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Abstract. In this thesis we extend the classification of primitive permutation

groups of degree d to include 4096 ≤ d < 8192. We make heavy use of the

O’Nan-Scott Theorem, Aschbacher’s Theorem for general linear groups, and the

Classification of the Finite Simple Groups. We follow the method given in [13]

making the necessary changes and computations.

This work required the construction of a deterministic test which outputs whether

a subgroup of GL(d, q) is semilinear.

We have also produced a general function which, for a given 1 ≤ d ≤ 1000000,

outputs all non-affine primitive groups of degree d.

Finally we have classified the quasiprimitive groups up to degree 3600, making use

of Praeger’s “O’Nan-Scott Theorem” for quasiprimitive groups given in [33].
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1. Introduction and Basic Results from the Literature

This thesis focuses on several problems in Computational Group Theory. We use

the computational algebra system MAGMA [5] extensively and our results will likely

be added to its databases.

A primitive permutation group G of degree n is a transitive subgroup of Sn such

that every point stabilizer in G is a maximal subgroup of G.

The classification of primitive groups of low degree has been achieved for many

different ranges of degree over the course of the last two centuries. The electronic

publication of the resulting databases forms an important part of Computational

Group Theory. For a more detailed history of the classification of primitive groups

we refer the reader to [24, Chapter 11] or [13, Section 1]. Prior to this thesis the

classification was complete up to degree 4095.

By classification of groups we mean that all of the groups with the stated property

have been determined, up to an equivalence. The equivalence that we use through-

out this thesis is permutation isomorphism.

In Section 3 we extend the classification of primitive permutation groups of de-

gree d up to degree d < 8192, following a similar method to [13]. Our approach

is highly computational as this minimises the possibility of human error and many

of the calculations are impossible to do by hand. We discovered that some of the

known methods used to produce primitive groups are too computationally intensive

at higher degrees and so we implemented several new methods to produce these

groups. An example of this is that we developed new techniques to deal with groups

of affine type, see Section 3.1. This problem is equivalent to finding all irreducible

subgroups of GL(k, p), for some k and prime p. In particular the groups of degree

38 were the most challenging; the method in this case included producing a method

to determine whether a group is semilinear. This motivated the material that we

discuss in Section 2.

In Section 2 we create and describe a test which determines whether a subgroup

G of GL(d, q) is semilinear. We then also give a refined and shorter version of the

test. Here a subgroup G ≤ GL(d, q) is semilinear if G is isomorphic to a subgroup

of ΓL(d/e, qe) for some non-trivial divisor e of d (see Definition 2.50).

The possible degrees for which we can classify primitive groups is held back by the

groups of affine type. These groups arise at any prime power degree and classifying

them for larger degrees becomes increasingly computationally intensive. In Section

4 we produce a general function in MAGMA which, for any integer input d with

9



1 ≤ d ≤ 1000000, outputs all non-affine primitive groups of degree d.

A quasiprimitive permutation group G of degree n is a transitive subgroup of

Sn such that every normal subgroup of G is also transitive. We note that every

primitive group is also quasiprimitive (as shown in Lemma 1.4).

In Section 5 we produce a classification of the quasiprimitive permutation groups

of degree 1 ≤ d ≤ 3600. This degree range was chosen because this is the smallest

range such that there are examples of every different type of quasiprimitive group

(see Theorem 5.1). It has come to our attention that D. Bernhardt has indepen-

dently classified the quasiprimitive permutation groups up to degree 4096, although

this work is currently unpublished and we are unaware of their methods or results.

Finally in Section 6 we tabulate the classifications produced in Sections 3 and 5.

We also provide tables that are of use in Section 4.

We will be making heavy and continuous use of the following well known re-

sults: the O’Nan-Scott Theorem (1.11), the Classification of the Finite Simple

Groups (1.23), Aschbacher’s Theorem for general linear groups (1.25), and Praeger’s

“O’Nan-Scott Theorem” for quasiprimitive groups (5.1), (see [39], [17], [2], and [33]

respectively).

We will take p to always be a prime, and q to always be a prime power (of p). We

always consider d and n to be positive integers. Every group will be assumed to be

finite.

We will be displaying the ideas of our code in the following way throughout:

Procedure name

Input: Our input.

Output: Our desired output.

Step 1: · · ·

Step 2: · · ·

We note that these procedures are the ideas of the code; some of the details are

missing. This was done to aid the clarity of reading. These details do appear in the

discussions preceding the code.

1.1. Group actions and permutation groups. In this section we give a brief

description of group actions, including the definitions of primitive and quasiprimitive

groups.
10



Definition 1.1. Let G be a finite group and Ω a finite set. An action of G on Ω is

a map Ω×G→ Ω where (α, g) 7→ αg, satisfying

(i) α1 = α for all α ∈ Ω,

(ii) (αg)h = αgh for all α ∈ Ω and all g, h ∈ G.

The degree of this action is |Ω|.

Equivalently an action of G on Ω, where |Ω| = n can be defined as a group ho-

momorphism φ : G→ Sym(Ω) ∼= Sn. We write αg for φ(g) where g ∈ G and α ∈ Ω.

Here Im(φ), which we denote by GΩ, is a permutation group on Ω.

We call an action of G on Ω faithful if ker(φ) = 1. So the action is faithful if and

only if GΩ ∼= G.

Let α ∈ Ω, the orbit of α under G is the set αG := {αg | g ∈ G}, and the stabilizer

of α in G is Gα := {g ∈ G | αg = α}.

We now state the Orbit-Stabilizer Theorem.

Lemma 1.2. Let G be a group acting on a finite set Ω and α ∈ Ω. Then |αG| =

|G : Gα|.

We say that G acts transitively on Ω if αG = Ω for some, and hence all, α ∈ Ω.

Otherwise we call G intransitive. We call a transitive action of G on Ω regular if

Gα = 1 for all α ∈ Ω.

Definition 1.3. Let G be a group acting transitively on a set Ω. A block for the

action of G on Ω is a non-empty subset ∅ 6= ∆ ⊆ Ω such that for all g ∈ G

∆g ∩∆ = ∆ or ∆g ∩∆ = ∅.

We call ∆ trivial if |∆| = 1 or ∆ = Ω.

We call a transitive action of G on Ω primitive if the action has no non-trivial

blocks. Otherwise we call the action imprimitive.

The following is [16, Theorem 1.6A(v)].

Lemma 1.4. Let G be a group acting primitively on a finite set Ω. Let H E G be

a non-trivial normal subgroup of G, then H acts transitively on Ω.

This motivates the following definition.

Definition 1.5. Let G be a finite group acting transitively on a finite set Ω, with

|Ω| > 1. We say that G is acting quasiprimitively if every non-trivial normal sub-

group of G acts transitively on Ω.

If G ≤ Sn then G has a natural action on Ω = {1, . . . , n}, where each element of

G permutes the elements of Ω in the natural way. In this case we call the group G
11



transitive, primitive, or quasiprimitive when this action is transitive, primitive, or

quasiprimitive respectively.

The following is [16, Corollary 1.5A].

Lemma 1.6. Let G ≤ Sn be transitive, with n > 1. Then G is primitive if and only

if every point stabilizer Gα of G is a maximal subgroup of G.

In particular, the study of finite primitive permutation groups is equivalent to the

study of (core free) maximal subgroups of finite groups.

Definition 1.7. Let G1 and G2 be two groups acting on the sets Ω1 and Ω2 respec-

tively. We say that G1 and G2 are permutation isomorphic if there is a bijection

λ : Ω1 → Ω2 and a group isomorphism φ : G1 → G2 such that

λ(αg) = λ(α)φ(g)

for all g ∈ G1 and α ∈ Ω1. Equivalently two subgroups of Sn are permutation

isomorphic if and only if they are conjugate in Sn, see Lemma 1.17.

In Section 3 we classify all primitive permutation groups of degree 4096 ≤ d <

8192 up to permutation isomorphism. In Section 5 we classify all quasiprimitive

permutation groups of degree at most 3600 up to permutation isomorphism.

We now define a wreath product as in [16, p.46]. This is in essence a way of

combining two groups so that one acts as a permutation group on a direct product

of copies of the other.

Lemma 1.8. Let G be a finite group and let Γ be a finite set of size m. We let Gm

denote the direct product of m copies of G and we define Fun(Γ, G) to be the set of

all functions φ : Γ→ G. Then Fun(Γ, G) is a group under pointwise multiplication,

that is

φψ(γ) := φ(γ)ψ(γ)

for all φ, ψ ∈ Fun(Γ, G), and all γ ∈ Γ, with identity 1 where 1(γ) = 1G for all

γ ∈ Γ. Furthermore Fun(Γ, G) ∼= Gm.

Proof. Without loss of generality we write Γ = {1, . . . ,m}.
Closure: We have for any φ, ψ ∈ Fun(Γ, G) and for all γ ∈ Γ that φψ(γ) =

φ(γ)ψ(γ) ∈ G and so Fun(Γ, G) is closed under pointwise multiplication.

Associativity: This follows from the associativity of G.

Identity: For any φ ∈ Fun(Γ, G) and γ ∈ Γ, we have that φ1(γ) = φ(γ) = 1φ(γ).

Inverses: Define the element φ−1 ∈ Fun(Γ, G) via φ−1(γ) := (φ(γ))−1. Then

φφ−1(γ) = 1(γ) = φ−1φ(γ).

Thus Fun(Γ, G) forms a group under pointwise multiplication.

Consider the map f : Fun(Γ, G)→ Gm defined for all φ ∈ Fun(Γ, G), by f(φ) :=

(φ(1), . . . , φ(m)). Then for all φ, ψ ∈ Fun(Γ, G) we have f(φψ) = (φψ(1), . . . , φψ(m))
12



= (φ(1)ψ(1), . . . , φ(m)ψ(m)) = (φ(1), . . . , φ(m))(ψ(1), . . . , ψ(m)) = f(φ)f(ψ) and

so f is a homomorphism.

For any element g = (g1, . . . , gm) ∈ Gm we consider the map ψg ∈ Fun(Γ, G)

defined by ψg(i) = gi for 1 ≤ i ≤ m. Then f(ψg) = g and so f is onto. Let

k ∈ ker(f), then f(k) = (1G, . . . , 1G), i.e. for all γ ∈ Γ we have that k(γ) = 1G and

so k = 1 and the kernel is trivial. Therefore Fun(Γ, G) is isomorphic to Gm. �

Lemma 1.9. Let G and H be non-trivial finite groups and suppose that H acts on

a finite nonempty set Γ = {1, . . . ,m}. For every φ ∈ Fun(Γ, G), we define

φh(γ) := φ(γh
−1

)

for all γ ∈ Γ, and h ∈ H where γh is the image of γ under the action of h ∈ H.

Then this defines an action of H on Fun(Γ, G).

Proof. We have that φ1H (γ) = φ(γ) and φh1h2(γ) = φ(γ(h1h2)−1
) = φ(γh

−1
2 h−1

1 ) =

φh1(γh
−1
2 ) = (φh1)h2(γ) and so this does define an action. �

Definition 1.10. Let G and H be non-trivial finite groups and suppose that H acts

on a finite nonempty set Γ = {1, . . . ,m}. The wreath product G oΓ H is defined to

be the semidirect product

G oΓ H := Fun(Γ, G)oH = {(φ, h) | φ ∈ Fun(Γ, G), h ∈ H},

with multiplication between the pairs (φ, h) and (ψ, s) defined as follows:

(φ, h)(ψ, s) = (φψh
−1

, hs).

We call the subgroup

B := {(φ, 1H) | φ ∈ Fun(Γ, G)} ∼= Fun(Γ, G) ∼= Gm

the base group of the wreath product.

We can identify the base group B with the direct product Gm, via (φ, 1H) 7→
(φ(1), . . . , φ(m)) and if we denote (φ(1), . . . , φ(m)) by (b1, . . . , bm) then we can see

that the action of H on B corresponds to permuting the components of this direct

product, i.e.

(b1, . . . , bm)h
−1

= (b1′ , . . . , bm′)

for all (b1, . . . , bm) ∈ B and h ∈ H where i′ is the image of i under the permutation h.

We may also identify the group {(1, h) | h ∈ H} with the group H. Then the

elements (φ, h) of G oΓ H may be written as products φh.

When the elements (φ, h) ∈ G oΓ H are written as products we now have that

h−1φh = (1, h−1)(φ, 1H)(1, h) = (φh, h−1)(1, h) = (φh, 1H) = φh.
13



When the set Γ is clear, for example if H is a permutation group, then we write

G oH in place of G oΓ H.

We recall that a group G is simple if G contains no non-trivial, proper normal

subgroups. A minimal normal subgroup of a group G is a non-trivial normal sub-

group of G which does not properly contain any other non-trivial normal subgroup

of G. The socle of a group G, denoted Soc(G), is the subgroup of G generated by

all of the minimal normal subgroups of G.

We now state the O’Nan-Scott Theorem [39] as in [16, Chapter 4]. This is an

extremely important result which partitions primitive permutation groups into five

disjoint classes. In Sections 3 and 4, we go through each of these classes in turn and

find the primitive permutation groups with degrees in our range. The intersection

of all pairs of classes is empty, so we do not find any group in more than one class.

We give more detailed explanations of the classes in Section 3.

Theorem 1.11. [O’Nan, Scott, and Aschbacher] Let G be a finite primitive group

of degree d, and let H be the socle of G. Then H ∼= Tm the direct product of m

copies of some simple group T . We have two situations, one in which the socle is

regular and one in which it is not.

If H is regular then one of the following holds:

(i) Affine Type: H is an elementary abelian p-group, d = pm and we may

identify G with a subgroup of the affine group AGL(m, p) containing the

translations. The stabilizer Gα of G is an irreducible subgroup of GL(m, p).

See Section 3.1 for a full description of this type.

(ii) Regular Non-abelian Type: H and T are non-abelian, d = |T |m, m ≥ 6 and

the groupG can be constructed as a twisted wreath product. The stabilizerGα

of G is isomorphic to some transitive subgroup of Sm whose point stabilizers

have some composition factor which is isomorphic to T . We refer the reader

to [16, Theorem 4.7B] for more information on this type.

If H is not regular, then H and T are non-abelian and one of the following holds:

(iii) Almost Simple Type: H is a simple group (i.e. H = T ) and G ≤ Aut(H).

(iv) Diagonal Type: H = Tm with m ≥ 2, d = |T |m−1, and G is permutation

isomorphic to a subgroup of a wreath product with the diagonal action,

which will be described in Section 3.3. This action is of degree |T |m−1. The

stabilizer satisfies Inn(T ) ≤ Gα ≤ Aut(T )× Sm.

(v) Product Type: H = Tm with m = rs and s > 1. There is a primitive non-

regular group U which has the socle T r and is of type (iii) or (iv) such that

G is permutation isomorphic to a subgroup of the wreath product U oSs with

the product action, which will be defined in Section 3.4. The degree d of G

in this case is (dU)s where dU is the degree of U .
14



We now give some additional background results which we will refer to in later

sections.

Definition 1.12. Let G be a group and let H be a subgroup of G. For any g ∈ G
we denote g−1Hg by Hg. The normalizer of H in G is defined to be

NG(H) := {g ∈ G | Hg = H}.

The following are well known.

Lemma 1.13. Let G be a group and let H be a subgroup of G. Then for any g ∈ G
we have NG(Hg) = NG(H)g.

Proof. Take any x ∈ NG(Hg). Then (Hg)x = Hg if and only if Hgxg−1
= H. In this

case xg
−1 ∈ NG(H) and so x ∈ NG(H)g. Following the same argument backwards

we see that if x ∈ NG(H)g then x ∈ NG(Hg). �

Lemma 1.14. Let G ≤ Sym(Ω) and let α ∈ Ω. Let N E G be a regular normal

subgroup of G, then G = N oGα.

Proof. We take any g ∈ G. By the transitivity of N there exists some n ∈ N such

that αg = αn. Therefore y := gn−1 ∈ Gα. Furthermore g = yn which implies that

g ∈ GαN . Hence G = GαN . Since N is a normal subgroup of G we have that

GαN = NGα and so G = NGα. The intersection Gα ∩ N = Nα and since N is

regular we have that Nα = IdG. Hence G = N oGα. �

Lemma 1.15. Let G be a finite group acting transitively on a finite set Ω. Then

|Ω| divides |G|.

Proof. Let α ∈ Ω. Then the orbit of α in G is Ω. The set Ω is finite and so by the

Orbit-Stabilizer Theorem |Ω| = |G : Gα| and so |Ω| divides |G|. �

The following is [26, Kapitel II, Satz 1.3].

Lemma 1.16. Let G be a finite group acting transitively on a set Ω. If |Ω| is prime,

then G is acts primitively on Ω.

The following are well known.

Lemma 1.17. Let G and H be groups with G,H ≤ Sym(Ω). Then G and H are

permutation isomorphic if and only if they are conjugate in Sym(Ω).

Proof. (⇒): Let G and H be permutation isomorphic. Then there exists some

λ ∈ Sym(Ω) (a bijection Ω→ Ω) and an isomorphism φ : G→ H such that, for any

α ∈ Ω and g ∈ G we have

(αg)λ = (αλ)gφ.

We take any α ∈ Ω and set β := αλ
−1

. Then

(βg)λ = (βλ)gφ

((αλ
−1

)g)λ = (αλ
−1λ)gφ

αλ
−1gλ = αgφ
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thus gφ = λ−1gλ. Hence Gφ = λ−1Gλ = H and so G and H are conjugate in

Sym(Ω).

(⇐): Let G and H be conjugate in Sym(Ω). Let λ ∈ Sym(Ω) be such that

H = λ−1Gλ and define the isomorphism φ : G → H via φ : g 7→ λ−1gλ. Then for

any α ∈ Ω and g ∈ G we have

(αg)λ = ((αλλ
−1

)g)λ = (αλ)λ
−1gλ = (αλ)gφ.

Therefore G and H are permutation isomorphic. �

Lemma 1.18. Let G act transitively on a set Ω. Then this action is permutation

isomorphic to the action of G on the right cosets of the subgroup H = Gα of G, for

some α ∈ Ω.

Proof. Fix α ∈ Ω and take H = Gα. Define a map λ : {Hg : g ∈ G} → Ω via

λ(Hg) = αg. Then λ is well defined as Hg1 = Hg2 implies that g1 = hg2 for some

h ∈ H, so αg1 = αhg2 = αg2 . Furthermore λ is surjective as G is acting transitively

on Ω and λ is injective as λ(Hg1) = λ(Hg2) implies that αg1 = αg2 , in this case

g1g
−1
2 ∈ H and so Hg1 = Hg2. Thus λ is a bijective function.

For any g1, g2 in G we have that λ((Hg1)g2) = λ(Hg2g2) = αg1g2 = (αg1)g2 =

λ(Hg1)g2 and so the two actions are permutation isomorphic. �

Definition 1.19. Let G ≤ Sym(Ω) and n ≥ 1. We say that G is n-transitive if

|Ω| ≥ n and for any distinct α1, . . . , αn ∈ Ω and any distinct β1, . . . , βn ∈ Ω there

exists g ∈ G such that

αgi = βi for 1 ≤ i ≤ n.

Lemma 1.20. Let G ≤ Sym(Ω) be a 2-transitive group. Then G is a primitive

group.

Proof. Suppose that ∆ ⊂ Ω is a non-trivial block for G. Then |∆| > 1 and so we

may take α, β ∈ ∆ with α 6= β. Let γ ∈ Ω \ {α}. As G is 2-transitive, there exists

an element g ∈ G with αg = α and βg = γ. Then αg = α implies that α ∈ ∆ ∩∆g

and so ∆ = ∆g as ∆ is a block. However γ = βg ∈ ∆g implies that γ ∈ ∆ and so

Ω = ∆. This is a contradiction and so G is primitive. �

The following lemma is stated in [16, p.48].

Lemma 1.21. Let G and H be non-trivial finite groups acting on finite sets ∆ and

Γ = {1, . . . ,m}, respectively. Then the wreath product G oΓ H acts on the set ∆× Γ

in the following way:

(δ, γ)φh = (δφ(γ), γh)

for all (δ, γ) ∈ ∆× Γ and all φ ∈ Fun(Γ, G) and h ∈ H.
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This action has a system of blocks of the form ∆×{γ}, for each γ ∈ Γ. Further-

more G oΓ H acts transitively on ∆ × Γ if and only if G and H act transitively on

∆ and Γ, respectively. In this case the action of G oΓ H on ∆× Γ is imprimitive.

Proof. We consider the identity element 11H of G oΓH and take any element (δ, γ) ∈
∆× Γ. We have that (δ, γ)11H = (δ1(γ), γ1H ) = (δ, γ).

We now take any elements φ1h1, φ2h2 ∈ G oΓH, so φ1, φ2 ∈ Fun(Γ, G) and h1, h2 ∈
H. We then have for any (δ, γ) ∈ ∆× Γ that

(δ, γ)(φ1h1)(φ2h2) = (δ, γ)φ1φ
h−1
1

2 h1h2 = (δ(φ1φ
h−1
1

2 (γ)), γh1h2) = (δφ1(γ)φ2(γh1 ), γh1h2)

= (δφ1(γ), γh1)φ2h2 = ((δ, γ)φ1h1)φ2h2 .

Hence G oΓ H acts on ∆× Γ as described.

We now take any γ ∈ Γ and we consider the set Bγ := {(δ, γ) : δ ∈ ∆}. Then

for any element (δ, γ) ∈ Bγ and every φh ∈ G oΓ H we have (δ, γ)φh = (δφ(γ), γh).

Therefore Bφhγ = {(δφ(γ), γh) : δ ∈ ∆} and so Bφhγ = Bγ if γh = γ and Bφhγ ∩ Bγ = ∅
in all other cases. Thus Bγ is a block for the action of G oΓ H on ∆ × Γ. We can

observe that the collection of all Bγ, for each γ ∈ Γ, partitions the set ∆× Γ.

We consider any two elements (δ1, γ1), (δ2, γ2) ∈ ∆× Γ. Then G oΓ H is transitive

on ∆×Γ if there exists some φh ∈ G oΓH with (δ1, γ1)φh = (δ2, γ2). In particular we

require δ
φ(γ1)
1 = δ2 and γh1 = γ2. This is satisfied if and only if G and H are acting

transitively on ∆ and Γ respectively. �

The following result is given in [31, 22.11, p.45].

Lemma 1.22. Let G,P and H be non-trivial groups with H acting on a finite set

Γ = {1, . . . ,m} and let ρ : G→ P be an epimorphism of G onto P . We let G oΓ H
and P oΓ H be wreath products defined via the same action of H on Γ. We define
∗ : Fun(Γ, G) → Fun(Γ, P ) by φ∗(γ) := φ(γ)ρ, for all γ ∈ Γ, φ ∈ Fun(Γ, G). Then

the map ψ : G oΓ H → P oΓ H defined by (φh)ψ = φ∗h, for all φh ∈ G oΓ H, is an

epimorphism.

Proof. We observe that ψ : G oΓH → P oΓH is a surjection as every element of P oΓH
is of the form φPh where φP ∈ Fun(Γ, P ), h ∈ H, and any element of Fun(Γ, P ) can

be produced via the map ∗ as ρ is surjective.

We note that for all φ1, φ2 ∈ Fun(Γ, G) and for all γ ∈ Γ, we have (φ1φ2)∗(γ) =

(φ1φ2(γ))ρ = (φ1(γ)φ2(γ))ρ = (φ1(γ))ρ(φ2(γ))ρ = φ∗1(γ)φ∗2(γ) = φ∗1φ
∗
2(γ). Also,

for all h ∈ H, γ ∈ Γ and φ ∈ Fun(Γ, G) we have that (φh)∗(γ) = (φh(γ))ρ =

(φ(γh
−1

))ρ = φ∗(γh
−1

) = (φ∗)h(γ).
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We now take φ1h1, φ2h2 ∈ G oΓ H, then (φ1h1φ2h2)ψ = (φ1φ
h−1
1

2 h1h2)ψ =

(φ1φ
h−1
1

2 )∗h1h2 = φ∗1(φ∗2)h
−1
1 h1h2 = (φ∗1h1)(φ∗2h2) = (φ1h1)ψ(φ2h2)ψ.

Hence ψ : G oΓ H → P oΓ H is a homomorphism and so an epimorphism. �

1.2. Simple groups. The following theorem is one of the most important and

influential theorems in finite group theory. For more information see for example

[17]. We will make significant use of this theorem in Sections 3.2, 4.1, and 5.1.

Theorem 1.23 (The Classification of the Finite Simple Groups). Let G be a finite

simple group. Then G is isomorphic to a group which lies in at least one of the

following classes.

• The cyclic groups Cp of prime order p.

• The alternating groups An for n ≥ 5.

• The simple groups of Lie type (classical and exceptional groups).

• The 26 sporadic groups.

We denote the simple classical groups as in the ATLAS [12]. We refer the reader

to [44, Chapter 3] for a complete description of these groups. Let q be a prime power

and n,m positive integers. The linear groups are denoted by Ln(q), the symplectic

groups are denoted by S2m(q), the unitary groups are denoted by Un(q), the orthog-

onal groups in odd dimension are denoted by PΩ2m+1(q), and the orthogonal groups

in even dimension are denoted by PΩε
2m(q) where ε ∈ {+,−}.

Using the notation from the ATLAS (see [12]), the exceptional groups are:

E6(q), E7(q), E8(q), F4(q), G2(q), 2B2(22m+1) = Sz(22m+1),

3D4(q), 2E6(q), 2F 4(22m+1), 2G2(32m+1)

where q is a power of a prime and m is a non-negative integer. We refer the reader

to [44, Chapter 4] for a complete description of these groups.

Furthermore the 26 sporadic simple groups are:

M11,M12,M22,M23,M24,HS, J2,Co1,Co2,Co3,McL, Suz,He,

HN,Th,Fi22,Fi23,Fi24
′,B,M, J1,O’N, J3,Ru, J4,Ly.

We refer the reader to [44, Chapter 5] for a complete description of these groups.

The following is well known, see for example [28, Theorem 2.1.3], [28, Proposition

2.9.1], and [17, Vol. 3 Theorem 2.2.10].

18



Theorem 1.24. The list below includes all isomorphisms between pairs of alternat-

ing, classical, and exceptional groups.

U2(q) ∼= S2(q) ∼= L2(q), L3(2) ∼= L2(7), L2(4) ∼= L2(5) ∼= A5,

L2(9) ∼= S4(2)′ ∼= A6, L4(2) ∼= A8, U4(2) ∼= S4(3),

PΩ2m+1(2i) ∼= S2m(2i), i > 1, PΩ3(q) ∼= L2(q), q odd, PΩ5(q) ∼= S4(q), q odd,

PΩ−4 (q) ∼= L2(q2), PΩ+
6 (q) ∼= L4(q), PΩ−6 (q) ∼= U4(q),

G2(2)′ ∼= U3(3), 2G2(3)′ ∼= L2(8).

Let G be a classical group. Then G is simple with the following exceptions: G ∼= L2(q)

for q ≤ 3, G ∼= PΩ±2 (q), G ∼= S4(2), G ∼= PΩ+
4 (q), or G ∼= U3(2).

Let G be an exceptional group. Then G is simple with the following exceptions:

G ∼= G2(2), G ∼= Sz(2), G ∼= 2F 4(2), or G ∼= 2G2(3).

Furthermore the group 2F 4(2)′ is simple, (this group will be considered as an excep-

tional group from now on).

We shall always treat groups as the right hand side of the above isomorphisms.

1.3. Some representation theory. Throughout this thesis we will be making

heavy use of Aschbacher’s Theorem [2]. We reproduce a version of this theorem

here, using [22] and [30].

Theorem 1.25 (Aschbacher). Let G be a subgroup of GL(d, q) and V = Fdq be the

underlying vector space upon which G acts. Let Z ≤ G denote the subgroup of scalar

matrices, that is Z = Z(GL(d, q)) ∩G. Then at least one of the following is true:

(i) Reducible groups: G acts reducibly on V . That is, G preserves a proper

non-zero subspace of V .

(ii) Imprimitive groups: G acts imprimitively on V . That is G preserves a

decomposition of V as a direct sum V1 ⊕ · · · ⊕ Vr of r > 1 subspaces of

dimension s, which are permuted transitively by G and so G ⊆ GL(s, q) o Sr.
(iii) Semilinear groups: G acts on V as a group of semilinear automorphisms

of a d/e-dimensional space over the extension field Fqe, for some e > 1, so

G embeds in ΓL(d/e, qe). (See Section 2 for more details).

(iv) Simple tensor products: G preserves a decomposition of V as a tensor

product U ⊗ W of spaces of dimensions r, s > 1 over Fq. Then G is a

subgroup of the central product of GL(r, q) and GL(s, q). More precisely

G/Z ⊆ PGL(r, q)× PGL(s, q).

(v) Groups defined over a proper subfield modulo scalars: Modulo Z, G

is conjugate to a subgroup of GL(d, q′), for some proper subfield Fq′ of Fq,
that is Gg ⊆ GL(d, q′).Z for some g ∈ GL(d, q).

(vi) Groups of extraspecial or symplectic type: For some prime r, d = rm

and G is contained in the normalizer of an r-group R, of order either r2m+1

or 22m+2. Either R is extraspecial (in the first case) or R is a 2-group of
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symplectic type, that is, a central product of an extraspecial 2-group with a

cyclic group of order 4.

(vii) Wreathed tensor products or tensor induced groups: G preserves a

decomposition of V as a symmetric tensor product V1⊗V2⊗· · ·⊗Vm of spaces

all of dimension r > 1 over Fq, where d = rm. The components of the product

are permuted by G, and so G is an amalgamated wreath product of a subgroup

of GL(r, q) by a subgroup of Sm. More precisely, G/Z ⊆ PGL(r, q) o Sm.

(viii) Groups of classical type: G is contained in the normalizer of a quasisim-

ple classical group in its natural representation. (G/Z contains the derived

subgroup of PGO(d, q), PGSp(d, q), PGU(d, q) or PGL(d, q) and G itself is

a subgroup of GO(d, q)Z, GSp(d, q)Z, GU(d, q)Z or GL(d, q)Z respectively.)

(ix) Other almost simple groups modulo scalars: T ⊂ G/Z ⊆ Aut(T ), for

some non-abelian simple T = G0/Z for some subgroup G0 of G.

Aschbacher’s theorem will be used in the most computationally intensive part of

the classification; finding the primitive groups of affine type. (See Section 3.1).

Definition 1.26. We say that a group G ≤ GL(d, q) is irreducible if it is not

reducible, i.e. if V is the underlying d-dimensional vector space over Fq then G does

not preserve a proper non-zero subspace of V .

Definition 1.27. We say that a group G ≤ GL(d, q) is absolutely irreducible if the

image of G under the natural embedding G→ GL(d, qe) is irreducible for all e.

We will be considering irreducible groups which are not necessarily absolutely

irreducible in more detail in Section 2.

The following definition is found in [1, p.452].

Definition 1.28. Let G be a finite group, F a field and V a finite dimensional FG-

module. If W is an FG-submodule of V then we define the quotient module V/W

as

V/W := {W + v | v ∈ V }.

This has the structure of an FG-module with the action defined, for W + v ∈ V/W
and g ∈ G by

(W + v)g = W + vg.

The following is described in [18, p.75]

Definition 1.29. Let G be a group and let V and W be G-modules over the field F
(FG-modules). Then a map φ : V → W is a G-homomorphism if for all v1, v2 ∈ V ,

a1, a2 ∈ F, and g ∈ G we have

(a1v1 + a2v2)φ = a1(v1)φ+ a2(v2)φ,

(vg1)φ = (v1φ)g.

We denote the set of all G-homomorphisms of V into W by HomG(V,W ).
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Lemma 1.30. Let V = Fdq and G ≤ GL(d, q). Then HomG(V, V ) can be identified

with CM(d,q)(G).

Proof. This follows directly from the definition. �

We now collect together some well known results on G-modules, as seen in [1,

p.452].

Proposition 1.31. Let G be a finite group, F a field, V a finite dimensional FG-

module, and W a submodule of V .

(i) The First Isomorphism Theorem for Modules. Let φ : V → V ′ be an

FG-module homomorphism. Then V/ker(φ) ∼= Im(φ).

(ii) The Correspondence Theorem for Modules.There is a bijective corre-

spondence between the submodules of V/W and the submodules of V which

contain W .

(iii) W is a maximal submodule of V if and only if V/W is irreducible.

The following result is well known, see for example [1, Corollary 4.15].

Lemma 1.32. Let V and W be finite dimensional vector spaces over the same field.

Then V is isomorphic to W if and only if dim(V ) = dim(W ).

The following result is well known.

Lemma 1.33. Let V be a finite dimensional vector space over a finite field of prime

order, Fp. Let (V,+) denote the additive group of V . Then

Aut((V,+)) = GL(V ).

Proof. We observe that any element of GL(V ) is an automorphism of (V,+) so

GL(V ) ⊆ Aut((V,+)). Let f ∈ Aut((V,+)) then f : V → V and for all v, u ∈ V ,

f(v+u) = f(v)+f(u). We let λ ∈ Fp, then as Fp is of prime order we may think of the

elements of Fp as the integers {0, 1, . . . , p−1}. We then have that λv = v+v · · ·+v

(v added to itself λ times) and so f(λv) = f(v+ · · ·+v) = f(v)+ · · ·+f(v) = λf(v)

and so f ∈ GL(V ). Hence Aut((V,+)) = GL(V ). �

Let F be a finite field. Recall that an element α of an extension of F is algebraic

over F if there exists a non-zero polynomial m, with coefficients in F, such that

m(α) = 0. The following result is [1, Proposition 2.6, p.495].

Proposition 1.34. Suppose that α is algebraic over a field F, and let m(x) be its

minimal polynomial over F. The map F[x]/(m)→ F[α] is an isomorphism, and F[α]

is a field. Thus F[α] = F(α) (here F[α] denotes the polynomial ring in α over F and

F(α) denotes the smallest field containing F and α).

The following lemma is given in [28, Lemma 2.10.1]. This is often used as an

alternate definition of absolute irreducibility.
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Lemma 1.35. Let V be a vector space over the field F. Let G ≤ GL(V,F) act irre-

ducibly on V . Then G acts absolutely irreducibly on V if and only if CGL(V,F)(G) =

F∗; the scalar subgroup of GL(V,F).

The following result is [18, Chapter 3, Theorems 5.1, 5.2].

Theorem 1.36. Let V be a G-module over the field F, then HomG(V, V ) is a finite

dimensional algebra over F. If V is an irreducible G-module then HomG(V, V ) is

a division algebra with F in its centre. In particular, every non-zero element of

HomG(V, V ) is a G-isomorphism.

In other words the endomorphism ring, HomG(V, V ), of an irreducible represen-

tation is a division ring.

The following theorem is [18, Chapter 3, Theorem 5.4].

Theorem 1.37. Let G be a group acting on the vector space V over the field F,

such that V decomposes as the direct sum of (pairwise) isomorphic G-modules, V =

V1 ⊕ · · · ⊕ Vt. Then we have

(i) HomG(V1, V1) and HomG(Vi, Vj) are G-isomorphic for all 1 ≤ i, j ≤ t.

(ii) HomG(Vi, V ) and HomG(Vi, V1) ⊕ · · · ⊕ HomG(Vi, Vt) are G-isomorphic for

all 1 ≤ i ≤ t.

(iii) If HomG(V1, V1) = F then HomG(V, V ) is isomorphic to the algebra of all

t× t matrices over F.

We follow similar arguments to the proof of Theorem 1.37 (iii) to find the following

result.

Lemma 1.38. Let G be a group acting on the vector space V over the field Fq,
so that V decomposes as the direct sum of (pairwise) isomorphic G-modules, V =

V1 ⊕ · · · ⊕ Vt. Let Fqk be an extension field of Fq. If HomG(V1, V1) = Fqk then

HomG(V, V ) is isomorphic to the ring of all t× t matrices over Fqk .

Proof. We note by Theorem 1.37 (i), that HomG(V1, V1) = Fqk implies that

HomG(Vi, Vj) = Fqk for all 1 ≤ i, j ≤ t.

For 1 ≤ i ≤ t, we define ρi ∈ HomG(Vi, V ) to be the natural embedding of Vi

into V and we let πi ∈ HomG(V, Vi) be the projection map of V onto Vi. Then the

following relations hold (composing left to right):

ρiπi = 1i, and ρiπj = 0i,j for i 6= j, (∗)

where 1i is the identity element of HomG(Vi, Vi) and 0i,j is the zero element of

HomG(Vi, Vj). Furthermore
t∑
i=1

πiρi = 1 (∗∗)
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where 1 is the identity element of HomG(V, V ).

For φ ∈ HomG(V, V ) we define the element φi,j := ρiφπj ∈ HomG(Vi, Vj), so φi,j

lies in Fqk . Therefore (φi,j) (for all choices of 1 ≤ i, j ≤ t) is a t× t matrix over Fqk .

We let M(t, qk) denote the ring of all t× t matrices over Fqk . We may now define

a mapping β : HomG(V, V )→ M(t, qk) by φβ = (φi,j).

We now demonstrate that this is a ring homomorphism. The maps ρi and πj are

linear transformations, so it follows that, for all φ, ψ ∈ HomG(V, V ) we have

(φ+ψ)β = ((φ+ψ)i,j) = (ρi(φ+ψ)πj) = (ρiφπj + ρiψπj) = (φi,j +ψi,j) = φβ +ψβ

and by (∗∗) we have that

(φψ)β = ((φψ)i,j) = (ρi(φψ)πj)
(∗∗)
=

(
ρiφ

(
t∑

n=1

πnρn

)
ψπj

)

=

(
t∑

n=1

(ρiφπn)(ρnψπj)

)
=

(
t∑

n=1

φi,nψn,j

)
.

By the definition of matrix multiplication, for any 1 ≤ l,m ≤ t we have that(
t∑

n=1

φi,nψn,j

)
l,m

= ((φi,j) (ψi,j))l,m

and so

((φψ)β) = (φβ)(ψβ).

By (∗), we have that

1β = (ρi1πj)
(∗)
= Idt.

Therefore β : HomG(V, V ) → M(t, qk) is a ring homomorphism. We now show

that β is an isomorphism.

