. The proof of the third inequality is similar. To prove the fourth

inequality, we apply Lemma 4.3.1 to obtain

1

n
logZRC

n,λ,q[Bεn] ≤ 1

n
logZRC

n,λ,q[F ] + 1
2λε, (4.93)

from which the inequality follows after taking the limit superior as n→∞ and the limit

as ε ↓ 0.
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Chapter 5

The complete graph II: The

largest component

In this chapter, we conclude the analysis of the random cluster model on the complete

graph which began in Section 3.2. Throughout, we will adopt the notation used in Section

3.2, writing φn,λ,q for the random cluster measure on Kn with edge weight p = λ/n and

cluster weight q. If q = 1, we use the standard notation φn,λ for the percolation measure.

First, we prove Lemma 3.2.2 in Section 5.1, which establishes that Kn(ω) has at

most one component of order n under the random cluster measure φn,λ,q asymptotically

almost surely. This will be done by estimating the probability of the event Kε,2 that

Kn(ω) is connected or has exactly two connected components each of size at least εn, as

was done for the case q = 1 in [3].

Next, we prove Theorem 3.2.7 in Section 5.2, which gives the rate function for

large deviations of the size of the largest component of the graph Kn(ω) under the

random cluster measure φn,λ,q. Following the arguments given for the case q = 1 in

[3], this will be done by conditioning on the set A of vertices contained in the largest

component and combining the exponential rates of the events that A is connected and

that Ac does not contain any large components.

Finally, we prove Theorem 3.2.8 in Section 5.3, which states that the limit of

the free energy is equal to the maximum of the rate function computed in Theorem

3.2.7. In order to do this, we will decompose the partition function according to the

size of the largest component, apply Theorem 3.2.7 to each term, and apply the Laplace

Principle in the limit. Crucially, this will depend on a law of large numbers for the

percolation measure φn,λ, taken from [26], to handle some estimates of tail probabilities.

By computing this maximum, we then recover [6, Theorem 2.6].
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5.1 Uniqueness of the large component

In this section, we prove Lemma 3.2.2, which states that the graph Kn(ω) contains at

most one component of order n asymptotically almost surely under the random cluster

measure φn,λ,q. In fact, it has already been shown in [6, Lemma 3.2] that the second

largest component is of order at most n3/4. Rather than citing this result, we will extend

[3, Lemma 6.2], which may be applied more directly when computing rate functions in

Section 5.2.

First, we prove an analogue of [3, Lemma 6.1], which estimates the probability of

the event Kε,2 that Kn(ω) is connected or has exactly two connected components each

of size at least εn:

Lemma 5.1.1 ([3, Lemma 6.1]). Fix q > 0. Then for all λ0 > 0 and ε0 > 0 there exists

a constant c1 = c1(λ0, ε0) > 0 such that for all ε ≥ ε0 and λ ≤ λ0, we have

lim sup
n→∞

1

n
log φn,λ,q[K

c|Kε,2] < −c1. (5.1)

Proof. Observe that

φn,λ,q[K
c|Kε,2] =

φn,λ,q[Kε,2 \K]

φn,λ,q[Kε,2 \K] + φn,λ,q[K]
≤
φn,λ,q[Kε,2 \K]

φn,λ,q[K]
. (5.2)

In particular, it will suffice to show that the ratio on the right hand side of (5.2) decays

to zero exponentially in n, with a rate that is uniformly bounded in ε ≥ ε0 and λ ≤ λ0.

Observe that ω ∈ Kε,2 \K if and only if we may find a set A ⊂ Kn (where A depends on

ω) of vertices of size between εn and n−εn such that A, Ac are connected components of

Kn(ω) and there are no open edges between them. We count the configurations satisfying

these conditions. Let E(A,Ac) be the set of open edges between A and its complement

in Kn(ω), and suppose that |A| = k. By Proposition 3.2.3, A is disconnected from Ac

in Kn(ω) with probability

φn,λ,q[E(A,Ac) = ∅] =
ZRC
k,λk/n,qZ

RC
n−k,λ(1−k/n),q

ZRC
n,λ,q

(1− λ/n)k(n−k). (5.3)

Conditionally on the event {E(A,Ac) = ∅}, A is connected in Kn(ω) with probability

φk,λk/n,q[K] = ZRC
k,λk/n,q[K]/ZRC

k,λk/n,q, (5.4)
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and Ac is connected in Kn(ω) with probability

φn−k,λ(1−k/n),q[K] = ZRC
n−k,λ(1−k/n),q[K]/ZRC

n−k,λ(1−k/n),q. (5.5)

Note that there are
(
n
k

)
choices for A, and that we have counted any pair (A,Ac) twice.

Thus, we have the equation

ZRC
n,λ,q[Kε,2 \K] =

1

2

∑
εn≤k≤n−εn

(
n

k

)(
1− λ

n

)k(n−k)

ZRC
k,λk/n,q[K]ZRC

n−k,λ(1−k/n),q[K]. (5.6)

By Theorem 3.2.4, we know that

ZRC
n,λ,q

[
K
]

= eo(n)π1(λ)n (5.7)

where π1(λ) = 1 − e−λ and the o(n) term is bounded uniformly for λ belonging to

compact subsets of [0,∞). By applying (5.7) to (5.6), we may write

φn,λ,q[Kε,2 \K]

φn,λ,q[K]
= eo(n)

∑
εn≤k≤n−εn

(
n

k

)
π1(λ kn)kπ1(λ(1− k

n))n−k

π1(λ)n

(
1− λ

n

)k(n−k)

. (5.8)

Next, we estimate the summand of (5.8). Stirling’s Formula may be used to estimate

the binomial coefficient (as in (3.28)) as(
n

k

)
= eo(n)enS

(
k
n

)
. (5.9)

Similarly, we may estimate

(1− λ
n)k(n−k) = eo(n)e−λ

k
n

(
1− kn

)
n. (5.10)

This allows us to rewrite (5.8) as

φn,λ,q[Kε,2 \K]

φn,λ,q[K]
= eo(n)

∑
εn≤k≤n−εn

en[Ξ(k/n)−Ξ(0)], (5.11)

where the function Ξ is defined by

Ξ(θ) = S(θ) + θ log π1(λθ) + (1− θ) log π1(λ(1− θ))− λθ(1− θ). (5.12)

We now bound the sum in (5.11) by n times its maximal summand. As Ξ is convex and
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symmetric around the point 1/2, the summand is maximised at the endpoints, leading

to the bound
φn,λ,q[Kε,2 \K]

φn,λ,q[K]
≤ eo(n)en[Ξ(ε)−Ξ(0)]. (5.13)

More explicitly, we may take any value c1 < Ξ(0) − Ξ(ε) provided that n is sufficiently

large.

We may use Lemma 5.1.1 to prove Lemma 3.2.2 as follows:

Proof of Lemma 3.2.2. The proof is identical to that of [3, Lemma 6.2]. In particular,

it will suffice to prove that

φn,λ,q[|V>εn| = bθnc, N>εn > 1] ≤ e−cnφn,λ,q[|V>εn| = bθnc]. (5.14)

For a given vertex x, let Cx denote the component of Kn(ω) containing x. On the event

{|Vεn| = bθnc,Nεn > 1}, we may find a pair of vertices x, y ∈ [n] in Kn(ω) such that

|Cx| ≥ εn, |Cy| ≥ εn and x= y. Define the following two events for the random graph:

A1 = {|Cx| ≥ εn} ∩ {|Cy| ≥ εn} ∩ {x= y},

A2 = {|Cx| ≥ εn} ∩ {|Cy| ≥ εn}.

As the complete graph is transitive, the probabilities of the events A1 and A2 do not

depend on the particular choices of x and y. By the union bound, it follows that

φn,λ,q[|V>εn| = bθnc,N>εn > 1] ≤ n2φn,λ,q[{|V>εn| = bθnc} ∩A1]. (5.15)

We now condition further on the set Cx ∪ Cy. For a given set C ⊂ [n], let D be the

event that C is disconnected from Cc in Kn(ω) and that Cc contains bθnc − |C| vertices

in components of size at least εn. Then

φn,λ,q[{|Vεn| = bθnc} ∩A1] =
∑
C⊂[n]

φn,λ,q[A1 ∩ {Cx ∪ Cy = C} ∩D],

=
∑
C⊂[n]

φn,λ,q[A1 ∩ {Cx ∪ Cy = C} | D]φn,λ,q[D].

Write m = |C|, λ̃ = λθ, and ε̃ = ε/θ. On the event D, the measure φn,λ,q restricts to the
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measure φθn,λ̃,q on C. Moreover, we have the following correspondences between events:

A1 ∩ {Cx ∪ Cy = C} = Kc ∩Kε̃,2,

A2 ∩ {Cx ∪ Cy = C} = Kε̃,2.

As ε̃ ≥ ε for every θ > 0, we may apply Lemma 5.1.1 to deduce that

φn,λ,q[A1 ∩ {Cx ∪ Cy = C} | D] ≤ e−c1mφn,λ,q[A2 ∩ {Cx ∪ Cy = C} | D], (5.16)

which allows us to rewrite (5.15) as

φn,λ,q[|V>εn| = bθnc,N>εn > 1] ≤ n2e−c1mφn,λ,q[{|V>εn| = bθnc} ∩A2]. (5.17)

The result follows upon noting the inclusion {|V>εn| = bθnc} ∩ A2 ⊂ {|V>εn| = bθnc}
and that m ≥ εn.

5.2 Rate function for the largest component

In this section, we prove Theorem 3.2.7. In particular, we compute the rate function for

the size of the largest connected component of Kn(ω) under the measure φn,λ,q. For the

measure φn,λ, this was first done in [3, Theorem 2.1].

Proof of Theorem 3.2.7. By Lemma 3.2.2, it is sufficient to prove that

lim
ε↓0

lim
n→∞

1

n
logZRC

n,λ,q[|V>εn| = bθnc, N>εn = 1] = Φ(θ, λ, q). (5.18)

The case θ = 1 reduces to Theorem 3.2.4 and the case θ = 0 reduces to Theorems

3.2.6 and 3.2.5. Let θ ∈ (0, 1), ε ∈ (0, θ) and assume that θn is an integer. Given

a configuration ω, observe that ω ∈ {|Vεn| = θn,Nεn = 1} if and only if we may

find a subset A ⊂ Kn of vertices (where A depends on ω) of size θn such that A is

a connected component of Kn(ω), Ac contains no connected components of Kn(ω) of

size exceeding εn, and E(A,Ac) = ∅. We count the possible configurations which satisfy

these conditions. Note that there are
(
n
θn

)
possible choices for A and that by Proposition

3.2.3, A is disconnected from Ac in Kn(ω) with probability

φn,λ,q[E(A,Ac) = ∅] =
ZRC
θn,λθ,qZ

RC
(1−θ)n,λ(1−θ),q

ZRC
n,λ,q

(1− λ/n)θ(1−θ)n
2
. (5.19)
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Conditionally on this event, A is connected in Kn(ω) with probability

φθn,λθ,q[K] = ZRC
θn,λθ,q[K]/ZRC

θn,λθ,q, (5.20)

and Ac does not contain any components of size exceeding εn in Kn(ω) with probability

φ(1−θ)n,λ(1−θ),q[Bεn] = ZRC
(1−θ)n,λ(1−θ),q[Bεn]/ZRC

(1−θ)n,λ(1−θ),q. (5.21)

Thus, we have the equation

ZRC
n,λ,q[|V>εn| = θn, N>εn = 1] =

(
n

θn

)
(1− λ

n)θn(1−θ)nZRC
θn,λθ,q[K]ZRC

(1−θ)n,λ(1−θ),q[Bεn].

