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Abstract

Geospatial data sits at the core of many data-driven application domains,

from urban analytics to spatial epidemiology and climate science. Over recent

years, ever-growing streams of data have allowed us to quantify more and more

aspects of our lives and to deploy machine learning techniques to improve public

and private services. But while modern neural network methods offer a flexible

and scalable toolkit for high-dimensional data analysis, they can struggle with

the complexities and dependencies of real-world geographic data. The particular

challenges of geographic data are the subject of the geographic information

sciences (GIS). This discipline has compiled a myriad of metrics and measures

to quantify spatial effects and to improve modeling in the presence of spatial

dependencies. In this dissertation, we deploy metrics of spatial interactions as

embeddings to enrich neural network methods for geographic data. We utilize

both, functional embeddings (such as measures of spatial autocorrelation) and

parametric neural-network embeddings (such as semantic vector embeddings).

The embeddings are then integrated into neural network methods using four

different approaches: (1) model selection, (2) auxiliary task learning, (3) feature

learning, and (4) embedding loss functions. Throughout the dissertation, we

use experiments with various real-world datasets to highlight performance

improvements of our geographically-explicit neural network methods over naive

baselines. We focus specifically on generative and predictive modeling tasks.

The dissertation highlights how geographic domain-expertise together with

powerful neural network backbones can provide tailored, scalable modeling

solutions for the era of real-time Earth observation and urban analytics.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Big Geospatial Data & Urban Analytics

“80% of all data is geographic”. This sentence has been heard by many who work
with geographic data and has even made its way into corporate communications
of industry giants such as Esri1. The quote has taken an almost mythical
form, with vague original attributions and no solid evidence to back it up
[26]. Nevertheless, it is undeniable that a large share of the world’s data can,
in some shape or form, be geo-referenced; mapped onto the globe of planet
Earth. Sometimes, like with the fleet of satellites monitoring our planet in
near real-time, the geographic nature of the data is essential to its purpose, for
example in military surveillance or flood early-warning systems. Sometimes,
the geographic connection is hidden in the meta-data, for example in contactless
payments or the daily interactions on our social media accounts, and only
becomes relevant if we look at the aggregates.

The density, availability and pervasiveness of geographic data is particularly
evident in cities [15, 91]. Public authorities deploy sensor and camera networks
to measure air quality and traffic volumes, while advances in mobile computing
and networking transform our phones and cars into Internet of Things (IoT)
devices [150]. The data collected throughout our cities, on personal and public
sensors, represent the different layers of our urban systems: This includes
physical attributes like infrastructure and land use, but also non-physical
characteristics like socio-economic factors or (perceived) safety. Data allows
us to view cities as organisms: aggregates of their inhabitants, physical and
non-physical features that, altogether, make them more than the sum of their
parts [30].

Authorities around the globe are increasingly building sensing infrastructure
1See e.g. https://www.esri.com/news/arcuser/0401/bunchls.html
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and make urban data available via larger open data platforms that harmonise
new, IoT-driven data sources with traditional sources such as census data [14].
Geospatial information is often used for the cross-referencing step. In fact,
urban open data platforms often choose to represent data as large, multi-layered
city maps [83]. The increasing availability of urban big data has lead to the
emergence of scientific sub-disciplines dedicated to collecting and analysing
this data, as well as building end-to-end, data-driven decision support systems
based on it: urban analytics and urban informatics [17]. Under this umbrella
term, researchers from the computational sciences, engineering, economics,
geography and many more conduct inter- and cross-disciplinary, quantitative
research on cities.

This perspective is crucially needed. According to the latest United Nations
(UN) report, over 55% of the global population already lives in urban areas
[175]. This number rises to 75+% when looking solely at Western countries.
The UN estimates that almost 70% of the world’s population will live in cities
in 2050. Many cities around the globe already struggle to accommodate the
steady influx of people from rural areas, who seek opportunities in the urban
centers. The increasing densification of urban areas, also known as urbanisation,
can lead to problems ranging from public health concerns [102] to ecological
crises [200] and poses critical challenges for urban authorities.

Urban analytics offers tools for data-driven knowledge discovery as well
as a framework for operationalising these insights in downstream applications.
Through the design of data-centric systems, we can improve the quality and
efficiency of urban infrastructure and services and tackle many of the issues
that arise from increasing urbanisation. In the context of urban analytics,
data-centric approaches require a particular focus on the spatial nature of the
data. Generally, spatial dependencies are omnipresent in urban datasets and
require dedicated methodological approaches.

For example, the shared-vehicle systems that are prevalent in many cities,
from bicycles to electric cars, exhibit stark demand imbalances over space
and time [92, 131]. Devising systems for planning support or relocation
schemes require a thorough understanding of the urban spatial structure and
accounting for contextual information that characterises specific locations
[119, 190]. Spatial dependencies can also complicate the discovery of causal
effects, such as challenges in linking public transportation infrastructure to
economic outcomes [94]. Lastly, observed spatial effects can also arise from
true, non-spatial underlying effects. For example, while the reporting delays of
urban rape crime appear to be spatially autocorrelated at first glance, a deeper
investigation reveals this effect to stem from spatially clustered socio-economic
and demographic factors [97].

Oftentimes, spatial effects and contextual factors exhibit their own intricate
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dependencies. There is a need for dedicated spatial modelling techniques to
scale to the dimensions of large geospatial data and support decision making in
urban settings. In this dissertation, we will develop methods that are tailored
to the intricacies of geospatial data using a powerful family of scalable models:
artificial neural networks.

1.1.2 Machine Learning for the Geospatial Domain
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Figure 1.1: Examples of generative and discriminative spatial modelling tasks.
Left: The objective of the generative modelling task is to generate images of
urban and rural settings, conditional on the respective point location. Right:
The objective of the discriminative modelling task is to classify an image at a
given point location into the “urban” and “rural” categories.

Geography has a long tradition of modelling and empirical analysis. Ideas
from the Geographic Information Sciences (GIS) and spatial statistics have
sparked popular methodologies in modern machine learning, from Gaussian
Processes (GPs), which were pioneered by the development of Kriging in the
1960s [123], to spatial scan statistics[105], which are currently widely used for
event and pattern detection. Since the emergence of the era of deep neural
networks, the relationship between the GIS and machine learning communities
has been largely defined through applications of existing neural network models
to geographic data. Rarely have concepts and ideas from the GIS and spatial
statistics motivated methodological advancements in neural networks, whereas
application areas such as computer vision, bioinformatics, and computational
linguistics have strongly influenced the deep learning state-of-the-art we know
today.

Some recent advances in machine learning have been exceptionally useful
to the GIS community. Kernel methods such as Gaussian Processes have
seen huge progress towards overcoming computational bottlenecks that stem
from the complexities of working with pair-wise distance matrices. Kernel
interpolation techniques and GPU acceleration have allowed GPs to easily scale
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up to a million data points [55, 184]. In neural networks, the emergence of
graph-based networks and particularly graph convolutions have allowed for the
modelling of asymmetric and non-Euclidean spatial relationships [112], and
the emergence of physics-informed deep learning has reinforced the need for
neural networks to model complex spatio-temporal patterns [187].

Yet, a common observation when applying off-the-shelf neural network
methods in geospatial contexts is their inadequacy for capturing spatial de-
pendencies. For example, while neural network methods like convolutional
neural networks (CNNs) enable the modelling of localized spatial effects through
convolutions [69], they appear to struggle with long-range spatial dependencies
[116]. Let us think of an example: In a traditional computer vision task,
like the detection of a person in an image, long-distance relationships are
often not very important. Instead, we aim to detect the persons outline by
identifying edges–stark differences between very close pixels. In distinctly
geospatial settings, like the (early) detection of a hurricane, such short-distance
effects might not be sufficient. Rather, weather phenomena further away may
affect the formation of a new hurricane. As such, we would require models
that are able to capture both short-distance effects, long-distance effects and
their interactions. This effect, which we may describe as scale-sensitivity, is
only one of the distinct characteristics of geographic data. Concerns about
neural networks–and deep learning specifically–in the geospatial domain have
been summarised in a recent review study by Reichenstein et al. [148]. The
authors highlight several challenges (which are listed below) of deep learning
applications with spatial data and call for future research to improve the
representation of spatial structures within these methods. While the authors
focus particularly on geospatial data in the context of Earth observation and
modelling, their insights are applicable to all geographic domains, from urban
analytics to spatial epidemiology.

This dissertation is concerned with two types of modelling problems: gen-
erative modelling and discriminative modelling (or predictive modelling). In
the broadest sense, generative models seek to learn how data is distributed in
a given space, while discriminative models seek to learn the boundaries that
separate data points. The difference between both paradigms in a geospatial
setting is highlighted in Figure 1.1. In this example, a generative model tries to
generate images that represent rural and urban settings respectively, based on
a given set of geographic coordinates–the model thus has to learn to emulate
the data generating process. A discriminative model on the other hand might
seek to predict rural and urban setting from a given image and its geographic
coordinates–the model thus has to learn a boundary between the two prede-
termined classes. While different in nature, both paradigms suffer from the
same challenges when applied in the geospatial domain. According to the
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aforementioned study by Reichenstein et al. [148], these can be summarised as
follows:

• Model interpretability: Neural networks are black-box models and
insights on how they learn and make predictions are limited. Because
of their black-box nature, it is also difficult to identify causal links us-
ing neural network models. These issues are amplified in geospatial
domains, in which the underlying data often exhibit spatial dependencies,
which further complicate causal inference. Overcoming this challenge re-
quires dedicated approaches, including traceable assumptions into neural
networks to improve interpretability.

• Physical constraints: Geospatial data are often governed by underlying
laws governing the system (e.g. the laws of thermodynamics), which make
certain outputs implausible. Neural networks have no clear intuition for
integrating these rules, which can lead to physically inconsistent outputs.
For example, if we train a generative model to generate synthetic taxi
drop-off locations in London, we have to integrate knowledge on the
physical structure of the city into the model to prevent synthetic drop-
offs (e.g. in rivers). Integrating physical constraints and geospatial
dependencies into models is crucial to making them better reflect the
real world.

• Spatial complexity and scale sensitivity: Geospatial data often
exhibit dependencies like spatial autocorrelation, change patterns or
dispersion. If data are also available over different time steps, complex
spatio-temporal patterns can be observed. These complexities may
manifest differently across different spatial scales. Neural networks are
not well-equipped to handle the scale-sensitivities inherent in geospatial
data. Dedicated approaches must include mechanisms to account for
effects at different spatial scales.

• Label scarcity: For deep neural networks to learn accurate models,
they require extensive amounts of training data. In many real-world
applications, labels can be sparse, e.g. due to the high cost of obtaining
them or privacy constraints. It is crucial to develop neural network
models that can also work in scarce data environments. Spatial data
augmentation and regularisation techniques can help to prevent models
from overfitting due to a lack of training data.

• Computational requirements: Geospatial datasets can be large, which
can lead to a high computational demand for processing them. They can
also come in (near) real-time, which further adds complexity. Developing
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neural network models that are efficient and flexible is a key challenge
in geospatial machine learning. This challenge is shared with other
application disciplines processing vast amounts of data, e.g. computer
vision or bio-informatics.

These and other challenges have led to the emergence of “GeoAI” as a
dedicated research field [78]. “GeoAI” lies at the intersection of complex meth-
odological challenges and high-impact applications. To tackle the challenges
outlined above, we must combine state-of-the art neural network modelling
with domain expertise from the GIS. This is the objective of this dissertation:
specifically, we will propose novel, intuitive methodological approaches for
integrating GIS knowledge in the form of geographic context embeddings into
neural networks for generative and discriminative modelling tasks. We under-
stand the term “geographic context embedding” broadly as any quantitative
measures of geographic context, from measures of spatial autocorrelation to
vector representations. These embeddings represent domain expertise and prior
information we have about the data at hand and, as such, can be beneficial to
any modeling endeavour if integrated appropriately.

1.2 Contributions

The main contributions of this dissertation lie at the intersection of GIS and
machine learning research. The main objective of this dissertation is to use GIS
domain expertise in the form of geographic context embeddings within existing
neural network to improve their performance in explicitly geospatial settings.
To this end, we propose four different strategies of incorporating functional
and neural-network based embeddings in neural network models: (1) model
selection, (2) auxiliary task learning, (3) feature learning, and (4) embedding
loss functions. Throughout a broad set of experiments, we highlight the
improvements that our novel methods provide over naive, non-geographically-
explicit baselines.

The specific contributions of the different technical chapters of this disser-
tation are as follows:

• A novel method for model selection based on the local Moran’s I metric
with applications to generative adversarial network (GAN) ensemble
learning. (Chapter 3)

– A conditional GAN for geospatial data using spatial neighbourhood
context. We propose a novel conditional GAN that learns a condi-
tional data distribution, depending on information about its spatial
neighbourhood. This approach allows the model to capture spatial
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dependencies in the data. Customizing the neighborhood defini-
tion allows conditioning at different spatial scales, one of the key
challenges mentioned in section 1.1.2.

– A spatially-explicit selection process for generators obtained through-
out a GAN training process. We propose to use the local Moran’s
I measure of spatial autocorrelation to evaluate the quality of our
GAN. This allows us to select the generator that is best able to
reproduce observed spatial structures in new synthetic data samples.

– An ensemble learning method for geospatial predictive modelling
tasks using GAN-generated training data. We propose the use of
synthetic data from our neighbourhood-conditioned GANs to train
a set of base learners from which we can build an ensemble model.
Such approaches can also help in scarce data environments, thus
addressing one of the key challenges identified in section 1.1.2.

• A novel method for auxiliary task learning for neural network models
based on the local Moran’s I metric with applications to predictive and
generative modelling. (Chapter 4)

– A multi-resolution extension of the local Moran’s I metric of spatial
autocorrelation. We propose an extension of the local Moran’s I to
represent spatial dependencies at different spatial resolutions. This is
achieved through computing the metric for inputs that are repeatedly
downsampled by neighbourhood averaging. This approach again
addresses the key challenge of scale-sensitivity raised in section 1.1.2.

– Auxiliary task learning of single- and multi-resolution local spatial
autocorrelation. We propose to use the local Moran’s I and our multi-
resolution extension as auxiliary tasks alongside the primary task
in multi-task neural network models. This reinforces the learning of
short- and long-scale spatial structures in the model.

– Spatially-explicit auxiliary task learning for generative and predictive
neural network models. We devise a flexible framework for integ-
rating our auxiliary learning approach into neural networks for
spatial interpolation/super-resolution and into GANs for generative
modelling.

– Uncertainty-weighted auxiliary task GANs. To balance the loss
weights of the different tasks in our GANs, we propose the use of
task-specific uncertainties. Building on work by Cipolla et al. [32],
this allows for parameter-free learning of loss weights.

• A novel method for improving graph neural networks with geographic
context embeddings and feature learning. (Chapter 5)
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– A positional-encoder graph neural network (GNN) approach allowing
for explicit learning of geospatial context. We propose a novel GNN
method including a positional encoder network that learns point
coordinate embeddings based on spatial context.

– A novel training approach for the positional encoder. The positional
encoder is trained through backpropagation on the main GNN loss.
This is facilitated by concatenating the output of the positional
encoder with other node features, before feeding them through the
GNN layers. This improves the models capacity for learning spatial
complexities and local dependencies in the data, a key challenge
outlined in 1.1.2.

– Training with random neighbourhoods and shuffled Moran’s I aux-
iliary task. We propose to train the positional-encoder GNN by
sampling a subset of random point coordinates at each training
step to conduct the training graph. This implies that the same
point might have different neighbours at different training steps and
leads to the learning of more generalisable positional encoders. This
also has implications for the Moran’s I auxiliary task, proposed in
Chapter 4, which we use here as well. Different neighbourhoods
at different training steps also lead to different Moran’s I values
for the same location, thus “shuffling” the metric based on random
sampling. As for the multi-resolution Moran’s I, this helps the
learning of spatial dependencies at different scales, addressing a key
challenge outlined in 1.1.2.

• A novel method for improving GANs via an embedding loss based on a
novel metric of spatio-temporal autocorrelation. (Chapter 6)

– SPATE: An expansion of the Moran’s I metric to the spatio-temporal
domain. We propose SPATE (spatio-temporal association), a meas-
ure of spatio-temporal autocorrelation building on the local Moran’s
I. We propose three approaches to calculate spatio-temporal ex-
pectations, with and without temporal weights and sequential logic.
These spatio-temporal expectations are used to compute deviances
between observations and their expected values, building the core
of the metric.

– Deploying SPATE as embedding loss for video GANs. We propose to
use our SPATE metric as an embedding loss for training video GANs
to improve the learning of spatio-temporal dependencies. We show
how this approach fits in nicely with recent approaches to training
GANs with causal optimal transport [194]. Our embedding loss can
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be seen as enforcing some degree of spatio-temporal coherence in
the model, thus relating to the key challenges regarding physical
constraints and spatio-temporal complexity outlined in 1.1.2.

1.3 Dissertation Outline

The remainder of this dissertation is structured as follows:

• Chapter 2 highlights relevant literature in GIS and machine learning,
builds the contextual and technical background for the methodological
chapters, and reviews the state of the art in machine learning for geo-
graphic data. It also presents the datasets that are used in experiments
throughout the dissertation.

• Chapter 3 proposes a GAN-based ensemble learning approach for geo-
spatial prediction tasks. This includes a new GAN that is conditioned
on spatial neighbourhood context, as well as a novel generator-selection
mechanism that is based on the local Moran’s I metric. This enforces the
learning of spatial structures during GAN training, while assuring that
spatial dependencies in the generated data are faithful to those observed
in the real data.

• Chapter 4 proposes an auxiliary task learning approach for generative
and predictive modelling tasks. In this chapter, we propose a multi-
resolution extension to the Moran’s I measure of spatial autocorrelation to
account for dependencies at different spatial scales. The Moran’s I and its
extensions are used as auxiliary tasks in multi-task neural network models.
This approach more explicitly incorporates spatial autocorrelation into
the learning process. We use task-specific uncertainties to balance the
loss weights.

• Chapter 5 proposes a new GNN approach for geospatial prediction
problems. Node features are enriched with point-coordinate embeddings
from a positional encoder. These embeddings can learn geographic context
throughout training and provide the GNN model with an improved
capacity for representing complex spatial dependencies.

• Chapter 6 proposes SPATE, a spatio-temporal extension of the local
Moran’s I metric. SPATE is used to devise an embedding loss function
for video GANs, explicitly incorporating the learning of spatio-temporal
dependencies into the training process. The embedding loss also deploys
causal optimal transport to reinforce the sequential nature of the data.
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• Chapter 7 discusses our methodological contributions with respect
to existing literature and impactfull applications. We conclude the
dissertation by outlining promising directions for future research.

10



Chapter 2

Background

In this chapter, we review the literature underpinning the main technical
contributions of this dissertation. The main objective of this dissertation is
to merge ideas from the GIS and machine learning communities in order to
improve neural network methods for geospatial data. Accordingly, here we
introduce relevant concepts from both domains: Section 2.1 introduces the
relevant GIS background, focusing on metrics to capture spatial and spatio-
temporal effects and traditional modelling approaches for spatial data. Section
2.2 introduces relevant machine learning concepts, focusing on predictive
modelling with neural networks and generative modelling with GANs. This
section also surveys state-of-the art approaches for modelling geographic data
with neural networks. Lastly, it presents different approaches for integrating
domain expertise into neural networks.

Section 2.3 summarises the background and contextualises the dissertation
within the body of existing work.

2.1 Quantifying Spatial Effects in Geographic Data

In this section, we will introduce the history of, and important concepts from,
spatial analysis and GIS. We will first build an understanding of different
spatial data and neighbourhoods. We will then discuss the challenges arising
in spatial modelling. The main content of this section focuses on (1) measures
and metrics that capture different spatial effects (e.g. point process intensities
and measures of spatial autocorrelation) and (2) modelling approaches that are
tailored to spatial data (e.g. geographically weighted regression or Kriging).

2.1.1 Discrete and Continuous Geospatial Data

Geospatial data can broadly be separated into two categories: discrete and
continuous geospatial data [117]. Discrete geospatial data are objects and have
clearly defined, fixed locations and boundaries. This includes, for example,
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Figure 2.1: Examples of discrete and continuous spatial data. The left plot
shows median incomes for the different counties in the state of Maine, USA.
These counties are discrete spatial units and can be mapped as polygons. The
right plot displays the elevation across the sate of Maine; a measure that can
be taken at any given point location, thus representing continuous data.

census tracts, roads or the cells in a rectangular grid. Discrete geospatial data
can come in the form of polygons, lines or any other objects in a predefined,
discrete space. Continuous geospatial data, on the other hand, does not have
clearly defined locations or boundaries. Rather, continuous geospatial data
float freely in a continuous geo-space, that, for the purpose of this dissertation,
is limited only by the boundaries of planet Earth. Continuous geospatial data
includes surface temperatures, elevations and any other data that may be
measured at any given point within our continuous space. Figure 2.1 highlights
two examples for discrete and continuous spatial data.

Spatial information allows us to define whether two spatial locations are
neighbours or not. Spatial neighbourhoods can be defined according to the
needs of the application, but usually follow some common intuitions. For
example, let us revisit the case of discrete spatial data, as e.g. the different
counties in Maine shown in Figure 2.1. A given county usually borders other
counties in the same state, unless it is geographically isolated (e.g. an island) or
borders only non-applicable spatial objects (e.g. counties in another state). We
can intuitively define the spatial neighbourhood of a county as all the counties
it shares a border with. We could expand this intuition to include second-
degree neighbours (neighbours of neighbours) and so forth. For continuous
spatial locations, there is no straightforward definition of adjacency. Rather,
for a given spatial point, we might want to define its spatial neighbourhood
as all points within a certain radius around the location. Another common
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Discrete spatial data:  
neighborhood by adjacency

Continuous spatial data:  
k-nearest-neighborhood

Figure 2.2: Examples of neighbourhood definitions for discrete and continuous
spatial data. On the left, the orange county is neighboured by the blue counties.
The neighbourhood is defined through adjacency (i.e. the orange county sharing
a border with the blue counties). On the right side, the orange point location
is neighboured by the blue locations. Here, neighbourhood is defined as the
three closest point as measured by Euclidean distance.

option is to define the k nearest points to a location as neighbours, thus
ensuring that every point has the same number of neighbours. This approach
requires a measure of distance between points. One of the simplest approaches
here is to use Euclidean distance–the “straight-line” distance between points.
Nonetheless, many geospatial settings require distance measures that are more
realistic and representative of underlying structures. For example, we can use
the Haversine or “great-circle” distance to compute distances between pairs
of langitude-longitude coordinates on an approximately spherical body, such
as planet Earth. Other applications, such as traffic modeling, might require
even more sophisticated distance measures, such as road distances. Figure 2.2
provides an example of discrete and continuous spatial neighbourhoods.

Spatial neighbourhoods are important for many applications in spatial
analysis, as they allow for an explicit integration of assumptions on spatial
dependencies in our models. As we show in the following sections, we might
be interested in measuring the difference between on observation and its
neighbours, or the difference between smaller and bigger neighbourhoods. The
intuition for spatial neighbourhoods lies at the core of geographical analysis.

2.1.2 The Challenges of Spatial Data

With the definitions of spatial data, neighbourhoods, and distances set, we
can now move to outlining the particular challenges that arise when working
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with spatial data. We surmise these challenges from leading textbooks and
perspective articles, namely Longley et al. [117], Bivand et al. [20], Goodchild
[63] and following most closely the definitions given by Stewart Fotheringham
and Rogerson [163]:

• Location challenges can arise from ill-defined or incomplete spatial
information, including measures that cannot be assigned to spatial loca-
tions easily. For example, the spatial locations of all occasions of robbery
can easily be mapped. However, if we try to map a different category
of crime, for example corruption, this is not as easy. Does corruption
occur at the home of the criminal individual? Does it occur in their
office? In spatial modelling, the spatial references we include often reflect
assumptions that may simplify but also distort our models. For example,
when modelling individuals’ income distributions, we will probably as-
sume their home as spatial reference, rather than the location of their
office or the home of their parents, even though both of these locations
might be relevant to our question.

• Scaling and aggregation challenges can arise when we, during data
collection or modelling, make assumptions on the spatial scale of a
problem. Often, we are restricted by the available data. For example,
while we have access to median income data for a given spatial unit
(e.g. census tract), we lack access to the income of individuals who are
contained within the spatial unit, to protect their privacy. Knowledge
about the spatial unit does not allow us to draw conclusions regarding
the individuals within that unit. This problem is also known as the
“ecological fallacy” [152]. On the other hand, individual observations,
when aggregated, are not necessarily a meaningful descriptor of the
aggregation unit. Rather, aggregate measures are heavily affected by
the shape and scale of the chosen areal unit and–depending on their
definitions–can lead to information loss [135]. This issue is termed the
modifiable areal unit problem (MAUP) [56, 134].

• Dependence challenges can arise when the values of a variable at
two different locations are not independent. Tobler’s first law of geo-
graphy famously states that “everything is related to everything else, but
near things are more related than distant things”. [171] For example,
the distribution of surface temperatures measured at different locations
exhibits clear spatial dependence: I.e., two measures taken at stations
that are nearer to each other are more likely to be similar than two
measures taken at those that are more distant. Dependencies can be
multi-variate and extend over more than just spatial dimensions (e.g.
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exhibiting spatio-temporal dependencies).

• Sampling challenges stem from the aforementioned dependence of
spatial data. For example, sampling data from locations nearer to
each other might be unnecessary, as the values might be very similar.
Nevertheless, spatial effects might not be consistent and occur only locally,
which could prevent a clear rule to enable efficient, unbiased sampling.
As such, spatial data often require dedicated sampling schemes [183].

• Computational challenges can arise when working with large spa-
tial datasets. Spatial analysis techniques often lack linear-scaling of
compute and memory requirements, as they rely on repeated up- and
down-sampling, permutation testing or the creation of pairwise distance
matrices. Recently, advances in distributed computing and scalable mod-
elling techniques such as deep neural networks have highlighted promising
avenues for overcoming such computational bottlenecks [196].

Having outlined the semantics of spatial data and the challenges arising from
many of its use cases, we now move onto the different methods for analysing
and modelling spatial data.

2.1.3 Analysing Spatial Point Patterns

One of the most common forms of spatial data are spatial point patterns. These
are collections of events (e.g. a case of a disease) at a given spatial location.
The analysis of spatial point patterns is one of the foundations of quantitative
geographic analysis.

Events, Intensities and Spatial Dependencies

Spatial point patterns are collections of events that are registered at specific
spatial locations–and potentially within spatial units that comprise the area of
interest. Spatial point patterns are a common type of data in many academic
disciplines. For example, in ecology, the locations of a species can be viewed as
spatial point patterns. In epidemiology, spatial point patterns could manifest
as the locations of patients with a specific disease. In general, a spatial point
pattern can be any “stochastic mechanism which generates a countable set of
events” [41] within an area of interest.

The analysis of spatial point patterns mostly revolves around identifying
and describing each pattern’s underlying distribution (i.e. the point-generating
process) [20]. Of further interest are potential interactions between events,
such as whether the occurrence of an event increases the likelihood of future
events in the vicinity (in the case of a self-exciting point process). With these
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(a) Original point pattern.

(b) Point density in a regular grid.

(c) Kernel density.

Figure 2.3: Example for a spatial point pattern and extracted densities /
intensities. The point locations (events) represent 2661 crimes within a city
boundary, following the example given by [70].
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goals in mind, there are many methods to analyse spatial point patterns, the
most important of which we summarise below.

Spatial dependencies are one of the key challenges outlined in the previous
section. This is also an intuitive entry point for any spatial point pattern
analysis: For a given spatial point pattern, we are interested to know whether
the events that comprise the point pattern are distributed randomly in space or
whether they follow certain (spatial) rules. For examples, trees in a forest are
often distributed somewhat regularly, leaving enough space around them for
other trees to grow. On the other hand, fish can often cluster around particular
food sources. None of these distributions are truly random, but follow some
underlying laws. Tests for complete spatial randomness are some of the most
fundamental analytical tools for spatial point processes [106].

Figure 2.3 highlights an example of a spatial point pattern–the locations
of crimes in a city–and its gridded and kernel densities. These densities, or
intensities, calculated in given spatial units like grid cells also serve as inputs
for two of the most important tools for analysing spatial point patterns and
determining whether complete spatial randomness is present or not: the G
function and F function:

Point Pattern Analysis: The G and F functions

The G function describes the distribution of all distances between an arbitrary
event and its respective nearest neighbour event. Assuming complete spatial
randomness, we can compute the theoretical G function and compare it to the
empirical G function of our observations. The discrepancy between the observed
and expected functions can help us to identify potential spatial dependencies.

The F function, also termed the “empty space” function, describes the
distribution of all distances between an arbitrary point in our observational
area and the respective nearest neighbour event. As for the G function, we
can compare theoretical and empirical F functions to obtain inference on the
presence of spatial dependencies.

G and F are both functions of distances d and can be plotted as such.
Figure 2.4 shows example G and F functions for the crime point patterns
displayed in Figure 2.3. Here, the empirical functions are shown next to their
theoretical counterpart, which are the result of a homogenous Poisson process.
Note that the theoretical F and G functions are identical. We can see that F
and G deviate strongly from their expected lines, which gives us an indication
that there is some spatial dependence (i.e., no complete spatial randomness).

We now move on to the statistical analysis of spatial point patterns. These
can be broadly split into first- and second-order properties. First-order prop-
erties describe the distributions of events in space. Second-order properties
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Figure 2.4: Example of the empirical G (red) and F (blue) functions (with
values between 0 and 1), computed for the point pattern intensities displayed in
Figure 2.3b. The expected (theoretical) G and F functions (which are identical)
are given as the black line. Distance on the y-axis is given in meters.

describe interactions between events [41].
First-order properties include measures of spatial density and intensity. In-

tensity measures the number of events within a spatial unit (e.g. census tracts),
while density also reflects the size of the spatial unit. Intensities are essential
to the modelling of point processes. Poisson processes are the most common
class of point processes that are used for spatial point patterns. Poisson pro-
cesses assume that events occur randomly and follow their respective intensity
functions. They can broadly be split into homogeneous and inhomogeneous
Poisson processes.

Homogeneous Poisson processes describe point patterns with independently
and uniformly distributed events. An event occurrence does not affect the
probability of another event occurring in the spatial vicinity and no spatial unit
has a higher probability of recording events than other units. Inhomogeneous
Poisson processes allow the intensity functions to vary for different spatial
units, which relaxes the restrictive assumptions of a constant intensity function.
While Poisson processes are often sufficient for modelling spatial point patterns,
depending on the application, point processes capable of reflecting more complex
spatial (and spatio-temporal) dynamics like log-Gaussian Cox Processes may
be necessary [40].

The estimation of point process intensities is a crucial part of analysing
spatial point patterns. Kernel smoothing is the most commonly applied
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technique here [159]. A kernel is a weight function used to estimate the
density function of a given random variable (for example, the crime intensities
portrayed in 2.3b). Kernel smoothing operations are characterised by two
important configurations. The bandwidth of the kernel determines the degree
of smoothing. The kernel function can be chosen to reflect specific assumptions
or domain expertise. Beyond kernel smoothing, there exist several other,
parametric methods for obtaining intensity estimates [41].