Let (ai,j) be an element of M(t, qk), so ai,j ∈ Fqk = Hom(Vi, Vj). We set φ ∈
HomG(V, V ) to be

φ :=
t∑

n,m=1

πnan,mρm.

Then by (∗), we have, for any choice of 1 ≤ i, j ≤ t that

φi,j = ρiφπj = ρi

(
t∑

n,m=1

πnan,mρm

)
πj

(∗)
=ai,j.

Therefore φβ = (ai,j) and so β is surjective.
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It remains to show that β is injective. We suppose that φβ = (0) for some

φ ∈ HomG(V, V ). By (∗∗), and as 1 is the identity of HomG(V, V ), we have that

φ = 1φ1
(∗∗)
=

(
t∑
i=1

πiρi

)
φ

(
t∑

j=1

πjρj

)
=

t∑
i,j=1

πi(ρiφπj)ρj.

By our assumption (φβ = 0), we have that φi,j = ρiφπj = 0 for all i, j. Hence φ = 0.

Thus β is an injection and HomG(V, V ) is isomorphic to M(t, qk). �

The following theorem is a well known result of Wedderburn [32].

Theorem 1.39. Every finite division ring is a field.

The following is Schur’s Lemma.

Lemma 1.40 (Schur’s Lemma). Let G be a group and let ρ1 : G → GL(V1) and

ρ2 : G→ GL(V2) be two irreducible representations of G over the same field F. Let

T : V1 → V2 be a linear map such that ρ2(g)T = Tρ1(g) for all g ∈ G. Then:

(i) if ρ1 and ρ2 are not isomorphic, then T = 0.

(ii) if V1 = V2 and ρ1 = ρ2 is absolutely irreducible, then T is a scalar multiple

of the identity.

The following result is [14, Theorem 29.7, p.200].

Theorem 1.41. Let G be a finite group, F a finite field, and V1, V2 be FG-modules.

Extend F to an algebraically closed field F̄. If V1 and V2 are non-isomorphic FG-

modules then V1 and V2 are non-isomorphic F̄G-modules.

The following result is taken from [24, p.50] and follows from Theorem 1.36 and

Theorem 1.39.

Lemma 1.42. Let G be a finite group, Fq a finite field and V an irreducible FqG-

module. Then EndFqG(V ) = HomG(V, V ) is a field, and is isomorphic to Fqk for

some k ≥ 1.

The following is [18, p.64].

Definition 1.43. Let G be a finite group. We call a field F a splitting field for

G if every irreducible representation of G on a vector space V over F is absolutely

irreducible.

The following result is [18, Corollary 5.8, Chapter 3] and follows from Schur’s

Lemma.

Lemma 1.44. Let G be a group, F a field, and V an irreducible FG-module. If F
is a splitting field for G then HomG(V, V ) = F.

The following is [28, Lemma 2.10.2].

Lemma 1.45. Let V be a d-dimensional vector space over the field Fq. Let G be an

irreducible but not absolutely irreducible subgroup of GL(V ). Then HomG(V, V ) =

Fqe is an extension field of Fq of degree e, where e 6= 1 divides d.
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Definition 1.46. Let G be a group and V a vector space over a field F. A pro-

jective representation of G on V is a group homomorphism ρ : G → PGL(V ) =

GL(V )/Z(GL(V )).

The following definition is essentially [3, p.2].

Definition 1.47. Let G be a finite group, let F be a field, and let V be an FG-

module. A composition series for V is a chain of FG-submodules of V

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vt−1 ⊂ Vt = V

such that Vi+1/Vi is an irreducible module for each 0 ≤ i ≤ t. We call t the length

of the series and we call the modules Vi+1/Vi the composition factors of the series.

The following is [27, Theorem 11.3 p.146].

Proposition 1.48. Let G be a finite group, let F be a field, and let V be a finite

dimensional FG-module. Then V has a composition series. Furthermore let W be

a submodule of V . Then W and V/W both have composition series.

The following is the Jordan-Hölder Theorem for modules, see for example [3,

Theorem 1.2].

Theorem 1.49. Let G be a finite group, let F be a field, and let V be a finite

dimensional FG-module. Then every composition series for V has the same length

and the same composition factors, up to isomorphism.

The following is well known.

Lemma 1.50. Let G be a finite group, F be a field, and V an irreducible G-module.

Then there exists a (right) ideal, I of F[G] such that V ∼= F[G]/I as G-modules.

Proof. Fix a non-zero element v of V . We define φv : F[G]→ V by φv

(∑
g∈G agg

)
=

v
∑

g∈G agg for all
∑

g∈G agg ∈ F[G]. Then φv is a G-module homomorphism and

so the image of φv is a submodule of V containing v. As V is irreducible we must

have that Im(φv) = V . Hence by the First Isomorphism Theorem for Modules,

V = Im(φv) ∼= F[G]/ker(φv). Furthermore

ker(φv) =

{∑
g∈G

agg ∈ F[G]

∣∣∣∣∣ v∑
g∈G

agg = 0

}
is closed under multiplication by the elements of G and so ker(φv) is an ideal of

F[G]. �
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2. A Semilinear Test

In this section we give the method that we used to create a deterministic semilin-

ear test in MAGMA for irreducible matrix groups.

We begin by describing the general semilinear group. The following definition is

from [42, p.7].

Definition 2.1. Let V and W be vector spaces over the same field F. A semilinear

map is a pair (f, α) with f : V → W and α ∈ Aut(F) such that:

• for all v1, v2 ∈ V we have (v1 + v2)f = (v1)f + (v2)f and

• for all scalars λ ∈ F and for all v ∈ V we have (λv)f = λα(v)f where λα is

the image of λ ∈ F under α ∈ Aut(F).

We may use the term “f is an α-semilinear map” to describe the pair (f, α).

We will be interested in the case that V = W .

Lemma 2.2. Let V be a vector space over a field F. The set

ΓL(V ) := {(f, α) | f is an α-semilinear map and f : V → V is invertible}

forms a group with operation, for (f, α), (g, β) ∈ ΓL(V ), (f, α)(g, β) = (fg, αβ).

Proof. Take (f, α), (g, β) ∈ ΓL(V ). Then for any v1, v2 ∈ V and λ ∈ F we have

(v1 + v2)fg = ((v1 + v2)f)g = (v1f + v2f)g = (v1f)g + (v2f)g = (v1)fg + (v2)fg,

(λv)fg = ((λv)f)g = (λα(v)f)g = (λα)β(v)fg = λαβ(v)fg.

Thus fg is an (αβ)-semilinear map and fg is invertible as both f and g are invert-

ible, thus (fg, αβ) ∈ ΓL(V ).

We let 1 ∈ Aut(F) be the identity automorphism and we let Id : V → V be the

identity map. Then (Id, 1) ∈ ΓL(V ) 6= ∅ satisfies

(v)f Id = (v)f = (v) Idf, and

(λv)f Id = (λα(v)f) Id = λα(v)f = (λv)f = (λv) Idf.

Hence for any (f, α) ∈ ΓL(V ) we have (Id, 1)(f, α) = (f, α) = (f, α)(Id, 1).

For any (f, α) ∈ ΓL(V ) we consider (f−1, α−1) ∈ ΓL(V ). Then

(v)ff−1 = v and (λv)ff−1 = λα(v)f−1 = λv,

so (f, α)−1 = (f−1, α−1).

Finally one may check that the operation is associative and so ΓL(V ) forms a

group with the above operation. �

The group ΓL(V ), defined in Lemma 2.2, is called the general semilinear group.
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Remark 2.3. Let D := {(g, 1) | (g, 1) ∈ ΓL(V )}. Then (g, 1) ∈ D if g : V → V is an

invertible map such that, for all v1, v2 ∈ V and λ ∈ F, we have

• (v1 + v2)g = v1g + v2g, and

• (λv1)g = λ1(v1)g = λ(v1)g.

Hence g ∈ GL(V ) and it follows that GL(V ) ∼= D ≤ ΓL(V ).

In fact, for any (f, α) ∈ ΓL(V ) and (g, 1) ∈ D we have that (f, α)−1(g, 1)(f, α) =

(f−1, α−1)(gf, α) = (f−1gf, 1) ∈ D. Hence D E ΓL(V ).

Lemma 2.4. Let V be a vector space over a field F, then for any basis B of V , we

may write any vector v ∈ V as v =
∑

b∈B λbb for λb ∈ F and

(i) for any α ∈ Aut(F) the map fα : V → V defined by
(∑

b∈B λbb
)
fα :=∑

b∈B λ
α
b b is an invertible α-semilinear map,

(ii) the set A := {(fα, α) | α ∈ Aut(F)} is a subgroup of ΓL(V ) and A ∼= Aut(F),

(iii) for any (f, α) ∈ ΓL(V ) the map yf : V → V defined by
(∑

b∈B λbb
)
yf :=∑

b∈B λb(b)f is an invertible linear map,

(iv) ΓL(V ) ∼= GL(V )o Aut(F).

Proof. (i) For any v1 =
∑

b∈B λbb and v2 =
∑

b∈B µbb ∈ V we have: (v1 + v2)fα =(∑
b∈B(λb + µn)b

)
fα =

∑
b∈B(λb + µb)

αb =
∑

b∈B λ
α
b b+

∑
b∈B µ

α
b b = v1fα + v2fα.

We also have for any λ ∈ F and any v =
∑

b∈B λbb ∈ V that

(λv)fα =
(∑

b∈B λλbb
)
fα =

∑
b∈B(λλb)

αb = λα
∑

b∈B λ
α
b b = λα(v)fα.

Finally for any v1 =
∑

b∈B λbb, v2 =
∑

b∈B µbb ∈ V , and λ ∈ F we have

(v1 + λv2)fαfα−1 =

(∑
b∈B

λbb+
∑
b∈B

λµbb

)
fαfα−1

=

(∑
b∈B

(λb + λµb)b

)
fαfα−1

(∑
b∈B

(λb + λµb)
αb

)
fα−1

=
∑
b∈B

(λb + λµb)b = v1 + λv2.

Thus fα−1 = (fα)−1 and so fα is an invertible α-semilinear map, that is (fα, α) ∈
ΓL(V ).

(ii) For any (fα, α), (fβ, β) ∈ A and v =
∑

b∈B λbb ∈ V we have (v)fαfβ =(∑
b∈B λbb

)
fαfβ =

(∑
b∈B λ

α
b b
)
fβ =

∑
b∈B λ

αβ
b b = (v)fαβ.

Thus fαfβ = fαβ and so (fα, α)(fβ, β) = (fαfβ, αβ) = (fαβ, αβ) ∈ A. We have

that (Id, 1) = (f1, 1) ∈ A and (fα, α)−1 = (fα−1 , α−1) ∈ A. Thus A ≤ ΓL(V ).

We define φ : Aut(F)→ A via (α)φ = (fα, α) for all α ∈ Aut(F).
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Take any α, β ∈ Aut(F). Then (αβ)φ = (fαβ, αβ) = (fα, α)(fβ, β) = (α)φ(β)φ.

Therefore φ is a group homomorphism.

For any α ∈ Aut(F) we have that α ∈ ker(φ) if and only if (α)φ = (f1, 1) if and

only if α = 1. Thus φ is an injection. Hence as φ is a surjection, φ is a group

isomorphism. Therefore Aut(F) ∼= A ≤ ΓL(V ).

(iii) By Remark 2.3, we have that GL(V ) ∼= D := {(g, 1) | (g, 1) ∈ ΓL(V )} E
ΓL(V ). We note that A ∩D = {(Id, 1)}.

For any v1 =
∑

b∈B λbb, v2 =
∑

b∈B µbb ∈ V and λ ∈ F we have (v1 + v2)yf =(∑
b∈B(λb + µb)b

)
yf =

∑
b∈B(λb + µb)(b)f =

(∑
b∈B λbb

)
yf +

(∑
b∈B µbb

)
yf =

(v1)yf + (v2)yf , and (λv1)yf =
(∑

b∈B λλbb
)
yf =

∑
b∈B λλb(b)f = λ

∑
b∈B λb(b)f =

λ(v1)yf . Therefore yf is a linear map.

We let xf : V → V be defined by: vxf =
(∑

b∈B λbb
)
xf =

∑
b∈B λb(b)f

−1. Then

(v)yfxf =
(∑

b∈B λbb
)
yfxf =

(∑
b∈B λb(b)f

)
xf =

∑
b∈B λbb = v and (v)xfyf =(∑

b∈B λbb
)
xfyf =

(∑
b∈B λb(b)f

−1
)
yf =

∑
b∈B λbb = v. Therefore xf = y−1

f . Thus

(yf , 1) ∈ D ∼= GL(V ).

(iv) Take any (f, α) ∈ ΓL(V ). Then for (xf , 1) ∈ D we have that (f, α)(xf , 1) =

(fxf , α). For every v =
∑

b∈B(λbb) ∈ V we have (v)fxf =
(∑

b∈B λ
α
b (b)f

)
xf =∑

b∈B λ
α
b b. Hence fxf = fα and so (fxf , α) = (fα, α) ∈ A. It follows that

(f, α) = (fα, α)(yf , 1).

Therefore ΓL(V ) = GL(V )o Aut(F). �

Lemma 2.5. Let V = Fdq be a d-dimensional vector space over the field of order q.

Let e > 1 be a divisor of d, then there is an Fq-vector space isomorphism between

Fdq and Fd/eqe .

Proof. By, for example [1, Section 13.3, p.496], the field Fqe is an e-dimensional

vector space over Fq. Hence Fd/eqe is a d-dimensional vector space over Fq. By Lemma

1.32, vector spaces of the same dimension over the same scalar field are isomorphic

and so Fdq ∼= Fd/eqe . �

2.1. Constructing an embedding of general linear groups. For computational

purposes, we require a specific isomorphism between Fdq and Fd/eqe , where e divides d.

Let α ∈ Fqe be a primitive element (an element of order qe − 1), and let m(x) :=

a0 + a1x + a2x
2 + · · · + ae−1x

e−1 + xe be the minimal polynomial of α over Fq (in

particular m(α) = 0). Then B := (1, α, . . . , αe−1) is an ordered basis for Fqe over Fq
(as it spans and if B were not linearly independent then there would exist a smaller
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degree polynomial). Hence any element λ ∈ Fqe may be written uniquely as a linear

combination c0 + c1α + · · ·+ ce−1α
e−1, where ci ∈ Fq for 0 ≤ i ≤ e− 1.

Construction 2.6. We define φe : Feq → Fqe via

(b0, b1, . . . , be−1)φe :=

(
e−1∑
i=0

biα
i

)
for (b0, . . . , be−1) ∈ Feq.

Take any (a0, a1, . . . , ae−1), (b0, b1, . . . , be−1) ∈ Feq.
If (a0, . . . , ae−1)φe = (b0, . . . , be−1)φe then

∑e−1
i=0 aiα

i =
∑e−1

i=0 biα
i. Since

(1, α, . . . , αe−1) is a basis, we must have that ai = bi for all 0 ≤ i ≤ e− 1, and so φe

is injective. The map φe is surjective as the order of Fq[α] is equal to the order of

Feq. Thus φe is a bijection.

Furthermore (a0, . . . , ae−1)φe + (b0, . . . , be−1)φe =
∑e−1

i=0 aiα
i +
∑e−1

i=0 biα
i =∑e−1

i=0 (ai + bi)α
i = (a0 + b0, a1 + b1, . . . , ae−1 + be−1)φe =

((a0, . . . , ae−1) + (b0, . . . , be−1))φe. Thus φe is a homomorphism of additive groups.

Let λ ∈ Fq. Then ((a0, . . . ae−1)λ)φe = (a0λ, . . . , ae−1λ)φe =
∑e−1

i=0 aiλα
i =

λ
(∑e−1

i=0 aiα
i
)

= λ(a0, . . . , ae−1)φe. Therefore φe is a linear map between the vec-

tor spaces Feq and Fqe .

Therefore φe is an Fq-vector space isomorphism. �

Remark 2.7. For any v = (b0, . . . , be−1) ∈ Feq we have: (vφe)α =
(∑e−1

i=0 biα
i
)
α =∑e−1

i=0 biα
i+1 =

∑e−2
i=0 biα

i+1+be−1α
e =

∑e−2
i=0 biα

i+1−be−1

(∑e−1
i=0 aiα

i
)

=
∑e−1

i=1 bi−1α
i−∑e−1

i=0 aibe−1α
i = −be−1a0−

∑e−1
i=1 (bi−1 − be−1ai)α

i = −be−1a0 +(b0−be−1a1)α+ · · ·+
(be−2 − be−1ae−1)αe−1 = (−be−1a0, . . . , be−2 − be−1ae−1)φe = ((b0, . . . , be−1)Cα)φe =

(vCα)φe, where

Cα :=


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−a0 −a1 −a2 · · · −ae−1


is the e× e companion matrix of m over Fq.

Example 2.8. We consider the field F72 in the following way:

F72
∼= F7[X]/(X2 + 5X + 3).

We let α ∈ F72 be a primitive element, with minimal polynomial m(x) = x2 +

5x+ 3. Then the companion matrix of m over F7 is

Cα =

(
0 1

4 2

)
.
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Let (b0, b1) ∈ F2
7 then (b0, b1)φ2 = (b0 + b1α). We now consider multiplication in

F72 by the element α /∈ F7 and find the equivalent operation in F2
7.

(b0, b1)φ2α = (b0 + b1α)α = (b0α + b1α
2) = (b0α + b1(−5α− 3))

= (−3b1 + (b0 − 5b1)α) = (−3b1, b0 − 5b1)φ2

= (4b1, b0 + 2b1)φ2 =

(
(b0, b1)

(
0 1

4 2

))
φ2

= ((b0, b1)Cα)φ2.

Remark 2.9. We observe that for any v ∈ Feq we have (vφ)α = (vCα)φe. Hence

for any 1 ≤ i ≤ qe − 1 we have that (vφ)αi = (v(Cα)i)φe. For each 1 ≤ i 6= j ≤
qe − 2 we have that (vφ)αi 6= (vφ)αj. Since

(
v(Cα)q

e−1
)
φe = (vφ)αq

e−1 = vφ, the

multiplicative order of Cα is equal to the multiplicative order of α.

We now give two results relating to companion matrices. These are [25, Theorem

3.3.14] and [25, Theorem 3.3.15], respectively.

Lemma 2.10. Every monic polynomial is both the minimal and characteristic poly-

nomial of its companion matrix.

Lemma 2.11. A matrix A is similar to the companion matrix of its minimal poly-

nomial if and only if the minimal and characteristic polynomials of A coincide.

Construction 2.12. Let d be a number which is divisible by e. We may extend the

isomorphism φe : Feq → Fqe coordinatewise to construct the isomorphism φ : Fdq →
Fd/eqe . We define φ via, for any (b0, b1, . . . , bd−1) ∈ Fdq ,

(b0, . . . , bd−1)φ = ((b0, . . . , be−1)φe, . . . , (bd−e, . . . , bd−1)φe)

=

(
e−1∑
i=0

biα
i,
e−1∑
i=0

be+iα
i, . . . ,

e−1∑
i=0

bd−e+iα
i

)
. �

Remark 2.13. Consider an element v = (b0, . . . , bd−1) ∈ Fdq . Then

(vφ)α = ((b0, . . . , bd−1)φ)α = ((b0, . . . , be−1)φe, . . . , (bd−e, . . . , bd−1)φe)α

=

(
e−1∑
i=0

biα
i,
e−1∑
i=0

be+iα
i, . . . ,

e−1∑
i=0

bd−e+iα
i

)
α

=

(
e−1∑
i=0

biα
i+1,

e−1∑
i=0

be+iα
i+1, . . . ,

e−1∑
i=0

bd−e+iα
i+1

)
= (((b0, . . . , be−1)Cα)φe, . . . , ((bd−e, . . . , bd−1)Cα)φe)

= ((b0, . . . , be−1)Cα, . . . , (bd−e, . . . , bd−1)Cα)φ

=
(
(b0, . . . , bd−1)Diagd/e(Cα)

)
φ =

(
vDiagd/e(Cα)

)
φ,

where Diagd/e(Cα) is the block diagonal matrix containing d/e copies of Cα. Thus

(vφ)α =
(
vDiagd/e(Cα)

)
φ.

Example 2.14. As in Example 2.8 we consider the field F72
∼= F7[X]/(X2 +5X+3)

and we let α ∈ F72 be a primitive element with minimal polynomial
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m(x) = x2+5x+3. Then for (b0, b1, b2, b3, b4, b5) ∈ F6
7 we have (b0, b1, b2, b3, b4, b5)φ =

(b0 + b1α, b2 + b3α, b4 + b5α). We now consider multiplication in F3
72 by the element

α /∈ F7 and find the equivalent operation in F6
7.

(b0, b1, b2, b3, b4, b5)φα = (b0 + b1α, b2 + b3α, b4 + b5α)α

= (b0α + b1α
2, b2α + b3α

2, b4α + b5α
2)

= (b0α + b1(2α + 4), b2α + b3(2α + 4), b4α + b5(2α + 4))

= (4b1, b0 + 2b1, 4b3, b2 + 2b3, 4b5, b4 + 2b5)φ

=


(b0, b1, b2, b3, b4, b5)



0 1 0 0 0 0

4 2 0 0 0 0

0 0 0 1 0 0

0 0 4 2 0 0

0 0 0 0 0 1

0 0 0 0 4 2




φ

= ((b0, b1, b2, b3, b4, b5)Diag3(Cα))φ.

Lemma 2.15. Consider Fq as a subfield of Fqe. Let α ∈ Fqe be a primitive element

with minimal polynomial m(x) = a0 + a1x + a2x
2 + · · · + ae−1x

e−1 + xe. As in

Construction 2.6 we will write

Cα :=


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−a0 −a1 −a2 · · · −ae−1


for the companion matrix of m. Then the ring

Fq[Cα] := {0e×e, Cα, . . . , (Cα)q
e−2, (Cα)q

e−1 = Ide×e}

is isomorphic to the field Fqe, with isomorphism f : Fqe → Fq[Cα] where (αi)f =

(Cα)i for all 1 ≤ i ≤ qe − 1 and (0)f = 0e×e.

Proof. By Lemma 2.10, the minimal polynomial of Cα is m. Therefore by Propo-

sition 1.34, addition and multiplication in Fq[Cα] are defined via m and the mul-

tiplicative order of Cα. Moreover in the field Fq addition and multiplication are

defined via m and the multiplicative order of α.

We define the map

f : Fqe → Fq[Cα] by (x)f =

{
(Cα)i if x = αi ∈ Fqe
0e×e if x = 0 ∈ Fqe

.

We now show that this map is an isomorphism. Firstly we note that f is surjective

and if (αi)f = (αj)f then this implies that (Cα)i = (Cα)j. By Remark 2.9, the

multiplicative orders of Cα and α are equal, thus i = j and f is injective. Hence f
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is a bijection.

Take any non zero x, y ∈ Fqe then (xy)f = (αiαj)f for some 1 ≤ i, j ≤ qe − 1

and (αiαj)f = (αi+j)f = (αk)f for some 1 ≤ k ≤ qe − 1. By Remark 2.9, the

multiplicative orders of α and Cα are equal and so (αk)f = (Cα)k = (Cα)i(Cα)j. For

any x ∈ Fqe we have (0x)f = (x0)f = (0)f = 0e×e = (x)f(0)f = (0)f(x)f . Thus

(xy)f = (x)f(y)f for all x, y ∈ Fq.

Furthermore (x+y)f = (αi+αj)f = (αr)f where we determine r via the minimal

polynomial, m, of α over Fq and by the multiplicative order of α. We have that

(Cα)i + (Cα)j = (Cα)t where t is determined by the minimal polynomial of Cα and

the multiplicative order of Cα.

By the definition of the companion matrix, the minimal polynomial for Cα is m

and the multiplicative order of Cα is the multiplicative order of α. Hence r = t, as

they must be determined in the same way.

Thus (x+ y)f = (αi + αj)f = (αr)f = (Cα)r = (Cα)i + (Cα)j = (αi)f + (αj)f =

(x)f + (y)f . If either x or y were equal to 0 the result would still hold. Hence

(x+ y)f = (x)f + (y)f for all x, y ∈ Fqe .

Therefore f is an isomorphism of rings. �

Example 2.16. We consider the field F32
∼= F3[X]/(X2 + X + 2), and we let

α ∈ F32 be a primitive element with minimal polynomial m(x) = x2 + x+ 2. Then

Cα =

(
0 1

1 2

)
and f : F32 → F3[Cα] such that

(x)f =

{
(Cα)i if x = αi ∈ F32

02×2 if x = 0 ∈ F32

is an isomorphism of fields.

We have that α2 + α + 2 = 0 thus

α2 = 2α + 1, α3 = 2α2 + α = 2α + 2, α4 = 2α2 + 2α = 2,

α5 = 2α, α6 = 2α2 = α + 2, α7 = α2 + 2α = α + 1, α8 = α2 + α = 1.

Then (α + α)f = (2α)f = (α5)f = (Cα)5 =

(
0 2

2 1

)
= 2Cα = Cα + Cα =

(α)f + (α)f .

Example 2.17. As in Example 2.8 we consider the field F72
∼= F7[X]/(X2 +5X+3)

and we let α ∈ F72 be a primitive element with minimal polynomial m(x) = x2 +
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5x+ 3. The isomorphism f : F72 → F7[Cα] is defined by:

(x)f =

{
(Cα)i if x = αi ∈ F72

02×2 if x = 0 ∈ F72
,

where Cα =

(
0 1

4 2

)
.

Then (α + α)f = (α17)f = (Cα)17 =

(
0 2

1 4

)
=

(
2 0

0 2

)(
0 1

4 2

)
= 2Cα =

Cα + Cα = (α)f + (α)f .

Also (α2 + α7)f = (α44)f = (Cα)44 =

(
6 1

4 1

)
=

(
4 2

1 1

)
+

(
2 6

3 0

)
= (Cα)2 +

(Cα)7 = (α2)f + (α7)f .

This gives rise to a general construction.

Construction 2.18. We let G = GL(d, q) and H = GL(d/e, qe) where e is a divisor

of d and q is a power of a prime p. We construct an embedding of H into G as follows.

Let α ∈ Fqe be a primitive element of Fqe and let Cα be the e × e companion

matrix of the minimal polynomial, m, of α over Fq as in Construction 2.6. Then if

m(x) = a0 + a1x+ a2x
2 + · · ·+ ae−1x

e−1 + xe,

Cα =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−a0 −a1 −a2 · · · −ae−1

 .

For each matrix A ∈ GL(d/e, qe), each entry Ai,j ∈ Fqe of A is either equal to αk

for some 1 ≤ k ≤ qe − 1, or it is equal to zero.

If Ai,j = αk then replace it with the e× e matrix (Cα)k. If Ai,j = 0 then replace

it by the e× e zero matrix.

We now show that this defines an embedding of GL(d/e, qe) into GL(d, q).

Consider the isomorphism f : Fqe → Fq[Cα] defined in Lemma 2.15. For all

x, y ∈ Fqe we have that f(xy) = f(x)f(y) and f(x+ y) = f(x) + f(y).

For each A ∈ GL(d/e, qe) we define a map ψ : GL(d/e, qe)→ GL(d, q) via

ψ(A) :=

 f(A1,1) · · · f(A1,d/e)
...

...

f(Ad/e,1) · · · f(Ad/e,d/e)

 .
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Then for all A,B ∈ GL(d/e, qe) we have

ψ(A)ψ(B) =

 f(A1,1) · · · f(A1,d/e)
...

...

f(Ad/e,1) · · · f(Ad/e,d/e)


 f(B1,1) · · · f(B1,d/e)

...
...

f(Bd/e,1) · · · f(Bd/e,d/e)

 .

Hence for each e× e block entry Ci,j of ψ(A)ψ(B) we have

Ci,j =

d/e∑
k=1

f(Ai,k)f(Bk,j) =

d/e∑
k=1

f(Ai,kBk,j) = f

 d/e∑
k=1

Ai,kBk,j

 .

This is the same as each block of ψ(AB). Thus ψ(A)ψ(B) = ψ(AB).

Also

ψ(Idd/e×d/e) =

f(1) · · · f(0)
...

. . .
...

f(0) · · · f(1)

 = Idd×d.

For each A ∈ GL(d/e, qe) there exists an inverse A−1 ∈ GL(d/e, qe) and Idd×d =

ψ(Idd/e,d/e) = ψ(AA−1) = ψ(A)ψ(A−1), hence ψ(A)−1 = ψ(A−1) and so ψ(A) ∈
GL(d, q).

If ψ(A) = ψ(B) then each entry must be equal, hence f(Ai,j) = f(Bi,j) for all

1 ≤ i, j ≤ d/e. The map f is injective, so the homomorphism ψ must be injective

also. �

This construction enables us to write a group in a way that is easier to work with.

Example 2.19. As in Example 2.8 we consider the field

F72
∼= F7[X]/(X2 + 5X + 3),

we let α ∈ F72 be a primitive element with minimal polynomial m such that m(x) =

x2 + 5x+ 3. So the companion matrix of m over F7 is

Cα :=

(
0 1

4 2

)
.

In MAGMA ver. 2.24, the group GL(2, 72) is generated by(
α 0

0 1

)
and

(
6 1

6 0

)
.

We have that α = α1, 1 = α48, and 6 = α24. Therefore using Construction 2.18 we

replace these entries by the matrices

(Cα)1 = Cα, (Cα)48 = Ide×e, and (Cα)24 =

(
6 0

0 6

)
respectively.
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Thus, there is an embedding ψ : GL(2, 72) → GL(4, 7) where the generators of

the image are

((
α 0

0 1

))
ψ =


0 1 0 0

4 2 0 0

0 0 1 0

0 0 0 1

 and

((
6 1

6 0

))
ψ =


6 0 1 0

0 6 0 1

6 0 0 0

0 6 0 0

 .

Lemma 2.20. Let ψ1, ψ2 : GL(d/e, qe) → GL(d, q) be two embeddings, defined as

in Construction 2.18 corresponding to different choices of primitive elements of Fqe.
Then GL(d/e, qe)ψ1 is conjugate in GL(d, q) to GL(d/e, qe)ψ2.

Proof. Let α, β ∈ Fqe be two different primitive elements with minimal polynomials

m1 and m2 corresponding to the embeddings ψ1 and ψ2 respectively.

Since α is a primitive element of Fqe , we have that β = αk for some 1 ≤ k ≤ qe−1.

Thus the minimal polynomial of αk is m2.

By Lemma 2.15, the map

f : Fqe → Fq[Cα] defined by (x)f =

{
(Cα)i if x = αi ∈ Fqe
0e×e if x = 0 ∈ Fqe

is an isomorphism of rings. As m2 is the minimal polynomial of αk we have that

(0)f = ((αk)m2)f =
(
a0 + a1α

k + a2(αk)2 + · · ·+ ae−1(αk)e−1 + (αk)e
)
f

= a0Ide×e + a1((Cα)k) + a2((Cα)k)2 + · · ·+ ae−1((Cα)k)e−1 + ((Cα)k)e

= 0e×e.

Hence ((Cα)k)m2 = 0 and as m2 is minimal for αk we must have that m2 is minimal

for (Cα)k.

The characteristic polynomial for an e × e matrix is monic and of degree e and

the minimal polynomial of a matrix must divide the characteristic polynomial. The

minimal polynomial m2 of (Cα)k is of degree e. Therefore the minimal and charac-

teristic polynomials of (Cα)k must coincide. Thus by Lemma 2.11, the matrix (Cα)k

is conjugate in GL(e, q) to Cβ, the companion matrix of m2.

Take B ∈ GL(e, q), such that B−1CβB = (Cα)k. Then for any 1 ≤ i ≤ qe − 1

there exists some 1 ≤ j ≤ qe − 1 such that (Cα)i = B−1(Cβ)jB.

For any A ∈ GL(d/e, qe) we have that

Aψ2 =

 a1,1 . . . a1,d/e

...
. . .

...

ad/e,1 . . . ad/e,d/e

ψ2 =

 A1,1 . . . A1,d/e

...
. . .

...

Ad/e,1 . . . Ad/e,d/e
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where Ai,j ∈ 〈Cβ〉 if ai,j 6= 0 and Ai,j = 0e×e if ai,j = 0.

We then have that

Diagd/e(B)−1(Aψ2)Diagd/e(B) =

 B−1A1,1B . . . B−1A1,d/eB
...

. . .
...

B−1Ad/e,1B . . . B−1Ad/e,d/eB



=


A′1,1 . . . A′1,d/e

...
. . .

...

A′d/e,1 . . . A′d/e,d/e


where A′i,j ∈ 〈Cα〉 if ai,j 6= 0 and A′i,j = 0e×e if ai,j = 0.

Thus Diagd/e(B)−1(GL(d/e, qe)ψ2)Diagd/e(B) ⊆ GL(d/e, qe)ψ1.

The groups GL(d/e, qe)ψ1 and Diagd/e(B)−1(GL(d/e, qe)ψ2)Diagd/e(B) have the

same cardinality.

Therefore GL(d/e, qe)ψ1 = Diagd/e(B)−1(GL(d/e, qe)ψ2)Diagd/e(B), and so

GL(d/e, qe)ψ1 is conjugate in GL(d, q) to GL(d/e, qe)ψ2. �

Example 2.21. We consider the field F72 in two ways:

F72
∼= F7[X]/(X2 + 5X + 3)

∼= F7[X]/(X2 + 6X + 3).

This creates two different embeddings of GL(2, 72) into GL(4, 7). We let α, β be

primitive elements of F72 with minimal polynomials m1(x) = x2+5x+3 and m2(x) =

x2 + 6x+ 3, respectively. Then

Cα =

(
0 1

4 2

)
and Cβ =

(
0 1

4 1

)
.

Here (Cα)19 =

(
2 2

1 6

)
has the same minimal polynomial as Cβ and

(
1 0

2 2

)−1

Cβ

(
1 0

2 2

)
= (Cα)19.

Using the same method as Example 2.19 we may now construct the embeddings

ψ1 : GL(2, 72) → GL(4, 7) and ψ2 : GL(2, 72) → GL(4, 7) where the generators of

the images are:

((
α1 0

0 1

))
ψ1 =


0 1 0 0

4 2 0 0

0 0 1 0

0 0 0 1

 and

((
6 1

6 0

))
ψ1 =


6 0 1 0

0 6 0 1

6 0 0 0

0 6 0 0

 ,
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and

((
α2 0

0 1

))
ψ2 =


0 1 0 0

4 1 0 0

0 0 1 0

0 0 0 1

 and

((
6 1

6 0

))
ψ2 =


6 0 1 0

0 6 0 1

6 0 0 0

0 6 0 0

 .

Then GL(2, 72)ψ2 is conjugate in GL(4, 7) to GL(2, 72)ψ1 with conjugating element
1 0 0 0

2 2 0 0

0 0 1 0

0 0 2 2

 .

Definition 2.22. We define the group Gψ,e(d, q) to be the image of GL(d/e, qe)

under the embedding ψ given in Construction 2.18. In particular GL(d/e, qe) ∼=
Gψ,e(d, q) ≤ GL(d, q).

The following is Zsigmondy’s Theorem [45]. Case (iii) is due to [4].

Theorem 2.23. Let a > b > 0 be coprime integers. Then for any natural number

d there exists a prime p such that p divides ad − bd but p does not divide ak − bk for

any natural number k < d, with the following exceptions:

(i) d = 1, a− b = 1, then ad − bd = 1 which clearly has no prime divisors,

(ii) d = 2, a + b is a power of 2. Then any odd prime factors of a2 − b2 =

(a+ b)(a1 − b1) must be contained in a1 − b1,

(iii) d = 6, a = 2, b = 1, then a6 − b6 = 63 = (a2 − b2)2(a3 − b3).

We call the prime p a primitive prime divisor of ad − bd.

The following is [21, p. 493].

Lemma 2.24. Let V = Fdq and G = GL(d, q). Then G contains a cyclic subgroup

S of order qd − 1. We call S a Singer subgroup of G, and we call a generator of S

a Singer cycle.

Lemma 2.25. Let V = Fdq and G ≤ GL(d, q). If G ∼= GL(d/e, qe) then G acts

irreducibly on V . In particular Gψ,e(d, q) is an irreducible subgroup of GL(d, q)

Proof. As G is isomorphic to GL(d/e, qe), by Lemma 2.24, there exists a Singer

subgroup S ≤ G of order (qe)(d/e) − 1 = qd − 1. By Zsigmondy’s Theorem, in the

non exceptional cases, there exists a primitive prime divisor r, of qd−1, so r divides

qd − 1 but r does not divide qk − 1 for any k < d. Then there is an element g of G

of order r and g cannot preserve any subspaces of V . Hence 〈g〉 ≤ G is irreducible.

Thus G acts irreducibly on V .

We now consider the exceptional cases. We cannot have d = 1. If d = 2 and

q + 1 is a power of 2, then G ∼= GL(1, q2) is a subgroup of GL(2, q). We consider
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any proper non-trivial subspace U ⊂ V . Then U must be 1-dimensional and so any

subgroup of GL(2, q) which stabilizes U must be of the form

R :=

{(
a b

0 d

) ∣∣∣∣∣ a, b, d ∈ Fq, ad 6= 0

}
,

with respect to some choice of basis. The order of R is q(q − 1)2. Since G ∼=
GL(1, q2) ∼= Cq2−1 = C(q−1)(q+1), there exists an element g ∈ G of order q + 1. We

observe that q + 1 divides q(q − 1)2 if and only if q + 1 = 4. Hence if q + 1 6= 4

then g is acting irreducibly. If q + 1 = 4, then G = GL(1, 9) ∼= C8 is a subgroup of

GL(2, 3) and so G contains an element g of order 4. However in this case R ∼= D12

which does not contain an element of order 4. Hence 〈g〉 ≤ G must be irreducible,

and so G is irreducible.

If d = 6 and q = 2 then G ∼= GL(1, 64),GL(2, 8), or GL(3, 4) as a subgroup

of GL(6, 2). By Lemma 2.24, each of these possible subgroups contains a Singer

subgroup of order 63, and so each of these groups contains an element g of order 9.