(5.22)

We now take logarithms, divide by n and take the limit of each term as n→∞. For the

first term, we apply Stirling’s Formula to the factorials in the binomial coefficient (as in

(3.28)) to obtain the limit

lim
n→∞

1

n
log

(
n

θn

)
= S(θ). (5.23)

Similarly, the second term has the limit

lim
n→∞

1

n
log(1− λ/n)θn(1−θ)n = (1− θ) log[1− π1(λθ)]. (5.24)

For the third term, we apply Theorem 3.2.4, yielding the limit

lim
n→∞

1

n
logZRC

θn,λθ,q[K] = θ log π1(λθ). (5.25)

In order to take the limit of the final term, we first apply Theorem 3.2.5 to see that

lim
ε↓0

lim
n→∞

1

n
logZRC

(1−θ)n,λ(1−θ),q[Bεn] = lim
n→∞

1

n
logZRC

(1−θ)n,λ(1−θ),q[F ]. (5.26)

By Theorem 3.2.6, the limit on the right hand side of (5.26) is equal to

lim
n→∞

1

n
logZRC

(1−θ)n,λ(1−θ),q[F ] =(1− θ)×{
Ψ(λ(1−θ)

q )− ( q−1
2q )λ(1− θ) + log q

}
.

(5.27)

Summing these limits yields the result. Convergence is uniform as each of the individual

limits converges uniformly.
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5.3 Free energy of the random cluster model

In this section, we prove Theorem 3.2.8, which yields the limit of the free energy of the

measure φn,λ,q as n→∞ and extends the theorems of the preceding two chapters to the

normalised random cluster measure. The proof we provide is new.

To begin, we let ε > 0. Then, we may decompose the partition function as

ZRC
n,λ,q = ZRC

n,λ,q[Bεn] +
∑
k>εn

ZRC
n,λ,q[|V>εn| = k]. (5.28)

By Lemma 3.2.2, we may write

ZRC
n,λ,q = ZRC

n,λ,q[Bεn] + (1− o(1))
∑
k>εn

ZRC
n,λ,q[|V>εn| = k, N>εn = 1]. (5.29)

We aim to apply Theorem 3.2.7 to each summand in (5.29). Recall that

ZRC
n,λ,q[|V>εn| = k, N>εn = 1] =

(
n

k

)
(1− λ

n)k(n−k)ZRC
k,λk/n,q[K]ZRC

n−k,λ(1−k/n),q[Bεn].

(5.30)

In order to apply Theorem 3.2.7 to all of the summands in (5.29) simultaneously, we

require that the quantity λ(1 − k/n) belongs to a compact subset of (0,∞) \ {q}. It

will suffice to prove that the terms for which k/n is close to 1 or 1− q/λ have negligible

probability, which we do via the following two tail inequalities for sufficiently small ε:

ZRC
n,λ,q[|V>εn| ≥ (1− ε)n, N>εn = 1] ≤ o(1)ZRC

n,λ,q,

ZRC
n,λ,q[|V>εn| ≤ (1− q/λ+ ε)n, N>εn = 1] ≤ o(1)ZRC

n,λ,q.
(5.31)

Equivalently, we show that

φn,λ,q[|V>εn| ≥ (1− ε)n, N>εn = 1] ≤ o(1),

φn,λ,q[|V>εn| ≤ (1− q/λ+ ε)n, N>εn = 1] ≤ o(1).
(5.32)

Both inequalities in (5.32) may be proven via direct comparisons with percolation, using

the following law of large numbers for the size of the largest component of Kn(ω) under

the percolation measure φn,λ:

Theorem 5.3.1 ([26, Theorem 4.8]). Fix λ > 1 and let p = λ/n. Then, for every

ν ∈ (1
2 , 1) there exists δ = δ(λ, ν) > 0 such that

φn,λ[||C1| − θ(λ, 1)n| ≥ nν ] = O(n−δ) (5.33)
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where θ(λ, q) was defined in (3.3) and is equal to the largest solution of the equation

e−λθ = 1− θ for q = 1.

We begin with the first inequality of (5.32). By Proposition 2.1.9, the random

cluster measure φn,λ,q is stochastically dominated by the percolation measure φn,λ for

q ≥ 1, yielding the upper bound

φn,λ,q[|V>εn| ≥ (1− ε)n, N>εn = 1] ≤ φn,λ[|V>εn| ≥ (1− ε)n, N>εn = 1] (5.34)

As the percolation measure is stochastically ordered in the edge weight p, we may assume

that λ > 1, in which case the claim follows by Theorem 5.3.1 provided that ε < 1−θ(λ, 1).

We now turn to the second inequality of (5.32), noting first that it is only relevant

if λ > q. If this is the case, then the random cluster measure φn,λ,q stochastically

dominates the supercritical percolation measure φn,λ/q by Proposition 2.1.9. As a result,

Theorem 5.3.1 may be applied to show that

φn,λ,q[|V>εn| ≤ (θ(λ/q, 1)− ε)n, N>εn = 1] = O(n−δ). (5.35)

Write α = λ/q, as before. We claim that θ(α, 1) > 1 − α−1. As θ(α, 1) solves the

equation

α = − 1

θ(α, 1)
log(1− θ(α, 1)) (5.36)

it will be sufficient to prove that

− 1

θ(α, 1)
log(1− θ(α, 1)) < (1− θ(α, 1))−1 (5.37)

which is a consequence of the inequality (1 − x) log(1 − x) + x > 0 for x ∈ (0, 1). In

particular, the claim follows by Theorem 5.3.1 provided that ε < θ(λ/q, 1) − 1 + q/λ.

Applying both inequalities of (5.31) to (5.29), we see that

(1− o(1))ZRC
n,λ,q = ZRC

n,λ,q[Bεn] +

(1−ε)n∑
k>max{ε,θ(λ/q,1)−ε}n

ZRC
n,λ,q[|V>εn| = k, N>εn = 1]. (5.38)

We are now in a position to prove Theorem 3.2.8:

Proof of Theorem 3.2.8. By Theorem 3.2.7, we know that

lim
ε↓0

lim
n→∞

1

n
logZRC

n,λ,q[|V>εn| = k, N>εn = 1] = Φ( kn , λ, q) (5.39)
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where the function Φ was defined as

Φ(θ, λ, q) = S(θ)− λθ(1− θ) + θ log π1(λθ)

+ (1− θ){Ψ(λ(1−θ)
q )− ( q−1

2q )λ(1− θ) + log q}.
(5.40)

In fact, convergence is uniform for k
n ∈ [max{ε, θ(λ/q, 1) − ε}, 1 − ε]. In particular, the

maximal summand sn of (5.38) converges to the limit

lim
ε↓0

lim
n→∞

1

n
log sn = sup

θ>θ(λ/q,1)
Φ(θ, λ, q) (5.41)

where we have used continuity of the function Φ and density of the rationals to pass

to the continuous supremum. Finally, we may bound the sum in (5.38) between its

maximal summand and n times its maximal summand to obtain

1

n
log sn ≤

1

n
log

(
(1− o(1))ZRC

n,λ,q

)
≤ 1

n
log sn +

1

n
log n. (5.42)

Taking the limits as n→∞ and ε ↓ 0 in that order yields the result.

We have proven that the free energy of the random cluster model converges to the

supremum of the function Φ(θ, λ, q). Finally, we evaluate this supremum. In particular,

the following lemma shows that our computation of the free energy agrees with the one

found in [6, Theorem 2.6]:

Lemma 5.3.2. Let q > 0 and λ > 0. Then

sup
θ∈[0,1]

Φ(θ, λ, q) = sup
θ>θ(λ/q,1)

Φ(θ, λ, q) =
g(θ(λ, q))

2q
−
(
q − 1

2q

)
λ+ log q (5.43)

where the function g : (0, 1)→ R is defined by

g(θ) = −(q − 1)(2− θ) log(1− θ)− [2 + (q − 1)θ] log[1 + (q − 1)θ]. (5.44)

Proof of Lemma 5.3.2. We separate the argument into the two cases λ(1 − θ) > q and

λ(1−θ) < q corresponding to the regions in which the Ψ function is defined. In addition,

we define the shorthand notation

a =
1− θ
qθ

, b =
e−λθ

1− e−λθ
, k = λθ. (5.45)
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When λ(1− θ) > q, the derivative of Φ with respect to θ is given by

∂

∂θ
Φ(θ, λ, q) = (kb)− log(kb)− 1. (5.46)

As x− log x− 1 ≥ 0 with equality if and only if x = 1, the derivative in (5.46) is equal

to zero only if kb = 1. This is equivalent to the equation 1 + λθ = eλθ, for which the

only solution is θ = 0. When λ(1− θ) < q, we obtain the derivative

∂

∂θ
Φ(θ, λ, q) = (log a− ka)− (log b− kb). (5.47)

The function log x− kx is convex, with a maximum at x = 1
k . We know that a ≤ 1

k by

assumption, and b ≤ 1
k is a consequence of the inequality 1 + λθ ≤ eλθ. As a result, the

derivative in (5.47) is equal to zero only if a = b, which may be rearranged to see that

the maximising value θ∗ satisfies the equation

e−λθ =
1− θ

1 + (q − 1)θ
. (5.48)

This is the mean field equation, defined in (3.4). Conversely, any solution θ to the

mean-field equation satisfies the assumption (and so is a stationary point), as

λ(1− θ)
q

= ka = kb ≤ 1. (5.49)

We may now assume θ∗ satisfies the mean-field equation. Under this assumption, one

may rewrite Ψ(θ∗, λ, q) in the form

Ψ(θ∗, λ, q) =
1

2q
g(θ∗)− q − 1

2q
λ+ log q. (5.50)

It remains to show that this is maximised when we take the solution θ(λ, q) of the mean

field equation. We quote the following properties of the function g from [6]:

g(0) = g′(0) = 0,

g′′(θ) = −q(q − 1)[q − 2− 2(q − 1)θ]θ

(1− θ)2[1 + (q − 1)θ]2
.

(5.51)

For q ≤ 2, g(θ) is a convex, increasing function and the result is clear. For q > 2,

g(θ) is initially decreasing. Moreover, g′′(θ) has a zero at θ = q−2
2(q−1) , and is increasing

thereafter. In particular, g(θ) is convex for θ > q−2
2(q−1) and has only one zero in this
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region, which we may compute as θc = q−2
q−1 . Note that θc is the largest solution to the

mean-field equation for λ = λc.

We claim that θmax is increasing as a function of λ. If θmax(λ) = 0 then this is

obvious, so we may assume that θmax(λ) > 0. Let ε > 0, and define the function

h(θ) := e−(λ+ε)θ − 1− θ
1 + (q − 1)θ

. (5.52)

Noting that h(θmax(λ)) < 0 and h(1) > 0, it follows that h has a zero in the interval

(θmax(λ), 1) i.e. θmax(λ+ ε) > θmax(λ).

We may now conclude. If λ < λc, then θmax(λ) < θmax(λc) and so g(θmax(λ)) < 0.

In particular, θ∗ = 0 maximises the free energy. Conversely, if λ > λc then it follows

that g(θmax(λ)) > 0. As g(θ) is convex for θ > 1
2θc, it follows that θmax is the solution

maximising the function g(θ), and so θ∗ = θmax.
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Chapter 6

The hypercube I: The Potts

model

In this chapter, we analyse the free energy of the Potts model on the hypercube.

Throughout, we will adopt the notation used in Section 3.3, writing µn,λ,q for the mea-

sure of the q-state Potts model on Qn with inverse temperature β = λ/n. Similarly, we

will write φn,λ,q for the random cluster measure on Qn with edge weight p = λ/n and

cluster weight q.

The main new result of this chapter is a proof of Theorem 3.3.3, which states

that the free energy of the measure µn,λ,q converges to the mean-field limit as n → ∞.

Intuitively, this mean-field limit replaces all individual interactions with an average,

and is typical for a variety of families of graphs of diverging degree where individual

fluctuations are averaged out over a large number of neighbours.