Second-order properties help with the assessment of interactions between
different events in our point pattern. For example, the second-order intensity
between two events describes the probability of another pair of events occurring
nearby. The most common measure of second-order properties is Ripley’s K
function [149]. It measures the number of events occurring within a radius
around a given event. Again, the discrepancy between the expected and
observed K function can be used as a basis for inference, in this instance on
the interaction between events. Generally, we assume that spatial effects occur
only on relatively small spatial scales, which the choice of the search radius
usually reflects. As such, the K function can serve as a detector of spatial
clustering.

2.1.4 Traditional Metrics for Capturing Spatial and Spatio-
Temporal Autocorrelation

We now move from point patterns, events distributed in space, to numerical
spatial data (i.e. numerical values that can be assigned a distinct discrete or
continuous location). Point process intensities in the different spatial units
of a spatial point pattern comprise numerical spatial data. Another example
involves the pixel values of an image that are distributed in a discrete, regular
grid. The prices of different houses at their respective locations are an example
for continuous numerical spatial data. Like spatial point patterns, this type of
data can be found in many different scientific domains.

Spatial autocorrelation is a common phenomenon encountered in spatial
data that can arise from one or more of the challenges outlined in section
2.1.2, such as the MAUP. It describes the presence of systemic spatial variation
in random variables. Thus, spatial autocorrelation violates one of the key
assumptions for obtaining unbiased estimators in many statistical modelling
frameworks: independently and identically distributed (iid) observations. A key
problem in the analysis of any spatial data is that there exist many approaches
to measure spatial autocorrelation and related effects.
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Figure 2.5: Example of the different shapes the relationship between X and
I(X) can take using seabed relief (column one), digital elevation map (DEM;
column two) and tree canopy data (column three). Row one shows the data
X plotted as images with white indicating low and black high values. Row
two shows the local Moran’s I of the data I(X) plotted as images with yellow
indicating high positive values and dark blue indicative high negative values.
Row three plots X against I(X) to highlight the functional relationship. All
data is scaled to values between −1 and 1. The figure also highlights how the
local Moran’s I can serve both as a measure of spatial outliers (column one)
and homogeneous spatial clusters (column three). These data are later used in
experiments in chapter 4.
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Moran’s I

The most common of these approaches is the Moran’s I measure of spatial
autocorrelation. This metric was originally conceptualised by Moran [129] and
popularised in the geographic domain by Anselin [2].

To compute the Moran’s I metric, let us first define a vector y that consists
of n real-valued observations xi, referenced by an index set N = {1, 2, . . . , n}.
We define the spatial neighbourhood of observation i to be Ni = {j ∈ N : wi,j >

0} = {1, 2, . . . , ni}. Here, wi,j corresponds to a binary spatial weight matrix,
which indicates whether any observation j is a neighbour of i. As discussed in
section 2.1.1, assigning spatial neighbourhoods is an important design choice
and reflects the type of spatial data (discrete or continuous) and potential prior
knowledge or domain expertise on the problem at hand. For now, we assume
that we have an appropriate spatial weight matrix. We can then compute the
Moran’s I statistic I as:

I = n

W

∑n
i=1

∑n
j=1,j ̸=i wi,j(yi − ȳ)(yj − ȳ)∑n

i=1(yi − ȳ)2 (2.1)

Where ȳ is the mean of all observations y and W = ∑n
i

∑n
j wi,j . The

Moran’s I measures how similar observations are compared to their spatial
neighbourhood. Values of I > 0 imply positive spatial autocorrelation, while
values I < 0 suggest negative spatial autocorrelation. The Moran’s I metric
can also be used to obtain a statistical test for spatial autocorrelation.

Under the null-hypothesis, that is no spatial autocorrelation, the expected
value of the Moran’s I metric is given as E(I) = −1

n−1 . For large sample sizes,
E(I) under the null tends to 0. Using permutations, the expected and observed
values of the Moran’s I metric can be compared against one another to obtain
z-scores and perform statistical hypothesis testing. The Moran’s I measure
is a global metric; thus, it returns a single value (and respective statistical
measures) for all observations y.

In some situations, we are interested in identifying local spatial effects
rather than global patterns. The Moran’s I metric can be expanded to obtain
individual measures of local spatial autocorrelation Ii:

Ii = (n− 1) yi − ȳ∑n
j=1,j ̸=i(yj − ȳ)2

n∑
j=1,j ̸=i

wi,j(xj − ȳ) (2.2)

As in Equation 2.1, which was used to compute the global Moran’s I, Ii

can take positive or negative values. A positive value suggests that a data
point is similar to its neighbours, which could indicate latent cluster structure.
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A negative value suggests that the data point is distinctly different from
neighbouring data points, which could indicate a changepoint or edge. As with
the global Moran’s I, we can use the local Moran’s I to run statistical tests
for the presence of local spatial autocorrelation. While the local Moran’s I
statistic is closely correlated with its input, this relationship can take different
forms, depending on the complexity of the inputs’ spatial structure. Figure 2.5
shows some examples of spatial data and their distribution of local Moran’s I
values.

The local Moran’s I metric represents a powerful and flexible detector of
spatial outliers and spatial homogeneity. Its computation is simple and relies
only on a pre-defined spatial weight matrix. As such, the local Moran’s I can
be seen as a simple, functional spatial context embedding. In the technical
chapters of this dissertation, particularly chapter 4, we will use the local
Moran’s I metric to reinforce the learning of spatial autocorrelation in neural
network models.

Spatial Extensions

Since its initial formulation, several extensions to the Moran’s I metric have
been proposed to capture different spatial effects. In this dissertation, we will
limit this discussion to measures of local spatial effects. Specifically, we will
discuss local spatial heteroskedasticity and local spatial dispersion.

Local Spatial Heteroskedasticity (LOSH) Local Spatial Heteroskedasti-
city (LOSH), proposed by Ord and Getis [137], assesses local deviations from
global variances rather than means. It is derived from the G statistic [60, 136]
and is closely related to the Moran’s I. Keeping with the notation introduced
for the Moran’s I calculation, we can compute the LOSH metric Hi as:

Hi =
∑n

j=1,j ̸=i wi,j(yj − ȳj)a

h1
∑n

j=1,j ̸=i wi,j
(2.3)

where, rather than global means, we use local means that reflect spatial
neighbourhoods, such that:

ȳj =
∑nj

k=1,k∈Nj
wj,kyk∑nj

k=1,k∈Nj
wj,k

(2.4)

where k indexes second-degree neighbours of i (i.e. neighbours of j). Lastly,
the mean residual of the spatial neighbourhood of i is given as:
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h1 =
n∑

j=1,j ̸=i

(yj − ȳj)a (2.5)

.
Here, the exponent a controls the type of deviance to-be-assessed, most

commonly variance, i.e. a = 2. Under the null-hypothesis, the local variance
does not deviate significantly from the global mean variance. The expected
value of Hi under the null is given as E(Hi) = 1. Ord and Getis [137] propose
a χ-squared test for statistical significance of the LOSH metric.

Local Spatial Dispersion (LSD) Local Spatial Dispersion (LSD) is a
direct expansion of the LOSH metric, conceptualised by Westerholt et al. [189].
In a sense, it is the “most local” of the presented metrics, ignoring global
context and focusing purely on the comparison between local dependencies
and local variances.

The LSD metric can be calculated as:

LSDi =
∑n

j=1,j ̸=i wi,j(yj − ȳj)a

hi
∑n

j=1,j ̸=i wi,j
(2.6)

Here, we replace the mean neighbourhood residuals h1 with an explicitly
local version:

hi =
∑ni

j=1,j∈Ni
(yj − ȳj)a

ni

(2.7)

This implies that LSDi = Hi if hi = h1. The relationship of both metrics
can be formulated as:

LSDi = Hih1
hi

(2.8)

Again, LSD can be used for statistical testing using a χ-squared test. Under
the null hypothesis, we assume that the local spatial structure of our random
variable does not affect variance. LSD, while closely related to LOSH, can
be particularly useful for detection of locally contained effects that would be
overlooked by the global calculation of h1 for LOSH.
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Spatio-Temporal Extensions

We also briefly want to discuss spatio-temporal autocorrelation measures. There
are many approaches that aim to expand the intuition of the Moran’s I metric
to spatio-temporal data. Let our numerical variable yi,t be indexed by spatial
units i and time steps t, with a total number of time steps T . Now, let us
define a temporal weight matrix bt,t′ assigning temporal neighbourhood (e.g.
directly preceding and following time steps), analogous to the spatial weight
matrix wi,j . An intuitive spatio-temporal Moran’s I approach is proposed by
Lee and Li [108]:

Ist = nT

W st

∑n
i=1

∑n
j=1,j ̸=i

∑T
t=1

∑T
t′=1,t′ ̸=t wi,jbt,t′(yi,t − ȳ)(yj,t′ − ȳ)∑n

i=1
∑T

t=1(yi,t − ȳ)2
(2.9)

where W st = ∑n
i=1

∑n
j=1,j ̸=i

∑T
t=1

∑T
t′=1,t′ ̸=t wi,jbt,t′ . This approach uses

the temporal weights b and the spatial weights w. The mean values ȳ =∑n
i=1

∑T
t=1 yi,t are computed over space and time. Lee and Li [108] also

propose a local version of their metric, analogous to the Moran’s I.
Gao et al. [53] propose a different approach that focuses on the deviance if

each spatial unit’s time series from the global mean time series. Their metric
It is defined as:

It = n

W

∑n
i=1

∑n
j=1,i ̸=j wi,jzts

i zts
j∑n

i=1(zts
i )2 (2.10)

Here, zts
i describes the deviation of each spatial units time series yi =

[xi,0, . . . , xi,T ] from the mean time series ȳ. For details on the calculation of
this deviance, please refer to the original paper [53]. The authors also expand
this idea to a localised version of the metric.

Further approaches to develop measures of spatio-temporal correlation
include the iterative computation of the metric over time [124] and methods
that specialise in spatial point patterns [158].

2.1.5 Spatial modelling in Statistics and Econometrics

We have now obtained a broad understanding on how spatial effects in point
patterns (simple locations) and numerical spatial data (i.e. locations with
numerical values) are measured, as well as the most popular metrics and
functions that concern these tasks.

Beyond hypothesis testing and the quantification of spatial effects, we will
now look into how different scientific disciplines have traditionally approached
the (predictive) modelling of spatial data. A more detailed overview on this
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topic can be found in Bivand et al. [20] We will broadly split this into two
categories, spatial interpolation and spatial prediction.

Spatial interpolation seeks to predict an unknown outcome at a new location
from measures that are taken at existing locations. We can formulate this as a
simple regression problem:

ŷi = fint(ci) + ϵi (2.11)

Here, ŷi is our predicted outcome and ci represents spatial information on
the new location i (e.g. its geographic coordinates), such that ci = [loni, lati].
ϵi = yi − ŷi is the true error term of our model. The function fint maps
inputs to predicted outputs and can take various forms. In the case of linear
regression, it is defined by regression coefficients β; for neural networks, the
function is parameterised by layer weight parameters Θ. An example of this
type of problem is the interpolation–and potentially extrapolation–of weather
maps from a limited number of weather stations. With spatial prediction
we describe an expansion of spatial interpolation where we have access to
additional predictor variables at each location i. We can reflect this in the
formulation of our regression problem so that:

ŷi = fpred(ci, xi) + ϵi (2.12)

Here, xi represents a vector of predictor variables. An example of this
problem is the prediction of house prices at new locations, having access to a
set of predictors like the age of the house or the number of bedrooms.

Simple Interpolation Approaches

Let us stick to the example of a spatial interpolation task where spatial context
ci is given in the form of point coordinates. The simplest way to obtain
predictions is to run a simple linear model using the ordinary least squares
(OLS) estimator. However, this approach has two crucial shortcomings. First,
linear models are not able to model non-linearity and the complexities that are
often associated with spatial interpolation tasks. Second, as mentioned in the
previous sections, the presence of spatial dependencies will render our estimator
biased and violate the independence assumption of the OLS estimator.

Instead, the simplest solution for spatial interpolation is often some form
of distance-based averaging of known locations. Here, we will briefly discuss
the popular inverse distance weighting (IDW) approach. We first define the
distance weight between a known coordinate ci and a new point-of-interest c0
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as:

wdist(ci) = ||ci − c0||−p (2.13)

where −p controls the degree of distance weighting and || · || denotes
the Euclidean distance. The outcome variable ŷ at location c0 can then be
calculated as a weighted average:

ŷ(c0) =
∑n

i=1 wdist(ci)y(ci)∑n
i=1 wdist(ci)

(2.14)

Spatial Lag and Error Models

We now consider the problem of spatial prediction as outlined in Equation
2.12. We can incorporate spatial autoregressive effects into regression models
in different ways. Here, we focus on the spatial lag model and the spatial error
model. The basis for both of these approaches is a linear regression model. Let
us assume that a univariate linear model predicts an outcome yi using a single
predictor xi. The model can be formulated as:

ŷi = β0 + β1xi + ϵi (2.15)

The spatial lag model includes the ’lagged’ (i.e. distance-weighted) outcomes
of neighbouring observations as predictors, such that:

ŷi = β0 + λwi,jyj + β1xi + ϵi (2.16)

Where wi,j is the spatial weight matrix defining neighbourhood of obser-
vations i and j - the same type of matrix that is used for the computation of
the Moran’s I statistic. wi,j can also reflect distances between observations i

and j, similarly to the way IDW is conducted (see Equation 2.13 and 2.14).
λ is the estimated model parameter, akin to β. The inclusion of the spatial
lag variable can then help to eliminate spatial autocorrelation from the model
residuals, thus complying with OLS assumptions.

A second popular approach is the spatial error model, aiming to explicitly
model the spatial component of the model error:

ŷi = β0 + β1xi + ρwi,jui + ϵi (2.17)
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Where ui is the spatial component of the model error and ρ the estimated
coefficient. Spatial error models overcome the problem of autocorrelated
residuals by estimating the spatial error component to explicitly “debias” the
error term. Spatial lag and error approaches can also easily be combined:

ŷi = β0 + λwi,jyj + β1xi + ρwi,jui + ϵi (2.18)

Geographically Weighted Regression

We now move onto an approach that, rather than assuming stationary model
coefficients, allows them to be expressed locally, as functions of spatial co-
ordinates. Geographically Weighted Regression (GWR), originally proposed
by Brunsdon et al. [25], can help to model relationships between variables that
may vary over space. This takes the form of local regression modelling, using
local data subsets to fit the model. Sticking with our univariate regression
example, this can be expressed as:

ŷi = β0i + β1ixi + ϵi (2.19)

where β0i and β1i represent local model coefficients. To outline the estim-
ation of the local model coefficients, it is convenient to express the model in
matrix notation:

ŷi = βixi + ϵi (2.20)

where xi is the vector of predictor variables and βi the vector of local
regression coefficients (i.e. both are 1× 1 vectors for the univariate regression
model). We now estimate the local regression coefficients βi, such that:

β̂i = [XT WiX]−1XT WiY (2.21)

where Y is the outcome variable, a 1× n vector, X = [xT
0 , . . . , xT

n ]T is the
design matrix of predictors, and Wi = diag[wi,0, . . . , wi,n], corresponding to
the full n× n spatial weight matrix:

W =


w1,1 . . . w1,n

. . . . . . . . .

wn,1 . . . wn,n

 (2.22)
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(a) Prediction. (b) Error surface.

Figure 2.6: Example for Gaussian Process predictions on a 2d surface. Displayed
are the (smooth) prediction surface and errors.

GWR can be performed through locally weighted least squares estimation.
As in previous applications, the spatial weights W can reflect differences
between point coordinates, or kernelised versions thereof.

Gaussian Processes and Kriging

To conclude this section, we discuss the most popular class of models for
particularly continuous spatial data: Gaussian Processes (GPs), Kriging and
the subtle differences between them. Mathematically, we will focus on GP
models, as they are the far more flexible and non-parametric approach. For
an in-depth discussion of GPs, please refer to Rasmussen and Williams [147].
Figure 2.6 shows an example of a Gaussian Process prediction.

Gaussian Processes can be seen as multivariate Gaussian distributions
over an infinite number of jointly Gaussian variables; a Gaussian Process
is a distribution over functions. A sample from a GP represents a function
generating values according to some Gaussian distribution. Formally, we can
define a GP regression problem as predicting the outcome ŷ as a function f(x)
of the input:

f(x) = GP (m(x), k(x, x′)) (2.23)

where m(x) = E[f(x)] represents the mean function and k(x, x′) =
E[(f(x)−m(x))(f(x′)−m(x′))T ] represents the covariance function. Note that
the input x includes all available predictors, including potential spatial coordin-
ates c. While we introduce general-form GPs here, GP spatial interpolation
represents the special case of this formulation when x = c.
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The GP defines a joint Gaussian distribution p(f |X) = N (f |µ, K), where
Ki,j = k(xi, xj) and µ = [m(x1), . . . , m(xn)].

For inference, the GP regression model interpolates from seen (training)
to unseen (testing) data, by constructing a joint distribution. The posterior
distribution then takes the form:

p(f∗|X, X∗, f) = N (f∗|µ∗, Σ∗) (2.24)

where

µ∗ = µ(X∗) + KT
∗ K−1(f − µ(X)) (2.25)

and

Σ∗ = K∗∗ −KT
∗ K−1K∗ (2.26)

Here, f are training outcome variables and f∗ testing predictions. As men-
tioned, GPs are non-parametric models. Nevertheless, the choice of covariance
function (or kernel) and its associated hyperparameters, is crucially important
for modelling. The kernel function can take a myriad of forms, from linear
to exponential to spectral kernels. Here, we briefly present one of the most
common GP kernels, the radial basis function (RBF) kernel:

krbf (x, x′) = σ2exp(− 1
2l2
||x− x′||2) (2.27)

Here, σ2 represents the output scale hyperparameter and l the length scale
hyperparameter. Hyperparameters are optimised using maximum marginal
likelihood estimation during model training.

With the general definition of GP models outlined, let us now discuss
the differences between GPs and Kriging. Kriging was popularised as an
interpolation technique in geostatistics by Matheron [123]. The differences
between GPs and Kriging can be broadly split into four factors:

• Bayesian vs Frequentist approach: While GPs follow Bayesian in-
tuition, deriving posterior distributions from informed priors and data,
Kriging tackles the interpolation problem using a least squares approach.
Unbiased estimators are obtained by explicitly modelling spatial covari-
ances via variograms.
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• Predictor dimensionality: While GPs can scale to arbitrary input
dimensions using multivariate Gaussian distributions (although high-
dimensional GPs are computationally expensive), Kriging was originally
devised for 2 and 3-dimensional inputs. The Cokriging technique tackles
this issue [147].

• Model fitting: As non-parametric models, GPs are substantially more
flexible and able to combine and nest different kernel functions. In
Kriging, it can be difficult to fit more complex variograms.

• Design choices & hyperparameter optimisation: While GP models
require initial decision making (e.g. on kernel choices or starting values for
hyperparameters) models can be fit automatically and hyperparameters
can be optimised using marginal likelihood methods. Kriging, on the
other hand, requires much more careful variogram design by hand to
identify the optimal settings.

2.1.6 Discussion

In this section, we have outlined the specific challenges of geographic data and
introduced traditional approaches for their analysis. Subsection 2.1.4 focuses
on measures of spatial and spatio-temporal effects, such as autocorrelation or
heteroskedasticity. These metrics, while powerful, have some limitations. First,
they usually rely on some pre-defined intuition of spatial neighborhood for
their calculation. This assumes either that this information is available, or
the construction of approximate neighborhoods using e.g. methods such as
k-nearest-neighborhoods, which can be unrealistic in some real-world settings.
Second, these metrics are developed for exploratory analysis (e.g. the assessment
of spatial autocorrelation in regression residuals) and there is no straightfor-
ward way of integrating them into learning algorithms. Such approaches and
frameworks are necessary to utilize the domain expertise represented by these
metrics in, for example, predictive modeling tasks.

Subsection 2.1.5 presents traditional approaches for modeling spatial data,
from autoregressive regression models to kernel methods like GPs. And while
these approaches are well established in many applied disciplines, from eco-
nomics to ecology, they also have some limitations. Methods like spatial lag
models or geographically weighted regressions are linear and can struggle with
representing the often non-linear complexities of real-world geospatial data.
GPs and Kriging, while able to model non-linear data, struggle with scaling due
to their reliance on calculating expensive covariance matrices. This problem is
amplified by the need for better scaling methods in the light of the growing
availability of big geospatial data [148].
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2.2 Neural Networks in the Geospatial Domain

As outlined in the previous section, the GIS community has found many ways to
measure spatial effects and to account for these in predictive models. Let us now
switch gears and look at spatial data and its challenges from a modern machine
learning perspective, focusing on neural networks. First, we will introduce
the two families of neural network models that are used in the remainder of
this dissertation: discriminative (predictive) and generative models. Then,
we will discuss how geographic data are traditionally and currently processed
in neural networks. Lastly, we examine different ways of integrating domain
expertise–such as our knowledge on spatial dependencies–into neural network
models.

2.2.1 Predictive and Generative Modelling with Neural Net-
works

Neural networks (NNs) are a powerful tool for modelling high-dimensional, non-
linear data. They are inspired by the signal processing over distributed nodes
(neurons) of the brain. NNs consist of layers of artificial neurons, extracting
higher-dimensional features from inputs by re-weighting and re-projecting them.
The first layer of a NN is referred to as the input layer, the last layer as the
output layer and any layers in between as hidden layers. The simplest form
of a feed-forward neural network–unlike recurrent NNs, for instance, which
have cyclic graphs–are single- and multi-layer perceptrons (MLP). Neural
networks are trained via backpropagation on a set loss function, where the loss
is differentiated with respect to the NN weights. The weights are then updated
according to the (stochastic) gradient descent to find the loss minimum. For a
detailed overview on neural networks and their optimisation, please refer to
the textbook by Bishop [19].

Together, advances in NNs, gradient descent methods and automatic dif-
ferentiation have revolutionised data analysis and science. NNs are not only
capable of scaling to very high-dimensional data domains (e.g. high-resolution
images, videos), they are also highly flexible and can process different data
types (text data, image data, audio data). Specific NN architectures and
operators have been developed to address different data structures, such as
convolutional neural networks (CNNs) [52] for image data and long short-term
memory (LSTM) networks [71] for sequential data. NNs can also be deployed
for different tasks. Here, we focus on discriminative NNs, models that learn to
predict and outcome based on a given input, and generative NNs, models that
learn a data-generating process in order to generate synthetic data.
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Neural Network Regression and Classification

Input Hidden Layer Output

Figure 2.7: Example of a simple feed-forward neural network with four input
nodes, a hidden layer, and a singular output.

Let us first outline NNs for prediction. Recall the spatial prediction problem
outlined in Equation 2.12, but for now, let us assume there is no spatial
component c. We can define a neural network prediction model as:

ŷi = fnn(xi) + ϵi (2.28)

Let us now assume a simple MLP with a single hidden layer. Our neural
network then takes the form:

fnn = Θ2g(ΘT
1 X + b1) + b2 (2.29)

Here, Θ1 and Θ2 are the weight parameters of the input and hidden
layer, respectively. b1 and b2 represent bias added to the layers. Lastly, g(·)
represents the activation function. This allows us to make our model–which was
thus far linear–non-linear. Activation functions are an essential component for
flexible neural network modelling. For example, assume a regression problem,
with our target variable consisting of real numbers yi ∈ R; xi ≥ 0, xi ≤ 1. Here,
we can set activation functions fit for continuous NN outputs z such as the
identity function:

g(z) = z (2.30)

or a hyperbolic tangent function:

g(z) = ez − e−z

ez + e−z
(2.31)
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In the case of a binary classification problem, with binary outcome variables
yi ∈ [0, 1], we might require a logistic activation function:

g(z) = 1
1 + ez (2.32)

Using a threshold (e.g. 0.5), we can then make predictions ŷi ∈ [0, 1]. We
also must choose the loss function that our NN uses to optimise parameters
according to the task at hand. For regression problems, we might want to use
a penalised mean squared error (MSE) loss function:

LMSE(ŷ, y, Θ) = 1
2 ||ŷ− y||22 + α

2 ||Θ||
2
2 (2.33)

where Θ are the NN weight parameters, || · ||22 is the L2 norm, and α a
non-negative hyperparameter.

In case of a binary classification problem, we might want to use a binary
cross entropy (BCE) loss function, defined as:

LBCE(ŷ, y, Θ) = −ylnŷ− (1− y)ln(1− ŷ) + α||Θ||22 (2.34)

We can now compute the gradient of the loss function with respect to the
weights ∇LW and use it to update the weight parameters, such that:

Θt+1 = Θt − η∇Lt
Θ (2.35)

where t indexes the training step and η > 0 is the learning rate, controlling
the degree to which a parameter can change in one training step. NNs are
trained iteratively until convergence. Figure 2.7 shows an example of a simple
feed-forward neural network architecture.

Generative Adversarial Networks

Generative models aim to learn a data generating process from a set of training
data. Popular classes of generative models include variational auto-encoders
and generative adversarial networks (GANs), which we will extend in several
applications later on in this dissertation.

GANs were originally proposed by Goodfellow et al. [64]. A GAN consists of
two neural networks: a Generator (G) and a Discriminator (D). The Generator
is responsible for producing a latent representations of the input, attempting
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to replicate a given data generating process. It is defined as a neural network
G(z, ΘG) with parameters ΘG, mapping noise z ∼ pz(z) to some feature space
x (G : z → x). The Discriminator, a neural network D(x, ΘD), aims to
probabilistically distinguish the synthetic input x̂ created by the Generator
and real data x ∼ pdata(x) (D : x → [0, 1]). Both networks compete in a
minimax game, which improves their performance until the real and synthetic
data are (ideally) indistinguishable from one another. The GAN loss function
can then be expressed as:

min
G

max
D
LGAN (D, G) = Ex∼pdata(x)

[
log D(x)

]
+

Ez∼pz(z)
[
log(1−D(G(z)))

] (2.36)

Note that while GANs contain a Discriminator D, they belong to the family
of generative models as the eventual output we are interested in is the synthetic
data generated by the Generator G. The Discriminator D is merely working
with pseudo-labels (for “real” and “synthetic” data respectively) and is used
as counter-player for the Generator G to facilitate learning. Lastly, one of
the limitations of GANs is that they can be notoriously difficult to train and
require a careful balancing of generator and discriminator, through the loss
function or their respective neural network architectures.

2.2.2 Modelling Geographic Data with Neural Networks

The previous subsection on neural networks for generative and predictive
modelling has been kept explicitly non-spatial. We now want to discuss
different approaches of integrating geospatial context into NNs. We will first
assess how convolutions can process discrete spatial data distributed in regular
2 and 3-dimensional grids (e.g. images and spatial point pattern intensities).
We then take a look at mechanisms for integrating spatial coordinates into
neural networks.

Convolutions on Regular Grids and Graphs

Convolutions are the essential building block of convolutional neural networks.
They are inspired by the way the visual cortex processes signals and convolves
them into stimuli. The convolutional neurons each each process a different part
of the input map, referred to as receptive field, and pass it to the following
layer. For example, let our input be a set of n images of size width× height

with nchannels channels (e.g. three for RGB images), represented as a tensor
of shape [n, width, height, nchannels]. A convolutional operator transforms
the input into a feature map of shape [n, widthfm, heightfm, nchannelsfm]
(fm refers to feature map).
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Figure 2.8: Example of a convolutional operation on an image input. The
convolutional filter is a simple, equal-weight addition.

For each receptive field, a learnable spatial filter (or kernel) is deployed.
The local feature map is computed as the dot product of the filter and the
input. The global feature map is the combination of all local feature maps.
Thus, CNNs that consist of more than one convolutional layers are locally-
connected. Moreover, they explicitly exploit local correlations to learn feature
maps. This is familiar to the local neighbourhood focus of for example the
Moran’s I metric. The kernel size of convolutional layers controls the size of
each receptive field, similar to how the spatial weight matrix wi,j controls the
neighbourhood size in the Moran’s I calculation. And indeed, through enforcing
sparse local connectivity, CNNs are able to account for spatial autoregressive
effects.

The output size of a convolutional layers is controlled by three hyperpara-
meters. The depth determines the number of neurons that connect the current
layer to the input. The stride controls how far we move the ’window’ for each
receptive field. Low stride values lead to heavily overlapping receptive fields.
Lastly, the padding size allows us to apply zero padding to the edges of the
input map. We show a simple example of a convolutional operator in Figure
2.8.

Other important components of CNNs are pooling layers, which allow for a
downsampling of the input, again controlled by a kernel size. Common pooling
operators are max pooling and average pooling. CNNs also often deploy the
rectified linear unit (ReLU) activation function between layers to avoid negative
value features. ReLU is defined as:

g(z) = max(0, z) (2.37)

While CNNs were originally devised for processing image data, their in-
tuition for local spatial patterns makes them promising tools for geospatial
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data that can be arranged in regular grids to form tensors similar to images.
This includes geospatial image data such as satellite imagery, discretised points
process or count data (intensities) or any other data that can be measured on
such a grid, like digital elevation maps (DEM). CNNs are nonetheless limited in
their capturing of spatial effects. They are restrained on learning a pre-defined
local context. This has led to efforts within the computer vision community
to develop methods that also account for long distance spatial effects, such
as vision transformers [42], building upon a spatial extension of the attention
mechanism.

CNNs can be also be used for graphical data, as proposed by Kipf and
Welling [90]. Here, the intuition of receptive fields is expanded from patches of
an image to local sub-graphs of the main graph. As with vision transformers,
attention mechanisms have also been introduced to graphical models [178].

Embedding Point and Polygon Locations

0

0

1

0

0

0 0 1 0 0

Figure 2.9: Example of a one-hot encoding of planet Earth. Earth is split into
a 5× 5 grid of equal-size cells. If the location of interest falls into the x and
y locations of a cell (here in orange), it is represented with a value of one;
otherwise, zero values are given.

Classes of geospatial data that cannot be analysed using traditional CNN
implementations include data at point locations (e.g. latitude longitude co-
ordinates) and in geographic polygons (e.g. census tracts). For instance, simple
neural network models do not include the ability of Gaussian Processes to
model spatial dependencies through covariance functions. Here, we want to
discuss some existing approaches that aim to include irregular spatial data in
neural networks.

One-hot Encodings One-hot encoding constitutes the simplest approach
for integrating spatial context of any form into neural networks (and, in fact,
any predictive model). For spatial polygon data, we first split our observational
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area into m neighbourhoods, ensuring that each polygon belongs to at least one
neighbourhood. We then create m new binary predictor variables, indicating
whether an observation (i.e. polygon) belongs to a neighbourhood. For point
coordinates, we first define a grid of m custom size cells covering the whole
observational area. We again create m new binary predictor variables, which
indicate whether a point location falls into each respective grid cell. In both
approaches, the new predictor variables are added to the other features. This
approach has been used to improve the classification of geo-tagged images
[167].