We have that 9 divides 26 − 1, but does not divide 2k − 1 for any k < 6. Hence as

above, 〈g〉 ≤ G must act irreducibly on V and so G must be irreducible. �

Definition 2.26. Let Fq be the finite field with q elements and let Fqe be an exten-

sion of Fq by an irreducible polynomial of degree e. Then Gal(Fqe/Fq) is the group

of automorphisms of Fqe that fix Fq pointwise, i.e.

Gal(Fqe/Fq) = {α ∈ Aut(Fqe) | aα = a for all a ∈ Fq}.

The following is well known.

Lemma 2.27. Let Fq be the finite field with q elements, where q = pn, a prime

power and let Fqe be an extension of Fq by an irreducible polynomial of degree e.

Then Gal(Fqe/Fq) is cyclic of order e. Furthermore Gal(Fqe/Fq) is generated by the

Frobenius automorphism, F : a 7→ aq.

Proof. We consider the extension of Fqe over Fp. We have that Fqe is the splitting

field of xq
e − x over Fp, and so Fqe is Galois over Fp. Therefore Gal(Fqe/Fp) has

order |Fqe : Fp| = en. We consider the Frobenius automorphism F : a 7→ ap. We

observe that F ∈ Gal(Fqe/Fp), and the order of F is en. Thus Gal(Fqe/Fp) must be

the cyclic group generated by F .

As Fqe is an extension of Fq we have that Fp ⊆ Fq ⊆ Fqe . Then Gal(Fqe/Fq) is a

subgroup of Gal(Fqe/Fp), which is cyclic. Furthermore α 7→ αq has order e. �

Definition 2.28. Let Ve = Fd/eqe be a d/e-dimensional vector space over Fqe where

e is a non-trivial divisor of d. Define the set

ΓL(d/e, qe) := {(f, α) | (f, α) ∈ ΓL(Ve) and for all a ∈ Fq ; aα = a},
38



in other words α ∈ Gal(Fqe/Fq). We observe that ΓL(d/e, qe) is a subgroup of

ΓL(Ve).

Remark 2.29. Observe that for example, ΓL(4, 24) 6= ΓL(4, 42). Each element of

the former is a semilinear transformation with an associated field automorphism

that fixes F2. Alternatively in the latter the associated field automorphism for each

element fixes F4.

The following is essentially a repetition of Lemma 2.4.

Lemma 2.30. Let Ve be a d/e-dimensional vector space over Fqe, where e is a

non-trivial divisor of d.Then

ΓL(d/e, qe) ∼= GL(d/e, qe)oGal(Fqe/Fq)

where Gal(Fqe/Fq) acts on GL(d/e, qe) by inducing the automophism onto each ma-

trix entry.

Proof. Fix a basis B = [b1, . . . , bd/e] of Ve. Then any vector v ∈ Ve may be written

as v =
∑

b∈B λbb for λb ∈ Fqe , b ∈ B.

For each α ∈ Gal(Fqe/Fq), define fα : Ve → Ve to be a map such that(∑
b∈B

λbb

)
fα =

∑
b∈B

λαb b.

Then as in Lemma 2.4 (i), fα is an invertible α-semilinear map, and furthermore,

we observe that (fα, α) ∈ ΓL(d/e, qe).

Define the set A:= {(fα, α) | α ∈ Gal(Fqe/Fq)} ⊆ ΓL(d/e, qe). We observe that

similarly to Lemma 2.4 (ii), A forms a subgroup of ΓL(d/e, qe).

Let φ : Gal(Fqe/Fq) → A be defined via (α)φ = (fα, α) for all α ∈ Gal(Fqe/Fq).
Then as in Lemma 2.4 (ii), the map φ is a group isomorphism. Therefore Gal(Fqe/Fq) ∼=
A ≤ ΓL(d/e, qe).

We have that GL(d/e, qe) ∼= D := {(g, 1) | (g, 1) ∈ ΓL(d/e, qe)} and as in Remark

2.3, D E ΓL(d/e, qe). We note that A ∩D = {(Id, 1)}.

For any (f, α) ∈ ΓL(d/e, qe) we define yf : Ve → Ve by:(∑
b∈B

λbb

)
yf :=

∑
b∈B

λb(b)f.

Then as in Lemma 2.4 (iii), yf is an invertible linear map, with inverse xf : Ve → Ve,

defined by:
(∑

b∈B λbb
)
xf =

∑
b∈B λb(b)f

−1. Thus (yf , 1) ∈ D.
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We now consider (f, α)(xf , 1) = (fxf , α). Then for any v =
∑

b∈B(λbb) ∈ V we

have (v)fxf =
(∑

b∈B λ
α
b (b)f

)
xf =

∑
b∈B λ

α
b b. Hence (fxf , α) = (fα, α) ∈ A.

It follows that (f, α) = (fα, α)(yf , 1) and so ΓL(d/e, qe) = GL(d/e, qe)oGal(Fqe/Fq).

We consider the action of Gal(Fqe/Fq) on GL(d/e, qe) in this semidirect product.

Let A = (ai,j) be the matrix representation of the linear map yf : Ve → Ve with

respect to the basis B. Then for any basis vector bi ∈ B, we have that

(bi)yf = (bi)f = (ai,1, . . . , ai,d/e) =

d/e∑
j=1

ai,jbj.

For any (f, α) ∈ ΓL(d/e, qe), we have

(fα, α)−1(yf , 1)(fα, α) = (fα−1yffα, 1).

Then for any v =
∑d/e

i=1 λbibi ∈ V we have

(v)fα−1yffα =

 d/e∑
i=1

λbibi

 fα−1yffα =

 d/e∑
i=1

λα
−1

bi
(bi)f

 fα

=

 d/e∑
i=1

d/e∑
j=1

λα
−1

bi
ai,jbj

 fα =

d/e∑
i=1

d/e∑
j=1

λbi(ai,j)
αbj =

 d/e∑
i=1

λbibi

 y′f .

Where y′f : Ve → Ve is the map defined by(∑
b∈B

λbb

)
y′f :=

∑
b∈B

λb(b)A
′,

and A′ is the matrix obtained by applying α to each of the entries of A. So we have

that (v)fα−1yffα = (v)y′f . �

Construction 2.31. We construct an embedding of the group ΓL(d/e, qe) into

GL(d, q) using the proof of Lemma 2.20 as our framework.

By Lemma 2.30, ΓL(d/e, qe) ∼= GL(d/e, qe)oGal(Fqe/Fq), where Gal(Fqe/Fq) acts

on GL(d/e, qe) by inducing the automorphism onto each matrix entry. By Lemma

2.27, we have that Gal(Fqe/Fq) is isomorphic to the cyclic group of order e.

Take a primitive element α ∈ Fqe , with minimal polynomial m over Fq. Let Cα be

the companion matrix of m and let ψ : GL(d/e, qe)→ GL(d, q) be the corresponding

embedding (see Construction 2.18), giving rise to the group Gψ,e(d, q).

If Cα is conjugate in GL(e, q) to (Cα)k for some k, then Cα and (Cα)k have the

same minimal polynomial. So by Lemma 2.15, α and αk must have the same mini-

mal polynomial over Fq. This minimal polynomial is therefore m and m is of degree
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e. Hence there can be at most e distinct roots of m and so there can be at most e

elements of Fqe with m as their minimal polynomial.

As αq, αq
2
. . . , αq

e−1
all have m as their minimal polynomial, these must be the

only e elements. Hence Cα is only conjugate to (Cα)k if k = 1, q, . . . , qe−1.

Since Cα is conjugate to (Cα)q, there exists a matrix B ∈ GL(e, q) such that

B−1CαB = (Cα)q.

We claim that we may select such a B ∈ GL(e, q), so that the order of B is e.

The subgroup 〈Cα〉 ≤ GL(e, q) is of order qe−1 and is self centralizing in GL(e, q).

We set t := (qe − 1)/(q − 1), then (Cα)t is a scalar matrix of order q − 1.

Let S := Be, then S commutes with Cα and so S must lie in 〈Cα〉. Therefore

S must be a power of Cα, say S = (Cα)k. Furthermore S commutes with B and

B−1(Cα)kB = (Cα)k if and only if (Cα)k is scalar. Hence S must be a scalar matrix.

Every scalar matrix must be a power of (Cα)t and so S−1 = (Cα)tu for some u ≥ 1.

We have that

(B(Cα)u)e = (B(Cα)u)(B(Cα)u)(B(Cα)u) . . . (B(Cα)u)

= B(BB−1)(Cα)u(B(Cα)u)(B(Cα)u) . . . (B(Cα)u)

= B2(B−1(Cα)uB(Cα)u)(B(Cα)u) . . . (B(Cα)u)

= B3(B−2(Cα)uB2)(B−1(Cα)u)(B(Cα)u) . . . (B(Cα)u)

= . . .

= Be(B−(e−1)(Cα)uBe−1)(B−(e−2)(Cα)uBe−2) . . . (B−1(Cα)uB)(Cα)u

= Be(Cα)u(qe−1+qe−2+···+q+1)

= Be(Cα)ut

= SS−1

= Ide×e.

So by replacing B by B(Cα)u we have a matrix B such that B−1CαB = (Cα)q and

the order of B is e. In particular we may identify 〈B〉 with Gal(Fqe/Fq).

For any A ∈ GL(d/e, qe) we consider the image of A in Gψ,e(d, q):

Aψ =

 a1,1 . . . a1,d/e

...
. . .

...

ad/e,1 . . . ad/e,d/e

ψ =

 A1,1 . . . A1,d/e

...
. . .

...

Ad/e,1 . . . Ad/e,d/e

 ,
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where Ai,j ∈ 〈Cα〉 if ai,j 6= 0 and Ai,j = 0e×e if ai,j = 0.

We then have that

Diagd/e(B)−1(Aψ)Diagd/e(B) =

 B−1A1,1B . . . B−1A1,d/eB
...

. . .
...

B−1Ad/e,1B . . . B−1Ad/e,d/eB



=


A′1,1 . . . A′1,d/e

...
. . .

...

A′d/e,1 . . . A′d/e,d/e

 .

Where A′i,j ∈ 〈(Cα)q〉 = 〈Cα〉 if ai,j 6= 0 and A′i,j = 0e×e if ai,j = 0.

Thus Diagd/e(B)−1(Gψ,e(d, q))Diagd/e(B) ⊆ Gψ,e(d, q) and so

Diagd/e(B)−1(Gψ,e(d, q))Diagd/e(B) = Gψ,e(d, q). In particular Diagd/e(B) normalises

Gψ,e(d, q).

We consider the subgroup Ĝ := 〈Gψ,e(d, q),Diagd/e(B)〉 ≤ GL(d, q). Then Ĝ ∼=
GL(d/e, qe)oGal(Fqe/Fq) and Gal(Fqe/Fq) is acting on GL(d/e, qe) by inducing the

automorphism onto the each matrix entry.

Thus, by Lemma 2.30, Ĝ ∼= ΓL(d/e, qe) and we have an embedding of ΓL(d/e, qe)

inside of GL(d, q). �

Example 2.32. We consider the embedding of GL(2, 72) into GL(4, 7) as in Exam-

ples 2.19 and 2.21. We let α ∈ F72 be a primitive element with minimal polynomial

m(x) = x2+5x+3. Then we may construct the embedding ψ : GL(2, 72)→ GL(4, 7)

where the generators of the image are

((
α 0

0 1

))
ψ =


0 1 0 0

4 2 0 0

0 0 1 0

0 0 0 1

 and

((
6 1

6 0

))
ψ =


6 0 1 0

0 6 0 1

6 0 0 0

0 6 0 0

 ,

giving the group Gψ,2(4, 7) ≤ GL(4, 7).

The matrices

Cα =

(
0 1

4 2

)
and (Cα)7 =

(
2 6

3 0

)
have the same minimal polynomial, which is of degree 2. So by Lemma 2.11, they

are conjugate in GL(2, 7). In this case a conjugating matrix is

B =

(
1 0

2 6

)
.
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As shown in Construction 2.31, Diag2(B) normalizes Gψ,2(4, 7) and furthermore the

order of B is e = 2. So we may construct the semidirect product

Ĝ := Gψ,2(4, 7)o 〈Diag2(B)〉

=

〈
0 1 0 0

4 2 0 0

0 0 1 0

0 0 0 1

 ,


6 0 1 0

0 6 0 1

6 0 0 0

0 6 0 0

 ,


1 0 0 0

2 6 0 0

0 0 1 0

0 0 2 6


〉
≤ GL(4, 7),

and Ĝ ∼= GL(2, 72)o C2
∼= ΓL(2, 72).

Definition 2.33. We define Γψ,e(d, q) to be the image of ΓL(d/e, qe) under the em-

bedding demonstrated in Construction 2.31. In particular ΓL(d/e, qe) ∼= Γψ,e(d, q) ≤
GL(d, q).

Remark 2.34. We consider a field extension Fq(α) = Fqe/Fq, where α ∈ Fqe is a

primitive element. By [1, Chapter 13, Prop. 2.7], the field Fqe is an Fq-vector space

with basis (1, α, . . . , αe−1). Thus Fq is isomorphic to a subfield F̂q ≤ Fqe , written as

the degree 0 polynomials. i.e. The element a0 + a1α + · · · + ae−1α
e−1 lies in F̂q if

ai = 0 for all 1 ≤ i ≤ e− 1.

Therefore we may construct an embedding i : GL(d, q)→ GL(d, qe) where

(GL(d, q))i = {A = (ai,j) ∈ GL(d, qe) | ai,j ∈ F̂q for all 1 ≤ i, j ≤ d} ≤ GL(d, qe).

Lemma 2.35. The group Gψ,e(d, q) ∼= GL(d/e, qe) is not absolutely irreducible as a

subgroup of GL(d, q). In particular, when Gψ,e(d, q) ≤ GL(d, q) is embedded natu-

rally in GL(d, qe), it acts reducibly on Fdqe.

Proof. Let Cα be a matrix in GL(e, q) which corresponds to the minimal polyno-

mial m of a generator α of F∗qe . Then the elements of Gψ,e(d, q) which have been

embedded in GL(d, q) are block matrices consisting of (d/e)2 blocks each of which

are elements of 〈Cα〉 ∪ {0e×e}. We label the blocks for an element A ∈ Gψ,e(d, q) as

follows:

A =

 A1,1 . . . A1,d/e

...
. . .

...

Ad/e,1 . . . Ad/e,d/e

 .

The polynomial m is a defining polynomial of the field extension Fqe/Fq. When

written over Fqe the polynomial m splits into e linear factors {l1, . . . , le}. Further,

by Lemma 2.10, these li’s are eigenvalues for Cα, when we consider Cα as an element

of GL(e, qe).

Let v = (v1, . . . , ve) ∈ Feqe be an eigenvector for Cα ∈ GL(e, qe), with eigenvalue l.

Then vAi,j = li,jv, where li,j = lk if Ai,j = (Cα)k and li,j = 0 if Ai,j = 0e×e.
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Define ai := (0, . . . , 0, v1, . . . , ve, 0, . . . , 0) ∈ Fdqe , for 1 ≤ i ≤ d/e, where there are

(i− 1)(d/e) zeros appearing before v1. Then for any A ∈ Gψ,e(d, q) we have that

aiA = (0, . . . , 0, v1, . . . , ve, 0, . . . , 0)

 A1,1 . . . A1,d/e

...
. . .

...

Ad/e,1 . . . Ad/e,d/e


= (vAi,1, vAi,2, . . . , vAi,d/e)

= li,1a1 + · · ·+ li,d/ead/e

∈ 〈a1, . . . , ad/e〉 ⊂ Fdqe .

It follows that each element inGψ,e(d, q) must map the subspace U := 〈a1, a2, . . . , ad/e〉
to itself.

Furthermore if we take w ∈ Feqe such that w is not an eigenvector for Cα (w exists

as Cα is non-scalar), then the vector (w, 0, . . . , 0) ∈ Fdqe \ U . Thus U is a proper

subspace of Fdqe .

Therefore Gψ,e(d, q) acts reducibly on Fdqe and so Gψ,e(d, q) is not absolutely irre-

ducible. �

Example 2.36. As in Example 2.8 we consider the field

F72
∼= F7[X]/(X2 + 5X + 3).

Let α ∈ F72 be a primitive element with minimal polynomial m where m(x) =

x2 + 5x+ 3. So the companion matrix of m over F7 is

Cα :=

(
0 1

4 2

)
.

We then embed GL(2, 72) into GL(4, 7) in the same way as in Example 2.19. We

let G = Gψ,2(4, 7) ∼= GL(2, 72).

We consider Cα as an element of GL(2, 72). Then v := (1, α17) ∈ F2
72 is an eigen-

vector for Cα, with corresponding eigenvalue α.

Define a1 := (1, α17, 0, 0), a2 := (0, 0, 1, α17) ∈ F4
72 and

A :=


3 6 2 2

6 6 1 6

2 5 0 2

6 5 1 4

 =

(
(Cα)26 (Cα)19

(Cα)36 (Cα)17

)
∈ Gψ,2(4, 7).

Then

a1A = (α26, α43, α19, α36) = (v(Cα)26, v(Cα)19) = α26a1 + α19a2
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and

a2A = (α36, α5, α17, α34) = (v(Cα)36, v(Cα)17) = α36a1 + α17a2.

Hence A stabilizes 〈a1, a2〉. (This is true for any A ∈ Gψ,2(4, 7).)

2.2. The theory behind the test. To create our semilinear test we will require

the use of Clifford’s Theorem [11] as used in [22, p.5-6] and [23, p.5]. We give the

relevant parts of Clifford’s Theorem here.

Theorem 2.37 (Clifford’s Theorem). Let G be a matrix group, over any field F,

which acts absolutely irreducibly on a d-dimensional F-vector space V . Let N be a

normal non-scalar subgroup of G (i.e. N is not a subgroup of Z(G)). Then for some

t ≥ 1 the vector space V splits as a direct sum V = W1⊕W2⊕· · ·⊕Wt of irreducible

FN-modules which are all of the same dimension.

For some r, s ≥ 1, with rs = t, these Wi’s partition into r sets containing s pair-

wise isomorphic FN-modules. Define V1, V2, . . . , Vr to each be the sum of s pairwise

isomorphic Wi’s so that, if Wi ∈ Vk and Wj ∈ Vk′ where 1 ≤ k 6= k′ ≤ r then Wi is

not isomorphic to Wj. Hence V = V1 ⊕ V2 ⊕ · · · ⊕ Vr.

Then G permutes the Vi’s transitively and furthermore:

(i) If r > 1 then the group G is imprimitive with the subspaces Vi forming the

blocks of a non-trivial system of imprimitivity and N preserves each of these

Vi.

(ii) If r = 1 then V decomposes as a direct sum of t irreducible, pairwise iso-

morphic, FN-modules W1, . . . ,Wt each of dimension d/t over F. Either all

of the Wi are absolutely irreducible (as FN-modules), or all are not.

Definition 2.38. Let G ≤ GL(d, q) be an absolutely irreducible subgroup (acting

on V = Fdq). We say that a normal subgroup N E G acts homogeneously on V if V

decomposes as a direct sum of irreducible, pairwise isomorphic FqN -modules each

of the same dimension over Fq (cf. Clifford’s Theorem (2.37 (ii))). In this case we

also call N a homogeneous subgroup of G.

Lemma 2.39. Let C := CGL(d,q)(Gψ,e(d, q)) be the centralizer of Gψ,e(d, q) in GL(d, q).

Then C is a subgroup of Gψ,e(d, q) isomorphic to the cyclic group F∗qe of the field Fqe
and Gψ,e(d, q) = CGL(d,q)(C). Furthermore C acts homogeneously on V = Fdq.

Proof. We consider the centre Ẑ := Z(GL(d/e, qe)). Then Ẑ consists of the qe − 1

scalar matrices of GL(d/e, qe). We embed GL(d/e, qe) into GL(d, q) via ψ, this gives

the subgroup Gψ,e(d, q) ≤ GL(d, q).

Define Z := (Ẑ)ψ. The embedding ψ is an isomorphism, hence Z = Z(Gψ,e(d, q))

and Z consists of the images of the scalar matrices of GL(d/q, qe) under ψ. In par-

ticular Z ∼= F∗qe .
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By the construction of ψ we have,

Z =


(Cα)k 0

. . .

0 (Cα)k


∣∣∣∣∣∣∣ 1 ≤ k ≤ qe − 1

 ≤ Gψ,e(d, q).

Define the following subspaces of V :

W1 :={(a1, . . . , ae, 0, . . . , 0) | ak ∈ Fq},

W2 :={(0, . . . , 0, ae+1, . . . , a2e, 0, . . . , 0) | ak ∈ Fq},
...

Wd/e :={(0, . . . , 0, ad−e+1, . . . , ad) | ak ∈ Fq}.

In particular,

Wi := {(0, . . . , 0, a(i−1)e+1, . . . , aie, 0, . . . , 0) ∈ V | ak ∈ Fq}

for 1 ≤ i ≤ d/e and V = W1 ⊕ · · · ⊕Wd/e.

For any A ∈ Z and any v = (0, . . . , 0, a(i−1)e+1, . . . , aie, 0, . . . , 0) ∈ Wi we have

that

vA = (0, . . . , 0, a(i−1)e+1, . . . , aie, 0, . . . , 0)

(Cα)k 0
. . .

0 (Cα)k


for some 1 ≤ k ≤ qe − 1. The jth coordinate of vA is

(vA)j =
d∑

k=1

vkAk,j.

Hence (vA)j = 0 if j /∈ {(i − 1)e + 1, . . . , ie}. Thus vA ∈ Wi and so each Wi is

Z-invariant.

We observe that for each 1 ≤ i ≤ d/e, the action of Z on Wi is equivalent to the

action of 〈Cα〉 on Feq.

We have that |〈Cα〉| = qe− 1 and there are qe− 1 non-zero vectors in Feq. For any

non-zero vector v ∈ Feq, we have that v(Cα)k 6= v(Cα)n for 1 ≤ n 6= k ≤ qe − 1.

Hence the action of 〈Cα〉 on Feq is transitive on the non-zero vectors. Therefore for

each 1 ≤ i ≤ d/e, the (equivalent) action of Z on Wi is transitive on the non-zero

vectors of Wi. Thus each Wi is an irreducible Z-module.

The action of Z on V is therefore homogeneous.
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For all v1, v2 ∈ V , a, b ∈ Fq, z ∈ Z, and M ∈ CGL(d,q)(Z) we have that

(av1 + bv2)M = a(v1M) + b(v2M) and (v1z)M = (v1M)z.

Hence CGL(d,q)(Z) ⊆ HomZ(V, V ).

Let f ∈ HomZ(V, V ) be invertible. Then for all v1, v2 ∈ V and a, b ∈ Fq we have

that

(av1 + bv2)f = a(v1f) + b(v2f).

Hence f ∈ GL(d, q).

Furthermore for all v ∈ V and z ∈ Z we have

(vz)f = (vf)z

and so f ∈ CGL(d,q)(Z).

For any non-invertible g ∈ HomZ(V, V ) we have that g /∈ CGL(d,q)(Z). Thus the

centralizer CGL(d,q)(Z) is exactly the invertible elements of HomZ(V, V ).

We now consider the subspace W := W1. By Lemmas 1.42 and 1.44, HomZ(W,W )

is isomorphic to Fqe . Then by Lemma 1.38, we have that HomZ(V, V ) is isomorphic

to the ring M(d/e, qe), of all d/e× d/e matrices over Fqe .

The centralizer CGL(d,q)(Z) is the invertible elements of HomZ(V, V ), so we have

that CGL(d,q)(Z) must be isomorphic to GL(d/e, qe) (⊆ M(d/e, qe)). The group

Gψ,e(d, q) must lie in CGL(d,q)(Z) andGψ,e(d, q) has the same cardinality as GL(d/e, qe).

Hence the centralizer of Z in GL(d, q) must be Gψ,e(d, q).

Since Z is a subgroup of Gψ,e(d, q), every element of C must centralize Z. Hence

C ≤ CGL(d,q)(Z) = Gψ,e(d, q). Thus C = Z. �

Remark 2.40. The centralizer CGL(d,q)(Gψ,e(d, q)) is isomorphic to F∗qe and so is not

isomorphic to F∗q. Therefore by Lemma 1.35, the group Gψ,e(d, q) is not absolutely

irreducible (as we already proved in Lemma 2.35).

Definition 2.41. Let G be a group and H a subgroup of G. A right transversal S,

of H in G is a set containing exactly one element from each right coset Hg of H in

G.

We now describe a general construction taken from [19], as described in [8].

Construction 2.42. Let H be any subgroup of a group G, and let S be a right

transversal of H in G which contains the identity element of G. For each g ∈ G

we denote the unique element in Hg ∩ S by ḡ. We let α : G → P be the permu-

tation representation of G acting by right multiplication on the right cosets of H

in G. Therefore P = Sym(G/H) and we can think of P as acting on the set S;
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interchanging representatives rather than cosets.

We recall Definition 1.10 of a wreath product. We define X := H oS P to be the

wreath product using the action of P on S. The base group Y of the wreath product

X is the set Fun(S,H) of functions from S to H. This is a group under pointwise

multiplication; for all y1, y2 ∈ Y , s ∈ S define (y1y2)(s) := y1(s)y2(s).

The action y → yp of P on Y is given by

yp(s) = y(sp
−1

)

for y ∈ Y , p ∈ P , and s ∈ S. With this we have that X = Y o P .

For all s ∈ S and g ∈ G we observe that sg−1 ∈ Hsg−1 and so sg−1gs−1 ∈ H. We

may therefore define the function yg ∈ Fun(S,H) via yg(s) := sg−1gs−1 for all s ∈ S.

We note that for all s ∈ S and g ∈ G we have that sα(g) ∈ S and sα(g) ∈ Hsg,

hence sα(g) = sg.

Define π : G→ X by π(g) = y
α(g)−1

g α(g) for g ∈ G.

We have that

yα(g)−1

g (s) = yg(s
α(g)) = yg(sg) = sgg−1g(sg)−1 = sg(sg)−1.

Take any g1, g2 ∈ G then

π(g1)π(g2) = yα(g1)−1

g1
α(g1)yα(g2)−1

g2
α(g2)

= yα(g1)−1

g1
yα(g2)−1α(g1)−1

g2
α(g1)α(g2)

= yα(g1)−1

g1
yα(g1g2)−1

g2
α(g1g2)

and for any s ∈ S we have

yα(g1)−1

g1
yα(g1g2)−1

g2
(s) = yα(g1)−1

g1
(s)yα(g1g2)−1

g2
(s)

= yg1(s
α(g1))yg2(s

α(g1g2))

= yg1(sg1)yg2(sg1g2)

= (sg1g
−1
1 g1(sg1)−1)(sg1g2g

−1
2 g2(sg1g2)−1)

= (sg1(sg1)−1)(sg1g2(sg1g2)−1)

= sg1g2(sg1g2)−1

= yα(g1g2)−1

g1g2
(s).

Therefore

π(g1)π(g2) = yα(g1)−1

g1
yα(g1g2)−1

g2
α(g1)α(g2) = yα(g1g2)−1

g1g2
α(g1g2) = π(g1g2)
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and so π : G→ X is a group homomorphism.

If t ∈ ker(α) then Hst = Hs for all s ∈ S. In particular st−1 = s. Hence

π(t) = yt ∈ Y , where yt(s) = sts−1 for all s ∈ S.

Take any k ∈ ker(π), then π(k) = y
α(k)−1

k α(k) = 11P and so k ∈ ker(α). Therefore

π(k) = yk where yk(s) = sks−1 for all s ∈ S. Hence yk = 1 if and only if sks−1 = 1

for all s ∈ S. Thus k = 1 and the kernel of π is trivial.

We call π : G→ X = H oS P the wreathed monomorphism induced by H and S.

�

We need this construction to work in a more specific case, embeddingG ≤ GL(d, q)

into a wreath product of H|W oP where H is the stabilizer of a subspace W ⊆ V = Fdq
and P is defined as above.

Construction 2.43. Let G be an irreducible imprimitive matrix group acting on

the vector space V = Fdq . As in Aschbacher’s Theorem (1.25 (ii)), G is irreducible

and preserves a direct sum decomposition V = V1⊕ · · · ⊕ Ve, where each of these Vi

are of the same dimension and G transitively permutes the subspaces V1, . . . , Ve.

Let H be the stabilizer of V1 in G and we let S be a right transversal of H in G

which contains the identity element, as above. For each g ∈ G we denote the unique

element in Hg ∩ S by ḡ. We let α : G→ P be the permutation representation of G

acting by right multiplication on the set of right cosets of H in G.

We define λ : G/H → {V1, . . . , Ve} by λ(Hg) = V g
1 for Hg ∈ G/H.

The group G acts transitively on {V1, . . . , Ve} and so for any Vi ∈ {V1, . . . , Ve}
there exists a gi ∈ G with V gi

1 = Vi. If gi 6= ḡi then there exists some h ∈ H with

hgi = ḡi. In this case we have that λ(Hḡi) = V hgi
1 = V gi

1 = Vi and so λ is surjective.

Furthermore if λ(Hg) = λ(Hg′) then V g
1 = V g′

1 and so V gg′−1

1 = V1. Therefore

gg′−1 ∈ H and so Hg = Hg′. Hence λ is injective and hence a bijection.

We let f : G → G be the group isomorphism f(g) = g. Then for Hs ∈ G/H we

have

λ((Hs)g) = λ(Hsg) = V sg
1

and

(λ(Hs))f(g) = (V s
1 )g = V sg

1 .

Hence the action of G on the subspaces V1, . . . , Ve is permutation isomorphic to

the action of G on the right cosets of H in G.
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In particular, for any Vi ∈ {V1, . . . , Ve} the stabilizer in G of Vi is a conjugate of

H in G, which we will denote by Hi. Here we have that H1 = H.

We let X := H oS P be the wreath product as described in Construction 2.42.

Hence G embeds in X via the wreathed monomorphism π : G → X induced by H

and S.

For each 1 ≤ i ≤ e, we let ρi : Hi → GL(Vi) be the representation of Hi in GL(Vi)

(as Hi is the stabilizer of Vi) and we denote ρi(Hi) by Hi|Vi (Hi restricted to Vi).

We denote V1 by W , ρ1 by ρ and we consider H|W oS P .

By Lemma 1.22, there exists a surjective homomorphism ρ̄ : H oS P → H|W oS P ,

defined by ρ̄(yα(g)) = y∗α(g), where yα(g) ∈ X, with g ∈ G and y ∈ Y , and

y∗(s) = ρ(y(s)) for all s ∈ S.

We consider the kernel of the composition ρ̄◦π : G→ H|W oSP . Let k ∈ ker(ρ̄◦π).

Then π(k) = y
α(k)−1

k α(k), where yk ∈ Fun(S,H) is defined by yk(s) = sk−1ks for all

s ∈ S. Now ρ̄(π(k)) = ρ̄(y
α(k)−1

k α(k)) = (y
α(k)−1

k )∗α(k).

As k ∈ ker(ρ̄ ◦ π), we have that (y
α(k)−1

k )∗α(k) = 11P . Hence k ∈ ker(α) and so

by Construction 2.42, π(k) = yk where yk(s) = sks−1 for all s ∈ S.

Thus for all s ∈ S we have that (y
α(k)−1

k )∗(s) = (yk)
∗(s) = ρ(sks−1) and so

(y
α(k)−1

k )∗ = 1 if and only if sks−1 ∈ ker(ρ) for all s ∈ S. Therefore

k ∈
⋂
s∈S

s−1ker(ρ)s.

We take any v ∈ V , as V = V1⊕ · · · ⊕ Ve, we have that v = v1 + · · ·+ ve for some

vi ∈ Vi with 1 ≤ i ≤ e.

Since k lies in the intersection
⋂
s∈S s

−1ker(ρ)s, for each 1 ≤ i ≤ e we have that

k = si
−1tisi for some ti ∈ ker(ρ) and si ∈ S where W si = Vi.

We consider the image of v under k,

vk = (v1 + · · ·+ ve)
k = vk1 + · · ·+ vke = v

s−1
1 t1s1

1 + · · ·+ vs
−1
e tese
e

and

v
s−1
i tisi
i = (v

s−1
i
i )tisi = (v

s−1
i
i )si = vi

for each 1 ≤ i ≤ e (as v
s−1
i
i ∈ W and ti ∈ ker(ρ)).
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Hence vk = v for all v ∈ V and so k = 1 and the kernel of ρ̄◦π is trivial. Therefore

the composition ρ̄ ◦ π is injective.

Thus we have an embedding of G into H|W oS P . �

The following result is well known.

Lemma 2.44. Let G be the cyclic group of order n. Let Fq be the field of order

q = pk, where p does not divide n. Then all of the non-trivial faithful, irreducible

representations of G over Fq are of the same dimension e and e is the smallest

positive integer such that n divides qe − 1.

Proof. The group algebra Fq[G] is isomorphic to the ring Fq[x]/〈xn − 1〉. Let

f(x) := xn − 1 then f ′(x) = nxn−1 and so, as p does not divide n we have that

gcd(f(x), f ′(x)) = 1. So f(x) has no repeated zeros in any extension of Fq.

Therefore f(x) factorizes in Fq[x] as

f(x) = f1(x)f2(x) . . . ft(x)

where t ≤ n and each of the irreducible factors fi(x) are distinct for 1 ≤ i ≤ t. The

roots of the factors fi are the roots of unity of order d where d | n.

We consider the splitting field K of xn − 1 over Fq. This field is by definition an

extension field of Fq, so K = Fqe for some e ≥ 1. As gcd(n, p) = 1, there are exactly

n (distinct) roots lying in K, (as there are no repeated zeros). We denote this set

of n roots by Ω. Let α, β ∈ Ω be two such roots. Then

f(αβ−1) = (αβ−1)n − 1 = αn(β−1)n − 1 = 0.

Thus Ω forms a subgroup of order n, of K∗ ∼= Cqe−1. In particular this implies that

n | qe − 1.

As the splitting field is a minimal extension, e must be minimal as it arises as the

degree of this extension.

Thus over Fq all non-trivial, faithful, irreducible representations of G must be of

dimension e. �

Example 2.45. We show that all of the faithful irreducible representations of the

group G = C14 acting over the field F3 are of dimension 6. Let α be a primitive 14th

root of unity in some extension field of F3 (i.e. α14 = 1 and αi 6= 1 for all i < 14).

Let F : x 7→ x3 be the Frobenius automorphism of this extension field.

We have that F (α) = α3, F (α3) = α9, F (α9) = α27 = α13, F (α13) = α39 = α11,

F (α11) = α33 = α5, and F (α5) = α15 = α. Hence the minimal polynomial of α over
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this extension is

m(x) := (x− α)(x− α3)(x− α9)(x− α13)(x− α11)(x− α5).

We may similarly find that the minimal polynomial for α2 is

m2(x) := (x− α2)(x− α6)(x− α4)(x− α12)(x− α8)(x− α10).

Both α0 = 1 and α7 = −1 = 2 lie in the ground field F3 and so their minimal

polynomials are linear (degree 1).

Therefore the polynomial x14 − 1 splits into a product of two linear and two de-

gree 6 factors in F3[x]. Thus the irreducible representations of C14 over F3 have

dimensions 1, 1, 6, and 6 respectively.

For a representation of C14 to be faithful over F3 we need a field extension F3e of

F3 which has C14 as a subgroup of its multiplicative group. In particular we require

that 14 divides 3e − 1. This is true for e = 6, but not for e = 1.

Therefore all faithful, irreducible representations of C14 over F3 are of dimension

6.

Lemma 2.46. Let V = Fdq be a d-dimensional vector space over Fq and let G be

a subgroup of GL(d, q) with G ∼= GL(d/e, qe) for some divisor e | d. Then G is

conjugate in GL(d, q) to Gψ,e(d, q); the image of GL(d/e, qe) under the embedding

ψ, (See Construction 2.18).

Proof. By Lemma 2.25, G is irreducible. Hence by Lemma 1.42, the ring HomG(V, V )

is isomorphic to some extension field F, of Fq. By Lemma 1.30, we may identify

HomG(V, V ) with E := CM(d,q)(G) ⊆ M(d, q). Then C := CGL(d,q)(G) is exactly the

invertible elements of E and so C ∼= F∗ and E = C ∪ {0}.

The centre Z := Z(G) is isomorphic to F∗qe . Since Z ≤ C we have that qe − 1

must divide |C|. Thus F must contain Fqe as a subfield and so F = Fqek for some

k ≥ 1.

By Lemma 1.30, we may identify EC := CM(d,q)(C) ∼= HomC(V, V ). So CGL(d,q)(C)

is exactly the invertible elements of EC . Furthermore EC = CGL(d,q)(C) ∪ {0}.

The group G commutes with C and so G is a subgroup of CGL(d,q)(C). Fur-

thermore CGL(d,q)(C) consists of the invertible elements of EC and so CGL(d,q)(C)

is the set of C-isomorphisms of V . Therefore CGL(d,q)(C) must fix each of the ho-

mogeneous components of the action of C on V . The group G is irreducible and

G ≤ CGL(d,q)(C) and so there can be only one homogeneous component in the action

of C on V . Hence C acts homogeneously on V .
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Therefore V splits as a direct sum V = V1 ⊕ · · · ⊕ Vr of isomorphic irreducible

C-modules and the action of C on each Vi has the same kernel. In particular either

all are faithful or all are not.

As C is a subgroup of GL(d, q), C acts faithfully on V . Therefore the action of

C on each Vi must be faithful.

Since C ∼= F∗, we have that C is isomorphic to the cyclic group Cqek−1. Therefore

by Lemma 2.44, all of the faithful irreducible representations of C over Fq are of

dimension ek.

We may therefore apply Lemma 1.38 which demonstrates that there is a ring iso-

morphism β : EC → M(d/(ek), qek).

For any invertible element φ ∈ EC we have that 1 = (φφ−1)β = (φβ)(φ−1β) and

so (φβ)−1 = (φ−1β). In particular φβ ∈ GL(d/(ek), qek).

Define the map β̄ : CGL(d,q)(C) → GL(d/(ek), qek) by restricting β to the invert-

ible elements of EC . As β is a ring isomorphism, this map is a group isomorphism.

We consider the case that k > 1. By Construction 2.18, we may embed the group

GL(d/(ek), qek) into GL(d/e, qe). However any invertible matrix of the form

M :=


A B1,2 . . . B1,d/e

B2,1 B2,2 . . . B2,d/e

...
...

