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Abstract 
Emerging data in a range of non-human animal species have highlighted a latent ability to combine certain pre-existing 
calls together into larger structures. Currently, however, the quantification of context-specific call combinations has received 
less attention. This is problematic because animal calls can co-occur with one another simply through chance alone. One 
common approach applied in language sciences to identify recurrent word combinations is collocation analysis. Through 
comparing the co-occurrence of two words with how each word combines with other words within a corpus, collocation 
analysis can highlight above chance, two-word combinations. Here, we demonstrate how this approach can also be applied 
to non-human animal signal sequences by implementing it on artificially generated data sets of call combinations. We argue 
collocation analysis represents a promising tool for identifying non-random, communicatively relevant call combinations 
and, more generally, signal sequences, in animals.

Significance statement
Assessing the propensity for animals to combine calls provides important comparative insights into the complexity of animal 
vocal systems and the selective pressures such systems have been exposed to. Currently, however, the objective quantifica-
tion of context-specific call combinations has received less attention. Here we introduce an approach commonly applied in 
corpus linguistics, namely collocation analysis, and show how this method can be put to use for identifying call combinations 
more systematically. Through implementing the same objective method, so-called call-ocations, we hope researchers will 
be able to make more meaningful comparisons regarding animal signal sequencing abilities both within and across systems.

Keywords Call combinations · Collocation analysis · Comparative approach · Non-random structure · Syntax

Introduction

Over the last 20 years, there has been a growing interest into 
the combinatorial abilities of animals, namely the propen-
sity to sequence context-specific calls (i.e. meaning-bearing 

units, see Suzuki and Zuberbühler 2019) into larger poten-
tially meaningful structures (Arnold and Zuberbühler 2006; 
Ouattara et al. 2009; Engesser et al. 2016; Suzuki et al. 2016; 
Collier et al. 2020). Combinatoriality is one mechanism 
that can increase the expressive potential of a finite vocal 
repertoire (Nowak et al. 2000). Data on the combinatorial 
capacities of non-human animals therefore provide impor-
tant comparative insights into the complexity of animal 
communication systems and the selective pressures such 
systems have been exposed to (Collier et al. 2020). Data 
on combinatoriality also hold great promise in further-
ing our understanding of the similarities between animal 
communication and human language given that, for many 
years, it was assumed that the systematic combination of 
meaning-bearing units (i.e. syntax) was a phenomenon 
unique to language (Hurford 2012). Emerging examples 
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of meaning-bearing syntactic-like structures in non-human 
primates and non-primate animals suggest this particular 
assumption was indeed premature (Arnold and Zuberbühler 
2006; Coye et al. 2015, 2016; Engesser et al. 2016; Suzuki 
et al. 2016; Berthet et al. 2019; Collier et al. 2020), and such 
data even have the potential to further our understanding 
of the evolutionary progression of our own communication 
system (Townsend et al. 2018; Leroux and Townsend 2020).

In light of the communicative and evolutionary insights 
that research on call combinations can provide, it is surpris-
ing that, in contrast to a rich literature on sequential dynam-
ics in songs (Honda and Okanoya 1999; Suzuki et al. 2006; 
Kershenbaum et al. 2014; Kershenbaum and Garland 2015; 
Sainburg et al. 2019, and for a review of the topic: ten Cate 
and Okanoya 2012), to date, objective means of capturing 
the statistical association patterns in context-specific call 
combinations have remained less explored. This is prob-
lematic as animal calls may occur in rapid succession, rep-
resenting mere read-outs of contextual shifts. A method to 
capture greater-than-chance co-occurrence of calls is there-
fore central to reliably detect and identify non-random (i.e. 
potentially relevant) animal call combinations.