Region Embeddings Region embeddings exploit pre-defined spatial
regions, like census tracts, city boundaries or counties to learn context-aware
embeddings representing these regions. Learning is usually facilitated through
neural network encoders. This approach requires access to contextual informa-
tion about a given region. For example, Fu et al. [51] use local points-of-interest
(POIs) to learn region embeddings and use them to help predict geo-tagged
check-ins from social media data, highlighting their value for downstream
applications.

Network Embeddings Network embeddings aim to learn vector em-
beddings of graphical data (i.e. nodes and edges). Geospatial data can often
be represented as graphs, with for example the road system serving as edges.
A successful example of this approach is described by Wang et al. [182]: the
authors propose a kernel embedding on social-media data to improve location
prediction.

Point Coordinate Embeddings Point coordinate embeddings are
dedicated methods to learn representations of geospatial point coordinates
(latitude, longitude). Yin et al. [198] develop GPS2Vec, an embedding approach
for latitude-longitude coordinates, by enriching one-hot encodings with spatial
context (e.g. tweets and images), learned through a neural network for each grid
cell separately. Mai et al. [121] develop Space2Vec, another latitude-longitude
embedding that does not require further context like tweets or POIs. Space2Vec
transforms the input coordinates using sinusoidal functions and then reprojects
them into a desired output space using an MLP.

2.2.3 Embedding Domain Expertise into Neural Networks

As a general-purpose method, neural networks do not specialise in any particular
type of data. When we want to apply NNs to a domain specific problem, we
are interested in integrating any potential domain knowledge we have into
the learning process. This can be done in many different ways, such as with
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dedicated NN architectures, as is the case for CNNs in image processing
and computer vision. For example, a common approach to dedicated data
preparation in natural language processing (NLP) includes text encoding. Here,
we will present approaches for integrating domain expertise into NN models,
focusing on five mechanisms: (1) physics-informed neural networks, (2) model
selection, (3) auxiliary tasks, (4) feature learning, and (5) embedding losses.
The last four of these approaches are used to integrate GIS expertise into
neural networks in the technical chapters of this dissertation.

Learning with Physics and Constraints

Physics-informed neural networks, a term coined by Raissi et al. [145], describe
neural network approaches that are bound to specific, pre-defined physical
constraints. They were originally devised for modelling dynamic, non-linear
systems like partial differential equations (PDEs), with applications in fluid
dynamics or quantum mechanics. Physics-informed approaches are inspired
by shortcomings of purely data-driven approaches to extrapolate beyond the
vicinity of the observations. However, when working with physical processes,
we might know certain behaviour of the process, dictated by the laws of physics,
that can help us with long-distance extrapolations.

For example, measures taken from a harmonic oscillator follow sine-like
waves. A solely data-driven neural network might learn this process for a few
time steps beyond the training data, but then start to fail. However, if we
integrate our domain expertise on the physical constraints the process at hand
follows into the model, we can improve predictions substantially. Practically,
this can be done by appending the loss function of our NN with residuals
between the known differential equations and predictions. Physics-informed
NNs can be designed for any (dynamic) process for which we have access to
underlying laws or constraints on the data distribution.

Model Selection

Model selection describes the process of choosing an optimal model from a
set of candidate models. It also includes other model design choices that can
affect the model’s capability to solve the problem at hand. Model selection is
conducted using a specific selection criterion, for example obtained via cross-
validation. The model selection criterion can reflect specific domain knowledge
about our problem. Model selection is also crucial for transfer learning–the
transfer of models from one task to a different task. Here, the challenge is to
select a model from a set of existing models (that are trained on known tasks
and data) that extrapolates best to a new task, the characteristics of which we
might know.
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For an example of how model selection works in practice, and how domain
expertise can be integrated, let us consider the case of model selection through
cross-validation. Cross-validation is a technique that assesses how well a model
generalises on unseen data. Available data is split into training and testing
datasets. Let us now train 10 NN models with different random initialisation
on the training data. We then select the model that performs best on the
unseen training data, as evaluated by our selection criterion.

There are two ways of integrating domain expertise into this approach.
First, we can define a model selection criterion that incorporates a domain-
specific requirement. For example, Tanevski et al. [166] deploy such a domain
specific selection criterion in their modelling of endocytosis dynamics. The
second way is to adapt the sampler that creates the training and testing splits.
If we have knowledge of dependencies within our data, a simple random sampler
might lead to a biased model selection procedure. Rather, a sampler that
accounts for such structures is needed. Roberts et al. [151] provide an overview
on such approaches for spatial, temporal and hierarchical data structures.

Auxiliary Task Learning

Auxiliary learning is an approach that uses multi-task learning to improve
performance on a primary task. It was originally conceptualised by Suddarth
and Kergosien [164]. The authors propose to give learners “hints” related to
the original task throughout training to improve training speed and model
performance. This can be understood as forcing the learner (e.g. a neural
network) to focus its attention on certain patterns within the data, highlighted
by the auxiliary objective. It also implies that the auxiliary task must provide
some meaningful embedding of the primary task.

Here, our domain expertise comes into play. Assuming that we have some
extended knowledge on the environment that contextualises our primary task,
we can select and design auxiliary tasks that are complementary to the main
task. As such, this approach has found many use cases, especially in data-rich
real-world settings. Auxiliary learning is widely used and has been particularly
successful in deep reinforcement learning [48]. For example, auxiliary tasks
related to image segmentation and optical flow estimation can improve the
learning of how to steer a wheel [73]. Recent work has also highlighted the
applicability of pixel control tasks [77] and depth estimation [130].

Auxiliary tasks can be roughly split into two categories. First, auxiliary
tasks that require additional data, such as when a segmentation mask is
required on top of an image label. The other category includes auxiliary tasks
that require no additional data, such that the auxiliary task can be constructed
from the existing data. For example, optical flow and depth maps can both be
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estimated from image data (though not perfectly). Later on in this dissertation,
we will use the Moran’s I metric in an auxiliary task learning setting to reinforce
the learning of spatial structures.

Feature Learning

Feature learning, also more broadly known as representation learning, describes
models that automatically construct feature representations that are valuable
to a given downstream task (e.g. prediction). Traditional approaches include
clustering algorithms like k-means clustering or principal component analysis
(PCA). In recent years, we have seen the emergence of neural network-based
approaches for this task. Most prominently, autoencoders [104] are neural
networks that aim to learn efficient, low-dimensional encodings of input data.

Feature learning has been applied to many different application domains,
and in the process, often integrates specific expertise from these domains. For
example, Tsai et al. [173] use feature learning approaches to identify indicator
species for specific ecological habitats. Lei et al. [109] learn meaningful features
from vibration signals to automatically diagnose mechanical faults.

Embedding Losses

Embedding losses describe approaches in which the loss function of a model (or
components thereof) is computed on an embedding of the data. This can have
desirable outcomes, such as training stability and focusing on specific patterns
in the data. These embeddings can reflect domain expertise. In its technical
implementation, this approach is similar to physics-informed approaches that
integrate constraints into the model loss. Rather than constraints, meaningful
embeddings that represent domain-specific structures in the data are used.

Embedding losses have become popular in various application domains in
recent years. For example, in the computer vision community, Ghafoorian
et al. [61] use embedding losses to improve GAN-based lane detection. Filntisis
et al. [47] use visual-semantic embedding losses to improve predictions of
bodily expressed emotions. Embedding losses have shown great potential for
particularly challenging visual problems, especially those involving complex
spatio-temporal dynamics.

2.2.4 Discussion

In this section, we have introduced neural networks for predictive and generative
modeling. In subsection 2.2.2, we present existing approaches for the modeling
of geospatial data with neural networks, from CNNs to point coordinate
embeddings. However, we can run into the same issues that some of the
geographic metrics presented in section 2.1.4 exhibit. Some of these approaches
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also require a pre-defined neighborhood intuition. For example, the kernel
used for a CNN layer makes implicit assumptions on the neighborhood-level
at which we assess spatial effects. This often restricts CNNs to measuring
short-distance spatial effects. One-hot encodings for point locations also require
the construction of artificial areal units at a pre-defined spatial scale. The
neural network embeddings presented in subsection 2.2.2 on the other hand
require extensive training data, providing the geographic context needed for
learning meaningful representations of a given location and its surroundings.
None of the approaches presented in this section provide an explicit intuition of
spatial effects such as autocorrelation or heteroskedasticity, outlined in section
2.1.4. Nonetheless, as we show in subsection 2.2.3, there are several avenues to
incorporate such domain expertise into neural networks.

In summary, neural networks are a powerful family of methods that might
be able to help overcome some of the challenges of traditional geospatial models,
outlined in section 2.1.6. And while they lack intuition for explicitly geospatial
applications, they might be augmented with with metrics such as the ones
presented in subsection 2.1.4, building capacities for such tasks.

2.3 Summary and Implications

In this chapter, we have introduced relevant concepts from GIS and neural
networks, which we will revisit in the following technical chapters. Most
importantly, we have developed an intuition for how geospatial context and
dependencies can be embedded, from measures of spatial autocorrelation to
neural network-based coordinate embeddings. These embeddings of geospatial
information can be broadly split into two categories.

First, we have looked into functional embeddings. Formally, we can define
an embedding vector xemb as a function of an input x and spatial context c:

xemb = f(x, c, Λ) (2.38)

where Λ represents potential hyperparameters of the embedding function.
An example for a non-parametric functional embedding is the Moran’s I metric,
where spatial context c and design parameters Λ determine the shape of the
spatial weight matrix wi,j .

Second, we have assessed parametric neural-network embeddings. Following
the intuition above, we can define these as:

xemb = f(x, c, Λ, Θ) (2.39)
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where Θ represent model parameters of the deployed neural network. An
example of a parametric neural-network embedding is the Space2Vec [121]
approach discussed in section 2.2.2. Therein, point coordinates c are first
processed in a functional transform, then inputs x are used to learn combined,
spatial contextual features through a feed-forward neural network.

In section 2.2.3, we have discussed several approaches for integrating domain
expertise into neural networks. These can help to deploy our various measures
of geographic context within neural networks. This is the essence of this
dissertation. We combine ideas from traditional geographical analysis with
modern neural network methods to build novel, powerful and explicitly spatial
models.

This combined approach allows us to benefit from each components strengths
and to mitigate some of their limitations. Specifically, as section 2.1.6 mentions,
traditional GIS metrics are often only deployed as exploratory tools. Their
combination with neural networks allows for a seamless integration into, for
example, predictive modeling. Section 2.1.6 also outlines the limited capacity
of traditional geospatial modeling techniques to scale to high-dimensional
data-domains and to process highly complex, non-linear data. Again, neural
networks can help to overcome these issues. But as section 2.2.4 outlines, neural
networks on their own are not enough as they lack intuition for dealing with
explicitly spatial data. And while approaches aimed at geospatial applications
exist, non of these include measures of spatial effects like autocorrelation or
heteroskedasticity.

Altogether, the combined approaches presented in this dissertation also
allow us to tackle some of the known challenges of spatial data, as outlined in
section 2.1.2. Specifically, geographic context embeddings can help us to address
dependence challenges by encoding information on spatial autoregressive
effects and semantic context for improved modelling. On the other hand, neural
networks can address computational challenges through their superior
scaling over traditional spatial modelling approaches.

Nonetheless, some limitations remain. Setting the correct parameters (e.g.
queen neighborhood, kernel size) defining spatial neighborhoods is a challenge
traditional GIS metrics and some neural networks like CNNs have in common.
Approaches combining both concepts will still be sensitive to this and might
need to be extended to account for effects at multiple spatial scales. Another
trade-off when deploying neural networks is their black-box nature. Many of
the traditional spatial modeling approaches presented in section 2.1.5 are based
on linear models and provide a high level of interpretability. Spatially explicit
models based on neural networks might thus be inapplicable for applications
that require precise insight into, for example, how predictions are made.

With the motivations lined out, we are now in a position to present the main
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technical contributions of this dissertation in the following four chapters. In
the remainder of this dissertation, we will use both embedding types–functional
and parametric neural-network embeddings–and integrate them into neural
networks for generative and predictive modelling tasks. This way, we will
incorporate GIS domain expertise into the models. To facilitate this, we will
consider the different approaches as outlined in section 2.2.3. Chapter 3 will
assess the use of the Moran’s I metric for model selection. Chapter 4 will
deploy the Moran’s I metric for auxiliary task learning. Chapter 5 will use
a parametric neural-network embedding to improve graphical neural network
models. Chapter 6 will introduce a new spatio-temporal extension of the
Moran’s I metric and demonstrate how it can be integrated into generative
models via an embedding loss.

The four topical chapters involve applications of different methods, all of
which comprise either predictive or generative neural networks. Likewise, we
are working with different experimental datasets for the different methods
presented throughout this dissertation. We will introduce relevant methods,
applications and datasets within dedicated paragraphs in each topical chapter.
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Chapter 3

Local Moran’s I for Model
Selection in GAN Ensemble
Learners

3.1 Introduction

In this chapter, we explore how generative adversarial nets (GANs) [64] can
capture spatially dependent data and how we can leverage them to learn
observed spatial patterns. As they preform well on visual data, in the geospatial
context GANs have been used for generating satellite imagery [115]. However,
geospatial data other than image data, distributed across continuous or discrete
2-dimensional space with one or more feature dimensions (e.g., tabular data
with geographic coordinates), remain mostly unexplored. While previous
studies have examined GAN performance in the presence of one-dimensional
autocorrelation, such as temporal point processes [191] or financial time-series
[103], the multi-dimensional correlation structures in geospatial point data
pose a more complex challenge.

We tackle this issue by introducing SpaceGAN : Borrowing well estab-
lished techniques from GIS, we use spatial neighbourhood contextualisation
for training conditional GANs (cGAN) and optimise cGAN selection for the
best representation of the inputs local spatial autocorrelation structures. We
also propose a novel stopping criterion for SpaceGAN training, which explicitly
measures the quality of the representation of observed spatial patterns. This
metric is particularly useful, as GANs often fail to converge at a stable solution
throughout training. Augmented data samples from SpaceGAN can be used
for downstream tasks, even on out-of-sample geospatial locations. We show
how this can be used for prediction via an ensemble learning framework. We
test our approach on synthetic and real-world geospatial prediction tasks and
evaluate the results using spatial cross-validation.
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Discrete space: Queen Neihbourhood Continuous space: kNN Neihbourhood (k=3)

Figure 3.1: Examples of spatial weight matrices wi,j in the discrete and
continuous case.

The main contributions of this chapter are as follows:

• We introduce SpaceGAN, a novel cGAN approach for geospatial data
domains, using neighbourhood conditioning to capture spatial dependen-
cies.

• SpaceGAN encompasses a novel stopping criterion for GAN training,
measuring how well the generated data reproduces the spatial correlation
patterns observed in the input.

• We introduce a novel ensemble learning method tailored to spatial pre-
diction tasks by using SpaceGAN samples as training data for a set of
base learners.

Across different experimental settings, we show that SpaceGAN -generated
samples can substantially improve the performance of predictive models. As
such, the results have practical implications: our proposed framework can be
used to inflate low-dimensional spatial data. This allows for enhanced model
training and reduced bias by compensating for a lack of training data. We thus
improve generalisation performance, even when compared to existing methods
for data augmentation.

The remainder of this chapter is structured as follows: section 3.2 introduces
the SpaceGAN framework and elaborates on the technical details in respect to
the cGAN architecture and spatial autocorrelation representation. In section
3.3, we evaluate SpaceGAN empirically using synthetic and real-world data and
comparing it to existing methods for spatial data augmentation and ensemble
learning. section 3.4 discusses the findings with respect to existing literature
and the broader scope of the dissertation.
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Algorithm 1: SpaceGAN Training and Selection
Data: pdata (input data), pz(z) (noise prior)
Parameters: snap, C, L: hyper-parameter
for number of training steps (tsteps) do

Sample minibatch of L noise samples {z1, ..., zL} from noise prior
pz(z)
Sample minibatch of L examples from pdata

(
(yi, xi) | Ni

)
Update the discriminator by ascending its stochastic gradient:
∇ΘD

1
L

∑L
i=1

[
log D((yi, xi) | Ni) + log(1−D(G(zi | Ni)))

]
Sample minibatch of L noise samples {z1, ..., zL} from noise prior
pz(z)
Update the generator by ascending its stochastic gradient:
∇ΘG

1
L

∑L
l=1

[
log(D(G(zi | Ni)))

]
if tsteps % snap then

Gk ← G, Dk ← D, MIE ← 0 ▷ store current G, D as Gk, Dk;
initiate MIE

for C do
for i← 1, n do

sample noise vector z ∼ pz(z) draw
(ŷi, x̂i) = Gk(z | Ni)

end
Measure spatial autocorrelation goodness-of-fit:
MIE ←MIE +∑n

i=1 |(I(yi)− I(ŷi))|
end

Average of all samples: MIE(Gk) = 1
C MIE

end
return G := arg minGk

MIE(Gk), D := arg minGk
MIE(Gk)

end

3.2 SpaceGAN

3.2.1 Spatial Correlation Structures

As outlined in Chapter 2.1, geospatial data exhibit inherent local inter-
dependencies and as such an additional information layer that can be exploited.
A brief example to illustrate this concept: In a typical city, when we want to
estimate the price of a house, we might want to check house prices at nearby
locations. If, for instance, the house is located in a rich, spatially contained
neighbourhood, just knowing the price of a nearby property and without any
further knowledge about the features of the house (e.g. size, age), can provide us
with an informed guess. Let us formulate this intuition by first defining the i-th
data point as a tuple di = (xi, yi, ci), where [x(1)

i , ..., x
(m)
i ] = xi ∈ Rm describes

a set of m features, yi ∈ R describes the target vector and [c(1)
i , c

(2)
i ] = ci ∈ R2

describes the point coordinates in 2d space. The features (x, y) can be dis-
tributed across space randomly, or follow a—global or local—spatial process.
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This can be examined by measuring the correlation of a feature with its local
neighbourhood, the so called local spatial autocorrelation, which is given by the
Moran’s I metric [129]. While originally theorized for phenomena distributed
in n-dimensional space, the concept was widely popularized in geostatistics
by Luc Anselin [2]. His formalisation gives a local autocorrelation coefficient
for a (numeric) vector distributed across space. While this can be applied
to any vector in the feature set of d, we will explain the concept using the
target vector y here. y consists of n real-valued observations yi referenced
by an index set N = {1, 2, ..., n}. Let the neighbourhood of the spatial unit
i be Ni = {j ∈ N |∃i ∋ N : wi,j ̸= 0}. We can use each data points spatial
coordinates ci to define spatial these neighborhoods (e.g. using k-nearest-
neighborhood). Let us recall the formulation of the local Moran’s I metric,
defined in Equation 2.2, as Ii = I(yi):

Ii = (n− 1) yi − ȳ∑n
j=1,j ̸=i(yj − ȳ)2

n∑
j=1,j ̸=i

wi,j(yj − ȳ) (3.1)

where ȳ represents the mean of all yi’s and wi,j are components of a
weight matrix indicating membership of the local neighbourhood set between
the observations i and j. For yi distributed in continuous space, the weight
matrix can, for example, correspond to a k-nearest-neighbourhood (kNN) with
wi,j = 1 if j ∈ Ni and wi,j = 0 otherwise. For yi distributed in discrete space
(e.g. geospatial raster data), the weight matrix could for example correspond
to a queen neighbourhood (see Figure 3.1). The Moran’s I metric hence
takes in a vector distributed in space and its corresponding neighbourhood
structure to calculate how strongly (positively or negatively) each observation is
autocorrelated with its spatial neighbourhood at any given location. Intuitively,
this makes the selection of the weight matrix wi,j , i.e. the definition of
“neighbourhood”, an important design choice which we have to account for when
trying to augment spatial data imitating the spatial autocorrelation structures
of the input. Having outlined the intuition for spatial neighbourhood and
spatial autocorrelation, we now move onto data augmentation. For this, we
use a popular family of generative models: GANs.

3.2.2 Spatially-conditioned GANs

Let us briefly recall GANs, as defined in Chapter 2.2.1. They deploy a
Generator network (G) and a Discriminator network (D). The Generator
produces synthetic data samples, while the Discriminator tries to distinguish
real from fake sample. Learning is facilitated through a min-max game between
both networks. Formally, let network G(z, ΘG) with parameters ΘG, mapping
noise z ∼ pz(z) to some feature space x (G : z → x). The Discriminator, a
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neural network D(x, ΘD), aims to probabilistically distinguish the synthetic
input x̂ created by the Generator and real data x ∼ pdata(x) (D : x→ [0, 1]).
Both networks compete in a min-max game, improving their performance
until the maximum number of training iterations has been reached. But while
GANs have been successfully applied in many areas, training them is highly
non-trivial[65, 154] and remains an area of intense study [8, 181]. This is
further complicated by the non-iid nature of geospatial data, in which learning
an unconditional model would ignore inherent local dependencies. To overcome
this, a sampling process taking spatial structure into account is needed, thus
preserving statistical properties such as local spatial autocorrelation.

Therefore, conditional GANs (cGANs) [128] are better fit to handle context-
dependent inputs, such as geospatial data. In cGANs, the input to both the
generator and discriminator are augmented by a context vector v. Typically,
v represents a class label that we want the cGAN to generate an input for,
but it can be any form of contexualisation. Formally, we can define a cGAN
by including the conditional variable v in the original formulation so that
G : z× v→ x and D : x× v→ [0, 1]. The minimax game between D and G is
then given as V (G, D):

min
G

max
D

V (D, G) = Ex∼pdata(x)
[
log D(x|v)

]
+

Ez∼pz(z)
[
log(1−D(G(z|v)))

] (3.2)

cGANs have previously been used for spatial conditioning of image data,
using pixel coordinates [74, 114]. In our formulation, this would translate
to setting v = c. However, this approach is not sufficient for our problem
since mere conditioning on the point coordinate alone would omit valuable
information about the local neighbourhood of each point—as we show in our
experiments. Instead, for each point di we are interested in capturing how its
features (xi, yi) relate to those of neighbouring points (xj , yj) ∈ Ni. As such,
we define the SpaceGAN context vector v of point i as v = Ni. SpaceGAN can
thus be seen as a special instance of cGAN with spatial-neighborhood-dependent
conditioning vectors.

Similarly to our intuition of spatial autocorrelation, outlined above, we
assume that the features of nearby data points may offer valuable information on
the point-of-interest. By conditioning each data point on all neighbouring points
we allow for the learning of local patterns across the feature space. Beyond this,
the versatility of constructing spatial weights wi,j enables experimentation with
and optimisation of different spatial neighbourhood definitions. This offers a
flexibility that is not provided by point coordinate conditioning.
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3.2.3 Training and Selecting Generators for Spatial Data

One problem concerning GANs is that they typically fail to converge to a
stable solution. To overcome this, we seek to tie training convergence to some
measure of quality of the synthesised data. Accordingly, we propose to evaluate
the generator performance by the faithfulness of its produced spatial patterns
in relation to the true patterns observed in the input, as measured by the
difference between the local spatial autocorrelation of real and synthetic data.
For this, we introduce a new metric, the Mean Moran’s I Error (MIE). It is
defined as the mean absolute difference between the local spatial autocorrelation
of the input I(y1, ..., yn) versus that of the generated samples I(ŷ1, ..., ŷn):

MIE = 1
n

n∑
i=1
|(I(yi)− I(ŷi))| (3.3)

We apply this metric for model selection (note that the MIE is not included
in the model training objectives) by choosing the model with the smallest MIE,
i.e. the loss of local spatial autocorrelation between real and generated ŷ1, ..., ŷn.
In our supervised learning setting, we are particularly interested in a faithful
representation of the target vector and hence use y1, ..., yn to calculate MIE.
Of course, MIE can also be calculated using any other feature vector from
d. An implementation for multidimensional input is also formalised by [3]
or can be achieved by averaging MIE through multiple features. It is also
important to note here that a measure like MIE is somewhat domain-specific
and assumes prior information on the data and task at hand, namely regarding
their spatial structure. As such, it is different from general purpose goodness-
of-fit measures, such as RMSE. To train SpaceGAN, we proceed as when
training a normal cGAN, but include the MIE stopping-criterion. Algorithm
1 details our training procedure:

The set of user-defined hyperparameters for running SpaceGAN Training
and Selection mainly encompass: G and D architectures, noise prior distribution
pz(z), minibatch size L, number of training steps tsteps, snapshot frequency
snap, number of samples C as well as hyper-parameters associated to the
stochastic gradient optimiser (e.g., learning rate). At each training step, a
minibatch of L noise inputs is sampled from the noise prior pz(z) and fed
through the generator G to obtain synthetic data (ŷi, x̂i) = Gk(z | Ni). We
also obtain a minibatch of size L from the real data: (yi, xi). We can then feed
both real and synthetic inputs through D and update the discriminator loss
by ascending stochastic gradient descent. Now another noise sample of size
L is drawn from pz(z) and fed through G. We then feed the new synthetic
data through D and update the discriminator loss by ascending stochastic
gradient descent. If a snapshot training step is reached, we save store the
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current discriminator and generators as Dk and Gk and compute the (averaged)
MIE metric for C synthetic data samples MIE(Gk). After all training steps
are completed we compare the stored generators and return the one producing
synthetic data with the minimum MIE error, G := argminGk

MIE(Gk).
For a detailed description of the architecture and specific settings, see the

experiments in Section 3 and the Appendix. Notably, our proposed stopping
criterion can be seen as choosing the best member from a population of GANs
acquired during training. In this way, our approach resembles “snapshot
ensembling”, introduced by Huang et al. [75].

3.2.4 Ganning: GAN Augmentation for Ensemble Learning

GAN Training:
min max V(D,G)
GAN Selection:

min MIE

M(1) M(2) ... M(B)

C(1) C(2) ... C(B)

SpaceG
AN

Architecture

Ensemble
Model Prediction

z

Ni
G

D

G
(z
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x
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Geo-
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GAN
Samples

Train
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Generate GAN
Samples

Figure 3.2: “Ganning”: Re-sampling with SpaceGAN generated data for
ensemble learning.

To highlight the practical applicability of SpaceGAN, we now move onto
a spatial prediction (regression) task. We approach this from an ensemble
learning perspective: In ensemble learning, individually “weak” base learners
(e.g. Regression Trees) can be aggregated and as such outperform “strong”
learners (e.g. Support Vector Machines). Traditionally, this idea includes
models that make use of Bagging, Boosting or Stacking principles [43, 50].
Here, we follow Koshiyama et al. [103] and use SpaceGAN -generated samples
as training data for the ensemble learners. This approach has not been applied
to spatial data before, and since it is analogous to Bagging, we will refer to it
as “Ganning” from hereon. Algorithm 2 and Figure 3.2 outline this approach.

Having fully trained and parametrised a SpaceGAN, we repeatedly draw
B samples from the best Generator Gk (according to MIE selection) and
train a base learner for each. After repeating this for b = 1, ..., B samples
we return the whole set of base models M (1), ..., M (B) as an ensemble. This
way, we can reduce the variance of the ensemble by averaging many weakly
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Algorithm 2: “Ganning” for ensemble learning
Parameters: B (number of samples), M (base learner), G
for b← 1, B do

for i← 1, n do
sample noise vector z ∼ pz(z) draw (ŷi, x̂i) = Gk(z | Ni)

end
train base learner: M (b)(ŷ, x)

end
return ensemble M (1), ..., M (B)

correlated predictors. Following the concept of bias-variance trade-off [43], the
ensemble Mean Squared Error (MSE) decreases, particularly when low bias
and high variance base learners are used. Nevertheless, there is a potential
risk to this approach: Should SpaceGAN fail to appropriately replicate the
true data generation process pdata, SpaceGAN samples might not only be
more diverse, but also more “biased”. Consequentially, this could lead to base
learners missing obvious patters, or finding new patters that do not exist in
the real data.

3.3 Experiments

We evaluate our proposed methods in two experiments. First, we assess
SpaceGAN ’s ability to learn spatial data generating processes, including realistic
representations of its internal spatial autocorrelation structure. Second, we
analyse the applicability of SpaceGAN for spatial re-sampling usin an ensemble
learning approach for spatial predictive modelling. For our experiments, we
use five different datasets:

Toy 1: The data points d are a rectangular grid of n = 400 regularly
distributed, synthetic point coordinates c, a random Gaussian noise vector x
and an outcome variable y, a simple quadratic function of the spatial coordinates
c and random vector x.

Toy 2: The data points d are a rectangular grid of n = 841 regularly
distributed, synthetic point coordinates c, a random Gaussian noise vector
x and an outcome variable y. Here, y is a more complex combination of a
π-function, a sin-function and a linear global pattern of c and x.

California Housing: This real-world dataset describes the prices of
n = 20, 640 California houses, taken from the 1990 census. The house prices y

come with point coordinates c and some further predictor variables x, such as
house age or number of bedrooms. The dataset was introduced by Kelley Pace
and Barry [86] and, like all real-world datasets we use, is a standard example
for continuous, spatially autocorrelated data.

Infant Mortality: Marshall’s infant mortality in Auckland dataset, con-
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(a) Target y (top) and its Moran’s I value I(y) (bottom)
of the observed and SpaceGAN generated data for Toy
1.

(b) Target y (top) and its Moran’s I value I(y) (bottom)
of the observed and SpaceGAN generated data for Toy
2.

Figure 3.3: Experiment 1: We compare the real data to SpaceGAN generated
samples (averaged over 500 samples) showing both the target y and its Moran’s I
value I(y). The data is synthesised out-of-sample using spatial cross-validation.
For data values, lighter colors indicate higher and darker colors lower values.
Values are normalized between 0 and 1.
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Figure 3.4: Experiment 1: Target vector y (left column) and its Moran’s I
value I(y) (right column) of the observed data, SpaceGAN, Coord.GAN and
GP generated samples for California Housing 50. Lighter colors indicate
higher and darker colors lower values. Values are normalized between 0 and 1.
Again, the data is averaged over 500 samples and synthesised out-of-sample
using spatial cross-validation.
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taining n = 167 observations, with dependent variable y infant deaths, point
coordinates c and infant population x [122].

Election 1980: The turnout y of the 1980 U.S. presidential election across
n = 3107 counties with point coordinates c and predictors (education, income
p/c, homeownership) x [86].

More details and summary statistics of all experimental datasets can be
found in the Appendix. All our experiments are conducted using 10-fold
spatial cross-validation [141]. The goal of spatial cross-validation is to check
for generalisability of spatial models and to avoid overfitting. In a naive
cross-validation setting with spatial data, this can occur when training and
test points are spatially to close. Assuming some spatial dependency between
nearby points, this would roughly relate to training on the test set. Hence,
we need to create a so-called buffer area around the test set within which we
remove all data points from the training set. Assuming a set of data points
D = (d1, d2, ..., dn), we first create k spatially coherent test sets. In our case,
we do this by slicing through each of the two dimensions of the coordinate
space c five times with equal binning, thus creating 10 folds of the same width.
This leaves us with a set of 10 test sets Dtest = (D(1)

test,D
(2)
test, ...,D(10)

test ). We
now define the training set D(k)

train as all points in set D which are not part
of the test set D(k)

test and which are not neighbouring points of the test set
points, thus creating a buffer area: D(k)

train = D /∈ D(k)
test, /∈ ND(k)

test

. As a quick
example, for the California Housing 50 dataset, we would define the test
set, then exclude all point which are not part of the test set, but are one of
the 50-nearest-neighbours of one of the test set points. The remaining, not
excluded points provide the training set. While we chose to define the buffer
zone according to the neighbourhood based spatial weights matrix w, other
methods such as defining a deadzone area using a radius around the test set
are also applicable.