. . .
...

Bd/e,1 Bd/e,2 . . . Bd/e,d/e

 ∈ GL(d/e, qe)

where

A :=


1 0 . . . 0

0 0 . . .
...

...
...

...
...

0 0 0 0

 ∈ M(k, qe)

and Bi,j ∈ M(k, qe) lies in GL(d/e, qe) but not in the image of GL(d/(ek), qek) un-

der any embedding formed in Construction 2.18, as A 6= 0 is not invertible and

so is not conjugate to the power of any companion matrix in GL(k, qe). Thus

|GL(d/(ek), qek)| < |GL(d/e, qe)| = |G|.

On the other handG ≤ CGL(d,q)(C), and so |G| ≤ |CGL(d,q)(C)| = |GL(d/(ek), qek)| <
|GL(d/e, qe)| = |G|; a contradiction.
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Therefore k = 1 and CGL(d,q)(C) ∼= GL(d/e, qe) so CGL(d,q)(C) = G. Furthermore

E ∼= F ∼= Fqe and β̄ : CGL(d,q)(C) = G→ GL(d/e, qe) is a group isomorphism.

The centre Z of G is isomorphic to F∗qe and so is equal to C.

We have that Z = C acts homogeneously on V with each faithful irreducible

Fq-module of dimension e. Therefore, up to conjugacy in GL(d, q), we may write Z

as a group of block diagonal matrices:

Z =


Ai 0

. . .

0 Ai


∣∣∣∣∣∣∣ Ai ∈ GL(e, q), 1 ≤ i ≤ qe − 1

 .

Let Agen =

A 0
. . .

0 A

 ∈ Z be a generator of Z. Then Agen has order qe − 1

and A ∈ GL(e, q).

We identify Agen with A and with a primitive element α, of the field Fqe . This

element α has a minimal polynomial m of degree e over the field Fq. Hence the min-

imal polynomial of A ∈ GL(e, q) is of degree e. The characteristic polynomial of an

e× e matrix is a monic polynomial of degree e, and the minimal polynomial divides

the characteristic polynomial. Thus the minimal and characteristic polynomials of

A coincide.

Therefore by Lemma 2.11, A is conjugate in GL(e, q) to the companion matrix

Cα of m. Hence by the method used in the proof of Lemma 2.20, Z is conju-

gate in GL(d, q) to Z(Gψ,e(d, q)). By Lemma 2.39, Gψ,e(d, q) is the centralizer of

Z(Gψ,e(d, q)) in GL(d, q). Therefore G is conjugate in GL(d, q) to Gψ,e(d, q). �

Corollary 2.47. Let V = Fdq and let G ≤ GL(d, q) be irreducible with C :=

CGL(d,q)(G) ∼= F∗qe where e | d. Then CGL(d,q)(C) is conjugate in GL(d, q) to Gψ,e(d, q),

the image of GL(d/e, qe) under the embedding ψ, as defined in Construction 2.18.

Proof. This proof is mostly a repetition of the proof of 2.46 above, but we include

it for completeness.

By Lemma 1.30, we may identify HomC(V, V ) with EC := CM(d,q)(C) ⊆ M(d, q)

and so CGL(d,q)(C) = EC \ {0}.

The group G commutes with C and so G is a subgroup of CGL(d,q)(C). Further-

more CGL(d,q)(C) is the set of C-isomorphisms of V and so CGL(d,q)(C) must fix each

of the homogeneous components of the action of C on V . However G is irreducible
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and a subgroup of CGL(d,q)(C), therefore CGL(d,q)(C) is also irreducible over V . In

particular there can be only one homogeneous component of the action of C on V .

Hence C acts homogeneously on V .

The group C is a subgroup of GL(d, q) and so C acts faithfully on V . Hence the

action of C on each of its irreducible components Vi must be faithful (as the action

of C on each Vi must have the same kernel).

By Lemma 2.44, all of the faithful irreducible representations of C over Fq are

of dimension e. Therefore by Lemma 1.38, there is a ring isomorphism β : EC →
M(d/e, qe) that restricts to a group isomorphism β̄ : CGL(d,q)(C)→ GL(d/e, qe).

We therefore have that CGL(d,q)(C) is irreducible and isomorphic to GL(d/e, qe).

Thus by Lemma 2.46, CGL(d,q)(C) is conjugate in GL(d, q) to Gψ,e(d, q). �

Lemma 2.48. Let NG := NGL(d,q)(Gψ,e(d, q)) then NG = Γψ,e(d, q), the image of

ΓL(d/e, qe) in GL(d, q) under the embedding described in Construction 2.31.

Proof. Let C := Z(Gψ,e(d, q)). By Lemma 2.39, Gψ,e(d, q) = CGL(d,q)(C). Therefore

NGL(d,q)(Gψ,e(d, q)) = NGL(d,q)(C).

Let α ∈ Fqe be the primitive element used in the definition of ψ and let Cα be the

companion matrix of the minimal polynomial of α. We note that C is generated by

c := Diagd/e(Cα).

If c is conjugate in GL(d, q) to ck for some k, then c and ck must have the same

minimal polynomial by Lemma 2.11. Hence α and αk must have the same mini-

mal polynomial over Fq. This minimal polynomial must be of degree e. There can

therefore be at most e elements of Fqe with this minimal polynomial and so, as in

Construction 2.31, these elements must be α, αq, αq
2
, . . . , αq

e−1
.

Therefore c has at most e distinct conjugates in NGL(d,q)(C), and by Construc-

tion 2.31, c has e distinct conjugates in Γψ,e(d, q). Furthermore Γψ,e(d, q) contains

CGL(d,q)(C) and so NG = NGL(d,q)(Gψ,e(d, q)) = NGL(d,q)(C) = Γψ,e(d, q). �

Corollary 2.49. Let G be an irreducible subgroup of GL(d, q) with G ∼= ΓL(d/e, qe)

for some divisor e | d. Then G is conjugate in GL(d, q) to Γψ,e(d, q), the image of

ΓL(d/e, qe) under the embedding described in Construction 2.31.

Proof. As G ∼= ΓL(d/e, qe) we have that G ∼= GL(d/e, qe) o Ce. Hence there exists

H ≤ G such that H ∼= GL(d/e, qe). Thus by Lemma 2.25, H is irreducible and so

by Lemma 2.46, H is conjugate in GL(d, q) to Gψ,e(d, q). Therefore by Lemma 2.48,

G is conjugate in GL(d, q) to Gψ,e(d, q)o Ce = Γψ,e(d, q). �
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Definition 2.50. Let G be an irreducible subgroup of GL(d, q). We call G semi-

linear if G is conjugate in GL(d, q) to a subgroup of Γψ,e(d, q).

Corollary 2.51. Let G ≤ GL(d, q) be irreducible but not absolutely irreducible.

Then G is conjugate in GL(d, q) to a subgroup of Gψ,e(d, q) for some divisor e of d.

In particular, G is semilinear.

Proof. Let V := Feq. The group G ≤ GL(d, q) is irreducible but not absolutely

irreducible. Therefore by Lemma 1.45, we have that HomG(V, V ) ∼= Fqe for some

e | d. By Lemma 1.30 we may identify HomG(V, V ) with E := CM(d,q)(G) ⊆ M(d, q).

Hence C := CGL(d,q)(G) is equal to E \ {0} ∼= F∗qe .

By Corollary 2.47, we have that CGL(d,q)(C) is conjugate in GL(d, q) to Gψ,e(d, q).

We observe that every element of G must commute with every element of C and

so G ≤ CGL(d,q)(C). Thus G is conjugate in GL(d, q) to a subgroup of Gψ,e(d, q).

As Gψ,e(d, q) ≤ Γψ,e(d, q) we have that G is semilinear. �

Lemma 2.52. Let G be an absolutely irreducible subgroup of GL(d, q) where d > 1.

Suppose that G contains a normal subgroup N of prime index e. Then N is non-

scalar.

Proof. As the index of N in G is a prime e, we have that G = N〈g〉 where ge ∈ N but

g /∈ N . If every element of N was a scalar then this would imply that G is abelian.

Therefore the absolutely irreducible representations of G would have dimension 1.

This is a contradiction and so N is non-scalar. �

Lemma 2.53. Let G be an absolutely irreducible subgroup of GL(d, q). Suppose

that G has a homogeneous normal subgroup N and that there exists a divisor e | d
such that for any irreducible component, W of N , HomN(W,W ) ∼= Fqe. Then N is

conjugate in GL(d, q) to a subgroup of Gψ,e(d, q) and G is semilinear.

Proof. We suppose that N has t irreducible components in its action on V = Fdq .
Then as HomN(W,W ) ∼= Fqe , by Lemma 1.38, we have that CN := CGL(d,q)(N)

is isomorphic to GL(t, qe). We observe that CN acts transitively on the set of irre-

ducible N -submodules of V . Therefore the subgroup NC := 〈N,CN〉 acts irreducibly

on V .

The centre of NC contains the centre of CN ∼= GL(t, qe). In particular the centre

of NC contains a cyclic subgroup C, of order qe−1, and there exists an isomorphism

which maps C onto the centre of GL(t, qe). We may therefore identify C with the

centre of GL(t, qe).

As C is the centre of an irreducible group, C must act homogeneously on V .

Therefore as in the proof of Corollary 2.47, C is conjugate in GL(d, q) to the centre
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of Gψ,e(d, q). Therefore by Lemma 2.48, NGL(d,q)(C) = Γψ,e(d, q).

The normalizer of N must also normalize Z(CGL(d,q)(N)) and so the claim follows.

�

Lemma 2.54. Let G be an absolutely irreducible subgroup of GL(d, q). If G is

semilinear, then for some prime divisor e of d, G has a non-scalar normal subgroup

N of index e such that N is conjugate in GL(d, q) to a subgroup of Gψ,e(d, q).

Proof. If G is semilinear then G is conjugate in GL(d, q) to a subgroup of Γψ,e(d, q)

for some e | d and embedding ψ : GL(d/e, qe) → GL(d, q). We may choose e to be

prime, as for any non-prime e = ab we have the following embedding,

ΓL(d/(ab), q(ab))→ ΓL(d/a, qa).

Thus, setting e := a we may repeat this embedding until e is prime.

By Construction 2.31, we have that Γψ,e(d, q) ∼= ΓL(d/e, qe) = GL(d/e, qe) o
Ce. Hence Γψ,e(d, q) has a normal subgroup N̂ which is conjugate in GL(d, q) to

GL(d/e, qe) and N̂ is of index e, a prime in Γψ,e(d, q). In particular N̂ is not abso-

lutely irreducible.

The intersection N := N̂∩G is a normal subgroup of G, conjugate to a subgroup of

Gψ,e(d, q), with index either 1 or e in G, as e is prime. If the index is 1, then G = N

is conjugate to a subgroup of Gψ,e(d, q) and hence is not absolutely irreducible; a

contradiction. Therefore the index must be e. The group G is absolutely irreducible

and N has prime index e | d. Hence by Lemma 2.52, N is non-scalar. �

Lemma 2.55. Let G ≤ GL(d, q) be absolutely irreducible (acting on V = Fdq) and

N E G a non-scalar normal subgroup. By Clifford’s Theorem (2.37), V decomposes

as a direct sum, V = W1 ⊕W2 ⊕ · · · ⊕Wt, of irreducible FqN-modules each of the

same dimension. The modules Wi for 1 ≤ i ≤ t are isomorphic to the composition

factors for V as an FqN-module.

Proof. We consider the series

{0} ⊂ W1 ⊂ W1 ⊕W2 ⊂ · · · ⊂ W1 ⊕ · · · ⊕Wt = V.

This is a composition series for V with composition factors W1, . . . ,Wt. Hence by

the Jordan-Hölder Theorem (1.49), the Wi’s are the unique (up to isomorphism)

composition factors for V as an FqN -module. �

Definition 2.56. We denote a linear representation of a group G over a field F
by UG. Thus for some d ∈ N, we have a homomorphism UG : G → GL(d,F).

For a subgroup N ≤ G the representation UG gives rise to a representation UN

where UN : N → GL(d,F) with UN(n) := UG(n), called the restriction of UG to

N . We define U
(1)
N , . . . , U

(m)
N to be a complete list of the inequivalent irreducible

representations of N which occur in the decomposition of UN .
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The following result is [11, Theorem 3].

Theorem 2.57. Let G be a group and N E G. We let UG be a linear representation

of G over an algebraically closed field F and we let UN be the restriction of UG to

N . We assume that all of the irreducible components of UN are isomorphic, i.e.

UN = l ·U (1)
N for some l ∈ N. Then there exist irreducible projective representations,

C and Γ, of G such that

UG(g) = C(g)⊗ Γ(g),

where Γ is of degree l and C has the same degree as U
(1)
N . Moreover g 7→ Γ(g) is an

irreducible projective representation of the factor group G/N .

Remark 2.58. Theorem 2.57 assumes that all of the irreducible components of UN

are isomorphic. This is equivalent to assuming that N is a homogeneous subgroup

of G.

2.3. Constructing the test. In this section we will construct our semilinear test.

Proposition 2.59. Let G be an absolutely irreducible subgroup of GL(d, q) and

let V = Fdq be its natural module. The group G is semilinear if and only if there

exists a homogeneous normal subgroup N E G, such that N is of prime index e | d
in G, N is conjugate in GL(d, q) to a subgroup of Gψ,e(d, q), N acts on V with

irreducible constituents W1, . . . ,Wt, and N does not act absolutely irreducibly on its

irreducible constituents. In this case for each Wi, the restriction N |Wi
≤ GL(Wi) is

conjugate in GL(Wi) ∼= GL(d/t, q) to a subgroup of Gψt,e(d/t, q)
∼= GL(d/(te), qe);

where the embedding ψt : GL(d/(te), qe)→ GL(d/t, q) is defined in the same way as

in Construction 2.18.

Proof. (⇐) Suppose that G has such an N . Then N is conjugate in GL(d, q) to

a subgroup of Gψ,e(d, q), the index of N in G is a prime dividing d, and N is ho-

mogeneous. Furthermore N acts irreducibly but not absolutely irreducibly on each

irreducible constituent W and so by Lemma 1.45, HomN(W,W ) = Fqe . Therefore

G is semilinear as demonstrated in Lemma 2.53.

(⇒) Let G be semilinear. Then by Lemma 2.54, there exists a non-scalar normal

subgroup N of G such that N is of prime index |G : N | = e, where e | d and N is

conjugate in GL(d, q) to a subgroup of Gψ,e(d, q). In particular G = N〈g〉 for some

g ∈ G \ N with ge ∈ N .

The group G acts absolutely irreducibly on V and as N is a non-scalar normal

subgroup of G, we may apply Clifford’s Theorem (2.37). This demonstrates that V

decomposes as a direct sum V = W1 ⊕ · · · ⊕Wt of irreducible FqN -modules each of

dimension d/t.
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If t = 1, then N acts irreducibly on V and our conclusion holds. Therefore we

suppose that t > 1.

By Clifford’s Theorem (2.37), for some r, s ≥ 1 with rs = t, the set {W1, . . . ,Wt}
partitions into r subsets, each containing s pairwise isomorphic FqN -modules. Fur-

thermore if V1, . . . , Vr are each defined to be the sum of s pairwise isomorphic Wi

then V = V1 ⊕ · · · ⊕ Vr, and G permutes the Vi’s transitively.

Case 1: r > 1. In this case N is inhomogeneous. The group G/N has order e,

a prime, and permutes the r homogeneous components transitively. Therefore, by

Lemma 1.15, r = e and there are exactly e homogeneous components.

By Clifford’s Theorem (2.37 (i)), the stabilizer in G of the first component, V1, is

N . So, by Construction 2.43, G embeds in N |V1 o Ce (as e is prime).

If N |V1 is not absolutely irreducible, then N |V1 becomes reducible over an exten-

sion field, say F of Fq. We assume that the image of N |V1 under this extension fixes

a subspace X of the image of V1 over F. Then the image of N |V1 o Ce under this

extension fixes the subspace X1⊕ · · · ⊕Xe of the image of V over F, where X1 = X

and Xi is the image of X under the permutation mapping 1 7→ i. Hence N |V1 oCe is

not absolutely irreducible. This is contrary to the assumption that G acts absolutely

irreducibly. Thus we assume that N |V1 is absolutely irreducible.

Then by Lemma 1.35, we have that CGL(Vi)(N |Vi) ∼= F∗q for 1 ≤ i ≤ e. Under

the action of N on V the homogeneous components, V1, . . . , Ve, are mutually non-

isomorphic FqN -modules.

By Lemma 1.30, we may identify HomN(V, V ) with EN := CM(d,q)(N). Then the

centralizer CGL(d,q)(N) = EN \ {0} is exactly the invertible elements of EN . Thus

every element of CGL(d,q)(N) is an FqN -module isomorphism V → V and so each el-

ement of CGL(d,q)(N) maps each (non-isomorphic) homogeneous component to itself.

It follows that CGL(d,q)(N) ≤ CGL(V1)(N |V1) × · · · × CGL(Ve)(N |Ve), where N |Vi ≤
GL(Vi) and 1 ≤ i ≤ e. Therefore CGL(d,q)(N) ≤ (Cq−1)e.

By Lemma 2.39, C := CGL(d,q)(Gψ,e(d, q)) ∼= F∗qe and C ≤ Gψ,e(d, q). Furthermore

N is conjugate in GL(d, q) to a subgroup of Gψ,e(d, q). Therefore there exists a

group CN ∼= C such that CN ≤ CGL(d,q)(N) ≤ (Cq−1)e. This is a contradiction as

(Cq−1)e does not contain an element of order qe − 1.

Case 2: r = 1. In this case N is homogeneous and V decomposes as a direct

sum V = W1 ⊕ · · · ⊕Wt of pairwise isomorphic, irreducible FqN -modules. We let
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W := W1 and we let a denote the dimension of W , then d = at (where t > 1).

By Lemma 1.42, HomN(W,W ) is isomorphic to a field of order qk for some k ≥ 1.

By Lemma 1.30, we may identify HomN(W,W ) with E := CM(a,q)(N). Hence

E \ {0} = CGL(a,q)(N) ∼= F∗
qk

.

As V splits as a direct sum of t pairwise isomorphicN -modules and HomN(W,W ) ∼=
Fqk , by Lemma 1.38, we have that HomN(V, V ) is isomorphic to M(t, qk) and so

CGL(d,q)(N) ∼= GL(t, qk). (?)

We define an embedding ρ : GL(a/k, qk) → GL(a, q) in the same way as in

Construction 2.18. We denote the image of GL(a/k, qk) under this embedding by

Gρ,k(a, q).

Since CGL(a,q)(N) ∼= F∗
qk

, Corollary 2.47 demonstrates that, CGL(a,q)(CGL(a,q)(N))

is conjugate in GL(a, q) to Gρ,k(a, q).

The group N |W commutes with CGL(a,q)(N) and so N |W is a subgroup of

CGL(a,q)(CGL(a,q)(N)). HenceN |W is conjugate in GL(a, q) to a subgroup ofGρ,k(a, q).

Case 2(a): e does not divide k. By (?), we have that the centralizer of N in

GL(d, q) is isomorphic to GL(t, qk).

By Lemma 2.39, the centralizer of Gψ,e(d, q) in GL(d, q) is homogeneous and iso-

morphic to F∗qe . The group N is conjugate in GL(d, q) to a subgroup of Gψ,e(d, q)

and so the centralizer of N in GL(d, q) contains a homogeneous cyclic subgroup of

order qe − 1. In particular qe − 1 divides |GL(t, qk)|.

We claim that t ≥ e.

Consider the order

|GL(t, qk)| = (qkt − 1)(qk(t−1) − 1)(qk(t−2) − 1) . . . (qk − 1)qkm (??)

where m =
∑t−1

i=1 i.

We now apply Zsigmondy’s Theorem (Theorem 2.23) with a = q, b = 1, and d = e.

If q, 1, and d are not exceptions to Zsigmondy’s Theorem then we have the fol-

lowing.

There exists a primitive prime divisor l, of qe − 1. In this case q is of order e

modulo l. We have that (qe − 1) divides |GL(t, qk)|, which implies that l must also
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divide the order |GL(t, qk)|. Hence l divides (qkc − 1) for some 1 ≤ c ≤ t. Since l is

a primitive prime divisor of qe − 1, we must have that e divides kc. In which case e

divides c, as e does not divide k. Therefore t ≥ e.

We now go through the exceptions to Zsigmondy’s Theorem in turn to check

whether they arise, and if so whether they satisfy the outcome of our claim.

• In the first case we have that e = 1 which contradicts the primality of e. So

this case does not arise.

• In the second case we have that e = 2. Since t > 1 we still have that t ≥ e

here.

• In the last case we have that e = 6 which contradicts the primality of e. So

this case does not arise.

Therefore we always have t ≥ e (when e does not divide k).

The normal subgroup N has e cosets in G, which may be represented by gi for

1 ≤ i ≤ e. There can be at most e different images, W gi of W under gi, for 1 ≤ i ≤ e.

Define W ′ := 〈W gi | 1 ≤ i ≤ e〉. As dim(W ) = a we have that dim(W gi) = a for all

1 ≤ i ≤ e. Therefore dim(W ′) ≤ ae. Since the group G is irreducible and W ′ is non-

trivial and stabilized by G, we have that W ′ = V . So at = dim(V ) = dim(W ′) ≤ ae.

Hence t ≤ e.

Therefore t = e and so the order of 〈g〉 is equal to the number of isomorphic

irreducible FqN -modules. We make the following notation change. Let W1 = W

and for each 2 ≤ i ≤ t we define Wi := Wgi−1.

Therefore g permutes the Wi’s transitively and N is the stabilizer of W . Thus G

embeds in N |W o Ce as in Case 1 - the inhomogeneous case.

We observe that, as in Case 1, N |W is absolutely irreducible as otherwise N |W oCe
is not absolutely irreducible, which is a contradiction.

We extend Fq to an algebraically closed field F. Let ι : GL(d, q) → GL(d,F) be

the natural embedding and let G̃ be the image of G under ι, so G ∼= G̃ ≤ GL(d,F).

As G is absolutely irreducible, G̃ is also absolutely irreducible.

Define Ñ to be the image of N under ι. So N ∼= Ñ E G̃. As N |W is absolutely

irreducible, when we extend to F the Wi’s remain irreducible. The group G̃ acts

absolutely irreducibly on Ṽ := Fd and Ñ is a non-scalar normal subgroup of G̃, so

we may apply Clifford’s Theorem (2.37). Therefore the vector space Ṽ decomposes

as a direct sum Ṽ = W̃1 ⊕ · · · ⊕ W̃t of irreducible FÑ -modules each of the same

dimension d/t.
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As N acts homogeneously on V and acts absolutely irreducibly on its components,

Ñ acts homogeneously on Ṽ . Therefore Ṽ decomposes as a direct sum of pairwise

isomorphic, irreducible FÑ -modules. In particular, in the notation of Theorem 2.57,

UÑ = t · U (1)

Ñ
.

Hence by Theorem 2.57, there exists an irreducible projective representation Γ,

of G̃/Ñ of degree t. However G̃/Ñ is cyclic and so all projective irreducible repre-

sentations of G̃/Ñ are of degree 1. Hence t = 1 and so as t = e a prime, this is a

contradiction.

Case 2(b): e divides k. Here we have that k = ef for some f ∈ N. The

restriction N |W is conjugate in GL(a, q) to a subgroup of Gρ,k(a, q), and

Gρ,k(a, q) ∼= GL(a/k, qk) = GL(a/(ef), q(ef)).

By the same method as in Construction 2.18, we may define an embedding, ψt :

GL(d/(te), qe)→ GL(d/t, q) so that the group Gρ,k(a, q) is conjugate in GL(a, q) to

a subgroup of the image, Gψt,e(a, q), of GL(d/(te), qe) under the embedding ψt. So

Gψt,e(a, q)
∼= GL(a/e, qe) = GL(d/(te), qe).

Thus, writing A
conj

≤
GL(a,q)

B, to denote that A is conjugate to a subgroup of B in

GL(a, q), we have

N |W
conj

≤
GL(a,q)

Gρ,k(a, q)
conj

≤
GL(a,q)

Gψt,e(a, q) = Gψt,e(d/t, q).

Hence, N |W is conjugate in GL(a, q) = GL(d/t, q) to a subgroup of Gψt,e(d/t, q).

Therefore we have proved our proposition in this case. �

2.4. The test. We now give the semilinear test.

The Semilinear Test

Input: An irreducible group G ≤ GL(d, q).

Output: true if G is semilinear, false if G is not semilinear.

Step 1: Check for absolute irreducibility.

If G is not absolutely irreducible then:

Return: true, G is semilinear by Corollary 2.51.

Step 2: Define the list Norm of all normal subgroups of G whose index is a

prime dividing d.

If Norm is empty then:

Return: false, G is not semilinear by Proposition 2.59.
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Step 3: For each normal subgroup N ∈ Norm do the following:

Step 3(a): Define M to be the natural d-dimensional FqN -module of N .

Step 3(b): Test whether the composition factors of M are isomorphic.

If they are not isomorphic then:

Continue: N .

If they are not isomorphic then N is not acting homogeneously

in the way described in Proposition 2.59. So we move on to test

the next N in Norm.

Step 3(c): The composition factors of M must be isomorphic.

Test whether the composition factors of M are absolutely

irreducible.

If they are not then:

Return: true, G is semilinear.

Step 4: No choice of N proves that G is not semilinear.

Return: false.

2.5. A cleaner test. We are now going to refine the semilinear test. We give the

theory behind this new test, and the test, below.

We use Theorem 2.57 together with Proposition 2.59 to prove Theorem 2.60,

which is the theoretical base for our new semilinear test.

Theorem 2.60. Let G ≤ GL(d, q) be an absolutely irreducible subgroup.

(i) If G is semilinear then there exists a normal subgroup, N E G of index e,

where e is a prime divisor of d, such that N is conjugate in GL(d, q) to a

subgroup of Gψ,e(d, q), and N is irreducible.

(ii) If there exists an irreducible normal subgroup, N E G of index e, where e is

a prime divisor of d, such that N is conjugate in GL(d, q) to a subgroup of

Gψ,e(d, q), then G is semilinear.

Proof. (i) Let G ≤ GL(d, q) be an absolutely irreducible semilinear group. By

Proposition 2.59 there exists a homogeneous normal subgroup N E G such that N

is of prime index e = |G : N |, where e | d, and N is conjugate in GL(d, q) to a

subgroup of Gψ,e(d, q).

It remains to show that N is irreducible. We follow the same reasoning as the

proof of Case 2(a) in Proposition 2.59.
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We extend Fq to an algebraically closed field F, and we consider the natural

embedding, ι : GL(d, q) → GL(d,F). Let G̃ be the image of G under ι, so

G ∼= G̃ ≤ GL(d,F). As G is absolutely irreducible, G̃ is also absolutely irreducible.

Define Ñ to be the image of N under ι. So N ∼= Ñ E G̃. The group G̃ acts

absolutely irreducibly on Ṽ := Fd and Ñ is a non-scalar normal subgroup of G̃, so

we may apply Clifford’s Theorem (2.37). This demonstrates that the vector space

Ṽ decomposes as a direct sum Ṽ = W̃1 ⊕ · · · ⊕ W̃t of irreducible FÑ -modules each

of the same dimension d/t.

If Ñ acts homogeneously on Ṽ then Ṽ decomposes as a direct sum of pairwise

isomorphic, irreducible FÑ -modules. In particular, in the notation of Theorem 2.57,

UÑ = t · U (1)

Ñ
.

Therefore by Theorem 2.57, there exists an irreducible projective representation,

Γ, of G̃/Ñ of degree t. However G̃/Ñ is cyclic and so all projective irreducible

representations of G̃/Ñ are of degree 1. Hence t = 1 and so Ñ is irreducible.

This implies that N is absolutely irreducible, a contradiction as N is conjugate

in GL(d, q) to a subgroup of Gψ,e(d, q), a non-absolutely irreducible group.

Hence Ñ must act inhomogeneously on Ṽ . So Ṽ decomposes as a direct sum

Ṽ = W̃1 ⊕ · · · ⊕ W̃t of irreducible d/t-dimensional FÑ -modules which are not all

pairwise isomorphic.

The quotient G̃/Ñ has prime order e and permutes the components transitively.

Therefore by Lemma 1.15, there are exactly e homogeneous components, so Ṽ =

Ṽ1 ⊕ · · · ⊕ Ṽe. We note that t ≥ e.

Let g̃ be a generator of G̃/Ñ . There can be at most e different images W̃ g̃i

1 , of

W̃1 under g̃i for 1 ≤ i ≤ e. We consider W̃ ′ := 〈W̃ g̃i

1 | 1 ≤ i ≤ e〉. We have that

dim(W̃ g̃i

1 ) = dim(W̃1) for all 1 ≤ i ≤ e. Therefore dim(W̃ ′) ≤ dim(W̃1)e. Since G̃

is irreducible and W̃ ′ is non-trivial, W̃ ′ = Ṽ . We have that dim(W̃1)t = dim(Ṽ ) =

dim(W̃ ′) ≤ dim(W̃1)e. Hence t ≤ e.

Therefore as t ≥ e, we have that t = e and so each Ṽi must be irreducible. Hence

by Lemma 2.55, Ṽ has e composition factors which are mutually non-isomorphic.

We now reconsider N E G ≤ GL(d, q). We know that N is homogeneous and we

assume that V decomposes as the sum of s > 1 isomorphic irreducible FqN -modules,

so V = W1⊕· · ·⊕Ws. Therefore by Lemma 2.55, there are s isomorphic composition
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factors for V .

From Theorem 1.41, we see that by extending Fq to F, each of these s compo-

sition factors are mapped to isomorphic composition factors of Ṽ . Therefore each

composition factor of Ṽ must occur at least s times.

Hence s = 1 and so N is irreducible.

(ii) This is a special case of the converse direction of Proposition 2.59 (t = 1). �

We now give the new test. This test is far shorter to code than the original,

although it currently takes around the same time to run.

The New Semilinear Test

Input: An irreducible group G ≤ GL(d, q).

Output: true if G is semilinear, false if G is not semilinear.

Step 1: Check for absolute irreducibility.

If G is not absolutely irreducible then:

Return: true, G is semilinear by Corollary 2.51.

Step 2: Define the list Norm of all irreducible but not absolutely irreducible

subgroups of G of prime index dividing d.

If Norm is empty then:

Return: false, G is not semilinear by Theorem 2.60 (i)

If Norm is non-empty then:

Return: true, G is semilinear by Theorem 2.60 (ii).
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3. Classification of Primitive Groups of Degree 4096 ≤ d < 8192

In this section we classify the primitive permutation groups of degree 4096 ≤ d <

8192 up to permutation isomorphism (see Definition 1.7), following similar methods

to [13]. We use the O’Nan-Scott Theorem (Theorem 1.11) to break this classification

into five disjoint cases.

As in [15, p.213], we shall divide the set of all primitive groups into cohorts, where

two primitive groups G1 and G2 lie in the same cohort if and only if deg(G1) =

deg(G2) and the socle of G1 is permutation isomorphic to the socle of G2.

We see immediately that there are no twisted wreath product (regular non-

abelian) type groups with degree less than 8192, since the smallest degree of such a

group is |A5|6 = 606 = 46656000000.

We begin with some additional results from the literature.

The following lemma is well known.

Lemma 3.1. Let G,H ≤ Sym(Ω) be permutation isomorphic groups. Then NSym(Ω)(G)

is permutation isomorphic to NSym(Ω)(H)

Proof. By Lemma 1.17, G and H are conjugate in Sym(Ω), so there exists some

σ ∈ Sym(Ω) such that Gσ = H. Then by Lemma 1.13, NSym(Ω)(H) = NSym(Ω)(G
σ) =

NSym(Ω)(G)σ and so NSym(Ω)(H) is permutation isomorphic to NSym(Ω)(G). �

Hence identifying two permutation isomorphic groups also identifies their normal-

izers in the symmetric group of their degree.

From now on we identify permutation isomorphic groups.

We observe that if G ≤ Sym(Ω) is primitive with H := Soc(G) then G lies in

N := NSym(Ω)(H). Hence the cohort to which G belongs must consist precisely of

all primitive subgroups of N which have H as their socle.

The following is [15, Lemma 3].

Lemma 3.2. Let G ≤ Sym(Ω) be a primitive group with H := Soc(G) and let

N := NSym(Ω)(H). Furthermore suppose that H is either abelian or non-regular.

Then every primitive group K with H ≤ K ≤ N has Soc(K) = H. In particular,

K lies in the same cohort as G.

Remark 3.3. By the O’Nan-Scott Theorem (1.11), as noted above, all primitive

groups with degree in the range 4096 ≤ d < 8192 have either abelian or non-regular

socles. Hence for our degree range, every primitive group between H and N lies in

the same cohort and N is the unique largest element in that cohort.
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Lemma 3.4. Let G1, G2 ≤ Sym(Ω) with Soc(G1) = Soc(G2) = H. Then G1 is

permutation isomorphic to G2 if and only if G1 is conjugate to G2 in NSym(Ω)(H).

Proof. If G1 is permutation isomorphic to G2 then by Lemma 1.17, there exists

σ ∈ Sym(Ω) such that Gσ
1 = G2. Therefore as Soc(G1) = Soc(G2) = H we have

that Hσ = H and so σ ∈ NSym(Ω)(H). On the other hand, if G1 is conjugate to G2

in NSym(Ω)(H) then by Lemma 1.17, G1 is permutation isomorphic to G2. �

The following result is [16, Corollary 4.3A].

Theorem 3.5. Let G be a non-trivial finite group and H a minimal normal subgroup

of G. Then H is either an elementary abelian p-group for some prime p, or Z(H)

is trivial.

The following is [16, Theorem 4.2A].

Theorem 3.6. Let G ≤ Sym(Ω) be transitive and let C := CSym(Ω)(G). Then C is

transitive if and only if G is regular. Furthermore if C is transitive (so G is regular)

then C is conjugate in Sym(Ω) to G, and so C is regular.

The following is [16, Theorem 4.2B].

Theorem 3.7. Let G ≤ Sym(Ω) and N := NSym(Ω)(G). Then N acts on G by

conjugation, giving a homomorphism Ψ : N → Aut(G) where Ψ(x) : u 7→ x−1ux.

Let α ∈ Ω, σ ∈ Aut(G), and suppose that G is transitive. Then σ ∈ Im(Ψ) if and

only if (Gα)σ is a point stabilizer for G.

The following is [16, Corollary 4.2B].

Lemma 3.8. Let G ≤ Sym(Ω), and let N and Ψ be defined as in Theorem 3.7. If G

is regular then Im(Ψ) = Aut(G). In this case, for any α ∈ Ω we have Nα
∼= Aut(G),

and N = GoNα
∼= Go Aut(G).

Proof. As G is regular, every point stabilizer of G is trivial, and so by Theorem 3.7,

Im(Ψ) = Aut(G). By Theorem 3.6, C := CSym(Ω)(G) is regular and isomorphic to

G. Thus by Lemma 1.14, as C E N we have, N = C o Nα. Therefore Aut(G) =

Im(Ψ) ∼= N/ker(Ψ) = N/C ∼= Nα. Hence N ∼= Go Aut(G). �

The following is well known.

Lemma 3.9. Let G ≤ Sym(Ω) be transitive. If G is abelian, then G is regular.

Proof. Take any α ∈ Ω and consider Gα, the stabilizer of α in G. Let g ∈ Gα and

let h ∈ G, then αhg = αgh = αh. As G is transitive, αh can be any element of Ω.

Thus g fixes every element in Ω and so g = 1. Therefore G is regular. �

The following is well known, see for example [15, p.213].

Lemma 3.10. Let G,H ≤ Sym(Ω) be transitive. Then G is permutation isomorphic

to H if and only if, for any α, β ∈ Ω, there is a group isomorphism φ : G→ H such

that, φ(Gα) = Hβ.
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Corollary 3.11. Let G,H ≤ Sym(Ω) be regular groups. If G ∼= H then G and H

are permutation isomorphic.

Proof. As G and H are regular, Gα = 1 and Hβ = 1 for any α, β ∈ Ω. Let

φ : G → H be an isomorphism. Then φ(Gα) = Hβ and so by Lemma 3.10, G and

H are permutation isomorphic. �

3.1. Groups of affine type. We will now classify the primitive groups of affine

type of degree d for 4096 ≤ d < 8192.

The following definition is essentially [16, p.54].

Definition 3.12. Let V = Fkp, where p is prime. The affine general linear group

AGL(k, p) is the group consisting of all maps fa,u : V → V where a ∈ GL(k, p) and

u ∈ V , such that fa,u(v) = va+ u.

We have that

AGL(k, p)0V = {fa,u : V → V | fa,u(0V ) = 0V , a ∈ GL(k, p), u ∈ V }

= {fa,0 : V → V | a ∈ GL(k, p)} ∼= GL(k, p).

The following lemma is essentially [16, p.54].

Lemma 3.13. Let V = Fkp, where p is prime and let T := {f1,u : V → V | u ∈ V }.
Then T is a regular normal subgroup of AGL(k, p) and T = Soc(AGL(k, p)).

We call T the subgroup of translations of AGL(k, p) and we may identify T with

the (additive) group (V,+), of the vector space V = Fkp.

Observe that Lemma 1.14 implies that the group AGL(k, p) is the semidirect

product of T by AGL(k, p)0V . Hence, as T ∼= V and AGL(k, p)0V
∼= GL(k, p) we

have

AGL(k, p) ∼= V oGL(k, p)

where GL(k, p) is acting on V via matrix multiplication.

Remark 3.14. By Lemma 1.33, GL(k, p) = Aut(Fkp,+), so we have that

AGL(k, p) ∼= Fkp o Aut(Fkp,+).

Lemma 3.15. The group AGL(k, p) acts primitively on the vector space V := Fkp.

Thus we may consider AGL(k, p) as a primitive subgroup of Sym(Ω) where |Ω| = pk.

Furthermore AGL(k, p) = NSym(Ω)(T ).

Proof. We show that AGL(k, p) acts 2-transitively on V .

