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Abstract

Keywords: Contact mechanics, elasticity, Wiener–Hopf, spectral methods

In this thesis we derive an analytical model of the deformation

of an elastic half-space caused by a cylindrical roller. The roller

is considered rigid, and is forced into the half-space and rolls

across its surface, with contact modelled by Coulomb friction.

In general, portions of the surface of the roller in contact with

the half-space may slip across the surface of the half-space, or

may stick to it. In this thesis, we consider the contact surface

to have a central sticking region as well as a simplifying regime

where the entire contact surface is fully slipping. This results in

two mixed boundary value problem, which are formulated into a

4× 4 matrix Wiener–Hopf problem for the stick-slip regime and

a 2×2 matrix Wiener–Hopf problem for the full-slip regime. The

exponential factors in the Wiener–Hopf matrix allows a solution

by following the iterative method of Priddin, Kisil, and Ayton

(Phil. Trans. Roy. Soc. A 378, p. 20190241, 2020) which is im-

plemented numerically by computing Cauchy transforms using

a spectral method following Slevinsky and Olver (J. Comput.

Phys. 332, pp. 290–315, 2017). The limits of the contact region

and stick-slip transitions are located a posteriori by applying

an free-boundary method based on the secant method. The

solution is illustrated with several examples, and the frictional

regimes are analysed.
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Chapter 1

Introduction

1.1 Background

The amount of atmospheric CO2 has increased from 277.2 parts per million

(ppm) in 1763 [64] to 415.86 ppm on the 16th November 2021 [31], with the

Industrial Revolution (1760s) coinciding as a turning point in the atmospheric

CO2 levels trend, as seen in figure 1.1.1. Human activities such as burning

fossil fuels and deforestation are the drivers of the post-industrial trend, with

global efforts currently being implemented to prevent atmospheric CO2 levels

causing an accelerated impact on the climate and the environment. In this

section we explain the impact that increasing atmospheric CO2 levels have on

the climate and how a strategy to mitigate its impact provides the inspiration

for this thesis.

In the absence of an atmosphere, the electromagnetic radiation that the

Earth receives from the Sun alone would lead to a surface temperature below

the freezing point of water [69]. Given that water exists in all of its states

on Earth, the presence of an atmosphere must exhibit a warming effect on

the Earth. This warming effect is known as the greenhouse effect and was

first proposed by the Mathematician Joseph Fourier [36]. The Earth receives

1



1.1. BACKGROUND 1.1

Figure 1.1.1: Historic records of atmospheric CO2 levels.
Each colour on both figures represents a different data set, with eight different

data sets shown. Source by: EPA [34]

radiation from the Sun in the ultraviolet-visible range and reflects infrared

radiation back due to the different surface temperatures of the two bodies

(Wiens displacement law page 197 of [98]). Greenhouse gases are gases which

absorb and radiate infrared radiation in all directions. The infrared radiation

that the Earth reflects towards space is therefore radiated in all directions

by the greenhouse gases, with some of the radiation remaining within the

atmosphere and warming the Earth’s surface. Thus, the greenhouse gases

cause the greenhouse effect. The most notable greenhouse gases are water

vapour and CO2, so the increasing atmospheric CO2 levels increases the

greenhouse effect the Earth experiences. To mitigate the negative impacts of

raising atmospheric CO2 levels the 2015 Paris Agreement has led to a global

agreement to reach a 50% reduction in emissions by 2030 and net-zero by

2050 [84].

Humans contribute to the rise of atmospheric CO2 levels through burning fos-

sil fuels and deforestation. In the global bid to reduce atmospheric CO2 levels

most attention is given to finding alternative fuel sources, however, progress

2
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may also be made by reducing the amount of energy required to produce

goods and provide services. The metal industry is the world’s largest indus-

trial source of CO2 emissions at 25% of total industrial emissions (Serrenho

et al. [87]). Allwood et al. [9] estimate that fuel efficiencies alone would not

be enough for the UK metal industry to achieve its 2030 emissions target

so material efficiency and demand reduction are necessary, this estimate was

confirmed by Gutowski et al. [41]. In particular, due to the high costs of

energy, the steel industry is highly energy efficient and there are marginal

gains to be made on this front. However, significant gains may be made by

efficient use of material, as a quarter of steel used in the production process

is scrapped, see page 54 of [8].

1.1.1 Metal forming

The Use Less Group headed by Professor Julian Allwood at the University of

Cambridge have developed new technologies with the intention of reducing

yield loss in metal production processes. The Use Less Group have developed

two new technologies to aid in material efficiency for metal forming, flexible

ring rolling [24] and flexible metal sheet spinning [71]. A considerable amount

of scrapped metal comes from the manipulation of metal sheets, which are

rolled into a uniform way and then cut and trimmed to product specification,

and our work focuses on aiding the efficiency of this process.

Traditional metal sheet spinning uses a mandrel and a roller (figure 1.1.2a),

the roller applies a force on the metal sheet until it deforms to the shape of

the mandrel. This means that a specific mandrel is required for every product

and that metal sheets may not be designed flexibly. Music and Allwood [71]

found that the mandrel only makes contact with the metal sheet in three

locations and this motivated them to design the flexible asymmetric spinning

machine [71] which replaced the mandrel with three support rollers, see figure

1.1.2. Industrial use of the flexible asymmetric spinning machine is hindered

by failures such as wrinkling and foldback [79] and preventing these failures

3

https://www.uselessgroup.org/
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may be possible with faster and more accurate predictions of the behaviour

of the sheet through new analytical and numerical models. However, at

present the models available are limited in their predictive capacity through

computational costs and accuracy [72]. This provides the motivation for the

mathematical study of the mechanics behind metal sheet spinning.

Modelling a metal sheet subject to three rollers is depicted in the schematic

1.1.3, which shows three cylinders deforming a metal sheet. The deformation

of the entire system may be considered from the summation of each roller, so

to understand the deformation more deeply we pay attention to only one of

these rollers. In particular, we consider the setting in schematic 1.1.4 which

depicts a single roller along an elastic half-space. We consider a purely elastic

media as low forces cause the metal sheet to experience very small amounts

of plastic deformation and largely elastic deformation. We note that one

may recover the system in 1.1.3 by superimposing a neighbouring roller or

by imposing a symmetry boundary condition along the dotted centre line.

The understanding of elastic deformation is a necessary basic step towards

the further understanding and modelling of elastoplastic deformations, com-

mon in manufacturing processes. As an example, strip rolling is a metal

forming processes involving a pair of rollers squeezing and thinning a sheet

of metal. Provided the sheet is sufficiently wide, the process can be mod-

elled as two-dimensional (plane strain) and steady state, and purely plastic

models exist that agree well with finite element simulations [22, 68]. How-

ever, neglecting elasticity precludes the modelling of important effects such

as spring-back and curvature; indeed, the direction a metal sheet curves af-

ter passing between two asymmetric rollers is currently an unsolved problem,

with no agreement between experimental, computational and mathematical

studies [67]. This motivates the research undertaken in this thesis, inves-

tigating the vastly simplified situation consisting of a single roller rolling

along a purely-elastic half-space, from which it is hoped understanding and

further modelling can be developed that will contribute to future studies of

elastoplastic deformation.

4
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(a) A schematic of traditional metal sheet
spinning.

Source by: Rentsch et al. [82]
(b) The location of the contact pressure be-
tween the metal sheet and mandrel.

Source by: Music and Allwood [71]

(c) A schematic of flexible asymmetric
metal sheet spinning.

Source by: Music and Allwood [71]

(d) The flexible asymmetric metal sheet
spinning machine.

Source by: Music and Allwood [71]

Figure 1.1.2: The development of the flexible asymmetric metal sheet spinning [71].

5
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Figure 1.1.3: A schematic of three rollers deforming a metal sheet.

Figure 1.1.4: A schematic of a roller deforming an elastic half-space.

6



1.2. CONTACT MECHANICS 1.2

1.2 Contact mechanics

We now discuss some results in static contact problems before the additional

consideration of rolling contact. The static model of an elastic half-space

deformed by a rigid punch has been of interest for a substantial time. Hertz

[44] founded the field of contact mechanics at the end of the 19th century by

considering the elastic deformation due to a frictionless rigid punch. Friction

was considered in a static setting by Cattaneo [21] and Mindlin [66] who

used an inner stick region and outer slip regions. Spence [90] presented an

approach for parabolic punches into an elastic half-space with stick-slip fric-

tion. More recently, Zhupanska and Ulitko [102], Zhupanska [101] modelled

the deformation of an elastic half-space due to a rigid cylindrical indenter.

Our work seeks to expand on the ideas applied in Zhupanska and Ulitko [102]

by applying the frictional model to an asymmetric rolling problem instead.

Zhupanska and Ulitko [102] developed a static contact problem modelling

the deformation of an elastic half-space by a rigid cylindrical punch under

friction. The punch was progressively loaded in accordance with Spence’s

self-similarity, which ensures that the ratio of the stick-slip zones remain

constant while loading. However, due to the hysteretic nature of friction, it

is likely that the solution found by Zhupanska and Ulitko [102] is not unique,

as a cylinder pushed into an elastic half-space would produce a different

deformation pattern from a cylinder pushed further into the elastic half-

space before being partially retracted. We compensate by considering a rigid

cylinder rolling along the surface of the elastic half-space, therefore the entire

history of the process is specified into the model and so a unique steady state

solution is to be expected. Zhupanska and Ulitko [102] considers a symmetric

contact problem which restricts the solution space of their problem to a

smaller class of frictional contact problems. Their approach made use of

Papkovich-Neuber potentials (see page 79 of [46]), a planar bipolar conformal

map and the scalar Wiener–Hopf technique to find a solution. In particular,

their use of the planar bipolar conformal map includes an obscure claim to

7



1.2. CONTACT MECHANICS 1.2

remove the singular behaviour at infinity which we could not verify. Thus,

we propose an alternative contact problem, the deformation of an elastic

half-space by a rigid cylindrical roller under friction. We assume that a

sufficient amount of time has passed since the roller was initially pressed into

the half-space for any initial behaviour to decay. Additionally, we consider

the setting of possibly asymmetric contact and stick-slip zones. In the limit

of zero rolling speed, our solution should reduce to a solution to the static

problem considered by Zhupanska and Ulitko [102].

The behaviour of rolling contact has been explored much less thoroughly since

the frictional resistance is smaller but importantly not negligible. Reynolds

[83] produced an early experiment to study rolling contact and found that

the contact region separates into stick and slip zones. Carter [20] and Fromm

[37] both independently derived analytical models for two-dimensional rolling

contact by assuming a pressure profile in the contact region, an approach

known as Hertzian theory. Alternatively, a variational theory for rolling

contact has been developed and implemented algorithmically by Kalker [52].

Summaries of these rolling problems and other classical results may be found

in the two seminal books by Johnson [49] and Popov [80]. In recent years

the analytical models for rolling has seen less development, with a focus to

use numerical methods such as the boundary element method [5] or the finite

element method [60]. To the best of the author’s knowledge, an analytical

solution of a cylinder rolling along an elastic half-space under a stick-slip

model of friction has been unexplored.

There are many possible models of friction between surfaces in contact. Com-

mon models in metal forming include Coulomb friction, where the tangential

force is proportional to the normal force, relative slip, where the tangential

force is proportional to the slipping velocity, and “friction factor”, where the

tangential force is a specified constant. The Coulomb friction model is the

simplest friction model that is also well established outside of metal forming,

and it is the friction model used here. Under Coulomb friction, two surfaces

in contact can be in one of two states: slipping, where the tangential force

8
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T resists the slipping and is proportional to the normal force N , T = µN ;

and non-slipping, where |T | < µN and the surfaces do not move with respect

to one another. In general, for a rigid cylinder rolling along and indenting

an elastic half-space, some of the contact surface may slip in one direction,

some may slip in the other direction, and in between will be a region of no

slip. This general situation would result in a 4 × 4 Wiener–Hopf problem

owing to the four points where the boundary conditions on the elastic half-

space change. Instead, if the cylinder is rotating sufficiently fast then the

entire contact region will be slipping in a single direction, this results in a

2 × 2 Wiener–Hopf problem owing to the two points where the boundary

conditions on the elastic half-space change, which is a considerable simpli-

fication. The matrix Wiener–Hopf problem considered in the 2 × 2 regime,

while mathematically interesting in its own right, develops the mathematical

tools for the more complicated 4× 4 model of stick-slip rolling.

A brief overview of the literature is mentioned briefly here but an in-depth

review of the literature is discussed in the introductions to chapters 3, 4 and

5.

1.3 Thesis outline

A detailed description of the physical problem to be solved together with its

mathematical formulation is given in chapter 2, including the general solu-

tion for a convected elastic half-space in section 2.4. Chapter 3 presents a

background to the Wiener–Hopf technique and an example of applying it to a

scalar contact problem, finally we outline the matrix Wiener–Hopf technique

applied to the two contact problems in chapters 4 and 5. Some useful defi-

nitions for the Wiener–Hopf technique and its numerical implementation is

included in appendix A. Chapter 4 applies the matrix Wiener–Hopf technique

to the limit of full-slip, the case where the angular velocity is much greater

than the convection speed. Within chapter 4 is the development of a free-

boundary method to locate the contact points. Chapter 5 applies the same

9
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matrix Wiener–Hopf technique to the case of stick-slip friction, with some

discussion on the complications which arise from the application of the free-

boundary method. Finally, chapter 6 discusses some open problems which

may follow on from this thesis, with two extensions outlined in appendices

B and C.

10



Chapter 2

The governing equations

2.1 Introduction

We consider the situation shown schematically in figure 2.1.1.

A rigid cylinder of radius R is pushed into an elastic half-space y < 0 with

a force F , resulting in a maximum indentation of depth ε. The cylinder is

rotated clockwise with a torque T , giving an angular velocity Ω, and the

cylinder therefore translates in the positive x-direction across the half-space

at a linear velocity V . We choose a frame of reference moving with the

cylinder, such that the centre of the cylinder is located at x = 0 and y = R−ε,
with ex and ey unit vectors in the x- and y-directions respectively. We label

material particles in the elastic half-space by the location X̂ which is their

location at time t = 0 in the absence of the cylinder. In the absence of

the cylinder and in the convected frame, such a material particle would be

located at X = X̂−V tex at time t. With the cylinder present, the material

particle has been displaced, and is instead located at x = X + u, where

u = (u, v) is the displacement in the elastic half-space.

We derive the nonlinear boundary conditions in the Eulerian configuration.

11
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Ω

ε

R

V

x

u

X
X̂

O

F T

t

n

x

y

Figure 2.1.1: A schematic of a rigid cylinder rolling along an elastic half-space.
The cylinder moves at a linear velocity V in the x-direction along the surface of
the elastic half-space. The origin of the coordinate system (labelled O) is taken

in a frame of reference moving with the cylinder, directly below the centre of the
cylinder at the height of the undeformed elastic surface. The cylinder of radius R
rolls about its centre axis with angular velocity Ω, and a force F and torque T

are applied to the centre of the cylinder, causing the cylinder to be indented by ε
into the elastic half-space. A material point at location X̂ at time t = 0 would
have moved to location X at time t without the cylinder being present, but has
instead moved to a location x due to the deformation caused by the cylinder,

giving an elastic displacement u = X − x.

In the Eulerian configuration, a material particle is referred to using the

deformed location x, therefore the displacement u(x, t) and the undeformed

position X(x, t) are both functions of x and t. Thus the displacement in the

Eulerian configuration is defined to be

u(x, t) = x−X(x, t).

To calculate the elastic velocity, let x̂(t, X̂) be the location of a material

particle at time t whose undeformed location was X̂ at time t = 0. Thus,

x̂(t) = X(x̂(t), t) + u(x̂(t), t) = X̂ − V tex + u(x̂(t), t).
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Taking the time derivative with X̂ fixed, we find

v =
∂x̂

∂t

∣∣∣
X̂

= −V ex +
∂u

∂t

∣∣∣
x

+ v · ∂u
∂x

∣∣∣
t
. (2.1)

which is an implicit equation for the material particle velocity v(x, t).

Newton’s law of motion, or equivalently conservation of momentum, gives

the governing equations in the bulk of the material as

ρ

(
∂v

∂t
+ v · ∂v

∂x

)
=∇ · τ, (2.2)

where τ is the Cauchy stress tensor.

The surface of the elastic half-space is given by y = η(x). Where the elastic

half-space is in contact with the cylinder, for−a ≤ x ≤ d, the displacement of

the elastic half-space is known, and the material either sticks to the cylinder

or slips [12] depending on the frictional regime we are considering. Outside

of the contact region, the surface is stress-free. We derive each of these

boundary conditions separately.

2.2 Derivation of the boundary conditions

The derivation of the boundary conditions is non-standard; the derivation

is carried out with respect to the deformed variable, x, rather than the

undeformed variable, X. The deformed variable is considered as it is useful

for deriving the stick boundary condition.

2.2.1 Contact boundary condition

The contact boundary condition comes from the physical condition that the

elastic half-space cannot penetrate the rigid cylinder. This means that a

13
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material particle on the surface of the elastic half-space (given by Y = 0),

when in contact with the cylinder, must be deformed to lie on the surface of

the cylinder. By writing y = Y + v, and noting that the cylinder centre is

located at (0, R− ε), we deduce that

x2 +
(
y −R + ε

)2
= R2 ⇐⇒ −a < x < d and Y = 0.(2.3)

The unknown limits of the contact region are labeled by the location of −a, d
and are to be found as part of the solution.

2.2.2 Stick boundary condition

The stick boundary condition comes from property that the elastic media

is “stuck” to the cylinder and so the elastic surface and the cylinder have

the same velocity here, vc = ve. Other names for this boundary condition

may be the adhesion boundary condition or the no-slip boundary condition.

Hence, the elastic velocity equation (2.1) becomes

vc = −V ex +
∂u

∂t

∣∣∣
x

+ vc ·
∂u

∂x

∣∣∣
t
, (2.4)

which holds in the regions specified by the frictional regime we are consider-

ing.

2.2.3 Slip boundary condition

The “slip” boundary condition comes from the physical condition that the

elastic medium is slipping past the rigid cylinder, and is chosen to satisfy the

Coulomb law of dry friction, (τ · n) · t = ±µ0(τ · n) · n [12], where τ (x, t)

is the Cauchy stress tensor. The (non-unit) outward normal to the cylinder

may be taken as n = (x, y + ε−R)T , and the tangent vector to the cylinder

may be taken as t = (y − R + ε,−x)T . Explicity, the Coulomb friction law

14
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becomes(
xτxx + (y + ε−R)τxy

xτxy + (y + ε−R)τyy

)
·

(
y +R− ε
−x

)

= ±µ0

(
xτxx + (y + ε−R)τxy

xτxy + (y + ε−R)τyy

)
·

(
x

y +R− ε

)
,

then by expanding and rearranging we find

x

(y −R + ε)
(τxx−τyy) +

(
1−
(

x

y −R + ε

)2
)
τxy

= ±µ0

[(
x

y −R + ε

)2

τxx +
2x

y −R + ε
τxy + τyy

]
. (2.5)

The slip boundary conditions hold in regions specified by the frictional regime

we are considering. The convention for slip directions are ± = + if the

cylinder is exerting a friction force on the elastic half-space in the negative

x-direction, meaning that the angular velocity Ω is sufficiently large and

positive (a wheel-spin type condition), whereas ± = − if Ω is sufficiently

negative (a locked-wheel braking type condition).

To determine the direction of slip, the velocity of the surface of the cylinder

in the clockwise direction, vc = RΩ, should be compared to the velocity

of the elastic material in the same direction, ve = v · t/|t|. If vc > ve then

± = +, while if vc < ve then ± = −. Note that ve is a function of the location

x. In chapter 4 we assume that one of these inequalities holds throughout

the contact region; in other words, there are no regions of sticking, only

slip. Alternatively, in chapter 5 one of these inequalities hold in the contact

region, except where sticking occurs and vc = ve.
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2.2.4 Stress-free boundary condition

The final boundary conditions are outside of the contact region, −∞ < x <

−a and d < x < ∞. In these regions the elastic surface is free of traction,

and so τ · n = 0. Here the outward normal is taken to the deformed half-

space surface y = η(x), so that n = (−dη/dx, 1). This gives the boundary

conditions

−dη
dx
τxx + τxy = −dη

dx
τxy + τyy = 0 at y = η(x). (2.6)

2.3 Linearisation of the governing equations

We linearise the boundary conditions by first introducing nondimensional

O(1) quantities, denoted by a star. We set

u = εu?, x =
√
εRx?, t =

√
εR

V
t?, v = V v?.

The scaling results from assuming that displacements u are of the order of

the maximum vertical displacement of the elastic medium (ε) due to the

roller. Similarly, we assume lengthscales for the position vector x to be

dictated by the size of the contact region, bounded by x2 + (R − ε)2 = R2;

expanding for small ε/R, this results in the contact region being bounded

approximately by |x?| <
√

2. The relevant timescale is taken as the time

taken for the undeformed material to convect past the contact region, giving

t = t?
√
εR/V . The velocity of the elastic solid may similarly be written as

v = V v? in terms of the convection speed of the cylinder.

We now proceed to linearise the governing equations, under the assumption

that the dimensionless parameter ε/R � 1. Under these assumptions, the
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velocity equation (2.1) becomes

v? = −ex+

√
ε

R

(
∂u?

∂t?
+ v? · ∂u

?

∂x?

)
= −ex+

√
ε

R

(
∂u?

∂t?
− ∂u?

∂x?

)
+O

( ε
R

)
.

(2.7)

Similarly, the strain tensor ε becomes

ε =
1

2

(
∇u+∇uT

)
+O

(
|u|2

)
=

√
ε

R

 ∂u?

∂x?
1
2

(
∂u?

∂y?
+ ∂v?

∂x?

)
1
2

(
∂u?

∂y?
+ ∂v?

∂x?

)
∂v?

∂y?

+O
( ε
R

)
,

and hence strains are small and we may assume linear elasticity. Using the

isotropic linear stress–strain relationship, the Cauchy stress tensor becomes

τ = λ

√
ε

R
τ ? = λ

√
ε

R


τ ?xx τ ?xy 0

τ ?xy τ ?yy 0

0 0 τ ?zz

 (2.8)

= λ

√
ε

R


(1 + 2µ/λ)∂u

?

∂x?
+ ∂v?

∂y?
µ
λ

(
∂u?

∂y?
+ ∂v?

∂x?

)
0

µ
λ

(
∂u?

∂y?
+ ∂v?

∂x?

)
∂u?

∂x?
+ (1 + 2µ/λ)∂v

?

∂y?
0

0 0
(
∂u?

∂x?
+ ∂v?

∂y?

)
 .

Substituting this into the momentum equation (2.2) simplifies to give

V 2ρ

λ

(
∂

∂t?
− ∂

∂x?

)2

u? =∇? · τ ? +O

(√
ε

R

)
,

where λ is Lamé’s first parameter, µ is the shear modulus, and ρ is the ma-

terial density. Hence, to leading order, the governing equations are the usual
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equations of linear elasticity, only with an extra advection term included:

V 2ρ

λ

(
∂

∂t?
− ∂

∂x?

)2

u? =

(
1 +

2µ

λ

)
∂2u?

∂x?2
+
(

1 +
µ

λ

) ∂2v?

∂x?∂y?
+
µ

λ

∂2u?

∂y?2
,

V 2ρ

λ

(
∂

∂t?
− ∂

∂x?

)2

v? =

(
1 +

2µ

λ

)
∂2v?

∂y?2
+
(

1 +
µ

λ

) ∂2u?

∂x?∂y?
+
µ

λ

∂2v?

∂x?2
.

(2.9)

It remains to apply the linearisation to the boundary conditions.

2.3.1 Linearised boundary conditions

Using the scaling above, the contact boundary condition (2.3) with y = Y +v

may be linearised directly. Noting that Y = 0 on the surface, this leads to

(√
εRx?

)2
+
(
R− ε(v? + 1)

)2
= R2 ⇒ v? = 1

2
x?2 − 1 +O

( ε
R

)
,

to be applied for −a? < x? < d?.

We recall the nonlinear stick boundary condition (2.4) and linearise in line

with (2.7) to give

vc
? = −ex +

√
ε

R

(
∂u?

∂t?

∣∣∣
x
− ∂u?

∂x?

∣∣∣
t

)
+O

( ε
R

)
. (2.10)

We further assume that when stick occurs, the speed of the roller is close to

its convection speed

v?c =
ΩR

V
= 1−W

√
ε

R
+O

( ε
R

)
, (2.11)

with W parametrising the speed of the roller. Then by taking the dot product

of (2.10) with t1 and substituting in (2.11) we derive the stick boundary

1The vertical displacement of the free surface y = η(x) is of the order of the elastic
displacement, and we therefore rescale so that η(x) = εη?(x?) with η? assumed O(1),
giving y? =

√
ε/R η?(x?) � 1. Using this scaling makes the tangential vector in the

contact region become t = ( εR (1 + v?)− 1,−
√

ε
Rx

?).
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condition

∂u?

∂t?

∣∣∣
x
− ∂u?

∂x?

∣∣∣
t

= W +O

(√
ε

R

)
for y? = 0.

Expanding the slip (2.5) and free (2.6) boundary conditions as a Taylor’s

series about y? = 0 then gives

τxy∓µ0τyy = 0 +O

(√
ε

R

)
for y? = 0, (2.12a)

τxy = τyy = 0 +O

(√
ε

R

)
for y? = 0.

Note that the rescaled velocity of the roller is v?c = RΩ/V , and that the

rescaled velocity of the elastic material in the same direction is v?e = 1 +

O(
√
ε/R), and so in the friction boundary condition (2.12a) we have ± =

sgn(RΩ/V − 1).