Note that for the real-world datasets, we refer to California Housing 15
/ 50 as a 15 or 50-NN implementation of the spatial cross-validation; here we
also use 15 / 50-NN for SpaceGANs neighbourhood conditioning. For both
toy datasets, we use simple queen neighbourhood (see Figure 3.1), for Infant
Mortality 10-NNs and for Election 15-NNs. For a description of the specific
neural network architectures for SpaceGAN used in the different experiments,
see Appendix A.

3.3.1 Experiment 1: Reproducing Spatial Correlation Patterns

Our first experiment evaluates SpaceGANs ability to not only generate data, but
also its capability of reproducing observed spatial patterns. We train SpaceGAN
for a given experimental datasets and at each spatial location c return 500
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Figure 3.5: Training errors of SpaceGAN networks G and D (top) compared
to the respective MIE criterion (bottom) across the same training process
(exemplary for California Housing 50)

Table 3.1: MIE (and its standard error) between real and augmented data for
SpaceGAN, Coord.GAN and GP implementations

Model
Dataset Coord.GAN∗ GP∗ SpaceGAN∗

Toy 1 2.3741 (0.1716) 1.9495 (0.1750) 0.3173 (0.1791)
Toy 2 1.5728 (0.0893) 0.2195 (0.0175) 0.2141 (0.0157)
Cal.H. 15 1.3885 (0.0189) 1.9932 (0.0826) 1.1468 (0.0416)
Cal.H. 50 1.8535 (0.0249) 3.8183 (0.2072) 0.9333 (0.0288)
Inf.Mort. 0.7061 (0.1109) 1.0169 (0.0503) 0.9475 (0.0269)
Election 0.0152 (0.0068) 0.0216 (0.0080) 0.0153 (0.0073)
∗ - output and prediction were normalised before calculation.

samples from the generator (for examples, see Figure 3.3). Note that these
results show out-of-sample extrapolations. For the dataset Toy 1, SpaceGAN
is able to capture both the target vector and its spatial autocorrelation almost
perfectly. In Toy 2, which represents a substantially more complicated pattern,
we capture parts of the observed pattern seamlessly, however the spatial areas
characterised by more subtle patterns are not captured fully. Nevertheless,
this result shows that SpaceGAN also works when the spatial correlation
structure is homogeneous. We now assess the real-world dataset California
Housing. Again, SpaceGAN is able to capture both the target and the spatial
dependencies in the data. In the real-world setting we also compare SpaceGAN
to a Gaussian Process (GP) for data augmentation (implemented as Vanilla-GP
with RBF kernel in sklearn [140]) and a point coordinate conditioned GAN
(CoordGAN) [74, 114]. The last two experimental datasets, Infant Mortality
and Election show SpaceGAN performing better than a GP but only equal to
or worse than a CoordGAN.

Table 3.1 provides the MIE metric for more, extensive experiments. Note
that this table shows SpaceGAN and CoordGAN models selected according
to the minimal MIE throughout training. The GP model is trained to con-
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vergence and the MIE value is computed a-posteriori. Non of the models
explicitly optimises for minimal MIE, or uses it as an auxilliary loss object-
ive. Interestingly, while we see that SpaceGAN doesn’t always provide the
lowest MIE, it still appears to learn the data generating process best, which
Experiment 2 confirms. To further assess the value of MIE for model selec-
tion, we evaluate how it compares to the losses in the GAN generator G and
discriminator D. We show this exemplary for the California Housing dataset:
Figure 3.4 highlights how the minima in the MIE curve correspond closely to
those in the generator loss. As California Housing 15 / 50 have 15 / 50-NN
conditioned SpaceGAN models, we can also evaluate the differing lengths in
the conditioning vector. We can observe that the longer conditioning vector
models provides better MIE values, highlighting again the importance of the
neighbourhood weight design choice.

(a) Toy 1 (b) California Housing 50

Figure 3.6: MIE and RMSE evolution through a typical SpaceGAN training
cycle, for the Toy 1 and California Housing 50 datasets.

3.3.2 Experiment 2: Data Augmentation for Predictive Mod-
elling

Our second experiment focuses on predictive modelling. Here, we tackle
regression, e.g. for the California Housing dataset the prediction of house
prices. As outlined in section 2 and displayed in Figure 3.2, we seek to
use SpaceGAN -generated samples in an ensemble learning setting—so called
“Ganning”. More specifically, we test two SpaceGAN configurations: First, a
SpaceGAN using MIE as convergence criterion, second, a SpaceGAN using
RMSE for convergence, which analogously to MIE is given as

RMSE =

√√√√ n∑
i=1

(yi − ŷi)2 (3.4)

These are compared to three comparable ensemble baselines: (1) a coordin-

56



ate conditioned GAN with MIE selection (CoordGAN), (2) a GP-Bagging
approach, where we draw B samples from a fully trained Gaussian Process
posterior and use these to train base models for ensembling (GP) and (3) a
traditional Bagging approach using spatial bootstrapping (Spatial Boot) [54].
Table 3.2 provides the out-of-sample prediction RMSE values for the four
approaches. We can observe that SpaceGAN outperforms the competitors on
four of the five datasets, being only outperformed on the Election dataset by
Spatial Boot.

Table 3.2: Experiment 2: Prediction scores (RMSE) and their standard errors
across 10 folds for different ensemble methods with 100 samples across the
different prediction tasks.

Model (B = 100)
Dataset SpaceGAN SpaceGAN Coord.GAN GP Spatial

(MIE) (RMSE) (MIE) Boot.
Toy 1 0.9921 1.1993 1.3067 1.2388 1.2013

(0.0995) (0.1494) (0.1095) (0.1490) (0.1366)
Toy 2 1.0097 1.2065 1.3893 1.3135 1.2962

(0.1092) (0.1496) (0.1015) (0.1443) (0.1413)
Cal.H. 15 139534 143983 200937 159340 148830

(12026) (10341) (20743) (8550) (8660)
Cal.H. 50 128756 145612 171455 156814 148546

(7463) (7152) (22195) (8718) (8611)
Inf.Mort. 7.2778 7.2416 7.9648 9.1793 7.3100

(0.6518) (0.6464) (0.9567) (0.5547) (0.4685)
Election 0.1163 0.1162 0.1249 0.1330 0.1156

(0.0035) (0.0037) (0.0072) (0.0043) (0.0039)

Lastly, we assess SpaceGAN training behaviour and convergence. Figure
3.5 shows the MIE and RMSE criteria throughout a typical training cycle of
SpaceGAN, examplary for the Toy 1 and California Housing 50 datasets.
Interestingly, for Toy 1, both criteria are almost antithetic, that is a local
minimum for MIE convergence approximately relates to a local maximum for
RMSE convergence in the same training step. Moreover, RMSE struggles to
provide assistance for when a convergence point is reached, as it shows several
local minima of approximately similar value. This point is also true for the
California Housing 50 dataset. The MIE criterion however appears to
have a relatively stable minimum at the first local minimum point. Looking
back to Figure 3.4, we can further see how the MIE criterion responds well
to the generator network loss function, training on the California Housing
50 dataset. We observe similar behaviour across all experimental dataset.
This finding further strengthens the validity of the MIE as a model selection
criterion for spatially autocorrelated data.
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3.4 Discussion

We now want to contextualise our findings in relation to existing work in the
field. As the academic field of machine learning advances, more and more
sophisticated techniques are being developed with the aim to capture the
complexity of the real world they are trying to model. This is particularly
true for spatial methods, where assumptions like distributive independence or
Euclidean distances restrict the performance of the most common algorithms.
The motivation for this study originates from recent approaches of a more
explicit modelling of spatial context within machine learning techniques. Among
these are the emergence of vector embeddings for spatially distributed image
data [79], the opportunities to model non-Euclidean spatial graphs using graph
convolutional networks (GCNs) [39] and the modelling of spatial point processes
using matrix factorisation [127]. We see SpaceGAN as an addition to the family
of spatially explicit machine learning methods.

GAN models already have been applied to data autocorrelated in one di-
mensional space, e.g time series [103, 191], two dimensional space, e.g. remote
sensing imagery [115, 209] and even three dimensional space, e.g. point clouds
[44, 110]. However, none of this previous work used measures of local autocor-
relation to improve the representation of spatial patterns. In the context of
data augmentation, GANs have become a popular tool for inflating training
data and increasing model robustness [22, 49, 169, 191]. However, such a
method does not exist yet for 2d multivariate point data, where techniques
such as the spatial bootstrap [23] or synthetic point generators [113, 142]
are most commonly used. Spatial image data and point clouds on the other
hand are often augmented using random perturbations, rotations or cropping
[59, 208]. Lastly, ensemble learning is increasingly popular for spatial modelling
[38], with applications ranging from forest fire susceptibility prediction [170]
to class ambiguity correction in spatial classifiers [82]. Nevertheless, to our
knowledge, no research has yet been conducted combining GAN augmentation
and ensemble learning within a spatial data environment, highlighting the
novelty of this study.

With respect to the broader scope of this dissertation, this chapter uses a
popular functional embedding from the GIS, the Moran’s I metric, to improve
the performance of neural network models. This is facilitated through one of the
avenues for integrating domain expertise into neural network models outlined
in section : model selection. We empirically show performance improvements
on predictive downstream tasks built on top of a GAN ensemble learner. Our
approach highlights how geospatial domain expertise can be beneficial, even
if it is not explicitly integrated into the model’s architecture or loss function.
Nonetheless, in the coming chapters we will examine more explicit geospatial
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machine learning approaches.

3.5 Summary

In this chapter we introduce SpaceGAN, a GAN-based data augmentation
method for spatial data, learning both the data generating process and its
spatial dependencies through two key innovations: First, we provide a novel
approach to spatially condition the GAN: Instead of conditioning on raw
spatial features like point coordinates, we use the feature vectors of spatial
neighbours for conditioning. This approach offers unprecedented flexibility,
as it can be applied to discrete and continuous spatial data likewise. Second,
we introduce a novel convergence criterion for GAN training, the MIE. This
metric measures how well the generator is able to imitate the observed spatial
patterns. We show that this approach succeeds at generating faithful samples
in experiments using synthetic and real-world data. Turning towards predictive
modelling, we propose an ensemble learning approach for spatial prediction
tasks using augmented SpaceGAN samples as training data for an ensemble
of base models. We show that this approach outperforms existing methods
in ensemble learning and spatial data augmentation. We further comment
on training behaviour and convergence, highlighting how the MIE metric
differs–and sometimes even behaves antithetically–from existing measures such
as RMSE. Our experiments over different application domains and spatial
scales further highlight the generalisability of the method. Overall, SpaceGAN
challenges the state-of-the-art of resampling spatial data.

In developing SpaceGAN, we seek to further the agenda of spatial repres-
entations in deep learning. As many real-world applications of deep learn-
ing algorithms deal with geospatial data, tools tailored to these tasks are
needed–and currently sparse [148]. Nevertheless, the potential applications of
SpaceGAN go beyond the geospatial and other 2-dimensional data domains.
The use of neighbourhood structures as well as the Moran’s I metric allow for
the handling of data distributed in n-dimensional space. This would enable
applications on more complex earth systems data such as 3-dimensional spatial
data (e.g. elevation maps) or even spatio-temporal data. Some of the limita-
tions of SpaceGAN include its reliance of a predefined spatial neighborhood.
We illustrate the sensitivity of the method to this factor in our discussion on
differences between the California Housing 15/ 50 dataset. SpaceGAN also
does not yet explicitly use spatial embeddings such as the Moran’s I during
model training. We seek to pursue this angle, e.g. through the implementation
of auxilliary loss functions or multi-task training procedures, in the following
chapters of this dissertation.
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Chapter 4

Local Moran’s I for Auxiliary
Task Learning

4.1 Introduction

In this Chapter, we expand the ideas from Chapter 3 and, rather than integrat-
ing geospatial domain expertise implicitly through model selection, explicitly
incorporate the local Moran’s I metric into neural networks through auxiliary
task learning. Practically, this is facilitated through a multi-task learning
process, where the Moran’s I at each data point is learned as an auxiliary
task, sharing the model parameters with the main task and hence nudging the
model to learn both the original data and its spatial autoregressive structure
in parallel. To also account for longer-distance spatial relations, we propose a
novel multi-resolution local Moran’s I by gradually coarsening the input data.
By providing a learner with prior knowledge on the autoregressive nature of
the data we improve performance on a broad range of spatial modelling tasks.

The main contributions of this chapter can be summarised as follows:

• We propose a novel, flexible multi-resolution expansion of the Moran’s I
measure of local spatial autocorrelation.

• We use the traditional and multi-resolution local Moran’s I as embeddings
to be learned in an auxiliary learning procedure to capture both short-
and long-distance spatial effects.

• We provide a practical framework to adapt our method to arbitrary
neural network architectures and different supervised (predictive) and
unsupervised (generative) spatial learning tasks.

• For the purpose of balancing the losses of multiple tasks in a generative
modelling setting, we develop a novel auxiliary task GAN loss based on
uncertainty weights [32].
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We evaluate our approach, which we refer to as SXL (spatially explicit
learning), on both generative and predictive spatial modelling tasks, providing
empirical evidence for consistent and robust performance gains across multiple
synthetic and real-world experimental settings.

The remainder of this chapter is structured as follows: In section 4.2
we outline our methodology, including a brief introduction to the spatial
embeddings used throughout. In section 4.3 we provide our experimental
findings based on a range of synthetic and real-world tasks. In section 4.4 we
discuss our results and the road ahead for geospatial machine learning. Lastly,
we summarise the chapter in section 4.5.

4.2 Methodology

4.2.1 Multi-resolution Local Moran’s I
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Figure 4.1: Illustration of the multi-resolution local Moran’s I calculation with
an example input at three different resolutions: Original input size (n×m),
downsampled by factor 2 (n/2×m/2) and downsampled by factor 4 (n/4×m/4).

As discussed extensively in the previous chapters, working with geospatial
data requires a careful assessment of and accounting for potential autoregressive
effects–an intuition which neural networks traditionally do not provide. One
of the most prominent measures, capturing spatial autocorrelation at the
point-level, is the local Moran’s I metric [2]. Local Moran’s I measures the
direction and extent of similarity between each observation and its local spatial
neighbourhood. As such, it provides an indication for both local spatial clusters
and spatial outliers.

In this chapter, we will solely work with spatial data that can be represented
on a regular grid (e.g., images). Formally, let X be a 2-d spatial matrix

Xn×m =


x1,1 . . . x1,m

. . . . . . . . .

xn,1 . . . xn,m

 (4.1)

In vector notation, x = vec(X) consists of nx = nm real-valued observations
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xi, referenced by an index set Nx = {1, 2, ..., nx}. We define the spatial
neighbourhood of observation i to be Nxi = {j ∈ Nx : wi,j > 0}. Here,
wi,j corresponds to a binary spatial weight matrix, indicating whether any
observation j is a neighbour of i. For continuous data, the creation of this
matrix requires computing a pair-wise distance matrix or kd-tree, however in
our case using discrete n×m matrices, this problem is trivial. Throughout this
chapter, we use queen contiguity (i.e. all adjacent grid cells, including diagonals,
are neighbours), but the approach generalises to arbitrary neighbourhood
definitions. We revisit the computation of the local Moran’s I statistic, Ii, of
observation xi with the mean over all observations x̄ as:

Ii = (nx − 1) xi − x̄∑nx
j=1,j ̸=i(xj − x̄)2

nx∑
j=1,j ̸=i

wi,j(xj − x̄) (4.2)

Combining all local Moran’s I values gives the matrix In×m, of the same
size as Xn×m. Ii can take positive or negative values: a positive value suggests
that a data point is similar to its neighbours, which could indicate latent
cluster structure. A negative value suggests that the data point is distinctly
different from neighbouring data points, which could indicate a changepoint
or edge. While the Local Moran’s I statistic is closely correlated to its input,
their relationship can take different forms, depending on the complexity of the
inputs’ spatial structure.

One of the main limitations of the local Moran’s I metric is its restriction
to represent local spatial dependence only at the scale provided by the pre-
defined neighbourhood matrix w. Thus spatial dependencies at other scales
(neighborhoods) than the one provided can be lost. We also require some prior
knowledge or intuition on how the most appropriate neighborhood definition
to be used. This scale sensitivity of the local Moran’s I is known as a common
challenge in applications [45, 125, 204]. Nevertheless, to our knowledge, no
alternative metric accounting for this issue exists. Here, we propose a novel,
multi-resolution representation of the local Moran’s I by increasingly coarsening
the input data for the Moran’s I computation and then upsampling the output
back to the original data shape. The coarsening step here is analogous to a
2-d average pooling operation, so that our coarsened input is given as:

X
n/a×m/a
d (i, j) = mean{Xn×m(ai + k, aj + l)},

for 0 ≤ k < a and 0 ≤ l < a,
(4.3)

where a gives the kernel size and the subscript d indicates downsampling.
The coarsened spatial matrix Xd corresponds to the vector x(d) of length

62



nx(d) . The coarsened local Moran’s I, I(x(d)), is then computed according to
Equation (2), using the spatial weight matrix wx(d) , corresponding to the new
size n/a × m/a of the downsampled input. In the last step, the coarsened
Moran’s I is upsampled again to the original input size n×m using nearest-
neighbour interpolation. This whole process can be repeated several times
to compute the local Moran’s I at increasingly coarse resolutions. The local
Moran’s I values at different resolutions can then be stacked on top of one
another, much like a multi-channel image (e.g. RGB image). As such, tensors
provide an ideal data structure for our metric. We illustrate this with an
example in Figure 4.1.

4.2.2 Auxiliary Learning of Spatial Autoregressive Structures

Auxiliary task learning shares the benefits of multi-task learning: auxiliary
tasks hint at specific patterns in the data for the model to focus attention
on. Further, they introduce a representation bias, whereas the model prefers
latent representations of the data that work for both primary and auxiliary
tasks, thus helping with generalisation. Lastly, auxiliary tasks can work as
regularisers by introducing inductive bias and decreasing the risk of overfitting
the model.

Here, we want to use the local Moran’s I embedding and our newly in-
troduced multi-resolution Moran’s I as auxiliary tasks. The main motivation
for any auxiliary tasks is “relatedness” to the primary task: spatial theory
characterises a spatial pattern as a reflection of underlying spatial processes.
Accordingly, Chou [29] concludes that “[...] the capability of generalising and
quantifying spatial patterns is a prerequisite to understanding the complicated
processes governing the distribution of spatial phenomena.”–explicitly mention-
ing the power of the Moran’s I metric to capture these effects. This statement
can be translated directly into a learning algorithm, where the learning of a
spatial pattern is constrained by a simultaneous learning of the underlying
spatial process.

Together with the well documented success of spatial auxiliary tasks in
computer vision, this makes auxiliary tasks based on the local Moran’s I
well motivated by both spatial theory and machine learning research. Recent
research further highlights the importance of learning at multiple resolutions
to support a comprehensive understanding of spatial processes [138, 165, 193].
Lastly, the local Moran’s I (and the multi-resolution variant) can be constructed
for any numerical input, and can thus be seamlessly integrated in a broad range
of learning settings and with arbitrary neural network architectures. This
requires adding a new prediction head for each auxiliary task to the model.
A neural network with one primary and three auxiliary tasks is comprised of
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a set of shared neural network layers (used for all tasks) and four different
prediction heads–task-specific neural network layers that predict the outcomes
of each task (this is also pictured in Figure 4.2).

With our experiments, we focus on two distinct settings: generative spatial
modelling using GANs [64], and predictive spatial modelling in the form of
spatial interpolation. To outline the application of our proposed auxiliary task
approach, we introduce the GAN example in detail–the predictive modelling
formulation follows from this straightforward. To briefly recap, GANs are a
family of generative models comprised of two neural networks, a Generator
G that produces fake data and a Discriminator D that seeks to distinguish
between real and fake data. These two networks are agents in a two-player
game, where G learns to produce synthetic data samples that are faithful
to the true data generating process, and D learns to separate real from fake
samples, thus pushing G to produce increasingly realistic synthetic data. We
also need to briefly recap the GAN loss functions here, as we modify it later
on in this chapter. It is given as given as:

min
G

max
D
LGAN (D, G) = Ex∼pdata(x)

[
log D(x)

]
+

Ez∼pz(z)
[
log(1−D(G(z)))

]
,

(4.4)

consisting of the Discriminator and Generator losses

L(D)
GAN = max

D
[log(D(x)) + log(1−D(G(z)))], (4.5)

L(G)
GAN = min

G
[log(D(x)) + log(1−D(G(z)))]. (4.6)

Our auxiliary task approach augments the Discriminator with a loss based
on the Moran’s I embeddings of the real and the fake data:

L(D)
AT = max

D
[log(D(I(x))) + log(1−D(I(G(z))))], (4.7)

so that the composite loss for N auxiliary tasks (single- or multi-resolution) is
given as:

min
G

max
D
LMRES−MAT (D, G) = LGAN (D, G)+

λ(L(D)
AT1

+ · · ·+ L(D)
ATN

).
(4.8)

Both loss functions use a customary weight hyper-parameter λ for the aux-
iliary losses. Alternatively, we could fit separate weights for each auxiliary task.
The approaches are further illustrated in Figure 4.2. Integrating the auxiliary
tasks into predictive models for spatial interpolation is more straightforward:
We simply let a regressor f predict the (multi-resolution) local Moran’s I of
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(MAT). The Discriminator learns to distinguish
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the real and fake data. The auxiliary task loss
is weighted by the factor λ. 

b) GAN with Multi-Resolution Moran's Auxiliary Task
(MRES-MAT). The Discriminator learns to distinguish
real and fake data and the Moran's I of the real and fake
data at different coarsened resolution. The auxiliary task
losses are weighted by the factor λ. 
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Figure 4.2: GAN with spatially explicit auxiliary tasks, using the Moran’s I
(a) and multi-resolution Moran’s I (b) embeddings in the Discriminator. The
discriminator architectures comprise the shared and task-specific layers of the
auxiliary learning framework.

the output, I(y) ∼ f(I(x)), simultaneously with the main task y ∼ f(x).

4.2.3 Loss Balancing Using Task Uncertainty

In addition to the hard loss weight λ outlined above, we also test a setting for
automatically learning the loss weight of main and auxiliary tasks. For this,
we follow the approach conceptualised by Cipolla et al. [32] and use each task’s
homoskedastic uncertainty to inform the loss weight. To formalise this, Cipolla
et al. [32] define a probabilistic multi-task regression problem with N tasks
and likelihood

p(y1, . . . , yN |f(x)) = p(y1|f(x)) . . . p(yN |f(x)), (4.9)

Here, y1, . . . , yN are the main and auxiliary model outputs and x is the
model input. Using the maximum likelihood method, the minimisation objective
of the multi-task regression is minL(σ1, . . . , σN ):

= − log p(y1, ..., yN |f(x))

= 1
2σ2

1
L1 + · · ·+ 1

2σ2
N

LN +
N∑

i=1
log σi,

(4.10)

Here, σ1, . . . , σN are the model noise parameters. Minimising this objective
can be interpreted as learning the relative weight of each task’s contribution to
the composite loss. The noise is kept from decreasing infinitely by the last term
of the loss, which serves as a regulariser. This loss constitutes the objective we
use for our predictive modelling task. However, no approach for uncertainty
weighted auxiliary task GANs exists. We hence propose an extension to the
auxiliary GAN loss outlined in the previous section: Instead of using a fixed
auxiliary task weight λ, we augment both main and auxiliary discriminator
losses with uncertainty weights, so that
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min
G

max
D
LMRES−MAT (D, G) = L(G)

GAN +

( 1
2σ2

1
L(D)

AT1
+ · · ·+ 1

2σ2
N

L(D)
ATN

+
N∑

i=1
log σi).

(4.11)

This constitutes the first adaption of the uncertainty task balancing prin-
ciples to the multi-task GAN family. In the following experiments, we report
results from both fixed weight parameters λ and uncertainty weights. Through-
out rigorous experiments, we find weights of λ = [0.1, 0.01] to be particularly
helpful and hence use these throughout our experiments. We use auxiliary
learning settings with hard-parameter sharing, where the top layers of the
respective models are task-specific. For the GAN experiment, just the last
layer is task-specific, and for the interpolation experiment the last two layers
are task specific.

Having outlined our approach for GANs in detail, the adaptation of SXL
to predictive spatial models is trivial: Just as with the GAN discriminator, a
second prediction head is added to the predictive model (e.g. a neural network
regressor for spatial interpolation), aiming to predict the (multi-resolution)
local Moran’s I embedding of the output in parallel to the main task. The losses
of both tasks are then combined the same way as for the GAN discriminator,
using either a hard weighting parameter or uncertainty weights, as outlined in
Equation 4.10.

4.3 Experiments

4.3.1 Experiment 1: Generative Spatial Modelling

Model Toy PetrelGrid DEM TreeCanopy
GAN [64] 0.0934 0.4106 0.1120 0.1138
GAN-MAT UW 0.1077 0.4860 0.1814 0.1132
GAN-MRES-MAT UW 0.0917 0.4014 0.1180 0.1038
DCGAN [144] 0.1534 0.2993 0.0591 0.0654
DCGAN-MAT UW 0.2319 0.3049 0.0591 0.1009
DCGAN-MRES-MAT UW 0.0938 0.2793 0.0612 0.0635
EDGAN [209] 0.0269 0.2909 0.0499 0.0322
EDGAN-MAT UW 0.0276 0.3061 0.0481 0.0316
EDGAN-MRES-MAT UW 0.0241 0.2971 0.0469 0.0314

Table 4.1: Test MMD scores (lower is better) of different GAN configurations.
We compare synthetic samples from these generators to held-out test data
to compute the scores. Shown are models trained with uncertainty weighted
auxiliary tasks.

Selection & Evaluation: In our first experiment, we want to examine
whether our proposed method can improve the learning of spatial data gener-
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Real EDGAN
EDGAN MRES 

 MAT UW

(a) PetrelGrid: Our
MRES MAT model
produces synthetic data
with smoother edges
compared to the baseline.
We can further see that
MRES MAT is less
prone to producing
checkerboard artifacts.

Real DCGAN
DCGAN MRES 

 MAT UW

(b) DEM : Again, we can
observe that our MRES
MAT model reduces
checkerboard artifacts,
though the effect is
smaller and harder to
spot in this example.

Real EDGAN
EDGAN MRES 

 MAT UW

(c) TreeCanopy: We observe
that the baseline model
exhibits mode collapse,
where a certain pattern is
reproduced in every
generated sample. This
effect is mitigated by our
MRES MAT model.

Figure 4.3: Example images highlighting the positive effects of MAT / MRES
MAT on different GAN architectures, across different datasets.

Model Toy PetrelGrid DEM TreeCanopy
GAN [64] 0.0934 0.4106 0.1120 0.1138
GAN-MAT λ = 0.1 0.0994 0.4319 0.1028 0.1140
GAN-MAT λ = 0.01 0.1125 0.3965 0.1034 0.0972
GAN-MRES-MAT λ = 0.1 0.0922 0.4394 0.1086 0.1221
GAN-MRES-MAT λ = 0.01 0.1133 0.3989 0.0983 0.1026
DCGAN [7] 0.1534 0.2993 0.0591 0.0654
DCGAN-MAT λ = 0.1 0.2360 0.2858 0.0569 0.0692
DCGAN-MAT λ = 0.01 0.1494 0.2977 0.0578 0.0596
DCGAN-MRES-MAT λ = 0.1 0.2147 0.2828 0.0590 0.0602
DCGAN-MRES-MAT λ = 0.01 0.2154 0.2868 0.0576 0.0640
EDGAN [209] 0.0269 0.2909 0.0499 0.0322
EDGAN-MAT λ = 0.1 0.0289 0.2973 0.0460 0.0316
EDGAN-MAT λ = 0.01 0.0269 0.3012 0.0467 0.0319
EDGAN-MRES-MAT λ = 0.1 0.0253 0.2676 0.0482 0.0317
EDGAN-MRES-MAT λ = 0.01 0.0247 0.2898 0.0438 0.0321

Table 4.2: Test MMD scores (lower is better) of different GAN architectures.
We compare synthetic samples from these generators to held-out test data to
compute the scores. Shown are models trained with hard auxiliary task weights
λ.

ating processes. We generate synthetic data from several types of GANs, with
and without including the Moran’s I auxiliary tasks, and compare how faithful
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the generated samples are compared to the true distribution of samples. To
assess model quality, we use the Maximum Mean Discrepancy (MMD) metric
[21], a distance measure between distributions based on mean embeddings
of the features. For data distributions P and Q, the MMD is defined as
MMD(P, Q) = ||µP − µQ||Rd . The empirical MMD for random variables xi

and yi of length n is given as

M̂MD
2

= 1
n(n− 1)

∑
i ̸=j

k(xi, xj)+

1
n(n− 1)

∑
i ̸=j

k(yi, yj)− 2
n2

∑
i,j

k(xi, yj),
(4.12)

where k : X × X represents a positive-definite kernel—in our case a radial
basis function (RBF) kernel. The more similar the data distributions P and
Q are, the closer the MMD metric gets to 0. A lower MMD score between
samples of real and synthetic data thus indicates higher quality of the synthetic
samples. As GAN training is notoriously difficult and prone to mode collapse
and other issues, we opt for the following training and selection procedure to
ensure our findings are robust: For each architecture and training strategy
combination (e.g. EDGAN MRES MAT UW) we train ten cycles of GANs.
For each cycle, we save the generator which optimises the MMD metric on a
held-out validation set (separate from the training data and from the test data
used for evaluation), rather than choosing the final model after all training
iterations. We then choose the one of these ten generators that optimises the
MMD metric on the validation set, and finally evaluate the MMD score of that
generator on a separate, held-out test set. In short, this training process allows
each architecture and training strategy combination ten cycles to train the best
possible generator (as measured on the validation set), which is then evaluated
on the test set and compared to all other combinations of architecture and
training strategy.

Data: As our task is different from the experiments presented in Chapter
3, we select four new datasets for our experiments: (1) A toy dataset of 7000
32×32 tiles with a Gaussian peak and a Gaussian dip, where the position of the
dip mirrors the position of the peak. (2) The PetrelGrid seabed relief dataset
[111], processed into a grid of 195 32× 32 tiles. (3) Digital Elevation Model
(DEM ) data of the area surrounding Lake Sunapee (NH, USA), as found in
the elevatr R package 1, processed into a grid of 1156 32× 32 tiles. (4) Tree
canopy data of the University of Maryland’s “Global Tree Change” project
[67], processed into a grid of 1800 64 × 64 tiles. These datasets are chosen
to represent a range of different geospatial patterns occurring in real-world
physical environments and relate to important modelling challenges in the

1See: https://github.com/jhollist/elevatr
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earth sciences, ecology, or geography. For more information on the data used,
including summary statistics, please refer to Appendix B.