Consider any v1 6= v2 ∈ V and w1 6= w2 ∈ V , so v2 − v1 6= 0 and w2 − w1 6= 0.

Then fId,−v1(v1) = 0, fId,−v1(v2) = v2− v1, fId,w1(0) = w1, and fId,w1(w2−w1) = w2.
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The group GL(k, p) acts transitively on the non-zero vectors of V and so there ex-

ists a ∈ GL(k, p) such that (v2−v1)a = w2−w1. Hence the element fa,0 ∈ AGL(k, p)

is such that fa,0(0) = 0 and fa,0(v2 − v1) = w2 − w1.

Thus fId,w1(fa,0(fId,−v1(v1))) = w1 and fId,w1(fa,0(fId,−v1(v2))) = w2. Therefore

AGL(k, p) acts 2-transitively on V . So by Lemma 1.20, AGL(k, p) acts primitively

on V .

We may therefore consider AGL(k, p) as a primitive subgroup of Sym(Ω) where

|Ω| = pk.

As T E AGL(k, p) is a regular normal subgroup we may see that by Lemma 3.8,

NSym(Ω)(T ) ∼= T o Aut(T ). By Remark 3.14, T o Aut(T ) ∼= AGL(k, p). Thus

as |NSym(Ω)(T )| = |AGL(k, p)| and T E AGL(k, p) we have that AGL(k, p) =

NSym(Ω)(T ). �

The following is essentially [16, Theorem 4.7A].

Proposition 3.16. Let G ≤ Sym(Ω) be a primitive permutation group with |Ω| > 1.

Let H := Soc(G) be abelian. Then there exists a prime p and an integer k ≥ 1 such

that |Ω| = pk. Furthermore if V := Fkp, then there is an irreducible subgroup K ≤
GL(k, p) and an isomorphism φ : G → V oK ≤ AGL(k, p) such that φ(Gα) = K,

for all α ∈ Ω.

Proof. By Lemma 1.4, as G is primitive, H is transitive. Therefore by Lemma 3.9,

as H is abelian, H acts regularly on Ω. We show that H is permutation isomorphic

to the subgroup of translations T E AGL(k, p) for some prime p and some k ≥ 1.

As H is abelian, Z(H) = H. Therefore by Theorem 3.5, H is an elementary abelian

p-group and so |H| = pk for some prime p and k ≥ 1. Since H is regular, |Ω| = pk

and by Corollary 3.11, H is permutation isomorphic to T = (V,+). So we may

identify H with (V,+).

Fix α ∈ Ω and consider an arbitrary β ∈ Ω. The subgroup H is regular and

so there exists a unique h ∈ H such that αh = β. Define a map λ : Ω → H via

λ(β) = λ(αh) = h. As h is unique, the map λ is well defined and invertible. Hence

λ is a bijection. Then G acts on H via λ(β)g = λ(βg) for all g ∈ G as

λ(β)1 = λ(β1) = λ(β) and λ(β)xy = λ(βxy) = λ((βx)y) = λ(βx)y = (λ(β)x)y

for all x, y ∈ G.

We consider the action of Gα on H. Let g ∈ Gα and h ∈ H then

hg = λ(αh)g = λ(αhg) = λ(αgg
−1hg) = λ(αg

−1hg) = g−1hg.
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As H is abelian, H ≤ C := CSym(Ω)(H). Furthermore H is regular, so by Theorem

3.6, C is regular and conjugate to H in Sym(Ω), so H = C. By Lemma 1.14, we then

have that G = C oGα. In particular C ∩Gα = 1. Hence as Gα acts on H = C by

conjugation, Gα must act faithfully on H and so Gα is isomorphic to a subgroup of

Aut(H). We have identified H with (V,+) so we may see that Aut(H) ∼= GL(k, p).

Therefore Gα is isomorphic to a subgroup of GL(k, p) and G = H o Gα
∼= V oK

where K ≤ GL(k, p). So G is isomorphic to a subgroup of AGL(k, p).

Finally we show that Gα acts irreducibly on V . Suppose that there exists some

proper non-zero subspace W of V . Then by our identification of H with the additive

group of V , the subspace W corresponds to a proper non-trivial subgroup H̃ < H.

We assume that Gα stabilizes W . Then for all g ∈ Gα we have that g−1H̃g = H̃.

Hence H̃ is normalized by Gα and so Gα < H̃ oGα < G = H oGα. However G is

primitive and so by Lemma 1.6, Gα is a maximal subgroup of G; a contradiction. �

The following is stated in [36, p.158].

Proposition 3.17. Let T ≤ G ≤ AGL(k, p), where p is prime and k ≥ 1. Then G

is primitive if and only if G0V is an irreducible subgroup of GL(k, p).

Proof. Assume that G is imprimitive. Then we may fix a non-trivial block system

for G and we let ∆ ⊂ V be the block containing the zero vector. If a vector v ∈ V
lies in ∆ then v ∈ ∆ ∩ (∆ + v) and so ∆ + v = ∆. As v is an arbitrary vector and

Fp is a finite field, this shows that all scalar multiples of v must also lie in ∆. But

then ∆ is a proper non-zero subspace of V and so G0V is acting reducibly on V .

Now suppose that G0V is reducible and let ∆ ⊂ V be a proper non-zero G0V -

invariant subspace of V . Let g = fa,v ∈ G, where v ∈ V and a ∈ G0V . Then we

have that ∆g = ∆a + v = ∆ + v and so ∆g is a right coset of ∆ in V . Therefore

either ∆g = ∆ or ∆g ∩∆ = ∅. Hence ∆ is a non-trivial block for the action of G on

V and so G is imprimitive. �

The following definition is found in [13, p.4].

Definition 3.18. Let G ≤ Sym(Ω) be a primitive permutation group. We say

that G is of affine type if |Ω| = pk for a prime p and k ≥ 1 and G is permutation

isomorphic to a subgroup of AGL(k, p), in such a way that Soc(G) is permutation

isomorphic to the subgroup of translations T E AGL(k, p).

We may therefore identify primitive groups of affine type of degree pk with the

corresponding subgroup of AGL(k, p).

By Proposition 3.17, any primitive group of affine type is permutation isomorphic

to a semidirect product V o K acting on V , where V is the additive group of a

vector space Fkp, for p prime, k ≥ 1, and K an irreducible subgroup of GL(k, p).

70



Lemma 3.19. Let P1, P2 ≤ AGL(k, p) be two primitive groups of affine type of

degree pk. Let T = Soc(P1) = Soc(P2), where T is the subgroup of translations of

AGL(k, p). Then P1 is permutation isomorphic to P2 if and only if P1 is conjugate

to P2 in AGL(k, p).

Proof. By Lemma 1.17, P1 is permutation isomorphic to P2 if and only if P1 is conju-

gate in Spk to P2. Furthermore, as T = Soc(P1) = Soc(P2) any element conjugating

P1 to P2 must send T ≤ P1 to T ≤ P2.

Let σ ∈ Spk be such that P σ
1 = P2. Hence T σ = T and so σ ∈ NS

pk
(T ). However

by Lemma 3.15, NS
pk

(T ) = AGL(k, p). Thus if P1 and P2 are permutation isomor-

phic then they are conjugate in AGL(k, p).

On the other hand, if P1 and P2 are conjugate in AGL(k, p) then they are conjugate

in Spk and so by Lemma 1.17, they are permutation isomorphic. �

The following is stated in [13, p.4].

Lemma 3.20. Let P1, P2 ≤ AGL(k, p) be two primitive groups of affine type of

degree pk. Suppose that P1 = T o G1, where T = Soc(P1) = Soc(P2) and G1 ≤
GL(k, p) is irreducible. Then P1 is permutation isomorphic to P2 if and only if

P2 = T o G2, where G2 ≤ GL(k, p) is irreducible and G2 is conjugate to G1 in

GL(k, p).

Proof. We assume that P1 and P2 are permutation isomorphic. By Lemma 3.19, P1

is permutation isomorphic to P2 if and only if P1 is conjugate to P2 in AGL(k, p).

Take an element ua ∈ AGL(k, p), where u ∈ T and a ∈ GL(k, p) such that

P ua
1 = P2. Then for any vg ∈ P1, where v ∈ T and g ∈ G1 we have

(vg)ua = a−1u−1(vg)ua

= a−1(u−1v)aa−1gua

= (u−1v)a(a−1g)u(a−1g)−1(a−1g)a

= (u−1v)au(a−1g)−1

ga.

Here u(a−1g)−1 ∈ T as u ∈ T . Moreover (u−1v)a ∈ T as v, u ∈ T . Hence tua :=

(u−1v)au(a−1g)−1 ∈ T and so (vg)ua = tuag
a ∈ T o (G1)a. As |P2| = |T o (G1)a| we

have that P2 = T o (G1)a and G2 := (G1)a is irreducible because G1 is.

We now assume that P2 = T o G2 = T o (G1)a for some a ∈ GL(k, p). Then

the action of G1 on T is permutation isomorphic to the action of G2 on T . Hence

P1
∼= P2 and both P1 and P2 are permutation isomorphic in their action on T . �

Therefore the classification of the affine primitive permutation groups of degree

4096 ≤ d < 8192 corresponds to classifying the irreducible subgroups of GL(k, p)
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with 4096 ≤ pk = d < 8192, up to conjugacy in GL(k, p).

Case 1: If k = 1 all subgroups of GL(1, p) are irreducible. There is one conjugacy

class of affine type groups for each divisor of p− 1.

Case 2: If k > 1 then we find all pairs (k, p) with k > 1 and p prime, such that

4096 ≤ pk < 8192. Hence

(k, p) ∈ {(2, 67), (2, 71), (2, 73), (2, 79), (2, 83), (2, 89), (3, 17), (3, 19), (8, 3), (12, 2)}.

The corresponding subgroups of AGL(k, p) are constructed by taking semidi-

rect products of the irreducible subgroups of GL(k, p) with their natural

modules.

3.1.1. The method. We now give an algorithm which works for all pairs (k, p) above,

other than (k, p) = (8, 3).

The Affine Type Groups: Procedure 1

Input: A group G = GL(k, p), for

pk ∈ {672, 712, 732, 792, 832, 892, 173, 193, 212}.
Output: A list Primitive, consisting of all primitive groups of affine type of

degree pk.

Step 1: Define a list Affine consisting of the group G. Define empty lists

Primitive and Tested.

Step 2: For each item A in Affine such that A is not in Tested:

Create a list Max consisting of conjugacy class representatives of all

irreducible maximal subgroups of A, via “MaximalSubgroups”.

For each M in Max, if M is not conjugate in G to any member of

Affine then append M to Affine.

Append A to Tested.

Repeat Step 2 until all elements in Affine have been considered.

Step 3 For each item A in Affine:

Define Mod to be the natural k-dimensional FpG-module of G. Con-

struct the semidirect product S of Mod and A, where A acts on Mod

as on the module.

Append S to Primitive.

Step 4: Return: Primitive.

The MAGMA function “MaximalSubgroups” used above does not work for GL(8, 3)

in MAGMA ver.2.24-5. We therefore use a different method.
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We separate the maximal subgroups of G := GL(8, 3) into their Aschbacher

classes, see Theorem 1.25. As we want only the irreducible maximal subgroups of

G, we do not consider the first class, which consists of all of the maximal reducible

subgroups of GL(8, 3).

Lemma 3.21. Let G = GL(8, 3), then there are no maximal subgroups of G in the

Aschbacher classes (v),(vi),(vii), and (ix).

Proof. We prove this computationally in MAGMA by checking all of the classes. �

The following is essentially [35, Lemma 4.3, Proposition 4.5, Theorem 4.11, and

Lemma 4.13].

Lemma 3.22. Let H ≤ GL(d, q). Then the following hold:

(i) If H is imprimitive then H is conjugate in GL(d, q) to a subgroup of a max-

imal imprimitive subgroup of GL(d, q).

(ii) If H is semilinear then H is conjugate in GL(d, q) to a subgroup of a maximal

semilinear group.

(iii) If H is a simple tensor product then H is conjugate in GL(d, q) to a subgroup

of a maximal simple tensor product group.

(iv) If H is a group of classical type then H is conjugate in GL(d, q) to a subgroup

of a maximal classical type group.

The Affine Type Groups: Procedure 2

Input: The group G = GL(8, 3).

Output: A list Primitive, consisting of the primitive groups of affine type of

degree 38.

Step 1: Use “ClassicalMaximals” to find conjugacy class representatives of

the maximal subgroups of G, split into their Aschbacher classes. Call

these Affine1, . . .Affine9. Discard Affine1 - reducible groups. Dis-

card Affine5, Affine6, Affine7, Affine9 as they are empty. Define

empty lists Primitive and Tested.

Step 2: For each Affine in {Affine2,Affine3,Affine4,Affine8} do the fol-

lowing:

For each A in Affine such that A is not in Tested:

Create a list Max consisting of conjugacy class representatives all

irreducible maximal subgroups of A, via “MaximalSubgroups”.

For each M in Max, if M is not conjugate in G to any member of

Affine then append M to Affine.

Append A to Tested.

Repeat Step 2 until all elements in Affine have been considered.
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Step 3: Consider the classes Affine2, Affine3, Affine4, and Affine8.

(a): Affine2 (imprimitive groups): for each item A in Affine2:

Define Mod to be the natural 8-dimensional F3G-module of G. Con-

struct the semidirect product S of Mod and A, where A acts on Mod

as on the module.

Append S to Primitive.

(b): Affine3 (semilinear groups): first remove any imprimitive groups

from Affine3 using the function “LMGIsPrimitive”. Then

for each item A in Affine3:

Define Mod to be the natural 8-dimensional F3G-module of G. Con-

struct the semidirect product S of Mod and A, where A acts on Mod

as on the module.

Append S to Primitive.

(c): Affine4 (simple tensor products): first remove any imprimitive

groups from Affine4 using the function “LMGIsPrimitive”, also re-

move any semilinear groups via the semilinear test described in Sec-

tion 2.4. Then

for each item A in Affine4:

Define Mod to be the natural 8-dimensional F3G-module of G. Con-

struct the semidirect product S of Mod and A, where A acts on Mod

as on the module.

Append S to Primitive.

(d) Affine8 (groups of classical type): first remove any imprimitive

groups from Affine4 using the function “LMGIsPrimitive”, also re-

move any semilinear groups via the semilinear test described in Sec-

tion 2.4, finally remove any simple tensor products using the function

“IsTensor”. Then

for each item A in Affine8:

Define Mod to be the natural 8-dimensional F3G-module of G. Con-

struct the semidirect product S of Mod and A, where A acts on Mod

as on the module.

Append S to Primitive.

Step 4: Return: Primitive.

Example 3.23. Let G = GL(8, 3), we now follow Procedure 2.

Step 1: We produce the lists Affine2, Affine3, Affine4, and Affine8 of sizes

2, 1, 2, and 5 respectively. We also produce the empty lists Primitive and Tested.
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Step 2: We extend the lists Affine2, Affine3, Affine4, and Affine8 by itera-

tively appending non-conjugate irreducible maximal subgroups.

Step 3(a): Affine2 is a list of size 8088. We create the primitive groups of affine

type arising from Affine2 and Append them to Primitive.

Step 3(b): We remove imprimitive groups from Affine3, producing a list of size

801. We then create the primitive groups of affine type arising from Affine3 and

Append them to Primitive.

Step 3(c): We remove imprimitive groups from Affine4 and then we remove any

semilinear groups, producing a list of size 72. We then create the primitive groups

of affine type arising from Affine4 and Append them to Primitive.

Step 3(d): We remove imprimitive groups from Affine8, then we remove any

semilinear groups, and then we remove any simple tensor product groups, produc-

ing a list of size 67. We then create the primitive groups of affine type arising from

Affine8 and Append them to Primitive.

This produces the list Primitive which consists of the 9028 primitive groups of

affine type of degree 38.

Theorem 3.24. Let G be a primitive permutation group of affine type of degree

4096 ≤ d < 8192.

(i) If d is prime then G ∼= Cd o Cr where r | (d− 1).

(ii) If d is a non trivial power of a prime, then d = pk for

pk ∈ {672, 712, 732, 792, 832, 892, 173, 193, 38, 212}. In this case G ∼= Fkp o K

where K is an irreducible subgroup of GL(k, p). For each non trivial, prime

power 4096 ≤ d < 8192 we give the number of primitive groups of affine type

of degree d in Table 9.

Proof. (i) If d is a prime then we are considering all irreducible subgroups of GL(1, d).

All non-trivial subgroups of GL(1, d) ∼= Cd−1 are irreducible, and there exists exactly

one irreducible subgroup K for every r dividing d− 1. Thus the affine type groups

are exactly the groups T oK ∼= Cd o Cr.

(ii) We use Procedure 1 above together with Example 3.23, to find all primitive

groups of affine type with non-prime degree 4096 ≤ d < 8191. �

3.2. Almost simple groups. In this section we classify the primitive almost simple

groups of degree 4096 ≤ d < 8192. This will require the use of the Classification of

the Finite Simple Groups, see Theorem 1.23.

Definition 3.25. Let G be a group. We call a subgroup H ≤ G core-free if the

normal core,
⋂
g∈G g

−1Hg, is trivial.
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By Lemma 1.18, any transitive action of a group G is permutation isomorphic to

the action of G on the right cosets of a point stabilizer of the action. By Lemma

1.6, the point stabilizers of a primitive group action are all maximal subgroups of

G. Hence any primitive action of a group G is permutation isomorphic to the action

of G on the right cosets of some maximal subgroup of G.

For a coset action to be faithful, we require that the kernel of this action, the

normal core, is trivial. Thus the faithful primitive actions of a group G correspond

to the conjugacy classes of its core-free maximal subgroups.

Hence to classify the almost simple primitive permutation groups of degree 4096 ≤
d < 8192 we must find all of the core-free maximal subgroups of almost simple

groups, up to conjugacy in the automorphism group of the simple group, such that

the index of any maximal subgroup lies in that range.

Let G be an almost simple group with socle T . We call a maximal subgroup M

of G:

• ordinary if M ∩ T is maximal in T ,

• a novelty if M ∩ T is non-maximal in T and M ∩ T is a proper subgroup of

T ,

• a triviality if T ≤M .

If M is a triviality then it corresponds to a non-faithful action. As stated in [13,

p.3], the index of any novelty maximal subgroup of G is always greater than the

index in Soc(G) of its largest ordinary maximal.

To find all almost simple primitive groups with socle isomorphic to T , we find the

possible cohorts of primitive groups first and then construct the primitive groups in

each of these cohorts.

For a non-abelian simple group T and A := Aut(T ) we find the maximal sub-

groups of T up to conjugacy in A. We also find the intersections of any novelty

maximals with T , again up to conjugacy in A. The corresponding permutation rep-

resentations of T acting on the set Ω of cosets of these subgroups produces a list of

primitive groups G ≤ Sym(Ω) with Soc(G) ∼= T . Exactly one of these groups G lies

in each possible cohort of primitive almost simple groups with socle isomorphic to

T . We call these groups G cohort representatives.

For each cohort representative G, we calculate N := NSym(Ω)(Soc(G)) and we find

all of the conjugacy classes of subgroups of N which contain Soc(G). The primitive

groups found here are the primitive groups in the cohort.

The following definition is given in [13, p.5].
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Definition 3.26. LetG be an almost simple group. We denote by P (G) the minimal

integer d such that G has a faithful primitive permutation representation of degree

d.

The following lemma is [36, Lemma 4.1].

Lemma 3.27. Let G be an almost simple group with socle T and suppose that

T ≤ G ≤ Aut(T ). Then P (G) ≥ P (T ).

Proof. Let Gα be the point stabilizer in a primitive faithful action for G of degree

P (G). Since the action is faithful, Gα must be core free. Thus T � Gα. By Lemma

1.4, T is acting transitively and so by the Orbit-Stabilizer Theorem (1.2), the degree

of the action is

|G : Gα| = |T : (T ∩Gα)|.

So if T ∩Gα is maximal in T we have that

P (G) = |G : Gα| = |T : (T ∩Gα)| = P (T ).

However if T ∩Gα is not maximal in T then we have

P (G) = |G : Gα| = |T : (T ∩Gα)| > |T : T̃ | = P (T )

for some core free maximal subgroup T̃ of T . �

3.2.1. Alternating groups. In this section we classify the almost simple primitive

groups of degree 4096 ≤ d < 8192 with alternating socles. For this we will require

a different version of the O’Nan-Scott Theorem (1.11), see for example [29, p.2].

Theorem 3.28. Let H be a proper subgroup of Sn or An such that H 6= An. Then

H is a subgroup of at least one of the following groups.

(i) An intransitive group Sk × Sm, where n = k +m.

(ii) An imprimitive group Sk o Sm, where n = km.

(iii) A primitive group, see Theorem 1.11.

Definition 3.29. For n > 4 the groups An and Sn in their natural action form a

single cohort. We call the groups in this cohort improper primitive groups.

In what follows we do not consider improper primitive groups further, as they

arise for every degree.

The following is Bochert’s Theorem, [26, Kapitel 2, Satz 4.6].

Theorem 3.30. Let G ≤ Sn be a primitive group and suppose that An � G. Then

|Sn : G| ≥ b(n+ 1)/2c!

Proposition 3.31. If G = An or Sn has a faithful primitive action, other than the

natural action, of degree 4096 ≤ d < 8192, then n ≤ 128. If the stabilizer Gα in

this action acts transitively on {1, . . . , n} then n ≤ 16 and Gα is not primitive on

{1, . . . , n}.
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Proof. As |Sn| = n! and 6! < 4096 we may assume that n ≥ 7. If G = An then

let H0 be a point stabilizer of a faithful primitive action of G (a proper maximal

subgroup of G) such that H0 is not conjugate to An−1 (we are not considering the

improper action). If G = Sn then let H0 = G0∩An where G0 is a maximal subgroup

of Sn.

Case 1: Suppose that H0 is primitive in its action on {1, . . . , n}. Then by Bochert’s

Theorem (3.30), we have

|Sn : H0| ≥ b(n+ 1)/2c!

and so, since |An : H0| < 8192, we have that |Sn : H0| < 16384. This implies

that n ≤ 14.

We now use MAGMA to find all of the maximal subgroups of An and Sn for

7 ≤ n ≤ 14 that are acting primitively on {1, . . . , n}. Only A12 and S12 have

maximal subgroups with indices in the range 4096 ≤ d < 8192. For both

A12 and S12 there is one such conjugacy class of maximal subgroups. These

subgroups are of index 5775 but neither of these subgroups are primitive on

{1 . . . n}. So in this case we find no primitive groups in our range.

Case 2: Suppose that H0 is transitive but imprimitive in its action on {1, . . . , n}. Let

k be the size of a non-trivial block, and m := n/k. Then by Theorem 3.28,

H0 ≤ (Sk o Sm). Hence if G = An then H0 = (Sk o Sm) ∩ An. Furthermore

if G = Sn then H0 = G0 ∩ An where G0 is transitive on {1, . . . , n}, as H0 is

transitive on {1, . . . , n}. We have shown in Case 1 that there is no maximal

subgroup G0 ≤ Sn such that G0 is of index 4096 ≤ d < 8192 and G0 is

acting primitively on {1, . . . , n}, thus G0 must be acting transitively and so

H0 = (Sk o Sm) ∩ An for this choice of G also. Thus |H0| = (k!)m(m!)/2. It

follows that

|An : H0| = |Sn : G0| = (mk)!/(k!)mm! =: f(m, k).

The function f(m, k) increases monotonically in both variables. For (m, k) ∈
{(2, 7), (3, 3), (4, 2), (5, 2)} the value of f(m, k) is less than 4096. For (m, k) ∈
{(2, 9), (3, 5)(4, 3), (5, 3), (6, 2)} the value of f(m, k) is greater than 8192.

This leaves only (m, k) ∈ {(2, 8), (3, 4)}. Here f(2, 8) = 6435 and f(3, 4) =

5775. Thus we consider the groups An and Sn where n = mk. Here A12,

A16, S12, and S16 each have a single conjugacy class of imprimitive maximal

subgroup of index 4096 ≤ d < 8192.

Case 3: Suppose that H0 is intransitive in its action on {1, . . . , n}. We first show

that H0 can have no orbits of length 1.

If H0 has an orbit of length 1 then H0 is conjugate to some subgroup of

An−1. If G is An, then H0 ≤max G and so we must have that H0 = An−1.

However the action is then the natural action which is a contradiction. Hence

G = Sn and so H0 = G0 ∩ An. Then |G0 : H0| = 2 and so the orbit of any
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fixed point of H0 under the action of G0 has length at most 2.

If a, b ∈ {1, . . . , n} both have orbits of length one under the action of G0,

then G0 < 〈G0, (a, b)〉 < Sn, contradicting the maximality of G0. So G0 has

at most one orbit of length 1.

If G0 has one orbit of length 1 then since G0 ≤max Sn we must have that

G0 = Sn−1 which is a contradiction as the action is then the natural action.

Therefore G0 has no orbits of length 1 and so G0 must have an orbit

of length 2. Hence by Theorem 3.28, G0
∼= S2 × Sn−2. But in this case

H0 = G0 ∩ An has no fixed points, which is a contradiction as we assumed

that H0 had an orbit of length 1.

Hence H0 has no orbits of length 1.

Let αH0 be the smallest orbit of H0, and set k := |αH0|, here 1 < k ≤ n/2.

Then H0 ≤ (Sk × Sn−k) ∩ An. It follows directly that

|H0| ≤ k!(n− k)!/2.

Thus

|An : H0| ≥ n!/k!(n− k)! =

(
n

k

)
≥
(
n

2

)
.

Therefore, as |An : H0| < 8192, we have that n ≤ 128.

�

Primitive Almost Simple Groups with Alternating Socles

Input: The Symmetric group S := Sn, for 7 ≤ n ≤ 128.

Output: A list Primitive, consisting of all almost simple primitive groups

with socle An.

Step 1: Define T := Soc(S), so T = An. Define an empty list Primitive.

Step 2(a): If 7 ≤ n ≤ 16 then:

Step 2(a)(i): Create the list MaxS of representatives of the conjugacy

classes of the transitive but imprimitive maximal subgroups

of S with index between 4096 and 8191.

Step 2(a)(ii): Create the list MaxT of representatives of the conjugacy

classes of the transitive but imprimitive subgroups of S

which are maximal subgroups of T with index between

4096 and 8191.
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Step 2(b): If 17 ≤ n ≤ 128 then: if 4096 ≤
(
n
k

)
≤ 8191 for some 1 < k ≤ n/2

then:

Step 2(b)(i): Create the list MaxS of representatives of the conjugacy

classes of the intransitive maximal subgroups of S with

index between 4096 and 8191.

Step 2(b)(ii): Create the list MaxT of representatives of the conjugacy

classes of the intransitive subgroups of S which are

maximal subgroups of T with index between 4096 and

8191.

Step 3(a): For each MS in MaxS do C := CosetImage(MS, S).

The image of the permutation representation of S acting on the

cosets of MS.

Append C to Primitive.

Step 3(b): For each MT in MaxT do C := CosetImage(MT , T ).

The image of the permutation representation of T acting on the

cosets of MT .

Append C to Primitive.

Step 4: Return: Primitive.

Theorem 3.32. Let G be a primitive almost simple group of degree 4096 ≤ d < 8192

with socle An. Then G appears on Table 10.

Proof. We use the proof of Proposition 3.31 to determine which possibilities there are

for primitive almost simple groups with alternating socles. We then use MAGMA

to construct these groups via the procedure described above. �

3.2.2. Classical groups. We recall Section 1.2 and we take q to always be a prime

power. We denote a simple classical group by Cln(q). In this section we classify all

of the almost simple primitive groups of degree 4096 ≤ d < 8192 with classical socles.

In the following proposition we find the maximum values of n and q such that

P (Cln(q)) < 8192.

Proposition 3.33. Let G be an almost simple group with a classical socle H. Sup-

pose that G has a faithful primitive permutation action of degree less than 8192.

Then if H is not alternating, H appears on Table 1.

Proof. By Lemma 3.27 we only need to consider the simple classical groups. The

formulae for P (H) are given in [28, p.175, Table 5.2A] and corrected and extended

in [20, Table 4]. These formulae are all monotonically increasing in each variable.

We shall also rely upon Theorem 1.24, which lists al isomorphisms between finite
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alternating, classical, and exceptional simple groups.

Linear: For (n, q) /∈ {(2, 5), (2, 7), (2, 9), (2, 11), (4, 2)} we have that

P (Ln(q)) = (qn − 1)/(q − 1).

For (n, q) in the set, the order of Ln(q) is less than 4096, other than L4(2) ∼= A8

which has already been considered.

Symplectic: Since S2(q) = L2(q) we assume that m > 1, and as S4(2) ∼= S6 we

take (m, q) 6= (2, 2). We then have that for m ≥ 3

P (S2m(2)) = 2m−1(2m − 1).

If m ≥ 2 and q ≥ 3 then

P (S2m(q)) = (q2m − 1)/(q − 1),

with the exception of (m, q) = (2, 3) in which case P (S4(3)) = 27.

Unitary: We assume that n > 2 as U2(q) ∼= S2(q) ∼= L2(q). We also assume that

(n, q) /∈ {(3, 2), (4, 2)} as U3(2) is not simple and U4(2) ∼= S4(3).

(i) If q 6= 2, 5 then

P (U3(q)) = q3 + 1.

Here we are not considering U3(2) and P (U3(5)) = 50.

(ii) If q 6= 2 then

P (U4(q)) = q4 + q3 + q + 1.

We now consider n ≥ 5.

(iii) When n is even we have that

P (Un(2)) = 2n−1(2n − 1)/3.

(iv) Otherwise we have that

P (Un(q)) = (qn − (−1)n)(qn−1 − (−1)n−1)/(q2 − 1).

Orthogonal Odd Dimension: We assume that q is odd, since PΩ2m+1(2i) ∼=
S2m(2i) for all i ≥ 1. We also assume that m ≥ 3 as PΩ3(q) ∼= L2(q) and PΩ5(q) ∼=
S4(q) for q odd. Then

(i) for q = 3 we have

P (PΩ2m+1(3)) = 3m(3m − 1)/2,

(ii) for q ≥ 5 we have

P (PΩ2m+1(q)) = (q2m − 1)/(q − 1).

Orthogonal Plus and Minus Types: We assume that m ≥ 4 as PΩ+
4 (q) is not

simple, PΩ−4 (q) ∼= L2(q2), PΩ+
6 (q) ∼= L4(q), and PΩ−6 (q) ∼= U4(q). Then
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(i) for q = 2 we have

P (PΩ+
2m(2)) = 2m−1(2m − 1),

(ii) for q = 3 we have

P (PΩ+
2m(3)) = 3m−1(3m − 1)/2,

(iii) for q ≥ 4 and ε = +, or for all q and ε = − we have

P (PΩε
2m(q)) = (qm − ε)(qm−1 + ε)/(q − 1).

�

Group n q

Ln(q) n = 2 q ≤ 8179

n = 3 q ≤ 89

n = 4 q ≤ 19

n = 5 q ≤ 9

n = 6 q ≤ 5

n = 7 q ≤ 4

n = 8 q ≤ 3

9 ≤ n ≤ 13 q = 2

S2m(q) m = 2 q ≤ 19

m = 3 q ≤ 5

m = 4 q ≤ 3

5 ≤ m ≤ 7 q = 2

Un(q) n = 3 q ≤ 19

n = 4 q ≤ 9

n = 5 q ≤ 3

n = 6 q = 2

n = 7 q = 2

PΩ2m+1(q) m = 3 q ≤ 5

m = 4 q = 3

PΩ+
2m(q) m = 4 q ≤ 4

5 ≤ m ≤ 7 q = 2

PΩ−2m(q) m = 4 q ≤ 4

5 ≤ m ≤ 7 q = 2

Table 1. Classical socles of primitive almost simple groups with min-
imal degree at most 8191.

Primitive Almost Simple Groups with Classical Socles

Input: The Automorphism group A of a simple classical group T , described

in Table 1.
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Output: A list Primitive, consisting of all almost simple primitive groups

with socle T .

Step 1: Define T := Soc(A). Construct empty lists CohortReps and Prim-

itive.

Step 2 Define the empty list Max.

Step 2(a): Append to Max the representatives of the conjugacy classes of

any subgroups of A which are maximal subgroups of T with index

in T between 4096 and 8191.

Step 2(b): Append to Max the representatives of the conjugacy classes of

any subgroups of A that are not maximal in T but are maximal

in some non-trivial extension of T with index between 4096 and

8191 in that extension.

Step 3: For each m ∈ Max, let C be the image of the action of T on the

cosets of m via “CosetImage”. Append C to CohortReps.

Step 4: For each P ∈ CohortReps, Calculate N := NSym(Deg(P ))(Soc(P ))

and the quotient Q := N/Soc(P ), together with the epimorphism φ :

N → Q. For each conjugacy class representative S of the subgroups

of Q, if the preimage s of S under φ is primitive then Append s to

Primitive.

Step 5: Return: Primitive.

Some groups in Table 1, and their automorphism groups, do not currently (MAGMA

ver.2.24) have computable maximal subgroups using the function “MaximalSub-

groups”, these groups are: L8(3), S14(2),PΩ−14(2), and PΩ+
14(2). For these four groups

we used the function “ClassicalMaximals”.

Theorem 3.34. The primitive almost simple classical groups of degree 4096 ≤ d <

8192 are displayed in Tables 11, 12, 13, and 14.

Proof. Input the automorphism groups of each of the simple classical groups dis-

played on Table 1 into the procedure above. �

3.2.3. Worked examples. In this section we give worked examples of some of the

cases that arise when classifying the primitive almost simple groups with classical

socles.

Throughout, a primitive group will be denoted by G and we will denote the socle

of G by H ≤ G. We will denote any (not necessarily maximal) subgroup of H by

H0 < H. If H0 is not maximal we will call the cohort obtained in that instance a
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novelty cohort. Finally we denote by [n] a soluble group of order n.

In general if H0 is a maximal subgroup of H, we use the procedure above (adding

to Max in Step 2(a)) to find all primitive groups with simple classical socles.

We give examples of what happens when we are considering a (novelty) subgroup

H0 of H which is not maximal in H but whose normalizer is maximal in some other

almost simple group with classical socle H.

By [6, 1.7.2, p.36], a presentation for the outer automorphism group of H = Ln(q),

where n ≥ 3 and q = pe for some prime p, is given by

Out(H) = 〈δ, γ, φ | δ(q−1,n) = γ2 = φe = [γ, φ] = 1, δγ = δ−1, δφ = δp〉.

We refer to the generators δ, γ, and φ as the diagonal, graph and field automor-

phisms respectively. These names come from the theory of algebraic groups and will

not be discussed here.

We first give a non-novelty example.

Example 3.35. We begin by considering the cohort of primitive almost simple

groups corresponding to H = L3(67) of degree d = 4557. We let G be any group

in this cohort. The simple group L3(67) contains a maximal subgroup H0 of index

4557. This group is 672.[22].L2(67).2. We note that 3 divides (67− 1) and so there

is a non-trivial diagonal automorphism. The outer automorphism group is

Out(H) = 〈δ, γ, φ | δ3 = γ2 = φ = 1, δγ = δ−1〉 ∼= S3.

According to [6, p.378] the stabilizer of the conjugacy class of H0 under the action

of Out(H) is 〈δ, φ〉 ∼= C3. Hence the normalizer of G in Sd is H.3. We consider

Figure 1, the conjugacy class subgroup diagram of Out(H).

In this case there are two conjugacy classes of subgroups contained in 〈δ, φ〉. Thus

the number of groups in the cohort is 2.

Example 3.36. We next consider the primitive almost simple groups corresponding

to H = L3(17) of degree d = 5526. We let G be any group in this cohort. The simple

group L3(17) contains no maximals in the index range 4096 ≤ d < 8192. However

there exists a subgroup H0 < H of index 5526 such that H0.2 is maximal in L3(17).2.

This group is 171+2 : [162]. We have that

Out(H) = 〈δ, γ, φ | δ = γ2 = φ = 1〉 ∼= C2.

According to [6, p.378] the stabilizer of the conjugacy class of H0 under the action

of Out(H) is 〈δ, γ, φ〉 which is the whole outer automorphism group. Hence the nor-

malizer of G in Sd is H.2. Our maximal subgroup is described as an N1 subgroup in

[6, p.378]. Therefore it is maximal under subgroups not contained in 〈δ, φ〉 = 〈δ〉, by
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[6, p.378]. We consider Figure 2, the conjugacy class subgroup diagram of Out(H).

In this case, only one conjugacy class of subgroups not contained in 〈δ, φ〉 = 〈δ〉.
Hence the number of groups in the cohort is 1.

Example 3.37. We now consider the primitive almost simple groups corresponding

to H = L3(19) of degree d = 7620. We let G be any group in this cohort. This

is a very similar case to Example 3.36 above, there exists a subgroup H0 < H of

index 7620 such that H0.2 is maximal in L3(19).2. This group is 191+2 : [108]. The

difference here is that 3 divides (19 − 1), which means that there is a non-trivial

diagonal automorphism. In this case our outer automorphism group is of the form

Out(H) = 〈δ, γ, φ | δ3 = γ2 = φ = 1, δγ = δ−1〉 ∼= S3.

Similarly to Example 3.36 above we use [6, p.378] to find that the stabilizer of the

conjugacy class of H0 under the action of Out(H) is 〈δ, γ, φ〉, which is the whole

outer automorphism group. Hence the normalizer of G in Sd is H.S3. Our subgroup

is described as an N1 group in [6, p.378], and so it is maximal under subgroups

not contained in 〈δ, φ〉, by [6, p.378]. We consider Figure 3, the conjugacy class

subgroup diagram of Out(H).

In this case there are 2 conjugacy classes of subgroups which are not contained in

〈δ, φ〉 and so the size of the cohort is 2.

Example 3.38. We next consider the primitive almost simple groups corresponding

to H = L3(32) of degree d = 7371. We let G be any group in this cohort. This is

also similar to Example 3.36 with a subgroup H0
∼= GL2(9) < H, of index 7371 such

that H0.2 is maximal in L3(32).2 (in fact there are two such groups). In this case

since q = 32 is a power of a prime with non-trivial index we have a non-trivial field

automorphism. Here

Out(H) = 〈δ, γ, φ | δ = γ2 = φ2 = [γ, φ] = 1〉 ∼= C2 × C2.