2.3.2 Full-slip

The linearised differential equations to solve are therefore

V 2ρ

λ

(
∂

∂t
− ∂

∂x

)2

u = (1 + 2µ/λ)
∂2u

∂x2
+ (1 + µ/λ)

∂2v

∂x∂y
+
µ

λ

∂2u

∂y2
,

V 2ρ

λ

(
∂

∂t
− ∂

∂x

)2

v = (1 + 2µ/λ)
∂2v

∂y2
+ (1 + µ/λ)

∂2u

∂x∂y
+
µ

λ

∂2v

∂x2
,

to be solved for −∞ < x < ∞ and y < 0, subject to boundary conditions

along y = 0. These boundary conditions are given by

Contact: v(x, 0) =
x2

2
− 1, for − a ≤ x ≤ d,

Slip: τxy ∓ µ0τyy(x, 0) = 0, for − a ≤ x ≤ d,

Stress-free: τxy(x, 0) = τyy(x, 0) = 0, for x < −a, d < x.
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2.3.3 Full-stick

The linearised differential equations to solve are therefore

V 2ρ

λ

(
∂

∂t
− ∂

∂x

)2

u = (1 + 2µ/λ)
∂2u

∂x2
+ (1 + µ/λ)

∂2v

∂x∂y
+
µ

λ

∂2u

∂y2
,

V 2ρ

λ

(
∂

∂t
− ∂

∂x

)2

v = (1 + 2µ/λ)
∂2v

∂y2
+ (1 + µ/λ)

∂2u

∂x∂y
+
µ

λ

∂2v

∂x2
,

to be solved for −∞ < x < ∞ and y < 0, subject to boundary conditions

along y = 0. These boundary conditions are given by

Contact: v(x, 0) =
x2

2
− 1, for − a ≤ x ≤ d,

Stick:
Du

Dt
(x, 0) = W, for − a ≤ x ≤ d,

Stress-free: τxy(x, 0) = τyy(x, 0) = 0, for x < −a & d < x.

2.3.4 Stick-slip

The linearised differential equations to solve are therefore

V 2ρ

λ

(
∂

∂t
− ∂

∂x

)2

u = (1 + 2µ/λ)
∂2u

∂x2
+ (1 + µ/λ)

∂2v

∂x∂y
+
µ

λ

∂2u

∂y2
,

V 2ρ

λ

(
∂

∂t
− ∂

∂x

)2

v = (1 + 2µ/λ)
∂2v

∂y2
+ (1 + µ/λ)

∂2u

∂x∂y
+
µ

λ

∂2v

∂x2
,
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to be solved for −∞ < x < ∞ and y < 0, subject to boundary conditions

along y = 0. These boundary conditions are given by

Contact: v(x, 0) =
x2

2
− 1, for − a ≤ x ≤ d,

Stick:
Du

Dt
(x, 0) = W, for − b ≤ x ≤ c,

Slip: τxy ∓ µ0τyy(x, 0) = 0, for x < −b & c < x,

Stress-free: τyy(x, 0) = 0, for x < −a & d < x.

The unknown transitions of the stick-slip zones are labeled by the location

of −b, d and are to be found as part of the solution also.

For clarity of notation we drop ? from the nondimensional quantities.

The full-slip and stick-slip problems may be found in chapters 4 and 5.

Whereas the full-stick and a two roller problem may be seen in appendix

B and C.

2.4 General solution

As the differential equation is the same throughout we derive the general

solution here and find the specific solution by considering the boundary con-

ditions in the frictional regime we consider. For the governing equations,

we have the standard linear elasticity equations and an additional advection

term by considering a frame of reference moving with the cylinder in the

horizontal direction. Then by taking a Fourier transform of the resulting

governing equation we may formulate the general solution, where the mixed

boundary problem is required for the full solution. Taking Fourier trans-

forms of the boundary conditions over their respective intervals enables the

mixed boundary value problem to be formulated into a matrix Wiener–Hopf

equation which we may solve.
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The elastic half-space is assumed to be linear isotropic where is Lamé’s first

parameter, is the shear modulus, and is the material density. We consider

(2.9), set u(x, y, t) = û(x, y)eiωt, and differentiate with respect to time twice

to find,

ρV 2

(
iω − ∂

∂x

)2

û = (λ+ µ)∇∇ · û+ µ∇2û. (2.13)

The eiωt is added to generate a strip of analyticity in the complex k-plane,

with |ω| � 1 and Im(ω) < 0 to ensure a causal solution. The temporal

frequency, ω, will be considered in the steady state limit, |ω| → 0, and so

has no effect on the boundary conditions after linearisation.

Fourier transforming the x-dependency gives a general solution to the govern-

ing equation (2.13). Defining the Fourier transform and inversion considered

throughout on a variable φ(x, y),

φ̃(k, y) =

∫ ∞
−∞

φ(x, y)eikxdx, φ(x, y) =
1

2π

∫ ∞
−∞

φ̃(k, y)e−ikxdk.

The notation φ̃(k, y) represents a transformed variable. Then by applying

the transforms to the governing equation, the following is derived

µ
∂2ũ

∂y2
− ik(λ+ µ)

∂ṽ

∂y
+ (ρV 2(ω + k)2 − (λ+ 2µ)k2)ũ = 0,

(λ+ 2µ)
∂2ṽ

∂y2
− ik(λ+ µ)

∂ũ

∂y
+ (ρV 2(ω + k)2 − µk2)ṽ = 0.

To enable a physically attainable solution deformations must decay far from

the roller so an ansatz which decays in the negative y-direction is apt. A

solution may be found by taking the following ansatz

ũ(k, y) = A(k)eγ(k)y, ṽ(k, y) = A(k)B(k)eγ(k)y,

where A(k), B(k) and γ(k) are as yet unknown functions. Applying the

ansatz to the transformed governing equation gives the following equations
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to solve

µγ2 + ik(λ+ µ)Bγ + (ρ(ω + kV )2 − (λ+ 2µ)k2) = 0,

(λ+ 2µ)Bγ2 + ik(λ+ µ)γ + (ρ(ω + kV )2 − µk2)B = 0,

which we may rearrange to form a single fourth order polynomial by elimi-

nating B. Solving the fourth order polynomial gives the solutions

γ(k) = ±

√(
1− ρV 2

λ+ 2µ

)(
k − ρV ω

λ+ 2µ− ρV 2

)2

− ρω2

λ+ 2µ− ρV 2
,

= ±

√(
1− ρV 2

µ

)(
k − ρV ω

µ− ρV 2

)2

− ρω2

µ− ρV 2
.

Therefore, due to the decay in the elastic media, only two terms of the

solutions to the fourth order polynomial remain, γ1(k) and γ2(k),

γ1(k) =

√
k2 − ρV 2

λ+ 2µ

(
ω + k

)2
, γ2(k) =

√
k2 − ρV 2

µ

(
ω + k

)2
.

To ensure the asymptotic behaviour of the solution as k → 0 is correct, we

define u(x, y) and v(x, y) in the following way. If we do not define u(x, y) and

u(x, y) in this way, the general solution fails due to the asymptotic behaviour

of B1(k), which would tend to infinity as k approaches zero. To prevent this

problem we define in the following way,

u(x, y) =
1

2π

∫ ∞
−∞

[
Â1(k)B̂1(k)eyγ1(k) + A2(k)eyγ2(k)

]
e−ikxdk,

v(x, y) =
1

2π

∫ ∞
−∞

[
Â1(k)eyγ1(k) + A2(k)B2(k)eyγ2(k)

]
e−ikxdk.

(2.14)
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Explicitly, this defines the functions γ1(k), γ2(k), B1(k) and B2(k), as

γ1(k) =

√
k2 − ρV 2

λ+ 2µ

(
ω + k

)2
, γ2(k) =

√
k2 − ρV 2

µ

(
ω + k

)2

B1(k) =
k

iγ1(k)
=

1√
ρV 2(1+ω

k
)2

λ+2µ
− 1

, B2(k) =
ik

γ2(k)
=

−1√
ρV 2(1+ω

k
)2

µ
− 1

.

This leaves only two unknowns remaining, Â1(k) and A2(k), which are to

be found by considering the boundary conditions. Note that we want the

branch cuts of B1(k) and B2(k) to be chosen appropriately according to the

branch cuts of γ1(k) and γ2(k), which themselves should be chosen such that

real(γ) > 0, Observe that B̂1(k)→ 0 as k → 0, which simplifies the general

solution into a form which agrees with the k → 0 limit of the fourth order

polynomial.

The functions Â1(k) and A2(k) are unknown and so solving the problem

is reduced to finding Â1(k) and A2(k). To find the particular solution for

each of the regimes we take Fourier transforms of boundary conditions over

their respective regions. Due to the boundary conditions differing in their

respective regions we seek a technique to enables us to solve such problems.
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Chapter 3

The Wiener–Hopf technique

3.1 Introduction

The disjoint physics of contact mechanics and friction leads to mathemat-

ical models of them to be naturally formulated into mixed boundary value

problems. A famous technique for solving these types of problems is the

Wiener–Hopf technique, which uses integral transforms of the disjoint bound-

ary conditions to construct complex functions which are analytic in overlap-

ping domains. In the overlapping domain the analytic functions may be

assembled into a Wiener–Hopf equation; the solution is derived by applying

Wiener–Hopf splittings, analytic continuation, and Liouville’s theorem1.

The methodology outlined in the previous paragraph is known as the Wiener–

Hopf technique and was first formulated by Norbert Wiener and Eberhard

Hopf in their landmark paper in 1931 [99]. The technique was invented

whilst considering the solution with respect to f(x) to the following integral

1See appendix A for the definition and some further basic results in complex analysis.
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equation ∫ ∞
0

K(x− y)f(y)dy = g(x), x > 0, (3.1)

where g(x) is known and the kernel is

K(x) =
1

2π

∫ ∞
|x|

e−y

y
dy.

Their method begins by introducing an additional unknown function h(x)

for x negative

∫ ∞
0

K(x− y)f(y)dy =

g(x), x > 0,

h(x), x ≤ 0.
(3.2)

Taking a Fourier transform of (3.2) leads to the Wiener–Hopf equation

G+(k) +H−(k) = K(k)F+(k),

where we may proceed by taking what is known as a Wiener–Hopf factori-

sation of the kernel K(k). The superscripts ± indicate the domain of ana-

lyticity of the functions, which shall be discussed in more depth throughout

this chapter. This brings us to what is thought to be the first Wiener–Hopf

equation, to see how this may be solved refer to the texts by Wiener [99] or

Lawrie and Abrahams [61] as we shall focus on extensions and applications

to the technique from here on.

The technique Wiener and Hopf originally developed was for solving the

integral equation (3.1) in question, and the direct relation of it to mixed

boundary value problems was yet to come. Copson [27] provided an example

of how the Wiener–Hopf technique may be applied to the classic Sommerfeld

half-plane problem [89]. However, the most significant development in re-

lating the Wiener–Hopf technique to mixed boundary value problems came

from Jones [50] who constructed the Wiener–Hopf equation directly from a

mixed boundary value problem. Shortly after, the book colloquially known
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3.1. INTRODUCTION 3.2

as the “Wiener–Hopf Bible” was published by Noble [74], which contains the

most comprehensive account of the scalar Wiener–Hopf technique. Noble’s

classic text contains a brief discussion on simultaneous scalar Wiener–Hopf

equations, which may be arranged into a matrix Wiener–Hopf equation. The

matrix Wiener–Hopf technique is in itself an active area of study with the

recent review texts [57, 85] and is the format which we shall focus on, nonethe-

less, we shall illustrate the scalar Wiener–Hopf equation first.

Since its inception, the Wiener–Hopf technique has found itself in a variety

of applications, from acoustics and elasticity to probability and even math-

ematical finance [e.g. 53, 2, 32, 38]. The scalar Wiener–Hopf technique is

well understood, with current efforts in the advancement of the technique fo-

cussed on developing a constructive matrix Wiener–Hopf technique [57, 85].

The Wiener–Hopf technique has a rich history in contact mechanics [e.g.

90, 102, 65] with Spence [90] using the technique to solve adhesive contact

problems with a power-law punch profile. Zhupanska and Ulitko [102] ap-

plied the Wiener–Hopf technique to a cylindrical punch but avoids the need

for the matrix Wiener–Hopf technique because their symmetric setting al-

lows the use of the planar-bipolar conformal mapping which reduces their

problem to a scalar Wiener–Hopf equation. We note that the Riemann–

Hilbert problem, the Wiener–Hopf technique’s close relation [55], has been

used to solve the contact problems in Galin and Gladwell [39] and Antipov

and Arutyunyan [10] also.

In section 3.2 a contact mechanics problem is presented and constructed

into a scalar Wiener–Hopf equation, which is then solved in line with the

scalar Wiener–Hopf technique. To assist with illustrating the Wiener–Hopf

technique the sections 3.2.1 and 3.2.2 discuss the construction of half-range

functions and Wiener–Hopf splittings respectively. The matrix Wiener–Hopf

technique is introduced in section 3.3. Finally, the iterative method which

we apply in chapters 4 and 5 is outlined in section 3.3.1.
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3.2. SCALAR WIENER–HOPF TECHNIQUE 3.2

1

V

O

F
x

y

Figure 3.2.1: A schematic of a semi-infinite punch (shaded) sliding along an elastic
half-space.

3.2 Scalar Wiener–Hopf technique

To illustrate the scalar Wiener–Hopf technique and its use in contact mechan-

ics we introduce the “toy problem” of a semi-infinite punch sliding along an

elastic half-space. This setting is shown schematically in figure 3.2.1.

We consider an elastic half-space y < 0 being deformed by a sliding semi-

infinite punch with the profile

v(x) = −ex, for x ≤ 0,

which is pushed in with a force F , resulting in the leading edge causing

an indentation depth of 1 into the elastic half-space. The punch slides in

the positive x-direction across the half-space at a linear velocity V . We

choose a frame of reference fixed with the punch, such that the leading edge

of the punch is located at x = 0, with the origin of the coordinate system

(labelled O) taken in a frame of reference moving with the leading edge of the

punch at the height of the undeformed elastic surface. The unit vectors are

ex and ey in the x- and y-directions respectively. The elastic half-space has a

displacement u(x, t) and stress tensor τ(x, t), this gives us a similar setting

to the rolling cylinder derived in section 2.2, except we have semi-infinite
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τxy|y=0 = 0τxy|y=0 − µ0τyy|y=0 = 0

τyy|y=0 = 0v|y=0 = −ex

0 x

Figure 3.2.2: A diagram of the boundary conditions and their domains for a semi-
infinite punch sliding along an elastic half-space.

boundary conditions on the surface of the elastic media.

We model the punch as slipping past the half-space so take a Coulomb law of

dry friction as the frictional boundary condition. Thus giving the following

boundary conditions,

Contact: v(x, 0) = −ex, for x ≤ 0,

Slip: τxy(x, 0)− µ0τyy(x, 0) = 0, for −∞ < x <∞,

Stress-free: τyy(x, 0) = 0, for 0 < x.

The punch is assumed to be in forward slip due to the relative difference of

the velocities of the two surfaces and we rearrange the stress-free boundary

conditions to extend the slip boundary condition across the entire surface of

the elastic half-space. The boundary conditions are shown diagrammatically

in figure 3.2.2.

In line with Jones [50], we construct the Wiener–Hopf equation by taking

Fourier transforms of the boundary conditions. In our case, we take a full-

range transform of our boundary conditions and express the unknown com-

ponents of the boundary conditions as unknown half-range functions, with

more details on half-range functions found in section 3.2.1. Firstly, we define

the following sets in the complex k-plane,

� upper half-plane: D+ = {k ∈ C : Im(k) > α;α < 0},

� lower half-plane: D− = {k ∈ C : Im(k) < β; β > 0},
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3.2. SCALAR WIENER–HOPF TECHNIQUE 3.2

� the strip: D = D+ ∩ D− = {k ∈ C : α < Im(k) < β}.

This defines an upper half-plane D+ and lower-half plane D− such that there

is an overlapping region between them, which is the strip D. A diagram of

these sets in the complex plane is shown in figure 3.2.3. Now we take the

full-range Fourier transformations of the boundary conditions

Ψ̃(k) =

∫ ∞
−∞

τxy(x, 0)− µ0τyy(x, 0)eikxdx = 0, (3.3)

τ̃yy(k) =

∫ ∞
−∞

τyy(x, 0)eikxdx =

∫ 0

−∞
τyy(x, 0)eikxdx, (3.4)

= τ̃yy
−(k),

ṽ(k) =

∫ ∞
−∞

v(x, 0)eikxdx

=

∫ ∞
0

v(x, 0)eikxdx−
∫ 0

−∞
e(ik+1)xdx,

= ṽ+(k)− 1

ik + 1
. (3.5)

The newly defined half-range functions τ̃yy
−(k) and ṽ+(k) are analytic in D−

and D+ respectively. We note that the term 1
ik+1

is analytic in D− and decays

linearly as k tends to infinity.

We consider the general solution (2.14), derived in section 2.4 and is valid here

as we similarly consider a convected elastic half-space. Therefore, we may

express the Fourier transformed boundary conditions (3.3), (3.4) and (3.5)

in terms of the unknowns Â1(k) and A2(k) by recalling the relationships,

ũ(k, y) = Â1(k)B̂1(k)eyγ1(k) + A2(k)eyγ2(k),

ṽ(k, y) = Â1(k)eyγ1(k) + A2(k)B2(k)eyγ2(k).

Relating the transformed boundary conditions to Â1(k) and A2(k) allows us

to relate them to one another, and therefore to construct the Wiener–Hopf

equation. This approach is the same for both the full-slip and stick-slip cases

which is discussed further in sections 4.2 and 5.2 respectively.
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D−
D

D+

Γ−

Γ+

β

α

Re(k)

Im(k)

Figure 3.2.3: A diagram of the complex k−plane with the upper half-plane, lower
half-plane and strip shown.

By using the plane strain relationship (2.8), Ψ̃(k) may be expressed in terms

of the unknown functions Â1(k) and A2(k). Then (3.3) can be used to elim-

inate the unknown function Â1(k),

Ψ̃(k) =

[
µ(B̂1(k)γ1(k)− ik)− µ0

(
(λ+ 2µ)γ1(k)− ikλB̂1(k)

)]
Â1(k)

+

[
µ(γ2(k)− ikB2(k))− µ0

(
(λ+ 2µ)B2(k)γ2(k)− ikλ

)]
A2(k)

= m−1 (k)Â1(k) +m−2 (k)A2(k) = 0 ⇐⇒ Â1(k) = −m
−
2 (k)

m−1 (k)
A2(k),

(3.6)

where the known functions m−1 (k) and m−2 (k) are defined from equations

(3.6). Then expressing the remaining boundary conditions, (3.4) and (3.5),
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in terms of A2(k) gives

τ̃yy(k) =
[
(λ+ 2µ)γ1(k)− ikλB̂1(k)

]
Â1(k)

+
[
(λ+ 2µ)B2(k)γ2(k)− ikλ

]
A2(k)

= n1(k)Â1(k) + n2(k)A2(k) =

(
n2(k)− n1(k)

m−2 (k)

m−1 (k)

)
A2(k),(3.7)

ṽ(k) = Â1(k) +B2(k)A2(k) =

(
B2(k)− m−2 (k)

m−1 (k)

)
A2(k), (3.8)

with the known functions n1(k) and n2(k) defined from (3.7). Then we may

eliminate A2(k) from equations (3.7) and (3.8) to find

τ̃yy(k)

n2(k)m−1 (k)− n1(k)m−2 (k)
=

ṽ(k)

B2(k)m−1 (k)−m−2 (k)
.

Substituting in the relations given in equations (3.4) and (3.5) and rearrang-

ing gives a scalar Wiener–Hopf equation

K(k)τ̃yy
−(k) = ṽ+(k)− 1

ik + 1
∈ D, (3.9)

with the Wiener–Hopf kernel, K(k), defined as

K(k) =
B2(k)m−1 (k)−m−2 (k)

n2(k)m−1 (k)− n1(k)m−2 (k)
, with K(k) = O

(
1

|k|

)
as |k| → ∞.

(3.10)

We note that this kernel is the same function we seek to multiplicatively split

in the full-slip regime and appears in the stick-slip regime too.

To progress further we seek to employ the Wiener–Hopf technique, which re-

lies on finding a Wiener–Hopf factorisation or multiplicative splitting of the

Wiener–Hopf kernel K(k). A more detailed discussion of Wiener–Hopf fac-

torisation may be found in section 3.2.2.2, for now, we define the factorisation

32



3.2. SCALAR WIENER–HOPF TECHNIQUE 3.2

of the kernel K(k) as

K(k) = K+(k)K−(k).

The functions K−(k) and K+(k) are analytic non-zero in D+ and D− respec-

tively and the subscripts ± are used to denote multiplicative factorisations.

Both K−(k) and K+(k) behave like |k|− 1
2 as |k| → ∞ in their respective

domains. Note the kernel K(k) appears in chapters 4 and 5, with the details

on its factorisation given in section 4.4.1.1. If we can find a factorisation of

(3.10), then we may divide the equation (3.9) by K+(k) to find

K−(k)τ̃yy
−(k) =

ṽ+(k)

K+(k)
− 1

K+(k)(ik + 1)
. (3.11)

The next key step is to apply a Wiener–Hopf decomposition or an additive

splitting of the forcing term to the equation

1

K+(k)(ik + 1)
= F+(k) + F−(k).

The functions F+(k) and F−(k) are analytic in D+ and D− respectively,

and the superscripts ± are used to denote additive decompositions. To see a

more detailed discussion of Wiener–Hopf decompositions see section 3.2.2.1.

Applying the decomposition to our Wiener–Hopf equation (3.11) and rear-

ranging,

ṽ+(k)

K+(k)
− F+(k)︸ ︷︷ ︸ = K−(k)τ̃yy

−(k) + F−(k)︸ ︷︷ ︸ ≡ J(k), (3.12)

upper lower

where we may find a function, J(k) say, which is defined in the strip D. As

the upper side of equation (3.12) is analytic in D+ and the lower side of the

equation is analytic in D−, then by analytic continuation J(k) must be entire.

In general, the behaviour of J(k) is found by examining the asymptotic

behaviour of the upper and lower sides of (3.12). For example, if both sides
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grew at most like |k|n as |k| → ∞, then by an application of the extended

Liouville’s Theorem (see appendix A) we find that J(k) is a polynomial of

degree at most n.

We derive the asymptotic behaviour of the half-range functions by examining

the edge conditions. The edge conditions are the behaviour of the boundary

conditions as they approach the limits of their domain, throughout this thesis

we pay close attention to them as their locations are unknown and we seek to

find them as part of the solution, however, for this toy problem the location

of the boundary junction is known. The edge conditions at the junction for

this problem they are

limx→0+v(x, 0) = −1, limx→0−τyy(x, 0) = |k|−
1
2 .

To impose the edge conditions on the half-range functions we consider the

definition of the half-range function and apply integration by parts repeat-

edly,

ṽ+(k) =

∫ ∞
0

v(x, 0)eikxdx,

=
∞∑
n=0

∂nv

∂xn
(0, 0)

(
−1

ik

)n+1

.

This determines the asymptotic behaviour of ṽ+(k) to be

ṽ+(k) =
1

ik
+O

(
|k|−2

)
as |k| → ∞.

Applying the edge conditions to both half-range functions gives the asymp-

totic behaviour

ṽ+(k) ∼ |k|−1 as |k| → ∞ ∈ D+,

τ̃yy
−(k) ∼ |k|−

1
2 as |k| → ∞ ∈ D−.
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Hence, the function J(k) has the asymptotic behaviours

J(k) ≤

|k|−
1
2 as |k| → ∞ ∈ D+,

|k|−1 as |k| → ∞ ∈ D−.
(3.13)

Equation (3.13) shows that J(k) tends to zero in both half-planes and so by

Liouville’s Theorem (see appendix A) it is identically zero. Therefore, the

solution to the Wiener–Hopf equation is

ṽ+(k) = K+(k)F+(k), τ̃yy
−(k) = −F

−(k)

K−(k)
.

A demonstration of the Wiener–Hopf technique in the context of a contact

problem has been explained, which will aid us in the more intricate settings

we wish to explore in chapters 4 and 5.

Thus, we have applied the Wiener–Hopf technique to a scalar equation to

find the two unknown terms, ṽ+(k) and τ̃yy
−(k), from which one can evaluate

the unknown functions Â1(k), A2(k). To illustrate the solution for the toy

problem we plot the stresses in the half-space in figure 3.2.4. The solution is

found by numerically inverting

τyy(x, 0) =
1

2π

∫ ∞
−∞

τ̃yy(k, 0)e−ikxdk,

=
1

2π

∫ ∞
−∞

τ̃yy
−(k)e−ikxdk,

by applying a quadrature rule. We note that by finding Â1(k) and A2(k) from

equations (3.6) and (3.7) we may find the stresses inside the half-space which

are shown in the contour plots 3.2.4b and 3.2.4c. The figure 3.2.4a shows the

normal stress on the surface of the elastic half-space which returns to zero

away from the punch, as we have imposed in the boundary conditions. Figure

3.2.4a shows some oscillatory behaviour near the transition point which is

from the Gibbs Phenomena caused by the numerical method and is discussed

in more depth in sections 4.5 and 5.6.3. The remaining figures in 3.2.4 show
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that the magnitudes of stress in the half-space are localised around the punch,

as one would intuitively expect.
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(a) The profile plot of τyy(x, 0).
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(b) The stress distribution for τyy(x, y).
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(c) The stress distribution for τxy(x, y).

Figure 3.2.4: Plots of the solution to the toy problem for Metal parameter values
from table 4.1.
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3.2.1 Half-range transforms

To apply the Wiener–Hopf technique we must take Fourier transforms of

our boundary conditions over semi-infinite and finite regions. For this pur-

pose, we shall define half-range Fourier transforms and show that finite-range

transforms may be written as the difference of half-range transforms. Once

all our boundary conditions are transformed over their respective regions

they are then assembled into a Wiener–Hopf problem.

We define a half-range Fourier transforms with respect to the point x = L

by considering the full-range Fourier transform and splitting as follows,

φ̃L(k, y) =

∫ ∞
−∞

φ(x, y)eik(x−L)dx

=

∫ ∞
L

φ(x, y)eik(x−L)dx +

∫ L

−∞
φ(x, y)eik(x−L)dx

= φ̃L+(k, y) + φ̃L−(k, y).

The half-range functions φ̃L+(k, y) and φ̃L−(k, y) analytic in D+ and D− re-

spectively (see page 12 of [74]). The shifted full-range transforms may be

related to one centred at x = 0 by

φ̃L(k, y)eikL = φ̃(k, y).