Benchmark Models: The modularity of our proposed auxiliary task
learning method allows us to test it on a range of different GAN models. We
chose the original GAN implementation, denoted here as GAN [64], consisting
of a Generator with four hidden linear layers, supported by Leaky ReLU and 1d

BatchNorm layers. The Discriminator has two hidden linear layers supported
by Leaky ReLU layers and one linear task-specific layer. DCGAN [144] consists
of a Generator with a linear initialization layer, followed by three hidden (de-
)convolutional layers, supported by ReLU and 2d BatchNorm layers. The
Discriminator contains two convolutional layers supported by Leaky ReLU and
2d BatchNorm layers, followed by one task-specific convolutional layer with a
final linear transformation.

Lastly, Encoder-Decoder GAN (EDGAN ),recently proposed by Zhu et al.
[209] and explicitly designed for geospatial applications, consists of an Encoder-
Decoder Generator, where the Encoder contains three convolutional layers,
supported by Leaky ReLU and 2d BatchNorm layers and the Decoder contains
three (de-)convolutional layers supported by ReLU layers. The Discrimin-
ator has five hidden convolutional layers suppoerted by Leaky ReLU and 2d

BatchNorm layers, followed by a last, task-specific convolutional layer.
All models are optimised using the same, traditional GAN objective lined

out in the previous section. We test all benchmark models with the single- and
multi-resolution Moran’s I auxiliary task (MAT / MRES-MAT) as well as
with fixed (λ) and uncertainty (UW) based task weights. For more details on
the experimental setup, including hyperparameters, please refer to Appendix
B.

Model Training: All models are trained using the binary cross entropy
criterion to compute losses. Optimization through backpropagation is conduc-
ted using the Adam algorithm with a learning rate of 0.001 and β values of
[0.5, 0.999]. Experiments with the Toy dataset run for 40 epochs, with the
PetrelGrid dataset for 500 epochs, with the DEM dataset for 100 epochs and
with the TreeCanopy dataset for 100 epochs. For more details on training,
please again refer to Appendix B.

Findings: Table 4.1 and 4.2 show the MMD scores of generators selected
according to the strategy outlined in the Evaluation & Selection paragraph.
Table 4.1 highlights results from the uncertainty weighting strategy, and Table
4.3 from the hard loss weights λ. We can see that for both strategies the
auxiliary task settings improve performance for most experiments, agnostic of
the underlying GAN architecture, by usually 3-10%. We believe the auxiliary
tasks support the learning process in two ways: (1) GAN Discriminators are
known to exhibit spare capacity (i.e., they can be too powerful), which can
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cause them to over-specialise, leading to worse generalisation performance
[68]—thus adding a second, closely correlated task should not pose a problem
but might help prevent over-specialisation in the bottom Discriminator layers.
(2) The losses stemming from the auxiliary tasks have a regularising effect
throughout training, further preventing Discriminator over-specialisation.

This leads to several beneficial effects, some even visually apparent, as
highlighted in Figure 4.3. Figure 4.3a shows how generators trained with
MRES MAT appear to be better at smoothing (but not over=smoothing)
spatial artifacts—residual, noisy spatial patterns and hard edges introduced
by the model—compared to the same GAN backbone trained without our
auxiliary task. Figure 4.3c shows two EDGANs, one trained with and one
trained without MRES-MAT. We observe that the model trained without the
auxiliary task exhibits “mode collapse”, a phenomenon common with GANs
where a Generator always produces the same image or some parts of the image
are always the same, while the Generator including the auxiliary task does
not exhibit this behavior. It is important to note that these examples are
not cherry-picked but represent a pattern we can observe throughout all our
experiments: the auxiliary tasks consistently improved model performance.

However, the optimal setting for applying the auxiliary task appears to
vary, both in terms of the task weighting strategy and using the simple MAT
versus the MRES-MAT. For example, while for the Vanilla GAN architecture,
single-resolution MAT with hard task weights seems superior, both DCGAN
and EDGAN appear to benefit especially from MRES-MAT with uncertainty
weights. We also observe cases where adding the auxiliary tasks with a partic-
ular weighting strategy massively increases the MMD score (e.g. Toy dataset,
GAN-MAT UW). This can happen when the auxiliary task “overpowers” the
main task, causing the Generator to produce synthetic Moran’s I embeddings.
This further justifies the generator selection strategy employed throughout our
experiments. Overall, our GAN experiments highlight that while our auxiliary
learning framework SXL generally improves performance, the best configuration
(with respect to MAT versus MRES MAT and weighting strategy) appears
to be application and data dependent.

Task weighting: Tables 1 and 2 show that models employing our MAT /
MRES MAT auxiliary tasks can reliably produce generators that outperform
naively trained models. Uncertainty weight models with MRES MAT repres-
ent the “winning” Generator in 9 of 12 cases. For the hard loss weights, we are
always able to find a combination of λ and MAT / MRES MAT that outper-
forms naive training. We thus conclude that while training strategies appear
to be highly data and model dependent, one can find a performance-increasing
setting in almost all cases. Here, the MRES MAT UW strategy seems to
be the safest bet, as it does not require further, manual weight parameter
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Figure 4.4: Training progression of generator and discriminator losses
(L(G),L(D)), main task uncertainty σ1 and auxiliary task uncertainties σ2, σ3, σ4
throughout an example training cycle of EDGAN MRES MAT UW using
DEM training data. The x-axis shows the respective loss and task uncertainty
values, the y-axis shows training steps. We can see that the main task un-
certainty (pink line) reaches a local minimum at around 5000 training steps,
increase thereafter and stabilize at a slightly higher level, indicating that the
discriminator has converged to a best possible solution.

Figure 4.5: Interpolation results on samples from the test set, across the
different benchmark models, presenting our CNN + MAT UW model. The
orange boxes highlight areas where the improvement over the benchmark
models becomes visually apparent.

tweaking. Figure 4.4 shows the losses and learned task uncertainties in an
example training cycle of an EDGAN MRES MAT UW model using the
DEM dataset. More details on all our data, model architectures and training
settings can be found in the Appendix.

4.3.2 Experiment 2: Predictive Spatial Modelling

Evaluation: In the second experiment, we tackle spatial interpolation, that
is, obtaining high-resolution spatial data from a low-resolution input. Spatial
interpolation is widely used in real world applications, for example with met-
eorological measurements [180], air quality assessment [197] or mobile sensing
[132]. It is a regression task and can be evaluated using the residual mean
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squared error (RMSE) between real and predicted high-resolution output. As
such, this task is comparable to image super-resolution, a popular task in
computer vision. Nevertheless, spatial interpolation is particularly focused on
reconstructing the spatial patterns of the output. We again train 10 models per
strategy and compare their performance when no model selection is used (final
model used for prediction on test set) and when model selection on a validation
set is applied, saving the 10 best models, one from each run. Again, this task
is different to the experiments in Chapter 3 and requires a new dataset.

Data: As a common use case in geography and ecology, we use hillshades
of DEM data from the National Ecological Observatory Network (NEOS) 2 for
the interpolation task. The data is pre-processed into a grid of 1674 64× 64
tiles (output) and a low-res 32× 32 version (input) by removing every second
row and column of the image matrix. For more information on the data used,
including summary statistics, please refer to AppendixB.

Benchmark Models: Spatial statistics provides a range of tools to tackle
interpolation problems. Commonly used methods we focus on here are: (1)
Bicubic interpolation (BicInt), commonly used for interpolating 2-d regular
grids, (2) Inverse Distance Weighting (IDW ) [157], a weighted rolling-average
approach, (3) Ordinary Kriging (OK) [33], spatial interpolation closely re-
lated to Gaussian Process regression and (4) Universal Kriging (UK ) [162], a
generalisation of OK assuming a polynomial trend model. We compare these
established methods to a simple CNN implementation with two hidden layers
(5). Again, the modularity of SXL allows us to simply plug-in our MAT by
having the CNN interpolate the spatial pattern and its Moran’s I embedding
from low to high resolution, making the last layers task-specific. In this set-
ting, we do not use the MRES MAT, as our experiments show that further
coarsening the already-reduced image is counterproductive. The CNN model
main tasks are optimised using MSE loss, while the auxiliary tasks use ℓ1 loss.
All CNN models consist of three convolutional layers, supported by ReLU and
2d BatchNorm layers. When applying the auxiliary tasks to the model, the
last two convolutional layers are made task-specific. For more details on the
experimental setup, please refer to Appendix B.

Model Training: All models are trained using the mean squared error
(MSE) criterion to compute losses. Optimization through backpropagation
is conducted using the Adam algorithm with a learning rate of 0.001 and β

values of [0.5, 0.999], running for 150 epochs. For more details, please refer to
Appendix B.

Findings: The results of our experiments are presented in Table 4.3 and
Figure 4.5. Here, the orange boxes indicate areas in which our improvements
become visible at close inspection. We can again see a positive effect of

2See: https://www.neonscience.org/da-viz-neon-lidar-co13flood-R
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RMSE
Model / Task 32→ 64

(no model selection) (model selection)
BicInt 0.0667 −
IDW 0.0693 −
OK 0.0801 −
UK 0.0796 −
CNN 0.0678(±0.0128) 0.0503(±0.0008)
CNN + MAT UW 0.0649(±0.0119) 0.0496(±0.0006)
CNN + MAT λ = 0.1 0.0665(±0.0118) 0.0516(±0.0018)
CNN + MAT λ = 0.01 0.0666(±0.0178) 0.0532(±0.0033)

Table 4.3: Model RMSE scores and their standard deviation on held-out test
data for the 32 → 64 interpolation task. The CNN scores are obtained by
averaging over 10 runs each, once taking the final trained model (no model
selection) and once selecting the best model according to the validation set
(model selection).

the MAT on the performance of the CNN model—outperforming all other
benchmarks. If no model selection is deployed, both hard loss weights and
uncertainty weights produce models that outperform the naively trained CNN.
MAT UW models provide the best average performance increase, of around
5%. If model selection is used, the MAT UW strategy outperforms the naive
CNN by about 1.5%. Both of these performance increases are statistically
significant, according to a paired t-test of the mean prediction scores. While
our improvements are small, they still are noteworthy as none of the underlying
neural network architectures have been changed. Rather, the improvements
can be attributed solely to the introduction of the auxiliary task, confirming
its usefulness over two different experiments.

Task weighting: Finding the optimal task weighting strategy appears
much less tricky as for generative modelling, as the MAT UW strategy prevails
in all interpolation experiments, whether model selection is applied or not.
We can thus conclude that the MAT UW both consistently and significantly
improves training. More details on all our data, model architectures and
training settings can be found in Appendix B.

4.4 Discussion

We now want to contextualise this chapter with respect to the literature on
geographic-explicit machine learning and the broader scope of this dissertation.
As geographic context has proven to be of relevance in many machine learning
applications [5, 12, 31, 195], core concepts from GIS and geography have
gradually attracted more attention in the machine learning community. While
methodologies for geospatial data and problems have previously used traditional
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machine learning approaches like tree-based models [81] or ensemble learners
[82], focus has recently switched more towards neural networks: for example,
Mai et al. [121] and Yin et al. [198] propose a vector embedding to capture
spatial context, inspired by word embeddings such as Word2Vec [126]. This is
extensively discussed in section 2.2.2.

But while these approaches focus more on learning of representations for
geospatial data, the techniques introduced in this chapter aim to integrate
geospatial domain expertise directly into the learning process on a downstream
tasks. Examples for such geographically explicit neural network models include
the following: Zammit-Mangion et al. [202] propose to model complex spatial
covariance patterns through injective warping functions, learned by a deep
net. And while there exist approaches for capturing spatial autocorrelation
in neural networks [206], the Moran’s I metric has previously not been used
explicitly for learning. More generally, geographic metrics describing spatial
phenomena have barely been used in neural network models–which we believe
is a missed opportunity.

In this chapter, we use auxiliary learning, an approach using multi-task
learning where we are only interested in the performance of a primary task.
Originally conceptualised by Suddarth and Kergosien [164], the authors propose
to provide learners with secondary tasks related to the main task. This can help
to improve training speed and performance of the primary task. In order for
this approach to work, the auxiliary task has to provide meaningful information
to the learner that synergises with the main objective. Examples of auxiliary
task learning can be found deep reinforcement learning, where this approach is
especially popular [48]. Steering a wheel can be improved using auxiliary tasks
related to image segmentation and optical flow estimation [73]. These auxiliary
tasks are already related to spatial perception, which is common when working
with image data: recent work has highlighted the applicability of pixel control
tasks [77] or depth estimation [130].

Auxiliary tasks have also been successfully deployed for generative modelling
with GANs: Auxiliary Classifier GAN (AC-GAN) [133] extends the original
GAN loss function by an auxiliary classifier to improve the fidelity of generated
images. However, this approach comes with complications. As recent work by
Gong et al. [62] notes, AC-GANs can lead to perfect separability–where the
GAN discriminator is easily winning the two-player game against the generator,
preventing efficient and balanced learning. Another use of spatial semantics
in an auxiliary task GAN setting is proposed by Wang and Gupta [188]: the
authors propose to generate surface normal maps, a 3D representation of the
2D image, and use these in an auxiliary task. In an explicit geospatial setting,
auxiliary tasks have been used in semantic visual localisation [155] and semantic
segmentation [27], in addition to dedicated spatial and spatio-temporal multi-
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task frameworks [192]. Nevertheless, to the best of our knowledge, measures
of spatial autocorrelation such as Moran’s I have never previously been used
in any kind of multi-task learning setting, be it for generative or predictive
spatial modelling.

This chapter builds on the findings of chapter 3, which showed us that
the Moran’s I metric can be a useful heuristic for selecting geospatial neural
network models. In this chapter, we take this idea a step further and directly
integrate the metric into neural network models, following the intuition of
auxiliary task learning. Again, we can show performance improvements on
different geospatial modelling tasks. Chapters 3 and 4 combined highlight the
applicability of an established tool in the GIS, Moran’s I, for improving neural
network models.

4.5 Summary

In this chapter, we introduce SXL, an auxiliary-task learning framework for
geospatial data using the local Moran’s I metric. Our experiments give some
insight into the way the auxiliary learning mechanism works, allowing us to
compare the method to related ideas in machine learning: First, as mentioned
before, we believe the auxiliary tasks to have a regularising effect on the learning
process, preventing models from overfitting on the primary task by forcing
them to follow “spatial rules”. Second, we believe the MRES MAT shares
the intuition of moment matching, as we seek to simultaneously minimise
the loss of one function at several coarsened resolutions. Third, the MRES
MAT also shares the same goal as recent developments in visual self-attention:
moving beyond the short distance spatial learning of convolutional layers and
accounting for longer distance spatial effects. We also make some empirical
observations with respect to the most important design choices of our models:
(1) The use of MAT vs. MRES MAT appears to depend on both the
input data and the model architecture used, with MRES MAT prevailing
in most cases. (2) The optimal auxiliary task weighting strategy varies across
generative and predictive modelling experiments, but in most cases uncertainty
weights appear to have the edge. As SXL shows performance improvements
over many different datasets and two different tasks (generative modeling and
spatial interpolation), our experiments further highlights its generalisability to
different tasks and application domains united by spatial dependence in the
data.

With SXL we propose the use of single- and multi-resolution measures of
local spatial autocorrelation for improving the learning of geospatial processes.
We introduce a novel, flexible multi-resolution version of the local Moran’s
I statistic using coarsened inputs. We demonstrate its integration as an
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auxiliary task into generative and predictive neural network models, using both
hard (static) and task uncertainty (automatically learned) loss weights. We
empirically show robust, consistent and significant performance gains of up
to 10% for generative spatial modelling and up to 5% for predictive spatial
modelling when using this strategy. We comment on the importance of the
exact configuration of the auxiliary tasks, especially choosing single- versus
multi-resolution auxiliary tasks and the weighting strategy for auxiliary losses.
This sensitivity to the best possible setting can be seen as one of the limitations
of SXL. Beyond, SXL is restricted to only one measure of spatial dependence,
the local Moran’s I metric. For certain applications or tasks, different metrics,
such as the extensions of Moran’s I presented in 2.1.4, might be better suited.
In the scope of this dissertation, this study is further evidence of the importance
of integrating domain expertise from GIS into neural network methods for
geospatial data.
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Chapter 5

Geographic Embedding
Learning for Graph Neural
Networks

5.1 Introduction

In this chapter, we move away from traditional neural networks, CNNs and
GANs towards a new class of models. While these approaches do not have
an intuition (or a limited one) to account for spatial dynamics in continuous
geographic data (e.g., latitude longitude coordinates), graph neural networks
(GNNs) can operate on spatial graphs obtained from such data. The recent
years have seen many applications leveraging GNNs for modeling tasks in the
geographic domain, such as inferring properties of a point-of-interest [210] or
predicting the speed of traffic at a certain location [28].

Nonetheless, as we show in this chapter, GNNs are not necessarily sufficient
for modeling complex spatial effects: spatial context can be different at each
location, which may be reflected in the relationship with its spatial neighbour-
hood. The study of spatial context and dependencies has attracted increasing
attention in the machine learning community, for example in work on spatial
context embedding [121, 198].

In this chapter, we seek to merge these streams of research. We propose the
positional encoder graph neural network (PE-GNN), a flexible approach for
better encoding spatial context into GNN-based predictive models. PE-GNN
is highly modular and can work with any GNN backbone. PE-GNN contains
a positional encoder (PE) [121, 177], which learns a contextual embedding
for point coordinates throughout training. The embedding returned by PE
is then concatenated with other node features to provide the training data
for the GNN operator. PE-GNN further predicts the Moran’s I metric of
spatial autocorrelation of the output as an auxiliary task in parallel to the main
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objective, expanding the approach proposed in chapter 4 to continuous spatial
coordinates. Lastly, we train PE-GNN by constructing a novel training graph,
based on k-nearest-neighbourhood, from a randomly sampled batch of points at
each training step. This forces PE to learn generalisable features, as the same
point coordinate might have different spatial context (neighbours) at different
training steps. Similarly, this training approach leads us to compute a “shuffled”
Moran’s I, implicitly nudging the model to learn a general representation of
spatial autocorrelation which works across varying neighbour sets. Over a range
of spatial regression tasks, we show that PE-GNN improves performance of
different GNN backbones in most settings, except when very little training
data is available.

The contributions of our study are as follows:

• We propose PE-GNN, a novel GNN architecture including a positional
encoder learning spatial context embeddings for each point coordinate to
improve predictions.

• We propose a novel way of training the positional encoder, distinct
from Mai et al. [121]. We use the output of PE concatenated with
other node features to predict an outcome variable. PE learns through
backpropagation on the main regression loss. Training PE thus takes
into account not only the eventual variable of interest, but also further
contextual information at the current location–and its relation to other
points.

• We expand the Moran’s I auxiliary task learning framework proposed in
chapter 4 for continuous spatial data.

• Our training strategy involves the creation of a new training graph at
each training step from the current, random point batch. This enables
learning of a more generalisable PE embedding and allows computation
of a “shuffled” Moran’s I, which accounts for different neighbours at
different training steps, thus overcoming the well-known scale sensitivity
of Moran’s I.

• To the best of our knowledge, PE-GNN is the first GNN based approach
that is competitive with Gaussian Processes on pure spatial interpolation
tasks, i.e., predicting a (continuous) output based solely on spatial co-
ordinates, as well as substantially improving GNN performance on both
spatial regression and spatial interpolation tasks.

The remainder of this chapter is structured as follows: Section 5.2 introduces
our methodology, including a detailed description of GNNs and neural network-
based geographic location embeddings. Section 5.3 presents our experiments on
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a range of real-world datasets, highlighting the benefits of PE-GNN. Section
5.4 discusses our work with respect to existing literature and the broader scope
of this dissertation. Section 5.5 summarises the chapter.

5.2 Methodology
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Figure 5.1: PE-GCN compared to the GCN baseline: PE-GCN contains a
(1) positional encoder network, learning a spatial context embedding through-
out training which is concatenated with node-level features and (2) an auxiliary
learner, predicting the spatial autocorrelation of the outcome variable simul-
taneously to the main regression task.

5.2.1 Graph Neural Networks with Geographic Data

We elaborate on our method using Graph Convolutional Networks (GCNs) as
an example backbone for our novel PE-GNN approach. Let us first define a
datapoint pi = {yi, xi, ci}, where yi is a continuous target variable (scalar),
xi is a vector of predictive features and ci is a vector of point coordinates,
mapping the datapoint into geographic space (e.g., latitude and longitude). We
use the great-circle distance dij = haversin(ci, cj) between point coordinates
to create a graph of all points P = {p1, . . . , pn} in the set. This can be done
either by using a k-nearest-neighbour approach or by drawing a boundary
radius around each coordinate to define each point’s neighbourhood and create
an adjacency matrix A. The graph G = (V, E) consists of a set of vertices
(or nodes) V = {v1, . . . , vn} and a set of edges E = {e1, . . . , em} as assigned
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by A. Each vertex i ∈ V has respective node features xi and target variable
yi. While the adjacency matrix A usually comes as a binary matrix, one can
account for different distances between nodes and use point distances dij or
kernel transformations thereof [6] to construct A. Now, let D define the degree
matrix and I the identity matrix of our graph G. We can then define the
normalised adjacency matrix Ā as:

Ā = D−1/2(A + I)D−1/2 (5.1)

As proposed by Kipf and Welling [90], a GCN layer can now be defined as

H(l) = σ(ĀH(l−1)Θ(l)), l = 1, . . . , L (5.2)

where σ describes an activation function (e.g., ReLU) and Θ(l) is a weight
matrix parameterising GCN layer l. The input for the first GCN layer H(0) is
given by the feature matrix X containing all node feature vectors x1, . . . , xn.
The assembled GCN predicts the output ŷ = GCN(X, ΘGCN ) parameterised
by ΘGCN .

5.2.2 Context-aware Spatial Coordinate Embeddings

In the traditional GCN setting, the only intuition for spatial context stems
from connections between nodes which allow for graph convolutions, akin to
pixel convolutions with image data. This restricts the capacity of the GCN to
capture spatial patterns in several ways:

• While defining good neighbourhood structures can be crucial for GCN
performance, this often comes down to somewhat arbitrary choices like
selecting the k nearest neighbours of each node. Without prior knowledge
on the underlying data, the process of setting the right neighbourhood
parameters can be difficult and require extensive testing. Furthermore,
a single value of k might not be best for all nodes: different locations
might be more or less dependent on their neighbours.

• Assuming that no underlying graph connecting point locations is known,
one would typically construct a graph using straight-line distance between
pairs of points. In many real world settings (e.g., points-of-interest along
a road network) this assumption is unrealistic and may lead to poorly
defined neighbourhoods.

• GCNs contain no intrinsic tool to transform point coordinates into a
different (latent) space that might be more informative for representing
the spatial structure, with respect to the particular problem the GCN is
trying to solve.
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As such, GCNs struggle with tasks that explicitly require learning of
complex spatial dependencies. For example, we show in our experiments that
simple GCNs are not able to solve simple spatial interpolation tasks, i.e.,
predicting a continuous outcome variable from the point coordinates only. We
propose a novel approach to overcome these difficulties, by devising a new
position encoder module, and learning a flexible spatial context encoding for
each geographic coordinate, motivated by recent advances in transformers and
spatial representation learning.

Given a batch of datapoints, we create the spatial coordinate matrix C
from individual point coordinates c1, . . . , cn and define a positional encoder
PE(C) = NN(ST (C, σmin, σmax), ΘP E), consisting of a sinusoidal transform
ST and a fully-connected neural network NN(ΘP E), parameterised by ΘP E .
Following the intuition of transformers [177] for geographic coordinates [121],
the sinusoidal transform is a concatenation of scale-sensitive sinusoidal functions
at different frequencies, so that

ST (C, σmin, σmax) =

[ST0(C, σmin, σmax); . . . ; STS−1(C, σmin, σmax)]
(5.3)

with S being the total number of grid scales and σmin and σmax set-
ting the minimum and maximum grid scale (comparable to the lengthscale
parameter of a kernel). The scale-specific encoder STs(C, σmin, σmax) =
[STs,1(C, σmin, σmax); STs,2(C, σmin, σmax)] processes the spatial dimensions v

(e.g., latitude and longitude) of C separately, so that

STs,v(C, σmin, σmax) =[
cos

(
x[v]

σmings/(S−1)

)
; sin

(
x[v]

σmings/(S−1)

)]
∀s ∈ {0, . . . , S − 1},∀v ∈ {1, 2},

(5.4)

where g = σmax
σmin

. The output from ST is then fed through the fully
connected neural network NN(ΘP E) to transform it into the desired vector
space shape, creating the coordinate embedding matrix Cemb.

5.2.3 Auxiliary Learning of Spatial Autocorrelation

A further particularity of geographic data is that it often exhibits spatial
autocorrelation: observations are related, in some shape or form, to their
geographic neighbours. We have already successfully integrated measures of
spatial autocorrelation into neural networks for discrete spatial data (images)
in chapter 4. Here, we want to expand this approach to continuous spatial
data.

Spatial autocorrelation can be measured using the Moran’s I metric of
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local spatial autocorrelation [2]. Moran’s I captures localised homogeneity
and outliers and thus functions as a detector of both spatial clustering and
spatial change patterns. Revisiting the formulation, let the Moran’s I measure
of spatial autocorrelation for our outcome variable yi be defined as:

Ii = (n− 1) (yi − ȳi)∑n
j=1,j ̸=i(yj − ȳj)2

n∑
j=1,j ̸=i

ai,j(yj − ȳj), (5.5)

where ai,j ∈ A denotes adjacency of observations i and j.
As proposed in chapter 4, predicting the Moran’s I metric of the output

can be used as auxiliary task during training. Auxiliary task learning [164] is
a special case of multi-task learning, where one learning algorithm tackles two
or more tasks at once. In auxiliary task learning, we are only interested in
the predictions of one task; however, adding additional, auxiliary tasks to the
learner might improve performance on the primary problem: the auxiliary task
can add context to the learning problem that can help solve the main problem.
This approach is commonly used, for example in reinforcement learning [48] or
computer vision [73, 77].

Translated to our GCN setting, we seek to predict the outcome Y and
its local Moran’s I metric I(Y) using the same network, so that [Ŷ, I(Ŷ)] =
GCN(X). As we note in chapter 4, the local Moran’s I metric is scale-sensitive
and, due to its restriction to local neighbourhoods, can miss out on longer-
distance spatial effects [45, 125]. But while in chapter 4 we propose to compute
the Moran’s I at different resolutions, the GCN setting allows for a different,
novel approach to overcome this issue.

Training of GCNs is often conducted using minibatches of points at each
training step. Rather than constructing the graph of training points a-priori,
we opt for a procedure where in each training step, nbatch points are sampled
from the training data as batch B. A graph with corresponding adjacency
matrix AB is constructed for the batch, along with the Moran’s I metric
of the outcome variable I(YB). This approach brings a unique advantage:
When training with (randomly shuffled) batches, points may have different
neighbours in different training iterations. The Moran’s I for point i can thus
change throughout iterations, reflecting a differing set of more distant or closer
neighbours. This also naturally helps to overcome Moran’s I scale sensitivity
without the need to compute the metric at different resolutions. Altogether,
we refer to this altered Moran’s I as “shuffled Moran’s I”.
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5.2.4 Positional Encoder Graph Neural Network (PE-GNN)

We now assemble the different modules of our method and introduce the
Positional Encoder Graph Neural Network (PE-GNN). The modular approach
allows for a seamless integration of the positional encoder and the spatial
autocorrelation auxiliary task with any graph neural network architecture.
Again, taking GCN as the backbone architecture, PE-GCN is constructed as
follows:

Assuming a batch B of randomly sampled points p1, . . . , pnbatch
∈ B, a spa-

tial graph is constructed from point coordinates c1, . . . , cnbatch
using k-nearest-

neighbourhood, resulting in adjacency matrix AB. The point coordinates are
then subsequently fed through the positional encoder PE(ΘP E), consisting of
the sinusoidal transform ST and a single fully-connected layer with sigmoid
activation, embedding the 2d coordinates in a customisable latent space, return-
ing vector embeddings cemb

1 , . . . , cemb
nbatch

= Cemb
B . The neural network allows for

explicit learning of spatial context, reflected in the vector embedding. We then
concatenate the positional encoder output with the node features, to create
the input for the first layer of our GCN as:

H(0) = concat(XB, Cemb
B ) (5.6)

The subsequent layers follow according to Equation 5.2.
To integrate the Moran’s I auxiliary task, we compute the metric I(YB)

for our outcome variable YB at the beginning of each training step according
to Equation 5.5, using spatial weights from AB. We then duplicate the last
layer of the GCN to predict both YB and I(YB):

ŶB = H(l)

I(ŶB) = H(l)
aux

(5.7)

The loss of PE-GCN can be computed with any regression criterion, for
example mean squared error (MSE):

L = MSE(ŶB, YB) + λMSE(I(ŶB), I(YB)) (5.8)

where λ denotes the auxiliary task weight. The final model is denoted as
MΘP E ,ΘGCN

. Our approach is outlined in Figure 5.1. Algorithm 3 describes a
training cycle.

PE-GNN, with any GNN backbone, helps to tackle the particular chal-
lenges of geographic patterns, as outlined in the previous sections:

• While our approach still includes the somewhat arbitrary choice of k-
nearest neighbours to define the spatial graph, the proposed positional
encoder network is not bound by this restriction, as it does not operate on
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Algorithm 3: PE-GCN Training
Parameters: M , hyper-parameter
for number of training steps (tsteps) do

Sample minibatch B of nbatch points with features XB,
coordinates CB and outcome YB;
Construct a spatial graph with adjacency matrix AB from
coordinates CB using k-nearest neighbours;
Using spatial adjacency AB, compute Moran’s I of output as
I(YB);
Predict outcome [ŶB, I(ŶB)] = MΘP E ,ΘGCN

(XB, CB);
Compute loss L(YB, I(YB), ŶB, I(ŶB), λ);
Update the parameters ΘGCN , ΘP E of model M using stochastic
gradient descent;

end
return M

the graph. This enables a separate learning of context-aware embeddings
for each coordinate, accounting for neighbours at any potential distance
within the batch.

• While the spatial graph used still relies on straight-line distances between
points, the positional encoder embeds latitude and longitude values in a
high-dimensional latent space. These high-dimensional coordinates are
able to reflect spatial complexities much more flexibly and, added as
node features, can communicate these throughout the learning process.

• Batched PE-GNN training is not conducted on a single graph, but a new
graph consisting of randomly sampled training points at each iteration.
As such, at different iterations, focus is put on the relationships between
different clusters of points. This helps our method to generalise better,
rather than just memorising neighbourhood structures.