The proof of Theorem 3.3.3 consists of an upper bound and a lower bound on

the free energy of the measure µn,λ,q which coincide in the limit n→∞. These bounds,

found in Sections 6.1 and 6.2 respectively, will be proven by adapting arguments used by

Kesten and Schonmann in [30] to show that the free energy of an appropriately rescaled

Potts model on the lattice Zd converges to a mean-field limit as d→∞.

In Section 6.3, we will investigate the properties of the mean-field limit in Theo-

rem 3.3.3 using the arguments given in [30, Section 3]. In particular, we will show that

the limit is differentiable in Lemma 6.3.1. By expressing the spin correlations in terms

of the derivative of the free energy, we then prove that the spin correlations undergo the

asymptotic phase transition stated in Lemma 3.3.6. Using the Edwards Sokal coupling,

we then deduce Lemma 3.3.7, which will be used to analyse the random cluster model

in Chapter 7.
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6.1 Lower bound for mean-field convergence of free energy

In this section, we establish a lower bound on the free energy of the Potts measure µn,λ,q

on Qn in the limit n → ∞. More specifically, we prove the following lemma, which is

analogous to [30, Section 2, Lemma 1]:

Lemma 6.1.1. Fix q ∈ N≥2 and λ > 0. Then

lim inf
n→∞

1

2n
logZP

n,λ,q ≥ ψ(λ) (6.1)

where the function ψ(λ) is defined by

ψ(λ) = max
v∈Rq

log

[ ∫
λ0(dσ) exp

{
− ‖v‖

2

2λ
+ vT · σ

}]
. (6.2)

Given a spin configuration σ ∈ ΣQn , write Hn(σ) for the Hamiltonian of the

measure µn,λ,q. Observe that

λ
nHn(σ) = − λ

2n

∑
x∈Qn

∑
y∈Qn:{x,y}∈E

σx · σy

= −λ
2

∑
x∈Qn

σx ·
(

1
n

∑
y∈Qn:{x,y}∈E

σy

)
. (6.3)

In other words, we may interpret the Hamiltonian using an external field whose strength

at the vertex x is given by the average of the spins at all neighbouring vertices. The main

idea in the proof of Lemma 6.1.1 is a mean-field approximation, which asserts that the

external field may be replaced in the limit as n→∞ by a field whose strength at every

vertex is given by the average of the spins of all vertices in the graph. If the mean-field

approximation holds, then the Hamiltonian takes on a Gaussian form, and the partition

function may then be computed using a two-sided Laplace transform.

Proof of Lemma 6.1.1. Let SQn denote the group of permutations of the vertices of Qn.

For σ ∈ ΣQn , τ ∈ SQn and x ∈ Qn, write (τσ)x = στ(x). Finally, recall the measure

νQn :=
∏
x∈Qn λx, where λx is the counting measure on the set {v1, · · · , vq} of coordinate
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vectors of Rq. As the measure νQn is invariant under each τ , we have

ZP
n,λ,q =

∫
νQn(dσ) exp

{
− λ

nHn(σ)

}
=

∫
νQn(dσ)

1

(2n)!

∑
τ∈SQn

exp

{
− λ

nHn(τσ)

}
. (6.4)

In order to bound (6.4), we will use Jensen’s inequality (see e.g. [23, Appendix B.8.1]),

which says that for any probability measure µ, any µ-integrable random variable X and

any convex function ϕ, we have

ϕ(µ[X]) ≤ µ[ϕ(X)]. (6.5)

As the exponential function is convex, we may apply (6.5) to (6.4) to obtain the bound

ZP
n,λ,q ≥

∫
νQn(dσ) exp

{
1

(2n)!

∑
τ∈SQn

(
− λ

nHn(τσ)

)}
. (6.6)

Next, we analyse the sum of Hamiltonians in (6.6). It will be useful to rewrite the

Hamiltonian Hn(σ) of the measure µn,λ,q as

Hn(σ) = −1

2

∑
x∈Qn

∑
y∈Qn:{x,y}∈E

σx · σy = −1

2

∑
x∈Qn

∑
u∈V

σx · σx+u (6.7)

where V = {v1, · · · , vn} is the set of co-ordinate vectors of {0, 1}n, and we take addition

of vectors periodically on each co-ordinate. Using this restated form, we may write

∑
τ∈SQn

(
− λ

nHn(τσ)

)
= λ

2n

∑
τ∈SQn

∑
x∈Qn

∑
u∈V

στ(x) · στ(x+u)

= λ
2n

∑
x∈Qn

∑
u∈V

∑
y,z∈Qn

c(x, y, z, u)σy · σz (6.8)

where c(x, y, z, u) is the number of permutations τ ∈ SQn such that τ(x) = y and

τ(x+ u) = z. This number is given by

c(x, y, z, u) =

0 if y = z

(2n − 2)! otherwise
(6.9)

In particular, c(x, y, z, u) is independent of the choices of x ∈ Qn and u ∈ V. As there
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are 2n choices for x ∈ Qn and n choices for u ∈ V, we may rewrite (6.8) as

∑
τ∈SQn

(
− λ

nHn(τσ)

)
=
λ

2

(2n)!

2n − 1

∑
y,z∈Qn
y 6=z

σy · σz. (6.10)

Observing that ∥∥∥∥ ∑
y∈Qn

σy

∥∥∥∥2

=

( ∑
y∈Qn

σy

)
·
( ∑
z∈Qn

σz

)
=

∑
y,z∈Qn
y 6=z

σy · σz +
∑

y,z∈Qn
y=z

σy · σz (6.11)

and that ∑
y,z∈Qn
y=z

σy · σz = 2n (6.12)

enables us to rewrite (6.10) as

∑
τ∈SQn

(
− λ

nHn(τσ)

)
=
λ

2

(2n)!

2n − 1

{∥∥∥∥ ∑
y∈Qn

σy

∥∥∥∥2

− 2n
}
. (6.13)

Using (6.13), we may write

1

(2n)!

∑
τ∈SQn

(
− λ

nHn(τσ)

)
=

λ

2(2n)

∥∥∥∥ ∑
y∈Qn

σy

∥∥∥∥2

+R, (6.14)

where the remainder term R in (6.14) is given by

R =
λ

2(2n)(2n − 1)

(∥∥∥∥ ∑
y∈Qn

σy

∥∥∥∥2

− (2n)2

)
. (6.15)

As 0 ≤
∥∥∥∥∑y∈Qn σy

∥∥∥∥2

≤ (2n)2, it follows that −λ ≤ R ≤ 0. In particular, (6.14) implies

that

ZP
n,λ,q ≥ e−λ

∫
νQn(dσ) exp

{
λ

2(2n)

∥∥∥∥ ∑
y∈Qn

σy

∥∥∥∥2}
. (6.16)

It remains to estimate the integral in (6.16). To do this, we will use the following

calculation of the two-sided Laplace transform (or, equivalently, the moment generating
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function) of a Gaussian distribution: let r ∈ N, let M be a strictly positive definite

symmetric r × r matrix and let ξ be an r-vector. Then∫
Rr

exp

{
− 1

2
vTMv + vT ξ

}
dv = (2π)r/2(detM)−1/2 exp

{
1

2
ξTM−1ξ

}
. (6.17)

We apply (6.17) to the integrand of (6.16), choosing r = q, ξ =
∑

y∈Qn σy and M = 2n

λ Iq,

to obtain

exp

{
λ

2(2n)

∥∥∥∥ ∑
y∈Qn

σy

∥∥∥∥2}
= (2π)−

q
2

(
2n

λ

) q
2
∫
Rq

exp

{
− 2n

2λ
‖v‖2 + vT

∑
y∈Qn

σy

}
dv

= (2π)−
q
2

(
2n

λ

) q
2
∫
Rq

∏
y∈Qn

exp

{
− 1

2λ
‖v‖2 + vTσy

}
dv.

(6.18)

This yields the bound

ZP
n,λ,q ≥ C(λ, q)2

qn
2

∫
Rq
dv

∫
νQn(dσ)

∏
y∈Qn

exp

{
− 1

2λ
‖v‖2 + vTσy

}
(6.19)

where the constant C(λ, q) is equal to (2πλ)−
q
2 e−λ. As νQn :=

∏
y∈Qn λy, the bound

(6.19) becomes

ZP
n,λ,q ≥ C(λ, q)2

qn
2

∫
Rq
dv
∏
y∈Qn

∫
λy(dσ) exp

{
− 1

2λ
‖v‖2 + vTσy

}

= C(λ, q)2
qn
2

∫
Rq
dv

[ ∫
λ0(dσ) exp

{
− 1

2λ
‖v‖2 + vTσ0

}]2n

(6.20)

where the second line follows by symmetry. Taking logarithms yields

1

2n
logZP

n,λ,q ≥
1

2n
log

∫
Rq
dv

[ ∫
λ0(dσ) exp

{
− 1

2λ
‖v‖2 + vTσ0

}]2n

+
1

2n
logC(λ, q) +

1

2n
log 2

qn
2 . (6.21)

The second line of (6.21) vanishes in the limit as n→∞. To estimate the first line, we

apply a version of Laplace’s principle, which says that if ϕ : Rd → R is continuous and
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e−ϕ is integrable, then

lim
θ→∞

1

θ
log

∫
Rd
e−θϕ(v)dv = − min

v∈Rd
ϕ(v). (6.22)

Applying (6.22) to (6.21) yields the bound

lim inf
n→∞

1

2n
logZP

n,λ,q ≥ max
v∈Rq

log

[ ∫
λ0(dσ) exp

{
− ‖v‖

2

2λ
+ vT · σ

}]
(6.23)

which is equal to ψ(λ), as required.

6.2 Upper bound for mean-field convergence of free energy

In this section, we establish an upper bound on the free energy of the Potts measure

µn,λ,q on the hypercube Qn in the limit n→∞. More specifically, we prove the following

lemma, which is analogous to [30, Section 2, Lemma 4]:

Lemma 6.2.1. Fix q ∈ N≥2 and λ > 0. Then

lim inf
n→∞

1

2n
logZP

n,λ,q ≤ ψ(λ) (6.24)

where the function ψ(λ) is defined by

ψ(λ) = max
v∈Rq

log

[ ∫
λ0(dσ) exp

{
− ‖v‖

2

2λ
+ vT · σ

}]
. (6.25)

In order to prove Lemma 6.2.1, we introduce a matrix representation of the

Hamiltonian Hn of the measure µn,λ,q. Let AQn denote the adjacency matrix of the

hypercube Qn, and let σx,j denote the jth component of σx in Rq. Then, we may write

Hn(σ) = −1

2

∑
x,y∈Qn

(AQn)x,y1{σx=σy}

= −1

2

q∑
j=1

∑
x,y∈Qn

σx,j(AQn)x,yσy,j . (6.26)

We will need the following proposition regarding the eigenvalues of the matrix AQn :

Proposition 6.2.2. The eigenvalues of the matrix AQn are given by the set

{−n+ 2k : 0 ≤ k ≤ n}, (6.27)
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where the eigenvalue −n+ 2k has multiplicity
(
n
k

)
.

Proof. Observe that the matrix AQn may be written iteratively as

AQn =

(
AQn−1 IQn−1

IQn−1 AQn−1

)
(6.28)

where IQn−1 is the 2n−1 dimensional identity matrix. In particular, the characteristic

equation PAQn (λ) of the matrix AQn is equal to

PAQn (λ) = det

(
AQn−1 − λIQn−1 IQn−1

IQn−1 AQn−1 − λIQn−1

)
. (6.29)

For commuting r × r matrices M and N , we have the identity(
M N

N M

)(
M 0

−N Ir

)
=

(
M2 −N2 N

0 M

)
(6.30)

which may be applied with M = AQn−1 − λIQn−1 and N = IQn−1 to obtain the iterative

formula

PAQn (λ) = PAQn−1
(λ− 1)PAQn−1

(λ+ 1). (6.31)

In particular, each eigenvalue of AQn is obtained by choosing an eigenvalue of ±1 of the

matrix AQ1 and then shifting it by ±1 in each of the n−1 successive iterations of (6.31),

yielding the set of eigenvalues (6.27) with their required multiplicities.