Finally, the transformation of a finite interval may be related to half-range

transforms in the following way

φ̃[L1,L2](k, y) =

∫ L1

L2

φ(x, y)eikxdx,

= φ̃L1
− (k, y)eikL1 − φ̃L2

− (k, y)eikL2

= φ̃L2
+ (k, y)eikL2 − φ̃L1

+ (k, y)eikL1 .

This gives the tools to transform the boundary conditions over their respec-

tive regions.
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3.2.2 Wiener–Hopf splittings

A Wiener–Hopf splitting is the separation of a function into its upper and

lower parts. In the following we explain how scalar functions may be addi-

tively and multiplicatively split, as well as an illustrative examples.

3.2.2.1 Wiener–Hopf decomposition

The Cauchy transform may be used to calculate the additive decomposi-

tion [29, 74], for k ∈ C and F (k) entire

F (k) =
1

2πi

∫
Γ+

F (x)

x− k
dx − 1

2πi

∫
Γ−

F (x)

x− k
dx

= CΓ+ [F ](k) − CΓ− [F ](k)

= F+(k) + F−(k).

The contours Γ+ or Γ− pass below or above k, respectively, as shown in

figure 3.2.3. It is further required that F (k)→ 0 as |k| → ∞ for the Cauchy

transform to hold. The purpose of this decomposition is to separate F (k)

into components which are analytic in D+ or D−.

We outline a simple example of additive decomposition without the need to

apply the Cauchy transform. Consider the function F (k) = 1
(k−i)(k+i)

, which

has singularities at k = ±i. The singularities in F (k) may be separated

additively,

F (k) =
1

(k − i)(k + i)
,

=
i

2(k + i)
− i

2(k − i)
= F+(k) + F−(k).

The function F+(k) has its singularity in D− and the function F−(k) has its

singularity in D+, so are both analytic in the correct regions.
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3.2.2.2 Wiener–Hopf factorisation

The multiplicative factorisation of a function may be derived through the ad-

ditive splitting and the use of the logarithm. For an entire complex function,

K(k),

K(k) = e[log(K)]++[log(K)]−

= K+(k)K−(k),

where we denote multiplicative splittings by subscripts ± and additive split-

tings by superscripts ±. The additive decomposition of log(K) may be found

via the Cauchy transform, as outlined previously. The requirement of the

asymptotic behaviour of K(k) in the multiplicative factorisation is K(k)→ 1

as |k| → ∞. Hence log(K)→ 0 as |k| → ∞, this asymptotic behaviour may

be generated by normalising K(k) by a known entire function γ(k), which

can be multiplicatively factorised [74].

We outline a simple example of multiplicative factorisation without the need

to apply the Cauchy transform. Consider the functionK(k) =
√

(k + i)(k − i),
which has branch-cut singularities at k = ±i, so again we express K(k) such

that these singularities are separated,

K(k) =
√

(k + i)(k − i),

=
√

(k + i)
√

(k − i)

= K+(k) K−(k).

The function K+(k) has its branch-cut in D− and the function K−(k) has

its branch-cut in D+, hence both are analytic in the correct regions.

Next the scalar Wiener–Hopf equation is generalised to the matrix Wiener–

Hopf equation, which has a matrix kernel K(k) with vector half-range and

forcing functions φ̃+(k), φ̃−(k) and F (k).
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3.3 Matrix Wiener–Hopf technique

The Wiener–Hopf problem which arises in chapters 4 and 5 are a series of

coupled Wiener–Hopf equations and these equations are then assembled into

a linear system before applying the matrix analogue of the scalar Wiener–

Hopf technique. A matrix Wiener–Hopf equation is composed of the vector

unknown functions, φ̃+(k) and φ̃−(k), the forcing vector, F (k), and the

matrix kernel, K(k). An example of an n-dimensional matrix Wiener–Hopf

equation is
φ̃+

1 (k)

φ̃+
2 (k)
...

φ̃+
n (k)

 =


K11(k) K21(k) . . . Kn1(k)

K12(k) K22(k) . . . Kn2(k)
...

...
. . .

...

K1n(k) K2n(k) . . . Knn(k)



φ̃−1 (k)

φ̃−2 (k)
...

φ̃−n (k)

+


F1(k)

F2(k)
...

Fn(k)

 ,

where there are 2n unknowns φ̃±n (k). To solve this system we may use a

technique analogous to the scalar case but complications arise in the factori-

sation of the kernel K(k). The factorisation of a matrix kernel is an ongoing

open problem within the Wiener–Hopf community.

In the scalar Wiener–Hopf technique, the Wiener–Hopf factorisation of the

scalar kernel function may be found by taking the additive decomposition

of the logarithm of the kernel and then raising to the exponential to recover

the kernel. The generalisation of the scalar technique to the matrix setting

fails due to matrix multiplication being non-commutative, which we will now

demonstrate. As in the scalar case, we write our matrix kernel as

K(k) = elog(K).

Then we may compute the additive decomposition of log(K)(k) by computing

the additive decomposition of the scalar elements of log(K)(k),

log(K)(k) = [log(K)(k)]+ + [log(K)(k)]− .
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This approach breaks down as the relationship

e[log(K)(k)]++[log(K)(k)]− = e[log(K)(k)]+e[log(K)(k)]−

only exists if the matrices [log(K)(k)]+ and [log(K)(k)]− are commutative,

which is only true in special cases. Additionally, we note that the logarithm of

a matrix is not well-defined for all matrices, see Hall [42] for more details. At

present there are no general constructive methods for solving matrix Wiener–

Hopf problems, with many methods developed on a case by case basis.

In the text Noble [74], there is a brief discussion on the topic of simul-

taneous Wiener–Hopf equations which are then formulated into a general

matrix Wiener–Hopf equation. A solution is proposed for the general matrix

Wiener–Hopf equation by using the idea in Heins [43] to consider commuta-

tive factorisation, however, no illustrative examples were given in the text.

Noble mentions the results by Muskhelishvili [73], who examines the related

vectorial Riemann–Hilbert problem permits a factorisation but Noble notes

that at the time of writing no constructive method exists either.

There has been extensive developments in the factorisation of matrix func-

tions which has recently culminated in the review text Kisil et al. [57], with

some constructive methods beginning to appear. In particular, there is no

general constructive approach to factorise any matrix kernel into its upper

and lower components. Moreover, exact solutions only exist in a select few

cases, some of these exact solutions include triangular matrices, rational ma-

trices, and commutative matrices such as those of Khropkov-Daniele form.

To widen the class of exact solutions to matrix Wiener–Hopf problems, con-

structive approaches to factorise matrices have been found, some of these

approaches may be found in Rogosin and Mishuris [85]. approximate meth-

ods have been introduced to extend the solution space even further, these

include Padè approximants by Abrahams [3] or the Fredholm factorisation

by Daniele [29]. Alternatively, one could do away with an analytical solution

and proceed numerically as suggested by Llewellyn Smith and Luca [63] or

Colbrook et al. [26].
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The matrix Wiener–Hopf equations we consider are derived from their mixed

boundary value problems in chapters 4 and 5. The boundary conditions

switch at unknown labeled junctions and so taking Fourier transforms of

the boundary conditions leads to a series of coupled scalar Wiener–Hopf

equations. The coupled Wiener–Hopf equations may be assembled into a

matrix Wiener–Hopf equation or vice versa and it is to our fortune that the

iterative method [56, 81] exists to approximate the solution to such systems.

We shall outline the iterative method in the following section.

3.3.1 Iterative method

We outline the iterative method which we shall apply to the matrix Wiener–

Hopf equations in chapters 4 and 5. The iterative method is a technique for

solving triangular matrix Wiener–Hopf equations with exponential factors

Kisil [56] and Priddin et al. [81]. It was first developed in Kisil [56] for

2 × 2 matrices and then extended to n × n matrices in Priddin et al. [81],

and is one of few constructive n-dimensional matrix Wiener–Hopf techniques

[51, 96, 85]. The method has been applied to problems in acoustics by Kisil

and Ayton [53] and crack propagation by Livasov and Mishuris [62].

The method considers a matrix Wiener–Hopf such as (3.14) and approxi-

mates the exponential terms to zero. Once an initial approximation has been

made the matrix Wiener–Hopf may be considered as a series of decoupled

scalar Wiener–Hopf equations, in these scalar equations one may use addi-

tive and multiplicative decompositions to arrive at a form in which Liouville’s

Theorem may be applied. The approximation is corrected by reintroducing

the exponential terms and iterating through the coupled scalar equations,

additively decomposing the corrected forcing into a form where Liouville’s

may be applied once again.

To illustrate the iterative method, we introduce the notation φ̃
(L)j
± (k) to

indicate the jth iteration of an unknown upper or lower function from the

point L. Consider the following triangular matrix Wiener–Hopf equation
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with exponential factors,
A11(k)

A21(k)eikL21 A22(k)
...

. . . . . .

An1(k)eikLn1 An2(k)eikLn2 . . . Ann(k)



φ̃

(1)
+ (k)

φ̃
(2)
+ (k)

...

φ̃
(n)
+ (k)

 = (3.14)


B11(k) B12(k)e−ikL12 . . . B1n(k)e−ikL1n

B22(k)
. . . B2n(k)e−ikL2n

. . .
...

Bnn(k)



φ̃

(1)
− (k)

φ̃
(2)
− (k)

...

φ̃
(n)
− (k)

+


F1(k)

F2(k)
...

Fn(k)

 .

The elements within both matrices are assumed to be known and defined in

the strip D with the elements in the forcing vector defined similarly.

Then as instructed in Priddin et al. [81], we make an initial approximation

by setting the non-diagonal entries in the matrix to zero which neglects the

coupling between equations. This is justified by considering the behaviour

of the exponential terms in the extremities of the strip, which approximates

either e−ikL or eikL terms to zero. Thus as a first approximation we may set

all exponential entries in the matrices to zero,
A11(k)

A22(k)
. . .

Ann(k)



φ̃

(1)0
+ (k)

φ̃
(2)0
+ (k)

...

φ̃
(n)0
+ (k)

 =


B11(k)

B22(k)
. . .

Bnn(k)



φ̃

(1)0
− (k)

φ̃
(2)0
− (k)

...

φ̃
(n)0
− (k)

+


F1(k)

F2(k)
...

Fn(k)

 .

As we have decoupled each row for the initial approximation, we may now

solve each row of the matrix Wiener–Hopf problem by considering them as

scalar equations. To minimise the number of multiplicative factorisations
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required we divide the ith row by Aii(k) for i < n
2

and Bii(k) otherwise,

hence the scalar Wiener–Hopf equations are

φ̃
(1)0
+ (k) = B11(k)φ̃

(1)0
− (k) + F1(k),

...

φ̃
(n
2
−1)0

+ (k) = Bn
2
−1n

2
−1(k)φ̃

(n
2
−1)0

− (k) + Fn
2
−1(k),

An
2

n
2
(k)φ̃

(n
2

)0
+ (k) = φ̃

(n
2

)0
− (k) + Fn

2
(k),

...

Ann(k)φ̃
(n)0
+ (k) = φ̃

(n)0
− (k) + Fn(k).

Then we apply the scalar Wiener–Hopf technique to each of the equations,

where we shall assume that our functions decay sufficiently in D+ and D− to

give the following initial solutions,

φ̃
(1)0
+ (k) = B11+(k)

[
F1(k)

B11+(k)

]+

, φ̃
(1)0
− (k) =− 1

B11−(k)

[
F1(k)

B11+(k)

]−
,

φ̃
(2)0
+ (k) = B22+(k)

[
F2(k)

B22+(k)

]+

, φ̃
(2)0
− (k) =− 1

B22−(k)

[
F2(k)

B22+(k)

]−
,

...
...

φ̃
(n)0
+ (k) =

1

Ann+(k)

[
Fn(k)

Ann−(k)

]+

, φ̃
(n)0
− (k) =− Ann+(k)

[
Fn(k)

Ann−(k)

]−
.

For subsequent iterations we reintroduce the coupling (exponential terms),

consider the scalar Wiener–Hopf equations within the matrix, and rearrange

to minimise factorisations as before. We continue to consider each row as

scalar Wiener–Hopf equations by treating the reintroduced terms as a forcing
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by using their current approximation,

φ̃
(1)j
+ (k) = B11(k)φ̃

(1)j
− (k) + F1(k)

+
n∑

m=2

B1m(k)e−ikL1mφ̃
(m)j−1
− (k)

...

φ̃
(n
2
−1)j

+ (k) = Bn
2
−1n

2
−1(k)φ̃

(n
2
−1)j

− (k) + Fn
2
−1(k)

+

n
2
−2∑

m=1

Amn(k)eikLmnφ̃
(m)j
+ (k) +

n∑
m=n

2

Bm1(k)e−ikLm1φ̃
(m)j−1
− (k)

An
2

n
2
(k)φ̃

(n
2

)j
+ (k) = φ̃

(n
2

)j
− (k) + Fn

2
(k)

+

n
2
−1∑

m=1

Amn(k)eikLmnφ̃
(m)j
+ (k) +

n∑
m=n

2
+1

Bm1(k)e−ikLm1φ̃
(m)j−1
− (k)

...

Ann(k)φ̃
(n)j
+ (k) = φ̃

(n)j
− (k) + Fn(k)

+
n−1∑
m=1

Amn(k)eikLmnφ̃
(m)j
+ (k) .

The summations are comprised entirely of known terms and so we define a

new forcing to include them,

φ̃
(1)j
+ (k) = B11(k)φ̃

(1)j
− (k) + F̂1(k)

...

φ̃
(n
2
−1)j

+ (k) = Bn
2
−1n

2
−1(k)φ̃

(n
2
−1)j

− (k) + F̂n
2
−1(k)

An
2

n
2
(k)φ̃

(n
2

)j
+ (k) = φ̃

(n
2

)j
− (k) + F̂n

2
(k)

...

Ann(k)φ̃
(n)j
+ (k) = φ̃

(n)j
− (k) + F̂n(k)

Finally, we apply the scalar Wiener–Hopf technique to each of the scalar

equations to approximate the solution at the jth iteration. Hence, the jth
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solution is

φ̃
(1)j
+ (k) = B11+(k)

[
F̂1(k)

B11+(k)

]+

, φ̃
(1)j
− (k) =− 1

B11−(k)

[
F̂1(k)

B11+(k)

]−

φ̃
(2)j
+ (k) = B22+(k)

[
F̂2(k)

B22+(k)

]+

, φ̃
(2)j
− (k) =− 1

B22−(k)

[
F̂2(k)

B22+(k)

]−
...

...

φ̃
(n)j
+ (k) =

1

Ann+(k)

[
F̂n(k)

Ann−(k)

]+

, φ̃
(n)j
− (k) =− Ann+(k)

[
F̂n(k)

Ann−(k)

]−
.

We may iterate through the jth iteration equations until a convergence cri-

teria has been met, such as

‖φ̃(n)j
+ (k)− φ̃(n)j−1

+ (k)‖ < tolerance,

where the tolerance is some specified amount. To see more analysis on the

convergence of the iterative method see Priddin et al. [81]. Thus, we have

outlined the iterative method which we have used throughout. To see the

implementation of this method refer to sections 4.4 and 5.4, where more

discussion may be found.
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Chapter 4

Rolling contact in the full-slip

regime

4.1 Introduction

In this chapter we consider the setting where the magnitude of the angular

velocity for the cylinder is either sufficiently larger or sufficiently smaller

than the magnitude of the convection velocity, causing the contact region

to be fully slipping. In this setting we have imposed a full-slip friction law,

which simplifies the stick-slip friction boundary conditions by removing the

central sticking region. A solely slipping friction law means that the half-

space experiences uniform behaviour in the contact region. The uniform

behaviour within the contact region means that there are only two junctions

between boundary conditions and therefore a 2 × 2 matrix Wiener–Hopf

equation is to be expected. The junctions between the boundary conditions

are the unknown boundaries of the contact region and are referred to as the

contact points.

As outlined in chapter 1, the model of an elastic half-space deformed by a

rigid punch has been of interest for a considerable time, but we shall re-
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view the literature in greater depth here. Hertz [44] founded the field of

contact mechanics at the end of the 19th century by considering the elas-

tic deformation due to a frictionless rigid punch. Half a century later, the

understanding of contact mechanics was extended when Cattaneo [21] and

Mindlin [66] both considered elastic deformation of two cylinders under fric-

tion, setting the boundary conditions as an inner stick region and outer slip

regions. Ciavarella [23] generalised Cattaneo’s contact problem at the end

of the 20th century, by formulating the problem in the slip regions as inte-

gral equations rather than conditions on displacement. The development of

adhesive contact problems were led by Mossakovskii [70], who used an in-

cremental approach which was later used in both used in Goodman [40] and

Borodich and Keer [16]. Alternatively, Spence [90] showed that a self-similar

approach for contact problems may be used instead of the incremental one,

with Spence’s approach making use of the scalar Wiener–Hopf technique also.

Spence formulated this approach by considering parabolic indenters and im-

posed the self-similar property that the ratio of the stick-slip zones remain

constant. The use of self-similarity has been implemented further in Borodich

and Galanov [15], which investigated the effects of varying the punch profile

and frictional behaviour. As discussed in chapter 1, Zhupanska and Ulitko

[102], Zhupanska [101] modelled the deformation of an elastic half-space due

to a rigid cylindrical indenter, however, the model presented by Zhupanska

and Ulitko [102] appears to be non-unique and so we consider a steady rolling

cylindrical indenter to compensate.

In general, for a rigid cylinder rolling along and indenting an elastic half-

space, some of the contact region will be sticking and the rest will be slipping.

A stick-slip regime would lead to a 4 × 4 Wiener–Hopf problem, which is

considered in chapter 5. However in this chapter, we consider the regime

where the contact region is entirely slipping and this leads to a 2×2 Wiener–

Hopf problem instead. The full-slip regime occurs from a sufficiently large

or sufficiently small angular velocity, Ω, and is derived in chapter 2. This

regime, which by analogy to a car may be thought of as a “wheel spin” or

“locked braking wheel” regime, is largely ignored in the literature, although
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it is discussed by O’Sullivan and King [76] and Wang et al. [97]. It is worth

noting that Zhupanska and Ulitko [102] considers a full-stick simplification

instead of full-slip and used a conformal mapping method to derive a scalar

(1 × 1) Wiener–Hopf problem, but it is difficult to generalise to the rolling

cylinder case as it cannot be assumed that the contact region is symmetric.

The problem posed here will turn out to result in a 2 × 2 matrix Wiener–

Hopf problem, amenable to solutions using various methods based on the

Wiener–Hopf technique [e.g. 74]. Such solution methods are well understood

in the 1×1 scalar case [e.g. 54], but are more difficult in the matrix case, and

no universal method of solution is known; a review of approaches to solving

matrix Wiener–Hopf problems is given by Rogosin and Mishuris [85]. In par-

ticular, there is only a small class of matrix Wiener–Hopf problems which

may be solved exactly [29]. Otherwise approximate methods are required,

with for example Padé approximants [3] having been successfully applied to

problems in elastodynamics [4]. Another popular approximate method in

electromagnetism is the use of Fredholm factorisation [30]. Instead, here we

adopt an iterative method first developed by Kisil [56], intended to approx-

imate the solution to 2 × 2 matrix Wiener–Hopf problems with exponential

factors, which has successfully been applied to problems in acoustics [53],

and has subsequently been extended to n×n matrices by Priddin et al. [81],

including discussions on how to implement such a procedure numerically.

The implementation requires numerical evaluations of Cauchy integrals (as

in the scalar case), for which spectrally accurate numerical methods have

been developed by Slevinsky and Olver [88], Olver [75], Trogdon and Olver

[95]. We note in passing that Wiener–Hopf problems bear a close relation-

ship to Riemann-Hilbert problems [55] and so one may alternatively frame

the problem as a Riemann-Hilbert problem and solve that problem numeri-

cally [95, 63], although this is not pursued further here.

One final complication of our contact problem is that the location of the

contact region itself is unknown, and is required to be solved as part of the

problem [46]. Such free-boundary problems are inherently more complicated
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than comparable problems where the location of the boundary is fixed or is

known a priori, and there is no generally applicable methodology for solving

free-boundary problems [47]. One typical approach in contact mechanics is to

frame the problem as a variational inequality [33, 35]. An analytical method

involving the use of Mellin transforms [28] has also been used in certain cases.

Here, we adopt an iterative procedure to re-estimate the contact region based

on the solution of the previous estimate, to ensure continuity of the solution

on the surface. This technique is specific to the Wiener–Hopf-based solution

method used, which in general results in discontinuities at the transitions

between boundary conditions.

A description of the physical problem to be solved, together with its math-

ematical formulation, is given in section 4.2, explicitly stating the boundary

conditions and their domains in the full-slip regime. Consideration of bound-

ary conditions and taking the Fourier transform of them leads to the construc-

tion of the matrix Wiener–Hopf problem in section 4.3. This Wiener–Hopf

problem is then solved using an iterative method in section 4.4, including de-

tails of the numerical implementation of the solution method in section 4.4.1.

Details of the approach to the free-boundary problem is then presented in

section 4.5, illustrated with some numerical results. The results of this anal-

ysis and numerics is presented in section 4.6 for a variety of parameters.

Finally, in section 4.7, conclusions are discussed along with avenues for po-

tential future research. An extension to a two roller model is discussed in

appendix C, with an alternative full-stick model considered in appendix B.

4.2 Mathematical formulation

Consider the system as in the schematic, figure 4.2.1. A cylinder of radius

R is pushed into an elastic half-space y < 0 with a force F , resulting in an

indentation of depth ε and is in contact with the half-space between points

−a and d. The entire contact region is in a state of slip, with the direction

of slip determined by the roller. The rest of this system is outlined in section
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Ω
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Figure 4.2.1: A schematic of a cylinder rolling along an elastic half-space.
The cylinder moves at a linear velocity V in the x-direction along the elastic

half-space. The origin of the coordinate system (labelled O) is taken in a frame
of reference moving with the cylinder, directly below the centre of the cylinder at
the height of the undeformed elastic surface. The cylinder is in contact with the
elastic surface between the points −a and d. The cylinder of radius R rolls about
its centre axis with angular velocity Ω, and a force F and torque T are applied to

the centre of the cylinder, causing the cylinder to be indented by ε into the
elastic half-space.

2.1, so please refer there for the definition of terms.

4.2.1 Boundary conditions

As in the system above, a cylinder rotates on the surface of an elastic half-

space, with the cylinder in contact with the surface in the region −a ≤ x ≤ d.

The points −a and d are unknown and are to be found as part of the solution.

The surface of the half-space is displaced by the rigid cylinder and may not

penetrate the cylinder due to a lack of permeability. The half-space slips

beneath the cylinder and experiences a frictional effect due to the slipping,

where the frictional effect is that of Coulomb friction. Outside of the contact

region, the surface of the half-space is free from any stress and so a traction-

free boundary condition is imposed, as shown in figure 4.2.2. The resultant

mathematical problem is a mixed-free-boundary problem, with two boundary

conditions in each region.
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τxy|y=0 = 0 τxy|y=0 ∓ µ0τyy|y=0 = 0 τxy|y=0 = 0

τyy|y=0 = 0 v|y=0 = x2

2
− 1 τyy|y=0 = 0

−a d x

Figure 4.2.2: A diagram of the full-slip boundary conditions on the half-space.

The nonlinear derivation of the boundary conditions from the physical system

can be found in section 2.4, with the linearisation of the nonlinear boundary

conditions found in section 2.3. The mathematical equivalent to the physical

properties are applied to the system shown in the schematic. In this chapter

the frictional behaviour is that of full-slip, which gives the following boundary

conditions and domains,

Contact: v(x, 0) =
x2

2
− 1, for − a ≤ x ≤ d, (4.1)

Slip: τxy ∓ µ0τyy(x, 0) = 0, for − a ≤ x ≤ d, (4.2)

Stress-free: τxy(x, 0) = τyy(x, 0) = 0, for x < −a, d < x.(4.3)

The direction of slip may be in either the forwards (−) or backwards (+)

direction and it is determined by the angular velocity of the cylinder.

In summary, there are two boundary conditions in each region with the junc-

tions between these regions being the unknown free-boundary points −a and

d. The boundary conditions may be formulated into a matrix Wiener–Hopf

problem which is then solved numerically. To locate the free-boundary points

an inverse method is sought which iteratively estimates the points by ensur-

ing continuity of the solution.

4.2.2 General solution

We consider the same governing equations as in section 2.4 so use the same

general solution derived there, please refer to section 2.4 for the details. We
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quote the resultant general solution below

u(x, y) =
1

2π

∫ ∞
−∞

[
Â1(k)B̂1(k)eyγ1(k) + A2(k)eyγ2(k)

]
e−ikxdk, (4.4)

v(x, y) =
1

2π

∫ ∞
−∞

[
Â1(k)eyγ1(k) + A2(k)B2(k)eyγ2(k)

]
e−ikxdk,

where

γ1(k) =

√
k2 − ρV 2

λ+ 2µ

(
ω + k

)2
, γ2(k) =

√
k2 − ρV 2

µ

(
ω + k

)2

B̂1(k) =
−ik

γ1(k)
=

1√
ρV 2(1+ω

k
)2

λ+2µ
− 1

, B2(k) =
ik

γ2(k)
= − 1√

ρV 2(1+ω
k

)2

µ
− 1

.

with Â1(k) and A2(k) unknown and are to be found as part of our solution.

4.3 Constructing the matrix Wiener–Hopf equa-

tion

The general solution was found by Fourier transforming the governing equa-

tions and solving a fourth order polynomial in the Fourier domain. To make

further progress, information from the mixed boundary values is required.

The transformation of the mixed boundary value problem is troublesome

due to the intervals of the spatial domain that the boundary conditions exist

over, hence, half-range transforms are used and defined in section 3.2.1 to

represent finite range transforms.

The transformed boundary conditions may be assembled into a format where

a Wiener–Hopf technique may be applied. In this case a matrix Wiener–

Hopf equation is formed, where only very few exact solutions exist. Careful

construction of the matrix Wiener–Hopf equation ensures that a format is
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τxy|y=0 ∓ µ0τyy|y=0 = 0

τyy|y=0 = 0 v|y=0 = x2

2
− 1 τyy|y=0 = 0

−a d x

Figure 4.3.1: A diagram of the rearranged full-slip boundary conditions on the
half-space.

assembled where the iterative method by Priddin et al. [81] may be applied.