• The differing training batches also help us to compute a “shuffled” version
of the Moran’s I metric, capturing autocorrelation at the same location
for different (closer or more distant) neighbourhoods.

5.3 Experiments

5.3.1 Data

We evaluate PE-GNN and baseline competitors on four real-world geographic
datasets of different spatial resolutions (regional, continental and global). As
our task is similar to the regression experiments from Chapter 3, we include
one of the datasets used there (California Housing) here. Nonetheless, we also
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chose some new datasets to highlight the applicability of PE-GNN across
different geospatial applications:

California Housing1: This dataset contains the prices of over 20, 000 Cali-
fornia houses from the 1990 U.S. census and was introduced by Kelley Pace
and Barry [86]. The regression task at hand is to predict house prices y using
features x (e.g., house age, number of bedrooms) and location c. California
housing is a standard dataset for assessment of spatial autocorrelation.

Election2: This dataset contains the election results of over 3, 000 counties in
the United States and was proposed by Jia and Benson [80]. The regression task
here is to predict election outcomes y using socio-demographic and economic
features (e.g., median income, education) x and county locations c.

Air temperature3: The air temperature dataset [72] contains the coordinates
of 3, 000 weather stations around the globe. For this regression task we seek to
predict mean temperatures y from a single node feature x, mean precipitation,
and location c.

3d Road4: The 3d road dataset [85] provides 3-dimensional spatial co-
ordinates (latitude, longitude, and altitude) of the road network in Jutland,
Denmark. The dataset comprises over 430, 000 points and can be used for
a regression task where altitude y is predicted using latitude and longitude
coordinates c. Note that this dataset does not contain any node features x, so
it is only used for the spatial interpolation task.

5.3.2 Baselines

We compare PE-GNN with four different graph neural network backbones:
The original GCN formulation, introduced by Kipf and Welling [90] and
outlined in the Methods section, graph attention mechanisms (GAT) [178]
and GraphSAGE [66]. Lastly, we use Kriging Convolutional Networks (KCN)
[6]. KCN differs from GCN primarily in two ways: it transforms the distance-
weighted adjacency matrix A using a Gaussian kernel and adds the outcome
variable and features of neighbouring points to the features of each node.
To avoid a data leak, test set points can only access neighbours from the
training set to extract these features. We compare the naive version of all
these approaches to the same four backbone architectures augmented with our
PE-GNN modules. We expect that the naive GCN, GAT and GraphSAGE

1Access via sklearn: https://scikit-learn.org/stable/modules/generated/
sklearn.datasets.fetch california housing.html

2Access via Github: https://github.com/JunwenBai/correlation-gnn; county locations
can be accessed via the US census: https://www2.census.gov/geo/docs/maps-data/data/
gazetteer/2020 Gazetteer/; a convenient downloader is contained with our code

3Access via Figshare: https://springernature.figshare.com/collections/
A global dataset of air temperature derived from satellite remote sensing and weather stations/
4081802

4Access via UCI: https://archive.ics.uci.edu/ml/datasets
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approaches are less capable of learning spatial dependencies in the data as
they are restricted to capturing effects at the pre-defined neighborhood scale
given by the input graph. PE-GNN on the other hand has the capacity to
learn location-specific context embeddings which, in theory, should allow it
to spatial effects across the whole dataset and hence to improve performance.
Beyond GNN-based approaches, we also compare PE-GNN to the most
popular method for modeling continuous spatial data: Gaussian processes.
For all approaches, we compare a range of different training settings and
hyperparameters, as discussed below.

5.3.3 Experimental Setup

To allow for a fair comparison between the different GNN approaches, we
equip all models with the same architecture, consisting of two GCN / GAT /
GraphSAGE layers with ReLU activation and dropout, followed by a final linear
layer as regression head. The KCN model also uses GCN layers, following the
author specifications.For the auxiliary task setting, the final fully-connected
layer is duplicated and used task-specific. We test four different auxiliary
task weights λ = {0, 0.25.0.5, 0.75}, where λ = 0 implies no auxiliary task.
The positional encoder contains the sinusoidal transforms, followed by three
fully-connected layers with Tanh activation functions (except the last layer) to
project the output into the desired vector space. Spatial graphs are constructed
assuming k = 5 nearest neighbours, following results from previous work
[6, 80] and our own rigorous testing. We include a sensitivity analysis of the k

parameter and different batch sizes in our results section. Training for the GNN
models is conducted using PyTorch [139] and PyTorch Geometric [46]. We use
the Adam algorithm to optimise our models [89] and the mean squared error
(MSE) as loss function. Gaussian process models (exact and approximate) are
trained using GPyTorch [55]. Due to the size of the dataset, we only provide
an approximate GP result for 3d Road. All training is conducted on single
CPUs via Google Colab.

5.3.4 Results

We test our methods on two tasks: Spatial Interpolation, predicting outcomes
from spatial coordinates alone, and Spatial Regression, where additional node
features are available. The results of our experiments are shown in Table 5.1
and 5.2. We evaluate both models using the mean squared error (MSE) and
mean absolute error (MAE) metrics. Figure 5.2 exemplary shows predictions
as well as test error curves for the California Housing dataset. We also show
prediction confidence intervals in figure 5.3

For the spatial interpolation task, we observe that the PE-GNN approaches
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(a) A scatterplot of real values and predictions using GraphSAGE and PE-GraphSAGE.
X- and y-axis represent latitude and longitude locations of the observations respectively.
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(b) Test error curves of GCN, GAT and GraphSAGE based models, measured by the
MSE metric on the y-axis.

Figure 5.2: Visualising predictive performance on the California Housing
dataset.

Model Cali. Housing Election Air Temp. 3d Road
MSE MAE MSE MAE MSE MAE MSE MAE

GCN [90] 0.0558 0.1874 0.0034 0.0249 0.0225 0.1175 0.0169 0.1029
PE-GCN λ = 0 0.0161 0.0868 0.0032 0.0241 0.0040 0.0432 0.0031 0.0396
PE-GCN λ = 0.25 0.0155 0.0882 0.0032 0.0236 0.0037 0.0417 0.0032 0.0416
PE-GCN λ = 0.5 0.0156 0.0885 0.0031 0.0241 0.0036 0.0401 0.0033 0.0421
PE-GCN λ = 0.75 0.0160 0.0907 0.0031 0.0240 0.0040 0.0429 0.0033 0.0424
GAT [178] 0.0558 0.1877 0.0034 0.0249 0.0226 0.1165 0.0178 0.0998
PE-GAT λ = 0 0.0159 0.0918 0.0032 0.0234 0.0039 0.0429 0.0060 0.0537
PE-GAT λ = 0.25 0.0161 0.0867 0.0032 0.0235 0.0040 0.0417 0.0058 0.0530
PE-GAT λ = 0.5 0.0162 0.0897 0.0032 0.0238 0.0045 0.0465 0.0061 0.0548
PE-GAT λ = 0.75 0.0162 0.0873 0.0032 0.0237 0.0041 0.0429 0.0062 0.0562
GraphSAGE [66] 0.0558 0.1874 0.0034 0.0249 0.0274 0.1326 0.0180 0.0998
PE-GraphSAGE λ = 0 0.0157 0.0896 0.0032 0.0237 0.0039 0.0428 0.0060 0.0534
PE-GraphSAGE λ = 0.25 0.0097 0.0664 0.0032 0.0242 0.0040 0.0418 0.0059 0.0534
PE-GraphSAGE λ = 0.5 0.0100 0.0682 0.0033 0.0239 0.0043 0.0461 0.0060 0.0536
PE-GraphSAGE λ = 0.75 0.0100 0.0661 0.0032 0.0241 0.0036 0.0399 0.0058 0.0541
KCN [6] 0.0292 0.1405 0.0367 0.1875 0.0143 0.0927 0.0081 0.0758
PE-KCN λ = 0 0.0288 0.1274 0.0598 0.2387 0.0648 0.2385 0.0025 0.0310
PE-KCN λ = 0.25 0.0324 0.1380 0.0172 0.1246 0.0059 0.0593 0.0037 0.0474
PE-KCN λ = 0.5 0.0237 0.1117 0.0072 0.0714 0.0077 0.0664 0.0077 0.0642
PE-KCN λ = 0.75 0.0260 0.1194 0.0063 0.0681 0.0122 0.0852 0.0110 0.0755
Approximate GP 0.0353 0.1382 0.0031 0.0348 0.0481 0.0498 0.0080 0.0657
Exact GP 0.0132 0.0736 0.0022 0.0253 0.0084 0.0458 - -

Table 5.1: Spatial Interpolation: Test MSE and MAE scores from four different
datasets, using four different GNN backbones with and without our proposed
architecture.

consistently and vastly improve performance for all four backbone architectures
across the California Housing, Air Temperature and 3d Road datasets and by
a small margin for the Election dataset.
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Model Cali. Housing Election Air Temp.
MSE MAE MSE MAE MSE MAE

GCN 0.0185 0.1006 0.0025 0.0211 0.0225 0.1175
PE-GCN λ = 0 0.0143 0.0814 0.0026 0.0213 0.0040 0.0432
PE-GCN λ = 0.25 0.0143 0.0816 0.0026 0.0213 0.0037 0.0417
PE-GCN λ = 0.5 0.0143 0.0828 0.0027 0.0217 0.0036 0.0401
PE-GCN λ = 0.75 0.0147 0.0815 0.0027 0.0219 0.0040 0.0429
GAT 0.0183 0.0969 0.0024 0.0211 0.0226 0.1165
PE-GAT λ = 0 0.0144 0.0836 0.0028 0.0218 0.0039 0.0429
PE-GAT λ = 0.25 0.0141 0.0817 0.0028 0.0219 0.0040 0.0417
PE-GAT λ = 0.5 0.0155 0.0851 0.0030 0.0225 0.0045 0.0465
PE-GAT λ = 0.75 0.0145 0.0824 0.0029 0.0223 0.0041 0.0429
G.SAGE 0.0131 0.0798 0.0007 0.0127 0.0219 0.1153
PE-G.SAGE λ = 0 0.0099 0.0667 0.0011 0.0154 0.0037 0.0422
PE-G.SAGE λ = 0.25 0.0098 0.0648 0.0010 0.0152 0.0029 0.0381
PE-G.SAGE λ = 0.5 0.0098 0.0679 0.0012 0.0157 0.0037 0.0445
PE-G.SAGE λ = 0.75 0.0114 0.0766 0.0012 0.0152 0.0038 0.0459
KCN 0.0292 0.1405 0.0367 0.1875 0.0143 0.0927
PE-KCN λ = 0 0.0288 0.1274 0.0598 0.2387 0.0648 0.2385
PE-KCN λ = 0.25 0.0324 0.1380 0.0172 0.1246 0.0059 0.0593
PE-KCN λ = 0.5 0.0237 0.1117 0.0072 0.0714 0.0077 0.0664
PE-KCN λ = 0.75 0.0260 0.1194 0.0063 0.0681 0.0122 0.0852
Approximate GP 0.0195 0.1008 0.0050 0.0371 0.0481 0.0498
Exact GP 0.0036 0.0375 0.0006 0.0139 0.0084 0.0458

Table 5.2: Spatial Regression: Test MSE and MAE scores from three different
datasets, using four different GNN backbones with and without our proposed
architecture.

For the spatial regression task, we observe that the PE-GNN approaches
consistently and substantially improve performance for all four backbone archi-
tectures on the California Housing and Air Temperature datasets. Performance
remains unchanged or decreases by very small margins in the Election dataset,
except for the KCN backbone which benefits tremendously from the PE-GNN
approach, particularly with auxiliary tasks.

Our results are interesting in several ways: Generally, PE-GNN substan-
tially improves over baselines in regression and interpolation settings. Most
of the improvement can be attributed to the positional encoder, however the
auxiliary task learning also has substantial beneficial effects in some settings,
especially for the KCN models. The best setting for the task weight hyper-
parameter λ seems to heavily depend on the data, which confirms findings
from chapter 4. To our knowledge, PE-GNN is the first GNN-based learning
approach that can compete with Gaussian Processes on simple spatial inter-
polation baselines. For KCN models, which include neighbour information as
additional node features, we observe a proneness to overfitting. As the authors
of KCN mention, this effect diminishes in large enough data domains [6]. For
example, KCNs are the best performing method on the 3d road dataset–by far
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Figure 5.3: MSE bar plots of mean performance and 2σ confidence intervals
obtained from 10 different training checkpoints.

our largest experimental dataset. We observe that in cases when KCN learns
well, PE-KCN can still improve its performance, as highlighted by the 3d
road experiments. The KCN experiments also highlight the strongest effects
of the Moran’s I auxiliary tasks: In cases when KCN overfits (Election, Cali.
Housing datasets), PE-KCN without auxiliary task (λ = 0) is not sufficient to
overcome the problem. However, adding the auxiliary task (λ = [0.25, 0.5, 0.75])
can mitigate most of the overfitting issue. This directly confirms a theory of
[93] on the beneficial effects of auxiliary learning of spatial autocorrelation.
We also confirm the finding from Chapter 4, that the ideal weighting of the
auxiliary tasks is highly data dependent and no one-size-fits-all solution ex-
ists. Throughout our experiments, PE-GNN provides a powerful and flexible
framework for learning with geographic coordinates. The positional encoder
allows for the learning of spatial context features to inform the downstream
task, while the Moran’s I auxiliary task helps to overcome potential overfitting
issues.

Lastly, Figure 5.4 highlights some results from our sensitivity analyses
with the k and nbatch (batch size) parameters. After rigorous testing, we opt
for k = 5-NN approach to create the spatial graph and compute the shuffled
Moran’s I across all models. We chose nbatch = 2048 for California Housing
and 3d Road datasets and nbatch = 1024 for the election dataset.
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Figure 5.4: Predictive performance, measured by MAE and MSE, of PE-GCN
and PE-GAT models trained on the California Housing dataset, using different
values of k for constructing nearest-neighbour graphs and different batch sizes
(bs).

5.4 Discussion

In this chapter we consider the problem of spatial regression modeling. Recall-
ing the background chapter (specifically section 2.1.5), this poses a distinct
challenge, as standard regression models (such as OLS) fail to address the
spatial nature of the data, which can result in spatially correlated residuals.
To address this, spatial lag models [4] add a spatial lag term to the regres-
sion equation that is proportional to the dependent variable values of nearby
observations, assigned by a weight matrix. Likewise, kernel regression takes
a weighted average of nearby points when predicting the dependent variable.
Nevertheless, the most popular off-the-shelf methods for modeling continuous
spatial data are based on Gaussian processes [37].

With the emergence of machine learning, there has been a rise of research
on applications of neural network models for spatial modeling tasks. More
specifically, GNNs are often used for these tasks with the spatial data repres-
ented graphically. Particularly, they offer flexibility and scalability advantages
over traditional spatial modeling approaches. Specific GNN architectures in-
cluding Graph Convolutional Networks [90], Graph Attention Networks [178]
and GraphSAGE [66] are powerful methods for inference and representation
learning with spatial data.

Recently, GNN approaches tailored to the specific complexities of geospatial
data have been developed. The authors of Kriging Convolutional Networks
[6] propose using GNNs to perform a modified kriging task. Hamilton et al.
[66] apply GNNs for a spatio-temporal Kriging task, recovering data from
unsampled nodes on an input graph. We look to extend this line of research
by providing stronger, explicit capacities for GNNs to learn spatial structures.
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Additionally, our proposed method is highly modular and can be combined
with any GNN backbone.

This chapter also addresses the problem of embedding geospatial context.
Through many decades of research on spatial patterns, a myriad of measures,
metrics, and statistics have been developed to cover a broad range of spatial
interactions. All of these measures seek to transform spatial locations, with
optional associated features, into some meaningful embedding, for example, a
theoretical distribution of the locations or a measure of spatial association.

A set of point locations in 2d-space may be distributed randomly, or may
follow some underlying spatial pattern. Spatial point processes are some of
the oldest methods of analysing spatial data and are a useful tool when point
locations depend on one another, e.g., in the case of epidemiological or ecological
data. Point processes are particularly popular for modeling geographic data, for
example Cox processes [1] and Hawkes processes [176]. Empirical observations
can be embedded using these point processes, for example, to make predictions
on future spatial spread. If we now assume that point locations also come with
a continuous feature value, the range of potential spatial effects and associated
metrics is vastly expanded. This includes metrics like the Moran’s I [2], which
is used here, or expansions, like local spatial heteroskedasticity [137] and local
spatial dispersion [189]. Measures of spatial autocorrelation have already been
shown to be useful for improving neural network models through auxiliary task
learning [93], model selection [95] and localised representation learning [51].

Beyond these traditional metrics, recent years have seen the emergence of
neural network based embeddings for geographic information. Wang et al. [182]
use kernel embeddings to learn social media user locations. Fu et al. [51] devise
an approach using local point-of-interest (POI) information to learn region
embeddings and integrate similarities between neighbouring regions to learn
mobile check-ins. Yin et al. [198] develop GPS2Vec, an embedding approach
for latitude-longitude coordinates, based on a grid cell encoding and spatial
context (e.g., tweets and images). Mai et al. [121] developed Space2Vec, another
latitude-longitude embedding without requiring further context like tweets or
POIs. Space2Vec transforms the input coordinates using sinusoidal functions
and then reprojects them into a desired output space using linear layers.
All of these studies highlight the potential of spatial coordinate embeddings
(with or without spatial context enrichment) for improving predictive models
for geographic data. Our findings in this chapter confirm the value of such
approaches.
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5.5 Summary

With PE-GNN, we introduce a flexible, modular new GNN-based learning
framework for geographic data. PE-GNN leverages recent findings in embed-
ding spatial context into neural networks to improve predictive models. Our
empirical findings confirm a strong performance, with PE-GNN approaches
consistently and substantially outperforming their naive GNN baselines. Our
experiments explore datasets from different domains (from weather data to
house prices) and at different spatial scales, from regional (e.g. California) to
global coverage. Altogether, our findings imply that PE-GNN generalises well
across application domains, spatial scales and underlying GNN operators. This
chapter also highlights once more how domain expertise from applied academic
disciplines like geography can help improve machine learning models for the
particular data that is common in these disciplines. Nonetheless, PE-GNN
also comes with some limitations. Most importantly, PE-GNN still relies on
the definition of a spatial graph, which comes with many assumptions (e.g.
regarding the distance measure) on the spatial structure of the data. This can
be particularly challenging in applications where we lack domain expertise to
construct these distances, and ad-hoc methods like Euclidean distance are only
poor approximations of the true distances (e.g. when considering the road
network). Lastly, PE-GNN is currently restricted to the processing of latitude
longitude coordinate pairs and has not yet been tested on other coordinate
systems or mapping schemes.

With respect to the broader scope of this dissertation, this chapter discusses
the use of both functional embeddings (like the Moran’s I) and parametric
neural-network embeddings (like Space2Vec) for improving GNN models in the
geospatial domain. Our experiments show that learning contextual features
from geographic coordinates allows GNNs to better incorporate information
on spatial dependencies, leading to better predictions.
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Chapter 6

Autoregressive Embedding
Loss for Spatio-temporal
GANs

6.1 Introduction

In this chapter, we expand the scope of our work from the spatial to the
spatio-temporal domain. Here, deep learning has found particularly successful
applications in the video domain, for example for trajectory forecasting, video
super-resolution or object tracking. Nevertheless, data observed over (discrete)
space and time can take many more shapes than just RGB videos: many of the
systems and processes governing our planet, from ocean streams to the spread
of viruses, exhibit complex spatio-temporal dynamics. As we have discussed
previously, current deep learning approaches often struggle to account for these
[148]. As such, there are many calls for more concerted research efforts aiming
to improve the capacity of deep neural networks for modelling earth systems
data. Recently, the emergence of physics-informed deep learning, discussed in
section 2.2.3, has reinforced the integration of physical constraints as a research
domain [87, 146, 187, 203].

In this chapter, we propose a novel GAN tailored to the challenges of spatio-
temporal complexities. We first devise a novel measure of spatio-temporal
association—SPATE—expanding on the Moran’s I measure of spatial auto-
correlation. SPATE uses the deviance of an observation from its space-time
expectation, and compares it to neighbouring observations to identify regions of
(relative) change and regions of (relative) homogeneity over time. We propose
three different approaches to calculate the space-time expectations, coming
with varying assumptions and advantages for different applications.

We then encode a SPATE-based embedding into COT-GAN [194] to formu-
late a new GAN framework, named SPATE-GAN. The motivation of choosing
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COT-GAN as the base model is that its principle of respecting temporal de-
pendencies in sequential modelling is in line with our intuition for SPATE;
see details in section 6.2. Lastly, we test our approach on a range of different
datasets. Specifically, we select data characterised by complex spatio-temporal
patterns such as fluid dynamics [179, 187], disease spread [24] or global surface
temperatures [160]. We observe that SPATE-GAN outperforms baseline mod-
els. This finding is particularly interesting as we do not change the architecture
of the existing COT-GAN backbone, implying that our performance gains can
be solely attributed to our novel SPATE-based embedding loss.

To summarise, the contributions of this chapter are as follows:

• We introduce SPATE, a new measure of spatio-temporal association,
by expanding the intuition of the Moran’s I metric into the temporal
dimension.

• We introduce SPATE-GAN, a novel GAN for complex spatio-temporal
data using SPATE to construct an embedding loss “nudging” the model
to focus on the learning of autoregressive structures. This is facilitated
through an embedding loss function based on the SPATE metric. To
harmonise this approach with the logic of causal optimal transport (COT)
that underlies COT-GAN training, we devise an instance of SPATE that
respects the sequentially of the input data, i.e. that is only calculated
using past time steps.

• We test SPATE-GAN against baseline GANs designed for image/video
generation on datasets representing fluid dynamics, disease spread and
global surface temperature. We show performance gains of SPATE-GAN
over the baseline models.

The remainder of this chapter is structured as follows: Section 6.2 introduces
a novel measure for spatio-temporal autocorrelation, SPATE. We then integrate
this metric into the loss function of video GANs to reinforce the learning of
spatio-temporal dependencies throughout training. Section 6.3 then showcases
experimental findings on a range of datasets with high real-world relevance.
Section 6.4 discusses this chapter, relevant literature and the contributions to
this dissertation. We then summarise the chapter in section 6.5.

6.2 Methodology

6.2.1 SPATE: Spatio-temporal Association

To build our new metric, let us start from the local Moran’s I metric. For a
static, discrete spatial pattern (e.g. a grid of pixels forming an image) consisting
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Figure 6.1: Illustrating the three proposed options to obtain spatio-temporal
expectations µit used in the computation of SPATE for single-channel data.

of continuous values x ∈ Rn where n ∈ N is the dimensionality of x, xi for
i ∈ 1, . . . , n represents the i’th pixel value on a regular grid.

The local Moran’s I statistic Ii is computed as follows:

Ii = (n− 1) zi∑n
j=1,j ̸=i z2

j

n∑
j=1,j ̸=i

wi,jzj (6.1)

,
where zi = xi − x̄ is the deviance of observation xi from the global mean x̄,

ni is the number of spatial neighbours of pixel xi, j indexes neighbours of xi for
j ∈ {1, ..., ni} and j ̸= i, and wi,j is a binary spatial weight matrix, indicating
spatial neighbourhood of observations i and j. Ii can be interpreted as a
measure of similarity to neighbouring pixels: positive values imply homogeneous
clusters, while negative values suggest outliers, change patterns or edges.

Now, let us assume that we observe a sequence of spatial patterns over time
t: x = (x1, ..., xT ) ∈ Rn×T where n is the dimensionality of xt at each time t

and T is the total time steps of the sequence. Of course, a naive adoption of
the approach above is simply to ignore the time component of a sequence and
compute the local Moran’s I values Iit around pixel i using mean values x̄t at
each time t. Unfortunately, this approach would strictly separate spatial and
temporal effects. In fact, the much more realistic assumption is that space and
time are not separable, but do in fact interact and form joint patterns. For this
reason, we expand the concept of Moran’s I for spatio-temporal expectations.

First, we follow the intuition outlined in Kulldorff et al. [107] and define
expected values of µit(x). We refer to this approach as Kulldorff spatio-temporal
expectation (”k”):

µ
(k)
it =

∑
j xjt

∑
t′ xit′∑

j

∑
t′ xjt′

. (6.2)

µ
(k)
it in Equation 6.2 involves using all spatial units (pixels) available at
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time step t and across all time steps at a single spatial unit (pixel position) i.
This computation of the spatio-temporal expectations assumes independence of
space and time, and thus the residual zit = xit − µ

(k)
it can be thought of as a

local measure of space-time interaction at pixel i and time t. Moreover, this
formulation of µit makes two critical assumptions: (1) Different time steps are
equally important, irrespective of how distant they are from the current time
step. (2) At each time step, we assume availability of the whole time series
(i.e. looking into the future is possible). We can modify the computation of µit

by imposing alternative assumptions.
First, assuming that distant time steps have less significant impact on the

current time step, we can integrate temporal weights into the computation,
and apply decreasingly lower weights to more distant time steps. For example,
one can consider an exponential kernel:

µ
(kw)
it =

∑
j xjt

∑
t′ btt′xit′∑

j

∑
t′ btt′xjt′

, (6.3)

where btt′ = exp(−|t− t′|/l) and l is the lengthscale of the exponential kernel.
We refer to this approach as Kulldorff-weighted spatio-temporal expectation
(“kw”).

Second, we can restrict the computation of µit at time step t to only account
for time steps < t, so that the expectation at each time step is independent of
future observations. Thus, the computation respects the generating logic of
sequential data. We refer to this last approach as Kulldorff-sequential-weighted
spatio-temporal expectation (“ksw”):

µ
(ksw)
it =

∑
j xjt

∑
t′<t btt′xit′∑

j

∑
t′<t btt′xjt′

. (6.4)

Note that for the first time step t = 0, we cannot access past time steps to
calculate spatio-temporal expectations µ

(ksw)
i0 .

We can now simply plug in our new spatio-temporal expectations into
the Moran’s I metric at time t by replacing spatial only expectations with
a spatio-temporal expectation of our choice. As such, we define our novel
measure of spatio-temporal association (SPATE),

Sit(x, w) = (ni − 1) zit∑nx
j=1 z2

jt

nx∑
j=1,j ̸=i

wi,jzjt (6.5)

where zit = xit − µit and µit can be any option from µ
(k)
it , µ

(kw)
it and µ

(ksw)
it .

When using µ
(ksw)
it , SPATE does not return values for t = 0, as no previous

time steps are available to calculate spatio-temporal expectations. See Fig 6.1
for an illustration of the three proposed options.
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SPATE measures spatio-temporal autocorrelation at the input resolution.
Its behavior can be closely related to that of the Moran’s I metric. While
Moran’s I evaluates the deviance zi between each pixel and the spatial ex-
pectation, SPATE does so by using the spatio-temporal expectation zit. Like
Moran’s I, SPATE acts as a detector of spatio-temporal clusters and change
patterns. Like Moran’s I, SPATE identifies positive and negative space-time
autocorrelation, i.e. homogeneous areas of similar behavior and outliers that
behave differently from their immediate neighbourhood. The difference between
Moran’s I and SPATE is that the later explicitly captures space-time interac-
tions. For example, if pixel xi and all other data points (not just its neighbours)
are increased at a given time step t, Moran’s I at time t (for all points) will
be high, but SPATE will not be. SPATE of xit will be high if (a) pixel xit

is high compared to its expectation at the same time t, (b) its neighbours
are high compared to their expectations, while (c) its non-neighbours are not
particularly high compared to their expectations.

In the kw and ksw settings, the lengthscale parameter l governs whether
the metric captures longer or shorter term temporal patterns. For example, if
pixel xit and its neighbours increase slowly over time, that change will only
cause SPATE to be high for larger lengthscales l, while smaller l values imply
that current values are compared to those that are close in time. As such, the
lengthscale determines what changes are considered ”slow” (incorporated into
the mean, not detected as space-time interaction) and ”fast” (current values are
different from the mean, detected as space-time interaction). The ksw setting
further allows for scenarios where we might wish to compute the metric based
on previous time-steps alone, i.e. to preserve sequential logic. The differences
between the Moran’s I and SPATE, in its different configurations, are also
highlighted in Figure 6.2.

Figure 6.2: The SPATE metric in its different forms computed for an example
from the LGCP datasets. While SPATEk and SPATEkw are visually undis-
tinguishable, SPATEksw changes as increasingly more past time steps become
available, converging to SPATEkw at time T . We can also observe how the
Moran’s I metric remains static in time, while all versions of SPATE behave
dynamically in space and time.
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6.2.2 COT-GAN

Built upon the theory of Causal Optimal Transport (COT), COT-GAN was
introduced by Xu et al. [194] as an adversarial algorithm to train implicit
generative models for sequential learning. COT can be considered as a maxim-
isation over the classical (Kantorovich) optimal transport (OT) with a temporal
causality constraint, which restricts the transporting of mass on the arrival
sequence at any time t to depend on the starting sequence only up to time t.
This motivated us to design the spatio-temporal expectation µksw

it in order to
respect the nature of sequential data that are generated in an autoregressive
manner.

In sequential generation, we are interested in learning a model that produces
y = (y1, ..., yT ) ∈ Rn×T to mimic x = (x1, ..., xT ) ∈ Rn×T . Given two probabil-
ity measures µ, ν defined on Rn×T , and a cost function c : Rn×T × Rn×T → R,
the causal optimal transport of µ into ν is formulated as:

WK
c (µ, ν) := inf

π∈ΠK(µ,ν)
Eπ[c(x, y)], (6.6)

where ΠK(µ, ν) is the set of probability measures π on Rn×T × Rn×T with
marginals µ, ν, which also satisfy the constraint:

π(dyt|dx1:T ) = π(dyt|dx1:t) for all t = 1, · · · , T − 1. (6.7)

Such plans in ΠK(µ, ν) are called causal transport plans. Here c(x, y) is a
cost function that measures the loss incurred by transporting a unit of mass
from x to y. WK

c (µ, ν) is thus the minimal total cost for moving the mass µ to
ν in a causal way.