Note that AQn is a real, symmetric matrix, and is therefore diagonalisable. Con-

sequently, we may find an orthogonal matrix OQn and a diagonal matrix DQn such

that

AQn = OTQnDQnOQn . (6.32)

Define the matrix D+
Qn

consisting of only the positive entries of DQn by

(D+
Qn

)x,y = max{0, (DQn)x,y}. (6.33)

As D+
Qn
−DQn is positive definite, it follows that for every spin configuration σ, we have

the bound

− λ

n
Hn(σ) ≤ λ

2n

q∑
j=1

∑
x,y∈Qn

σx,j(O
T
QnD

+
Qn
OQn)x,yσy,j . (6.34)

In the proof of Lemma 6.2.1, we would like to apply the Laplace transform from (6.17)

77



to the matrix 1
nO

T
Qn
D+
Qn
OQn . However, the matrix 1

nO
T
Qn
D+
Qn
OQn is not necessarily

strictly positive definite. In order to overcome this technical difficulty, we introduce the

matrix KQn,ε defined by

KQn,ε =
1

n
OTQnD

+
Qn
OQn + εIQn , (6.35)

where IQn is the 2n× 2n identity matrix. Finally, for z > 1 + ε, we introduce the matrix

RQn,z,ε = K−1
Qn,ε
− 1

z
IQn . (6.36)

The following proposition, which is analogous to [30, Section 2, Lemma 3], establishes

some important properties of the matrices KQn,ε and RQn,z,ε:

Proposition 6.2.3. Let ε > 0 and z > 1 + ε. Then the matrices KQn,ε, KQn,ε − 1
nAQn,

and RQn,z,ε are symmetric and strictly positive definite. Furthermore

lim
ε↓0

lim
n→∞

1

2n
log det

(
KQn,εRQn,z,ε

)
= 0. (6.37)

Proof. Symmetry is clear for all three matrices. Next, observe that all eigenvalues of

the matrices KQn,ε and KQn,ε − 1
nAQn are bounded below by ε. As the determinant

of a matrix is the product of its eigenvalues, it follows that the matrices KQn,ε and

KQn,ε − 1
nAQn are strictly positive definite. For the matrix RQn,z,ε, it is sufficient to

check that the matrix

KQn,εRQn,z,ε = IQn − 1
zKQn,ε (6.38)

is strictly positive definite. Recall from Proposition 6.2.2 that the eigenvalues of the

hypercube adjacency matrix AQn are given by

{−n+ 2k : 0 ≤ k ≤ n}, (6.39)

where the eigenvalue−n+2k has multiplicity
(
n
k

)
. Consequently, the matrix KQn,εRQn,z,ε

has the eigenvalues {
1

z

(
z − ε−max

{
0,
−n+ 2k

n

})
: 0 ≤ k ≤ n

}
, (6.40)

where the kth eigenvalue has multiplicity
(
n
k

)
, as before. As max{0, −n+2k

n } ≤ 1 for k ≤ n
and z − ε > 1, these eigenvalues are all strictly positive and so the matrix IQn − 1

zKQn,ε

is strictly positive definite. Finally, we prove the limit (6.37). For notational simplicity,
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define the function

fz,ε(x) = log

(
z − ε−max{0, x}

)
− log z. (6.41)

As the determinant of KQn,εRQn,z,ε is the product of its eigenvalues, we may write

1

2n
log det

(
KQn,εRQn,z,ε

)
=

n∑
k=0

1

2n

(
n

k

)
fz,ε

(
k − n/2

n

)
. (6.42)

The equation (6.42) may be interpreted probabilistically as

1

2n
log det

(
KQn,εRQn,z,ε

)
= E

[
fz,ε

(
Xn − n/2

n

)]
(6.43)

where Xn is a Binomial random variable with parameters n and p = 1/2. By the Strong

Law of Large Numbers, Xn−n/2
n converges to 0 almost surely as n → ∞, and thus it

also converges in distribution. Moreover, fz,ε is bounded and continuous in the interval

[−1, 1]. It follows that

lim
n→∞

E
[
fz,ε

(
Xn − n/2

n

)]
= E[fz,ε(0)] = log

(
z − ε
z

)
. (6.44)

The limit (6.37) follows after taking the limit ε ↓ 0.

Proof of Lemma 6.2.1. Let ε > 0 and z > 1 + ε. Fix j ∈ {1, · · · , q} and view σx,j as the

component (in position x) of a vector σj ∈ RQn . As the matrix KQn,ε− 1
nAQn is positive

definite, we have∑
x,y∈Qn

σx,j(KQn,ε − 1
nAQn)x,yσy,j = σT

j (KQn,ε − 1
nAQn)σj ≥ 0. (6.45)

In particular, it follows that

ZP
n,λ,q =

∫
νQn(dσ) exp

{
λ

2

q∑
j=1

∑
x,y∈Qn

σx,j(
1
nAQn)x,yσy,j

}

≤
∫
νQn(dσ) exp

{
λ

2

q∑
j=1

∑
x,y∈Qn

σx,j(
1
nAQn + (KQn,ε − 1

nAQn))x,yσy,j

}

=

∫
νQn(dσ) exp

{
λ

2

q∑
j=1

∑
x,y∈Qn

σx,j(KQn,ε)x,yσy,j

}
. (6.46)
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Next, we apply the Laplace transform from (6.17) to (6.46) q times, choosing r = 2n,

ξ = σj and M = (λKQn,ε)
−1 for each fixed j = {1, · · · , q}, to obtain

exp

{
λ

2

q∑
j=1

∑
x,y∈Qn

σx,j(KQn,ε)x,yσy,j

}
= (2π)−

q2n

2 [det(λKQn,ε)]
− q2

∫
R2n

dν1 · · ·

· · ·
∫
R2n

dνq exp

{
− 1

2λ

q∑
j=1

vTj K
−1
Qn,ε

vj +

q∑
j=1

vTj σj

}
. (6.47)

Substituting (6.47) into (6.46) and writing K−1
Qn,ε

= RQn,z,ε + 1
z IQn yields the bound

ZP
n,λ,q ≤(2πλ)−

q2n

2 [det(KQn,ε)]
− q2

∫
R2n

dν1

· · ·
∫
R2n

dνq exp

{
− 1

2λ

q∑
j=1

vTj RQn,z,εvj

}

· · ·
∫
νQn(dσ) exp

{
− 1

2zλ

q∑
j=1

‖vj‖2 +

q∑
j=1

vTj σj

}
. (6.48)

Next, we estimate the quantity

I =

∫
νQn(dσ) exp

{
− 1

2zλ

q∑
j=1

‖vj‖2 +

q∑
j=1

vTj σj

}

=

∫
νQn(dσ) exp

{
− 1

2zλ

q∑
j=1

∑
x∈Qn

|vj,x|2 +

q∑
j=1

∑
x∈Qn

vTj,xσj,x

}
. (6.49)

As νQn =
∏
x∈Qn λx is a product measure, we have

I =
∏
x∈Qn

∫
λx(dσ) exp

{
− 1

2zλ

q∑
j=1

|vj,x|2 +

q∑
j=1

vTj,xσj,x

}
(6.50)

which has the uniform bound

I ≤
[

max
w∈Rq

∫
λ0(dσ) exp

{
− 1

2zλ
‖w‖2 + w · σ

}]2n

= exp{2nψ(zλ)}. (6.51)
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Substituting (6.51) to (6.48) yields the bound

ZP
n,λ,q ≤(2πλ)−

q2n

2 [det(KQn,ε)]
− q2 exp{2nψ(zλ)}

∫
R2n

dν1

· · ·
∫
R2n

dνq exp

{
− 1

2λ

q∑
j=1

vTj RQn,z,εvj

}
. (6.52)

It remains to estimate the integral

Ij =

∫
R2n

dνj exp

{
− 1

2λ
vTj RQn,z,εvj

}
(6.53)

for each j ∈ {1, · · · , q}. This may be done using the Laplace transform from (6.17),

choosing r = 2n, M = 1
λRQn,z,ε and ξ = 0 to obtain

Ij = (2πλ)
2n

2 [det(RQn,z,ε)]
− 1

2 . (6.54)

Applying (6.54) to (6.52), we see that

ZP
n,λ,q ≤ (2πλ)−

q2n

2 [det(KQn,ε)]
− q2 (2πλ)

q2n

2 [det(RQn,z,ε)]
− q

2 exp{2nψ(zλ)}

= [det(KQn,εRQn,z,ε)]
− q2 exp{2nψ(zλ)}. (6.55)

After taking logarithms and dividing by the volume, we obtain the bound

1

2n
logZP

n,λ,q ≤ −
q

2(2n)
log det(KQn,εRQn,z,ε) + ψ(zλ). (6.56)

Take the limits of (6.56) as n→∞, ε ↓ 0 and z ↓ 1 in that order. By Proposition 6.2.3,

the first term disappears. The second term converges to ψ(λ) by right-continuity.

6.3 Analysis of the mean-field limit

In this section, we analyse the mean-field limit

ψ(λ) = max
v∈Rq

log

[ ∫
λ0(dσ) exp

{
− ‖v‖

2

2λ
+ vT · σ

}]
(6.57)

of the free energy of the measure µn,λ,q in order to prove Lemma 3.3.7. In particular,

we extract the limit of the spin correlation 〈σx · σy〉n,λ,q stated in Lemma 3.3.6 from

ψ(λ), before applying Corollary 2.2.4 to obtain the limit of the connection probability
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φn,λ,q[x↔ y].

In Proposition 2.2.7, we showed that the spin correlation 〈σx · σy〉n,λ,q is related

to the derivative of the free energy. We will argue that the limit of the spin correlations

is given by the derivative of the limit ψ(λ) of the free energy, which is given in the

following lemma:

Lemma 6.3.1 ([30, Section 3, Proposition 2 (3.9)]). Fix q ∈ N≥2. For λ 6= λc, the

derivative ∂ψ
∂λ exists and is given by

∂ψ

∂λ
=

1

2q
+
q − 1

2q
θ(λ, q)2. (6.58)

Proof of Lemma 3.3.6. Let ψn,q(λ) denote the free energy of the measure µn,λ,q, ex-

pressed as a function of λ rather than of the inverse temperature β = λ/n. By the chain

rule, we have

∂

∂λ
ψn,q(λ) =

∂β

∂λ

∂

∂β
ψn,q(λ)

=
1

n

∂

∂β
ψn,q(λ). (6.59)

By Proposition 2.2.7, we know that

∂

∂β
ψn,q(λ) =

n

2
〈σx · σy〉n,λ,q, (6.60)

leading to the equation

〈σx · σy〉n,λ,q = 2
∂

∂λ
ψn,q(λ). (6.61)

By Lemma 2.2.8, we know that ψn,q(λ) is a convex function of β (and hence λ). Moreover,

in Theorem 3.3.3, we showed that limn→∞ ψn,q(λ) = ψ(λ). Finally, the function ψ(λ)

is differentiable for every λ 6= λc by Lemma 6.3.1. As a result, Lemma 2.2.9 may be

applied to show that

lim
n→∞

∂

∂λ
ψn,q(λ) =

∂ψ

∂λ
(λ). (6.62)

(3.51) follows by plugging (6.58) into (6.62) and then applying the relation of (6.61).