4.3.1 Transformation of the boundary conditions

To construct the simplest matrix Wiener–Hopf equation, it is necessary to

consider the boundary conditions carefully. By rearranging the boundary

conditions, the size of the matrix Wiener–Hopf equation may be halved. We

shall transform each boundary condition over their respective regions and

assemble them to form a matrix Wiener–Hopf equation, with a structure

suitable for the iterative method to be applied. To enable the application of

the iterative method by Priddin et al. [81], the matrices are required to be

triangular and have the correct analyticity of the exponential terms.

The first strategy is to minimise the number of junctions between boundary

conditions. The key reduction is to rewrite the stress-free boundary condi-

tions (4.3) to include the slip boundary condition (4.2), as shown in figure

4.3.1. Recall the stress-free boundary conditions (4.3) and manipulate to find

τxy(x, 0) = τyy(x, 0) = 0 ⇐⇒ τxy ∓ µ0τyy(x, 0) = τyy(x, 0) = 0.

Therefore, the slip boundary condition holds across the entire surface of the

half-space and only normal stress is considered outside of the contact region

Slip: τxy ∓ µ0τyy(x, 0) = 0, for −∞ < x <∞, (4.5)

Stress-free: τyy(x, 0) = 0, for x < −a & d < x. (4.6)
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This rearrangement reduces the number of junctions from four to two which

gives a 2× 2 matrix Wiener–Hopf equation.

Then by taking a full-range transform of the slip boundary condition (4.5)

the following is derived

˜τxy ∓ µ0τyy(k) = 0⇒ Â1(k) = −m
∓
2 (k)

m∓1 (k)
A2(k) = n(k)A2(k), (4.7)

where the functions m∓i (k) are defined from the full-range transforms in

(4.12). The rearrangement of the boundary conditions leads to a relationship

between Â1(k) and A2(k), which halves the number of unknowns in the

system. In this instance reducing the number of junctions reduces the number

of unknowns which leads to the reduction in the size of the matrix Wiener–

Hopf equation.

To derive the Wiener–Hopf problem the unknown variables will be defined

from the half-range transforms of v(x, 0) and τyy(x, 0). Recall the boundary

conditions (4.1) and (4.6), then taking a full-range transform,

τ̃yy(k) = eikdτ̃yy
(d)
− (k) = e−ikaτ̃yy

(−a)
+ (k), (4.8)

ṽ(k) = eikdṽ
(d)
+ (k) + e−ikaṽ

(−a)
− (k) + f(k), (4.9)

where the function f(k) has been defined by the finite transformation

f(k) =

∫ d

−a

(
x2

2
− 1

)
eikxdx

=
e−ika

ik

(
1− a2

2
− a

ik
+

1

k2

)
− eikd

ik

(
1− d2

2
+
d

ik
+

1

k2

)
.

These two scalar Wiener–Hopf equations shall then be manipulated to form

the matrix Wiener–Hopf equation by eliminating the full-range transform

variables, τ̃yy(k) and ṽ(k).
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4.3.2 Assembling the matrix Wiener–Hopf equation

As in section 3.2, we assemble the matrix Wiener–Hopf equation by relating

the two full-range transformed variables τ̃yy(k) and ṽ(k). We may find this

relationship by considering all of the full-range transformations in terms of

Â1(k) and A2(k),

τ̃yy(k) =
[
(λ+ 2µ)γ1 − ikλB̂1

]
Â1

+
[
(λ+ 2µ)B2γ2 − ikλ

]
A2

= n1(k)Â1 + n2(k)A2, (4.10)

ṽ(k) = Â1 +B2(k)A2, (4.11)

˜τxy ∓ µ0τyy(k) =

[
µ(γ1B̂1 − ik)∓ µ0

(
(λ+ 2µ)γ1 − B̂1ikλ

)]
Â1

+

[
µ(γ2 − ikB2)∓ µ0

(
(λ+ 2µ)B2γ2 − ikλ

)]
A2

= m∓1 (k)Â1 +m∓2 (k)A2, (4.12)

where the functions n1(k), n2(k),m∓1 (k) and m∓2 (k) are defined by the above.

We note that these are the exact same functions found in section 3.2.

To construct the matrix Wiener–Hopf equation we eliminate Â1(k) and A2(k)

from the equations (4.7),(4.10) and (4.11). As these equations are the same

as those found in section 3.2, we arrive at a similar relationship for τ̃yy(k)

and ṽ(k),

τ̃yy(k)

n2(k)m±1 (k)− n1(k)m±2 (k)
=

ṽ(k)

B2(k)m±1 (k)−m±2 (k)
.

The full-range transformed variables may now be replaced with their half-

range counterparts from (4.8) and (4.9) to find the two coupled scalar Wiener–
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Hopf equations

K(k)eikdτ̃yy
(d)
− (k) = eikdṽ

(d)
+ (k) + e−ikaṽ

(−a)
− (k) + f(k),

K(k)e−ikaτ̃yy
(−a)
+ (k) = eikdṽ

(d)
+ (k) + e−ikaṽ

(−a)
− (k) + f(k).

These two equations are assembled into a matrix Wiener–Hopf equation and

rearranged to impose the necessary structure for the iterative method to

be applied. Hence, we arrive at the following (2 × 2) matrix Wiener–Hopf

equation,(
1 0

−eik(a+d) K(k)

)(
ṽ

(d)
+ (k)

τ̃yy
(−a)
+ (k)

)
=

(
K(k) −e−ik(a+d)

0 1

)(
τ̃yy

(d)
− (k)

ṽ
(−a)
− (k)

)

+

(
−e−ikdf(k)

eikaf(k)

)
. (4.13)

The function K(k) is found by rearranging the transformed boundary con-

ditions and is

K(k) =
n(k) +B2(k)

n1(k)n(k) + n2(k)
, with K(k) = O

(
1

|k|

)
as |k| → ∞.

It is now possible to apply the iterative method to the matrix Wiener–Hopf

problem as the exponential terms are of the required analyticity and the

matrices have the required structure. The unknowns in the problem are

ṽ
(d)
+ (k) and τ̃yy

(−a)
+ (k) analytic in D+, with τ̃yy

(d)
− (k) and ṽ

(−a)
− (k) analytic in

D−.

To ensure that the least singular solutions are found, it is required that

ṽ
(d)
+ (k), τ̃yy

(−a)
+ (k) and τ̃yy

(d)
− (k), ṽ

(−a)
− (k) decay to 0 as |k| → ∞ in their re-

spective half-planes. This behaviour may be ensured by imposing the edge

conditions. For normal stress we find

τyy(x, 0)→ 0, as x→ −a+, τyy(x, 0)→ 0, as x→ d−.

These two edge conditions ensure that the variables τ̃yy
(−a)
+ (k) and τ̃yy

(d)
− (k)
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decay quadratically. Whereas the edge conditions for the vertical displace-

ment

v(x, 0)→ a2

2
− 1, as x→ −a−, v(x, 0)→ d2

2
− 1, as x→ d+,

ensures linear decay for ṽ
(−a)
− (k) and ṽ

(d)
+ (k).

These edge conditions are imposed to ensure continuity at the transition

point and hence to ensure continuity of the solution. The normal stress,

τyy(x, 0), is known in the stress-free region and the vertical displacement,

v(x, y), is known in the contact region. For the solution to be continuous,

we require that these boundary condition are valid at the point of transition.

The imposition of the continuity conditions on the boundary conditions in

their unknown regions leads us to derive the asymptotic behaviour of the

unknown half-range functions.

4.4 Application of the iterative method

The mathematical formulation of the physical problem has been derived and

formulated into a matrix Wiener–Hopf problem. The presence of the ex-

ponential factors in the matrix Wiener–Hopf (4.13) suggests applying the

approximate factorisation method developed by [56, 81] is suitable. The ar-

rangement of the Wiener–Hopf problem into triangular matrices gives further

structure to enable the factorisation more easily. The method considers a ma-

trix Wiener–Hopf such as (4.13) and approximates the exponential terms to

zero. Once an initial approximation has been made the matrix Wiener–Hopf

equation may be considered as a series of scalar Wiener–Hopf equations. In

these scalar equations one may use additive and multiplicative decomposi-

tions to arrive at a form in which Liouville’s Theorem may be applied. The

approximation is corrected for by iterating through the scalar equations with

the exponential terms reintroduced, and additively decomposing the correc-

tion term into a form where Liouville’s may be applied again.
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D−

D

D+

Γ−

Γ+

Figure 4.4.1: A figure of the phase-portrait for K(k) with Metal parameters 4.1
and ω = −5i.

To signify that the process is iterative, we introduce the notation φ̃
(L)n
± (k) as

the n-th iteration of φ̃
(L)
± (k). Recalling (4.13) and taking the initial estimate,(

1 0

0 K(k)

)(
ṽ

(d)0
+

τ̃yy
(−a)0
+

)
=

(
K(k) 0

0 1

)(
τ̃yy

(d)0
−

ṽ
(−a)0
−

)
+

(
−e−ikdf(k)

eikaf(k)

)
.

The justification for making such an approximation stems from the choice

of inverse contours one may take in the overlapping strip of analyticity D,

with the strip demonstrated in figure 4.4.1. As one may take an inversion

contour anywhere within the strip in figure 4.4.1, choosing a contour near

the bottom of the strip would set e−ik(a+d) to be close to zero, likewise an

inversion contour near the top of the strip would set eik(a+d) to be close to

zero, hence justifying the initial approximation to set both exponential terms

to zero.

One may see that both rows of the approximated matrix Wiener–Hopf prob-

lem may now be solved, subject to decompositions. Considering each of the
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scalar Wiener–Hopf equations from the matrix separately gives,

ṽ
(d)0
+ (k) = K(k)τ̃yy

(d)0
− (k)− e−ikdf(k), (4.14)

K(k)τ̃yy
(−a)0
+ (k) = ṽ

(−a)0
− (k) + eikaf(k). (4.15)

Referring to (4.14), one may take a multiplicative factorisation of K(k) and

divide through by K+(k) and then apply an additive decomposition to the

resulting forcing term to give

ṽ
(d)0
+ (k)

K+(k)
= K−(k)τ̃yy

(d)0
− (k)−

[
e−ikdf(k)

K+(k)

]+

−
[
e−ikdf(k)

K+(k)

]−
.

The regions of analyticity may be extended to the entire complex plane via

analytic continuation [74], so we may introduce an entire function J(k) such

that,

ṽ
(d)0
+ (k)

K+(k)
+

[
e−ikdf(k)

K+(k)

]+

= K−(k)τ̃yy
(d)0
− −

[
e−ikdf(k)

K+(k)

]−
≡ J(k).

Liouville’s theorem may be applied to the above since we ensured τ̃yy
(d)0
− (k) ∼

k−2 as k → ∞ and the exponential decay of the forcing gives J(k) = 0.

Applying Liouville’s theorem leads to the initial approximate solutions,

ṽ
(d)0
+ (k) = −K+(k)

[
e−ikdf(k)

K+(k)

]+

, τ̃yy
(d)0
− (k) =

1

K−(k)

[
e−ikdf(k)

K+(k)

]−
.

Applying the same argument for equation (4.15) leads to the following initial

solutions,

ṽ
(−a)0
− (k) = −K−(k)

[
eikaf(k)

K−(k)

]−
, τ̃yy

(−a)0
+ (k) =

1

K+(k)

[
eikaf(k)

K−(k)

]+

.

For subsequent iterations we refer back to the scalar equations in (4.13). The

exponential terms are reintroduced and we may continue to use the Wiener–

Hopf technique iteratively, so we define the n-th iteration of the equations in

(4.16) and (4.17). As in the initial approximation, consider each row of the
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matrix Wiener–Hopf problem as scalar equations once again,

ṽ
(d)n
+ (k) = K(k)τ̃yy

(d)n
− (k)− e−ik(a+d)ṽ

(−a)n−1
− (k)− e−ikdf(k), (4.16)

K(k)τ̃yy
(−a)n
+ (k) = ṽ

(−a)n
− (k) + eik(a+d)ṽ

(d)n
+ (k) + eikaf(k). (4.17)

We solve each row by treating the reintroduced coupled terms as an additional

forcing term by using its most recent approximation.

Then one may simply iterate through these equations, updating the n-th

iteration with the solutions from the n−1-th iteration. Explicitly, the solution

to the n-th iteration equations will be

ṽ
(d)n
+ (k) = −K+(k)

([
e−ikdf(k)

K+(k)

]+

+

[
e−ik(a+d)ṽ

(−a)n−1
−

K+(k)

]+)
,

τ̃yy
(d)n
− (k) =

1

K−(k)

([
e−ikdf(k)

K+(k)

]−
+

[
e−ik(a+d)ṽ

(−a)n−1
−

K+(k)

]−)
,

ṽ
(−a)n
− (k) = −K−(k)

([
eikaf(k)

K−(k)

]−
+

[
eik(a+d)ṽ

(d)n
+

K−(k)

]−)
,

τ̃yy
(−a)n
+ (k) =

1

K+(k)

([
eikaf(k)

K−(k)

]+

+

[
eik(a+d)ṽ

(d)n
+

K−(k)

]+)
.

The overview of the iterative method has omitted details on the computation

of the Wiener–Hopf splittings, which shall be examined in the next section.

Our implementation of the iterative method typically converges to a precision

of 10−8 within three or four iterations, where we define convergence to be the

difference between consecutive iterations at an arbitrary point on the real

line. There is no general discussion of convergence for the iterative method

however there are some comprehensive studies in [81] and [56] which examine

scattering by n-plates and a 2 × 2 case respectively. To find the solution

all that one needs to compute is the Wiener–Hopf splittings, however, to

implement this in a practical sense it is best to proceed numerically.
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4.4.1 Wiener–Hopf splittings

To implement the iterative method it is necessary to develop a numerical ap-

proach to accurately compute the decompositions at each iteration. For this

purpose we use a spectral method developed by Olver [75] which more gen-

erally is a numerical technique to compute singular integrals both accurately

and fast.

To illustrate the spectral method in greater detail, consider a function f(k),

which one wishes to additively decompose numerically. To perform such

a decomposition, a Cauchy transform may be used and calculated via the

spectral method [88]. Thus, the first step is to expand f in a weighted

orthogonal polynomial basis,

f(k) ≈ w(k)
n−1∑
j=0

fjpj(k),

where the sequence of polynomials pj(x) is orthogonal with respect to the

weight w(x). Throughout we use Chebychev polynomials of the first kind as

the orthogonal basis. Then taking the Cauchy transform gives

Cf(k) ≈
n−1∑
j=0

fjC[wpj](k)),

which is quick to compute as the Cauchy transform of the weighted polyno-

mials satisfies a three-term recurrence relation [95]. The Cauchy transforms

of these functions are typically calculated for the unit interval I = [−1, 1],

and mapped to the contour that one desires through certain mappings.

We recall the classical result that orthogonal polynomials satisfies the three-

term recurrence relationship found in appendix A. Then taking the Cauchy

transform of the polynomial basis satisfies the same recurrence relation-
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ship [95],

kC[wp0](k) = a0C[wp0](k) + b0C[wp1](k)− 1

2πi

∫
I
w(x)dx,

kC[wpj](k) = cjC[wpj−1](k) + ajC[wpj](k) + bjC[wpj+1](k).

Therefore, computing the Cauchy transform of f(k) may be reduced to solv-

ing the linear system

1

a0 − z b0

c1 a1 − z b1

c2 a2 − z b2

. . . . . . . . .





C[wp0](k)

C[wp1](k)

C[wp2](k)
...
...


=



C[wp0](k)
1

2πi

∫
Iw(x)dx

0

0
...


,

where we may calculate C[wp0](k) and 1
2πi

∫
Iw(x)dx exactly and use forward

substition to solve the linear system.

4.4.1.1 Wiener–Hopf factorisation

We seek to multiplicatively factorise the kernel K(k) = K+(k)K−(k). As

outlined previously, a multiplicative factorisation may be found by taking the

additive decomposition of log(K(k)) and taking the exponential. We recall

that the kernel K(k) has the asymptotic behaviour of |k|−1 as |k| → ∞, so

we normalise by the function γ(k) =
√
k2 + k2

0 to define a new function that

has the asymptotic behaviour of 1 as |k| → ∞. Hence the factorisation of

K(k) involves computing the additive decomposition of

log(K(k)γ(k)),
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which decays at infinity and has branch cut singularities along (−∞i, c1i) and

(c2i,∞i)1 as shown in figure 4.4.1. Therefore, we consider these contours for

the factorisation

Γ+ = {k ∈ C : Im(k) = c1∀k},

Γ− = {k ∈ C : Im(k) = c2∀k},

which is illustrated in figure 4.4.1 additionally.

Trogdon and Olver [95] and Llewellyn Smith and Luca [63] show that various

mappings on the interval, I, may be used with Plemelj’s lemma to prove that

a Cauchy transform of a contour may be expressed as mapped Cauchy trans-

forms. The implementation here makes use of two mappings in particular,

a linear map li(k) = k + ci for i = 1, 2, and the real line map developed by

Llewellyn Smith and Luca [63], r(k) = k+k3

(1−k2)2
. Observe that by using both

mappings together, one can map the contours Γ± to the interval I, this can

be done in the following way Γ± = li(r([−1, 1])) = {li(r(x)) : −1 ≤ x ≤ 1}
thus

CΓ± [f ](k) = CR[f ◦ li](l−1
i (k))

=
4∑
j=1

C[−1,1][f ◦ li ◦ r](rj−1(l−1
i (k)))

− 2C[−1,1][f ◦ li ◦ r](l−1
i (1))− 2C[−1,1][f ◦ li ◦ r](l−1

i (−1)),

where the functions l−1
i and rj

−1 are inverses to l and r respectively, and

the subtracted terms are to remove the behaviour at infinity. The Cauchy

transform of the Γ± contours can be expressed as the composition of multiple

mappings as each mapped Cauchy transform satisfies Plemelj’s lemma.

1We define

c1 =
ρV 2ω − V ω

√
2ρ(λ+ µ)

2(λ+ µ)− ρV 2
, c2 =

ρV 2ω + V ω
√

2ρ(λ+ µ)

2(λ+ µ)− ρV 2
.

and choose V to ensure c1 > 0 abnd c2 < 0.
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Finally, we find K+(k) and K−(k) in the following way

K(k) =
elog(γ(k)K(k))

γ(k)
,

=
e[log(γ(k)K(k))]++[log(γ(k)K(k))]−

γ(k)
,

=
e[log(γ(k)K(k))]+

γ+(k)

e[log(γ(k)K(k))]−

γ−(k)
,

= K+(k) K−(k).

4.4.1.2 Wiener–Hopf decomposition

We seek to compute the additive decomposition of the forcing terms F1(k),

F2(k), F̂1(k) and F̂2(k) where each function contains branch cut singularities

and exponentially grows in one of the half-planes. To compute the decom-

positions efficiently, the exponential term must be carefully considered, as it

leads to numerical instabilities and exponential growth. To combat the in-

stabilities, one may deform the integration contour onto the steepest descent

contour for the integrand, which turns oscillatory behaviour into exponential

decay. To calculate the Cauchy transforms on the steepest descent con-

tours, quadratic maps have been used to map the contour back to the real

line. There is a developing alternative method by Trogdon [94], which uses

a special polynomial basis for evaluating the Cauchy transform of oscillatory

functions however this work is ongoing.

To avoid the exponential growth when computing the Cauchy transforms,

we only compute the decompositions where the integrand decays exponen-

tially along the steepest descent contour, and use the relationship F (k) =

F+(k) + F−(k) to find the value of the remaining term. For example, to

find the additive decomposition of the forcing term, F1(k) = eikaf(k)
K−(k)

, we may

efficiently compute F−1 (k) by considering its Cauchy transform and applying

steepest descents as the integrand decays in D+. Then the upper compo-

nent, F+
1 (k), may be found by using F+

1 (k) = F1(k)− F−1 (k), thus avoiding
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computations involving the exponential growth in D−. Therefore, by ap-

plying steepest descents to the integrand in the Cauchy transforms we may

efficiently compute them and avoid the exponential growth of the remaining

term by using the additive relationship.

To compute the Cauchy transforms we require mappings to the unit interval,

I. Similar to section 4.4.1.1, we make use of the real line map developed

by Llewellyn Smith and Luca [63] but use a quadratic mapping instead.

Trogdon and Olver [95] shows that polynomial maps satisfy Plemelj’s lemma

provided they if a one-to-one mapping. Hence, we use the quadratic maps

p(k) = c1,2+k∓ik2, and the real line map, r(k) to map the deformed contours

Γ± to the interval I, i.e. Γ± = p(r([−1, 1])) = {p(r(x)) : −1 ≤ x ≤ 1} thus

CΓ± [f ](k) =
2∑
i=1

CR[f ◦ p](p−1
i (k))

=
2∑
i=1

4∑
j=1

C[−1,1][f ◦ p ◦ r](rj−1(p−1
i (k)))

− 2C[−1,1][f ◦ p ◦ r](p−1
i (1))− 2C[−1,1][f ◦ p ◦ r](p−1

i (−1)),

where the functions p−1
i (k) and rj

−1(k) are inverses to p(k) and r(k) respec-

tively, and the behaviour at infinity is subtracted.

4.4.1.3 Convergence

The accuracy of the numerical method used to compute the Cauchy trans-

forms will be discussed here briefly. The standard method used to compute

Cauchy transforms numerically is via a quadrature rule, which approximates

the branch cut due to the contour Γ± by a series of poles. This means a

quadrature rule gives higher errors near to the contour, so one may deform

the contour in line with Cauchy’s integral theorem [1] away from the region

of interest. More recently, there has been a move to compute Cauchy trans-

forms (and more generally singular integrals) via a spectral method, as out-
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lined by Slevinsky and Olver [88], Olver [75], and implemented numerically

in the Julia software packages SingularIntegralEquations, ApproxFun and

WienerHopf. An outline of this method is to expand a function in terms of

weighted orthogonal polynomials and then compute the Cauchy transform

on those polynomials to give a highly accurate numerical method but see

section 4.4.1 for more details.

To illustrate the benefit of the spectral method over quadrature, figures have

been included to show the error to the exact solution for a Gauss-Hermite

quadrature rule (fQ) and the spectral method (fS). Figure 4.4.2a shows the

exact error for the quadrature rule used to compute the upper decomposition

of a test function f(z) = 1
(z−8.5−8.5i)

√
z+10i

, which has the upper decomposition

f+(z) = 1
z−8.5−8.5i

[
1√
z+10i

− 1√
8.5+18.5i

]
. Figure 4.4.2a shows the error of the

quadrature rule to the exact solution as z = ri approaches the integration

contour (r → 0), where we see the error increases despite increasing the

resolution of the quadrature rule. The figure, 4.4.2b, includes the exact error

for the spectral method and the quadrature rule, where we see the error for

the spectral method is close to machine precision up to the contour. A benefit

of the spectral method is that it is highly accurate up to and on the contour.
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(a) A plot of the errors from applying the Gauss-Hermite quadrature rule with increasing
resolution.

(b) A plot comparing the errors from applying a Gauss-Hermite quadra-
ture rule and the spectral method.

Figure 4.4.2: Plots of the exact error (||f(z) − f+(z)||2) of numerical methods to
compute the upper decomposition of the function f(z) = 1

(z−8.5−8.5i)
√
z+10i

. The

figures show the exact error with z = ri in the interval [0, 20] for 500 equidistant
points.

A comparison is made between the two numerical methods as the methods are

evaluated near the contour.

69



4.5. FREE-BOUNDARY PROBLEM 4.5

4.5 Free-boundary problem

Throughout it has been assumed that the contact points, −a and d, are

known. Taking this assumption allows a solution to be found where the

junction points may be located as an inverse problem. The assumption en-

ables the application of the matrix Wiener–Hopf technique to find a solution

and then we implement an minimisation method which locates the junction

points. The validation of the junction points is found by ensuring continuity

of the solution as it approaches −a and d. The minimisation method im-

plemented here is the secant method [77], which re-estimates the junction

points by locating the roots. There are two minimisation problems for each

contact point and it is unclear which minimisation problem to impose, so

we consider the example in section 4.5.1, which explains which minimisation

problem we should solve.

We recall the edge conditions

τyy(x, 0)→ 0 as x→ −a+, τyy(x, 0)→ 0 as x→ d−,

v(x, 0)→ a2

2
−1 as x→ −a−, v(x, 0)→ d2

2
− 1 as x→ d+.

Imposing these edge conditions numerically gives a route for imposing a

method to locate the contact points however it is only necessary to impose

one of these conditions, which discussed in section 4.5.1. To formulate the

minimisation problem more formally, the free-boundary problem is cast as

the following minimisation problems,

minχj‖τ jyy(χj, 0)‖, minχj‖vj(χj, 0)− χj
2

2
+ 1‖.

We define the initial and j-th iteration junction points and solution which

70



4.5. FREE-BOUNDARY PROBLEM 4.5

corresponds as

χ0 = (a0, d0), τ 0(x) = τyy
0(x, 0), v0(x) = v0(x, 0),

χj = (aj, dj), τ j(x) = τyy
j(x, 0), vj(x) = vj(x, 0).

To find an initial solution, we take two initial guesses of the junction points,
χ0, χ1 and find the corresponding solutions τyy

0(x, 0), τyy
1(x, 0) and v0(x, 0),

v1(x, 0). Then we find the subsequent iterations of junction point by imple-
menting a secant method. We may find the j + 1-th iteration of junction
points, χj+1, by solving the following equations

χj+1 =

(
aj − τ j(−aj)

(
aj − aj−1

τ j(−aj)− τ j−1(−aj−1)

)
, dj − τ j(dj)

(
dj − dj−1

τ j(dj)− τ j−1(dj−1)

))
, (4.18)

=

(
aj − vj(−aj)

(
aj − aj−1

vj(−aj)− vj−1(−aj−1)

)
, dj − vj(dj)

(
dj − dj−1

vj(dj)− vj−1(dj−1)

))
.

This procedure is iterated until successive iterations are below a tolerance,

‖χj − χj−1‖ ≤ tol.

Once converged the final χj will give a solution where the junction points

are accurately estimated and ensure continuity of the solution. In equation

(4.18) it is clear that only one of the edge conditions need to be imposed and

we find which one in the following.