Similar methodological issues have been encountered in 
research on language learning and use (Bartsch 2004; Evert 
2008; Gries 2013; Gablasova et al. 2017). One approach 
frequently implemented to identify combinations of words 
(mostly bigrams, i.e. two-word/two-call structures) in large 
written and spoken corpora is collocation analysis (for a 
review, see Gries 2013). Collocation analyses can take sev-
eral forms, but the core commonality is that it contrasts the 
frequency with which specific words combine to measure 
the relative exclusivity of their relationship within a corpus 
(Church et al. 1991; Kennedy 1991; Gries and Stefanow-
itsch 2004; Nesselhauf 2005). In other words, such analyses 
reveal whether particular word/call combinations are more 
common than would be expected given an assumed random 
baseline (e.g. the uniform distribution, in which each com-
bination is equally likely). For example, in English “drink” 
collocates with “coffee” and “going” collocates with “to” (to 
form the future tense or describe a motion event). Thus, col-
location analyses can be understood as a simple yet highly 
informative measure of the influence a lexical item has on 
its neighbours. Collocation analyses differ from other related 
conditional probability measurements that capture the distri-
butions over vectors, such as Markov chains, since Markov 
chains are used to primarily model the running dynamics of 
all relationships between elements by calculating the prob-
abilities over entire sequences, whilst collocation analyses 
take a distributional matrix as input to describe the specific 
relationship between two predetermined elements based on 
how they relate to a baseline (calculated via a statistic such 
as the hypergeometric probability or via mutual information 
estimates, e.g. Stefanowitsch and Gries 2003; Bartsch 2004; 

Xiao and Mcenery 2006; Lehecka 2015). Therefore, in situ-
ations when combinations of signals do not exceed the size 
of two and where the core goal is to probe whether these 
binary associations are produced above chance, collocation 
analysis is a suitable tool.

In this paper we highlight that considering animal con-
text-specific call data in a similar way as to how language 
data are treated (i.e. as a corpus) affords the unique oppor-
tunity to apply a variety of analytical tools habitually imple-
mented in language sciences to study similar questions (see 
also Berwick et al. 2011; Schlenker et al. 2016a, b). Specifi-
cally, we demonstrate the application of collocation analyses 
to empirically identify combinations of two calls, henceforth 
termed bigrams, in a suite of variable, synthetically created 
non-human animal data sets, and the relative merits of doing 
so. We focus on two specific forms of collocational meas-
urements commonly implemented in language sciences: 
Multiple Distinctive and Mutual Information Collocation 
Analyses (Gries 2014).

Collocation analyses—Multiple Distinctive 
and Mutual Information approaches:

Multiple Distinctive Collocation Analysis (MDCA) is pri-
marily used when investigating and testing what meaning-
bearing units collocate with what grammatical construc-
tions (collostructional analysis). In addition to statistically 
contrasting all possible bigram combinations to estimate 
whether a given bigram occurs at frequencies higher or 
lower than what would be expected by chance (Gries and 
Stefanowitsch 2004; Hilpert 2006), the output of MDCA 
also provides a superficial estimate of bigram ordering, 
namely whether the combination is sensitive to the position 
of the calls comprising it (e.g. is A-B as frequent as B-A). 
MDCA uses multiple (corrected) binomial probability statis-
tics over the cross-tabulated frequencies of word pairs in the 
sample (this approach serves as an approximation of multi-
nomial probability values, which allow the comparison of an 
element with more than two alternatives; see Gries and Ste-
fanowitsch 2004; Gries 2014). Importantly, since an MDCA 
is calculated via the binomial probability mass function, it is 
not constrained by the usual sampling assumptions, making 
it suitable for skewed, non-random, and small corpora of the 
kind often encountered in animal communication (Gries and 
Stefanowitsch 2004; Hilpert 2006; Gries 2014).