Similar to the examples above we use [6, p.378] to find that the stabilizer of the

conjugacy class of H0 under the action of Out(H) is 〈δ, γ, φ〉 which is the whole

outer automorphism group. Hence the normalizer of G in Sd is H.22. Our subgroup

is described as an N1 novelty in [6, p.378], so it is maximal under subgroups not

contained in 〈δ, φ〉 = 〈φ〉, by [6, p.378]. We consider Figure 4, the conjugacy class

subgroup diagram of Out(H).

There are 3 conjugacy classes of subgroups in this case which are not contained

in 〈δ, φ〉 = 〈φ〉 and so the cohort has size 3. This cohort contains two groups of

minimal order, the groups H0.〈γ〉 and H0.〈γφ〉.

Example 3.39. We consider the primitive almost simple groups corresponding to

H = L3(24) of degree d = 4641. We let G be any group in this cohort. In this case
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3 divides (24 − 1) and 24 is a prime power with non-trivial index. Hence there is a

non-trivial diagonal automorphism and a non-trivial field automorphism. Here

Out(H) = 〈δ, γ, φ | δ3 = γ2 = φ4 = [γ, φ] = 1, δγ = δ−1, δφ = δ−1〉 ∼= 4× S3.

In this case H0 = 24+8.[75] < H is a subgroup of index 4641 such that H0.2 is maxi-

mal in L3(24).2 (in fact there are again two such groups). According to [6, p.378] the

stabilizer of the conjugacy class of H0 under the action of the outer automorphism

group is 〈δ, γ, φ〉, the full outer automorphism group. Therefore the normalizer of G

in Sd is H.(4× S3). Our subgroup is described as an N1 group in [6, p.378], hence

according to [6, p.378] it is maximal under subgroups not contained in 〈δ, φ〉. We

consider the conjugacy class subgroup diagram in Figure 5.

In this case there are 10 conjugacy classes of subgroups not contained in 〈δ, φ〉
and so the cohort is of size 10. This cohort contains two groups of minimal order,

the groups H0.〈γ〉 and H0.〈γφ2〉.

3.2.4. Subgroup diagrams. Here we give the conjugacy class subgroup diagrams of

the outer automorphism groups described above. The subgroups coloured red cor-

respond to maximal subgroups of the almost simple group and so correspond to

almost simple primitive groups. The edges are labeled by the index of the adjacent

subgroup. Some of the edges of the graphs are coloured green when they overlap

other edges, this is just for clarity of reading.

〈δ, γ, φ〉 = 〈δ, γ〉

〈δ〉 = 〈δ, φ〉

〈γ〉

{1}

2

3

3

2

Figure 1. The conjugacy class subgroup diagram of Out(L3(67))

86



〈δ, γ, φ〉 = 〈γ〉

{1}

2

Figure 2. The conjugacy class subgroup diagram of Out(L3(17))

〈δ, γ, φ〉 = 〈δ, γ〉

〈γ〉

〈δ〉

{1}

3

2

2

3

Figure 3. The conjugacy class subgroup diagram of Out(L3(19))

〈δ, γ, φ〉 = 〈γ, φ〉

〈γ〉〈φ〉 〈γφ〉

{1}

22 2

22 2

Figure 4. The conjugacy class subgroup diagram of Out(L3(32))
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〈δ, γ, φ〉

〈δ, γ, φ2〉〈δγφ〉

〈γ, φ〉

〈δ, φ〉

〈δ, γ〉 〈φ2δ〉〈γφ2, δ〉

〈γ, φ2〉 〈φ〉〈γφ〉

〈δ〉

〈γ〉〈γφ2〉 〈φ2〉

{1}

22

3

2

2 2 22

2

33

2

3

2

2 2

2

4

2

2

3

4

22

3

2

3

2

3

22 2

Figure 5. The conjugacy class subgroup diagram of Out(L3(24))
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3.2.5. Exceptional groups of Lie type. In this section we classify all of the almost

simple primitive groups of degree 4096 ≤ d < 8192 with exceptional socles.

Proposition 3.40. Let G be an almost simple group with an exceptional socle such

that G has a faithful primitive permutation action of degree d where 4096 ≤ d <

8192. Suppose that G � G2(2)′ ∼= U3(3) and G � 2G2(3) ∼= L2(8) : 3, then H :=

Soc(G) is one of G2(3) or G2(5).

Proof. As in Proposition 3.33, we only need to consider the simple exceptional

groups.

The formulae for P (H) are given in [20, Table 4]. They are all monotonically

increasing in q. In the case of H = E7(q) there is a mistake in [20, Table 4] and so

we use [43, Theorem 2], this is also monotonically increasing in q.

We begin by looking at the untwisted groups: E6(q), E7(q), E8(q), F4(q), and

G2(q).

E6(q): Here

P (E6(q)) =
(q9 − 1)(q8 + q4 + 1)

q − 1
.

Thus P (E6(2)) = 139503 > 8192, and so P (E6(q)) > 8192 for all q. Hence

there are no almost simple groups with socle E6(q) in our range.

E7(q): Here

P (E7(q)) =
(q14 − 1)(q9 + 1)(q5 + 1)

q − 1

which is larger than 8192 for all q. Hence there are no almost simple groups

with socle E7(q) in our range.

E8(q): Here

P (E8(q)) =
(q30 − 1)(q12 + 1)(q10 + 1)(q6 + 1)

q − 1

which is larger than 8192 for all q. Hence there are no almost simple groups

with socle E8(q) in our range.

F4(q): Here

P (F4(q)) =
(q12 − 1)(q4 + 1)

q − 1
.

This gives P (F4(2)) = 69615 > 8192 and this does not lie in the range we

are considering. Hence there are no almost simple groups with socle F4(q)

in our range.

G2(q): For all q > 4 we have that the minimal degree of G2(q) is

P (G2(q)) = q5 + q4 + q3 + q2 + q + 1.

Therefore P (G2(q)) > 8192 for all q > 5. Furthermore G2(2) is not simple

and we are not considering G2(2)′ ∼= U3(3). The groups G2(3) and G2(3).2

both have one conjugacy class of maximal subgroups of index 4096 ≤ d <

8192. Their indices are both 7371 by the ATLAS [12]. Neither of the groups
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G2(4) and Aut(G2(4)) ∼= G2(4).2 have maximal subgroups with index in

the correct range. The group G2(5) ∼= Aut(G2(5)) contains two conjugacy

classes of maximal subgroups of index between 4096 ≤ d < 8192. One with

index 7750 and the other with index 7875.

We now look at the twisted groups: 2B2(22m+1) = Sz(22m+1), 3D4(q), 2E6(q),
2F4(22m+1), and 2G2(32m+1).

Sz(22m+1): Here

P (Sz(22m+1)) = (22m+1)2 + 1.

Hence for all m ≥ 3 we see that this minimal degree is greater than 8191.

Thus we only need to consider Sz(32) and Sz(8). By the ATLAS [12], no max-

imal subgroups of Sz(32),Aut(Sz(32)) ∼= Sz(32).5, Sz(8), or Aut(Sz(8)) ∼=
Sz(8).3 have indices in the range 4096 ≤ d < 8192. Hence there are no

almost simple groups with socle Sz(22m+1) in our range.
3D4(q): Here

P (3D4(q)) = (q8 + q4 + 1)(q + 1).

Thus if q ≥ 3 then the degree is larger than 8191. So we consider H =3

D4(2). By the ATLAS [12], neither 3D4(2), nor Aut(3D4(2)) ∼= 3D4(2).3

have maximal subgroups with indices in our range. Hence there are no

almost simple groups with socle 3D4(q) in our range.
2E6(q): Here

P (2E6(q)) =
(q12 − 1)(q6 − q3 + 1)(q4 + 1)

q − 1
.

This is greater than 8191 for any q. Hence there are no almost simple groups

with socle 2E6(q) in our range.
2F4(22m+1): Here

P (2F4(q)) = (q6 + 1)(q3 + 1)(q + 1)

for q = 22m+1 an odd power of 2. Therefore P (2F4(q)) > 8192 for all q >

2. By the ATLAS [12], neither of the groups 2F4(2)′ nor Aut(2F4(2)′) ∼=
2F 4(2)′.2 have maximal subgroups in our required range. Hence there are no

almost simple groups with socle 2F4(22m+1) in our range.
2G2(32m+1): Here

P (2G2(32m+1)) = (32m+1)3 + 1.

Hence P (2G2(32m+1)) > 8191 for all m ≥ 1. Thus all that remains is H =2

G2(3), but in this case 2G2(3) ∼= L2(8) : 3. Hence there are no almost simple

groups with socle 2G2(32m+1) in our range.

�

Theorem 3.41. The primitive almost simple groups G with exceptional socles such

that G is of degree 4096 ≤ d < 8192 are displayed in Table 15.

Proof. We input the automorphism groups of the simple groups described in Propo-

sition 3.40 (G2(3) and G2(5)) into the procedure below (in Section 3.2.6). �
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3.2.6. Sporadic simple groups. In this section we classify the almost simple primitive

groups of degree 4096 ≤ d < 8192 with sporadic socles.

The list of maximal subgroups of the sporadic groups is complete with the excep-

tion of the monster group M . However M has no transitive permutation representa-

tion of degree < 8192. By the ATLAS [12], the sporadic simple groups which have a

primitive permutation permutation representation of degree d < 8192 are displayed

on Table 2. Most of these groups are not the socle of an almost simple group with

degree 4096 ≤ d < 8192. We have highlighted (with ?) those which are the socle of

an almost simple group of degree 4096 ≤ d < 8192.

Simple Group Simple Group

M11 Co3

M12 McL ?

M22 Suz

M23 He

M24 Fi22

HS ? J1 ?

J2 J3 ?

Co2 Ru

Table 2. Sporadic socles of almost simple groups with minimal de-
gree at most 8191.

Theorem 3.42. The primitive almost simple groups G with a sporadic socle such

that G is of degree 4096 ≤ d < 8192 are displayed in Table 15.

Proof. We input the automorphism groups of the sporadic groups described above

(J1, J2, HS, and McL) into the procedure below. �

For both the exceptional groups of Lie type and the sporadic simple groups we

use the MAGMA function “MaximalSubgroups” to produce the conjugacy class

representatives of their maximal subgroups.

Primitive Almost Simple Groups with Exceptional or Sporadic Socles

Input: The Automorphism group A of an exceptional or sporadic group T ,

described in Proposition 3.40 or Section 3.2.6.

Output: A list Primitive, consisting of all almost simple primitive groups

with socle T .

Step 1: Define T := Soc(A), Construct empty lists CohortReps and Prim-

itive.

Step 2 Define the empty list Max.
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Step 2(a): Append to Max the representatives of the conjugacy classes of

any subgroups of A which are maximal subgroups of T with index

in T between 4096 and 8191.

Step 2(b): Append to Max the representatives of the conjugacy classes of

any subgroups of A that are maximal in some non-trivial ex-

tension of T with index between 4096 and 8191 in that extension.

Step 3: For each m ∈ Max, let C be the image of the action of T on the

cosets of m via “CosetImage”. Append C to CohortReps.

Step 4: For each P ∈ CohortReps, calculate N := NSym(Deg(P ))(Soc(P ))

and the quotient Q := N/Soc(P ), together with the epimorphism φ :

N → Q. For each conjugacy class representative S of the subgroups

of Q, if the preimage s of S under φ is primitive then Append s to

Primitive.

Step 5: Return: Primitive.

3.3. Groups of diagonal type. In this section we classify the primitive groups of

diagonal type of degree 4096 ≤ d < 8192.

The following is [16, Theorem 4.3A].

Theorem 3.43. Let G be a non-trivial finite group.

(i) If H is a minimal normal subgroup of G and L is any normal subgroup of

G, then either H ≤ L or 〈H,L〉 = H × L.

(ii) There exist minimal normal subgroups H1, . . . , Hk of G such that Soc(G) =

H1 × · · · ×Hk.

(iii) Every minimal normal subgroup H of G is a direct product H = T1×· · ·×Tm
where the Ti are simple normal subgroups of H which are conjugate under

the action of G.

(iv) If the subgroups Hi are all non-abelian, then H1, . . . , Hk are the only minimal

normal subgroups of G. Similarly if the Ti are non-abelian, then these are

the only minimal normal subgroups of H.

Let T be a non-abelian simple group and m > 1 be an integer.

We recall Definition 1.10 and define W := Aut(T ) o Sm. So

W = {(a1, . . . , am)π | ai ∈ Aut(T ), 1 ≤ i ≤ m,π ∈ Sm}.

Observe that for any (a1, . . . , am)π, (b1, . . . , bm)ρ ∈ W , we have

(a1, . . . , am)π(b1, . . . , bm)ρ = (a1b1π , . . . , ambmπ)πρ.
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We introduce the following notation

(a1, . . . , am)π := (1, . . . , 1)π−1(a1, . . . , am)1(1, . . . , 1)π = (a1π−1 , . . . , amπ−1 ).

We define K ⊆ W by

K := {(a1, . . . , am)π | ai ∈ Aut(T ), π ∈ Sm, ai ≡ aj mod(Inn(T )) for all i, j}.

One can observe that K is a subgroup of W .

By [16, Theorem 4.5A], the socle of K is

H := {(a1, . . . , am)1 | ai ∈ Inn(T ), 1 ≤ i ≤ m} ∼= Tm

and K is an extension of H by Out(T )×Sm, i.e. we have K = H.(Out(T )×Sm) ∼=
Tm.(Out(T )× Sm). We observe that H is also the socle of W .

We define the inclusion maps φ : Aut(T ) → W and ψ : Sm → W by (a)φ :=

(a, 1 . . . , 1)1 and (π)ψ := (1, . . . , 1)π. We note that Im(φ) = {(a, 1, . . . , 1)1 | a ∈
Aut(T )} ∼= Aut(T ) and Im(ψ) = {(1, . . . , 1)π | π ∈ Sm} ∼= Sm.

As T is a non-abelian simple group, we have that

Soc(Im(φ)) = {(t, 1, . . . , 1)1 | t ∈ Inn(T )} ∼= Inn(T ) ∼= T.

The following may be found in [24, Definition 2.7].

Definition 3.44. Let G be a group and A a subset of G. The normal closure N of

A in G is the intersection of all normal subgroups of G containing A,

N =
⋂

A⊆XEG

X.

Let N be the normal closure of Soc(Im(φ)) in W . As Soc(Im(φ)) ≤ H E W we

have that N ≤ H ∼= Tm.

For 1 ≤ i ≤ m we define Ti to be the subgroup of H consisting of the m-tuples

with 1 in all but the ith component, so that Ti ∼= T and H ∼= T1 × · · · × Tm.

By Theorem 3.43 (iv), T1, . . . , Tm are the only minimal normal subgroups of H.

We observe that Soc(Im(φ)) = T1.

Take the element w := (1, . . . , 1)ρ ∈ W where ρ is the transposition (1, i), for

some 1 ≤ i ≤ m. Then for any element (t, 1, . . . , 1)1 ∈ T1 we have that

w−1(t, 1, . . . , 1)1w = (t, 1, . . . , 1)ρ = (1, . . . , 1, t, 1, . . . , 1)1

where t is in the ith position. In particular w−1(t, 1, . . . , 1)1w ∈ Ti.
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As T1 = Soc(Im(φ)) ≤ N and N E W we must have that N contains all conju-

gates of T1 in W . So N contains T1, . . . , Tm and so H ≤ N . Thus N = H.

We define the subgroup WD of W via

WD := {(a, . . . , a)1 | a ∈ Aut(T )} ∼= Aut(T ).

Lemma 3.45. The subgroup of W generated by N,WD, and Im(ψ) is K.

Proof. We observe that N,WD, Im(ψ) ≤ K and so 〈N,WD, Im(ψ)〉 ≤ K.

Fix an element (a1, . . . , am)π ∈ K. As ai ≡ aj mod (Inn(T )) for all 1 ≤ i, j ≤ m,

we have that ai = taj for some t ∈ Inn(T ). In particular ai and aj lie in the

same coset of Inn(T ). Thus there exists some coset representative a ∈ Aut(T ) and

ti ∈ Inn(T ) such that ai = tia.

Let (t1, . . . , tm)1 ∈ N , (a, . . . , a)1 ∈ WD, and (1, . . . , 1)π ∈ Im(ψ), where ti and a

are defined as above. Then

(t1, . . . , tm)1(a, . . . , a)1(1, . . . , 1)π = (t1, . . . , tm)1(a, . . . , a)π

= (t1a, . . . , tma)π

= (a1, . . . , am)π.

Thus K ≤ 〈N,WD, Im(ψ)〉 and so K = 〈N,WD, Im(ψ)〉. �

We observe that WD commutes with Im(ψ) and their intersection is trivial, so

D := 〈WD, Im(ψ)〉 ∼= Aut(T )× Sm ∼= T.(Out(T )× Sm). In fact we have that

D = {(a, . . . , a)π | a ∈ Aut(T ), π ∈ Sm}.

We call D the diagonal subgroup of K. The action of K by right multiplication on

the set Ω of cosets of D in K is called the diagonal action of K.

The degree of this action is |Ω| = |K : D| = |T |m−1. We will write the image of

the permutation representation of K with the diagonal action as KΩ. As H ≤ K,

H also acts on Ω and we write HΩ for the image of this corresponding permutation

representation.

We say that a group Ĝ is of diagonal type if it is permutation isomorphic to a

group G such that HΩ ≤ G ≤ KΩ with the diagonal action.

By [16, Lemma 4.5B], Soc(G) = HΩ ∼= Tm, the degree d of G is equal to |T |m−1,

and the full normalizer of Soc(G) in Sd is equal to KΩ.

Define Γ := {T1, . . . , Tm}. For any diagonal type group G we have H E G and

T1, . . . , Tm are the only minimal normal subgroups of H. Hence G acts on Γ by
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conjugation.

The following is [16, Theorem 4.5A].

Theorem 3.46. A diagonal type group HΩ ≤ G ≤ KΩ is primitive if and only if

either

(i) m = 2; or

(ii) m ≥ 3 and the action of G on Γ is primitive.

We are finding the primitive diagonal type groups of degree 4096 ≤ d = |T |m−1 <

8192. Thus the possible finite non-abelian simple groups T are M11, L2(23), L2(25),

L3(3), and U3(3) with m = 2 and there are no groups with m ≥ 3 in our range.

We give the following procedure for general m as it will be useful in Section 4.2.

The Diagonal Type Groups

Input: A non-abelian simple group T such that 4096 ≤ |T |m−1 ≤ 8191 for

some m ≥ 2.

Output: The full cohort of diagonal type primitive groups with socle Tm.

Step 1: Construct an empty list Primitive.

Step 2: For each m ≥ 2 such that 4096 ≤ |T |m−1 ≤ 8191 do the following.

Step 2(a): Define A := Aut(T ) and construct the wreath product W :=

A o Sm. Let φ : A → W be the inclusion of A into W given by

a 7→ (a, 1, . . . , 1)1 and let ψ : Sm → W be the inclusion of Sm

into W given by π 7→ (1, . . . , 1)π.

Step 2(b): Construct the following groups.

Step 2(b)(i): Define N as the normal closure in W of the socle of Im(φ).

N = {(a1, . . . , am)1 | ai ∈ Inn(T ), 1 ≤ i ≤ m} ≤ W .

Step 2(b)(ii) Define WD as WD = {(a, . . . , a)1 | a ∈ Aut(T )}.
Step 2(b)(iii) Define K as the subgroup of W generated by N , WD and

Im(ψ).

Step 2(b)(iv) Define D as the subgroup of W generated by WD and

Im(ψ).

Step 2(c): Define P to be the image of the action of K on cosets of D via

“CosetImage”. Define Q to be the quotient P/Soc(P ), and define

ρ to be the natural epimorphism P → Q.

Step 2(d): Define Sub to be a list of conjugacy class representatives of the

subgroups of Q.

Step 2(e): For each s ∈ Sub, if the preimage in P of s under ρ is primitive

then Append the preimage of s under ρ to Primitive.
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Step 3: Return: Primitive.

Theorem 3.47. The primitive permutation groups of diagonal type with degree in

the range 4096 ≤ d < 8192 are given in Table 16.

Proof. Input the non-abelian simple groups T with 4096 ≤ |T |m−1 < 8192, for some

m ≥ 2, into the procedure above. So m = 2 and T = M11, L2(23), L2(25), L3(3),

or U3(3). �

3.4. Groups of product type. In this section we classify the primitive groups of

product type of degree 4096 ≤ d < 8192.

The following definition is [44, p.21].

Definition 3.48. Let A be a group acting on a set ∆ and let W := A o Sk. The

product action of (a1, . . . , ak)σ ∈ W on (δ1, . . . , δk) ∈ ∆k is defined as follows:

(δ1, . . . , δk)
(a1,...,ak)σ = (δa11 , . . . , δ

ak
k )σ = (δ

a1σ−1

1σ−1 , . . . , δ
akσ−1

kσ−1 ).

We call the permutation representation of W with the product action in Sym(∆k)

the product action wreath product.

Definition 3.49. Let G be a primitive permutation group with Soc(G) ∼= Tm for

some m > 1. We say that G is of product type if there exists a non-trivial divisor

l | m and a primitive group P of almost simple or diagonal type, with Soc(P ) ∼= T l,

such that G is permutation isomorphic to a subgroup of a product action wreath

product W := P o Sm/l.

If G is of product type then we identify G with the corresponding subgroup of W .

If P is of degree n then W ≤ Snm/l . Hence the degree of any group of product

type is nm/l.

By [16, Lemma 4.5A], W is the normalizer of Soc(G) in Sd and we have that

Soc(G) = Soc(W ) ∼= Soc(P )m/l.

We therefore find the groups G such that Soc(W ) ≤ G ≤ W , for which G is a

primitive permutation group (of degree nm/l).

Since P is of almost simple or diagonal type, the degree n of P is at least 5. Our

condition that 4096 ≤ d = nm/l < 8192 implies that m/l ≤ 5 and the following

values of n can occur:

• m/l = 2 and 64 ≤ n < 91,

• m/l = 3 and 16 ≤ n < 21,

• m/l = 4 and 8 ≤ n < 10, or
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• m/l = 5 and n = 6.

The primitive groups of degree less than 91 all appear in the primitive groups

library of MAGMA.

Using this library we find all primitive almost simple and diagonal type groups of

degree at most 91. We define P to be the largest primitive group in its cohort; by

Remark 3.3, this is a unique group. We create a new list consisting of these groups

which we call maximal cohort representatives.

The only diagonal type group in this list is A2
5.2

2 which has socle isomorphic to

A5 × A5 and is of degree 60. No power of 60 lies in our range so for l > 1 we will

not find any primitive groups of product type with degree in our range.

Every other primitive group P must be of almost simple type. Hence l = 1 and

m = 2, 3, 4, or 5.

For each P we construct the product action wreath product W = P o Sm/l. We

then take the quotientQ := W/Soc(W ) and corresponding epimorphism ρ : W → Q.

For any subgroup S of Q, we consider the preimage of S under ρ, i.e. the subgroups

of W containing its socle. The primitive preimages are the primitive product type

groups of degree nm/l.

We give the following procedure for a general primitive group P of almost simple

or diagonal type, as it will be useful in Section 4.3.

The Product Type Groups

Input: A primitive almost simple or diagonal type group P of degree n, with

4096 ≤ nm/l ≤ 8191 such that Soc(P ) ∼= T l for some non-abelian

simple group T , l ≥ 1, m ≥ 2, and m > l.

Output: The full cohort of primitive product type groups of degree nm/l with

socle Tm.

Step 1: Construct an empty list Primitive.

Step 2: Construct the product action wreath product W = P oSm/l via “Prim-

itiveWreathProduct”. Construct the quotient Q = W/Soc(W ), and

define ρ to be the epimorphism W → Q.
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Step 3: Define a list Sub of conjugacy class representatives of the subgroups

of Q.

Step 4: For each S ∈ Sub if the preimage G, of S under ρ is primitive then

Append G to Primitive.

Step 5: Return: Primitive.

Theorem 3.50. The product action type primitive permutation groups of degree

4096 ≤ d < 8192 are given in Table 17.

Proof. Input every almost simple primitive group of degree at most 91 into the

procedure above. �
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4. A Non-Affine Primitive Group Function up to Degree 1000000

In this section we discuss the methods that we used to produce a general function

in MAGMA which, for a given 1 ≤ d ≤ 1000000, outputs all non-affine primitive

groups of degree d.

We chose to omit the affine type groups as this is a major bottleneck in producing

primitive groups of larger degrees. For example, producing the affine type groups of

degree 38 required around one week of computation time.

4.1. Almost simple groups. As in Section 3.2, we split the almost simple groups

into different cases depending upon their socle. We begin with an empty list

Primitive to which we will add sublists of cohorts of primitive groups.

4.1.1. Alternating groups. Recall Definition 3.29, for any degree d > 4 the groups

Ad and Sd in their natural action form a single cohort. Thus we may add these

groups as a cohort to Primitive.

We now find the indices n such that An or Sn have a primitive action of degree

d other than the natural action. We use the methods from the proof of Proposition

3.31. This produces three (possibly empty) lists of indices corresponding to the

three cases in the proof.

For each of these indices we produce the almost simple groups with socle An

and then find any maximal subgroups of degree d using the function “MaximalSub-

groups” in MAGMA. If any are found we add the corresponding primitive groups

to Primitive.

Primitive Almost Simple Groups with Alternating Socles

Input: An integer 1 ≤ d ≤ 1000000.

Output: A list Primitive, consisting of all almost simple primitive groups of

degree d with an alternating socle.

Step 1: Add [Ad, Sd] under their natural actions to a list Primitive.

Step 2: Define three empty lists A1, A2, and A3.

Step 2(a): For each integer 5 ≤ i ≤ 18 if 2d ≤ b(i+ 1)/2c! then add i to A1.

Step 2(b): For each 2 ≤ i ≤ 7 and 2 ≤ j ≤ 11, if (ij)!/((j!)ii!) = d then add

ij to A2.

Step 2(c): For each integer i ≥ 5 such that
(
i
2

)
≤ d consider every integer

k ≥ 2 such that k ≤ d(i− 1)/2e. If d = i!/(k!(i− k)!) then add i

to A3.
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Step 3: For n in A1, define S := Sn and A := Soc(S). Then:

Step 3(a): Create the list MaxS of representatives of the conjugacy classes

of the primitive maximal subgroups of S with index d. For each

MS in MaxS do C := CosetImage(MS, S) and Append C to

Primitive.

Step 3(b): Create the list MaxA of representatives of the conjugacy classes

of the primitive subgroups of S which are maximal subgroups

of A with index d in A. For each MA in MaxA do C :=

CosetImage(MA, A) and Append C to Primitive.

Step 4: For n in A2, define S := Sn and A := Soc(S). Then proceed as in

Step 3(a) and Step 3(b) but for transitive, imprimitive maximal

subgroups of S.

Step 5: For n in A3, define S := Sn and A := Soc(S). Then proceed as in

Step 3(a) and Step 3(b) but for intransitive maximal subgroups of

S.

Step 6: Return: Primitive.

We note that, for clarity of reading, we have omitted the almost simple groups

with socle A6, as Aut(A6) � S6. These primitive groups are of index at most 45 and

are described in detail in [36].

4.1.2. Classical groups. In this section we give the methods we used to produce our

general function in MAGMA which, for a given d ≤ 1000000, outputs all of the al-

most simple type groups with classical socles. Recall that q is always a prime power.

We first consider the groups T = L2(q). For any q ≥ 7 with q 6= 9, there is

an almost simple primitive group of degree q + 1 with socle L2(q). For each input

d ≤ 1000000, calculating the maximal subgroups of all L2(q)’s with q+ 1 ≤ d would

be computationally intensive. For example, the input d = 1000000 would give 78729

such q’s. Finding the maximal subgroups for each corresponding L2(q) would not

be feasible.

However the maximal subgroups of L2(q) are well known, see for example [6, Ta-

ble 8.1 and Table 8.2]. We can therefore directly check, via the possible orders of

maximal subgroups, whether there exists some q such that L2(q) has a maximal

subgroup of index d.

If T 6= L2(q) then we use the same method as Proposition 3.33, to find all possible

classical simple groups that are the socle of a primitive group of degree d ≤ 1000000.
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Proposition 4.1. Let G be an almost simple group with a faithful primitive per-

mutation action of degree less than 1000000 such that the socle H of G is classical.

Then H appears in Table 3.

Proof. The proof is a repeat of the proof of Proposition 3.33, but for degree 1000000.

�

For each input d ≤ 1000000, it is again impractical to search through each classi-

cal group T with P (T ) ≤ 1000000 to determine whether T has a maximal subgroup

of index d. Therefore for each group T in Table 3, we used the MAGMA func-

tions “MaximalSubgroups” and “ClassicalMaximals” to find and store the indices

of every maximal subgroup M ≤ T such that |T : M | ≤ 1000000. These functions

were created via the tables in [6] and [28]. We also stored the indices of any novelties.

We stored these indices in lookup tables, Tables 25, 26, 27, 28, 29, and 30. If d

appears in a lookup table, then we know the associated simple group T . Therefore

for a given input 1 ≤ d ≤ 1000000, we calculate only the corresponding almost

simple groups with classical socle T . For the method to use these tables we refer

the reader to Section 6.3.

Primitive Almost Simple Groups with Classical Socles

Input: An integer 1 ≤ d ≤ 1000000.

Output: A list, Primitive, consisting of all almost simple primitive groups

of degree d with a classical socle.

Step 1: Define an empty list SimpleGroups.

Step 2(a): Use known results on the possible indices of maximal subgroups of

L2(q) to determine for which q there is a maximal subgroup of index

d in L2(q). For each such q, Append L2(q) to SimpleGroups.

Step 2(b): Use the lookup tables (25, 26, 27, 28, 29, and 30) to find the

possibilities for the classical socles of the almost simple group of

degree d (other than non-novelty L2(q)). Append each of these

groups to SimpleGroups.

Step 2(c): If SimpleGroups is empty then Return: SimpleGroups.

Step 3: For each T ∈ SimpleGroups, input A := Aut(T ) into the classical

almost simple groups procedure (See Section 3.2.2), with bounds

of d for the index of any maximal subgroups. This outputs a new

list Primitive.

Step 4: Return: Primitive.
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Group n q

Ln(q) n = 2 7 ≤ q ≤ 999983, q 6= 9

n = 3 3 ≤ q ≤ 997

n = 4 3 ≤ q ≤ 97

n = 5 2 ≤ q ≤ 31

n = 6 2 ≤ q ≤ 13

n = 7 2 ≤ q ≤ 9

n = 8 2 ≤ q ≤ 7

n = 9 2 ≤ q ≤ 5

n = 10 2 ≤ q ≤ 4

11 ≤ n ≤ 13 2 ≤ q ≤ 3

14 ≤ n ≤ 19 q = 2

S2m(q) m = 2 3 ≤ q ≤ 97

m = 3 2 ≤ q ≤ 13

m = 4 2 ≤ q ≤ 7

m = 5 2 ≤ q ≤ 4

m = 6 2 ≤ q ≤ 3

7 ≤ m ≤ 10 q = 2

Un(q) n = 3 3 ≤ q ≤ 97

n = 4 2 ≤ q ≤ 31

n = 5 2 ≤ q ≤ 7

n = 6 2 ≤ q ≤ 4

n = 7 2 ≤ q ≤ 3

8 ≤ n ≤ 11 q = 2

PΩ2m+1(q) m = 3 3 ≤ q ≤ 13

m = 4 3 ≤ q ≤ 7

5 ≤ m ≤ 6 q = 3

PΩ+
2m(q) m = 4 2 ≤ q ≤ 9

m = 5 2 ≤ q ≤ 5

6 ≤ m ≤ 7 2 ≤ q ≤ 3

8 ≤ m ≤ 10 q = 2

PΩ−2m(q) m = 4 2 ≤ q ≤ 9

m = 5 2 ≤ q ≤ 5

6 ≤ m ≤ 7 2 ≤ q ≤ 3

8 ≤ m ≤ 10 q = 2

Table 3. Classical socles of almost simple groups with minimal de-
gree at most 1000000.

4.1.3. Exceptional groups of Lie type and Sporadic Simple Groups. In this section

we give the methods we used to produce our general function in MAGMA which, for

a given d ≤ 1000000, outputs all of the almost simple type groups with exceptional

or sporadic socles. Recall that q is always a prime power.
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The following is essentially Proposition 3.40.

Proposition 4.2. Let G be an almost simple group with a faithful primitive per-

mutation action of degree d where d ≤ 1000000 such that Soc(G) is an exceptional

group. Suppose that Soc(G) is not an alternating or classical group. Then Soc(G)

appears on Table 4.

Proof. This proof is exactly the proof of Proposition 3.40, but with d ≤ 1000000. �

Group Conditions

E6(2)

F4(2)

G2(q) 3 ≤ q ≤ 13

Sz(22m+1) 1 ≤ m ≤ 4
3D4(q) 2 ≤ q ≤ 4
2F4(2)′

2G2(33)

Table 4. Exceptional socles of almost simple groups with minimal
degree at most 1000000.

.

The list of maximal subgroups of the sporadic groups is complete with the ex-

ception of the monster group M . The minimal degree of a faithful permutation

representation of M is ≈ 1020 >> 1000000.

Proposition 4.3. Let G be an almost simple group with a sporadic socle. If G has

a faithful primitive permutation action of degree d where d ≤ 1000000 then Soc(G)

appears in Table 5.

Proof. We use the ATLAS [12] to find the maximal subgroups of the sporadic groups

T with indices at most 1000000. These maximal subgroups correspond to faithful

primitive group actions with socle T . �

Each of the groups in Tables 4 and 5 have computable maximal subgroups in

MAGMA using the “MaximalSubgroups” function with the following exceptions:
3D4(3), 3D4(4), Sz(128), Sz(512), E6(2), Co1, Fi24

′, O’N, and G2(q) for 7 ≤ q ≤ 13.

We have stored all of the indices and novelty indices in lookup tables, Tables 31

and 32. For the method to use these tables we refer the reader to Section 6.3.

The procedure described below works for all d ≤ 1000000 with the following

exceptions, d = 16385, 19608, 26572, 37449, 58653, 58996, 66430, 98280, 122760,

130816, 131328, 139503, 177156, 186004, 262145, 265356, 266085, 306936, 328965,

402234, 664300, 885115, and 886446. These exceptions correspond to the indices of

maximal subgroups of the simple groups which do not have computable maximal

subgroups in MAGMA, described above.
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Simple Group Simple Group

M11 McL

M12 Suz

M22 He

M23 Fi22

M24 Fi23

HS Fi24
′

J2 J1

Co1 O’N

Co2 J3

Co3 Ru

Table 5. Sporadic socles of almost simple groups with minimal de-
gree at most 1000000.

.

Primitive Almost Simple Groups with Exceptional or Sporadic Socles

Input: An integer d ≤ 1000000, with d not one of the exceptions listed above.

Output: A list PrimitiveGroups, consisting of all almost simple primitive

groups of degree d ≤ 1000000 with an exceptional or sporadic socle.

Step 1: Define empty lists SimpleGroups and PrimitiveGroups. Use the

lookup tables (31, 32) to determine whether there is an almost simple

group of degree d with an exceptional or sporadic socle, T . Append

each such T to SimpleGroups.

Step 2: If SimpleGroups is empty then Return: SimpleGroups.

Step 3: For each T ∈ SimpleGroups:

Step 3(a): Define A := Aut(T ) and input A into a procedure identical to

the exceptional or sporadic group procedure described in Sec-

tion 3.2.6, but with degree at most 1000000. This returns a list

Primitive.

Step 3(b): For each P ∈ Primitive append P to PrimitiveGroups.

Step 4: Return: PrimitiveGroups.

4.1.4. The exceptions. We now explicitly construct the almost simple primitive groups

of degree d with exceptional or sporadic socles, where d is one of the exceptions. In

each case we demonstrate how to compute the maximal subgroup, of index d, of the

corresponding almost simple group. We then find the full cohort of primitive groups

corresponding to this maximal subgroup via the same methods as the procedure

given in Section 3.2.6. In several of the cases we find the maximal subgroup of the
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almost simple group as the stabilizer of a subspace of a vector space upon which the

image of a faithful representation of the group is acting.

The group 3D4(3).

Input: An integer d = 26572 or d = 186004.

Output: A list Primitive containing the full cohort of almost simple primitive

groups with socle 3D4(3) of degree d.

Step 1: Define an empty list Primitive. Define G to be the matrix represen-

tation of 3D4(3) in GL(8, 27) via G := “ChevalleyGroup(“3D”, 4, 3)”.

Define V := F8
27 to be the vector space upon which G is acting.

Step 2: If d = 26572 then define M to be the stabilizer in G of a 2-dimensional

subspace of V , generated by the first two basis vectors of V .

If d = 186004 then define M to be the stabilizer in G of a 1-

dimensional subspace of V , generated by the first basis vector of V .

Step 3: Define P to be the image of the permutation representation of G

acting on the cosets of M in G via “CosetImage”.

Step 4: Calculate N := NSd(Soc(P )) and the quotient Q := N/Soc(N) with

corresponding epimorphism ρ : N → Q.

For each conjugacy class representative S of the subgroups of Q, if the

preimage s of S under ρ is primitive then Append s to Primitive.

Step 5: Return: Primitive.

The group 3D4(4).

Input: The integer d = 328965.

Output: A list Primitive containing the full cohort of almost simple primitive

groups with socle 3D4(4) of degree d.

Step 1: Define an empty list Primitive.

Step 2: Construct A as the image of a permutation representation of

Aut(3D4(4)) via “AutomorphismGroupSimpleGroup(“3D4”, 4)”.

This representation is primitive of degree d.

Step 3: Construct the quotient Q = A/Soc(A) with corresponding epimor-

phism ρ : A→ Q.
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For each conjugacy class representative S of the subgroups of Q, if the

preimage s of S under ρ is primitive then Append s to Primitive.

Step 4: Return: Primitive.

The groups G2(q) for 7 ≤ q ≤ 13.

Input: An integer d = 19608, 37449, 66430, 177156, or 402234.