The figures in 4.5.1 shows an implementation to find the free-boundary points

−a and d based on ensuring the continuity of τyy(x, 0), whereas the figures in

4.5.2 shows the results for ensuring the continuity of v(x, 0). It is clear that we

cannot simultaneously impose the continuity of both of these functions and

so we must examine the asymptotic behaviour of the half-range variables to

understand more. The large k asymptotic behaviour derived for continuous

behaviour accross the boundary for the half-range variables is

ṽ
(d)
+ (k) ∼ 2− d2

2ik
, ṽ

(−a)
− (k) ∼ a2 − 2

2ik
, τ̃

(d)
− (k) ∼ C2

k2
, τ̃

(−a)
+ (k) ∼ C3

k2
.

However, when computing the behaviour for the solution we find the asymp-
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totic behaviours

ṽ
(d)
+ (k) ∼ Cd

k
3
2

, ṽ
(−a)
− (k) ∼ Ca

k
3
2

, τ̃
(d)
− (k) ∼ C2, τ̃

(−a)
+ (k) ∼ C3,

which may explain why the continuity of both functions may not be enforced.

However in the special case where a = d =
√

2, the asymptotic behaviour

ṽ
(d)
+ (k) ∼ Cd

k
3
2

, ṽ
(−a)
− (k) ∼ Ca

k
3
2

, τ̃
(d)
− (k) ∼ C2

k
, τ̃

(−a)
+ (k) ∼ C3

k
.

We discuss a short example in section 4.5.1 which clarifies which minimisation

problem we should impose.

(a) Solution for τyy(x, 0) (b) Solution for v(x, 0)

(c) Asymptotic behaviour τ̃(k) (d) Asymptotic behaviour ṽ(k)

Figure 4.5.1: Plots of the solution and asymptotic behaviour for the Metal param-
eter values from table 4.1 and backwards slip. The contact points are determined
by the continuity of τ(x, 0), and are found to be −1.636, 1.4462.
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(a) Solution for τyy(x, 0) (b) Solution for v(x, 0)

(c) Asymptotic behaviour τ̃(k) (d) Asymptotic behaviour ṽ(k)

Figure 4.5.2: Plots of the solution and asymptotic behaviour for Metal parameter
values from table 4.1 and backwards slip. The contact points are determined by
the continuity of v(x, 0), and are found to be −1.4395, 1.4386.

4.5.1 Example

This example shows how we should consider the Fourier inversion of ṽ(k)

therefore indicating which edge condition the free-boundary method should

be applied to. We explore the Fourier inversion of ṽ(k) and conclude that

the edge conditions are satisfied if equation (4.19) is inverted rather the

considering the inversion of the half-range functions as in equation (4.20).

Consider the example

v(x) =


e−λ(x−d)

(
d2

2
− 1 +

(
d+ λ(d

2

2
− 1)

)
(x− d)

)
, d < x,

x2

2
− 1, −a ≤ x ≤ d,

eλ(x+a)
(
a2

2
− 1 +

(
−a− λ(a

2

2
− 1)

)
(x+ a)

)
, x < −a.
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By taking a full-range Fourier transform we may find the relationship

ṽ(k) = eikdṽ
(d)
+ (k) + e−ikaṽ

(−a)
− (k) + f(k)

This leads to the half range functions

ṽ
(d)
+ (k) =

2− d2

2(ik − λ)
+

2d+ λ(d2 − 2)

2(ik − λ)2
,

ṽ
(−a)
− (k) =

a2 − 2

2(ik + λ)
+

2a+ λ(a2 − 2)

2(ik + λ)2
.

These functions have the large |k| behaviour we would expect from the edge

conditions and are known.

In figures 4.5.3 plots are shown of the solution for this example, with the

Fourier inversion of ṽ(k) based on (4.19) or (4.20),

v(x, 0) =
1

2π

∫ ∞
−∞

ṽ
(d)
+ (k)eik(d−x) + ṽ

(−a)
− (k)e−ik(a+x) + f(k)e−ikxdk(4.19)

=


1

2π

∫∞
−∞ ṽ

(d)
+ (k)eik(d−x)dk, d < x,

1
2π

∫∞
−∞ f(k)e−ikxdk, −a ≤ x ≤ d,

1
2π

∫∞
−∞ ṽ

(−a)
− (k)e−ik(a+x)dk, x < −a.

(4.20)

It is clear to see that by inverting in line with (4.19) the solution is continuous.

An explanation for this may be found by considering the inversion in (4.20), if

one solely inverted 1
2π

∫∞
−∞ ṽ

(d)
+ (k)eik(d−x)dk then the solution would be zero for

x < d and v(x, 0) for x > d, and this discontinuity causes Gibbs Phenomena

[93] in the numerical method. Therefore, by considering the method in (4.20),

the inability to satisfy the edge conditions is due to Gibbs Phenomena caused

by discontinuities at the contact points.
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-4 -2 0 2 4
-1.00

-0.75

-0.50

-0.25

0.00

Solution
Half-range
Full-range

(a) This figure shows the plot v(x, 0) profile
with −a, d = −0.9, 1.1.

-4 -2 0 2 4
-1.0

-0.5

0.0

0.5

1.0

Solution
Half-range
Full-range

(b) This figure shows the plot v(x, 0) profile
with −a, d = −2, 2.

-4 -2 0 2 4
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

Solution
Half-range
Full-range

(c) This figure shows the plot v(x, 0) profile
with −a, d = −

√
2, 0.4.

-4 -2 0 2 4
-1.0

-0.5

0.0

0.5

1.0

Solution
Half-range
Full-range

(d) This figure shows the plot v(x, 0) profile
with −a, d = −0.2, 2.

Figure 4.5.3: Plots of the example contact problem with the inversion methods of
equations 4.19 and 4.20.

4.5.2 Convergence

The result of the example 4.5.1 shows that we should only consider the in-

version of ṽ(k) by numerically calculating the integral in (4.19), and doing

so ensures continuity of v(x, 0). Therefore, the minimisation problem we

consider is

minχj‖τ jyy(χj, 0)‖
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Algorithm 1: Pseudocode for the implementation of the free-boundary
method for locating the junction points −a and d.

1 Function FreeBoundary (−a, d);
Input : Initial estimates: χ0 = (−a0, d0)

2 Let i = 0
3 while Successive terms are below a tolerance ‖χj − χj−1‖ ≤ tol do
4 Solve the mixed boundary value problem to find a solution uj(x, y).
5 Calculate τyy

j(x, 0) and estimate two roots (−aj+1, dj+1) as in
equation (4.21).

6 Set the roots as χi+1 = (−aj+1, dj+1).
7 Set i = i+ 1.

8 end
Output: Converged junction points χ = (−a, d) and corresponding

solution.

to locate the contact points. Therefore, we calculate χj+1 by considering

aj+1 = aj − τ j(−aj)
(

aj − aj−1

τ j(−aj)− τ j−1(−aj−1)

)
,

dj+1 = dj − τ j(dj)
(

dj − dj−1

τ j(dj)− τ j−1(dj−1)

)
.

(4.21)

The figure 4.5.4 shows the evaluation of τyy(x, 0) at the contact points for

the first 17 iterations of the free-boundary method. The method terminates

once the evaluation of τyy is below the preset tolerance of 10−8, which requires

17 iterations but the solution is approximately close to the solution after the

third iteration. After 10 iterations the error is approximately 10−6 and begins

to oscillate for further iterations. The oscillatory behaviour is due to the free-

boundary method oscillating around the converged solution, suggesting that

a tolerance bound of 10−6 being more apt. To see plots of the profile of

τyy(x, 0) please see the figures in section 4.6.
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Figure 4.5.4: A plot of the the error at each iteration for applying the minimisation
algorithm to locate the contact points based on the continuity of τyy(χ

j , 0), with
Metal parameters taken from table 4.1.

4.6 Results

The application of the iterative procedure gives an approximation to the

terms ṽ
(d)
+ (k), ṽ

(−a)
− (k), τ̃

(d)
− (k) and τ̃

(−a)
+ (k), from which one can numerically

evaluate the unknown functions Â1(k), A2(k), and therefore the solution

u(x, y). To find the displacement and stresses the Fourier transforms are

inverted, which is computed via a Gaussian quadrature rule. To illustrate,
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the normal stress may be evaluated as follows,

τyy(x, 0) =
1

2π

∫ ∞
−∞

τ̃yy(k, 0)e−ikxdk

=
1

2π

∫ ∞
−∞

τ̃yy
(d)
− (k)eik(d−x)dk

≈
n∑
i=0

wiτ̃yy
(d)
− (ki)e

iki(d−x),

where ki are the nodes and wi are the weight for the quadrature rule. Then

the approximation for τyy(x, 0) may be found by closing the contour in either

the upper or lower half-plane for τ̃yy
(−a)
+ (k) or τ̃yy

(d)
− (k) respectively, giving

τyy(x, 0) =


0, d < x,

1
2π

∫∞
−∞ τ̃yy(k, 0)e−ikxdk, −a ≤ x ≤ d,

0, x < −a.

A plot of the solution of the normal stress, τyy(x, 0), for given parameter

values is shown in figure 4.6.1a. The plot validates the method used as it

shows the behaviour one would expect from the boundary conditions, namely

that the normal stress on the free-boundary is equal to zero.

Again by contour integration one can deduce that

v(x, 0) =


1

2π

∫∞
−∞ ṽ

(d)
+ (k)eik(d−x)dk, d < x,

1
2π

∫∞
−∞ f

d
−a(k)e−ikxdk, −a ≤ x ≤ d,

1
2π

∫∞
−∞ ṽ

(−a)
− (k)e−ik(a+x)dk, x < −a.

However, as we saw in section 4.5.1, it is better to invert

v(x, 0) =
1

2π

∫ ∞
−∞

ṽ
(d)
+ (k)eik(d−x) + ṽ

(−a)
− (k)e−ik(a+x) + f(k)e−ikxdk

instead to avoid Gibbs Phenomena. An approximation to the terms τyy(x, 0)

and v(x, 0) has been made, so by using the equations (4.10) and (4.11) an
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approximation to the displacement terms may be made.

The figures in 4.6.1 illustrate the solution with the parameters based on that

of structural steel [11]. The continuity at the junction points for τyy(x, 0)

is ensured by applying the optimisation method detailed in the proceeding

section. A contour plot of the distribution of the stresses within the elastic

material is included, which shows the concentration of the stresses to be

around the cylinder and away from the surface. The stresses are calculated

by evaluating (4.4) through a Gaussian quadrature rule and relating it to

τxy(x, y) and τyy(x, y). The traction on the surface of the elastic media may

be found to be T = (−τxy(x, 0),−τyy(x, 0)), which in this case faces in the

positive-x and positive-y direction.
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(a) This figure shows the plot τyy(x, 0) profile.
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(b) This figure shows a contour plot of
τyy(x, y).

-5.0 -2.5 0.0 2.5 5.0-5

-4

-3

-2

-1

0

-10000

0

10000

20000

30000

(c) This figure shows a contour plot of
τxy(x, y).

Figure 4.6.1: Plots of the solution for Metal values from table 4.1 with backwards
slip and the contact points found to be −0.82514, 0.85749.
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4.6.1 Parameter study

The technique implemented here is valid for any choice for the parameters

λ, µ, µ0 and ρ provided the convection speed of the cylinder, V , is adjusted

to ensure that a strip of analyticity remains. Thus, the requirement on V is

then

V 2 <
µ

ρ
,

which will lead to the singular points and branch cuts of K(k) being away

from the real line. However, the closer V is to zero leads to solutions which

are simpler to decompose as the singular points or branch cuts are more

equidistant from the real line. In table 4.1, there is a set of parameter values

for Metal (structural steel [11]) and an Alternative set of parameter values

to illustrate the general validity of the results. The Alternative parameters

solution is shown in figures 4.6.2 and shows plots of the profile of τyy(x, 0)

and contour plots of the stresses. The figure 4.6.2a shows that there exists a

unique solution to the free-boundary problem for the Alternative parameters.

As there is little dependency on the material parameters we shall mainly

include plots for the Metal parameter set in table 4.1.

Parameter Metal values Alternative values Dimensions

λ 210000 10000 MPa

µ 81000 1000000 MPa

µ0 0.3 0.3 -

ρ 7850 1250 kg m−3

V 1 10 -

ω -0.03125i -0.03125i -

Table 4.1: The parameter values used in the full-slip regime.
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(a) This figure shows the plot v(x, 0) profile.
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(b) This figure shows a contour plot of
τyy(x, y).
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(c) This figure shows a contour plot of
τxy(x, y).

Figure 4.6.2: Plots of the solution for Alternative values from table 4.1 with for-
wards slip and the contact points found to be −0.88374, 0.87925.
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4.6.1.1 Forward and backwards slip

In the nonlinear derivation of the boundary conditions it was found that ei-

ther forwards or backwards slip were valid boundary conditions with each

representing a different physical system, either wheel spinning or locking

respectively. To illustrate that these two physical systems are indeed real-

isable, the figures 4.6.3 and 4.6.4 have been included, showing the existence

of a solution for both slipping configurations under the Metal parameter set

4.1.

The figures 4.6.3 and 4.6.4 show a comparison of the solution found for

both forward slip and backwards slip boundary conditions. The junction

points −a and d for both slipping configurations are found to be different,

suggesting the direction of slip being an important factor in determining the

location of the contact points. A notable difference between the two slipping

configurations may be seen in the figures 4.6.3b and 4.6.4b, which shows the

distribution of τyy(x, y) for both configurations and in particular that the

direction where the elastic media experiences the most stress differs. The

difference of forward and backward slip is verified in the plots 4.6.3a and

4.6.4a, which shows opposing signs for τxy(x, 0). The physical difference of

these two slip directions may be seen in the traction too, as traction for

forward slip faces in the positive-x and positive-y direction whereas traction

for backward slip faces in the negative-x and positive-y direction.
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Forward slip
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(a) This figure shows the plot τxy(x, 0) pro-
file.
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(b) This figure shows a contour plot for
τyy(x, y).

Figure 4.6.3: Plots of the solution for Metal values from table 4.1 with forwards
slip and the contact points found to be −0.77637, 0.92200.

Backward slip
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(a) This figure shows the plot τxy(x, 0) pro-
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(b) This figure shows a contour plot for
τyy(x, y).

Figure 4.6.4: Plots of the solution for Metal values from table 4.1 with backwards
slip and the contact points found to be −0.82514, 0.85749.
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4.6.1.2 Small frequency limit

In our approach the temporal frequency, ω, was introduced into the governing

equations to generate a strip of analyticity in the complex k-plane. However,

physically we are interested in the steady state case which corresponds to

the limit as ω → 0. Here we shall discuss the effects of taking the limit of

ω → 0 and seek to address the following questions

1. Does the limit ω → 0 converge?

2. What is a good approximation to ω = 0?

The introduction of ω allows a strip of analyticity for the Wiener–Hopf tech-

nique to be applied. The quantity which is impacted the most is the function

K(k), which is multiplicatively decomposed. Without the introduction of ω,

K(k) would have two branch cuts extending from the origin to infinity, but by

introducing a purely imaginary ω, the branch points are separated to above

and below the origin. In some sense the temporal frequency parametrises the

branch points and hence the strip. Taking the limit of ω → 0 coalesces these

branch points and the solution converges as seen in figure 4.6.7.

The singularity in the multiplicative decomposition increases the computa-

tional cost of taking the Cauchy transform, as it is required that the function

be Lipschitz continuous to be approximated by a orthogonal polynomial ba-

sis. We may still find an expansion but as we decrease ω we increase the

number of terms needed for the expansion, see fig 4.6.5. The computational

cost of finding the expansion increases with the number of terms linearly, but

then calculating the Cauchy transform becomes very computationally costly.

To mitigate the computational costs associated with small ω values we may

pre-compute the K(k) values required in the additive decompositions but we

do note that an increased computational cost is unavoidable.

To observe how the solution behaves as ω varies, the figures 4.6.6 and 4.6.7

have been included. Due to the presence of γ1(k) and γ2(k) in the solution,
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Figure 4.6.5: The number of spectral coefficients required to approximate K(k) to
machine precision for ω = −2−ni with Metal parameters in table 4.1.

one would expect the solution to decay faster for larger ω, which is seen from

the two sets of figures. For small ω, there appears to be very little difference

between the plots of the vertical profile and the stress distribution, showing

that ω = −0.03125i is a sufficiently small approximation.

In summary, we see that the solution converges in the limit ω → 0 from

figures 4.6.6 and 4.6.7. In the small ω case we are faced with increased com-

putational costs in computing the Wiener–Hopf splittings but approximating

ω = −0.03125i gives a converged solution without being too computationally

costly.
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(a) ω = −0.25i.
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(b) ω = −2i.
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(c) ω = −0.5i.
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(d) ω = −4i.
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(e) ω = −i.
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(f) ω = −8i.

Figure 4.6.6: Contour plots of τyy(x, y) under the Metal parameter values from
table 4.1 and forward slip with increasing ω.
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Figure 4.6.7: Contour plots of v(x, 0) under the Metal parameter values from table
4.1 and forward slip with decreasing ω.

4.6.2 Von Mises yield criterion

To introduce elastic-plastic modelling into the problem, we may consider

the locations where the half-space begins to transition to elastic-plastic be-

haviour. The location where the half-space yields may be found by the

following equation,

(τxx − T )2 + 2τ 2
xy + (τyy − T )2 ≤ τ 2

Y ,

where T = (τxx+τyy+τzz)/3 which may be interpreted as the location where

the elastic energy reaches a critical value.

The figures 4.6.8b and 4.6.8a show the magnitude of Von Mises yield in

the elastic half-space for both forwards and backwards slip. In the regions

directly beneath the cylinder, the magnitude of elastic energy is greatest for
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both, suggesting that these are the regions where the plastic behaviour is

most likely to occur.

Forward Slip
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(a) This figure shows a contour plot of the
magnitude of the Von Mises criterion for
forward slip.

Backward Slip
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(b) This figure shows a contour plot of the
magnitude of the Von Mises criterion for
backward slip.

Figure 4.6.8: Contour plots of the magnitude of the Von Mises yield criterion in
both directions of slip for the Metal parameter values 4.1.

4.7 Conclusion

We have developed a model of an elastic half-space deformed by a cylindrical

roller. The friction law assumed here is that of full-slip, which leads to a

2× 2 matrix Wiener–Hopf problem. Due to the positions of the exponential

terms within the matrices an iterative method which initially decouples the

scalar Wiener–Hopf equations is suitable. Finally, the free-boundary prob-

lem is solved using an inverse method which makes an initial estimate and

iteratively finds better estimates.

The method employed here requires the introduction of a small wavenum-

ber to introduce a strip of analyticity, which enables a matrix Wiener–Hopf

problem to be constructed. Alternative approaches may be suitable for the

free-boundary problem too, with it bearing great similarities to floating body

problems Lannes [59].
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The limit of full-slip is interesting due to the simplification that it provides to

the matrix Wiener–Hopf over the frictional case. The method employed here

applies to a stick-slip friction law but the matrix Wiener–Hopf will be consid-

erably more challenging to solve but is considered in the proceeding chapter

5. The full-stick limit provides a scenario where a special case adaptation

of the iterative method [56] may be required, as the scalar Wiener–Hopf

equations cannot be decoupled easily, see appendix B for more details.
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Chapter 5

Rolling contact in the stick-slip

regime

5.1 Introduction

In this chapter we consider the setting where the magnitude of the angular

velocity for the cylinder is close to the magnitude of the convection velocity

for the half-space. In this setting we have imposed a stick-slip friction law,

which gives an additional sticking region to the full-slip friction law explored

in chapter 4. The introduction of the central sticking region consequently

expands the 2×2 matrix Wiener–Hopf equation into a 4×4 matrix Wiener–

Hopf equation, and introduces two additional free-boundary points which are

the stick-slip transition points.

We define the stick-slip friction law to be the division of the contact region

into a central sticking region between two independent slipping regions. Fric-

tion is a complex phenomena and the stick-slip friction law is one of many

models used to approximate it, with variations to stick-slip existing such as

those driven by rough surfaces, distances, or velocities [e.g. 13, 100]. Ex-

perimental evidence of stick-slip friction was first discovered by Reynolds
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[83] in 1876 and continues to appear in somewhat recent experiments Heslot

et al. [45]. One may observe stick-slip phenomena more readily in the er-

ratic behaviour seen as two seemingly smooth objects slide past one another

Al-Bender et al. [7], Thomsen and Fidlin [92], where the erratic behaviour is

because of stick-slip oscillations. At large scales, the rumble of earthquakes is

in-part caused by stick-slip phenomena between the tectonic plates [18, 6, 7].

The study of stick-slip phenomena is vast, with a broad literature considering

the micro-scales [78] in contrast to the macro-scale which we consider. The

micro-scale brings with it greater complexity, such as rough micro-scale sur-

faces of seemingly smooth surfaces or chemical effects of the atoms Bhushan

[14], Bushan [19]. To avoid the unstable nature of stick-slip phenomena Stel-

ter et al. [91] we consider a steady problem with stationary but unknown

stick-slip zones.

A brief review of the modelling of stick-slip friction begins with Cattaneo [21]

in 1938 who considered an elliptic punch with an inner stick annulus and an

outer slip annulus for a monotonically increasing tangential force. Mindlin

[66] extended Cattaneo’s results to other loading situations, and then both

Jäger [48] and Ciavarella [23] generalised Cattaneo’s results to any plane con-

tact problem by using integral equations. Proofs of existence and uniqueness

for the stick-slip friction law have encountered some difficulties, with no gen-

eral proof existing in the literature. Nonetheless, Cocu [25] provided a proof

of existence which is unique if the coefficient of friction is small. Whereas,

Klarbring [58] explores existence and uniqueness for larger coefficients of

friction, finding that non-uniqueness is inherent in quasi-static settings. The

literature reviewed in this section has focussed on sliding problems, whereas

we consider a rolling contact problem, partially in a bid to avoid the diffi-

culties with non-uniqueness by building the history of the process into the

problem.

Locating the stick-slip transition points is in itself a broad topic with early

consideration taken in Galin and Gladwell [39], who formulated a contact

problem with a flat punch. Galin and Gladwell [39] initially sought to locate
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the stick-slip transition points by considering a Fuschian differential equa-

tion but could not solve the differential equation and so pursued a confor-

mal mapping instead. However, much later Mossakovskii [70] considered the

same Fuschian differential equation and progressed by solving it numerically

to find agreement with Galin’s mapping method [103]. A different approach

was adopted by Antipov and Arutyunyan [10] who reduced a contact problem

to a matrix Riemann–Hilbert problem. Antipov and Arutyunyan [10] then

located the stick-slip transition points analytically by imposing finite stress

at the transition point. Self-similar solutions were explored by Spence [90],

developing an approach for parabolic punches which was solved by applying

the Wiener–Hopf technique. Spence [90] finds the stick-slip transition points

analytically by requiring that the shear stress is bounded and finite across

the stick-slip boundary. The self-similar approach was used by Zhupanska

and Ulitko [102], finding a solution by applying a conformal mapping and

the scalar Wiener–Hopf technique. Our work differs to the reviewed litera-

ture as none consider a rolling problem, nor are asymmetric stick-slip zones

considered either. In fact, much of the literature considers a symmetric set-

ting which allows symmetry to be exploited to reduce the complexity of the

problem.

The introduction of a central sticking region causes the size of the matrix

Wiener–Hopf equation to be 4 × 4, as there are four distinct jumps in the

boundary conditions. Matrix Wiener–Hopf equations of this size are rarely

explored, instead, much attention is given to 2× 2 problems but a summary

of these techniques may be found in Kisil et al. [57], Rogosin and Mishuris

[85]. Jones [51] developed an n-dimensional approach for factorising commu-

tative matrices of a specific structure, their approach was later generalised

by [96] for factorising matrices with distinct eigenvalues. A technique for

factorising triangular matrices of order n was proposed by Rogosin and Pri-

machuk [86] by using an inductive step. Alternatively, one may pursuit a

purely numerical approach by formulating a Riemann–Hilbert problem and

applying the spectral method developed in Llewellyn Smith and Luca [63], or

by considering the unified transform approach developed by Colbrook et al.
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[26].

A description of the physical problem and the boundary conditions are given

in section 5.2. Considering the different boundary conditions in their do-

mains leads to the construction of the matrix Wiener–Hopf problem in sec-

tion 5.3. This Wiener–Hopf problem is solved in section 5.4 by using the

iterative method outlined in section 3.3.1 with the additional details of the

numerical implementation of the Cauchy transforms in section 5.4.1. The

details of our approach for tackling the free-boundary problem is presented

in section 5.5, illustrated with some numerical results. The results of the

analysis and numerics is presented in section 5.6 for a variety of parameters.

Finally, in section 5.7, a conclusion is given along with some avenues for

future research.

5.2 Model formulation

Consider the system as in the schematic, figure 5.2.1. A cylinder of radius

R is pushed into an elastic half-space y < 0 with a force F , resulting in

an indentation of depth ε and is in contact with the half-space between

unknown points −a and d. The cylinder rotates with an angular velocity

Ω, and translates in the x-direction across the half-space at a linear velocity

V . The points labelled −b and c are the unknown location of where the

frictional behaviour transitions from slipping to sticking. The rest of this

system is outlined in section 2.1, so please refer there for the definition of

terms.

5.2.1 Boundary conditions

In the system above, a cylinder rotates on the surface of an elastic half-space

with the cylinder in contact with the surface in the region −a ≤ x ≤ d.

The points −a and d are unknown and to be found as part of the solution.
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Figure 5.2.1: A schematic of a cylinder rolling along an elastic half-space.
A similar setting to 4.2.1 with additional free-boundary points −b and c. The

cylinder moves at a linear velocity V in the x-direction along the elastic
half-space. The origin of the coordinate system (labelled O) is taken in a frame

of reference moving with the cylinder, directly below the centre of the cylinder at
the height of the undeformed elastic surface. The cylinder is in contact with the

elastic surface between the points −a and d, with and transitions between
sticking and slipping behaviour at points −b and c. The cylinder of radius R rolls

about its centre axis with angular velocity Ω, and a force F is applied to the
centre of the cylinder, causing the cylinder to be indented by ε into the elastic

half-space.