One recurrent issue for the analysis of linguistic corpora 
is the fact that any corpus represents an incomplete—or 
undersampled—representation of the target linguistic sys-
tem—i.e. some two-word combinations can be under-repre-
sented or even absent from a corpus when their “true” prob-
ability of occurrence is higher (note that this also affects all 
other probabilities in the sample, which are artificially 
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inflated, because other probabilities are underestimated). 
Such undersampling leads to misleading estimates of the 
significance of certain bigrams in the corpus (Gries and Ste-
fanowitsch 2004; Hilpert 2006). Mutual Information Col-
location Analysis (MICA) however actually overestimates 
low-frequency values (Church and Hanks 1990; Evert 2005), 
which can be an advantage in animal communication cor-
pora, as low-frequency pairings, a common feature of non-
human vocal data sets, are not overlooked but flagged as 
potential combinatorial candidates. MICA calculates the 
variability of two predetermined co-occurring items through 
computing information values via observed frequency 
divided by expected frequency (i.e. baseline). Specifically, 
MICA (when expressed in binary logarithms) gives the bits 
of information that are shared between two distributions. In 
the case of collocations, this shared information can be con-
strued as degree and kind of association (meaning the size 
of the collocational strength number and whether elements 
attract or repulse each other). MICA is computed as the log2 
of the ratio of frequency of observed sequences (ei, ei+1 ; 
where e = element and i = position) over the expected fre-
quency E(ei, ei+1 ), where E(ei, ei+1 ) is expressed as the prod-
uct of the frequencies of ei,ei+1

sample size
 . A MICA score of 0 means 

that the two distributions vary independently. MICA 
scores > 0 indicate greater-than-expected rates of co-occur-
rence. MICA scores < 0 indicate less-than-expected rates of 
co-occurrence. This measure thus differs from MDCA, 
which uses binomial probability values over a 2 × 2 fre-
quency matrix.

In the remainder of the paper, we apply both forms of 
collocation analyses using an existing R script provided by 
Stefan Gries (2014, see supplementary) to four artificially 
created pseudo data sets.

Call combinations in artificial data sets: a guide

We first constructed a repertoire broadly consistent in size 
with the known repertoires of other various primate spe-
cies (Boesch and Crockford 2005; Ouattara et al. 2009; 
Leroux et al. 2021). Specifically, ten hypothetical call 
types ranging from tonal whistles and twitters to noisy 
barks and coughs were used (see Table 1 and appendix I 
for the exact distribution of the data). From this repertoire 
we then built four artificial sets of call combination distri-
butions. Since most research in context-specific call sys-
tems has detected two-call combinations (e.g. Arnold and 
Zuberbühler 2006; Coye et al. 2015; Engesser et al. 2016; 
Suzuki et al. 2016; Collier et al. 2020), we constrained our 
data sets to only include instances in which two calls from 
the repertoire co-occurred with each other to form bigrams 
(see appendix V for the raw input files).

Although in this paper we use artificial data sets, it is 
important to note that in order to initially acquire such 
data from captive or free-living animals, researchers 
should ideally collect focal data (Altmann 1974), noting 
the raw number of times context-specific calls from the 
repertoire combine with each other (with a combination 
often being defined as two calls being temporally closely 
positioned, see, for example, Boesch and Crockford 2005; 
Coye et al. 2015; Collier et al. 2017). This will allow the 
generation of a frequency matrix on which collocation 
analysis can then be applied (for an example of such a 
matrix, see appendix I).

To showcase the advantages and disadvantages of MDCA 
and MICA respectively, we guided the simulation of the 
data sets along multiple distributional variables. Firstly, 
the combinatorial data sets were created according to two 
dimensions important to consider when identifying call 
combinations, namely the size of the data set, including the 
number of times the target combinations are detected, and 
the recombinatorial patterns observed, i.e. if the different 
call types recombine with only a few or with many other 
call types in the repertoire. Specifically, we created synthetic 
vocal data sets of i) small (i.e. S) and large size (i.e. L) and 
ii) data sets designed with call types that appear in combina-
tion with only one other call type exclusively (i.e. E) or that 
recombine with many different call types (i.e. R) resulting in 
four distinct data sets: small-exclusive (SE), large-exclusive 
(LE), small-recombinatorial (SR) and large-recombinatorial 
(LR). Secondly, the emergent two-call combinations of inter-
est in the four synthetic data sets were created to be i) either 
stereotyped or flexible in call order (e.g. either appeared in a 
specific order or had no linearisation pattern) and to have ii) 
a varying frequency within the data sets, i.e. one pair (Huff-
Puff) appearing at a very low frequency level in comparison 
to other higher frequency pairings (Howl-Peep/Peep-Howl). 