Output: A list Primitive, consisting of all almost simple primitive

groups of degree d with socle G2(q) for some 7 ≤ q ≤ 13.

Step 1: Define empty lists Primitive and CohortReps.

Step 2(a): If d = 19608 then define q := 7.

Step 2(b): If d = 37449 then define q := 8.

Step 2(c): If d = 66430 then define q := 9.

Step 2(d): If d = 177156 then define q := 11.

Step 2(b): If d = 402234 then define q := 13.

Step 3(a): Define G to be the matrix representation of G2(q) in GL(7, q)

via G := “ChevalleyGroup(“G”, 2, q)”. Define V to be the

vector space on which G is acting.

Step 3(b)(i): Define V1, V2 to be 1, 2-dimensional subspaces of V , generated

by the first, and first and second basis vectors of V respectively.

Step 3(b)(ii): Define Pi to be image of the permutation representation of the

action of G on the cosets of the stabilizer in G of Vi via “Cose-

tImage”.

Append P1 and P2 to CohortReps.

Step 4: For each P ∈ CohortReps construct NSd(Soc(P )) and Q :=

N/Soc(P ) with corresponding epimorphism ρ : N → Q.

Define the list Sub of conjugacy class representatives of sub-

groups of Q.

For each S ∈ Sub if the preimage G of S under ρ is primitive

then Append G to Primitive.

Step 5: Return: Primitive.
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The groups G2(q) for q = 7, 11.

Input: An integer d = 58653, 58996, 886446, or 885115.

Output: A list Primitive, consisting of all almost simple primitive groups

of degree d with socle G2(q) for q = 7 or 11.

Step 1: Define empty lists Primitive and CohortReps.

Step 2(a): If d = 58996 or 58653 then define G to be the matrix representation

of G2(7) in GL(7, 7) via “ChevalleyGroup(“G”, 2, 7)”, and V = F7
7

to be the vector space upon which G is acting. Finally define v :=

(1, 4, 0, 0, 1, 1, 2) ∈ V if d = 58996, or v := (1, 5, 5, 3, 0, 4, 5) ∈ V if

d = 58653.

Step 2(b): If d = 886446 or 885115 then define G to be the matrix rep-

resentation of G2(11) in GL(7, 11) via “ChevalleyGroup(“G”, 2,

11)”, and V = F7
11 to be the vector space upon which G is act-

ing. Finally define v := (1, 4, 9, 0, 3, 3, 4) ∈ V if d = 886446, or

v := (1, 1, 9, 5, 10, 6, 10) ∈ V if d = 885115.

Step 3: Define W to be the 1-dimensional subspace of V generated by v.

Define P to be the image of the permutation representation of G

acting on the cosets of the stabilizer in G of W via “CosetImage”.

Append P to CohortReps

Step 4: For each P ∈ CohortReps construct NSd(Soc(P )) and Q :=

N/Soc(P ) with corresponding epimorphism ρ : N → Q.

Define the list Sub of conjugacy class representatives of subgroups

of Q.

For each S ∈ Sub if the preimage G of S under ρ is primitive then

Append G to Primitive.

Step 5: Return: Primitive.

The group G2(8).

Input: An integer d = 130816, 131328.

Output: A list Primitive, consisting of all almost simple primitive groups

of degree d with socle G2(8).

Step 1: Define empty lists Primitive and CohortReps.
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Step 2: Define G to be the matrix representation of G2(8) in GL(7, 8) via

“ChevalleyGroup(“G”, 2, 8)”. Define V = F7
8 to be the vector

space upon which G is acting. Let α be a primitive element of F8.

Step 3(a): If d = 130816 then define v1, . . . , v6 ∈ V via

v1 := (1, 0, 0, 0, 0, 0, 0), v2 := (0, 1, 0, 0, 0, 0, 1), v3 :=

(0, 0, 1, 0, 0, 0, 0), v4 := (0, 0, 0, 1, 0, 0, α6), v5 := (0, 0, 0, 0, 1, 0, α6),

v6 := (0, 0, 0, 0, 0, 1, α4).

Define W to be the 6-dimensional subspace of V generated by vi

with 1 ≤ i ≤ 6.

Construct P as the image of the permutation representation aris-

ing from the action of G on the cosets of the stabilizer in G of W

via “CosetImage”.

Step 3(b): If d = 131328 then define v1, . . . , v3 ∈ V via

v1 := (1, 0, 0, α4, α3, α5, α), v2 := (0, 1, 0, α2, α5, α4, α5), v3 :=

(0, 0, 1, α6, α5, α5, α3).

Define W to be the 3-dimensional subspace of V generated by vi

with 1 ≤ i ≤ 3.

Construct I as the image of the permutation representation arising

from the action of G on the cosets of the stabilizer in G of W via

“CosetImage”.

I is imprimitive of degree 262656 = 2d.

Construct P as the image of the permutation representation arising

from the action of I on one of its blocks B = “MinimalPartition(I)”

via “BlocksAction”.

Step 3(c): Append P to CohortReps

Step 4: For each P ∈ CohortReps construct NSd(Soc(P )) and Q :=

N/Soc(P ) with corresponding epimorphism ρ : N → Q.

Define the list Sub of conjugacy class representatives of subgroups

of Q.

For each S ∈ Sub if the preimage G of S under ρ is primitive then

Append G to Primitive.

Step 5: Return: Primitive.
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The group G2(9).

Input: An integer d = 266085, 265356, 664300.

Output: A list Primitive, consisting of all almost simple primitive groups

of degree d with socle G2(9).

Step 1: Define empty lists CohortReps and Primitive.

Step 2(a): If d = 266085 then define G to be a matrix representation of G2(9)

in GL(7, 9) via “ChevalleyGroup(“G”, 2, 9)” and define V = F7
9 to

be the vector space upon which G is acting. Let α be a primitive

element of F9.

Step 2(b): Define v1, . . . , v3 ∈ V via v1 := (1, 0, α2, α, 0, α5, α2), v2 :=

(0, 0, 0, 0, 1, α5, α6), v3 := (0, 1, α5, α2, 0, 1, 2).

Define W to be the 3-dimensional subspace of V generated by vi

with 1 ≤ i ≤ 3.

Construct I as the image of the permutation representation arising

from the action of G on the cosets of the stabilizer in G of W via

“CosetImage”.

I is imprimitive of degree 532170 = 2d.

Construct P as the image of the permutation representation arising

from the action of I on one of its blocks B = “MinimalPartition(I)”

via “BlocksAction”.

Then P is primitive of degree d.

Step 2(c): Append P to CohortReps.

Step 3(a): If d = 265356 then define G to be a matrix representation of G2(9)

in GL(7, 9) via “ChevalleyGroup(“G”, 2, 9)” and define V = F7
9 to

be the vector space upon which G is acting. Let α be a primitive

element of F9.

Step 3(b): Define v1, . . . , v6 ∈ V via v1 := (0, 0, 1, 0, 0, 0, α), v2 :=

(0, 0, 0, 0, 1, 0, 2), v3 := (1, 0, 0, 0, 0, 0, α), v4 := (0, 1, 0, 0, 0, 0, α6),

v5 := (0, 0, 0, 1, 0, 0, α7), v6 := (0, 0, 0, 0, 0, 1, 2).

Define W to be the 6-dimensional subspace of V generated by vi

with 1 ≤ i ≤ 6.

Construct P as the image of the permutation representation aris-

ing from the action of G on the cosets of the stabilizer in G of W

via “CosetImage”.

Then P is primitive of degree d.

Step 3(c): Append P to CohortReps.
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Step 4(a): If d = 664300 then define A to be the image of a permutation

representation of Aut(G2(9)) of degree 132860 via

A := “AutomorphismGroupSimpleGroup(“G2”, 9)”. Define G :=

Soc(A).

Step 4(b): Define S to be a Sylow 3-subgroup of G.

Define M to be the normalizer in A of S and P to be the image of

the permutation representation of A acting on the cosets of M in

A via “CosetImage”.

M is a maximal subgroup of A of index d and P is the only group

in its cohort.

Step 4(c): Append P to Primitive.

Step 5: For each P ∈ CohortReps, calculate N := NSd(Soc(P )) and the

quotient Q := N/Soc(P ), together with the epimorphism ρ : N →
Q. For each conjugacy class representative S of the subgroups

of Q, if the preimage s of S in ρ is primitive then Append s to

Primitive.

Step 6: Return: Primitive.

The groups Sz(128) and Sz(512).

Input: An integer d = 16385 or 262145.

Output: A list Primitive, consisting of all almost simple primitive groups

of degree d with socle Sz(128) or Sz(512).

Step 1: Define an empty list Primitive.

Step 2(a): If d = 16385 then construct A as the image of a permutation

representation of Aut(Sz(128)) via

“AutomorphismGroupSimpleGroup(“2B2”, 128)”.

This representation is of degree d and is primitive.

Step 2(b): Define G := Soc(A).

Here G ∼= Sz(128) and G is primitive of degree d. Furthermore

A ∼= G.7, so these are the only groups in the cohort.

Step 2(c): Append A and G to Primitive.

Step 3(a): If d = 262145 then construct A as the image of a permutation

representation of Aut(Sz(512)) via

“AutomorphismGroupSimpleGroup(“2B2”, 512)”.

This representation is of degree d and is primitive.
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Step 3(b): Define G := Soc(A).

Then G ∼= Sz(512) and G is primitive of degree d.

Step 3(c): Define N := NSd(G) and define Q := N/Soc(N) with correspond-

ing epimorphism ρ : N → Q. For each conjugacy class represen-

tative S of the subgroups of Q, if the preimage P of S in ρ is

primitive then Append P to Primitive.

Step 4: Return: Primitive.

The group E6(2).

Input: An integer d = 139503.

Output: A list Primitive, consisting of all almost simple primitive groups of

degree d with socle E6(2).

Step 1: Define an empty list Primitive.

Step 3: Construct a matrix representation G, of E6(2) in GL(27, 2) via

G :=“ChevalleyGroup(“E”, 6, 2)”. Define V := F27
2 to be the vec-

tor space upon which G is acting.

Step 4: Construct the image P of the permutation representation of the action

of G on the one dimensional subspace of V generated by the first basis

vector via “OrbitImage”.

Then P is primitive of degree d and P equals the normalizer in Sd of

its socle, so P is the only group in this cohort.

Append P to Primitive.

Step 5: Return: Primitive.

The groups Co1, Fi24
′, and O’N.

Input: An integer d = 98280, 122760, or 306936.

Output: A list Primitive, consisting of all almost simple primitive groups

of degree d with socle Co1, Fi24
′, or O’N.

Step 1: Define an empty list Primitive.

Step 2: If d = 98280 then construct A as the image

of a permutation representation of Aut(Co1) via

“AutomorphismGroupSimpleGroup(“Co1”)”.
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This representation is of degree d and is primitive. Furthermore

Aut(Co1) = Co1, so this is the only group in the cohort.

Append A to Primitive.

Step 3(a): If d = 122760 then construct A as the image of a permutation

representation of Aut(O’N) via

“AutomorphismGroupSimpleGroup(“ON”)”.

Then A is of degree 2d.

Step 3(b): Define G := Soc(A).

Then G ∼= O’N and G is intransitive of degree 2d, with 2 orbits.

Step 3(c): Define P to be the image of the permutation representation of G

acting on one of its orbits via “OrbitImage”.

Then P is primitive of degree d and P equals the normalizer in Sd

of its socle, so P is the only group in this cohort.

Step 3(d): Append P to Primitive.

Step 4(a): If d = 306939 then construct A as the image of a permutation

representation of Aut(Fi24
′) via

“AutomorphismGroupSimpleGroup(“Fi24”)”.

This representation is of degree d and is primitive.

Step 4(b): Define G := Soc(A).

Then G ∼= Fi24
′ and G is primitive of degree d. Furthermore A ∼=

G.2 and so the only possibilities for primitive groups in this cohort

are A and G.

Step 4(c): Append A and G to Primitive.

Step 5: Return: Primitive.

4.2. Diagonal type groups. The procedure given in Section 3.3 is directly gener-

alisable for d ≤ 1000000. We are only required to determine for which d we use the

procedure, and the corresponding simple group to input.

The degree of a primitive group of diagonal type is |T |m−1 for some non-abelian

simple group T . The smallest non-abelian simple group is A5 and |A5|3 = 216000 <

1000000 < |A5|4 = 12960000. Thus m ≤ 4. We therefore need to consider simple

groups such that |T | ≤ 1000000 for m = 2, |T | ≤ 1000 for m = 3, and |T | ≤ 100 for

m = 4.

We therefore check whether there exists a possible T and m such that |T |m−1 = d.

If there is then we input T into the diagonal groups procedure.
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We display the simple groups T and the integers m, corresponding to primitive

groups of degree |T |m−1 ≤ 1000000 in Table 6.

Simple Group T Conditions Possible m

A5 2,3,4

A6 2, 3

An 7 ≤ n ≤ 9 2

L2(q) 7 ≤ q ≤ 11 2, 3

L2(q) 13 ≤ q ≤ 125 2

L3(q) 3 ≤ q ≤ 5 2

U3(q) 3 ≤ q ≤ 5 2

S4(q) 3 ≤ q ≤ 4 2

Sz(8) 2

Mn n = 11, 12, 22 2

Jn n = 1, 2 2

Table 6. Simple groups T corresponding to diagonal type groups
with socle Tm and minimal degree at most 1000000.

.

The Diagonal Type Groups

Input: An integer d ≤ 1000000.

Output: A list PrimitiveGroups, consisting of all diagonal type primitive

groups of degree d ≤ 1000000.

Step 1: Define an empty list PrimitiveGroups. Check whether d = |T |m−1

for any simple group T and 2 ≤ m ≤ 4.

Use Table 6 to determine the possibilities for T and m.

Step 2: If there exists some simple group T and 2 ≤ m ≤ 4 such that d =

|T |m−1. Then

Step 2(a): for each such T , input T into the diagonal type groups procedure

(given in Section 3.3), with bounds of d.

This returns a list Primitive.

For each group P in Primitive, Append P to

PrimitiveGroups.

Step 2(b): Repeat Step 2 until all groups T have been considered.

Step 3: Return: PrimitiveGroups.

4.3. Product type groups. The procedure given in Section 3.4 is directly gener-

alisable for d ≤ 1000000. We are required only to determine for which d we use the

procedure, and which groups to input for those d.
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The degree of any primitive group of product type is nm/l, where n is the degree

of an almost simple, or diagonal type group, and m/l ≥ 2. Therefore n ≤ 1000.

Since n ≥ 5 we also have that m/l ≤ 8.

For an input d ≤ 1000000 we produce lists of integers d1, . . . , d7 such that di
i+1 =

d. Then as all primitive groups of degree up to 1000 have been classified, we can

find any corresponding almost simple, or diagonal type groups.

The Product Type Groups

Input: An integer d ≤ 1000000.

Output: A list PrimitiveGroups, consisting of all product type primitive

groups of degree d ≤ 1000000.

Step 1: For 1 ≤ i ≤ 7 define di := bd1/(i+1)c and define the corresponding lists

Pi consisting of the largest cohort representatives from each cohort of

primitive almost simple or diagonal type groups of degree di. Define

an empty list PrimitiveGroups.

Step 2: For each 1 ≤ i ≤ 7,

Step 2(a): for each group P in Pi,

Step 2(a)(i): if deg(P )i = d then input P into the product type groups

procedure.

This returns a list Primitive.

For each group G in Primitive, Append G to

PrimitiveGroups.

Step 2(a)(ii): If deg(P )i 6= d then Continue P .

Step 3: Return: PrimitiveGroups.
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5. Classification of Quasiprimitive Groups of Degree d ≤ 3600

In this section we classify the quasiprimitive permutation groups of degree d ≤
3600 up to permutation isomorphism. This will rely heavily upon an “O’Nan-Scott”

type theorem given by C. Praeger in 1993 [33, Theorem 1].

Recall Definition 1.5, a transitive permutation group is quasiprimitive if all of its

non-trivial normal subgroups are transitive.

Theorem 5.1 (Praeger,’93). Let G ≤ Sym(Ω) be a finite quasiprimitive permutation

group with |Ω| = d. Let H ≤ G be the socle of G. Then H ∼= Tm for some finite

simple group T , m ≥ 1 and G is permutation isomorphic to a group of exactly one

of the following types.

I (Affine Type) Here T ∼= Cp for some prime p, and H is the unique minimal

normal subgroup of G and is regular on Ω of degree d = pm. The set Ω can be

identified with H ∼= Cm
p so that G is a subgroup of the affine group AGL(m, p)

with H the translation group and for α ∈ Ω the stabilizer Gα = G∩GL(m, p)

is irreducible on H. Moreover G is primitive on Ω.

II (Almost Simple Type) Here m = 1 and T is a non-abelian simple group.

T ≤ G ≤ Aut(T ) and for α ∈ Ω, G = TGα.

III In this case H ∼= Tm with m ≥ 2 and T is a non-abelian simple group. We

split this case into three types.

III(a) (Simple Diagonal Type) Define

W := {(a1, . . . , am) · π | ai ∈ Aut(T ), π ∈ Sm, ai ≡ aj Mod(Inn(T )) for all i, j}

where π ∈ Sm permutes the components ai in the natural way.

Then W is a group with socle H ∼= Tm and W is a not necessarily split

extension of H by Out(T )× Sm, i.e. we have W = H.(Out(T )× Sm).

Define an action of W on Ω by setting, for any α ∈ Ω,

Wα = {(a, . . . , a) · π | a ∈ Aut(T ), π ∈ Sm}.

Thus Wα
∼= Aut(T )× Sm, Hα

∼= T , and d = |T |m−1.

For 1 ≤ i ≤ m define Ti to be the subgroup of H consisting of the m-tuples

with 1 in all but the ith component, so that Ti ∼= T and H ∼= T1 × · · · × Tm.

Put Γ := {T1, . . . , Tm}, so that W acts on Γ.

We say that a subgroup G of W is of type III(a) if H ≤ G and one of the

following holds:

(i) m = 2 and and G acts trivially on Γ.
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(ii) G acts transitively on Γ,

Let P be the permutation group GΓ. We then have that Gα ≤ Aut(T ) × P ,

and G ≤ H · (Out(T )× P ).

Moreover in case (i) G has two minimal normal subgroups T1 and T2, both

regular on Ω, and G is primitive on Ω. In case (ii) H is the unique minimal

normal subgroup of G and G is primitive on Ω if and only if P is primitive

on Γ.

III(b) (Product Type) Let U be a quasiprimitive permutation group on a set Γ, of

type II or III(a). For k > 1, let W = U o Sk, and take W to act on ∆ = Γk

in its natural product action. Then for γ ∈ Γ and δ = (γ, . . . , γ) ∈ ∆ we

have Wδ = Uγ oSk and |∆| = |Γ|k. If K is the socle of U then the socle H of

W is Kk.

W acts naturally on the k factors in Kk, and we say that a subgroup G

of W is of type III(b) if H ≤ G, G acts transitively on these k factors and

one of the following holds:

(i) U is of type II, K ∼= T , m = k and H is the unique minimal normal

subgroup of G; further ∆ is a G-invariant partition of Ω and, for α in

the part δ ∈ ∆, Hδ = Tmγ < H and for some nontrivial normal subgroup

N of Tγ, Hα is a subdirect product of Nm, that is Hα projects surjectively

onto each of the direct factors N .

(ii) H is of type III(a), Ω = ∆, K ∼= Tm/k and G and U both have l

minimal normal subgroups where l ≤ 2; if l = 2 then each of the two

minimal normal subgroups of G is regular on Ω.

III(c) (Twisted Wreath Type) Here G is a twisted wreath product T twrφP , defined

as follows.

Let P have a transitive action on {1, . . . ,m} and let Q be the stabilizer

P1 of the point 1 in this action. We suppose that there is a homomorphism

φ : Q→ Aut(T ) such that
⋂
x∈P φ

−1(Inn(T ))x = {1}.
Define

H = {f : P → T | f(pq) = f(p)φ(q) for all p ∈ P, q ∈ Q}.

Then H is a group under pointwise multiplication, and H ∼= Tm. Let P act

on H by

fp(x) = f(px) for p, x ∈ P.

Define T twrφP to be the semidirect product of H by P with this action.

Define an action of G on Ω by setting Gα = P for some α ∈ Ω. We say that

G is of type III(c). Here d = |Tm| and H is the unique minimal normal

subgroup of G and H acts regularly on Ω.
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Remark 5.2. A quasiprimitive group is of type I (affine type) if and only if it is a

primitive group of affine type. These groups are already classified to degree 8191 >

3600 so we do not discuss these further.

5.1. Type II: Almost simple groups. In this section we will classify the quasiprim-

itive groups of type II of degree d ≤ 3600. This will require the use of the Classifi-

cation of Finite Simple Groups, see Theorem 1.23.

Let G be an almost simple group. As in Section 3.2, we denote by P (G) the

minimal integer d such that G has a faithful primitive permutation action of degree

d. We denote by Q(G) the minimal integer d such that G has a faithful, imprimitive,

quasiprimitive permutation action of degree d. We note that Q(G) > P (G) for all

G. Therefore we may restate Lemma 3.27 as follows:

Lemma 5.3. Let G be an almost simple group with socle T . Then Q(G) > P (G) ≥
P (T ).

A Quasiprimitive Test

Input: A permutation group G.

Output: true if G is quasiprimitive or false if G is not quasiprimitive.

Step 1: Construct the list Normal of conjugacy class representative of the

normal subgroups of G.

Step 2: For each N ∈ Normal, if N is intransitive then Return: false.

Step 4: Return: true.

5.1.1. Alternating groups. In this section we classify the quasiprimitive groups of

type II of degree d ≤ 3600, with alternating socles.

We recall Definition 3.29, for d > 4 the groups Ad and Sd in their natural action

form a single cohort of size 2, of improper primitive groups. We do not consider

these further.

Proposition 5.4. If G = An or Sn has a faithful quasiprimitive action, other than

the natural action, of degree d ≤ 3600, then n ≤ 85. If the stabilizer Gα in this

action acts transitively on {1, . . . , n} then n ≤ 14.

Proof. Let T be the socle of G. By Lemma 5.3, we have that Q(G) > P (G) ≥ P (T ).

Therefore, as in Proposition 3.31, we can consider simple groups and primitive

groups to find this upper bound for n.
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The proof may now be obtained by following the same argument as in the proof

of Proposition 3.31 but with d ≤ 3600. �

Type II Groups

Input: The automorphism group A of a non-abelian simple group T such

that P (T ) ≤ 3600.

Output: A list Quasiprimitive consisting of all type II quasiprimitive

groups with socle T .

Step 1: Construct an empty list Quasiprimitive.

Step 2: Define a list Groups consisting of conjugacy class representatives

of all subgroups of A containing Soc(A) ∼= T .

Step 3: For each G ∈ Groups create a list Sub consisting of conjugacy

class representatives in A of the subgroups of G with index at most

3600. Create an empty list Candidates.

Step 3(a): For each S ∈ Sub define C to be the image of the permu-

tation representation of G acting on the cosets of S in G via

“CosetImage”. Append C to Candidates.

Step 3(b): For each C in Candidates, if C is quasiprimitive

(check via above quasiprimitive test)

then Append C to Quasiprimitive.

Step 3: Return: Quasiprimitive.

Theorem 5.5. Let G be a quasiprimitive almost simple group of degree d ≤ 3600

with socle An. Then G appears in Table 18.

Proof. We use Proposition 5.4 to determine the possibilities for quasiprimitive al-

most simple groups with alternating socles.

For each alternating group An described in Proposition 5.4, we input Aut(An) into

the above procedure. �

5.1.2. Classical groups. In this section we classify the quasiprimitive groups of type

II of degree d ≤ 3600, with classical socles.

Recall Section 1.2, and as in Section 3.2.2, we denote a simple classical group by

Cln(q).

In the following proposition we find the maximum values of n and q (where q is

a prime power) such that P (Cln(q)) ≤ 3600
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Proposition 5.6. Let G be an almost simple group with a classical socle, such that

there exists a faithful quasiprimitive permutation action of G of degree less than or

equal to 3600. Then the socle of G appears in Table 7.

Proof. By Lemma 5.3 we only need to consider the simple classical groups.

The formulae for P (H) are given in [28, p.175, Table 5.2A] and corrected and

extended in [20, Table 4]. They are all monotonically increasing in each variable.

We may now complete the proof by using the same method as in the proof of

Proposition 3.33 but for degree 3600, which we do not repeat here. �

Group n q

Ln(q) n = 2 7 ≤ q ≤ 3593, q 6= 9

n = 3 3 ≤ q ≤ 59

n = 4 3 ≤ q ≤ 13

n = 5 2 ≤ q ≤ 7

n = 6 2 ≤ q ≤ 4

7 ≤ n ≤ 8 2 ≤ q ≤ 3

9 ≤ n ≤ 11 q = 2

S2m(q) m = 2 3 ≤ q ≤ 13

m = 3 2 ≤ q ≤ 4

m = 4 2 ≤ q ≤ 3

5 ≤ m ≤ 6 q = 2

Un(q) n = 3 3 ≤ q ≤ 13

n = 4 3 ≤ q ≤ 7

n = 5 2 ≤ q ≤ 3

6 ≤ n ≤ 7 q = 2

PΩ2m+1(q) m = 3 q = 3

PΩ+
2m(q) m = 4 2 ≤ q ≤ 3

5 ≤ m ≤ 6 q = 2

PΩ−2m(q) m = 4 2 ≤ q ≤ 3

5 ≤ m ≤ 6 q = 2

Table 7. Classical socles of almost simple groups with minimal de-
gree at most 3600.

Theorem 5.7. The quasiprimitive almost simple groups of degree d ≤ 3600 with

classical socles are displayed in Table 18.

Proof. We input the automorphism group of each of the simple classical groups

which appear in Table 7 into the procedure for type II groups. �
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5.1.3. Exceptional groups of Lie type. In this section we classify the quasiprimitive

groups of type II of degree d ≤ 3600 with exceptional socles.

Proposition 5.8. Let G be an almost simple group with a faithful quasiprimitive

permutation action of degree d where d ≤ 3600 such that Soc(G) is an exceptional

group. Suppose that Soc(G) is not an alternating or classical group. Then Soc(G)

is one of G2(3), G2(4), Sz(8), Sz(32), 3D4(2), or 2F4(2)′.

Proof. By Lemma 5.3, we only need to consider the simple exceptional groups.

We then follow the same arguments as Proposition 3.40 but for d ≤ 3600, which

we do not repeat here. �

Theorem 5.9. The quasiprimitive almost simple groups of degree d ≤ 3600 with

exceptional socles are displayed in Table 19.

Proof. We input the automorphism group of each of the simple exceptional groups

which appear in Proposition 5.8 into the procedure for type II groups. �

5.1.4. Sporadic simple groups. In this section we classify the quasiprimitive groups

of type II of degree d ≤ 3600 with sporadic socles.

The list of maximal subgroups of the sporadic groups is complete with the ex-

ception of the monster group M . However M has no transitive permutation rep-

resentation of degree ≤ 3600. The sporadic groups which have primitive, and so

quasiprimitive, permutation representations of degree d ≤ 3600 are

M11,M12,M22,M23,M24,HS, J2,Co2,Co3,McL, Suz,He,Fi22, and J1.

Theorem 5.10. The quasiprimitive almost simple groups of degree d ≤ 3600 with

sporadic socles are displayed in Table 19.

Proof. We input the automorphism group of each of the sporadic simple groups

described above into the procedure for type II groups. �

5.2. Type III. In this section we classify the quasiprimitive groups of degree d ≤
3600 which arise as type III groups in Theorem 5.1.

We note that any quasiprimitive group G of type III is permutation isomorphic

to a subgroup of W := Aut(T ) o Sm for some non-abelian simple group T and

m > 1. We identify the group G with the corresponding subgroup of W . In this

case H := Soc(W ) ∼= Tm is a subgroup of G.

The image of G in Sm under the projection map p : W → Sm, defined by

(a1, . . . , am)π 7→ π, is either transitive in cases III(b)(i) and III(c), or has two

orbits of equal length in cases III(a) and III(b)(ii).
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As in Section 3.3, for 1 ≤ i ≤ m we define Ti to be the subgroup of H con-

sisting of the m-tuples with 1 in all but the ith component, so that Ti ∼= T and

H ∼= T1 × · · · × Tm.

By Theorem 3.43 (iv), T1, . . . , Tm are the only minimal normal subgroups of H.

The following appears in [33, Proof of Theorem 1].

Lemma 5.11. Let G ≤ Sym(Ω) be a quasiprimitive group of type III. Then G

is permutation isomorphic to a subgroup of Aut(T ) o Sm, the socle of G is H =

{(a1, . . . , am)1 | ai ∈ Inn(T ), 1 ≤ i ≤ m} ∼= Tm, and the set of direct factors of H

is {T1, . . . , Tm} (as described above). For 1 ≤ i ≤ m define πi to be the projection

map of H onto Ti via ((a1, . . . , am)1)πi = (1, . . . , 1, ai, 1, . . . , 1)1. Fix α ∈ Ω.

(i) If (Hα)πi = Ti for some 1 ≤ i ≤ m then G is of type III(a) or III(b)(ii).

(ii) If (Hα)πi is a proper subgroup of Ti for every 1 ≤ i ≤ m then H is a minimal

normal subgroup of G and G = HGα.

(a) If (Hα)π1 = 1 then Hα = 1 and G is of type III(c).

(b) If (Hα)π1 < T1 and π1(Hα) 6= 1 then G is of type III(b)(i).

We consider each of the type III groups in turn.

5.2.1. Type III(a): Diagonal type groups. This is almost exactly the description of

the primitive groups of diagonal type given in Section 3.3. There is the following

difference. If G is a primitive group of diagonal type with m > 2 then G must

act primitively on the set of minimal normal subgroups of Soc(G) by conjugation.

However if G is a quasiprimitive group of type III(a) with m > 2, then G must act

transitively, but not necessarily primitively, on the set of minimal normal subgroups

of Soc(G) by conjugation.

Therefore the method we used to produce the primitive groups of diagonal type

may be used to construct the quasiprimitive groups of type III(a) with only the

following minor change. We use the procedure described in Section 3.3, however in

Step 2(e), instead of constructing the preimages of all primitive groups, we con-

struct the preimages of all transitive groups.

The degree of any quasiprimitive group of type III(a), is |T |m−1 where T is a

non-abelian simple group and m ≥ 2. Thus the options for T are:

A5, A6, A7,L2(7),L2(8),L2(11),L2(13),L2(17), and L2(19)

with m = 2 and

A5

with m = 3.
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Theorem 5.12. Let G be a quasiprimitive group of type III(a) such that the degree

of G is at most 3600. Then G is described on Table 20.

Proof. In general we input the groups T , described above, into the procedure de-

scribed below. Let G be a quasiprimitive group of degree d of type III(a).

If m = 2 then by Theorem 5.1, G is primitive. Therefore we only need to consider

the case T = A5 and m = 3.

By Theorem 5.1, if m > 2 then G acts transitively on the set of minimal normal

subgroups of Soc(G) = T by conjugation. Furthermore G is primitive if and only

if G acts primitively on the set of minimal normal subgroups of T by conjugation.

By Lemma 1.16, every transitive group of prime degree is primitive. Thus every

quasiprimitive group of degree d ≤ 3600, of type III(a) is primitive. �

We give the general method for finding type III(a) groups of degree d below.

Type III(a) Groups

Input: A non-abelian simple group T such that |T |m−1 = d for some m ≥
2.

Output: A list Quasiprimitive consisting of all diagonal type quasiprimi-

tive groups with socle Tm.

Step 1: Construct an empty list Quasiprimitive.

Step 2(a): For each m ≥ 2 such that |T |m−1 = d follow Steps 2(a), . . . ,2(d)

in the procedure in Section 3.3 with the bound of |T |m−1 = d in

Step 2.

Step 2(b): Follow Step 2(e) in the procedure in Section 3.3 with the following

change: if the preimage of s under ρ acts transitively then Append

the preimage of s under ρ to Quasiprimitive.

Step 3: Return: Quasiprimitive.

Example 5.13. The lowest possible degree for an imprimitive, quasiprimitive group

of type III(a) is |T |m−1 = 603 = 216000. This is because we require m ≥ 4 (so

that G can have a transitive but imprimitive action on the set of minimal normal

subgroups of Soc(G)) and T must be a non-abelian simple group.

Let T = A5 and input T into the above procedure with m = 4 and degree

range |T |4−1 = 216000. This produces 5 primitive groups and 11 imprimitive but

quasiprimitive groups of type III(a). All of these groups have socle isomorphic to

A5
4.

5.2.2. Type III(b): Product type groups. The description of groups of this type dif-

fers significantly from the corresponding class in the O’Nan-Scott Theorem (Product
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type), see Section 3.4.

By Theorem 5.1, any group G of type III(b) is permutation isomorphic to a sub-

group of the product action wreath product W := U oSk acting on a set Ω, where U

is a quasiprimitive permutation group of type II or III(a). We identify G with this

subgroup. We then also have that Soc(G) = Soc(W ) ≤ G and G acts transitively

on the k factors of Soc(W ).

In case III(b)(i), U is a quasiprimitive group of type II and so m = k and there

exists a non-abelian simple group T such that T ≤ U ≤ Aut(T ). We observe that

unlike in Section 3.4, the degree d of G is not necessarily equal to nm where n is the

degree of U . However d is bounded below by nm.

Hence by Lemma 5.3 and as deg(U) ≥ 5, we must have one of the following:

• m = 2 and T has a primitive action of degree at most 60,

• m = 3 and T has a primitive action of degree at most 15,

• m = 4 and T has a primitive action of degree at most 7,

• m = 5 and T has a primitive action of degree at most 5.

We display the possible non-abelian simple groups and their corresponding m’s on

Table 8.

Simple Group T Conditions Possible m

A5 2, 3, 4, 5

An 6 ≤ n ≤ 7 2, 3, 4

An 8 ≤ n ≤ 15 2, 3

An 16 ≤ n ≤ 60 2

L2(7) 2, 3, 4

L2(q) q = 8, 11, 13 2, 3

L2(q) 16 ≤ q ≤ 59 2

L3(3) 2, 3

L3(q) 4 ≤ q ≤ 7 2

L4(3) 2

L5(2) 2

U3(3) 2

U4(2) 2

S6(2) 2

Mn n = 11, 12 2, 3

Mn n = 22, 23, 24 2

Table 8. Simple groups T corresponding to groups of type III(b)(i)
with socle Tm, and minimal degree at most 3600.
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All quasiprimitive groups G of type III(b)(i) and of degree d ≤ 3600 are therefore

subgroups of W := Aut(T ) o Sm for some T,m described in Table 8.

As noted above, any quasiprimitive group G ≤ W of type III(b)(i) has the

following properties:

Soc(W ) ≤ G and G acts transitively on the m factors of Soc(W ). (?)

We may therefore search directly for conjugacy classes of subgroups of W with these

properties, (?), and test every transitive action of degree d ≤ 3600 of conjugacy class

representatives for quasiprimitivity.

Unfortunately it would be impractical to consider all of these transitive actions.

We recall that by Lemma 1.18, any transitive action of a group corresponds to the

action of right multiplication on the set of cosets of a subgroup S of that group and

a point stabilizer in G of this action is S.

Let G be a subgroup of W with the properties (?) and let H be the socle of G,

so H = Soc(W ). Let S be a subgroup of G such that the action of G on the set of

cosets of S in G corresponds to a quasiprimitive action of type III(b)(i) on a set Ω,

of degree d ≤ 3600. Then there exists α ∈ Ω such that S = Gα and |G : S| ≤ 3600.

By Lemma 5.11 (ii), Hα = S ∩ H is non-trivial and G = HS. Furthermore by

Lemma 5.11 (ii)(b), Hα does not project onto T1 under π1.

We may therefore refine the list of subgroups S of G to a more manageable

number by removing any without these properties described above. In particular

we require S such that, G = Soc(W )S, S∩Soc(W ) 6= {1}, and (S∩Soc(W ))π1 6= T1.

We may then produce all transitive groups corresponding to the action of G by

right multiplication on the set of cosets of S and test them for quasiprimitivity, via

the quasiprimitive test. By applying this method to all subgroups G of W with

the properties (?), we find all possible quasiprimitive groups of type III(b)(i) with

socle Tm.

We are not currently attempting to determine exactly which type II quasiprimitive

group U is. It is unclear from the statement of Theorem 5.1 whether U is uniquely

determined by the group G. We do however know the socle T of U .

Type III(b)(i) Groups

Input: An integer m > 1 and a non-abelian simple group T such that T

has a faithful primitive action of degree d where dm ≤ 3600.

Described in Table 8.
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Output: A list Quasiprimitive consisting of all type III(b)(i) quasiprim-

itive groups with socle isomophic to Tm.

Step 1: Construct empty lists Quasiprimitive and Candidates.

Step 2: Define W := Aut(T ) o Sm and the projection map p : W → Sm

given by (a1, . . . , am)π 7→ π.

Step 3: Define Q := W/Soc(W ) with corresponding epimorphism ρ : W →
Q. For each conjugacy class representative S of the subgroups of

Q, if the image under p, of the preimage G of S under ρ acts tran-

sitively then Append G to Candidates.

These are representatives of the subgroups of W which contain

Soc(W ) and act transitively on the factors of Soc(W ).

Step 4: For each G ∈ Candidates:

Step 4(a): Define Sub to be a list of conjugacy class representatives of

the subgroups of G of index at most 3600.

Step 4(b): For each S ∈ Sub: if S∩Soc(W ) is trivial or if 〈S, Soc(W )〉 6=
G or if S projects onto the factors of Soc(W ) then Remove:

S.

Step 4(c): Define N := NW (G). Define ConjReps to be a list of conju-

gacy class representatives of the groups in Sub under N .

Step 4(d): For each C ∈ ConjReps, Append the image of the permu-

tation representation of G acting on the cosets of C in G, to

Quasiprimitive.

Step 5: Return: Quasiprimitive.

In case III(b)(ii), U is a quasiprimitive group of type III(a) and so the degree

of U is n := |T |m−1 for some m ≥ 2.