The surface of the half-space is displaced by the rigid cylinder and may not

penetrate the cylinder. The half-space experiences stick-slip friction due to

the cylinder, with sticking in the region −b ≤ x ≤ c and slipping otherwise.

The points −b and c are unknown and are to be found as part of the solution

also. Outside of the contact region the surface of the half-space is free from

any stress and so traction-free boundary conditions are imposed, as shown in

figure 5.2.2. The resultant mathematical problem is a mixed-free-boundary

problem, with intricate boundary conditions in each region.

The nonlinear derivation of the boundary conditions from the physical system

can be found in section 2.4, with the linearisation of the nonlinear boundary

95



5.2. MODEL FORMULATION 5.2

τxy|y=0 ± µ0τyy|y=0 = 0
Du
Dt

∣∣∣
y=0

= W τxy|y=0 ∓ µ0τyy|y=0 = 0

τyy|y=0 = 0 v|y=0 = x2

2
− 1 τyy|y=0 = 0

−a d−b c x

Figure 5.2.2: A diagram of the rearranged stick-slip boundary conditions on the
surface of the half-space.

conditions found in section 2.3. A diagram showing the boundary conditions

are shown in the schematic 5.2.2. In this chapter the frictional behaviour is

stick-slip, which gives the following boundary conditions and domains,

Contact: v(x, 0) =
x2

2
− 1, for − a ≤ x ≤ d,

Stick:
Du

Dt
(x, 0) = W, for − b ≤ x ≤ c,

Slip: τxy ∓ µ0τyy(x, 0) = 0, for x < −b & c < x,

Stress-free: τyy(x, 0) = 0, for x < −a & d < x.

We use the convected derivative as

Du

Dt
(x, 0) =

∂u

∂t
(x, 0)− ∂u

∂x
(x, 0) = W, for − b ≤ x ≤ c.

Note that the two slip regions may be in forwards (−) or backwards (+) slip

and may determine their slip directions independently, but we expect that

both regions slip in the same direction.

Thus, there are two boundary conditions in each region and the junctions

between each region are the unknown free-boundary points −a,−b, c and d.

The boundary conditions may be reformulated into a matrix Wiener–Hopf

equation which we then solve numerically. To locate the free-boundary points

a numerical technique is applied to ensure continuity of the solution at each

of the junctions.
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5.2.2 General solution

As we consider the same governing equations throughout we simply quote

the results from section 2.4 and use the same general solution derived there,

please refer there for details. We have the following general solution

u(x, y) =
1

2π

∫ ∞
−∞

[
Â1(k)B̂1(k)eyγ1(k) + A2(k)eyγ2(k)

]
e−ikxdk,

v(x, y) =
1

2π

∫ ∞
−∞

[
Â1(k)eyγ1(k) + A2(k)B2(k)eyγ2(k)

]
e−ikxdk,

where

γ1(k) =

√
k2 − ρV 2

λ+ 2µ

(
ω + k

)2
, γ2(k) =

√
k2 − ρV 2

µ

(
ω + k

)2

B̂1(k) =
−ik

γ1(k)
=

1√
ρV 2(1+ω

k
)2

λ+2µ
− 1

, B2(k) =
ik

γ2(k)
= − 1√

ρV 2(1+ω
k

)2

µ
− 1

.

with Â1(k) and A2(k) unknown and are to be found as part of our solution.

5.3 Constructing the matrix Wiener—Hopf

equation

We may determine the functions Â1(k) and A2(k) by considering the trans-

formed boundary conditions. For this purpose, we write the boundary con-

ditions as the difference of various half-range Fourier transforms, which are

detailed in section 3.2.1. Once the boundary conditions are Fourier trans-

formed combine them via the transformed governing equations into a matrix

Wiener–Hopf equation.
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5.3.1 Transformation of the boundary conditions

Initially an 8 × 8 matrix Wiener–Hopf equation was derived by considering

the two boundary conditions in the intervals between each of the four free-

boundary points disjointly, for example the contact boundary condition was

split over 3 intervals. The 8 × 8 matrix Wiener–Hopf problem had singular

matrices so the matrix cannot be inverted. In fact, singular matrix Wiener–

Hopf problems may suggest that the matrix may be simplified further. This

led to the reformulation of the boundary conditions with the aim of minimis-

ing the number of disjoint intervals in the boundary conditions. Taking this

approach simplified the 8 × 8 singular matrix Wiener–Hopf equation to the

reformulated to a 4× 4 non-singular matrix Wiener–Hopf equation.

In figure 5.2.2 the boundary conditions are rearranged to minimise the num-

ber of transitions. To minimise the number of transitions, we observe that

the stress-free boundary conditions may be arranged to form the slip bound-

ary conditions, extending the slip region to infinity in both directions. Thus,

we have reduced the number of transitions to four, and so we should expect

to be able to form a 4× 4 matrix Wiener–Hopf equation.

Taking a full-range Fourier transform of the vertical displacement, v(x, 0),

we find

ṽ(k) = eikdṽ
(d)
+ (k) + e−ikaṽ

(−a)
− (k) + f(k),

where ṽ
(d)
+ (k) and ṽ

(−a)
− (k) are unknown functions to be found as part of the

solution and analytic in D+ and D− respectively. The function

f(k) =
e−ika

ik

(
1− a2

2
− a

ik
+

1

k2

)
− eikd

ik

(
1− d2

2
+
d

ik
+

1

k2

)
is derived in section 4.3.1.

Taking the full-range Fourier transform of both slip boundary conditions we
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find the following,

˜τxy ± µ0τyy(k) = e−ikb ˜τxy ± µ0τyy
(−b)
+ (k),

˜τxy ∓ µ0τyy(k) = eikc ˜τxy ∓ µ0τyy
(c)

− (k),

where ˜τxy ± µ0τyy
(−b)
+ (k) and ˜τxy ∓ µ0τyy

(c)

− (k) are unknown functions to be

found as part of the solution and analytic in D+ and D− respectively.

Similarly, the full-range transform of the convective derivative, Du
Dt

(x, 0), be-

comes

D̃u

Dt
(k) = eikc

D̃u

Dt

(c)

+
(k) + e−ikb

D̃u

Dt

(−b)

−
(k) + g(k),

where D̃u
Dt

(c)

+
(k) and D̃u

Dt

(−b)

− (k) are unknown functions to be found as part of

the solution and analytic in D+ and D− respectively. The function g(k) is

known and derived in the following way

g(k) =

∫ c

−b
Weikxdx =

Weikc

ik
− We−ikb

ik
.

Finally, as in the full-slip regime, the transformed stress-free boundary con-

ditions become

τ̃yy(k) = e−ikaτ̃yy
(−a)
+ (k),

= eikdτ̃yy
(d)
− (k),

where τ̃yy
(−a)
+ (k) and τ̃yy

(d)
− (k) are unknown functions to be found as part of

the solution and analytic in D+ and D− respectively.
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5.3.2 Assembling the matrix Wiener–Hopf equation

The strategy is to eliminate the full-range transforms of the boundary con-

ditions by expressing them as a composition of half-range variables. To aid

with the assembly of the Wiener–Hopf equations we first relate the full-range

transforms to Â1(k) and A2(k), these relationships are

τ̃yy(k) =
[
(λ+ 2µ)γ1(k)− ikλB̂1(k)

]
Â1(k)

+
[
(λ+ 2µ)B2(k)γ2(k)− ikλ

]
A2(k)

= n1(k)Â1(k) + n2(k)A2(k),

˜τxy ± µ0τyy(k) =
[
µ(B̂1(k)γ1(k)− ik)± µ0n1(k)

]
Â1(k)

+
[
µ(γ2(k)− ikB2(k))± µ0n2(k)

]
A2(k)

= m±1 (k)Â1(k) +m±2 (k)A2(k),

D̃u

Dt
(k) = i(ω + k)(B̂1(k)Â1(k) + A2(k)),

ṽ(k) = Â1(k) +B2(k)A2(k),

˜τxy ∓ µ0τyy(k) = m∓1 (k)Â1(k) +m∓2 (k)A2(k).

To construct the matrix Wiener–Hopf equation we may eliminate Â1(k) and

A2(k) from the equations above and replace the full-range functions with their

half-range counterparts. Before we do so, we recall that there is a specific

structure that the matrix kernels must have to enable the iterative method to

be applied, namely the exponential terms on the non-diagonals must decay in

the required half-planes. The only way to ensure this structure is to express

Â1(k) and A2(k) in terms of either ˜τxy ± µ0τyy(k) or ˜τxy ∓ µ0τyy(k), and ṽ(k).

This gives the following expressions

Â1(k) =
m�2(k)ṽ(k)

m�2(k)−B2(k)m�1(k)
− B2(k) ˜τxy � µ0τyy(k)

m�2(k)−B2(k)m�1(k)
, (5.1)

A2(k) =
˜τxy � µ0τyy(k)

m�2(k)−B2(k)m�1(k)
− m�1(k)ṽ(k)

m�2(k)−B2(k)m�1(k)
, (5.2)
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where we replace � with either ± or ∓. Using (5.1) and (5.2) to eliminate

Â1(k) and A2(k) from the remaining full-range transformed functions leads

to the equations,

τ̃yy(k) =
n1(k)m�2(k)− n2(k)m�1(k)

m�2(k)−B2(k)m�1(k)
ṽ(k) (5.3)

+
n2(k)− n1(k)B2(k)

m�2(k)−B2(k)m�1(k)
˜τxy � µ0τyy(k)

D̃u

Dt
(k) = i(ω + k)

(
B̂1(k)m�2(k)−m�1(k)

m�2(k)−B2(k)m�1(k)
ṽ(k) (5.4)

+
1− B̂1B2(k)

m�2(k)−B2(k)m�1(k)
˜τxy � µ0τyy(k)

)
.

Then substituting in appropriate replacements for � and the half-range func-

tions leads to a system of coupled scalar Wiener–Hopf equations which we

assemble in to a matrix Wiener–Hopf equation and rearrange.

There are multiple ways in which the equations may be arranged to attain

the Wiener–Hopf matrix. The general format sought here is in the form

A(k)Φ+(k) = B(k)Φ−(k) +C(k),

where the unknown functions analytic in D+ or D− are from section 5.3.1.

The upper and lower vectors are therefore

Φ̃+(k) =


ṽ

(d)
+ (k)

D̃u
Dt

(c)

+
(k)

˜τxy ± τyy
(−b)
+ (k)

τ̃yy
(−a)
+ (k)

 , Φ̃−(k) =


τ̃yy

(d)
− (k)

˜τxy ∓ τyy
(c)

− (k)

D̃u
Dt

(−b)

− (k)

ṽ
(−a)
− (k)

 .

The unknowns were chosen in this order so that the matrices will be of trian-

gular format in the matrix Wiener–Hopf equation. We note that the asymp-

totic behaviour of the plus and minus functions may be found by considering
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the following edge conditions

limx→d+v(x, 0) =
d2

2
− 1, limx→−a−v(x, 0) =

a2

2
− 1,

limx→c+
Du

Dt
(x, 0) = W, limx→−b−

Du

Dt
(x, 0) = W,

limx→d−τyy(x, 0) = 0, limx→−a+τyy(x, 0) = 0,

limx→c−τxy ± µ0τyy(x, 0) = 0, limx→−b+τxy ± µ0τyy(x, 0) = 0.

These give quadratic decay in the complex plane for the edge conditions

which tend to zero and linear decay otherwise.

To generate the matrix Wiener–Hopf equation we substitute in appropriate

replacements to � and the transformed boundary condition into equations

(5.3) and (5.4). To construct each scalar Wiener–Hopf equation we consider

the two boundary conditions at each transition point and the single boundary

condition which holds over the same transition point. Then we may arrange

the coupled scalar Wiener–Hopf equations into a matrix format and rearrange

to find the following,

A(k) =



1 0 0 0

−i(ω+k)(m∓
1 −B̂1m

∓
2 )

B2m
∓
1 −m

∓
2

1 0 0

×eik(d−c)

i(ω+k)(m±
1 −B̂1m

±
2 )

B2m
±
1 −m

±
2

−B2m
±
1 −m

±
2

B2m
±
1 −m

±
2

i(B2B̂1−1)(ω+k)

B2m
±
1 −m

±
2

0

×eik(b+d) ×eik(b+c)

−(n1m
±
2 −n2m

±
1 )

(n1m
±
2 −n2m

±
1 )

0 (B2n1−n2)

(n1m
±
2 −n2m

±
1 )

m±
2 −B2m

±
1

(n1m
±
2 −n2m

±
1 )

×eik(a+d) ×eik(a−b)



,
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B(k) =



m∓
2 −B2m

∓
1

n1m
∓
2 −n2m

∓
1

(B2n1−n2)

n1m
∓
2 −n2m

∓
1

0
−(n1m

∓
2 −n2m

∓
1 )

n1m
∓
2 −n2m

∓
1

×eik(c−d) ×e−ik(a+d)

0 i(B2B̂1−1)(ω+k)

B2m
∓
1 −m

∓
2

−B2m
∓
1 −m

∓
2

B2m
∓
1 −m

∓
2

i(ω+k)(m∓
1 −B̂1m

∓
2 )

B2m
∓
1 −m

∓
2

×e−ik(b+c) ×e−ik(a+c)

0 0 1
−i(ω+k)(m±

1 −B̂1m
±
2 )

B2m
±
1 −m

±
2

×eik(b−a)

0 0 0 1



,

C(k) =



−(n1m
∓
2 −n2m

∓
1 )

n1m
∓
2 −n2m

∓
1

e−ikdf(k)

i(ω+k)(m∓
1 −B̂1m

∓
2 )

B2m
∓
1 −m

∓
2

e−ikcf(k)− B2m
∓
1 −m

∓
2

B2m
∓
1 −m

∓
2

e−ikcg(k)

−i(ω+k)(m±
1 −B̂1m

±
2 )

B2m
±
1 −m

±
2

eikbf(k) +
B2m

±
1 −m

±
2

B2m
±
1 −m

±
2

eikbg(k)

(n1m
±
2 −n2m

±
1 )

(n1m
±
2 −n2m

±
1 )
eikaf(k)


.

We have constructed a (4 × 4) matrix Wiener–Hopf equation which is not

singular and has the required analyticity of the exponential factors to apply

the iterative method, which has been outlined in section 3.3.1. In the follow-

ing section we discuss the application of the iterative method to approximate

the stick-slip solution.
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5.4 Application of the iterative method

The physical model has now been reduced to a 4 × 4 matrix Wiener–Hopf

equation with the required structure to apply the iterative method. The ex-

ponential terms allows one to apply an iterative method, similar to 4.4, in

which the non-diagonals are first approximated to be zero. The approxima-

tion decouples each scalar equation in the system and so each scalar equation

may be treated as a scalar Wiener–Hopf equation which may be solved nu-

merically.

To aide with the application of the iterative method, we define the functions

A33(k), A34(k), A44(k), B11(k), B21(k), B22(k), K1(k) and K2(k) as the en-

tries of the 4 × 4 matrix Wiener–Hopf equation we have constructed in the

stick-slip regime,

A(k) =



1 0 0 0

−K1(k) 1 0 0

×eik(d−c)

K2(k) −1 A33(k) 0

×eik(b+d) ×eik(b+c)

−1 0 A34(k) A44(k)

×eik(a+d) ×eik(a−b)



,
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B(k) =



B11(k) B21(k) 0 −1

×eik(c−d) ×e−ik(a+d)

0 B22(k) −1 K1(k)

×e−ik(b+c) ×e−ik(a+c)

0 0 1 −K2(k)

×eik(b−a)

0 0 0 1



,

C(k) =



−e−ikdf(k)

K1(k)e−ikcf(k)− e−ikcg(k)

−K2(k)eikbf(k) + eikbg(k)

eikaf(k)


.

To arrive at the initial approximations we approximate all of the exponential

terms in the matrices to zero, multiplicatively split the scalar kernel functions,

and additively split the resulting forcing term. The initial decoupled scalar

equations are

ṽ
(d)0
+ (k) = B11(k)τ̃yy

(d)
− (k)− e−ikdf(k)

D̃u

Dt

(c)0

+
(k) = B22(k) ˜τxy ∓ τyy

(c)0

− (k) + e−ikc (K1(k)f(k)− g(k))

A33(k) ˜τxy ± τyy
(−b)0
+ (k) =

D̃u

Dt

(−b)0

−
(k) + eikb (g(k)−K2(k)f(k))

A44(k)τ̃yy
(−a)
+ (k) = ṽ

(−a)
− (k) + eikaf(k).
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To find the initial solution only Wiener–Hopf splittings are required on the

equations above. Once the Wiener–Hopf splittings are completed, rearrang-

ing to upper and lower components is sought, then by analytic continuation

one may find entire functions which may be set to zero by applications of

Liouville’s theorem by the asymptotic behaviour of the half-range functions.

The initial approximation of the unknowns are then

ṽ
(d)0
+ (k) = B11+(k)

[
−e
−ikdf(k)

B11+(k)

]+

,

τ̃yy
(d)0
− (k) = − 1

B11−(k)

[
−e
−ikdf(k)

B11+(k)

]−
,

D̃u

Dt

(c)0

+
(k) = B22+(k)

[
e−ikc (K1(k)f(k)− g(k))

B22+(k)

]+

,

˜τxy ∓ τyy
(c)0

− (k) = − 1

B22−(k)

[
e−ikc (K1(k)f(k)− g(k))

B22+(k)

]−
,

˜τxy ± τyy
(−b)0
+ (k) =

1

A33+(k)

[
eikb (g(k)−K2(k)f(k))

A33−(k)

]+

,

D̃u

Dt

(−b)0

−
(k) = −A33−(k)

[
eikb (g(k)−K2(k)f(k))

A33−(k)

]−
,

τ̃yy
(−a)0
+ (k) =

1

A44+(k)

[
eikaf(k)

A44−(k)

]+

,

ṽ
(−a)0
− (k) = −A44−(k)

[
eikaf(k)

A44−(k)

]−
.

Finally, by following the same approach as 3.3.1 and 4.4, the scalar equations

within the matrix Wiener–Hopf are considered with the exponential terms

reintroduced. Then we proceed by iteratively updating the n-th equations,
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which are

ṽ
(d)n
+ (k) = B11(k)τ̃yy

(d)n
− (k)− e−ik(a+d)ṽ

(−a)n−1
− (k)

+B21(k)eik(c−d) ˜τxy ∓ τyy
(c)n−1

− (k)− e−ikdf(k),

D̃u

Dt

(c)n

+
(k) = B22(k) ˜τxy ∓ τyy

(c)n

− (k)− e−ik(b+c) D̃u

Dt

(−b)n−1

−
(k)

+K1(k)
(
e−ik(a+c)ṽ

(−a)n−1
− (k) + eik(d−c)ṽ

(d)n
+ (k)

)
+ e−ikc (K1(k)f(k)− g(k)) ,

A33(k) ˜τxy ± τyy
(−b)n
+ (k) =

D̃u

Dt

(−b)n

−
(k) + eik(b+c) D̃u

Dt

(c)n

+
(k)

−K2(k)
(
eik(b−a)ṽ

(−a)n−1
− (k) + eik(b+d)ṽ

(d)n
+ (k)

)
+ eikb (g(k)−K2(k)f(k)) ,

A44(k)τ̃yy
(−a)n
+ (k) = ṽ

(−a)n
− (k)− A34(k)eik(a−b) ˜τxy ± τyy

(−b)n
+ (k)

+ eik(a+d)ṽ
(d)n
+ (k) + eikaf(k).

We find the solutions by treating the reintroduced terms as a forcing and

applying the Wiener–Hopf splittings outlined in sections 3.2.2, 4.4.1, and

5.4.1. The solutions to the n-th iteration are thus

ṽ
(d)n
+ (k) = B11+(k)

[
−e−ik(a+d)ṽ

(−a)n−1
−

B11+(k)

+
B21(k)eik(c−d) ˜τxy ∓ τyy

(c)n−1

− − e−ikdf(k)

B11+(k)

]+

,

τ̃yyy=0

(d)n

−
(k) = − 1

B11−(k)

[
−e−ik(a+d)ṽ

(−a)n−1
−

B11+(k)

+
B21(k)eik(c−d) ˜τxy ∓ τyy

(c)n−1

− − e−ikdf(k)

B11+(k)

]−
,
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D̃u

Dt

(c)n

+
(k) = B22+(k)

[
K1(k)

(
e−ik(a+c)ṽ

(−a)n−1
− + eik(d−c)ṽ

(d)n
+

)
B22+(k)

+
−e−ik(b+c) D̃u

Dt

(−b)n−1

− + e−ikc (K1(k)f(k)− g(k))

B22+(k)

]+

,

˜τxy ∓ τyy
(c)n

− (k) = − 1

B22−(k)

[
K1(k)

(
e−ik(a+c)ṽ

(−a)n−1
− + eik(d−c)ṽ

(d)n
+

)
B22+(k)

+
−e−ik(b+c) D̃u

Dt

(−b)n−1

− + e−ikc (K1(k)f(k)− g(k))

B22+(k)

]−
,

˜τxy ± τyy
(−b)n
+ (k) =

1

A33+(k)

[−K2(k)
(
eik(b−a)ṽ

(−a)n−1
− + eik(b+d)ṽ

(d)n
+

)
A33−(k)

+
eik(b+c) D̃u

Dt

(c)n

+
+ eikb (g(k)−K2(k)f(k))

A33−(k)

]+

,

D̃u

Dt

(−b)n

−
(k) = −A33−(k)

[−K2(k)
(
eik(b−a)ṽ

(−a)n−1
− + eik(b+d)ṽ

(d)n
+

)
A33−(k)

+
eik(b+c) D̃u

Dt

(c)n

+
+ eikb (g(k)−K2(k)f(k))

A33−(k)

]−
,

τ̃yy
(−a)n
+ (k) =

1

A44+(k)

[−A34(k)eik(a−b) ˜τxy ± τyy
(−b)n
+

A44−(k)

+
eik(a+d)ṽ

(d)n
+ + eikaf(k)

A44−(k)

]+

,

ṽ
(−a)n
− (k) = −A44−(k)

[−A34(k)eik(a−b) ˜τxy ± τyy
(−b)n
+

A44−(k)

+
eik(a+d)ṽ

(d)n
+ + eikaf(k)

A44−(k)

]−
.

In the implementation, more iterations have been necessary than the full-slip

limit but convergence to at least 1e − 8 occurs typically in less than eight

iterations. We do note that the first and last row of the matrix Wiener–Hopf

equation is very similar to the two equations in the full-slip limit, allowing
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the same Wiener–Hopf splittings to solve the equations. The central two

rows require further consideration and the additional details for the splittings

required for them is discussed in the following section.

5.4.1 Wiener–Hopf splittings

We follow the same numerical procedures for computing the Cauchy trans-

forms as we did in section 4.4.1 but shall include details on the additional

terms and intricacies in this more complicated setting.

5.4.1.1 Wiener–Hopf factorisation

To compute the Wiener–Hopf factorisations we use the same approach out-

lined in section 4.4.1.1 but will outline the additional factorisations required.

We note that functions B11(k) and A44(k) are the same as K(k) so we may

compute their factorisations in the same way. However, to compute the fac-

torisation of B22(k) and A33(k) we analytically factorise the (k + ω) term to

the lower component and then compute the factorisation of the remaining

function with the same approach as section 4.4.1.1. Explicitly factorising the

functions B̂22(k) and Â33(k) where,

B22(k) = (k + ω)B̂22(k), A33(k) = (k + ω)Â33(k).

Then we proceed to numerically factorise B̂22(k) and Â33(k) in the exact

same way we factorised K(k).

5.4.1.2 Wiener–Hopf decomposition

To compute the Wiener–Hopf decompositions we use the same approach as

section 4.4.1.2 but take care when computing the decomposition of terms

with exponential growth in both D+ and D−. To avoid the exponential
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growth we consider each exponent separately, so for a general forcing f(k),

f(k) = eikLf1(k) + e−ikLf2(k)

where f1,2(k) are analytic in the strip D. We consider the additive decom-

position of the terms eikLf1(k) and e−ikLf2(k) separately to avoid the ex-

ponential growth of considering both together. Then we may proceed as

section 4.4.1.2 by deforming to the steepest descent contour and applying

the spectral method outlined in 4.4.1.

In general we take the above approach to compute the decompositions of the

forcing with oscillatory behaviour in both D+ and D− but in the cases where

f1,2(k) are not analytic in the strip we proceed in the following way. This

occurs when we take the decomposition of the terms

e−ikcf(k) =
e−ik(a+c)

ik

(
1− a2

2
− a

ik
+

1

k2

)
− eik(d−c)

ik

(
1− d2

2
+
d

ik
+

1

k2

)
eikbf(k) =

e−ik(a−b)

ik

(
1− a2

2
− a

ik
+

1

k2

)
− eik(d+b)

ik

(
1− d2

2
+
d

ik
+

1

k2

)
the LHS is analytic in the strip but by considering the exponential terms

separately we find singularities at the origin. Instead, we may subtract the

singularities without changing the functions,

e−ikcf(k) =
e−ik(a+c)

ik

(
1− a2

2
− a

ik
+

1

k2

)
−
(

1− c2

2
− c

ik
+

1

k2

)
+

(
1− c2

2
− c

ik
+

1

k2

)
− eik(d−c)

ik

(
1− d2

2
+
d

ik
+

1

k2

)
,

eikbf(k) =
e−ik(a−b)

ik

(
1− a2

2
− a

ik
+

1

k2

)
−
(

1− b2

2
+

b

ik
+

1

k2

)
+

(
1− b2

2
+

b

ik
+

1

k2

)
− eik(d+b)

ik

(
1− d2

2
+
d

ik
+

1

k2

)
.

Thus, we have arrived at a form where we may apply the quadratic additive

decomposition procedure outlined in section 4.4.1.2 to calculate the splitting.
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5.5 Free-boundary problem

As in the full-slip regime, we do not know the location of the junction points

−a,−b, c and d and need to determine their location as part of the solution.