Table 1  Distribution of identified bigrams occurring in the four arti-
ficial vocal repertoires split along the two variables i) size of data set 
and ii) extent of recombination. The last two rows show the number 
of combinations that are described in the data set (combinations) 
and, therefore, how many calls a data set comprises (data set size). 
See appendix I for detailed distribution. The values are larger for the 
recombinational data sets as in these data sets all call types recom-
bine with other call types outside of the three call combinations of 
interest (for details see appendix I)

SE SR LE LR

Small 
Exclusive

Small  
Recombination

Large  
Exclusive

Large  
Recombination

Huff-Puff 4 4 40 40
Peep-Howl 5 5 50 50
Howl-Peep 7 7 70 70
Combinations 16 49 160 490
Data set size 32 calls 98 calls 320 calls 980 calls
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To capture these relationships, we applied both MDCA and 
MICA to our data sets.

Since we generated a variety of call associations along 
these dimensions, we expected collocation analyses to 
reveal at least some significant relationships between calls. 
More precisely, we predicted that the MDCA values would 
increase positively with increased data set size and that the 
analyses would reveal if a bigram pair is prone to a specific 
order. We also predicted that based on the way MICA is 
calculated, the analysis would be more resilient to sample 
size differences and highlight the low-frequency bigrams 
more strongly than MDCA. Lastly, we expected both analy-
ses to show weaker collocation strengths once calls from 
a candidate combination recombine with other calls in the 
repertoire.

Multiple Distinctive Collocation Analysis:

In a first step, we applied a Multiple Distinctive Collocation 
Analysis, where call dependencies within bigrams were cal-
culated for each data set using binomial probability values 
on each possible bigram combination (Gries and Stefanow-
itsch 2004; Hilpert 2006; Gries 2014). Specifically, the bino-
mial probability mass function renders probability values for 
each word/call with each other in each construction, which 
are then log-transformed for spacing and make it possible 
to estimate whether a given bigram occurs less (negative 
“pbins”, Table 2) or more (positive “pbins”, Table 2) than 
what would be expected by chance. In addition, the values 
(used here explicitly, since they reflect the relative asso-
ciation of calls, but whilst simultaneously accounting for 

sample size) correspond to p estimation significance lev-
els (i.e. pbin > 3: P < 0.001, > 2: P < 0.01, > 1.3: P < 0.05, 
if < 1.3: NS). Since the aim here is to identify potential can-
didates for meaningful call combinations, we will focus only 
on positive values that highlight an attraction between two 
call types. For positive pbin values, the higher the value for 
two calls, the greater their collocational strength.

Table 3 shows the results of the Multiple Distinctive 
Collocation Analysis applied to all four synthetic data sets. 
Comparing the collocational strength of the combinations 
of interest across the four data sets indicates larger colloca-
tional values are associated with larger data sets. For exam-
ple, the pbin value (i.e. collocational strength) for the Huff-
Puff combination is 2.4 in the small-exclusive data set (SE) 
whilst it is multiplied by 10 (24.1) in the large-exclusive data 
set (LE). Furthermore, collocational strengths decrease as a 
result of recombination in the data sets: the more exclusive 
a combination, the stronger the collocational strength. For 