In comparison, the (classic) OT is defined on Rn and differs from COT by
searching an optimal plan that leads to the least cost in a less restricted space
Π(µ, ν) which contains all transport plans:

Wc(µ, ν) := inf
π∈Π(µ,ν)

Eπ[c(x, y)]. (6.8)

COT-GAN constructed an adversarial objective by reformulating the COT
Equation 6.6 as below:

WK
c (µ, ν) = sup

cK∈CK(µ,c)
inf

π∈Π(µ,ν)
{Eπ[cK(x, y)]}, (6.9)

where CK(µ, c) is a special family of costs that encode the causality con-
straint, see Appendix C for details. Note that the inner optimisation problem
is equivalent to OT in Equation 6.8 with a specific class of cost function, i.e.,
WcK(µ, ν) = infπ∈Π(µ,ν){Eπ[cK(x, y)]}.
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In the implementation of COT-GAN, learning is done via stochastic gradient
descent (SGD) on mini-batches. Given a distribution ζ on some latent space
Z, the generator gθ is a function that maps a latent variable z ∼ ζ to the
generated sequence y in the path space. Given a mini-batch of size m from
training data {xd

1:T }mi=1 and that from generated samples {yd
1:T }mi=1, we define

the empirical measures for the mini-batches as:

µ̂ := 1
m

m∑
d=1

δxd
1:T

, ν̂θ := 1
m

m∑
d=1

δyd
1:T

, (6.10)

where ν̂θ incorporates the parameterisation of gθ.
Thus, the duality of COT given by Equation 6.9 between the empirical

measures of two mini-batches can be written as:

WK
c (µ̂, ν̂θ) = sup

cK∈CK(µ̂,c)
WcK(µ̂, ν̂θ). (6.11)

Computing Equation 6.11 involves solving the optimisation problem of
classic OT. COT-GAN opted for the Sinkhorn algorithm, see [35, 57], and a
modified version of Sinkhorn divergence for an approximation. Here we have
the entropic-regularised OT defined as:

Wc,ε(µ, ν) := inf
π∈Π(µ,ν)

{Eπ[c(x, y)]− εH(π)}, ε > 0, (6.12)

where H(π) is the Shannon entropy of π.
Whilst the Sinkhorn divergence was also computed between two mini-

batches, the authors of COT-GAN noticed the bias was better reduced by the
mixed Sinkhorn divergence,

Ŵmix
c,ε (µ̂, ν̂, µ̂′, ν̂ ′) :=Wc,ε(µ̂, ν̂) +Wc,ε(µ̂′, ν̂ ′) (6.13)

−Wc,ε(µ̂, µ̂′)−Wc,ε(ν̂, ν̂ ′),

where µ̂ and µ̂′ represent the empirical measures corresponding to two
different mini-batches of the training data, and ν̂ and ν̂ ′ are the ones to the
generated samples.

Finally, we have the following objective function for COT-GAN:

inf
θ

sup
φ

{
Ŵmix

cK
φ ,ε(µ̂, ν̂θ, µ̂′, ν̂ ′

θ)− λ
[
pMφ2

(µ̂) + pMφ2
(µ̂′)

]}
, (6.14)
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where the role of discriminator is played by the cost function cK para-
meterised by φ, and pMφ2

is the martingale penalisation required for the
formulation of the new class of costs CK

φ , and φ2 is a subset of the discriminator
parameters φ, see details in Appendix C. Similar to common GAN training
scheme, the discriminator learns the worst-case cost cK

φ by maximising the
objective over φ, and the generator is updated by minimising it over θ.

To summarize the intuition of COT-GAN, let us picture the following
example: We want to generate global weather patterns based on training
data representing global surface temperatures over several days. A traditional
Wasserstein GAN would compute the loss by computing the Wasserstein dis-
tance between samples of real and generated data, agnostic of the sequential
nature of the data. COT-GAN on the other hand actively incorporates se-
quentiality: In the COT-GAN loss, the probability mass moved to the target
sequence at time t can only depend on the source sequence up to time t.
This formulation is beneficial for the learning of highly time-dependent data
generating processes, such as global surface temperatures. Weather patterns
are characterized by a myriad of time-dependent phenomena, such as high- and
low-pressure systems or extreme events such as hurricanes or tropical cyclones.
As such, COT-GAN provides an improved framework for modeling such data.

6.2.3 SPATE-GAN

In SPATE-GAN, we integrate our newly devised spatio-temporal metric into
the COT-GAN objective function. We compute the embedding for each xd

it

and yd
it in minibatches {xd

1:T }md=1 and {yd
1:T }md=1 by:

x̂d
it = Sit(xd

1:T , w) and ŷd
it = Sit(yd

1:T , w), (6.15)

where the binary spatial weight matrix w is pre-defined.
The corresponding embeddings are then concatenated with the training

data and generated samples on the channel dimension. We define the empirical
measures for the concatenated sequences as:

µ̂e := 1
m

m∑
d=1

δconcat(xd
1:T ,x̂d

1:T )), (6.16)

ν̂e
θ := 1

m

m∑
d=1

δconcat(yd
1:T ,ŷd

1:T ), (6.17)

where concat(., .) is an operator that concatenates inputs along the channel
dimension.

We thus arrive at the objective function for SPATE-GAN:
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inf
θ

sup
φ

{
Ŵmix

cK
φ ,ε(µ̂e, ν̂e

θ , µ̂e′
, ν̂e′

θ ) (6.18)

− λ
[
pMφ2

(µ̂e) + pMφ2
(µ̂e′)

]}
.

We maximise the objective function over φ to search for a worst-case
distance between the two empirical measures, and minimise it over θ to learn a
distribution that is as close as possible to the real distribution. The algorithm
is summarised in Algorithm 4. Its time complexity scales as O((J + 2n)LTm2)
in each iteration where J is the output dimension of the discriminator (see
Appendix C for details), and L is the number of Sinkhorn iterations (see [35, 57]
for details).

In the experiment section, we will compare SPATE-GAN with three different
expectations µ

(k)
it , µ

(kw)
it and µ

(ksw)
it in the computation of SPATE. Hence,

we denote the corresponding models as SPATE-GANk, SPATE-GANkw, and
SPATE-GANksw, respectively.

Last, we emphasise that, although all three embeddings consider the space-
time interactions in a certain way, the non-anticipative assumption of µ

(ksw)
it

is consistent with the generating process of the type of data we are investig-
ating. As the causality constraint in COT-GAN also restricts the search of
transport plans to those that satisfy non-anticipative transporting of mass,
SPATE-GANksw is a model that fully respects temporal causality in learning,
whilst SPATE-GANk and SPATE-GANkw also combine information from the
future.

6.3 Experiments

6.3.1 Data

To empirically evaluate SPATE-GAN, we use three datasets characterised by
different spatio-temporal complexities.

Extreme Weather (EW): This dataset, introduced by Racah et al. [143],
was originally proposed for detecting extreme weather events from a range of
climate variables (e.g. zonal winds, radiation). Each of these climate variables is
observed four times a day for a 128×192 pixel representation of the whole earth.
We chose to model surface temperature as it comes with several interesting
spatio-temporal characteristics: It exhibits both static (e.g. continent outlines)
and dynamic patterns as well as abnormal patterns (e.g. in the presence of
tropical cyclones or atmospheric rivers). Furthermore, simulating climate data
is an important potential downstream application of deep generative models.
Our final dataset of surface temperatures includes 146 instances of 128× 192
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Algorithm 4: training SPATE-GAN by SGD
Data: {xd

1:T }nd=1 (input data), ζ (latent distribution)
Parameters: θ0, φ0 (parameter initializations), m (batch size), ε

(regularization parameter), α (learning rate), λ
(martingale penalty coefficient)

Initialize: θ ← θ0, φ← φ0
for b = 1, 2, . . . do

Sample {xd
1:T }md=1 from real data;

Sample {zd
1:T }md=1 from ζ;

Generate sequences from latent: (yd
1:T )← gθ(zd

1:T );
Compute the embeddings: x̂d

it = Sit(xd
1:T , w), ŷi

it = Sit(yi
1:T , w);

Concatenated the data with embeddings:
concat(xd

1:T , x̂d
1:T ), concat(yd

1:T , ŷd
1:T ) ;

Update discriminator parameter:
φ← φ + α∇φ

(
Ŵmix

cK
φ ,ε

(µ̂e, ν̂e
θ , µ̂e′

, ν̂e′
θ )− λ

[
pMφ2

(µ̂e) + pMφ2
(µ̂e′)

])
;

Sample {zd
1:T }md=1 from ζ;

Generate sequences from latent: (yd
1:T )← gθ(zd

1:T );
Compute the embeddings: x̂d

it = Sit(xd
1:T , w), ŷd

it = Sit(yd
1:T , w);

Concatenated the data with embeddings:
concat(xd

1:T , x̂d
1:T ), concat(yd

1:T , ŷd
1:T ) ;

Update generator parameter:
θ ← θ − α∇θ

(
Ŵmix

cK
φ ,ε

(µ̂e, ν̂e
θ , µ̂e′

, ν̂e′
θ )
)
;

end

pixel frames over 10 time-steps.
LGCP: This dataset represents the intensities (number of events in a grid

cell) of a log-Gaussian Cox process (LGCP), a continuous spatio-temporal point
process. LGCPs are a popular class of models for simulating contagious spatio-
temporal patterns and have various applications, for example in epidemiology.
We simulate 300 different LGCP intensities on a 64 × 64 grid over 10 time
steps using the R package LGCP [168].

Turbulent Flows (TF): This dataset, proposed by Wang et al. [187],
simulates velocity fields according to the Navier-Stokes equation. This is a class
of partial differential equations describing the motion of fluids. Fluid dynamics
and simulation is another potential application of deep generative models.
Following the approach of Wang et al. [187], we divide the data into 7000
instances of 64× 64 pixel frames over 7 time-steps. Please note that we only
use the first velocity field, so that all our utilised datasets are single-channel.
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6.3.2 Baselines and Evaluation Metrics

We use COT-GAN [194] and GAN proposed by [57], which we name as
SinkGAN, as base models. We augment both models with our new embedding
loss, using SPATE with k, kw and ksw configurations. We refer to all models
using a COT-GAN backbone in combination with our new embedding loss as
SPATE-GAN. We further denote the SinkGAN models corresponding to three
SPATE settings as SinkGANk, SinkGANkw and SinkGANksw. To compare
our approach to a non-time-sensitive embedding, we also deploy models using
the Moran’s I metric using the same embedding loss procedure, denoted as
COT-GANM and SinkGANM .

To compare our GAN output to real data samples, we use three different
metrics: Earth Mover Distance (EMD), Maximum Mean Discrepancy (MMD)
[21] and a classifier two-sample test based on a k-nearest-neighbour (KNN)
classifier with k = 1 [118]. All these measures are general purpose GAN metrics.
While GAN metrics specialised on video data exist, they rely on extracting
features from models pre-trained on three-channel RGB video data. As we are
working with single-channel, non-image data, these methods are not applicable
in our case.

To compute our three metrics, let us first assume that we have a set of real
data samples (P) and synthetic data samples (S). EMD is defined as:

EMD(P,S) = min
ϕ:P→S

∑
p∈P
∥p− ϕ(p)∥ (6.19)

where ϕ : P → S is a bijection. MMD is defined as:

M̂MD
2
(P,S) = 1

n(n− 1)
∑

k(p, p)+

1
n(n− 1)

∑
k(s, s)− 2

n2

∑
k(p, s)

(6.20)

where k denotes a positive-definite kernel (e.g. RBF kernel) and n is the
number of (real or synthetic) samples.

Lastly, to compute the KNN score, we first split our real and synthetic
samples P and S into training and test datasets Dtr and Dte so that D =
Dtr ∪ Dte. We train the KNN classifier f : Xtr → [0, 1] using training data.
The accuracy of the trained classifier is then obtained using test samples Dte

and given as:
t̂ = 1

nte

∑
(zi,li)∈Dte

I
[(

f(zi) >
1
2

)
= li

]
(6.21)

where f(zi) estimates the conditional probability distribution p(l = 1|zi). A
classifier accuracy approaching random chance (50%) indicates better synthetic
data. As suggested by Lopez-Paz and Oquab [118], we use a 1-NN classifier to
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obtain the score.

6.3.3 Experimental Setting

We compare SPATE-GAN to a range of baseline configurations. We use the
same GAN architecture for all these settings to ensure comparability. Our
GAN generators feed the noise input through two LSTM layers with batch nor-
malization to obtain time-dependent features. These are then mapped into the
desired shape for deconvolutional operations using a fully-connected layer with
batch normalization and a leaky ReLU activation. Lastly, 4 deconvolutional
layers map the output into video frames, all also with batch normalization and
leaky ReLU activations, except the last layer. Our discriminators initially feed
video input through three convolutional layers with batch normalization and
leaky ReLU activations. The outputs from the convolutional operations are
then reshaped and fed through two LSTM layers, the first of which is followed
by batch normalization, to create the final discriminator outputs.

We set the following hyperparameters throughout model training: Hyper-
parameter settings are as follows: the Sinkhorn regulariser is set to ϵ = 0.8,
with L = 100 Sinkhorn iterations. The lengthscale is set to l = 20 and the
martingale penalty to λ = 1.5. We use the Adam optimizer with learning rate
0.0001, beta values of β1 = 0.5 and β2 = 0.9. All our models are implemented
in PyTorch and trained for 60, 000 iterations. Our experiments are conducted
on a single Geforce 1080Ti or RTX 3090 GPU. Further training details can be
found in Appendix C.

6.3.4 Results

Results from our experiments are shown in Table 6.1. Visual comparisons
between real and generated data from the different models are shown in
Figures 6.3,6.4, and 6.5. For larger figures including results from all tested
model configurations, please see the Appendix C. Through all experiments
we can observe that SPATE-GANksw consistently outperforms the competing
approaches, achieving the best scores across all datasets and evaluation metrics.

This finding is interesting as the ksw setting theoretically looses information
over the k and kw approaches, which both have access to future time steps
when calculating the SPATE metric. Nevertheless, this result underlines
the strong synergies between SPATEksw and the COT-GAN backbone: The
metric is calculated in sequential fashion and thus respects the same causality
constraints that restrict COT-GAN. As such, the outcome, while noteworthy,
is not surprising.

This result is strengthened by a comparison with the SinkGAN-based
approaches: SinkGAN does not follow the same restrictions and, as we observe,
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Table 6.1: Evaluations for LGCP, EW and TF datasets. Lower values in EMD
and MMD indicate better sample quality, while values close to 0.5 are more
desirable for KNN.

LGCP EMD MMD KNN
SinkGAN 12.46 (0.02) 0.38 (0.001) 0.14 (0.001)
SinkGANM 12.46 (0.02) 0.38 (0.001) 0.14 (0.001)
SinkGANk 12.65 (0.03) 0.38 (0.001) 0.15 (0.001)
SinkGANkw 10.60 (0.01) 0.63 (0.008) 0.30 (0.002)
SinkGANksw 13.33 (0.01) 0.36 (0.001) 0.38 (0.003)
COT-GAN 12.38 (0.02) 0.30 (0.001) 0.20 (0.004)
COT-GANM 12.38 (0.02) 0.30 (0.001) 0.20 (0.004)
SPATE-GANk 11.56 (0.02) 0.32 (0.01) 0.31 (0.01)
SPATE-GANkw 10.92 (0.03) 0.64 (0.035) 0.15 (0.006)
SPATE-GANksw 10.47 (0.02) 0.30 (0.001) 0.39 (0.01)
Extreme Weather
SinkGAN 29.40 (0.05) 0.49 (0.001) 0.41 (0.004)
SinkGANM 29.27 (0.05) 0.72 (0.002) 0.22 (0.01)
SinkGANk 32.57 (0.03) 0.81 (0.001) 0.16 (0.004)
SinkGANkw 32.78 (0.05) 0.81 (0.001) 0.18 (0.004)
SinkGANksw 30.00 (0.04) 0.50 (0.001) 0.41 (0.004)
COT-GAN 26.66 (0.09) 0.43 (0.002) 0.42 (0.002)
COT-GANM 36.42 (0.14) 0.65 (0.002) 0.09 (0.01)
SPATE-GANk 33.58 (0.07) 0.73 (0.002) 0.15 (0.01)
SPATE-GANkw 33.36 (0.09) 0.72 (0.002) 0.13 (0.003)
SPATE-GANksw 26.24 (0.07) 0.42 (0.002) 0.42 (0.002)
Turbulent Flows
SinkGAN 26.52 (0.007) 1.23 (0.001) 0.15 (0.001)
SinkGANM 28.02 (0.005) 1.22 (0.0002) 0.01 (0.002)
SinkGANk 28.14 (0.002) 1.32 (0.002) 0.08 (0.001)
SinkGANkw 30.98 (0.001) 1.50 (0.001) 0.03 (0.001)
SinkGANksw 25.47 (0.008) 1.24 (0.0002) 0.13 (0.002)
COT-GAN 27.03 (0.01) 1.22 (0.001) 0.16 (0.002)
COT-GANM 24.93 (0.01) 1.19 (0.001) 0.09 (0.002)
SPATE-GANk 25.70 (0.02) 1.21 (0.001) 0.12 (0.003)
SPATE-GANkw 24.30 (0.002) 1.42 (0.001) 0.13 (0.004)
SPATE-GANksw 22.98 (0.01) 1.16 (0.001) 0.16 (0.002)

is not improved as consistently by the SPATE-based embedding losses. In fact,
in some cases the naive SinkGAN performs better than its derivatives using
SPATE or Moran’s I based embedding losses.

We also observe that throughout all settings, models using Moran’s I
perform similarly to their naive counterparts. This confirms that in fact,
simply using measures of spatial autocorrelation computed over a sequence is
not sufficient for capturing complex spatio-temporal effects. On the contrary,
the other two SPATE settings, k and kw, both appear to have beneficial effects
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Figure 6.3: Selected samples of the LGCP dataset.

Figure 6.4: Selected samples of the Extreme Weather dataset.

and improve performance.
In summary, our results highlight how COT-GAN combined with a non-

anticipative measure of space-time association can improve the modelling of
complex spatio-temporal patterns. This finding represents another step on the
way towards deep learning methods specialised on the dynamics driving many
systems on our planet.

Furthermore, we provide an investigation on the impact of the lengthscale
parameter l in the spatio-temporal expectations for l ∈ {1, 10, 20, 30, 50}. As
shown in Figure 6.6, l = 20 leads to better EMD and KNN results whilst all
MMD scores remain unchanged. For the results presented in this paper, we set
l = 20 in all our experiments.
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Figure 6.5: Selected samples of the Turbulent Flows dataset.

6.4 Discussion

We now want to discuss this chapter with respect to existing literature, as well
as the broader scope of this dissertation.

6.4.1 Autocorrelation Metrics for Spatio-temporal Phenomena

Analysing autoregressive patterns in spatial and spatio-temporal data has a
long tradition in different academic domains (e.g. GIS, ecology) which over
time developed diverse measures to describe these phenomena. Applications of
the Moran’s I metric [2] range from identifying rare earth contamination [201]

l=1 l=10 l=20 l=30 l=50

10.6

10.8

11.0
EMD

l=1 l=10 l=20 l=30 l=50

0.29

0.30

0.31

MMD

l=1 l=10 l=20 l=30 l=50

0.34

0.36

0.38

KNN

Figure 6.6: Evaluations of SPATE-GANksw (left: EMD, middle: MMD, and
right: KNN) on LGCP dataset given lengthscale l ∈ {1, 10, 20, 30, 50}.
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to analysing land cover change patterns [36]. Moran’s I has also seen some
expansions into the spatio-temporal domain. Matthews et al. [124] use the
metric iteratively to model disease spread over time. Lee and Li [108] and Gao
et al. [53] propose novel spatio-temporal expansions of the Moran’s I metric,
returning static outputs at a purely spatial resolution. Siino et al. [158] design
an extended Moran’s I for spatio-temporal point processes. However, to the
best of our knowledge, neither the Moran’s I nor its spatio-temporal extensions
have been applied to discrete spatio-temporal video data. It is evident that
metrics of spatio-temporal autocorrelation can provide meaningful embeddings
of complex data, capturing underlying patterns throughout a range of different
application domains.

6.4.2 Deep Learning & GANs for Spatial and Spatio-temporal
Data

Deep learning describes a powerful family of methods capable of dealing with
the highly complex and non-linear nature of many real world spatial and
spatio-temporal patterns [5, 12, 31, 58, 195]. Paradigms like physics-informed
deep learning aim to devise methods which integrate (geo)physical constraints
explicitly into neural network models [187]. There is also an increasing number
of studies tackling specific challenges associated with geographic data: Mai
et al. [121] and Yin et al. [198] propose context-aware vector embeddings for
geographic coordinates. All these studies highlight the benefits of explicitly
encoding spatial context into neural networks to improve performance.

Narrowing down on the GAN context specifically, we find that spatio-
temporal applications have mostly focused on video data [88, 174, 194]. Beyond
this, GANs have been used for conditional density estimation of traffic [205], tra-
jectory prediction [76] or extreme weather event simulation [99]. Nevertheless,
to the best of our knowledge, metrics capturing spatio-temporal autocorrelation
have never been integrated into GANs. As previous studies highlight the value
on encoding spatial context, this chapter seeks to provide a first-principle
approach of integrating metrics of spatio-temporal autocorrelation into GANs
for modelling of complex spatio-temporal patterns.

6.4.3 Embedding Loss Functions

As SPATE-GAN integrates spatio-temporal metrics into COT-GAN as embed-
dings, here we briefly revisit previous work and insights into embedding losses.
Embedding losses describe approaches where the loss function of a model is
computed on an embedding of the data. This can have desirable outcomes, such
as training stability or focusing on specific patterns in the data. Embedding
losses have become popular in computer vision over the last years: Ghafoorian
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et al. [61] use embedding losses to improve GAN-based lane detection. Filntisis
et al. [47] use visual-semantic embedding losses to improve predictions of bodily
expressed emotions. Wang et al. [186] introduce CLIFFNet, using hierarch-
ical embeddings of depth maps for molecular depth estimation. Bailer et al.
[11] introduce a threshold loss to improve optical flow estimation. It is clear
that embedding losses have shown great potential for particularly challenging
visual problems, especially those involving complex spatio-temporal dynamics.
Lastly, after discussion model selection (see chapter 3), auxiliary task learning
(see chapter 4) and feature learning (see chapter 5), embedding losses are yet
another approach for integrating geospatial embeddings into neural network
models.

6.5 Summary

Recent studies have called for more research into improving deep learning
models for spatio-temporal earth systems data [148]. Other academic domains
have dealt with these data for many decades and have developed methods
for capturing specific spatial and spatio-temporal effects. Inspired by their
approaches, we devise SPATE, a measure of spatio-temporal association cap-
able of detecting emerging space-time clusters and homogeneous areas in
the data. We then develop a novel that embeds loss for video GANs using
SPATE as a means of reinforcing the learning of these patterns-of-interest.
Our new generative modelling approach, SPATE-GAN, shows performance
increases on a range of different datasets emulating the real-world complexities
of spatio-temporal dynamics. We highlight this throughout experiments on
three different datasets, representing real-world spatio-temporal phenomena:
spatio-temporal point processes, broadly used to model disease spread, global
weather patterns represented by surface temperatures and a turbulent flows
simulation. SPATE-GAN shows improved performance on all of these datasets,
which speaks to its generalisability across different application domains unified
by their spatio-temporal dynamics. As such, this study highlights how domain
expertise from applied academic areas can help to motivate methodological
advances in machine learning. SPATE-GAN’s limitations include its increased
computational cost, particularly for large spatial or temporal dimensions,
stemming from the computation of the SPATE embedding. While we find
the lengthscale parameter l to consistently perform optimally at l = 20, this
might be different for other dataset and would need to be tested and adjusted
accordingly.

Revisiting the objectives of this dissertation, in this chapter we have pro-
posed a novel functional embedding for discrete spatio-temporal patterns,
SPATE. We then use this metric to construct an embedding loss for a spatio-
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temporal GAN. After looking into model selection, auxiliary task learning and
feature learning in the previous chapters, this chapter completes our study of
four different options for integrating geographic domain expertise into neural
network models.
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Chapter 7

Conclusions and Future Work

In this dissertation, we have proposed different approaches for integrating
geospatial domain expertise into neural network models. We have tested these
approaches in extensive experiments on a range of generative and predictive
spatial modelling tasks. In the final chapter, we will first summarise our
contributions in section 7.1. In section 7.2 we will discuss our findings with
respect to the geospatial machine learning challenges that we highlighted in
the introduction, section 1.1.2. We will then discuss potential applications of
our work, focusing on the urban analytics space, in section 7.3. Lastly, we will
elaborate on future research directions in section 7.4 and provide concluding
remarks in section 7.5.

7.1 Summary of Contributions

This dissertation advances research on the modelling of geospatial data by
merging ideas from the GIS and machine learning. Recalling Chapter 2.3, our
studies rely on two building blocks that are essential to understanding the
contributions of this dissertation:

• Geospatial context embeddings: All technical chapters make use
of geospatial context embeddings. These are transforms of geospatial
data that seek to capture information on underlying spatial patterns. As
discussed in chapter 2.3, we distinguish between functional embeddings,
(e.g. the Moran’s I metric) and parametric neural network embeddings
(e.g. the positional encoder), introduced in chapter 5.

• Mechanisms for integrating domain expertise into neural net-
works: We identify four mechanisms for integrating geospatial domain
expertise into neural network models. These approaches, discussed ex-
tensively in chapter 2.2.3, are model selection, auxiliary task learning,
feature learning and embedding loss functions.
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In each of our four technical chapters, we combine these building blocks
to devise geographically explicit neural network models. The contributions of
each chapter are listed below:

• Chapter3 proposes to use the Moran’s I metric for model selection.

– We propose a novel conditional GAN, SpaceGAN, conditioned on
the features of each observations spatial neighborhood. This ap-
proach allows the model to learn spatial dependencies and patterns
contained within the data.

– We devise a novel metric, MIE, based on the local Moran’s I measure
to evaluate ability of GAN generated data to reproduce spatial
autocorrelation present in the real data. We deploy this metric
for model selection, selecting the best generator out of a set of
generators.

– We propose the use of SpaceGAN with MIE model selection in an
ensemble learning setting where synthetic, SpaceGAN-generated
data is used to train an ensemble of base learners.

• Chapter4 introduces an auxiliary task learning framework using the
Moran’s I metric.

– We propose a multi-resolution extension of the local Moran’s I
metric, computed through repeated downsampling of the input to
compute the Moran’s I at coarsened resolutions, before upsampling
again to the original resolution.

– We propose to use single- and multi-resolution local Moran’s I in
an auxiliary task learning setting. This “nudges” neural network
models to capture spatial autocorrelation as part of the learning
process. We refer to this framework as SXL.

– We provide an uncertainty weighting scheme for auxiliary task
GANs, building on research by Cipolla et al. [32], which allows
parameter-free learning of loss weights.

• Chapter5 presents a feature learning approach for graph neural networks
using neural network-based geographic coordinate embeddings.

– We devise a novel GNN method for geographic coordinates. Our
approach concatenates node features with the vector embeddings of
a context-aware positional encoder which is learnt throughout the
training process.

– Training is conducted on a subset of observations (minibatches) at
each training step. The same point might can thus have a different
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set of neighbours at different training steps. This training approach
makes the training more robust and improves generalisation.

• Chapter6 expands the Moran’s I metric to spatio-temporal data and
proposes a new embedding loss function for GANs.

– We propose a novel measure of spatio-temporal autocorrelation:
SPATE. The metric builds on the Moran’s I metric, but expands its
intuition from purely spatial to spatio-temporal expectations.

– We propose an embedding loss function based on SPATE to train
video GANs. We augment a state of the art video GAN, COT-
GAN [194] with an instance of our SPATE metric that respects the
sequential nature of the data and is computed only using past time
steps.

All chapters include experiments and application studies that highlight
how each respective approach improves over naive, non-geographically-explicit
baselines. Altogether, the experiments showcase how the integration of geospa-
tial domain expertise in the form of contextual embeddings can improve the
performance of neural network models on a range of relevant real-world tasks.

7.2 Discussion of Impacts

We now want to revisit the challenges of geospatial machine learning, posed in
the seminal review study by Reichstein et al. [148] and highlighted in chapter
1.1.2. Here, we will discuss how this dissertation proposes avenues for tackling
the outlined problems.

Reichstein et al. [148] view the integration of physical constraints as one
of the key challenges for improving neural networks in the geospatial domain.
While this dissertation is not concerned with the integration of hard constraints
(e.g. geophysical laws), the use of metrics measuring known spatial phenomena
such as autocorrelation can be seen as integrating “soft” constraints. In many
geospatial settings, such as modelling rainfall or predicting housing prices,
we know about spatial autocorrelation in the data a priori. We can exploit
this knowledge by explicitly integrating it into the models. We propose such
approaches for the Moran’s I metric in chapter 4 and for our novel SPATE
metric in chapter 6: Both approaches can be seen as enforcing a level of spatial
or spatio-temporal coherence in the learning process. Nonetheless, this work
more touches on this issue rather than addressing it directly. Specifically,
throughout the thesis we focus on measures of spatio-temporal autocorrelation,
which is only one of a myriad of effects in dynamics systems.
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Another challenge noted by Reichstein et al. [148] is the complexity and
scale-sensitivity of geospatial data. Off-the-shelf neural network models
can struggle to capture complex and non-linear spatial effects over different
spatial scales. We tackle this problem in the chapters 4 and 5. In chapter
4, we devise a novel multi-resolution version of the local Moran’s I metric of
spatial autocorrelation, to overcome its known scale sensitivity. In chapter
5, we propose the use of a neural network-based coordinate embedding that
learns geographic context throughout the training process. Specifically, our
embedding can also learn to adapt to different spatial scales and neighbourhood
structures; thus, the static nature of the GNN backbone, which assumes a
predefined (spatial) graph, is improved. While our work addresses crucial
aspects of the complexity and scale-sensitivity challenge, our work is limited
in scope. As mentioned in the previous paragraph, when it comes to the
complexity of the data, we focus mostly on measurable dynamics in the form of
spatial and spatio-temporal autocorrelation. Other complexities, though they
might be implicitly learnt in approaches such as PE-GNN in chapter 5, are not
addressed here. And while we do address the different scales of spatial effects
throughout the thesis, all our experiments are conducted with single-resolution
training data. To further advances neural network methods for geospatial
data, approaches learning with and interactions between inputs at multiple
resolutions will be required.

Lastly, the third challenge we address in this dissertation is that of label
scarcity. Reichstein et al. [148] note that geospatial applications can often
lack sufficient training labels for training generalisable models. And while the
authors see this challenge more present with Earth observation data, it also
has some relevance to urban applications. For example, in some urban settings,
training labels are sensitive and can only be obtained in small numbers, so as
to protect citizens privacy (e.g. crime data, personal location data). Collecting
labels can also be expensive, particularly in low-resource settings (e.g. within
countries in the Global South). To overcome this, synthetic data samples
from simulators might offer valuable alternatives. In chapters 3, 4 and 6 we
introduce methods for generating high-quality, synthetic spatial data using
GANs. Particularly, our experiments in chapter 3 show the potential of such
approaches for improving predictive downstream tasks in scarce data settings.
A limiting factor is the high specialization of all these approaches. Chapters 3, 4
and 6 all represent different application settings: tabular data with geographic
coordinates, data on a discrete regular grid (i.e. single-channel image data)
and spatio-temporal data, respectively. They all require different, specialized
modeling frameworks and there is no one-size-fits-all solution. To enable a more
broad adaption of these models, more work focused on harmonizing spatial
and spatio-temporal modeling approaches in a generalisable framework needs
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to be conducted.
The other two challenges posed by Reichstein et al. [148] include inter-

pretability and computational demand. While we do not center this in
our work, some of our experiments highlight how geographically-explicit neural
network models can accelerate training convergence. Specifically, enforcing
learning of spatial patterns in models, be that through auxiliary tasks or
embedding losses, allows us to better comprehend learning processes and make
assumptions on model outputs. It is also important to mention here that as
this thesis is concerned with neural networks, there is very limited room for
the interpretation of their inner workings, as neural networks are inherently
black-box models. Lastly, the geographic embeddings, functional or parametric,
that are used in this thesis can have non-trivial computational requirements.
Particularly the computational cost of the SPATE metric introduced in chapter
6 scales poorly into large spatial and temporal dimensions. Especially in
big-data settings, such as are common in for example Earth observation, this
can be a limiting factor.