In section 4.5 we were able to determine the location of the contact points

−a and d by ensuring continuity of the solution at the points −a and d so

we seek to apply the same technique to locate the stick-slip transition points

−b and c also. A note on stick-slip friction based on the literature is that it

is unclear what determines the transition but it is assumed that within the

stick region, the tangential force is insufficient for causing stick,

|τxy(x)| ≤ µ0|τyy(x)| ⇒ |τxy ∓ µ0τyy(x)| ≤ 2µ0|τyy(x)|, ∀x ∈ (−b, c).(5.5)

We continue by applying the method used in section 4.5, determining the lo-

cation of−a,−b, c and d through the conditions τyy(−a) = 0, τxy±µ0τyy(−b) =

0, τxy ∓ µ0τyy(c) = 0 and τyy(d) = 0 respectively. In this more complicated

setting it is not clear whether framing the minimisation problem as a multi-

variate minimisation problem or whether multiple independent minimisation

problems is more appropriate. In our implementation of both systems we

found that a multivariate approach, Broyden’s method [17], was less stable

than applying independent secant methods. Thus, we applied the secant

method to each free-boundary point independently. To formulate the min-

imisation problem more formally,

minχj‖τ jyy(χj, 0)‖, minχj‖τxy � µ0τ
j
yy(χ

j, 0)‖,

where we define the initial and j-th iteration junction points and correspond-

ing solution as

χ0 = (a0, b0, c0, d0), τ 0(x) = τyy
0(x, 0), ψ0(x) = τxy � µ0τ

0
yy(x, 0),

χj = (aj, bj, cj, dj), τ j(x) = τyy
j(x, 0), ψj(x) = τxy � µ0τ

j
yy(x, 0).
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To find an initial solution, we take two initial guesses of the junction points,

χ0, χ1 and find the corresponding solutions τyy
0(x, 0), τyy

1(x, 0) and ψ0(x, 0),

ψ1(x, 0). Then we find the next iteration of junction point by implementing

a secant method. We may find the j+1-th iteration of junction points, χj+1,

by solving the following equations

aj+1 = aj − τ j(−aj)×
(

aj − aj−1

τ j(−aj)− τ j−1(−aj−1)

)
bj+1 = bj − ψj(−bj)×

(
bj − bj−1

ψj(−bj)− ψj−1(−bj−1)

)
cj+1 = cj − ψj(cj)×

(
cj − cj−1

ψj(cj)− ψj−1(cj−1)

)
dj+1 = dj − τ j(dj)×

(
dj − dj−1

τ j(dj)− τ j−1(dj−1)

)
.

This procedure is iterated until successive iterations are below a tolerance,

‖χj − χj−1‖ ≤ tol.

Once converged, the final χj will give a solution where the junction points

are accurately estimated and ensure continuity of the solution.

This approach works well for large ω as shown in figure 5.5.1 and the figures

in section 5.6.2 however for smaller values of ω there is some oscillatory be-

haviour which occurs which may be related to Gibbs Phenomena, see 5.6.3 for

more discussion on these instabilities and [93] for more on Gibbs Phenomena.

We note that there is a strict ordering of the junction points

−a < −b < c < d (5.6)

and breaking this ordering would lead to an incorrect structure in the ma-

trix Wiener–Hopf equation but we note this could indicate an alternative

arrangement of the stick-slip zones may be necessary. The ordering of the

transition points gives conditions which must be satisfied by the minimisa-

tion method and as shown in 4.6 the contact points −a and d are related to
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Figure 5.5.1: A plot of the error for the free-boundary method at each iteration
until the solution has converged. The parameter values are those in table 5.1.

the value of ω and the same applies here. Thus, to ensure that the ordering

holds we may simultaneously vary ω and W to find a solution. Physically a

large positive W would correspond to full-slip in one direction and a large

negative W would correspond to full-slip in the opposing direction.

In the following sections we outline an analytical approach for locating the

free-boundary points and discuss the difficulties in implementing them here.

The free-boundary method applied here is the secant method outlined, but

include the analysis of the large k behaviour as a discussion point.

5.5.1 Large k limit

To understand more about the behaviour at the free-boundary points we

consider the half-range functions in the limit k →∞. An asymptotic expan-

sion may be derived from repeated use of integration by parts, which then
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relates the behaviour at the free-boundary point to the large k asymptotic

behaviour of the half-range function.

To begin with, recall the following half-range variables which were derived

from the transformation of the boundary conditions

ṽ
(d)
+ (k),

D̃u

Dt

(c)

+
(k), ˜τxy ± τyy

(−b)
+ (k), τ̃yy

(−a)
+ (k)

τ̃yy
(d)
− (k), ˜τxy ∓ τyy

(c)

− (k),
D̃u

Dt

(−b)

−
(k), ṽ

(−a)
− (k).

By considering the definition of these half-range variables in the limit as

k → ∞, the asymptotic behaviour of the variables may be related to the

behaviour of the spatial variables at the free-boundary point.

To illustrate the relationship between the solution at the free-boundary points

and the asymptotic behaviour of the half-range variables an example with

τ̃yy
(−a)
+ (k) is considered. Recalling the definition and applying a repeated use

of integration by parts gives the following,

τ̃yy
(−a)
+ (k) =

∫ ∞
−a

τyy(x, 0)eik(x+a)dx

=

[
−τyy(x, 0)

eik(x+a)i

k

]∞
−a

+

∫ ∞
−a

∂τyy
∂x

(x, 0)
ieik(x+a)

k
dx

=

[
τyy(−a, 0)

(i)

k

]
+
∞∑
n=1

[
∂nτyy
∂xn

(−a, 0)
(i)n+1

kn+1

]
.

Then by imposing a condition on the value of τyy(−a, 0) from the boundary

conditions, the asymptotic behaviour of the transformed variable τ̃yy
(−a)
+ (k)

as k → ∞ may be found. In this example the condition imposed and the

corresponding asymptotic behaviour would be

τyy(−a, 0) = 0, τ̃yy
(−a)
+ (k) ∼ τ(−a)

k2
, as |k| → ∞,

where τ(−a) is a constant.
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Applying the same argument as above suggests the large k asymptotic be-

haviour for all the half-range variables to be

ṽ
(d)
+ (k) ∼ 1

ik

(
d2

2
− 1

)
, ṽ

(−a)
− (k) ∼ − 1

ik

(
a2

2
− 1

)
,

D̃u

Dt

(c)

+
(k) ∼ W

ik
,

D̃u

Dt

(−b)

−
(k) ∼ −W

ik
,

τ̃yy
(d)
− (k) ∼ τ(d)

k2
, τ̃yy

(−a)
+ (k) ∼ τ(−a)

k2
,

˜τxy ∓ τyy
(c)

− (k) ∼ ψ(c)

k2
, ˜τxy ± τyy

(−b)
+ (k) ∼ ψ(−b)

k2
.

Thus, instead of the previous method of iterating the entire Wiener–Hopf

solution based on re-estimating −a,−b, c and d, only the large k behaviour

of the half-range variables may be considered. However, as discussed in

section 4.5, it is difficult to derive the large k asymptotic behaviour of the

half-range functions as they have been approximated numerically.

5.6 Results

In this section we discuss the preliminary results for the stick-slip friction

model. These results are preliminary as the small ω limit causes instabilities

in our solution and it is not clear yet if this invalidates the results in the

large ω limit. However, we include results for both the large and small

ω limits to illustrate the differences. Furthermore, we analyse the stick-slip

configurations in the large ω limit and give an explanation on the relationship

of the slip directions and the parameter W . Finally, we shall give a brief

discussion on the small ω limit.

To find the full solution we invert the Fourier transformed variables by us-

ing a Gaussian quadrature method as discussed in section 4.6. We note

that there are some additional half-range functions D̃u
Dt

(c)

+
(k), ˜τxy ± τyy

(−b)
+ (k),

˜τxy ∓ τyy
(c)

− (k) and D̃u
Dt

(−b)

− (k), which are to be inverted via quadrature also.
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For completeness we state the integrals which are to be computed

τxy � τyy(x, 0) =
1

2π

∫ ∞
−∞

˜τxy � τyy(k, 0)e−ikxdk,

Du

Dt
(x, 0) =

1

2π

∫ ∞
−∞

D̃u

Dt

(c)

+
(k)eik(c−x) +

D̃u

Dt

(−b)

−
(k)e−ik(b+x) + g(k)e−ikxdk.

5.6.1 Parameters

In the parameter study in section 4.6 we state that any parameter set is valid

provided they satisfy the inequality V 2 < µ
ρ
, and the condition is required

here too, to ensure that a strip on analyticity remains. This inequality per-

sists in the stick-slip case because the same convected elastic half-space is

considered, and so the general solution is the same. As shown in section 4.6,

solutions may be found for Alternative parameter values, however, only the

parameter values for structural steel (see table 5.1) will be considered here.

Parameter Value Dimensions

λ 210000 MPa

µ 81000 MPa

µ0 0.3 -

ρ 7850 kg m−3

V 1 -

ω -8i -

Table 5.1: The parameter values for structural steel [11], which are used for the
plots shown in this section.

5.6.2 Stick-slip configuration

The analysis of the stick-slip configurations will be investigated here, with a

focus to understand how the directions of slip changes the solution and the
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parameter W . We expect that the slipping directions should always be in the

same direction and that the value of W determines the slip configurations.

As an example, consider the case W > 0, where the cylinder is rotating slower

than the convection speed and so a particle on the surface of the elastic media

must reduce its speed before the stick region and then increase its speed after

the stick region. In this case, the speed of a particle on the surface of the

elastic media is greater than the cylinder’s in both slip regions, so one would

expect the same direction of slip on both sides. In this example, the resulting

configuration is backward-slip in both slip regions. We note that for W < 0

one would expect the opposite to occur and so only forward-slip should be

present in both slip regions.

All of the possible stick-slip configurations forward-stick-forward, forward-

stick-backward, backward-stick-forward, and backward-stick-backward are

shown in figures 5.6.1 , 5.6.2, 5.6.3, and 5.6.4 respectively. These figures

agree with the expectation that the slip directions and W are linked as

the forward-stick-forward and backward-stick-backward configurations have

a negative and positive value of W respectively. Additionally, we note that

in the remaining configurations (forward-stick-backward and backward-stick-

forward) the correct locations of −a,−b, c and d could not be found but some

values were chosen to illustrate the solution in these two cases. The correct

locations could not be found as the located points did not satisfy the order-

ing in equation (5.6). Furthermore, we observe the sharpness in the plots of

u(x, 0) for the forward-stick-backward and backward-stick-forward configura-

tions, which suggests that these may not be physically realisable. Therefore,

we deduce that stick-slip friction with a roller speed close to its convected

speed yields configurations where both slip regions have the same direction

however we require further study of the small ω limit for conclusive evidence.
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Forward-stick-forward
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(a) A plot of u(x, 0) profile.
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(b) A contour plot of τxy(x, y).
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(c) A plot of v(x, 0) profile.
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(d) A contour plot of τyy(x, y).
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(e) A plot of τyy(x, 0) profile.
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(f) A contour plot of Von Mises yield crite-
rion.

Figure 5.6.1: Plots of the solution for the forward-stick-forward configuration.
The angular velocity of the cylinder is taken to be W = −3 and the junction

points were found to be a = 1.27, b = 0.58, c = 1.07, d = 1.39.
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Forward-stick-backward
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(a) A plot of u(x, 0) profile.
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(b) A contour plot of τxy(x, y).
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(c) A plot of v(x, 0) profile.
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(d) A contour plot of τyy(x, y).
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(e) A plot of τyy(x, 0) profile.
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(f) A contour plot of Von Mises yield crite-
rion.

Figure 5.6.2: Plots of the solution for the forward-stick-backward configuration.
The angular velocity of the cylinder is taken to be W = 0 and the junction points

were found to be a = 1.28, b = 1.09, c = 1.12, d = 1.38.
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Backward-stick-forward
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(a) A plot of u(x, 0) profile.
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(b) A contour plot of τxy(x, y).
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(c) A plot of v(x, 0) profile.
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(d) A contour plot of τyy(x, y).
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(e) A plot of τyy(x, 0) profile.
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(f) A contour plot of Von Mises yield crite-
rion.

Figure 5.6.3: Plots of the solution for the backward-stick-forward configuration.
The angular velocity of the cylinder is taken to be W = 0 and the junction points

were found to be a = 1.28, b = 1.1, c = 1.02, d = 1.39.
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Backward-stick-backward
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(a) A plot of u(x, 0) profile.
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(b) A contour plot of τxy(x, y).
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(c) A plot of v(x, 0) profile.
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(d) A contour plot of τyy(x, y).
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(e) A plot of τyy(x, 0) profile.
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(f) A contour plot of Von Mises yield crite-
rion.

Figure 5.6.4: Plots of the solution for the backward-stick-backward configuration.
The angular velocity of the cylinder is taken to be W = 1 and the junction points

were found to be a = 1.28, b = 1.14, c = 1.27, d = 1.38.

121



5.6. RESULTS 5.6

5.6.3 Discussion

Finally, we discuss the instabilities which occur in the small ω case. The

figure 5.6.5 shows a converged free-boundary method for ω = −0.5i and the

figures 5.6.6 show the corresponding plots of the solution. Despite locating

the free-boundary points, the solutions in 5.6.6 show a much more oscilla-

tory solution than the large ω case, it is unclear whether this is a physical

effect or an outcome of the numerical methods used. We analyse if a higher

spectral resolution is required in figures 5.6.7 but see that the instabilities

persist, which suggests that the instabilities are more inherent than the nu-

merical methods. In the iterative method some variables are found directly

from the Cauchy transform whereas others are found by using the additive

relation and taking the difference, meaning that there is some dependency

of the variables and that there is an ordering to finding the solution of each

half-range variable. The ordering for finding each variable is ṽ(k), D̃u
Dt

(k),

˜τxy � µ0τyy(k) and finally τ̃yy(k). We observe that the oscillatory behaviour

initially occurs in the plot of Du
Dt

(x) and influences the dependent solutions,

which suggests that there is a discontinuity in Du
Dt

(x) which causes the Gibbs

Phenomena in Du
Dt

(x) and its dependencies. However, when we instead frame

the free-boundary method for locating −b and c such that there are no dis-

continuities in Du
Dt

(x) we are no longer able to find a solution that satisfies the

ordering (5.6). To summarise, the free-boundary method locates the roots

as intended but there is some instability in the small ω case which leads us

to believe that these roots may not be the correct locations of −a,−b, c and

d, or there is a more intricate problem in the small ω limit.

This leads us to question if there is an alternative approach which may be

more suitable in the small ω case. One’s intuition of the physics of the

problem would suggest that there may be a critical limit of the normal force

or W which leads to stick but no discussion of this is made in the literature.

Alternatively, we could pursue the large k asymptotic approach in section

5.5.1 which relates the asymptotic behaviour of the half-range functions to

the edge conditions, however, this has been tricky to impose numerically.
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Instead, we pose determining the location of the stick-slip transition points

in the small ω limit as a topic for further study.

3 6 9 12 15

10
- 2

10
0

10
2

10
4

Figure 5.6.5: A plot of the error for the free-boundary method at each iteration
until the solution has converged. The parameter values are those in table 5.1, with
ω = −0.5i.

5.7 Conclusion

The derivation of the model of an elastic half-space being deformed by a rigid

roller under a stick-slip friction law has been presented. The additional cen-

tral sticking region has expanded the matrix Wiener–Hopf equation from the

full-slip setting to a 4× 4 matrix Wiener–Hopf equation, this more complex

equation retains similar structure to the full-slip case allowing an application

of the iterative method outlined in chapter 3 to find a solution. The final

complication from the stick-slip model is the addition of two free-boundary

points, −b and c, which are the stick-slip transition points.
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Small ω
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(a) A plot of Du
Dt (x, 0) profile.
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(b) A contour plot of τxy(x, y).

-4 -2 0 2 4

-1.0

-0.8

-0.6

-0.4

-0.2

(c) A plot of v(x, 0) profile.
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(d) A contour plot of τyy(x, y).
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(f) A contour plot of Von Mises yield crite-
rion.

Figure 5.6.6: Plots of the solution with ω = −0.5i and the backward-stick-
backward configuration.

The angular velocity of the cylinder is taken to be W = 0.4 and the junction
points were found to be a = 0.86, b = 0.67, c = 0.0059, d = 0.86.
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High spectral resolution
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(a) A plot of Du
Dt (x, 0) profile.
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(b) A contour plot of τxy(x, y).
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(d) A contour plot of τyy(x, y).
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Figure 5.6.7: Plots of the solution of the small ω case with a higher spectral
resolution.

All other parameters are the same as figure 5.6.6.
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The application of the iterative method and locating the stick-slip transition

points follows straightforwardly in the large ω case but for smaller values of

ω some instabilities arise. Initial thoughts on the source of the instabilities

is that the spectral resolution was too low but further investigation shows

it not to be the case. The instabilities being present in Du
Dt

(x, 0) suggests

that despite the free-boundary method locating roots, these roots are not

the location of the stick-slip transition points.

Further work is required to locate the stick-slip transition points in the small

ω case. An alternative analytical approach has been outlined in section 5.5

however it is difficult to implement in a numerical setting. Experiments have

been made to the condition which determines the location of the stick-slip

transition, such as determining it from Du
Dt

(x, 0) or the inequality (5.5) but

neither of these approaches offers an improvement to our existing method.
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Chapter 6

Outlook

In this thesis we have derived an analytical model of a rolling contact prob-

lem for a cylindrical indenter with full-slip and stick-slip friction laws. The

Wiener–Hopf technique was then discussed and the iterative matrix Wiener–

Hopf technique was outlined and applied to the full-slip and stick-slip contact

problems. Finally, a method for locating the contact points and the stick-slip

transition points was developed but requires some further work in locating

the stick-slip transition points in the small ω limit.

Chapter 1 explained why lower CO2 emissions are necessary and how the

efficient use of metal enables lower emissions. A metal sheet spinning machine

[71] was invented for this purpose but it is yet to be used in industry due

to the computational constraints. We reduce one of the physical problems

the machine faces to a fundamental rolling contact problem and examined it

in detail. Thus, we propose and analyse a mathematical model of an elastic

half-space in frictional contact with a rolling rigid cylinder.

In chapter 2 a mathematical model for the deformation of an elastic half-

space by a rolling cylinder under a stick-slip friction law was derived. Then by

considering the cylinder’s angular velocity relative to the convection speed of

the half-space we derive a simplifying limit of full-slip, these friction regimes
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may be characterised in the following way

Friction regime =

Full-slip |Ω| � |V | or |Ω| � |V |,

Stick-slip |Ω| ≈ |V |.

In chapter 3 the scalar Wiener–Hopf technique was introduced in the con-

text of contact mechanics by considering a highly simplified problem. The

technique was then generalised to the matrix Wiener–Hopf technique and

the iterative method [81] was presented.

The analysis of an elastic half-space being deformed by a rigid roller is the

main result of this research, with the full-slip friction law considered in chap-

ter 4 and the stick-slip friction law in chapter 5. The mixed boundary value

problem in chapter 4 is formulated into a 2 × 2 matrix Wiener–Hopf equa-

tion, where we progress by assuming the location of the contact points and

apply an inverse method to locate them numerically. The analysis in chapter

4 showed that provided V 2 < µ
ρ

then any parameter values are valid, with

plots included to demonstrate this in section 4.6. In particular, chapter 4

presented a converged solution in the limit ω → 0; showing a steady state

model of a cylinder rolling on an elastic half-space under a full-slip friction

law. The mixed boundary value problem in chapter 5 is formulated into a

4 × 4 matrix Wiener–Hopf equation, and similarly assumes the location of

the contact and stick-slip transition points to facilitate progress. However,

in the analysis of the results in chapter 5 we see that in the limit ω → 0

there is more work that is required, as discussed in section 5.6.3. For larger

values of ω the value of W determines the direction of slip, or vice versa, with

both slip regions taking the same direction of slip which fits in line with our

physical intuition. To conclude, we have presented a mathematical model

an elastic half-space deformed by a rigid roller under two friction regimes,

with the magnitude of the angular velocity of the roller determining the fric-

tion regime. The models were solved by developing a matrix Wiener–Hopf

framework and applying the iterative method to approximate the solution,

but note that additional consideration is required in the limit ω → 0 for the
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stick-slip friction regime.

6.1 Small omega limit

The first extension to the thesis is to locate the correct stick-slip transition

points in the limit ω → 0 and to understand what causes the instabilities. In

the full-slip regime, increasing the number of spectral and quadrature points

was required to reduce the oscillatory behaviour in the limit ω → 0 but in

the stick-slip case the oscillatory behaviour persists as shown in figure 5.6.7.

The oscillatory behaviour may be due to the Gibbs Phenomena caused by

a discontinuity in the solution, so analytically locating the transition points

may eradicate the instabilities. A method for analytically locating the stick-

slip transition points has been discussed in section 5.5, which examines the

asymptotic behaviour of the half-range functions. Otherwise, approaches

imposing boundedness and continuity conditions across the boundary ala

Antipov and Arutyunyan [10] or Spence [90] may be sought.

6.2 Full-stick

The mathematical model and corresponding matrix Wiener–Hopf equation

is presented in appendix B. The matrix Wiener–Hopf equation does not ex-

hibit the structure to enable the iterative method to be applied directly but

it is very similar so it may be applied after some adaptations. Namely, the

difficulty in the full-stick regime is the lack of exponential terms in some of

the non-diagonal matrix entries. This means that the scalar Wiener–Hopf

equations are still coupled after the initial approximation and therefore solv-

ing them as scalar equations is not immediately possible. Further progress

may be made by incorporating another matrix Wiener–Hopf technique into

the method or by re-framing the mixed boundary value problem to reduce

the number of junctions.
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6.3 General framework for rolling problems

We propose that formulating the contact problem into a matrix Wiener–

Hopf equation and applying the iterative method gives a general framework

for solving contact problems. Several changes may be made to the model we

have considered without changing the general approach, such as the profile

of the roller, number of rollers, or the thickness of the elastic media. For

example, a two roller system with the same convection speeds under a full-

slip friction law would lead to a 4× 4 matrix Wiener–Hopf equation, due to

the four junctions between boundary conditions. In this example the iterative

method would still be applicable as the exponential factors have the correct

analyticity, please see appendix C for more details.

6.4 Plasticity

An important extension is to consider plastic deformation in the model too

so in the regions where the Von Mises yield criterion is met the half-space

will have elastic-weakly-plastic deformation. Let us consider a setting where

a single rigid cylinder is rolling along the metal media, with elastic-weakly-

plastic behaviour considered.

In modelling the elastic-plastic media, we expect the deformation to be

largely elastic, with a small amount of plastic deformation. Thus we expect

the problem to be formulated as

Leu + εLpu = f , (6.1)

which has a differential operator describing elasticity Le, another operator

describing plasticity Lp, displacement u(x, t), and body forces f . Note the

ε in-front of the plastic operator representing the weakness in the plastic

behaviour. Then considering an asymptotic expansion of the displacement
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vector,

u = u0 + εu1 +O(ε2).

Taking the asymptotic expansion, substituting into (6.1) and equation coef-

ficients of ε gives the solution,

O(1) : Leu0 = f ,

O(ε) : Leu1 + Lpu0 = 0.

Thus, we have outlined an approach to account for the plastic deformation

whilst allowing the matrix Wiener–Hopf technique to continue to be applied.

6.5 Closing remarks

The subject of this thesis has been motivated by an industrial problem in

metal sheet spinning. The mathematical modelling of metal forming is an

under-researched area, leading to industry relying on numerical simulation to

model processes, with potentially large errors and expensive computational

costs. The research in this thesis provides a foundation for metal sheet spin-

ning models and presents an approach for the open problem of analytically

modelling the process. Another extension is expanding the current framework

to model contact problems with other geometries or with multiple rollers.

A results of this thesis is a constructive approach of modelling and solving

contact problems. The steady state rolling contact problem in the full-slip

limit has been found and the distribution of the yield criterion has been

analysed, showing the regions where one would expect plastic deformation

to occur. The rolling contact problem in the stick-slip limit has been studied

for large ω values, and our intuition on stick-slip configurations has been

verified. However, further study is required of the stick-slip problem for

small values of ω as outlined.
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Appendix A

Some useful definitions and

theorems

In this appendix we state some definitions and theorems which may be useful

to the reader but for more details on complex analysis see Ablowitz and

Fokas [1], the Wiener–Hopf technique see Noble [74], or computing Cauchy

transforms see Trogdon and Olver [95].

Definition 1. (Analytic) The complex function f : C → C is analytic at

point k0 if f(k) is differentiable in a neighbourhood of k0. See page 37 of [1].

Definition 2. (Regular) The complex function f : C → C is regular or

holomorphic in a region C0 ⊂ C if it is analytic at every point in C0, i.e.

f(k) is differentiable in a neighbourhood of k∀k ∈ C0. See page 38 of [1].

Definition 3. (Entire) The complex function f : C → C is entire if it is

regular over all C i.e. f(k) is differentiable in a neighbourhood of k∀k ∈ C.

See page 38 of [1].

Theorem 1. (Liouville’s theorem) If the complex function f : C → C is

entire and bounded then f(k) is constant. See page 95 of [1].

Theorem 2. (Extended Liouville’s theorem) If the complex function f : C→
C is entire and |f(k)| < C|k|n as |k| → ∞ then f(k) s a polynomial of degree
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at most n, where C and n are constants. See page 6 of [74].

Theorem 3. (Plemelj’s lemma on the interval) We state an alternative form

of Plemelj’s lemma. Suppose φ(k) satisfies the following properties:

1. analytic off [a, b],

2. has weaker than pole singularities,

3. decays at infinity,

4. satisfies the jump condition

φ+(x)− φ−(x) = f(x) for a < x < b.

Then φ(z) = C[a,b]f(k). See [95, 1] for further details.

Theorem 4. (Three-term recurrence relationship for weighted orthogonal

polynomials) The weighted orthogonal polynomial basis satisfies a classical

three-term recurrence relationship, so there exists constants aj, bj, cj 6= 0 such

that

kp0(k) = a0p0(k) + b0p1(k),

kpj(k) = cjpj−1(k) + ajpj(k) + bjpj+1(k).

See page 164 of [93] or [95] for more details.
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Appendix B

Matrix Wiener–Hopf for the

full-stick regime

We briefly present the boundary conditions and the resulting matrix Wiener–

Hopf equation in the limit of full-stick. Notably, the limit of full-stick does

not simplify the problem like in the limit of full-slip as we are unable to

eradicate the jumps in the boundary conditions. In fact, the resulting matrix

Wiener–Hopf problem in this case may not be solved by a direct application

of the iterative method in 3 since there is not always an exponential factor

multiplying the non-diagonal terms in the matrices.