Proof of Lemma 3.3.7. By Corollary 2.2.4, we know that

φn,λ,q[x↔ y] =
q

q − 1

(
〈σx · σy〉n,β,q −

1

q

)
, (6.63)
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where the inverse temperature β is given by

β = − log

(
1− λ

n

)
=
λ

n
+O(n−2). (6.64)

Fix ε > 0. For sufficiently large n, we may bound the inverse temperature in (6.64)

above by (λ+ ε)/n. As spin correlations are increasing in β, it follows that

φn,λ,q[x↔ y] ≤ q

q − 1

(
〈σx · σy〉n,λ+ε,q −

1

q

)
. (6.65)

Applying Lemma 3.3.6 to (6.65) yields the asymptotic upper bound

lim sup
n→∞

φn,λ,q[x↔ y] ≤ θ(λ+ ε, q)2. (6.66)

As (6.66) holds for all ε > 0 and θ(λ, q) is continuous for all λ 6= λc, we deduce that

lim sup
n→∞

φn,λ,q[x↔ y] ≤ θ(λ, q)2. (6.67)

Similarly, we may bound the inverse temperature in (6.64) below by (λ− ε)/n to obtain

φn,λ,q[x↔ y] ≥ q

q − 1

(
〈σx · σy〉n,λ−ε,q −

1

q

)
, (6.68)

leading to

lim inf
n→∞

φn,λ,q[x↔ y] ≥ θ(λ− ε, q)2. (6.69)

As (6.69) holds for all ε > 0, the limit inferior matches the limit superior and (3.52)

follows.

The rest of this section is dedicated to proving Lemma 6.3.1 via a sequence of

lemmas which follow the arguments of [30, Section 3]. We begin with the following

result:

Lemma 6.3.2 ([30, Lemma 5]). The function ψ(λ) may be written in the form

ψ(λ) = max
x∈∆q

{ q∑
i=1

(−xi log xi) +
λ

2

q∑
i=1

x2
i

}
, (6.70)

where

∆q =

{
x ∈ Rq : xi ≥ 0 ∀ i,

q∑
i=1

xi = 1

}
. (6.71)
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Proof. Observe that, as a consequence of (6.16) from the proof of Lemma 6.1.1, we have

ψ(λ) = lim
n→∞

1

2n
log

∫
νQn(dσ) exp

{
λ

2(2n)

∥∥∥∥ ∑
y∈Qn

σy

∥∥∥∥2}
. (6.72)

By definition, νQn is only non-zero for configurations where σx ∈ {v1, · · · , vq} for each

x ∈ Qn, in which case it attaches the configuration a weight of 1. For i = 1, · · · , q,
let mi = |{x ∈ Qn : σx = vi}| be the number of vertices with spin vi, and note that∑q

i=1mi = 2n. Moreover, the number of configurations σ for which a particular set

m1, · · · ,mq is obtained is equal to(
|Qn|

m1, · · · ,mq

)
=

(2n)!

m1!× · · · ×mq!
. (6.73)

By applying Stirling’s Formula (in the form n! = nne−n(1 + o(1))) to (6.73), we see that(
|Qn|

m1, · · · ,mq

)
=

2n2n∏q
i=1m

mi
i

(1 + o(1)). (6.74)

Let xi = mi/|Qn|. Plugging (6.74) into (6.72) gives

ψ(λ) = lim
n→∞

1

2n
log

∑
m1+···+mq=2n

2n2n∏q
i=1m

mi
i

exp

{
λ

2(2n)

q∑
i=1

m2
i

}

= lim
n→∞

1

2n
log

∑
m1+···+mq=2n

exp

{ q∑
i=1

(−xi log xi) +
λ

2

q∑
i=1

x2
i

}2n

. (6.75)

As the sum in (6.75) is bounded between its maximum term and (2n)q times its maximum

term, we obtain the bounds

ψ(λ) ≥ max
m1+···+mq=2n

{ q∑
i=1

(−xi log xi) +
λ

2

q∑
i=1

x2
i

}
,

ψ(λ) ≤ max
m1+···+mq=2n

{ q∑
i=1

(−xi log xi) +
λ

2

q∑
i=1

x2
i

}
+

1

2n
log(2qn).

Moreover, Q∩∆q is a dense subset of ∆q and the function
∑q

i=1(−xi log xi) + λ
2

∑q
i=1 x

2
i

is continuous. As a result, the maximum term in the above bounds converges to the

maximum taken over the set ∆q in the limit as n→∞, and we recover (6.70).
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Recall the function θ(λ, q) defined by

θ(λ, q) =

0 if λ < λc(q)

θmax if λ ≥ λc(q)
(6.76)

where θmax is the largest solution of the mean field equation

e−λθ =
1− θ

1 + (q − 1)θ
. (6.77)

The next lemma expresses the maximum of (6.70) in terms of the function θ(λ, q):

Lemma 6.3.3 ([30, Lemma 6]). For λ 6= λc, the maximum of Lemma 6.3.2 is taken at

a vector x of the form

x1 =
1

q
(1 + (q − 1)θ(λ, q)), x2 = · · · = xq =

1

q
(1− θ(λ, q)), (6.78)

or a point obtained from such an x by permuting its co-ordinates. In particular, Theorem

3.3.4 holds.

Proof. Without loss of generality, take the variables x1 ≥ · · · ≥ xq in decreasing order.

We begin by showing that the maximum of Lemma 6.3.2 is taken at a vector x of the

form

x1 =
1

q
(1 + (q − 1)θ), x2 = · · · = xq =

1

q
(1− θ). (6.79)

By the method of Lagrange multipliers, it is sufficient to compute the maximum of the

function

F (x, t) =

q∑
i=1

(−xi log xi) +
λ

2

q∑
i=1

x2
i + t

( q∑
i=1

xi − 1

)
. (6.80)

Taking the partial derivatives of (6.80) with respect to xi gives

∂F

∂xi
= λxi − log xi − (1− t). (6.81)

Define the function f(x) = λx− log x. Setting the partial derivatives in (6.81) equal to

0 yields the equation

f(xi) = 1− t. (6.82)

In particular, f(xi) = f(x1) for every i = 2, · · · , q. As f is a strictly convex function,

the equation f(x) = f(x1) has at most one other solution, which we call y. As f(x) is

minimised at x = λ−1, it follows that y ≤ λ−1 ≤ x1, with strict inequality if y 6= x1.
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We have shown that xi ∈ {y, x1} for every i = 2, · · · , q. It remains to prove that

if y < x1, then x2 = y. Suppose that we fix x3, · · · , xq and vary only the coordinates

x2, x1. As
∑q

i=1 xi = 1, it follows that x1 + x2 = a, where a ∈ {y + x1, 2x1}. The part

of the function F (x, t) that varies is then given by

F2(x1) = −x1 log x1 − (a− x1) log(a− x1) +
λ

2
(x2

1 + (a− x1)2). (6.83)

Differentiating (6.83) with respect to x1, we obtain the derivatives

F ′2(x1) = f(x1)− f(a− x1),

F ′′2 (x1) = 2λ− 1

x1
− 1

a− x1
.

Suppose that a = 2x1. Then F ′2(x1) = 0, and F ′′2 (x1) = 2(λ− 1/x1) > 0. In particular,

the case x2 = x1 cannot yield a maximum, and so we must have x2 = y. As we arranged

x1 ≥ · · · ≥ xq in decreasing order, it follows that xi = y for every i = 2, · · · , q. By

applying the constraint
∑q

i=1 xi = 1, we obtain (6.79) with θ = x1 − x2.

Next, we show that θ = x1 − x2 is a solution of the mean-field equation. Recall

from (6.82) that

λx1 − log x1 = 1− t = λx2 − log x2, (6.84)

which rearranges to show that θ is a solution of the mean-field equation. To show that

we take the solution θ = θ(λ, q), we plug the values x1, · · · , xq back into the equation

ψ(λ) =

q∑
i=1

(−xi log xi) +
λ

2

q∑
i=1

x2
i . (6.85)

The first term of (6.85) is given by

q∑
i=1

−xi log xi = −1 + (q − 1)θ

q
log

(
1 + (q − 1)θ

q

)
− (q − 1)(1− θ)

q
log

(
1− θ
q

)
=
g(θ)

2q
+ log q +

(
q − 1

2q

)[
log(1− θ)− log(1 + (q − 1)θ)

]
θ

=
g(θ)

2q
+ log q −

(
q − 1

2q

)
λθ2, (6.86)

where g(θ) = −(q − 1)(2 − θ) log(1 − θ) − [2 + (q − 1)θ] log[1 + (q − 1)θ] and we have

86



applied (6.77) to obtain the final line. Similarly, the second term of (6.85) is given by

λ

2

q∑
i=1

x2
i =

λ

2q2
[(1 + (q − 1)θ)2 + (q − 1)(1− θ)2]

=
λ

2q
[1 + (q − 1)θ2]. (6.87)

By combining (6.86) and (6.87), (6.85) becomes

ψ(λ) =
g(θ)

2q
+

λ

2q
+ log q. (6.88)

This is the form of the free energy given in Theorem 3.3.4. It remains to show that the

solution of the mean-field equation which maximises the function g is given by θ(λ, q),

which we quote from the proof of Theorem 5.3.2.

Finally, we compute the derivative described in Lemma 6.3.1:

Proof of Lemma 6.3.1. By combining the first line of (6.86) with the second line of (6.87),

we obtain the expression

ψ(λ) = log q − ( q−1
q )(1− θ) log(1− θ)

− 1
q (1 + (q − 1)θ) log(1 + (q − 1)θ) + λ

2q [1 + (q − 1)θ2], (6.89)

where θ = θ(λ, q) is the largest solution of the mean-field equation, and defined implicitly

as a function of λ. By the chain rule, we have

∂ψ

∂λ
(θ(λ), λ) =

∂ψ

∂θ

∂θ

∂λ
+
∂ψ

∂λ
. (6.90)

We compute each of the derivatives ∂ψ
∂θ and ∂ψ

∂λ . The first derivative is equal to

∂ψ

∂θ
= ( q−1

q )[λθ + log(1− θ)− log(1 + (q − 1)θ)]. (6.91)

As θ satisfies the equation (6.77), the derivative ∂ψ
∂θ vanishes. The second derivative is

equal to
∂ψ

∂λ
= 1

2q [1 + (q − 1)θ2] (6.92)

as required.
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Chapter 7

The hypercube II: The random

cluster model

In this chapter, we analyse the random cluster model on the hypercube. Throughout, we

will adopt the notation used in Section 3.3, writing φn,λ,q for the random cluster measure

on Qn with edge weight p = λ/n and cluster weight q. If q = 1, we use the standard

notation φn,λ for the percolation measure. We call a connected subset of Qn(ω) a cell,

and a connected subset of Qn(ω) of order n2 an atom.

We begin this chapter by establishing two isoperimetric inequalities for the hy-

percube in Section 7.1. The first inequality provides a lower bound on the number of

disjoint edges in the boundary of a subset of the hypercube, and is based upon a re-

sult by Christofides, Ellis and Keevash in [14]. The second inequality provides a lower

bound on the number of disjoint paths of a prescribed length between large subsets of

the hypercube, and is taken from [10].

The main result of this chapter is a proof of Theorem 3.3.1, which establishes

an asymptotic phase transition for the size of the largest component of the random

graph under the measure φn,λ,q at the point λc defined in (3.2). This will be deduced

as a consequence of the asymptotic phase transition for nearest neighbour connection

probabilities given in Lemma 3.3.7, and proven in two parts. In Section 7.2, we argue

by contradiction that in the sub-critical regime λ < λc, the largest component of Qn(ω)

is of order o(2n) asymptotically almost surely. Then, in Section 7.3, we construct a

component of order 2n in the super-critical regime asymptotically almost surely. In

particular, we will use the generalisation of the sprinkling method to the random cluster

model developed in Section 2.1.2 to adapt the arguments of [1], using Lemma 3.3.7 to

substitute for their use of the exploration process.

88



7.1 Isoperimetry of Qn

We begin this chapter with a section detailing two isoperimetric inequalities for the

hypercube Qn. These inequalities, given in Section 7.1.1 and Section 7.1.2, provide

lower bounds on the size of certain boundaries of subsets of the hypercube.