Table 2  Example of a Multiple Distinctive Collocation Analysis out-
put for the bigrams of one of the four artificial vocal data sets (large-
recombinations). Columns and rows show the first and second unit 
within a call combination, respectively. Values are pbins and can 

be translated to p estimation values (abs(pbin) > 3: P < 0.001, > 2: 
P < 0.01, > 1.3: P < 0.05). Relevant combinations are coloured in 
green

Table 3  Multiple Distinctive Collocation values for the bigrams in 
the four artificial vocal data sets. SE (small-exclusive), SR (small-
recombinations), LE (large-exclusive), and LR (large-recombina-
tions). Values are pbins and can be translated to p estimation values 
(abs(pbin) > 3: P < 0.001, > 2: P < 0.01, > 1.3: P < 0.05)

Multiple Distinctive Collocation Analysis

SE SR LE LR

Huff-Puff 2.4 1.2 24.1 7.9
Peep-Howl 2.5 1.4 25.3 10.3
Howl-Peep 2.5 1.9 25.1 14.5
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example, in a small data set, the Huff-Puff combination’s 
collocational strength is only 1.2 when the calls occurred 
with other call types in the data set (SR), while this value 
doubles (2.4) when the two calls occur exclusively with each 
other (SE) (see Table 3).

One additional feature of MDCA is that it tests whether 
the calls appear in a specific order (linearisation). The com-
bination of Huff-Puff showed a notable attraction between 
the two constituent calls in this specific order, given that it 
solely occurred in this order. However, Peeps and Howls 
occurred more fluidly with each other, and therefore dis-
played a high level of attraction no matter the linearisation 
(Peep-Howl and Howl-Peep) suggesting that either order did 
not matter for this particular combination, or that Peep and 
Howl form two significant, differently ordered, bigrams.

Mutual Information Collocation Analysis:

In light of the aforementioned advantages associated with an 
information-based approach, we complemented the MDCA 
analysis by also running MICA on the synthetic data sets. 
As previously mentioned, MICA calculates the collocational 
strength of a specific call type with every other call type it 
collocates with. To do so, the joint observed frequency of a 
specific bigram is divided by its joint expected frequency and 
then  log10 transformed. Concretely, the number of times the 
calls actually appear in combination is divided by the num-
ber of times the calls would appear in combination if every 
call was randomly distributed throughout the data set. Once 
more, the higher the collocation value, the stronger the collo-
cational strength between two units (again, we focus on posi-
tive values that indicate an attraction only, see Table 4). As 
with MDCA, pbins represent the log10 transformed values as 

a way of highlighting that highly positive pbin values stand 
for larger collocational strength between calls/words (i.e. if 
the absolute value of pbin > 3: P < 0.001, > 2: P < 0.01, > 1.3: 
P < 0.05, if < 1.3: NA).

Not accounting for any specific ordering of the structures 
in the analysed input, the Mutual Information Collocation 
Analysis demonstrated a relative attraction within two 
bigrams (Huff-Puff and Peep-Howl/Howl-Peep see Table 5). 
Furthermore, due to the way MICA is calculated, its col-
locational values are not affected by sample size. However, 
they are influenced by the frequency distribution of the call 
combinations within the sample. Specifically, MICA only 
highlights bigrams for call types that, firstly, appear exclu-
sively in combination with their collocational partner (low 
level of recombination) and, secondly, those that occur less 
frequently in the data set in general (low frequency pairings). 
This means that the distributions of the call combinations 
have an impact on each other’s values: the collocational 

Table 4  Example of a Mutual Information Collocation Analysis out-
put for the bigrams of one of the four artificial vocal data sets (large-
recombinations). Columns and rows show the first and second unit 
within a call combination respectively. Values are pbins and can 

be translated to p estimation values (abs(pbin) > 3: P < 0.001, > 2: 
P < 0.01, > 1.3: P < 0.05). Relevant combinations are coloured in 
green