7.3 Applications

Beyond our contributions to methodological advances in geospatial machine
learning, there are many avenues for potentially impactfull applications of this
dissertation. Here, we want to discuss some of these applications in detail:

7.3.1 Operations and Deployment Optimisation for Urban Ser-
vices

As discussed in our introduction chapter 1.1.1, cities produce large amounts of
geospatial data on a daily basis. At the same time, they are becoming more and
more crowded as the global trend of urbanisation accelerates. Urban services,
from transportation systems to energy grids, are charged with adapting to these
increasing demand levels. Together, urban big data and geospatial machine
learning approaches can help to tackle these challenges. A great example is
the case of shared urban mobility systems such as bike sharing or electric
vehicle (EV) sharing. Previous research has highlighted the importance spatial
and spatio-temporal effects in mobility demand [131, 190]. While GNNs have
proven to be powerful tools for optimising shared mobility systems to meet
demand, research has also shown that integrating geographic context (e.g. on
urban structures and local amenities) is crucial to improving these models
[119, 120]. Here, learnable geographic context embeddings, such as the one
proposed in chapter 5, offer great potential for improving GNN backbones.

115



7.3.2 Digital Twins of Cities and our Planet

The term “digital twins” was first coined by Shafto et al. [156] and describes
a digital counterpart to some physical entity, which allows for the modelling
and simulation of different conditions and settings. Digital twins have become
particularly popular for studying cities [16] and Earth systems, such as oceans
[13]. Keeping with the example of cities, a digital twin might be used to
simulate the effects of a new policy (e.g. a ban on cars in the city center) or
new infrastructure (e.g. the opening of a new subway line) on the rest of the
urban system. This example reveals the key challenge faced by the digital
twins framework: it aims to represent a hyper-complex, multi-layered process
in digital form. Of course, we are not at a point where digital twins can hope to
emulate all the intricate details of urban systems. However, as Batty [16] notes,
“some models are closer to the real thing than others, with the whole panoply
of models ranging from thought experiments which are entirely conceptual
to closely tailored digital representations that attempt to mirror as many
features of the real system as possible”. Thus, Accurately representing spatial
and spatio-temporal structures is key to developing powerful digital twins.
This also corresponds to one of the key geospatial deep learning challenges
identified by Reichstein et al. [148]. Batty [16] further notes that another
challenge for digital twins is to “scale to the level of all the physical assets in
the city”, which entails capturing urban dynamics at different spatial scales.
The technical chapters of this dissertation address these challenges in parts by
devising methods to enforce the learning of spatial effects in neural network
models (chapters 4, 5 and 6) and to learn at multiple spatial scales (chapters 4
and 5).

7.3.3 Synthetic Samples of Sensitive Geospatial Data

Geospatial data can be sensitive in nature. For instance, in city-level data,
this can includes the locations of sexual crimes [97], which need to be kept
private in order to protect survivors. Beyond cities, many ecological data are
sensitive. For example, geo-tagged social media posts can reveal the locations of
endangered species to poachers [18]. However, in both of these cases, the data
can also be important for developing targeted policy interventions. Generative
modelling of geospatial data offers an avenue for publishing synthetic data that
are representative of an underlying sensitive real-world dataset, as highlighted
in existing research [172, 199]. While this dissertation does not address such
applications or provide privacy guarantees directly, we extensively discuss
generative models (in chapters 3, 4 and 6), which might be used as backbones
for such approaches.
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7.3.4 Modelling Earth Systems and Climate Dynamics

Climate change is an essential challenge humanity faces today. To mitigate and
adapt to climate change, we must build accurate models of geophysical systems
(e.g. atmospheric or ocean currents) and climate dynamics. A recent review
paper highlights the potential of machine learning techniques for tackling these
challenges [153]. This includes models that are capable of emulating complex
geographic patterns. For example, deep learning applications have recently been
used to simulate fluid dynamics [187] and extreme weather events [99, 143].
Most chapters in this dissertation are relevant to such applications, even
when they don’t tackle this issue directly or at the scale of current real-world
systems. In particular, chapter 6 explicitly uses example datasets representing
global surface temperatures and turbulent flows for spatio-temporal modelling.
Altogether, this this thesis serves as a primer and motivation for the further
integration of geospatial-domain expertise in neural network models of our
planet’s dynamics.

7.3.5 Spatial and Spatio-temporal Epidemiology and Public
Health

As the COVID-19 pandemic continues to hold our planet in a tight grab, the
importance of accurately modelling disease spread over space and time has
become apparent. Deep learning approaches are growing in popularity for
such tasks, due to their flexibility and scalability [10, 185]. The increasing
availability of other geospatial data sources (e.g. geo-tagged social media
posts) can further improve such approaches, but requires models that are
able to capture spatial and spatio-temporal interactions at different scales
[207]. Epidemiological processes are often assessed using point processes, which
are powerful tools to forecast disease spread. In chapter 6, we show that
spatio-temporal GANs can emulate such processes and, once trained, produce
high quality synthetic data without the need for computationally expensive
numerical simulation. And while our experiments are conducted on simulated
data and on a small scale, they nonetheless can be used as stepping stones and
motivation for applications and further methodological improvements in the
public health domain.

7.4 Future Work

In this section, we discuss promising avenues for future work, building on the
findings of this dissertation.
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7.4.1 General-purpose, Universal, Geographic Context Embed-
dings

Our work in chapter 5 touches on the idea of general-purpose geographic
context embeddings. These describe the idea of a pretrained vector embedding
(akin to approaches like word2vec [126] in NLP) that captures all available
geographic context at a given location. For example, if we seek to predict the
price of a house, this embedding would include information about the physical
(e.g. distance to shops and road connectivity) and non-physical structure
(e.g. local social media sentiment) of the vicinity. Such embeddings fuse data
inputs from various sources and can be pre-trained in an unsupervised learning
setting. First approaches in this direction exist already [198]; however, they
currently offer limited flexibility and only represent selected data inputs. Future
work might expand this research using the free-floating point location encoder
proposed in chapter 5 and merging it with suitable methods for encoding multi-
modal geospatial context. Multi-modal learning describes machine learning
techniques working with different data modes (e.g. text and video data)
simultaneously. These jointly learnt representations can often be more powerful
than single-modal baselines [9].

7.4.2 Privacy-preserving Geospatial Machine Learning

As discussed in section 7.3.3, synthetic data offers a solution to a range of
settings involving sensitive geospatial information [34]. While our work has
contributed mechanisms for generating high-quality geospatial data, we have
not integrated privacy guarantees into these models. There is a broad range
of literature on machine learning approaches with global and local differential
privacy [172, 199]; however, few such studies exist for explicitly geospatial
domains. A potential avenue for future research is to merge our work on
geospatial GANs with these approaches, to create classes of generative models
that are able to learn the data generating process behind sensitive, real-
world data. Such models could then be used to safely publish synthetic data,
maintaining the properties of the underlying sensitive data.

7.4.3 Federated Geospatial Machine Learning

Federated learning [84] describes the decentralised training of learning al-
gorithms on a set of edge devices. Naturally, these devices are distributed over
space. While this can lead to challenges with respect to distributed computing,
geospatially-explicit approaches can help to improve such modalities through
encoding geo-locations throughout modelling [161]. Nonetheless, more research
into this area is needed. Specifically, the effects of different spatial distances and
resolutions should be further studied. This dissertation may help to inform and
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improve geospatial federated learning approaches, and open up new research
directions.

7.4.4 Machine Learning for Multi-layered and Multi-resolution
Geospatial Data

Geographic data are often available at more than one spatial scale. While
we propose metrics such as the multi-resolution Moran’s I (see chapter 4),
all experiments in this dissertation are conducted on single-scale geospatial
data. The joint modelling of multiple resolutions is an important direction for
future research. Within cities, data might be available at the location level (e.g.
point-of-interest locations) and areal level (e.g. median income in a census
tract) simultaneously. A downstream model that employs both location- and
areal-level data must include an appropriate mechanism for fusing geospatial
data at different resolutions. It also needs to reflect inherent interdependencies
between resolutions. Research into scale-sensitive, adaptive models is of high
importance to many urban modelling problems and directly relates to one of
the key challenges of geospatial data, as outlined in chapter 2.1.2.

7.4.5 Learning Neighbourhoods and Areal Units

As discussed in chapter 2.1.1, many spatial metrics and models require a
definition of spatial “neighbourhood”. These are often chosen arbitrarily and
can be ill-informed or suffer from scaling issues [45, 125, 204]. Rather than pre-
defining spatial neighbourhoods based on domain-expertise (or a lack thereof),
future machine learning approaches may seek to learn local neighbourhood
structures throughout training; this enables finding the best possible spatial
representation of the data. For example, GNN models may construct their input
graph on the fly, where the radius around nodes defining spatial neighbourhood
is a learnable parameter.

7.5 Final Remarks

In this dissertation, we have merged ideas from the GIS and machine learn-
ing communities to build geographically-explicit neural network models. We
have documented the implementations of our methods and the associated
experiments in publicly available repositories that contain our code and data.
Specifically, the code for chapter 3 can be found at https://github.com/

konstantinklemmer/spacegan, the code for chapter 4 at https://github.com/

konstantinklemmer/sxl, the code for chapter 5 at https://github.com/

konstantinklemmer/pe-gnn and the code for chapter 6 at https://github.com/

konstantinklemmer/spate-gan.
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Appendix A

Appendix for Chapter 3

A.I Experimental Data

Here we provide a more elaborate description of the datasets used for evaluating
Experiment 1 and Experiment 2.

Toy 1: We create a synthetic dataset of n = 400 observations. Following
the notation d = (x, y, c), we first set the spatial resolution, i.e. the spatial
coordinates c = (c(1), c(2)):

C =


c1,1 = (2.5, 2.5) c1,2 = (7.5, 2.5) ... c1,400 = (97.5, 2.5)
c2,1 = (2.5, 7.5) ... ... ...

... ... ... ...

c400,1 = (2.5, 97.5) ... ... c400,400 = (97.5, 97.5)


(A.1)

We then add an independent feature x as a random draw from a Gaussian
distribution with mean µ = 1 and standard deviation σ = 0:

x ∼ Normal(µ, σ) (A.2)

Now, we create the target variable y as a function of spatial coordinates c and
the random noise x as follows:

y = sin x + (c(1) − c(2))2 (A.3)

Toy 2: We create a synthetic dataset of n = 841 observations. We again
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start by setting the spatial resolution, i.e. the spatial coordinates c = (c(1), c(2)):

C =


c1,1 = (1.75, 1.75) c1,2 = (5.25, 1.75) ... c1,841 = (99.75, 1.75)
c2,1 = (1.75, 5.25) ... ... ...

... ... ... ...

c841,1 = (1.75, 99.75) ... ... c841,841 = (99.75, 99.75)


(A.4)

We again add an independent variable x as a random draw from a Gaussian
distribution with mean µ = 1 and standard deviation σ = 0:

x ∼ Normal(µ, σ) (A.5)

Lastly, we create the target variable y as a more complex function of spatial
coordinates c and the random noise x as follows:

y = sin(c(1) + c(2)) ∗ 2π + ⌊z⌋ ∗ 0.1c(1) (A.6)

where z ∼ U(1.75, 99.75) ∗ 0.01.
California Housing: This real world dataset, introduced by [86], is widely

popular for analyzing spatial patterns and accessible via Kaggle1 (it is also
integrated into sklearn2). It contains n = 20, 640 observations.

We can break the dataset down into the familiar notation d = (x, y, c) as
follows:

c = (longitude, latitude) (A.7)

x = (housing median age, total rooms, total bedrooms,

population, households, median income)
(A.8)

y = (median house value) (A.9)

Infant Mortality: This is another standard dataset for spatial analysis,
introduced by [122]. It is relatively small and comprised of infant mortality
data from Auckland 1991. The d = (x, y, c) follows:

c = (longitude, latitude) (A.10)

x = (pop u5) (A.11)

y = (deaths u5) (A.12)

Election: This dataset, introduced by [86], provides district-level election
results from the 1980 U.S. election. The regression task is to predict voter

1See:https://www.kaggle.com/camnugent/california-housing-prices
2See:https://scikit-learn.org/stable/modules/generated/

sklearn.datasets.fetch california housing.html
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turnout using socio-economic features. The d = (x, y, c) follows:

c = (longitude, latitude) (A.13)

x = (pc college, pc home, pc income) (A.14)

y = (pc turnout) (A.15)

A.II Experimental Setting

The tables below provide details on architecture and configuration of the neural
networks used in SpaceGAN during our experiments. Note that the kernel size
parameter for Toy 1 and Toy 2 corresponds to the queen neighbourhood (for
discrete spatial data) outlined in 3.1 and is the same neighbourhood that is
used for spatial conditioning and spatial cross validation (see Appendix E).
The kernel size for California Housing 15 and California Housing 50
corresponds to same kNN-neighbourhood (with k = 50) that is used for spatial
conditioning and spatial cross-validation.

Table A.1: Dataset-specific configurations of the SpaceGAN architecture for
the experiments.

Parameter Values
Architecture 1D-CNN

Number of hidden layers 1
Training steps 20000

Batch Size 100
Optimizer Stochastic Gradient Descent

Optimizer Parameters learning rate = 0.01
Noise prior pz(z) N(0, 1)

Snapshot frequency (snap) 500
Number of samples for evaluation C = 500

Input features scaling function Z-score (standardization)
Target scaling function Z-score (standardization)

Table A.2: Overview of the general SpaceGAN architecture and its hyperpara-
meters.

Parameter Toy 1 Toy 2 California 15 California 50
(G, D) filters (|Ni|) (50, 50) (100, 100) (100, 100) (200, 200)

(G, D) kernel size (8, 8) (8, 8) (15, 15) (50, 50)
(G, D) hidden layer function (relu, tanh) (relu, tanh) (relu, tanh) (relu, tanh)
(G, D) output layer function (linear, sigmoid) (linear, sigmoid) (linear, sigmoid) (linear, sigmoid)

Noise dimension dim(z) 8 8 15 15

A.III Neighbourhood conditioning

As outlined in the methodological section, we believe the choice of neighbour-
hood weights wi,j is of important for SpaceGAN’s performance. While we test
different configurations in our experiments, the reported results always apply
the same neighbours to SpaceGAN conditioning, as are used for the spatial-
cross validation process. For example, this implies that in Toy 1 experiments,
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we use queen neighbourhood (see Figure 3.1) spatial cross-validation as well as
conditioning. This means that each datapoint is conditioned on the feature
vectors of its queen neighbours.

We also provide results for the effect that different neighbourhood definitions
in the same dataset have, using the California Housing dataset. Here, we
once condition on 15-NN, once on 50-NN: Our findings show that the 50-
NN conditioned SpaceGAN performs better, both in Experiment 1 and in
Experiment 2. While the neighbourhood definition never “breaks” a model
training, we will conduct more, extensive experiments for future work.

A.IV Spatial Cross-Validation

Define k spatially
coherent test sets
by slicing through
coordinate space
c(1) (and c(2)).

Iterate over k-folds.
Define test data,
take remaining data
as train data.
Remove data points
within buffer area
around test set (to
avoid overfitting).

Figure A.1: Illustration of the spatial k-fold cross validation process.

In this section, we provide a graphical illustration of the spatial k-folds
cross validation process. This is pictured in Figure A.1.
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Appendix B

Appendix for Chapter 4

B.I Data Description

Dataset n Min q1 x̃ x̄ q3 Max s IQR #NA
PetrelGrid 199680 0 3 7 11.2 15 153 12.2 12 0

DEM (Gen.Mod.) 1183743 76.2 246.9 327.5 331.0 406.6 886.4 117.2 159.7 1
TreeCanopy 10240000 0 0 31 33.8 67 100 34.1 67 0

DEM (Sp.Int) 6856704 0 126 165 157.1 186 254 47.6 60 0

Table B.1: Descriptive statistics of the four real world datasets used for the
generative modeling and spatial interpolation experiments.

Due to a lack of geospatial benchmark datasets within the machine learning
community, we run our experiments using one toy dataset and three datasets
from real-world geospatial applications. All data is chosen to represent different
spatial patterns and to be closely related to important applications in fields
such as climate science or geology.

Toy: The Toy dataset consists of 32× 32 matrices with values coming from
a function creating a Gaussian peak at a random location, which is mirrored
diagonally by a Gaussian dip. This function is given as:

f(cX, cY, s) = 0.75 exp(−((9cX − a)2 + (9cY − b)2)/s)

−(0.75 exp(−((9cX − d)2 + (9cY − e)2)/s))
(B.1)

where cX and cY are the spatial coordinates mapping the values to the
32 × 32 matrix (so in our cases, integers in the range [0, 31], s is a positive
constant determining the size of the Gaussian peak and dip (we use s = 7),
a and b are random draws from integers in the range [0, 10], determining the
location of the Gaussian peak and d = 10− a and e = 10− b are the location
of the Gaussian dip, mirroring the peak diagonally.

PetrelGrid: The PetrelGrid dataset [111] is composed of geo-referenced
seabed relief data. It can be accessed via R here: https://rdrr.io/cran/

spm/man/petrel.grid.html
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DEM (Generative Modeling): We use two different digital elevation
model (DEM) based datasets, one for the generative modeling experiments
and one for the spatial interpolation experiments. The DEM for generative
modeling is chosen as it is rather small, enabling us to assess how our proposed
method deals with data scarcity. An applicably small DEM dataset, providing
a DEM of the area surrounding Lake Sunapee, NH, USA can be found as part
of the elevatr R package; accessible via: https://rdrr.io/cran/elevatr/

man/lake.html.
TreeCanopy: This dataset contains data on global forest coverage. We

use tree canopy, which describes canopy closure for all vegetation taller than
5m in height. The data comes from the University of Maryland’s “Global
Forest Change” project [67], documenting the global loss of forests in the
light of climate change and forest exploitation. Specifically, we use data
within the geographic area 50-60N / 100-110W; an area lying in continental
Canada and representing a broad range of forest coverage types. The data can
be accessed via: http://earthenginepartners.appspot.com/science-2013-

global-forest/download v1.6.html.
DEM (Spatial Interpolation): The second, larger DEM dataset used

for the spatial interpolation experiments is part of a LiDAR data collection con-
ducted by the National Ecological Observatory Network (NEOS). Specifically,
we use DEM hillshades from the NEOS training exercise outlined here: https:

//www.neonscience.org/da-viz-neon-lidar-co13flood-R. Hillshades are
used to visualize terrain as shaded reliefs, where shades depend on a (synthetic)
light source (e.g. the sun shining at a modelled angle).

All our data is processed into regular grids of either size 32× 32 or 64× 64.
For the exact processing of each of the datasets, please refer to our code.

B.II Experimental Setting, Model Architectures and
Compute

Generative Spatial Modeling

Setup: Our main experimental findings, the MMD scores displayed in Table
4.1 and Table 4.2 (main body), are obtained from training generative models
on 60% of the data, holding out 20% of the data for validation and model
selection, and 20% for computing the displayed test scores. This setting is used
for all four experimental datasets. For each dataset, model architecture and
auxiliary task setting, we train 10 GANs with different random initializations,
in each cycle saving the best generator according to tests on validation data.
We then choose the best out of the 10 trained generators (again according to
the validation score) to compute test scores.
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Model Architecture and Optimization: Here we briefly describe the model
architectures of the different generative models used in the experiments working
with 32× 32 inputs (the models for the 64× 64 input are adapted to fit the
larger input). For the implementation of these models, please refer to our code.

The Vanilla GAN architecture used consists of a Generator with four
hidden linear layers, supported by Leaky ReLU and 1d BatchNorm layers. The
Discriminator has two hidden linear layers supported by Leaky ReLU layers
and one linear task-specific layer.

The DCGAN architecture used consists of a Generator with a linear initial-
ization layer, followed by three hidden (de-)convolutional layers, supported by
ReLU and 2d BatchNorm layers. The Discriminator contains two convolutinal
layers supported by Leaky ReLU and 2d BatchNorm layers, followed by one
task-specific convolutional layer with a final linear transformation. For more
information on DCGAN, please refer to the original publication [144].

The EDGAN architecture used consists of an Encoder-Decoder Gener-
ator, where the Encoder contains three convolutional layers, supported by
Leaky ReLU and 2d BatchNorm layers and the Decoder contains three (de-
)convolutional layers supported by ReLU layers. The Discriminator has five
hidden convolutional layers suppoerted by Leaky ReLU and 2d BatchNorm lay-
ers, followed by a last, task-specific convolutional layer. For more information
on the EDGAN architecture, please refer to [209], the study which motivated
the use of this benchmark.

Model Training: All models are trained using the binary cross entropy
criterion to compute losses. Optimization through backpropagation is conduc-
ted using the Adam algorithm with a learning rate of 0.001 and β values of
[0.5, 0.999]. Experiments with the Toy dataset run for 40 epochs, with the
PetrelGrid dataset for 500 epochs, with the DEM dataset for 100 epochs and
with the TreeCanopy dataset for 100 epochs. All training is conducted on
GPUs provided via Google Colab, which includes Tesla K80, Tesla T4 and
Tesla P100 GPUs. The model training times do not exceed 30 minutes at the
longest.

Evaluation: To evaluate our models, we generate synthetic data from the
different types of GANs and compare how faithful the generated samples are
compared to true samples. To assess model quality, we use the Maximum Mean
Discrepancy (MMD) metric [21], a distance measure between distributions
based on mean embeddings of the features. For distributions P and Q, the
MMD is defined as MMD(P, Q) = ||µP − µQ||Rd . The empirical MMD for
random variables xi and yi of length n is given as
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M̂MD
2

= 1
n(n− 1)

∑
i ̸=j

k(xi, xj)+

1
n(n− 1)

∑
i ̸=j

k(yi, yj)− 2
n2

∑
i,j

k(xi, yj),
(B.2)

where k : X × X represents a positive-definite kernel—in our case a radial
basis function (RBF) kernel. The more similar the data distributions P and Q

are, the closer the MMD metric gets to 0.

Predictive Spatial Modeling

Setup: Our main experimental findings for the spatial interpolation experiments,
the RMSE scores displayed in Table 3, are obtained from training the CNN
models on 60% of the data, selecting the best model using 20% and finally
computing the scores on held-out 20% held-out test data. This is done ten
times and the test scores are then averaged. Note that the non-neural network
based benchmark models (bicubic interpolation, IDW, and kriging) do not
require training; rather inference is made directly on the testing samples.

Model Architecture and Optimization: We use a simple CNN for the predict-
ive modeling experiments. It consists of three convolutional layers, supported
by ReLU and 2d BatchNorm layers. When applying the auxiliary tasks to the
model, the last two convolutional layers are made task-specific. Please refer to
our code for the exact implementation of the models.

Model Training: All models are trained using the mean squared error
(MSE) criterion to compute losses. Optimization through backpropagation is
conducted using the Adam algorithm with a learning rate of 0.001 and β values
of [0.5, 0.999], running for 150 epochs. All training is conducted on GPUs
provided via Google Colab, which includes Tesla K80, Tesla T4 and Tesla P100
GPUs. The individual model training times do not exceed 15 minutes at the
longest.

Evaluation: The final evaluation scores on held-out test data are computed
as the root mean squared error (RMSE) between real values yi and predicted
values ŷi of length n:

RMSE(yi, ŷi) =
√

1
n

∑
(yi − ŷi)2 (B.3)
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Appendix C

Appendix for Chapter 6

C.I Details for COT-GAN

The family of cost functions CK(µ, c) is given by

CK(µ, c) :=
{

c(x, y) +
J∑

j=1

T −1∑
t=1

hj
t (y)∆t+1M j(x) :

J ∈ N, (hj , M j) ∈ H(µ)
}

,

where ∆t+1M(x) := Mt+1(x1:t+1) −Mt(x1:t) and H(µ) is a set of functions
depicting causality:

H(µ) := {(h, M) : h = (ht)T −1
t=1 , ht ∈ Cb(Rn×t),

M = (Mt)T
t=1 ∈M(µ), Mt ∈ Cb(Rn×t)},

withM(µ) being the set of martingales on Rn×T w.r.t. the canonical filtration
and the measure µ, and Cb(Rn×t) the space of continuous, bounded functions
on Rn×t.

Moreover, in the implementation of COT-GAN, the dimensionality of the
sets of h := (hj)J

j=1 and M := (M j)J
j=1 is bounded by a fixed J ∈ N. The

discriminator in COT-GAN is formulated by parameterizing hφ1 and Mφ2 in
the cost function cK as two separate neural networks that respect causality,

cK
φ (x, y) = c(x, y) +

J∑
j=1

T −1∑
t=1

hj
φ1,t(y)∆t+1M j

φ2(x), (C.1)

where φ := (φ1, φ2) and J corresponds to the output dimensionality of the two
networks. Thus, we update the parameters based upon the loss between the
empirical distributions of two mini-batches.

Given a mini-batch of size m from training data {xd
1:T }mi=1 we define the
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Table C.1: Generator architecture.

Generator Configuration
Input z ∼ N (0, I)

0 LSTM(state size = 64), BN
1 LSTM(state size = 128), BN
2 Dense(8*8*256), BN, LeakyReLU
3 reshape to 4D array of shape (m, 8, 8, 256)
4 DCONV(N256, K5, S1, P=SAME), BN, LeakyReLU
5 DCONV(N128, K5, S2, P=SAME), BN, LeakyReLU
6 DCONV(N64, K5, S2, P=SAME), BN, LeakyReLU
7 DCONV(N1, K5, S2, P=SAME)

Table C.2: Discriminator architecture.

Discriminator Configuration
Input

0 CONV(N64, K5, S2, P=SAME), BN, LeakyReLU
1 CONV(N128, K5, S2, P=SAME), BN, LeakyReLU
2 CONV(N256, K5, S2, P=SAME), BN, LeakyReLU
3 reshape to 3D array of shape (m, T, -1)
4 LSTM(state size = 256), BN
5 LSTM(state size = 64)

empirical measure for the mini-batch as

µ̂ := 1
m

m∑
d=1

δxd
1:T

.

As the last piece of the puzzle, Xu et al. [194] enforced M to be close
to a martingale by a regularization term to penalize deviations from being a
martingale on the level of mini-batches.

pM(µ̂) := 1
mT

J∑
j=1

T −1∑
t=1

∣∣∣∣∣
m∑

d=1

M j
t+1(xd

1:t+1)−M j
t (xd

1:t)√
Var[M j ] + η

∣∣∣∣∣,
where Var[M ] is the empirical variance of M over time and batch, and η > 0
is a small constant.

C.II Training details

We used a smaller size of model with the same network architectures as
COT-GAN to train all three datasets. The architectures for generator and
discriminator are given in Tables C.1 and C.2.
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Hyperparameter settings are as follows: the Sinkhorn regularizer ϵ = 0.8,
Sinkhorn iteration L = 100, the lengthscale l = 20 and martingale penalty
λ = 1.5. We used Adam optimizer with learning rate 0.0001, β1 = 0.5 and
β2 = 0.9. All models are trained for 60, 000 iterations.

C.III Extended figures

In this section, we provide more additional and larger figures for our experi-
ments.

Figure C.1: Larger version of Figure 6.2 for the purpose of visual comparison.
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Figure C.2: More selected samples for the log-Gaussian Cox process (LGCP)
dataset.
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Figure C.3: More selected samples for the extreme weather (EW) dataset.
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Figure C.4: More selected samples for the turbulent flow (TF) dataset.
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Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
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[158] Marianna Siino, Francisco J. Rodŕıguez-Cortés, Jorge Mateu, and Giada
Adelfio. Testing for local structure in spatiotemporal point pattern data.
In Environmetrics, volume 29, page e2463. John Wiley and Sons Ltd, aug
2018. doi: 10.1002/env.2463. URL https://onlinelibrary.wiley.com/

doi/10.1002/env.2463.

[159] B. W. Silverman. Density estimation: For statistics and data
analysis. CRC Press, jan 2018. ISBN 9781351456173. doi:
10.1201/9781315140919. URL https://www.taylorfrancis.com/books/

mono/10.1201/9781315140919/density-estimation-statistics-

data-analysis-silverman.

[160] Panagiotis Sismanidis, Benjamin Bechtel, Iphigenia Keramitsoglou,
and Chris T. Kiranoudis. Mapping the Spatiotemporal Dynamics
of Europe’s Land Surface Temperatures. IEEE Geoscience and Re-
mote Sensing Letters, 15(2):202–206, feb 2018. ISSN 15580571. doi:
10.1109/LGRS.2017.2779829.

[161] Michael R. Sprague, Amir Jalalirad, Marco Scavuzzo, Catalin Capota,
Moritz Neun, Lyman Do, and Michael Kopp. Asynchronous federated
learning for geospatial applications. In Communications in Computer
and Information Science, volume 967, pages 21–28. Springer Verlag, sep
2019. ISBN 9783030148799. doi: 10.1007/978-3-030-14880-5 2. URL
http://www.here.com.

[162] A. Stein and L. C. A. Corsten. Universal Kriging and Cokriging as a
Regression Procedure. Biometrics, 1991. ISSN 0006341X. doi: 10.2307/
2532147.

[163] A. Stewart Fotheringham and Peter A. Rogerson. GIS and spa-
tial analytical problems. International Journal of Geographical In-
formation Systems, 7(1):3–19, 1993. ISSN 02693798. doi: 10.1080/
02693799308901936. URL https://www.tandfonline.com/doi/abs/

10.1080/02693799308901936.

154

https://onlinelibrary.wiley.com/doi/10.1002/env.2463
https://onlinelibrary.wiley.com/doi/10.1002/env.2463
https://www.taylorfrancis.com/books/mono/10.1201/9781315140919/density-estimation-statistics-data-analysis-silverman
https://www.taylorfrancis.com/books/mono/10.1201/9781315140919/density-estimation-statistics-data-analysis-silverman
https://www.taylorfrancis.com/books/mono/10.1201/9781315140919/density-estimation-statistics-data-analysis-silverman
http://www.here.com
https://www.tandfonline.com/doi/abs/10.1080/02693799308901936
https://www.tandfonline.com/doi/abs/10.1080/02693799308901936


[164] S. C. Suddarth and Y. L. Kergosien. Rule-injection hints as a means
of improving network performance and learning time. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 412 LNCS,
pages 120–129. Springer Verlag, 1990. ISBN 9783540522553. doi: 10.1007/
3-540-52255-7 33.

[165] Yusuke Tanaka, Tomoharu Iwata, Toshiyuki Tanaka, Takeshi Kurashima,
Maya Okawa, and Hiroyuki Toda. Refining coarse-grained spatial data
using auxiliary spatial data sets with various granularities. In 33rd AAAI
Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applic-
ations of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI
2019, 2019. ISBN 9781577358091. doi: 10.1609/aaai.v33i01.33015091.
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