Let G = (V,E) be a finite graph and let A ⊂ V be a subset of vertices. There

are two main notions for the boundary of the set A, which are defined as follows:

Definition 7.1.1 (Edge and vertex boundaries). The edge boundary ∂e(A) of the set A

is defined as

∂e(A) = {{x, y} ∈ E : x ∈ A, y ∈ V \A}, (7.1)

and the vertex boundary b(A) of A is defined as

b(A) = {y ∈ V \A : {x, y} ∈ E for some x ∈ A}. (7.2)

Finally, we define the neighbourhood N (A) of A as

N (A) = A ∪ b(A). (7.3)

In other words, the edge boundary ∂e(A) is the set E(A,Ac) of all edges between A

and Ac, and the vertex boundary b(A) is the set of all vertices contained in Ac which can

be reached using an edge in ∂e(A). In particular, we have the inequality |b(A)| ≤ |∂e(A)|.

7.1.1 Disjoint edge isoperimetric inequality

The objective of this subsection is to prove the following isoperimetric inequality, which

provides a lower bound on the number of disjoint edges - that is, edges which do not

share a common vertex - contained in the edge boundary ∂e(A) of a set A ⊂ Qn when

both A and Ac are sufficiently large:

Lemma 7.1.2. Fix α ∈ (0, 1), and let A ⊂ Qn with |A| ∈ [α2n, (1 − α)2n]. Then,

provided n is sufficiently large, ∂e(A) contains at least γ2n/
√
n disjoint edges, where

γ =
1√
2

α

2

(
1− α

2

)
. (7.4)

The precise value of the constant γ given in (7.4) is not important; we are only

interested in the order of the number of disjoint edges contained in the edge bound-

ary. Lemma 7.1.2 will be proven as a consequence of the following vertex isoperimetric

inequality, given by Christofides, Ellis and Keevash in [14]:
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Theorem 7.1.3 ([14, Theorem 3]). Fix α ∈ (0, 1), and let A ⊂ Qn with |A| = α2n.

Then,

|b(A)| ≥
√

2α(1− α)
2n√
n
. (7.5)

Proof. We follow the proof by induction given in [14]. When n = 1, the inequality (7.5)

is easily checked.

Next, suppose A ⊂ Qn with |A| = α2n for some n ≥ 2. We decompose A into a

disjoint union of the following two sets, depending on the value of the final co-ordinate:

A0 = {v ∈ A : vn = 0}, A1 = {v ∈ A : vn = 1}. (7.6)

Note that A0 and A1 may be viewed as subsets of Qn−1, and (by inverting coordinates

if necessary) we may assume that |A0| ≥ |A1|. Let δ = |A0|/2n−1 − α, and write

|A0| = (α+ δ)2n−1, |A1| = (α− δ)2n−1. (7.7)

Next, we decompose N (A) according to the value of the final coordinate. Suppose that

v ∈ (N (A))0, and let w ∈ A be a neighbour of v. If wn = 0, then v ∈ N (A0). Otherwise

(if wn = 1) v corresponds to a vertex of A1 with its final coordinate flipped to 0. In

particular, it follows that

|(N (A))0| = |N (A0) ∪A1|. (7.8)

Similarly, we see that |(N (A))1| = |N (A1) ∪A0|, and so

|N (A)| = |N (A0) ∪A1|+ |N (A1) ∪A0|. (7.9)

As A0 ⊂ N (A0), we may further write

|N (A)| ≥ max

{
2|A0|, |N (A0)|+ |N (A1)|

}
. (7.10)

Let f(x) =
√

2x(1− x). By induction, we have

|N (A0)| = |A0|+ |b(A0)| ≥ (α+ δ)2n−1 + f(α+ δ)2n−1/
√
n− 1, (7.11)

and

|N (A1)| = |A1|+ |b(A1)| ≥ (α− δ)2n−1 + f(α− δ)2n−1/
√
n− 1. (7.12)
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Using (7.11) and (7.12), we may rewrite (7.10) as

|N (A)| ≥ max

{
(α+ δ)2n, α2n + [f(α+ δ) + f(α− δ)]2n−1/

√
n− 1

}
, (7.13)

which yields a lower bound on the vertex boundary of

|b(A)| ≥ max

{
δ2n, [f(α+ δ) + f(α− δ)]2n−1/

√
n− 1

}
. (7.14)

We claim that if 0 ≤ δ ≤ f(α)/
√
n, then

f(α+ δ) + f(α− δ)
2f(α)

≥
√

1− 1/n. (7.15)

If (7.15) holds, then (7.14) implies that |b(A)| ≥ f(α)2n/
√
n and thus the theorem is

true by induction. To prove (7.15), observe that

f(α+ δ) + f(α− δ)
2f(α)

=
(α+ δ)(1− α− δ) + (α− δ)(1− α+ δ)

2α(1− α)

= 1− δ2

α(1− α)

≥ 1− 1

α(1− α)

f(α)2

n

= 1− 2α(1− α)

n

≥ 1− 1

2n

≥
√

1− 1/n, (7.16)

Where we have applied the inequalities α(1− α) ≤ 1
4 and

√
1− x ≤ 1− x

2 for α ∈ (0, 1)

and x ∈ (0, 1).

Proof of Lemma 7.1.2. Fix α ∈ (0, 1), and let A ⊂ Qn with |A| ∈ [α2n, (1 − α)2n]. We

will prove Lemma 7.1.2 by iteratively constructing a subset S of disjoint edges belonging

to the edge boundary ∂e(A).

To begin, we define the sets A0 = A and S0 = ∅. As |A0| ∈ [1
2α2n, (1 − 1

2α)2n],

Theorem 7.1.3 implies that |b(A0)| ≥ f(1
2α)2n/

√
n, so we may choose an arbitrary vertex

y1 ∈ b(A0) and pair it off with an arbitrary neighbour x1 ∈ A0. Define A1 = A \ x1 and

S1 = S0 ∪ {x1, y1}.
Now, let k ∈ N and suppose that we have constructed the sets Ak and Sk. If
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2k ≥ f(1
2α)2n/

√
n, then Sk is a set of disjoint edges of size at least γ2n/

√
n, and we are

done. Otherwise, we must have |Ak| ∈ [1
2α2n, (1− 1

2α)2n], and so Theorem 7.1.3 may be

applied to see that |b(Ak)| ≥ f(1
2α)2n/

√
n. In particular, the set b(Ak)\Sk is non empty,

so we may choose an arbitrary vertex yk+1 ∈ b(Ak) \Sk and pair it off with an arbitrary

neighbour xk+1 ∈ Ak. Define Ak+1 = A \ xk+1 and Sk+1 = Sk ∪ {xk+1, yk+1}. As there

are finitely many vertices, this procedure eventually terminates at some K ≥ γ2n/
√
n,

and we take the corresponding set SK .

7.1.2 Disjoint path isoperimetric inequality

The objective of this subsection is to provide a lower bound on the number of disjoint

paths of a prescribed length between two large subsets of the hypercube. We will use

the following isoperimetric inequality, given by Borgs et al. in [10]:

Lemma 7.1.4 ([10, Lemma 2.4]). Fix ε > 0, and let S, T ⊂ Qn be subsets of vertices

of size at least ε2n each. Then, for any ∆ > 0 satisfying e−∆2/2n < ε/2, we may find a

collection of 1
2ε2

nn−2∆ vertex disjoint paths from S to T , each of length at most ∆.

If ∆ > 0 is chosen such that n = o(∆2), then for any ε > 0 the condition

e−∆2/2n < ε/2 will hold provided that n is sufficiently large. We will choose ∆ = n3/4

(any choice such that we also have ∆ = o(n) would suffice), and apply Lemma 7.1.4 in

the following form:

Corollary 7.1.5. Fix ε > 0, and let S, T ⊂ Qn be subsets of vertices of size at least ε2n

each. Then, for sufficiently large n, we may find a collection of 2nn−2n4/5
vertex disjoint

paths from S to T , each of length at most n3/4.

Lemma 7.1.4 will be proven using the arguments given in [10]. To begin, we recall

the following classical isoperimetric inequality, due to Harper in [25]:

Theorem 7.1.6 (Harper). Let A ⊂ Qn and suppose that |A| ≥
∑u

i=0

(
n
i

)
. Then

|N (A)| ≥
u+1∑
i=0

(
n

i

)
. (7.17)

Given a subset of vertices A ⊂ Qn and a positive integer r, we denote the ball of

radius r around A by

B(A, r) = {y ∈ Qn : ∃ x ∈ A with d(x, y) ≤ r}, (7.18)
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where d(x, y) denotes the usual (Hamming) distance on the hypercube. Iterated appli-

cation of Harper’s theorem yields the following isoperimetric inequality on the ball of

radius r:

Theorem 7.1.7 ([10, Lemma 2.1]). Let A ⊂ Qn and suppose that |A| ≥
∑u

i=0

(
n
i

)
.

Then, for any r, we have

|B(A, r)| ≥
u+r∑
i=0

(
n

i

)
. (7.19)

In order to estimate the sum of binomial coefficients in (7.19) we will use the

following lemma:

Lemma 7.1.8 ([10, Lemma 2.2]). Fix ∆ > 0. Then

∑
i≤n−∆

2

(
n

i

)
=

∑
i≥n+∆

2

(
n

i

)
≤ 2ne−∆2/2n. (7.20)

Proof. The equality in (7.20) is a result of the symmetry of binomial coefficients. To

prove the inequality, we first rewrite it as

∑
i≥n+∆

2

2−n
(
n

i

)
≤ e−∆2/2n. (7.21)

We recognise the left hand side of (7.21) as the expression P(Xn ≥ n+∆
2 ), where Xn is

a Binomial(n, 1/2) random variable. Let t > 0. By Markov’s inequality, we have the

bound

P(Xn ≥ n+∆
2 ) = P(etXn ≥ et

n+∆
2 )

≤ e−t
n+∆

2 E[etXn ]

= e−t
n+∆

2 [1
2(1 + et)]n

= e−t∆/2 cosh(t/2)n

≤ et2n/8−t∆/2, (7.22)

where we apply the inequality cosh(t) ≤ et2/2 for all t > 0 (obtained by comparing Taylor

series term for term) to obtain the final line. Setting t = ∆/(2n) yields the inequality

of (7.20).

Next, we apply Theorem 7.1.7 to show that if we take sufficiently large sets
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S, T ⊂ Qn and choose ∆ > 0 appropriately, then the intersection of B(S,∆) and T is

large:

Lemma 7.1.9 ([10, Lemma 2.3]). Fix ε > 0, and let S, T ⊂ Qn be subsets of vertices of

size at least ε2n each. Then, for any ∆ > 0 satisfying e−∆2/2n < ε/2, we have

|B(S,∆) ∩ T | ≥ 1
2 |T |. (7.23)

Proof. From Lemma 7.1.8, we have that

|S| ≥
∑

i≤1
2 (n−∆)

(
n

i

)
, (7.24)

and so by Theorem 7.1.7 it follows that

|B(S,∆)| ≥
∑

i≤1
2 (n+∆)

(
n

i

)
. (7.25)

Thus

|Qn \B(S,∆)| ≤
∑

i≥1
2 (n+∆)

(
n

i

)
. (7.26)

Estimating the sum of binomial coefficients in (7.26) using Lemma 7.1.8, we obtain

|Qn \B(S,∆)| < ε

2
2n ≤ 1

2 |T |. (7.27)

As T \B(S,∆) ⊂ Qn \B(S,∆), it follows that

|B(S,∆) ∩ T | = |T | − |T \B(S,∆)| ≥ 1
2 |T |, (7.28)

which is precisely (7.23).