Table 5  Mutual Information Collocation values for the bigrams in the 
four artificial vocal data sets. SE (small-exclusive), SR (small-recom-
binations), LE (large-exclusive), LR (large-recombinations). Values 
are pbins and can be translated to p estimation values (abs(pbin) > 3: 
P < 0.001, > 2: P < 0.01, > 1.3: P < 0.05). As here, MICA does not 
control for specific ordering of calls in a structure, the bigrams Howl-
Peep and Peep-Howl are considered to be the same combination, 
rendering only one entry, namely Peep-Howl, that incorporates both 
bigrams

Mutual Information Collocation Analysis

SE SR LE LE

Huff-Puff 3 2.3 3 2.3
Peep-Howl 1.4 1.3 1.4 1.3
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value for Huff-Puff is larger than the value for Peep-Howl 
as Huff-Puff only appears 4 or 40 times in the data sets, 
while Peep-Howl appears 12 or 120 times in the data sets 
respectively. Thus, MICA provides high values for very low-
frequency pairings, in this case Huff-Puff.

Discussion

When conceptualising animal vocal data in the same way 
as a language corpus, we show that methods habitually 
implemented in corpus linguistics to identify word combi-
nations—namely collocation analyses—can be transferred 
reliably to non-human signal sequences to highlight call 
combinations that are promising for further investigation. 
Specifically, collocation analyses help disentangle “true”, 
or non-random, call combinations from happenstance jux-
tapositions of single calls. This is critical when investigat-
ing potentially meaningful structuring within animal signal 
sequences.

We have described two collocational measurements—
Multiple Distinctive and Mutual Information Collocation 
analysis—and highlighted the advantages when applying 
these respective analyses to synthetically created data sets. 
Both measurements identify call combinations in the data, 
however, as Table 6 illustrates, there are some key differ-
ences. For example, MDCA’s collocation values show a 
scalar increase in line with the factor the sample size was 
increased with, while MICA’s values, since they are based 
on joint probability, are insensitive to sample size (except for 
precision increasing with increasing corpus size).

Furthermore, an advantage of MDCA in particular is that 
it allows an estimate of the ordering of call combinations, 
a feature not present in MICA. Identifying variation in the 
temporal organisation of calls is necessary to design experi-
ments probing the role of order on meaning. Results from 
the provided data sets indicate that not all of the identified 
combinations are characterised by ordering, a finding that 
is replicated when applying collocation analysis to real-
world data sets (see Bosshard 2020; Leroux et al. 2021). For 

example, in chimpanzees, long distance pant-hoot vocalisa-
tions are collocated with food calls above chance level (pant-
hoot + food call combination). The reversed order, however, 
did not show a high collocational attraction, implying that 
linearisation might be an important feature for this combina-
tion. This preliminary identification of call order therefore 
might serve as one possible additional filter when deciding 
which of the combinations detected from an animal data set 
to follow-up from an experimental perspective.

Of particular relevance is the fact that the collocational 
analyses applied here, especially MICA, were also sensitive 
to bigrams even when they occurred very infrequently in the 
data set. This is because collocational analyses consider the 
exclusivity of the combinatorial relationship: if calls com-
bine extremely rarely, they will still be detected as long as 
their relationship together is exclusive (see Table 6). Since 
considerable variation underlies the frequency with which 
different call combinations occur in animal vocal systems 
(e.g. alarm call combinations are less frequent than social 
call combinations (Boesch and Crockford 2005; Collier et al. 
2017; Leroux et al. 2022), we can be confident that colloca-
tional analysis will identify possibly relevant combinations, 
both common and rare.