We do imagine that the resulting matrix Wiener–Hopf equation may be

solved by either adaptations to the iterative method, or by reformulating

the boundary conditions into another form. Despite several ideas on further

steps that may be taken to approximate the solution, it has not been explored

here.
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B.1. BOUNDARY CONDITIONS B.2

τxy|y=0 = 0 Du
Dt
|y=0 = W τxy|y=0 = 0

τyy|y=0 = 0 v|y=0 = x2

2
− 1 τyy|y=0 = 0

−a d x

Figure B.1.1: A diagram showing the full-stick boundary conditions and the regions
where they hold.

B.1 Boundary conditions

We consider the setting in chapter 2 with a purely sticking contact region

between the cylinder and elastic half-space.

The nonlinear derivation of the boundary conditions from the physical system

can be found in section 2.4, with the linearisation of the nonlinear boundary

conditions found in section 2.3. A diagram showing the boundary conditions

are shown in the schematic B.1.1. In this section we consider the full-stick

regime, which gives the following boundary conditions and domains,

Contact: v(x, 0) =
x2

2
− 1, for − a ≤ x ≤ d,

Stick:
Du

Dt
(x, 0) = W, for − a ≤ x ≤ d,

Stress-free: τxy(x, 0) = τyy(x, 0) = 0, for x < −a & d < x.

We use the convected derivative as

Du

Dt
(x, 0) =

∂u

∂t
(x, 0)− ∂u

∂x
(x, 0) = W, for − a ≤ x ≤ d.

In summary, there are two boundary conditions in each region with the junc-

tions between these regions being the unknown free-boundary points −a and

d. The boundary conditions may be reformulated into a matrix Wiener–Hopf

problem which may not be solved by a direct application of the iterative

method.
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B.2 Matrix Wiener–Hopf equation

There are multiple ways in which the equations may be arranged to attain

the matrix. The general format sought here is in the form

A(k)Φ+(k) = B(k)Φ−(k) +C(k).

From this equation, it is hoped that it will be possible to apply the iterative

method by treating each row of the linear system as a scalar equation. We

shall retain each of the unknowns from the boundary conditions which we

stated previously. In vector format we will take them to be:

Φ̃+(k) =


ṽ

(d)
+ (k)

D̃u
Dt

(d)

+
(k)

τ̃xyy=0

(−a)

+
(k)

τ̃yyy=0

(−a)

+
(k)

 , Φ̃−(k) =


τ̃yyy=0

(d)

−
(k)

τ̃xyy=0

(d)

−
(k)

D̃u
Dt

(−a)

− (k)

ṽ
(−a)
− (k)

 .

The unknowns were chosen in this order so that the matrices will be of

triangular format in the matrix Wiener–Hopf.

To generate the matrix Wiener–Hopf, we seek to eliminate the full-range

transforms, Â1(k) and A2(k) and only find the unknown functions from above

and some functions of k. We may arrange a matrix Wiener–Hopf, which has

exponential factors of the correct analyticity, to be

A(k) =



(n1n4 − n2n3) 0 0 0

(n4 −B2n3) i(ω + k)(n3 −B1n4) 0 0

−(n4 −B2n3) −i(ω + k)(n3 −B1n4) i(ω + k)(1−B1B2) 0

×eik(a+d) ×eik(a+d)

−(n1n4 − n2n3) 0 (B̂1n1 − n2) (n4 −B2n3)

×eik(a+d)


,
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B(k) =



(n4 −B2n3) (B̂1n1 − n2) 0 −(n1n4 − n2n3)

×e−ik(a+d)

0 i(ω + k)(1−B1B2) −i(ω + k)(n3 −B1n4) −(n4 −B2n3)

×e−ik(a+d) ×e−ik(a+d)

0 0 i(ω + k)(n3 −B1n4) (n4 −B2n3)

0 0 0 (n1n4 − n2n3)


,

C(k) =


−(n1n4 − n2n3)e−ikdf(k)

−(n4 −B2n3)e−ikdf(k)− i(ω + k)(n3 −B1n4)e−ikdg(k)

(n4 −B2n3)eikaf(k) + i(ω + k)(n3 −B1n4)eikag(k)

(n1n4 − n2n3)eikag(k)

 .

We define the functions n3(k) and n4(k) from the full-range transform

τ̃xy(k) = n3(k)Â1(k) + n4(k)A2(k).

We briefly note a few details on the matrix Wiener–Hopf equation which

we have arrived at. The arrangement of a triangular format is not unique,

as both the stick and contact, and the shear and normal stresses are inter-

changeable without disrupting the structure. A second note is the absence

of an exponential factor in some parts of the matrices, which means one may

not apply the iterative method directly. However, some adaptations, such as

taking an initial approximation by setting all the non-diagonal entries in the

matrices to zero, may be made to estimate the solution in this case.
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Appendix C

Matrix Wiener–Hopf for two

rollers in the full-slip regime

We present the boundary conditions and resulting matrix Wiener–Hopf equa-

tion for two similar rollers, both undergoing full-slip in the same direction.

In this case we derive a 4 × 4 matrix Wiener–Hopf equation which may be

directly solved by applying the iterative method. As the frictional behaviour

is full-slip, the scalar kernel to be factorised is the same as the one consid-

ered in chapter 4. In fact, the resultant matrix Wiener–Hopf equation in this

setting may be simpler to solve than the one in chapter 5.

C.1 Boundary conditions

We consider the setting in chapter 4, instead with two cylinders in contact

with the elastic half-space.

The nonlinear derivation of the boundary conditions from the physical system

can be found in section 2.4, with the linearisation of the nonlinear boundary

conditions found in section 2.3. This model expands on the one developed
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in chapter 4 by considering two similar rollers located between [x1, x2] and

[x3, x4]; both rollers have the exact same angular and linear velocities. In

this chapter the frictional behaviour is full-slip, which gives the following

boundary conditions and domains,

Cylinder A: v(x, 0) =
x2

2
− 1, for x1 ≤ x ≤ x2,

Cylinder B: v(x, 0) =
(x− L)2

2
− 1, for x3 ≤ x ≤ x4,

Slip: τxy ∓ µ0τyy(x, 0) = 0, for −∞ ≤ x ≤ ∞,

Stress-free: τyy(x, 0) = 0, for x < x1, x ∈ [x2, x3], x > x4.

Here L is the center of Cylinder B and Cylinder A centered at x = 0.

In summary, there are two boundary conditions in each region with the

junctions between these regions being the unknown free-boundary points

x1, x2, x3 and x4. The boundary conditions may be reformulated into a ma-

trix Wiener–Hopf problem which is in a form where the iterative method

may be applied.

C.2 Transformation of the boundary condi-

tions

To derive the Wiener–Hopf problem the unknown variables will be defined

from the half-range transforms of v(x, 0) and τyy(x, 0). The full-range trans-

forms of the contact boundary conditions gives

ṽ(k) = eikx2 ṽ
(x2)
+ (k) + eikx1 ṽ

(x1)
− (k) + f1(k),

= eikx4 ṽ
(x4)
+ (k) + eikx3 ṽ

(x3)
− (k) + f2(k),
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where the functions f1,2(k) are defined as

f1(k) =
eikx1

ik

(
1 +

x2
1

2
+
x1

ik
+

1

k2

)
− eikx2

ik

(
1− x2

2

2
+
x2

ik
+

1

k2

)
,

f2(k) =
eikx3

ik

(
1 +

(x3 − L)2

2
+
x3 − L
ik

+
1

k2

)
− eikx4

ik

(
1− (x4 − L)2

2
+
x4 − L
ik

+
1

k2

)
.

Similarly, the full-range transform of the stress-free boundary conditions are

τ̃yy(k) = eikx4 τ̃yy
(x4)
− (k) = eikx1 τ̃yy

(x1)
+ (k),

= eikx3 τ̃yy
(x3)
+ (k) + eikx2 τ̃yy

(x2)
− (k).

These scalar Wiener–Hopf equations shall then be manipulated to form the

matrix Wiener–Hopf equation.

C.3 Matrix Wiener–Hopf equation

There are multiple ways in which the equations may be arranged to attain

the matrix. The general format sought here is in the form

A(k)Φ+(k) = B(k)Φ−(k) +C(k).

From this equation, it is hoped that it will be possible to apply the iterative

method by treating each row of the linear system as a scalar equation. We

shall retain each of the unknowns from the boundary conditions which we

stated previously. In vector format we will take them to be:

Φ̃+(k) =


ṽ

(x4)
+ (k)

τ̃yy
(x3)
+ (k)

ṽ
(x2)
+ (k)

τ̃yy
(x1)
+ (k)

 , Φ̃−(k) =


τ̃yy

(x4)
− (k)

ṽ
(x3)
− (k)

τ̃yy
(x2)
− (k)

ṽ
(x1)
− (k)

 .
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The unknowns were chosen in this order so that the matrices will be of

triangular format in the matrix Wiener–Hopf.

To generate the matrix Wiener–Hopf, we seek to eliminate the full-range

transforms, Â1(k) and A2(k) and only find the unknown functions from above

and some functions of k. We may arrange a matrix Wiener–Hopf, which has

exponential factors of the correct analyticity, to be

A(k) =


1 0 0 0

−eik(x4−x3) K(k) 0 0

0 −K(k)eik(x3−x2) 1 0

0 0 −eik(x2−x1) K(k)

 ,

B(k) =


K(k) −eik(x3−x4) 0 0

0 1 −K(k)eik(x2−x3) 0

0 0 K(k) −eik(x1−x2)

0 0 0 1

 ,

C(k) =


−e−ikx4f2(k)

e−ikx3f2(k)

−e−ikx2f1(k)

e−ikx1f1(k)

 ,

where we define the functions K(k) from chapter 4

K(k) =
n(k) +B2(k)

n1(k)n(k) + n2(k)
, with K(k) = O

(
1

|k|

)
as |k| → ∞.

Note the iterative method may be applied directly to this matrix Wiener–

Hopf equation and it may even be considered a simpler problem to the stick-

slip matrix Wiener–Hopf, considered in chapter 5. This may be because we

have constructed this problem to as two coupled full-slip problems, leading

to many similarities to the matrix Wiener–Hopf equation derived in chapter
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4.

142



Bibliography

[1] M. J. Ablowitz and A. S. Fokas. Complex Variables: Introduction and

Applications. Cambridge Texts in Applied Mathematics. Cambridge

University Press, 2 edition, 2003. doi:10.1017/CBO9780511791246.

[2] I. Abrahams. Radiation and scattering of waves on an elastic half-

space; a non-commutative matrix wiener-hopf problem. Journal of the

Mechanics and Physics of Solids, 44(12):2125–2154, 1996.

[3] I. D. Abrahams. On the solution of Wiener–Hopf problems involv-

ing noncommutative matrix kernel decompositions. SIAM Journal on

Applied Mathematics, 57(2):541–567, 1997.

[4] I. D. Abrahams. The application of padé approximants to Wiener–Hopf
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[64] D. Lüthi, M. Le Floch, B. Bereiter, T. Blunier, J.-M. Barnola,

U. Siegenthaler, D. Raynaud, J. Jouzel, H. Fischer, K. Kawamura,

et al. High-resolution carbon dioxide concentration record 650,000–

800,000 years before present. nature, 453(7193):379–382, 2008.

[65] P. Meijers. The contact problem of a rigid cylinder on an elastic layer.

Applied Scientific Research, 18(1):353–383, 1968.

[66] R. D. Mindlin. Compliance of elastic bodies in contact. J. Appl. Mech.,

16, 1949.

[67] J. J. Minton and E. J. Brambley. Meta-analysis of curvature

trends in asymmetric rolling. Procedia Engng, 207:1355–1360, 2017.

doi:doi.org/10.1016/j.proeng.2017.10.896. (presented at ICTP 2017).

[68] J. J. Minton, C. J. Cawthorn, and E. J. Brambley. An asymptotic

approach to asymmetric rolling. Int. J. Mech. Sci., 113:36–48, 2016.

doi:10.1016/j.ijmecsci.2016.03.024.

[69] J. F. Mitchell. The “greenhouse” effect and climate change. Reviews

of Geophysics, 27(1):115–139, 1989.

[70] V. Mossakovskii. Compression of elastic bodies under conditions of

adhesion (axisymmetric case). Journal of Applied Mathematics and

Mechanics, 27(3):630 – 643, 1963. ISSN 0021-8928. doi:10.1016/0021-

8928(63)90150-3. URL http://www.sciencedirect.com/science/article/

pii/0021892863901503.

[71] O. Music and J. M. Allwood. Flexible asymmetric spin-

ning. CIRP Annals, 60(1):319 – 322, 2011. ISSN 0007-8506.

doi:10.1016/j.cirp.2011.03.136. URL http://www.sciencedirect.com/

science/article/pii/S0007850611001375.

151

https://doi.org/10.1098/rspa.2019.0105
https://doi.org/doi.org/10.1016/j.proeng.2017.10.896
https://doi.org/10.1016/j.ijmecsci.2016.03.024
https://doi.org/10.1016/0021-8928(63)90150-3
https://doi.org/10.1016/0021-8928(63)90150-3
http://www.sciencedirect.com/science/article/pii/0021892863901503
http://www.sciencedirect.com/science/article/pii/0021892863901503
https://doi.org/10.1016/j.cirp.2011.03.136
http://www.sciencedirect.com/science/article/pii/S0007850611001375
http://www.sciencedirect.com/science/article/pii/S0007850611001375


BIBLIOGRAPHY C.3

[72] O. Music, J. Allwood, and K. Kawai. A review of the

mechanics of metal spinning. Journal of Materials Pro-

cessing Technology, 210(1):3 – 23, 2010. ISSN 0924-0136.

doi:10.1016/j.jmatprotec.2009.08.021. URL http://www.sciencedirect.

com/science/article/pii/S0924013609003094.

[73] N. Muskhelishvili. Singular integral equations: boundary problems of

function theory and their application to mathematical physics.

[74] B. Noble. Methods Based on the Wiener–Hopf Technique for the So-

lution of Partial Differential Equations. AMS Chelsea Publishing Se-

ries. Pergamon Press, 1958. URL https://books.google.co.uk/books?

id=RvNQAAAAMAAJ.

[75] S. Olver. Computing the Hilbert transform and its inverse. Mathemat-

ics of computation, 80(275):1745–1767, 2011.

[76] T. C. O’Sullivan and R. B. King. Sliding Contact Stress Field Due to a

Spherical Indenter on a Layered Elastic Half-Space. Journal of Tribol-

ogy, 110(2):235–240, 04 1988. ISSN 0742-4787. doi:10.1115/1.3261591.

URL 10.1115/1.3261591.

[77] J. M. Papakonstantinou and R. A. Tapia. Origin and evolution of the

secant method in one dimension. The American Mathematical Monthly,

120(6):500–517, 2013. doi:10.4169/amer.math.monthly.120.06.500.

URL https://www.tandfonline.com/doi/abs/10.4169/amer.math.

monthly.120.06.500.

[78] B. N. J. Persson and E. Tosatti. Physics of sliding friction. 1996.

[79] J. A. Polyblank and J. M. Allwood. Parametric toolpath design in

metal spinning. CIRP Annals, 64(1):301 – 304, 2015. ISSN 0007-

8506. doi:10.1016/j.cirp.2015.04.077. URL http://www.sciencedirect.

com/science/article/pii/S0007850615000852.

[80] V. L. Popov. Coulomb’s Law of Friction, pages 133–154. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-10803-

152

https://doi.org/10.1016/j.jmatprotec.2009.08.021
http://www.sciencedirect.com/science/article/pii/S0924013609003094
http://www.sciencedirect.com/science/article/pii/S0924013609003094
https://books.google.co.uk/books?id=RvNQAAAAMAAJ
https://books.google.co.uk/books?id=RvNQAAAAMAAJ
https://doi.org/10.1115/1.3261591
10.1115/1.3261591
https://doi.org/10.4169/amer.math.monthly.120.06.500
https://www.tandfonline.com/doi/abs/10.4169/amer.math.monthly.120.06.500
https://www.tandfonline.com/doi/abs/10.4169/amer.math.monthly.120.06.500
https://doi.org/10.1016/j.cirp.2015.04.077
http://www.sciencedirect.com/science/article/pii/S0007850615000852
http://www.sciencedirect.com/science/article/pii/S0007850615000852


BIBLIOGRAPHY C.3

7. doi:10.1007/978-3-642-10803-7 10. URL 10.1007/978-3-642-10803-7

10.

[81] M. J. Priddin, A. V. Kisil, and L. J. Ayton. Applying an iterative

method numerically to solve n×n matrix Wiener–Hopf equations with

exponential factors. Philosophical Transactions of the Royal Society A,

378(2162):20190241, 2020.

[82] B. Rentsch, N. Manopulo, and P. Hora. On the role of

anisotropy and bauschinger-effect in sheet metal spinning. Journal of

Physics: Conference Series, 896:012042, sep 2017. doi:10.1088/1742-

6596/896/1/012042. URL https://doi.org/10.1088/1742-6596/896/1/

012042.

[83] O. Reynolds. On rolling-friction. Philosophical Transactions of the

Royal Society of London, 166:155–174, 1876. ISSN 02610523. URL

http://www.jstor.org/stable/109190.

[84] D. J. K. F. S. e. a. Rogelj, J.; Shindell. Chapter 2: Mitiga-

tion Pathways Compatible with 1.5°C in the Context of Sustain-

able Development. Intergovernmental Panel on Climate Change,

2018. URL https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/

SR15 Chapter2 High Res.pdf.

[85] S. Rogosin and G. Mishuris. Constructive methods for factorization

of matrix-functions. IMA Journal of Applied Mathematics, 81(2):365–

391, 2016.

[86] S. Rogosin and L. Primachuk. Factorization of triangular matrix-

functions of an arbitrary order. 2018.

[87] A. C. Serrenho, Z. S. Mourão, J. Norman, J. M. Cullen, and

J. M. Allwood. The influence of uk emissions reduction tar-

gets on the emissions of the global steel industry. Resources,

Conservation and Recycling, 107:174–184, 2016. ISSN 0921-3449.

doi:https://doi.org/10.1016/j.resconrec.2016.01.001. URL https://

www.sciencedirect.com/science/article/pii/S0921344916300015.

153

https://doi.org/10.1007/978-3-642-10803-7_10
10.1007/978-3-642-10803-7_10
10.1007/978-3-642-10803-7_10
https://doi.org/10.1088/1742-6596/896/1/012042
https://doi.org/10.1088/1742-6596/896/1/012042
https://doi.org/10.1088/1742-6596/896/1/012042
https://doi.org/10.1088/1742-6596/896/1/012042
http://www.jstor.org/stable/109190
https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_Chapter2_High_Res.pdf
https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_Chapter2_High_Res.pdf
https://doi.org/https://doi.org/10.1016/j.resconrec.2016.01.001
https://www.sciencedirect.com/science/article/pii/S0921344916300015
https://www.sciencedirect.com/science/article/pii/S0921344916300015


BIBLIOGRAPHY C.3

[88] R. M. Slevinsky and S. Olver. A fast and well-conditioned spectral

method for singular integral equations. Journal of Computational

Physics, 332:290–315, 2017.

[89] A. Sommerfeld. Mathematische Theorie der Diffraction. B.G. Teubner,

1896. URL https://books.google.co.uk/books?id=pDxtHQAACAAJ.

[90] D. Spence. Self similar solutions to adhesive contact problems with

incremental loading. Proc. R. Soc. Lond. A, 305(1480):55–80, 1968.

[91] K. K. Stelter, P. Thompson, J. M. Tutill, and P. Gray. Stick-slip vibra-

tions and chaos. Philosophical Transactions of the Royal Society of Lon-

don. Series A: Physical and Engineering Sciences, 332(1624):89–105,

1990. doi:10.1098/rsta.1990.0102. URL https://royalsocietypublishing.

org/doi/abs/10.1098/rsta.1990.0102.

[92] J. J. Thomsen and A. Fidlin. Analytical approximations

for stick–slip vibration amplitudes. International Journal of

Non-Linear Mechanics, 38(3):389–403, 2003. ISSN 0020-7462.

doi:https://doi.org/10.1016/S0020-7462(01)00073-7. URL https://

www.sciencedirect.com/science/article/pii/S0020746201000737.

[93] L. Trefethen. Approximation Theory and Approximation Prac-

tice. Other Titles in Applied Mathematics. SIAM, 2013.

ISBN 9781611972405. URL https://books.google.co.uk/books?id=

h80N5JHm-u4C.

[94] T. Trogdon. Rational approximation, oscillatory Cauchy integrals, and

Fourier transforms. Constructive Approximation, 43(1):71–101, 2016.

[95] T. Trogdon and S. Olver. Riemann–Hilbert problems, their numerical

solution, and the computation of nonlinear special functions, volume

146. Siam, 2015.

[96] B. H. Veitch and I. David Abrahams. On the commutative factorization

of n x n matrix wiener-hopf kernels with distinct eigenvalues. Proceed-

ings of the Royal Society A: Mathematical, Physical and Engineering

154

https://books.google.co.uk/books?id=pDxtHQAACAAJ
https://doi.org/10.1098/rsta.1990.0102
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1990.0102
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1990.0102
https://doi.org/https://doi.org/10.1016/S0020-7462(01)00073-7
https://www.sciencedirect.com/science/article/pii/S0020746201000737
https://www.sciencedirect.com/science/article/pii/S0020746201000737
https://books.google.co.uk/books?id=h80N5JHm-u4C
https://books.google.co.uk/books?id=h80N5JHm-u4C


BIBLIOGRAPHY C.3

Sciences, 463(2078):613–639, 2007. doi:10.1098/rspa.2006.1780. URL

https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2006.1780.

[97] Z.-J. Wang, W.-Z. Wang, H. Wang, D. Zhu, and Y.-Z. Hu. Par-

tial Slip Contact Analysis on Three-Dimensional Elastic Layered Half

Space. Journal of Tribology, 132(2), 03 2010. ISSN 0742-4787.

doi:10.1115/1.4001011. URL 10.1115/1.4001011. 021403.

[98] G. H. Wannier. Statistical physics. Courier Corporation, 1987.

[99] N. Wiener. Uber eine klasse singularer integralgleichungen. Sitz. Ber.

Preuss. Akad. Wiss., Phys.-Math., 1:696–706, 1931.

[100] H. Yoshizawa and J. Israelachvili. Fundamental mechanisms of inter-

facial friction. 2. stick-slip friction of spherical and chain molecules.

The Journal of Physical Chemistry, 97(43):11300–11313, 1993.

doi:10.1021/j100145a031. URL https://doi.org/10.1021/j100145a031.

[101] O. Zhupanska. Adhesive full stick contact of a rigid cylin-

der with an elastic half-space. International Journal of

Engineering Science, 55:54 – 65, 2012. ISSN 0020-7225.

doi:10.1016/j.ijengsci.2012.02.002. URL http://www.sciencedirect.

com/science/article/pii/S0020722512000328.

[102] O. Zhupanska and A. Ulitko. Contact with friction of a rigid

cylinder with an elastic half-space. Journal of the Mechanics

and Physics of Solids, 53(5):975 – 999, 2005. ISSN 0022-5096.

doi:10.1016/j.jmps.2005.01.002. URL http://www.sciencedirect.com/

science/article/pii/S0022509605000177.

[103] O. I. Zhupanska. On the analytical approach to galin’s stick-slip prob-

lem. a survey. Journal of Elasticity, 90:315–333, 2008.

155

https://doi.org/10.1098/rspa.2006.1780
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2006.1780
https://doi.org/10.1115/1.4001011
10.1115/1.4001011
https://doi.org/10.1021/j100145a031
https://doi.org/10.1021/j100145a031
https://doi.org/10.1016/j.ijengsci.2012.02.002
http://www.sciencedirect.com/science/article/pii/S0020722512000328
http://www.sciencedirect.com/science/article/pii/S0020722512000328
https://doi.org/10.1016/j.jmps.2005.01.002
http://www.sciencedirect.com/science/article/pii/S0022509605000177
http://www.sciencedirect.com/science/article/pii/S0022509605000177

	Abstract
	Acknowledgements
	Declaration
	List of Figures
	Introduction
	Background
	Metal forming

	Contact mechanics
	Thesis outline

	The governing equations
	Introduction
	Derivation of the boundary conditions
	Contact boundary condition
	Stick boundary condition
	Slip boundary condition
	Stress-free boundary condition

	Linearisation of the governing equations
	Linearised boundary conditions
	Full-slip
	Full-stick
	Stick-slip

	General solution

	The Wiener–Hopf technique
	Introduction
	Scalar Wiener–Hopf technique
	Half-range transforms
	Wiener–Hopf splittings

	Matrix Wiener–Hopf technique
	Iterative method


	Rolling contact in the full-slip regime
	Introduction
	Mathematical formulation
	Boundary conditions
	General solution

	Constructing the matrix Wiener–Hopf equation
	Transformation of the boundary conditions
	Assembling the matrix Wiener–Hopf equation

	Application of the iterative method
	Wiener–Hopf splittings

	Free-boundary problem
	Example
	Convergence

	Results
	Parameter study
	Von Mises yield criterion

	Conclusion

	Rolling contact in the stick-slip regime
	Introduction
	Model formulation
	Boundary conditions
	General solution

	Constructing the matrix Wiener–-Hopf equation
	Transformation of the boundary conditions
	Assembling the matrix Wiener–Hopf equation

	Application of the iterative method
	Wiener–Hopf splittings

	Free-boundary problem
	Large k limit

	Results
	Parameters
	Stick-slip configuration
	Discussion

	Conclusion

	Outlook
	Small omega limit
	Full-stick
	General framework for rolling problems
	Plasticity
	Closing remarks

	Some useful definitions and theorems
	Matrix Wiener–Hopf for the full-stick regime
	Boundary conditions
	Matrix Wiener–Hopf equation

	Matrix Wiener–Hopf for two rollers in the full-slip regime
	Boundary conditions
	Transformation of the boundary conditions
	Matrix Wiener–Hopf equation

	Bibliography
	Insert from: "WRAP_Coversheet_Theses_new1.pdf"
	http://wrap.warwick.ac.uk/169413