Proof of Lemma 7.1.4. Set T1 = B(S,∆)∩T and note that |T1| ≥ 1
2ε2

n. Let T2 ⊂ T1 be

a maximal subset such that no x, y ∈ T2 are within distance 2∆ of each other. Note that

every y ∈ T1 belongs to a ball of radius 2∆ around some x ∈ T1 (else T2 would not be

maximal) and the size of each ball is bounded by n2∆. Thus |T2| ≥ n−2∆|T1|. Moreover,

as T2 ⊂ T1, for any x ∈ T2 we may find a path of length at most ∆ from x to S. Given

x, y ∈ T2, observe that the paths obtained must be disjoint; otherwise we obtain a path

of length at most 2∆ from x to y.
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7.2 The sub-critical regime λ < λc

In this section, we analyse the size of the largest component Cmax of the graph Qn(ω) for

the random cluster measure φn,λ,q when q ∈ N≥2 and λ < λc, where the critical value λc

was defined in (3.2). In particular, we prove the following lemma, corresponding to the

first half of Theorem 3.3.1:

Lemma 7.2.1. Fix q ∈ N≥2 and λ < λc. Then, for any ε > 0, we have

lim
n→∞

φn,λ,q[|Cmax| ≥ ε2n] = 0. (7.29)

We will prove Lemma 7.2.1 by contradiction. More specifically, we will use the

sprinkling methods detailed in Section 2.1.2 to provide a lower bound on the connection

probability φn,λ,q[x↔ y] in terms of the probability that a component of order 2n exists.

If Lemma 7.2.1 does not hold, this will imply that the probability φn,λ,q[x ↔ y] is

bounded below. This is a contradiction, as we showed in Lemma 3.3.7 that for λ < λc,

lim
n→∞

φn,λ,q[x↔ y] = 0. (7.30)

Before proving Lemma 7.2.1, we need the following preliminary result:

Lemma 7.2.2. Fix q ∈ N≥2, λ > 0, α > 0 and c > 0. Then, for every n ∈ N, we have

φn,λ+qα,q[x↔ y] ≥ c2φn,λ,q[|Cmax| ≥ c2n]2f(α, c, n) (7.31)

where the function f satisfies the limit

lim
n→∞

f(α, c, n) = 1. (7.32)

Proof. Write φn,λ,q,α as shorthand for the sprinkled random cluster measure introduced

in Definition 2.1.11 with G = Qn, edge weight p = λ/n and sprinkling constant δ = α/n.

As the event {x↔ y} is increasing, Lemma 2.1.13 implies that

φn,λ+qα,q[x↔ y] ≥ φn,λ,q,α[x↔ y]. (7.33)

By definition, we may expand the sprinkled random cluster measure as

φn,λ,q,α[x↔ y] =
∑
ω

1x↔y(ω)
∑
ξ

φn,λ,q[ξ]Πα/n[ξ, ω]. (7.34)
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Given a percolation configuration ω, let Cx(ω) denote the component of x in the graph

Qn(ω) and define the event

An,c = {ω : |Cx(ω)| ≥ c2n, |Cy(ω)| ≥ c2n}. (7.35)

We may produce a lower bound on (7.34) by inserting the indicator function 1An,c(ξ),

which is equivalent to adding the constraint that x and y belong to components of size

at least c2n even before the sprinkling is applied. This yields the bound

φn,λ,q,α[x↔ y] ≥
∑
ω

1x↔y(ω)
∑
ξ

1An,c(ξ)φn,λ,q[ξ]Πα/n[ξ, ω]

=
∑
ξ

1An,c(ξ)φn,λ,q[ξ]
∑
ω

1x↔y(ω)Πα/n[ξ, ω]. (7.36)

Observe that the quantity
∑

ω 1x↔y(ω)Πα/n[ξ, ω] is equal to the probability that the

vertices x and y belong to the same component after sprinkling has been applied to the

configuration ξ. We claim that for any ξ ∈ An,c, this has the bound∑
ω

1x↔y(ω)Πα/n[ξ, ω] ≥ f(α, c, n) (7.37)

where the function f(α, c, n) is given by

f(α, c, n) = 1− exp

[
−
(
α

n

)n3/4

2nn−2n4/5

]
−−−→
n→∞

1. (7.38)

Indeed, observe that for any ξ ∈ An,c, the vertices x and y belong to components

Cx(ξ) and Cy(ξ) of size at least c2n in Qn(ξ), which we may assume are disjoint (else

they are certainly connected after sprinkling). By Corollary 7.1.5, there are at least

2nn−2n4/5
disjoint paths of length at most n3/4 between Cx(ξ) and Cy(ξ) provided that

n is sufficiently large. The probability that none of these paths are opened during the

sprinkling represented by the measure Πα/n[ε, ·] is at most

[
1−

(
α

n

)n3/4]2nn−2n4/5

≤ exp

[
−
(
α

n

)n3/4

2nn−2n4/5

]
. (7.39)

Thus the claim (7.37) holds. Applying this claim to (7.36) yields the bound

φn,λ,q,α[x↔ y] ≥ φn,λ,q[|Cx(ω)| ≥ c2n, |Cy(ω)| ≥ c2n]f(α, c, n). (7.40)
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We may then apply the FKG inequality (Theorem 2.1.5) to (7.40), obtaining the bound

φn,λ,q,α[x↔ y] ≥ φn,λ,q[|Cx| ≥ c2n]φn,λ,q[|Cy| ≥ c2n]f(α, c, n). (7.41)

Finally, we note that for any vertex x, we have

φn,λ,q[|Cx| ≥ c2n] ≥ φn,λ,q[{x ∈ Cmax} ∩ {|Cmax| ≥ c2n}]

= φn,λ,q[{x ∈ Cmax} | {|Cmax| ≥ c2n}]φn,λ,q[|Cmax| ≥ c2n]

≥ cφn,λ,q[|Cmax| ≥ c2n] (7.42)

where we have used the fact all vertices are equally likely to belong to the giant compo-

nent by vertex transitivity of the hypercube and the random cluster measure in order to

obtain the final inequality.

Proof of Lemma 7.2.1. We proceed by contradiction. Suppose that Lemma 7.2.1 does

not hold. Then, we may find λ < λc, constants ε1, ε2 > 0 and a subsequence (ni)i∈N

such that for each i, we have

φni,λ,q[|Cmax| ≥ ε12ni ] ≥ ε2. (7.43)

Choose α > 0 such that λ+ qα < λc. Then, Lemma 7.2.2 implies that

φni,λ+qα,q[x↔ y] ≥ ε21ε22f(α, ε1, ni). (7.44)

Taking the limit as ni →∞, the left hand side converges to 0 by Lemma 3.3.7 while the

right hand side converges to ε21ε
2
2 > 0, a contradiction.

7.3 The super-critical regime λ > λc

In this section, we analyse the size of the largest component Cmax of the graph Qn(ω) for

the random cluster measure φn,λ,q when q ∈ N≥2 and λ > λc, where the critical value λc

was defined in (3.2). In particular, we prove the following lemma, corresponding to the

second half of Theorem 3.3.1:

Lemma 7.3.1. Fix q ∈ N≥2 and λ > λc. Then, there exists a constant ε > 0 (depending

only on λ) such that

lim
n→∞

φn,λ,q[|Cmax| ≥ ε2n] = 1. (7.45)
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We will prove Lemma 7.3.1 by adapting the arguments used by Ajtai, Komlós,

and Szemerédi in [1] to study the largest component of Qn(ω) for the percolation mea-

sure φn,λ. We begin with the following lemma, which provides a lower bound on the

probability that e0 belongs to an atom in Qn(ω) for the measure φn,λ,q:

Lemma 7.3.2 (Components of order n2). Fix q ∈ N≥2 and λ > λc(q). Let e0 denote

the vertex of Qn with every coordinate equal to 0. Then, for any c1 <
1
4θ(λ, q)

4, we have

φn,λ,q

[
|Ce0 | ≥ c1n

2

]
≥ c2 (7.46)

for sufficiently large n, where c2 := θ(λ, q)4 − 4c1.

Proof. We begin by showing that vertices at a distance 2 apart have positive connection

probabilities. Let x, y ∈ Qn with d(x, y) = 2 and let z be a common neighbour. By the

FKG inequality (Theorem 2.1.5), we have

φn,λ,q[x↔ y] ≥ φn,λ,q[{x↔ z} ∩ {y ↔ z}]

≥ φn,λ,q[x↔ z]φn,λ,q[y ↔ z]. (7.47)

Applying Lemma 3.3.7 to (7.47) yields the bound

lim inf
n→∞

φn,λ,q[x↔ y] ≥ θ(λ, q)4. (7.48)

Fix n0 such that for every n ≥ n0, φn,λ,q[x ↔ y] ≥ θ(λ, q)4 − 2c1(1 + 2
n). Then, define

the following sets:

X = {y ∈ Qn : d(y, e0) = 2 and y ↔ e0 in Qn(ω)},

Y = {y ∈ Qn : d(y, e0) = 2 and y = e0 in Qn(ω)}.

Note that there are
(
n
2

)
vertices at distance 2 from e0 in Qn, and so |X|+ |Y | =

(
n
2

)
. By

Markov’s inequality, we have

φn,λ,q

[
|Y | ≥ (1− 2c1(1 + 2

n))

(
n

2

)]
≤

(1− (θ(λ, q)4 − 2c1(1 + 2
n)))

(
n
2

)
(1− 2c1(1 + 2

n))
(
n
2

) . (7.49)

Rearranging (7.49), we see that

φn,λ,q

[
|X| ≥ 2c1(1 + 2

n)

(
n

2

)]
≥ θ(λ, q)4 − 4c1. (7.50)
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As X ⊂ Ce0 and 2(1 + 2
n)
(
n
2

)
≥ n2 for n ≥ 2, the claim (7.46) follows.

In [1, Lemma 1], the authors use a branching process comparison to provide a

lower bound on the probability that e0 belongs to a cell of order n in Qn(ω) under the

measure φn,λ. The sprinkling method is then used to increase the order of this cell

from n to n2. As Lemma 7.3.2 directly obtains a lower bound on the probability that

e0 belongs to an atom in Qn(ω) for the measure φn,λ,q, we will need one less round of

sprinkling than [1], which greatly simplifies the proof of Lemma 7.3.1. This simplification

comes at a cost, namely the precision of the constant c1 and hence the density of the giant

component. Indeed, the arguments of Lemma 7.3.2 will result in a giant component with

density proportional to θ(λ, q)4. It is possible to replace this with a density proportional

to θ(λ, q)2 by applying Markov’s inequality directly to the nearest neighbours of e0 and

using an extra round of sprinkling. Alternatively, one can show that the free energy of

an appropriate second order Potts model converges, and hence extend Lemma 3.3.7 to

next nearest neighbours. We do not claim the resulting density of θ(λ, q)2 to be optimal,

as we expect the density of the giant component to equal θ(λ, q), as for the complete

graph.

Our next task is to show that in fact, most vertices have many neighbours be-

longing to atoms of order n2 in Qn(ω) under the measure φn,λ,q. In order to make this

idea precise, we make the following definition:

Definition 7.3.3 (Rich vertices). Let a, b > 0 and ω ∈ {0, 1}E. We say that a vertex v

is (a, b)-rich in Qn(ω) if we may find a subset U of the neighbours of v (in Qn) of size

at least an such that

1. each u ∈ U belongs to an atom B(u) of size at least bn2 in Qn(ω), and:

2. these atoms are mutually disjoint: if u1 6= u2 then B(u1) ∩B(u2) = ∅.

We label the set of (a, b)-rich vertices as R(a, b).