Since MDCA and MICA have their own respective advan-
tages and shortcomings, we advocate applying both MDCA 
and MICA to data sets and comparing the results of these 
analyses. As previously mentioned, MDCA, for example, is 
sensitive to sample size and to the recombination of calls 
and, particularly if there is considerable recombination in a 
data set, it will give more weight to call combinations that 
appear more frequently. MICA, on the other hand, whilst 
also sensitive to recombination of calls, is affected by inter-
nal call distribution, as it highlights combinations that are 
extremely low in frequency in comparison to other higher 
frequency combinations. Applying both analyses increases 
the probability that researchers isolate likely communica-
tively relevant combinations and ultimately makes compari-
sons across data sets more robust.

Whilst collocation analysis represents an important first 
step to isolate candidate signal combinations, follow-up 
systematic behavioural observations and perception experi-
ments are still critical to further unpacking the putative 
function and meaning of such combinations. This may not 
be feasible for all combinations detected, though priority 
could be given to the ones with the strongest collocational 
association over both analyses, thus likely representing the 
most robust combination.

It is also important to note that this is not the first 
attempt to estimate the combinatorial nature of ani-
mal vocal systems, indeed other systematic approaches 
to capture the sequential dynamics and internal struc-
turing of animal vocal sequences, specifically song, 
have been applied. Song structures generally comprise 

Table 6  Comparison of Multiple Distinctive Collocation Analysis 
and Mutual Information Collocation Analysis. Arrows represent if 
the collocation values get lower or higher due to a characteristic of 
the data set (small data set) or a call combination (recombination, low 
frequency, linearisation). The checkmark indicates that MDCA iden-
tifies ordering patterns, while MICA does not. NA designates that the 
size of the data set has no effect on MICA

Characteristics of data input

Small data set Recom-
bination

Low fre-
quency

Linearisation

Collocation 
analysis

MDCA ↓ ↓ ↓
MICA NA ↓ ↑ X
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multiple elements and summarising relationships between 
these elements requires calculating the probability of 
entire sequences. In these instances, modelling-based 
approaches, including different Markovian and non-
Markovian chain modellings (Suzuki et al. 2006; Briefer 
et  al. 2010; Jin and Kozhevnikov 2011; Kershenbaum 
et al. 2014; Kershenbaum and Garland 2015; Sainburget 
al. 2019) are most appropriate.

Whilst in principle such modelling approaches (e.g. 
Markov chains) could be applied to context-specific call 
systems, collocation analysis affords the following advan-
tages. Firstly, collocation analyses are easily applied across 
systems and provide a convenient and descriptive account of 
the combinatorial dependencies between vocal units (Firth 
1957; Evert 2005, 2008). Secondly, call combinations in 
animals are arguably simplistic and rarely exceed the level 
of the bigram (two call combinations) for which colloca-
tion analysis is precisely designed. Although optimised for 
detecting bigrams, collocation analysis must not be restricted 
to combinations of context specific calls but can also be 
applied to explore relevant 2-element combinations in larger 
structures such as songs.

We argue that this approach outlined here represents a 
novel application of an objective method to quantify com-
binatorial features of animal communication systems. 
Although we focus here on vocal signals, collocation analy-
sis can also be implemented in a variety of settings or con-
texts such as identifying other signal combinations from 
both the same and different modalities.

We hope that collocation analyses will be applied by 
other researchers in the field of animal communication 
as an additional way to disambiguate random from non-
random combinatorial structures, whether that be the 
combination of meaning-bearing elements (vocal, non-
vocal or multimodal) or pinpointing relevant bigrams 
present in longer sequences, e.g. songs. Future work 
could also build on these initial approaches through (i) 
improving collocation estimates through better account-
ing for uncertainty (e.g. in a Bayesian framework) and 
(ii) applying other, as yet unexplored, sequence-based 
methods currently used in language sciences to animal 
corpora as a means to answer further questions (e.g. skip-
gram modelling for analysing rarer, larger call sequences, 
see Guthrie et al. 2006).

Ultimately, implementing the same objective, stand-
ardised methods such as collocation analysis could allow 
researchers to make more meaningful comparisons both 
within and across systems, at the individual, group, popula-
tion or even species level.
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