By Theorem 5.1, the degree of a quasiprimitive group of type III(b)(ii) is nk =

|T |(m−1)k. As k ≥ 2 and T is a non-abelian simple group, the only possibilities are

k = 2 and U is a type III(a) group with socle A5
2, of degree 60.

The largest group in this cohort is P := A5
2.22. We let W := P o S2 with the

product action.

In this case the properties (?) must still hold and so we consider all subgroups G of

W of index 3600 such that Soc(W ) ≤ G and G acts transitively on the direct factors
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of Soc(W ). We then directly check each of these subgroups for quasiprimitivity. Any

quasiprimitive subgroup found is of type III(b)(ii).

Type III(b)(ii) Groups

Input: The diagonal type primitive group P = A5
2.22 of degree 60.

The largest diagonal type primitive group of degree 60.

Output: A list Quasiprimitive consisting of all type III(b)(ii) quasiprim-

itive groups with socle isomophic to (A5
2)2.

Step 1: Construct an empty list Quasiprimitive.

Step 2: Construct the product action wreath product W = P o S2 via

“PrimitiveWreathProduct”.

Construct the quotient Q = W/Soc(W ), and define ρ to be the

corresponding epimorphism W → Q.

Step 3: Define a list Sub of conjugacy class representatives of the sub-

groups of Q.

Step 4: For each S ∈ Sub if the preimage G, of S under ρ is quasiprimitive

then Append G to Quasiprimitive.

Step 5: Return: Quasiprimitive.

Theorem 5.14. Let G be a quasiprimitive group of type III(b) such that the degree

of G is at most 3600. Then G is described in Tables 21, 22, or 23.

Proof. We input all possible non-abelian simple groups T and integers k ≥ 2 such

that T has a faithful primitive action of degree d, where dk ≤ 3600, into the above

procedures for type III(b)(i) and III(b)(ii) groups. This returns all quasiprimitive

groups of type III(b)(i) and III(b)(ii). �

5.2.3. Type III(c): Twisted wreath type groups. This case has the most significant

changes from the corresponding class in the O’Nan-Scott Theorem 1.11. These

changes are large enough that the minimal degree of a primitive group of twisted

wreath (regular non-abelian) type is 606 whereas the minimal degree of a quasiprim-

itive group of type III(c) is 3600.

By Theorem 5.1, degree of a quasiprimitive group of type III(c) is d = |T |m where

T is a non-abelian simple group and m ≥ 2. Hence the only options for d ≤ 3600

are T = A5, m = 2, and d = 3600.
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We consider W := Aut(A5) o S2. Then any quasiprimitive group G of type III(c)

of degree d ≤ 3600 may be identified with a subgroup of W acting on a set Ω of size

d. Furthermore H := Soc(W ) = Soc(G).

By Lemma 5.11, for any α ∈ Ω we have that Hα = 1. We therefore find all

subgroups of W containing H, of which there are 8 up to conjugacy. For each of

these groups we find conjugacy class representatives of all of the subgroups of index

3600. These are the point stabilizers of transitive actions of degree 3600. As Hα = 1

we require that each of these representatives has trivial intersection with H.

Type III(c) Groups

Input: An integer m > 1 and a non-abelian simple group T such that

|T |m ≤ 3600.

So m = 2 and T = A5.

Output: A list Quasiprimitive consisting of all type III(c) quasiprimitive

groups with socle isomophic to Tm.

Step 1: Construct empty lists Quasiprimitive and Candidates.

Step 2: Define W := Aut(T ) o Sm.

Step 3: Define X := W/Soc(W ) with corresponding epimorphism ρ : W →
X. For each conjugacy class representative S of the subgroups of

X, Append the preimage G of S under ρ to Candidates.

These are representatives of the subgroups of W which contain

Soc(W ).

Step 4: For each G ∈ Candidates:

Step 4(a): Define Sub to be a list of conjugacy class representatives of

all subgroups of G of index at most 3600. Define an empty

list TrivialSubs.

Step 4(b): For each S ∈ Sub if S ∩ Soc(W ) is trivial then Append S to

TrivialSubs.

Step 4(c): For each S ∈ TrivialSubs, if the image C of the permutation

representation of G acting on the cosets of S in G is quasiprim-

itive then Append C to Quasiprimitive.

Step 5: Return: Quasiprimitive.

Theorem 5.15. The quasiprimitive groups of type III(c) of degree d ≤ 3600 appear

on Table 24.
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Proof. We follow the above procedure with T = A5 and m = 2. This returns 5

quasiprimitive groups of type III(c) with socle A5
2. �
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6. Tables

In this section we give the tables of the primitive permutation groups of degree

4096 ≤ d < 8192, the quasiprimitive permutation groups of degree d ≤ 3600, and

some lookup tables used in Section 4.1. Recall that we take p to always be prime, q

to always be a prime power, and we always consider n to be a positive integer. The

dihedral group of order 2n will be denoted by D2n and we denote by [n] a soluble

group of order n. We also recall the notation for simple groups given in Section 1.2.

6.1. The primitive groups of degree 4096 ≤ d < 8192. The table for the

groups of affine type (Table 9) lists the number of soluble and insoluble primi-

tive groups of degree pk for k > 1. We omit the number of primitive subgroups of

AGL(1, p) ∼= p : (p− 1) as this is equal to the number of divisors of p− 1.

The tables for the almost simple primitive groups (Tables 10 – 15) give the small-

est group G in the cohort. In the cases where there are multiple smallest groups

in the cohort, one group is given and we indicate the number l of smallest groups

by (l). These tables also list the degree of G (and the other groups in the cohort),

the number of groups in the cohort, the structure of the normalizer N of G in Sd in

terms of the socle H of G, and the structure of a point stabilizer of G.

The table for the primitive groups of diagonal type (Table 16) lists the smallest

group in the cohort, the degree of the groups in the cohort, and the number of

groups in the cohort. The table for the primitive groups of product type (Table 17)

lists the structure of the socle of the groups in the cohort, the degree of the groups

in the cohort, and the number of groups in the cohort.

pk Soluble Insoluble Total

672 118 8 126

712 192 12 204

732 261 12 273

792 166 12 178

832 82 4 86

892 226 14 240

173 66 19 85

193 185 31 216

38 7778 1250 9028

212 934 457 1391

Table 9. Primitive groups of affine type.
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Smallest Cohort Rep. G Conditions Degree Stabilizer in G N Cohort size

An 92 ≤ n ≤ 128
(
n
2

)
Sn−2 H.2 2

31 ≤ n ≤ 37
(
n
3

)
(An−3 × 3) : 2 H.2 2

20 ≤ n ≤ 22
(
n
4

)
(An−4 × A4) : 2 H.2 2

16 ≤ n ≤ 17
(
n
5

)
(An−5 × A5) : 2 H.2 2

15 ≤ n ≤ 16
(
n
6

)
(An−6 × A6) : 2 H.2 2

15
(

15
7

)
(A8 × A7) : 2 H.2 2

A12 5775 (A4 o 3).22.2 H.2 2

A16 6435 (A8 o 2) : 2 H.2 2

Table 10. Primitive almost simple groups with alternating socle.

Smallest Cohort Cohort
Representative G Conditions Degree Stabilizer in G N Size

L2(p) 4099 ≤ p ≤ 8191 p+ 1 p : ((p− 1)/2) H.2 2

97 ≤ p ≤ 127
(
p
2

)
Dp+1 H.2 2

97 ≤ p ≤ 127
(
p+1

2

)
Dp−1 H.2 2

L2(53) 6201 A4 H.2 2

L2(71) 7455 S4 H 1

L2(73) 8103 S4 H 1

L2(79) 4108 A5 H 1

L2(89) 5874 A5 H 1

L2(p2) 67 ≤ p ≤ 89 p2 + 1 p2 : ((p2 − 1)/2) H.22 5

L2(26) 4368 A5 H.6 4

L2(112) 7260 D122 H.22 5

7381 D120 H.22 5

L2(53) 7875 D124 H.6 4

7750 D126 H.6 4

L2(27) 8128 D258 H.7 2

L2(28) 4112 L2(24) H.8 4

L2(232) 6095 L2(23).2 ∼= PGL(2, 23) H 1

L2(54) 7825 L2(52).2 ∼= PGL(2, 52) H.4 3

L2(212) 4097 212.(212 − 1) H.12 6

L2(38) 6562 38.((38 − 1)/2) H.2.8 11

L2(p3) 17 ≤ p ≤ 19 p3 + 1 p3 : ((p3 − 1)/2) H.6 4

Table 11. Primitive almost simple groups with socle L2(q).
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Smallest Cohort
Representative G Degree Stabilizer in G N Cohort Size

L3(7) 5586 SO3(7) H.2 2

L3(17).2 5526 171+2 : [162].2 H.2 1

L3(19).2 7620 191+2 : [108].2 H.S3 2

L3(67) 4557 672.[22].L2(67).2 H.3 2

L3(71) 5113 712.[70].L2(71).2 H 1

L3(73) 5403 732.[24].L2(73).2 H.3 2

L3(79) 6321 792.[26].L2(79).2 H.3 2

L3(83) 6973 832.[82].L2(83).2 H 1

L3(89) 8011 892.[88].L2(89).2 H 1

L3(23).2 4672 D14 × L2(23) H.6 2

L3(32) 7560 L3(3) H.22 5

7020 U3(3) H.22 5

L3(32).2 (2) 7371 GL2(32).2 H.22 3

L3(24).2 (2) 4641 24+8.[150] H.(4× S3) 10

L3(26) 4161 [212].[21].L2(26) H.(3× S3) 9

L3(34) 6643 [38].[80].L2(34).2 H.4 3

L4(3).2 (2) 5265 SL2(3) : A4.D8 H.22 3

L4(5).2 (2) 4836 51+4.8.S5 H.D8 5

L4(17) 5220 [173].[4].L3(17) H.4 3

L4(19) 7240 [193].[9].L3(19).3 H.2 2

L4(22).2 (2) 5440 3.L3(4).6 H.22 3

L4(23) 4745 [212].7.L2(23)2 H.6 4

L4(32) 7462 [38].[4].L2(32) H.(2×D8) 27

L4(24) 4369 [212].[15].L3(24).3 H.4 3

L5(3).2 4840 31+6.22.L3(3).2 H.2 1

L5(22) 5797 [212].3.L3(22).L2(22).3 H.2 2

L5(23) 4681 [212].7.L4(23) H.3 2

L5(32) 7381 [38].[8].L4(32).4 H.2 2

L7(2).2 8128 L6(2).2 H.2 1

8001 21+10.L5(2).2 H.2 1

L7(22) 5461 [212].3.L6(22).3 H.2 2

L13(2) 8191 [212].L12(2) H 1

Table 12. Primitive almost simple groups with linear socles other
than L2(q).
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Smallest Cohort
Representative G Degree Stabilizer in G N Cohort Size

S4(5) 6500 S3 × S5 H.2 2

4875 [24].A5 H.2 2

S4(11) 7260 S2(112).2 H.2 2

7381 2.S2(11)2.2 H.2 2

S4(17) 5220 171+2.[24].L2(17) H.2 2

5220 173.[23].L2(17).2 H.2 2

S4(19) 7240 191+2.[18].L2(19) H.2 2

7240 193.[32].L2(19).2 H.2 2

S4(22).4 4896 Aut(D10) o 2 H.4 1

S4(23).2 5265 [212].7.14 H.6 2

S4(24) 4369 212.[15].L2(24) H.4 3

S6(3) 7371 SL2(3).S4(3) H.2 2

S6(22) 5525 [212].3.L3(22).3 H.2 2

S8(2) 5440 S6(2)× S3 H 1

5355 23.28.S3.A6.2 H 1

S14(2) 8128 2.Ω−14(2) H 1

Table 13. Primitive almost simple groups with symplectic socles.

132



Smallest Cohort
Representative G Degree Stabilizer in G N Cohort Size

U3(5).3 6000 (3× 7) : 3 H.S3 2

U3(17) 4914 171+2.[96] H.S3 4

U3(19) 6860 191+2.[360] H.2 2

U3(32) 5913 GU2(9) H.4 3

U3(24) 4097 24.28.[255] H.8 4

U4(3) 4536 A6.2 H.(2× 2) 5

U4(3).2 4536 S6.2 H.D8 4

U4(23) 4617 [212].7.L2(8)2 H.6 4

U4(32) 7300 [38].[23].L2(81) H.(2× 4) 8

U5(3) 6832 34+4.[8].A6.2 H.2 2

4941 [4].U4(3).[4] H.2 2

U6(2) 6336 S6(2) H.2 2

6237 24+8.S3.A5 H.S3 4

PΩ7(5) 7875 2.L4(5).2 H.2 2

7750 U4(5).2 H.2 2

PΩ+
8 (22) 5525 [212].3.S4(4) H.(2× 2) 5

PΩ+
14(2) 8128 S12(2) H.2 2

PΩ−8 (22) 5397 [212].3.U4(4) H.4 3

PΩ−14(2) 8127 [212].PΩ−12(2) H.2 2

Table 14. Primitive almost simple groups with other classical socles.

Smallest Cohort
Representative G Degree Stabilizer in G N Cohort Size

G2(3) 7371 21+4
+ : 32 · 2 H : 2 2

G2(5) 7750 3 · U3(5) : 2 H 1
7875 L3(5) : 2 H 1

J1 4180 7 : 6 H 1
J3 6156 L2(16) : 2 H : 2 2
HS 4125 43 : L3(2) H : 2 2

5600 M11 H 1
5775 4 · 24 : S5 H : 2 2

McL 7128 U3(5) H : 2 2

Table 15. Primitive almost simple groups with exceptional or spo-
radic socles.
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Smallest Cohort
Representative G Degree Cohort Size

L2(23)2 6072 5

L2(25)2 7800 16

L3(3)2 5616 5

U3(3)2 6048 5

M11
2 7920 2

Table 16. Primitive groups of diagonal type.

Socle Conditions Degree Cohort Size

An
2 64 ≤ n ≤ 90 n2 4

L2(p)2 67 ≤ p ≤ 89 (p+ 1)2 4

L2(25)2 4225 4
Sz(8)2 4225 4
U3(4)2 4225 11
L2(64)2 4225 16
L2(11)2 4356 3
M11

2 4356 1
M12

2 4356 1
A12

2 4356 4
L2(16)2 4624 11
L3(8)2 5329 4
M22

2 5929 4
L2(13)2 6084 4
A13

2 6084 4
L2(81)2 6724 76
A9

2 7056 4
S4(4)2 7225 4
L4(4)2 7225 4

An
3 16 ≤ n ≤ 20 n3 10

L2(16)3 4913 24
L2(17)3 5832 10
L2(19)3 8000 10

An
4 8 ≤ n ≤ 9 n4 45

L2(7)4 4096 45
L2(8)4 6561 34

A5
5 7776 26

A6
5 7776 26

Table 17. Primitive groups of product type.
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6.2. The quasiprimitive groups of degree d ≤ 3600. In this section we give

tables for each of the O’Nan-Scott type classes of quasiprimitive groups of degree

d ≤ 3600. The first column contains the socle of the quasiprimitive group. We give

the number of quasiprimitive groups for each given socle and the number of these

which are primitive. The tables for the type III groups (Tables 20, 21, 22, 23, and

24) also contain the degrees of the quasiprimitive groups. In Tables 21 and 22, we

indicate the degrees at which primitive groups occur via bold text.

Socle Conditions #Quasiprimitive #Primitive
groups groups

An 5 ≤ n ≤ 85 1194 277

L2(q) 7 ≤ q ≤ 3593, q 6= 9 2665 1361

L3(q) 3 ≤ q ≤ 59 612 107

L4(q) 3 ≤ q ≤ 13 252 73

L5(q) 2 ≤ q ≤ 7 40 11

L6(q) 2 ≤ q ≤ 4 16 12

L7(q) 2 ≤ q ≤ 3 4 3

L8(q) 2 ≤ q ≤ 3 3 3

L9(q) q = 2 1 1

L10(q) q = 2 1 1

L11(q) q = 2 1 1

S4(q) 3 ≤ q ≤ 13 483 70

S6(q) 2 ≤ q ≤ 4 105 18

S8(q) 2 ≤ q ≤ 3 8 6

S10(q) q = 2 5 3

S12(q) q = 2 2 2

U3(q) 3 ≤ q ≤ 13 289 59

U4(q) 3 ≤ q ≤ 7 309 81

U5(q) 2 ≤ q ≤ 3 40 12

U6(q) q = 2 17 14

U7(q) q = 2 4 4

PΩ7(q) q = 3 19 10

PΩ+
8 (q) 2 ≤ q ≤ 3 46 26

PΩ+
10(q) q = 2 5 5

PΩ+
12(q) q = 2 4 4

PΩ−8 (q) 2 ≤ q ≤ 3 33 17

PΩ−10(q) q = 2 4 4

PΩ−12(q) q = 2 4 4

Table 18. Quasiprimitive groups of type II with alternating or clas-
sical socles.
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Socle #Quasiprimitive #Primitive
groups groups

G2(3) 21 8

G2(4) 10 10
2B2(8) 22 8

2B2(32) 2 2
3D4(2) 4 4
2F4(2)′ 11 7

M11 36 5

M12 78 16

M22 68 13

M23 9 6

M24 9 6

HS 14 7

J2 48 16

Co2 1 1

Co3 2 1

McL 3 3

Suz 2 2

He 2 2

Fi22 2 2

J1 11 6

Table 19. Quasiprimitive groups of type II with exceptional or spo-
radic socles.

Socle Degree Number

A5
2 60 5

A6
2 360 16

A7
2 2520 5

L2(7)2 168 5

L2(8)2 504 4

L2(11)2 660 5

L2(13)2 1092 5

L2(17)2 2448 5

L2(19)2 3420 5

A5
3 3600 5

Table 20. Quasiprimitive groups of type III(a). All of these groups
are also primitive.
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Socle Conditions Degree #Quasiprimitive #Primitive
groups groups

A5
2 25, 36, 72, 75, 100,

144, 200, 225, 300,
360, 400, 450, 600,
720, 900, 1200, 1800

108 12

A6
2 36, 100, 200, 225,

400, 450, 800, 900,
1296, 1350, 1600,
2025, 2160, 2400,
2592, 2700, 3600

252 72

A7
2 49, 225, 441, 882,

1225, 1764, 2450
48 13

A8
2 64, 225, 784, 1225,

1568, 2450, 3136
50 17

A9
2 81, 1296, 2592 19 8

An
2 10 ≤ n ≤ 11 n2,

(
n
2

)2
8 8

An
2 12 ≤ n ≤ 60 n2 4 4

L2(7)2
49, 64, 98, 192, 196,
294, 441, 576, 588,
784, 882, 1176, 1344,
1568, 1764, 2352,
3136, 3528

111 11

L2(11)2
121, 144, 720, 3025,
3600

25 12

L2(13)2
196, 392, 588, 784,
1176, 1764, 2352,
3528

43 4

L2(17)2
324, 648, 1296, 2592 35 4

L2(19)2
400, 1200, 3249,
3600

25 5

L2(27)2
900, 1800, 3600 11 4

L2(31)2
1024, 3072 12 4

L2(37)2
1444, 2888 10 4

L2(41)2
1764, 3528 10 4

L2(p)2 p ∈ {23, 43, 47, 53, 59} (p + 1)2 4 4

L2(23)
2

81, 567, 784, 1296,
1568, 2592, 3136

36 12

L2(24)
2

289, 867, 1445, 2601 40 11

L2(52)
2

676, 1352, 2028,
2704

130 24

L2(33)
2

784 16 16

L2(25)
2

1089 4 4

L2(72)
2

2500 24 24

Table 21. Quasiprimitive groups of type III(b)(i) (1/2).

137



Socle Conditions Degree #Quasiprimitive #Primitive
groups groups

L3(3)2
169, 338, 676, 1014, 1521,
2028, 2704, 3042

18 4

L3(5)2
961, 1922 3 1

L3(7)2
3249 4 4

L3(22)
2

441, 3136 35 35

L4(3)2
1600 4 4

L5(2)2
961 1 1

U3(3)2
784, 1296, 1568, 3136 36 8

U4(2)2
729, 1296, 1600, 2025, 2592,
3200

42 20

S6(2)2
784, 1296, 1568, 2592, 3136 7 2

M11
2 121, 144, 242, 484, 3025 6 3

M12
2 144 1 1

M22
2 484 4 4

M23
2 529 1 1

M24
2 576 1 1

A5
3 125, 216, 375, 432, 864,

1000, 1125, 1728, 2000, 3375
90 30

A6
3 216, 1000, 2000, 3375 149 105

A7
3 343, 3375 12 12

A8
3 512, 3375 12 12

An
3 9 ≤ n ≤ 15 n3 10 10

L2(7)3
343, 512, 686, 1372, 1536,
2744

34 12

L2(8)3
729 10 10

L2(11)3
1331, 1728 12 12

L2(13)3
2744 10 10

L3(3)3
2197 2 2

M11
3 1331, 1728, 2662 7 4

M12
3 1728 2 2

A5
4 625, 1296, 1875, 2592 208 90

An
4 6 ≤ n ≤ 7 n4 45 45

L2(7)4
2401 5 5

A5
5 3125 26 26

Table 22. Quasiprimitive groups of type III(b)(i) (2/2).
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Socle Degree Number

(A5
2)2 3600 24

Table 23. Quasiprimitive groups of type III(b)(ii).

Socle Degree Number

A5
2 3600 5

Table 24. Quasiprimitive groups of type III(c).
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6.3. Lookup tables. In this section we give the lookup tables used in Section 4.1.

Each row lists the indices of maximal subgroups of almost simple groups with the

given socle, of index at most 1000000. We list the novelty maximals separately. We

highlight any indices of maximal subgroups which are not computable in MAGMA

via “MaximalSubgroups” or “ClassicalMaximals” in bold text. Here q is a prime

power such that for a classical group Cl(q) we have P (Cl(q)) ≤ 1000000 (see Table 3).

We give some examples of using these tables and then a general procedure below.

Example 6.1. Let d = 16105. We want to find all proper, primitive, almost simple

groups of degree d. We search through the lookup tables for any appearances of d

and one may find that d occurs once and it is on Table 25 on the row corresponding

to n = 5. So T = L5(q) for some prime power q.

Therefore we will be using the procedure from Section 4.1.2 to find the correspond-

ing primitive groups. We note that Table 25 shows that d does not correspond to a

novelty. We now look at Table 3 which demonstrates that with n = 5 we have that

2 ≤ q ≤ 31.

As d does not correspond to a novelty we check for each 2 ≤ q ≤ 31, whether

d | L5(q). If d does divide this order, then it is possible that L5(q) has a maximal

subgroup of index d. We find that d | L5(q) only when q = 11.

We now Append L5(11) to SimpleGroups in Step 2(b) in the procedure in

Section 4.1.2.

Example 6.2. Let d = 74273. We want to find all proper, primitive, almost simple

groups of degree d. We now search through the lookup tables for any appearances

of d and find that d occurs once and it is on Table 26 on the row corresponding to

2m = 4 and d corresponds to a novelty. So T = S4(q) for some prime power q.

Therefore we will be using the procedure from Section 4.1.2 to find the corre-

sponding primitive groups. We now look at Table 3 which demonstrates that for

2m = 4 we have that 2 ≤ q ≤ 97.

As d corresponds to a novelty we check, for each 2 ≤ q ≤ 97, whether d |
Aut(S4(q)). If d does divide this order, then it is possible that Aut(S4(q)) has a

maximal subgroup of index d. We find that d | S4(q) only when q = 16.

We now Append S4(16) to SimpleGroups in Step 2(b) in the procedure in

Section 4.1.2.

Recall Section 1.2
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Using the Lookup Tables

Input: An integer 1 ≤ d ≤ 1000000.

Output: A list, SimpleGroups, consisting of possible socles of any almost

simple groups with a primitive action of degree d.

Step 1: Construct empty lists Dim-and-Type, Dim-and-Type-Nov,

and SimpleGroups.

Step 2: If d appears on Tables 25 – 30 then

Step 2(a): If d does not correspond to a novelty then Append the pair

(n,“Cl”) to Dim-and-Type, where n is given by the table row

and “Cl” corresponds to the type of classical group described

by the table.

Step 2(a)(i): for each pair (n, “Cl”) in Dim-and-Type do

Step 2(a)(ii) for each q in the corresponding row of Table 3 do

Step 2(a)(iii) if d | |Cln(q)| then Append Cln(q) to SimpleGroups.

Step 2(b): If d corresponds to a novelty then Append the pair (n,“Cl”)

to Dim-and-Type-Nov, where n is given by the table row

and “Cl” corresponds to the type of classical group described

by the table.

Step 2(b)(i): for each pair (n, “Cl”) in Dim-and-Type-Nov do

Step 2(b)(ii) for each q in the corresponding row of Table 3 do

Step 2(b)(iii) if d | |Aut(Cln(q))| then Append Cln(q) to Simple-

Groups.

Step 3: if d appears on Table 31 or Table 32 then Append the group cor-

responding to its row on the table to SimpleGroups.
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n = 3: 7, 8, 13, 21, 31, 56, 57, 73, 91, 120, 133, 144, 183, 234, 273, 280, 307, 381, 553, 651, 757, 871, 993, 1057,
1407, 1723, 1893, 2257, 2451, 2863, 3100, 3541, 3783, 3875, 4000, 4161, 4557, 5113, 5403, 5586, 6321, 6643, 6973,

7020, 7560, 8011, 9507, 10303, 10713, 11557, 11991, 12883, 14763, 15751, 16257, 16513, 17293, 18907, 19461, 22351,

22848, 22953, 24807, 26068, 26733, 28057, 28731, 30103, 32221, 32928, 32943, 36673, 37443, 39007, 39801, 44733,
49953, 51757, 52671, 54523, 56064, 57361, 58323, 58968, 59293, 63253, 65793, 66307, 69433, 70720, 72631, 73713,

75264, 77007, 79243, 80373, 83811, 86143, 94557, 97033, 98112, 98283, 100807, 109893, 110565, 113907, 117993,

120757, 122151, 123708, 124963, 129241, 130683, 135057, 136500, 139503, 144021, 147073, 151711, 155520, 158007,
160930, 161203, 167691, 175981, 177663, 186193, 187923, 193161, 196693, 202051, 209307, 212983, 214833, 218557,

229921, 237657, 241573, 249501, 253513, 259591, 262657, 271963, 274053, 280371, 293223, 299757, 310807, 317533,

324331, 326613, 333507, 345157, 352243, 354046, 359401, 361803, 369057, 376383, 381307, 383781, 391251, 398793,
403000, 411523, 414093, 419257, 427063, 434941, 437583, 453603, 459007, 467173, 478173, 492103, 503391, 517681,

529257, 532171, 532400, 538023, 546861, 552793, 564753, 573807, 579883, 592131, 598303, 620157, 636007, 655291,
658533, 674863, 678153, 684757, 688071, 704761, 708123, 728463, 735307, 738741, 745633, 770007, 777043, 780573,

787657, 823557, 825246, 830833, 845481, 863971, 878907, 886423, 897757, 909163, 924483, 936057, 938119, 943813,

955507, 967273, 983073, 995007

n = 4: 8, 15, 28, 35, 40, 56, 85, 117, 130, 156, 357, 400, 585, 806, 820, 1008, 1464, 1550, 2106, 2380, 2850, 4369,

4745, 5220, 7240, 7462, 8379, 8424, 10530, 12720, 16226, 16276, 20440, 24192, 25260, 29484, 30784, 31110, 32704,
33825, 38080, 45696, 48960, 52060, 70161, 70644, 80465, 81400, 89030, 106080, 120100, 137922, 151740, 155000,

185562, 208920, 230764, 251875, 266305, 293090, 305320, 363024, 394420, 407526, 465000, 499360, 503750, 538084,

552610, 578760, 709784, 712980, 733382, 922180, 955266

n = 5: 31, 121, 155, 341, 781, 1210, 2801, 4681, 5797, 7381, 16105, 20306, 30941, 64512, 69905, 88741, 137561,

140050, 292561, 304265, 406901, 551881, 605242, 732541, 954305

n = 6: 63, 364, 651, 1365, 1395, 3906, 11011, 13888, 19608, 33880, 37449, 55552, 66430, 93093, 177156, 357120,

376805, 402234, 508431

n = 7: 127, 1093, 2667, 5461, 11811, 19531, 99463, 137257, 299593, 597871, 925771

n = 8: 255, 3280, 10795, 21845, 97155, 97656, 200787, 896260, 960800

n = 9: 511, 9841, 43435, 87381, 488281, 788035

n = 10: 1023, 29524, 174251, 349525

n = 11: 2047, 88573, 698027

n = 12: 4095, 265720

n = 13: 8191, 797161

n = 14: 16383

n = 15: 32767

n = 16: 65535

n = 17: 131071

n = 18: 262143

n = 19: 524287

Novelties

n = 2: 21, 28, 36, 45, 55, 66, 285, 1015, 8555, 9455, 42925, 53955, 93665, 111895, 137825, 238965, 247065, 391405,

500365, 658875, 811035

n = 3: 21, 28, 52, 105, 117, 186, 336, 456, 657, 775, 910, 960, 1596, 2562, 2793, 4641, 4672, 5526, 7371, 7620, 13272,

16093, 16926, 21196, 26130, 30927, 31776, 34881, 53466, 69888, 72366, 83292, 88723, 108336, 122550, 137541,

154602, 212460, 234546, 270465, 292537, 309876, 368136, 399822, 406875, 505680, 544726, 551853, 585732, 720990,
732511, 931686, 954273

n = 4: 105, 120, 520, 1080, 1785, 4836, 5265, 5440, 19500, 22800, 42705, 74620, 137200, 194712, 299520, 435540,
597780

n = 5: 465, 496, 1085, 4840, 9801, 9920, 15730, 28985, 87296, 121737, 121836, 488125, 629486, 882090

n = 6: 1953, 2016, 22785, 44044, 88452, 166656, 465465

n = 7: 8001, 8128, 177165, 397852, 413385, 796797

n = 8: 32385, 32640

n = 9: 130305, 130816

n = 10: 522753, 523776

Table 25. Lookup table for almost simple groups with socle Ln(q).
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m = 2: 27, 36, 40, 45, 85, 120, 136, 156, 300, 325, 400, 585, 820, 1176, 1225, 1360, 1464, 2016, 2080, 2380, 3240,
3321, 4369, 4875, 5220, 6500, 7240, 7260, 7381, 9750, 12720, 13000, 14196, 14365, 16276, 20440, 25260, 30784, 32640,

32896, 33210, 33825, 36288, 41616, 41905, 51450, 52060, 54880, 64980, 65341, 68600, 70644, 72030, 81400, 106080,

120100, 139656, 140185, 151740, 195000, 195625, 208920, 230764, 239112, 265356, 266085, 266305, 298890, 305320,
353220, 354061, 363024, 394420, 461280, 462241, 499360, 523776, 524800, 538084, 578760, 712980, 811910, 922180,

936396, 937765, 974292

m = 3: 28, 36, 63, 120, 135, 315, 336, 364, 960, 1120, 1365, 2016, 2080, 3640, 3906, 5525, 7371, 16320, 19608, 19656,

23205, 37449, 66430, 69888, 101556, 110565, 130816, 131328, 137600, 155520, 177156, 189540, 300105, 402234,

406875, 408240, 598600, 980400

m = 4: 120, 136, 255, 2295, 3280, 5355, 5440, 11475, 13056, 21845, 24192, 32640, 32896, 45696, 91840, 97656,

298480, 597780, 918400, 960800

m = 5: 496, 528, 1023, 29524, 75735, 86955, 87296, 349525, 523776, 524800, 782595

m = 6: 2016, 2080, 4095, 265720

m = 7: 8128, 8256, 16383

m = 8: 32640, 32896, 65535

m = 9: 130816, 131328, 262143

m = 10: 523776, 524800

Novelties

m = 2: 425, 4896, 5265, 14400, 74273, 823200

m = 3: 110565, 408240

m = 4: 45696

Table 26. Lookup table for almost simple groups with socle S2m(q).

n = 3: 28, 36, 50, 63, 65, 126, 175, 208, 344, 416, 513, 525, 730, 1332, 1600, 2107, 2198, 3648, 4097, 4914, 5913,

6860, 12168, 13431, 14749, 15626, 16856, 19684, 24390, 25536, 26533, 29792, 32769, 34048, 43904, 50654, 53724,

59130, 61696, 68922, 70956, 78897, 79508, 96768, 103824, 117650, 123823, 148878, 194400, 196988, 205380, 226982,
246235, 262145, 268203, 300764, 357912, 371462, 375625, 389018, 473382, 493040, 512487, 531442, 571788, 638880,

683733, 689858, 704970, 894691, 912674, 984940

n = 4: 112, 126, 162, 280, 325, 540, 567, 756, 1040, 1105, 1296, 1575, 2752, 2835, 3264, 3276, 4536, 4617, 7300,

8428, 13000, 15984, 17200, 28288, 29565, 30772, 32832, 33345, 41600, 59860, 69649, 80586, 88452, 102900, 137200,

162504, 170625, 185731, 232960, 236250, 292032, 339456, 373660, 406276, 478224, 551152, 568750, 710073, 731700,
945000, 953344

n = 5: 165, 176, 297, 1408, 2440, 3520, 4941, 6832, 17425, 20736, 52480, 66625, 81276, 325625, 393876, 444690,
840400

n = 6: 672, 693, 891, 1408, 6237, 6336, 20736, 22204, 27328, 44226, 59136, 98560, 228096, 279825, 333125, 621712,
838656

n = 7: 2709, 2752, 38313, 89397, 199108, 398763, 924672

n = 8: 10880, 10965, 114939

n = 9: 43605, 43776

n = 10: 174592, 174933

n = 11: 698709, 699392

Novelties

n = 3: 750, 1750, 6000

n = 4: 4536, 8505

n = 6: 157696

Table 27. Lookup table for almost simple groups with socle Un(q).

m = 3: 351, 364, 378, 1080, 1120, 3159, 3640, 3906, 7750, 7875, 12636, 19608, 19656, 22113, 28431, 39000, 58653,
58996, 66430, 101556, 137600, 177156, 265356, 266085, 331695, 402234, 411600, 598600, 885115, 886446, 980400

m = 4: 3240, 3280, 3321, 91840, 97656, 195000, 195625, 298480, 918400, 960800

m = 5: 58806, 59048, 59292

m = 6: 65356, 265720, 266085

Table 28. Lookup table for almost simple groups with socle PΩ2m+1(q).
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m = 4: 120, 135, 960, 1080, 1120, 1575, 5525, 11200, 12096, 16320, 19656, 28431, 36400, 39000, 137600, 189540,
300105, 394485, 411600, 598600

m = 5: 496, 527, 2295, 9801, 9922, 19840, 23715, 87637, 91840, 118575, 261888, 488906, 976250

m = 6: 2016, 2079, 75735, 88452, 88816, 333312, 365211

m = 7: 8128, 8255, 796797, 797890

m = 8: 32640, 32895

m = 9: 130816, 131327

m = 10: 523776, 524799

Novelties

m = 4: 2025, 14175, 14400, 44800, 408240, 435456, 469625, 518400, 582400

m = 5: 71145

Table 29. Lookup table for almost simple groups with socle PΩ+
2m(q).

m = 4: 119, 136, 765, 1066, 1071, 1107, 1632, 5397, 16448, 19406, 22960, 24192, 29848, 39125, 45696, 136914,
209223, 283985, 350805, 411943

m = 5: 495, 528, 9760, 9882, 19635, 23936, 25245, 75735, 87125, 104448, 262400, 487656, 609280, 976875

m = 6: 2015, 2080, 88330, 88695, 332475, 366080

m = 7: 8127, 8256, 796432, 797526

m = 8: 32639, 32896

m = 9: 130815, 131328

m = 10: 523775, 524800

Novelties

m = 4: 388557

Table 30. Lookup table for almost simple groups with socle PΩ−2m(q).

3D4(2): 819, 2457, 17472, 69888, 89856, 163072, 179712, 978432
3D4(3): 26572, 186004
3D4(4): 328965

Sz(8): 65,560,1456,2080

Sz(32): 1025, 198400, 325376, 524800

Sz(128): 16385

Sz(512): 262145

F4(2): 69615, 69888

G2(3): 351, 364, 378, 2808, 3159, 3888, 7371,

G2(4): 416, 1365, 2016, 2080, 20800, 69888, 230400

G2(5): 3906, 7750, 7875, 406875, 484375

G2(7): 19608, 58653, 58996

G2(8): 37449, 130816, 131328

G2(9): 66430, 265356, 266085

G2(11): 177156, 885115, 886446

G2(13): 402234

E6(2): 139503

2G2(27): 19684, 512487

2F4(2)′: 1600, 1755, 2304, 2925, 12480, 14976

Novelties

G2(3): 1456

G2(9): 664300

2F4(2)′: 83200, 230400

Table 31. Lookup table for almost simple groups with exceptional socles.
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M11: 11, 12, 55, 66, 165

M12: 12, 66, 144, 220, 396, 495, 880, 1320

M22: 22, 77, 176, 231, 330, 616, 672

M23: 23, 253, 506, 1288, 1771, 40320

M24: 24, 276, 759, 1288, 1771, 2024, 3795, 40320

HS: 100, 176, 1100, 3850, 4125, 5600, 5775, 15400, 36960

J2: 100, 280, 315, 525, 840, 1008, 1800, 2016, 10080

Co1: 98280

Co2: 2300, 46575, 47104, 56925, 476928

Co3: 276, 11178, 37950, 48600, 128800, 170775, 655776, 708400

McL: 275, 2025, 7128, 15400, 22275, 113400, 299376

Suz: 1782, 22880, 32760, 135135, 232960, 370656, 405405, 926640

He: 2058, 8330, 29155, 187425, 244800, 266560, 652800, 999600

Fi22: 3510, 14080, 61776, 142155, 694980

Fi23: 31671, 137632

Fi24
′: 306936

J1: 266, 1045, 1463, 1540, 1596, 2926, 4180

O’N: 122760

J3: 6156, 14688, 17442, 20520, 23256, 26163, 43605

Ru: 4060, 188500, 417600, 424125, 593775

Novelties

M12: 1584

HS: 22176

McL: 779625

He: 279888, 437325

J3: 293760

Table 32. Lookup table for almost simple groups with sporadic socles.
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