Our next result is the following analogue of [1, Lemma 3]:

Lemma 7.3.4. Fix q ∈ N≥2 and λ > λc(q). Then, we may find constants c3, c4, c5 > 0

(depending only on λ) such that for n sufficiently large, we have

φn,λ,q[|R(c3, c4)| ≥ 2n − 2(1−c5)n] ≥ 1− 2−c5n. (7.51)

Proof. We will show that

φn,λ,q[|R(c3, c4)c| > 2(1−c5)n] ≤ 2−c5n. (7.52)
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Using Markov’s inequality and vertex transitivity in the hypercube, we obtain

φn,λ,q[|R(c3, c4)c| > 2(1−c5)n] ≤ 2−(1−c5)nEn,λ,q[|R(c3, c4)c|]

= 2−(1−c5)n
∑
v∈Qn

φn,λ,q[v /∈ R(c3, c4)]

= 2−(1−c5)n2nφn,λ,q[eo /∈ R(c3, c4)]

= 2c5nφn,λ,q[eo /∈ R(c3, c4)]. (7.53)

It thus suffices to show that for appropriate choices of c3, c4 and c5, we have

φn,λ,q[eo /∈ R(c3, c4)] ≤ 2−2c5n. (7.54)

To prove (7.54), we will express the neighbours of e0 as the roots of disjoint hypercubes of

sufficiently high dimension, apply Lemma 7.3.2 to each, and conclude via an appropriate

Chernoff bound.

Consider the first k neighbours e1, · · · , ek of e0 in Qn, where k = bδnc for a

constant δ > 0 to be chosen later. We may associate a hypercube Q(i) of dimension

n− k to each vertex ei by fixing the first k coordinates of ei and varying the remaining

n − k coordinates. Moreover, if i 6= j then the hypercubes Q(i) and Q(j) are disjoint.

Let Q denote the union of these k hypercubes, and let EQ denote the union of the sets

of edges contained within these hypercubes. By conditioning on the edges E \ EQ not

contained within any of these hypercubes and applying Proposition 2.1.10, we see that

for any increasing function f ,

φn,λ,q[f ] =
∑

η∈{0,1}E\EQ

φn,λ,q[f | ω{0,1}E\EQ = η]φn,λ,q[ω{0,1}E\EQ = η]

≥
∑

η∈{0,1}E\EQ

φn,λ,q[f | ω{0,1}E\EQ = ∅]φn,λ,q[ω{0,1}E\EQ = η]

= φn,λ,q[f | ω{0,1}E\EQ = ∅]. (7.55)

Moreover, conditionally on the event {ω{0,1}E\EQ = ∅}, the measure φn,λ,q restricts to

an independent φn−k,λ(1−k/n),q random cluster measure on each hypercube Q(i). Choose

δ > 0 such that (1− δ)λ > λc. Then, for n sufficiently large, the measure φn−k,λ(1−k/n),q

is supercritical. In particular, we may apply Lemma 7.3.2 to each hypercube Q(i) to

see that the vertex ei belongs to a cell contained entirely within Q(i) of size at least

c1(1 − δ)2n2 = c4n
2 in Qn(ω) with probability c2 > 0, independently of the other
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neighbours of e0. Consequently, the number of neighbours of e0 belonging to disjoint

cells of order at least c4n
2 is bounded below by a Binomial(k, c2) random variable, which

we call X. To estimate the lower tail of this random variable, we use the Chernoff bound

(see [13]), which says that if X1, · · · , Xn are independent random variables taking values

in {0, 1} and X =
∑n

i=1Xi then for any δ > 0, we have

P(X ≤ (1− δ)E[X]) ≤ e−
δ2

2 E[X]. (7.56)

In particular, we see that for the variable X defined above:

P(X ≤ 1
2c2δn) ≤ e−

c2δ
8
n. (7.57)

It follows that for c3 = 1
2c2δ,

φn,λ,q[eo /∈ R(c3, c4)] ≤ P(X ≤ 1
2c2δn) ≤ 2−2c5n (7.58)

where the constant c5 depends only on λ.

We are now ready to prove Lemma 7.3.1:

Proof of Lemma 7.3.1. Fix λ > λc, let λ′ = 1
2(λc+λ), and let α = 1

q (λ−λ′). By Lemma

2.1.13, we know that

φn,λ,q[|Cmax| ≥ ε2n] ≥ φn,λ′,q,α[|Cmax| ≥ ε2n]. (7.59)

By definition, we may expand the sprinkled random cluster measure as

φn,λ′,q,α[|Cmax| ≥ ε2n] =
∑
ω

1|Cmax|≥ε2n(ω)
∑
ξ

φn,λ′,q[ξ]Πα/n[ξ, ω]. (7.60)

Given a percolation configuration ω, define the event

Rn,c3,c4,c5 = {ω : |R(c3, c4)| ≥ 2n − 2(1−c5)n} (7.61)

where R(c3, c4) is the number of (c3, c4)-rich vertices in the graph Qn(ω). We may pro-

duce a lower bound on (7.60) by inserting the indicator function 1Rn,c3,c4,c5
(ξ), which is

equivalent to adding the constraint that at least 2n − 2(1−c5)n vertices have c3n neigh-

bours belonging to atoms of size c4n
2, even before the sprinkling is applied. This yields
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the bound

φn,λ′,q,α[|Cmax| ≥ ε2n] ≥
∑
ω

1|Cmax|≥ε2n(ω)
∑
ξ

1Rn,c3,c4,c5
(ξ)φn,λ′,q[ξ]Πα/n[ξ, ω]

=
∑
ξ

1Rn,c3,c4,c5
(ξ)φn,λ′,q[ξ]

∑
ω

1|Cmax|≥ε2n(ω)Πα/n[ξ, ω]. (7.62)

Observe that the quantity
∑

ω 1|Cmax|≥ε2n(ω)Πα/n[ξ, ω] is equal to the probability that

the largest component of the random graph is of size at least ε2n after sprinkling has

been applied to the configuration ξ. We claim that for any ξ ∈ Rn,c3,c4,c5 , this has the

bound ∑
ω

1|Cmax|≥ε2n(ω)Πα/n[ξ, ω] = 1− o(1). (7.63)

Indeed, observe that for any ξ ∈ Rn,c3,c4,c5 , at least 1
2c32n vertices have c4n neighbours

(in Qn) belonging to atoms in Qn(ξ). As each vertex has at most n neighbours in

total, it follows that at least 1
2c3c42n = c62n vertices belong to atoms in Qn(ξ). Set

ε = 1
3c6. To prove the claim (7.63), it is sufficient to show that after sprinkling with

probability δ = α/n, there exists a connected component such that even the union of

atoms contained within the component has size at least ε2n with probability 1− o(1).

If our claim is not true, then there exists some union A of atoms which remains

separated from the union B of the remaining atoms after sprinkling. Moreover, as we

assumed that at least 3ε2n vertices belong to atoms and no component contains a union

of atoms of size at least ε2n, we may choose A such that

ε2n ≤ |A| ≤ 2ε2n. (7.64)

Similarly, we have |B| ≥ ε2n. As there are at most 2n/(c4n
2) disjoint atoms, there are

at most 22n/(c4n2) choices for A. To prove our claim, it is sufficient to prove that the

probability A and B remain separated after sprinkling is at most exp(−K12n/n2), where

K1 > 0 is chosen sufficiently large that

lim
n→∞

22n/(c4n2) exp(−K12n/n2) = 0. (7.65)

To this end, we define the set

D = N (A) ∩N (B). (7.66)

Let K2 > 0 be a positive constant (to be fixed later). We now consider two further cases,

102



corresponding to ”big” and ”small” intersections of the neighbourhoods of A and B:

1. |D| > 2K22n/n: On the event ξ ∈ Rn,c3,c4,c5 , we know that |R(c3, c4)c| ≤ 2(1−c5)n.

In particular, for sufficiently large n, the set D∩R(c3, c4) contains at least K22n/n

vertices neighbouring both A and B, all of which have at least c3n neighbours in

atoms. As a result, any vertex in the set D ∩ R(c3, c4) must have at least 1
2c3n

neighbours either A or B. Consequently, A and B are connected through a given

vertex in D ∩R(c3, c4) during sprinkling with probability at least

α
n (1− (1− α

n )
1
2 c3n) ≥ c7/n. (7.67)

These randomisations are independent, so A and B are not connected through at

least one vertex in the set D ∩R(c3, c4) with probability at most

(1− c7/n)K22n/n ≤ exp{−K12n/n} (7.68)

provided that K2 was chosen sufficiently large.

2. |D| ≤ 2K22n/n: As ε2n ≤ |A| ≤ |N (A)| ≤ N − |B| ≤ (1 − c0)2n, we may apply

Lemma 7.1.2 to deduce that the edge boundary ∂e(A) contains at least 2c82n/
√
n

disjoint edges. After removing any vertices contained in D ∪ R(c3, c4)c, we have

at least c82n/
√
n disjoint edges from b(A) to b(B). The endpoints of each of these

edges has c3n neighbours in A,B respectively, so A and B are connected through

one of these disjoint edges during sprinkling with probability at least

α
n (1− (1− α

n )c7n)2 ≥ c9/n. (7.69)

These randomisations are independent, so we do not connect through one of these

edges with probability at most

(1− c9/n)c82n/
√
n ≤ exp{−K12n/n2} (7.70)

provided n is sufficiently large.

We have shown that the claim (7.63) holds. It follows that

φn,λ′,q,α[|Cmax| ≥ ε2n] ≥ (1− o(1))φn,λ,q[|R(c3, c4)| ≥ 2n − 2(1−c5)n]. (7.71)

It remains to observe that we may choose c3, c4, c5 according to Lemma 7.3.4 to ensure

that φn,λ,q[|R(c3, c4)| ≥ 2n − 2(1−c5)n] ≥ 1− 2−2c5n.
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[6] Béla Bollobás, Geoffrey Grimmett, and Svante Janson, The Random-Cluster model

on the complete graph, Probab. Th. Rel. Fields 104, 283-317 (1996).

[7] Bela Bollobás, Yoshiharu Kohayakawa, and Tomasz  Luczak, The evolution of ran-

dom subgraphs of the cube, Random Structures and Algorithms 3, 55-90 (1992).

[8] Christian Borgs, Jennifer Chayes, Remco van der Hofstad, Gordon Slade, and Joel

Spencer, Random subgraphs of finite graphs: I. The scaling window under the tri-

angle condition, Random Structures and Algorithms 27 (2), 137-184 (2005).

[9] Christian Borgs, Jennifer Chayes, Remco van der Hofstad, Gordon Slade, and Joel

Spencer, Random subgraphs of finite graphs. II. The lace expansion and the triangle

condition, Ann. Probab. 33, 1886–1944 (2005).

104



[10] Christian Borgs, Jennifer Chayes, Remco van der Hofstad, Gordon Slade, and Joel

Spencer, Random subgraphs of finite graphs: III. The phase transition for the n-

cube, Combinatorica 26 (4), 395-410 (2006).

[11] Simon Broadbent and John Hammersley, Percolation Processes I. Crystals and

Mazes, Mathematical Proceedings of the Cambridge Philosophical Society 53 (3),

629-641 (1957).

[12] Yu Burtin, On Connection Probability of a Random Subgraph of an n-Dimensional

Cube, Probl. Peredachi Inf. 13 (2), 90–95 (1977).

[13] Herman Chernoff, A Measure of Asymptotic Efficiency for Tests of a Hypothesis

Based on the sum of Observations, The Annals of Mathematical Statistics. 23 (4),

493–507 (1952).

[14] Demetres Christofides, David Ellis, and Peter Keevash, An approximate isoperimet-

ric inequality for r-sets, Electr. J. Comb. 20 (4), paper no. 15 (2013).

[15] Robert Corless, Gaston Gonnet, David Hare, David Jeffrey, and Donald Knuth,

On the LambertW function, Advances in Computational Mathematics 5, 329–359

(1996).

[16] Hugo Duminil-Copin, Lectures on the Ising and Potts models on the hypercubic

lattice, arXiv:1707.00520 (2017).

[17] Robert Edwards and Alan Sokal, Generalization of the Fortuin-Kasteleyn-

Swendsen-Wang representation and Monte Carlo algorithm, The Physical Review

D 38, 2009–2012 (1988).
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