Supplementary Information

Diene Incorporation by a Dehydratase Domain Variant in Modular Polyketide Synthases

Christian Hobson ${ }^{1 \dagger \ddagger}$, Matthew Jenner ${ }^{1,2 \dagger}$, Xinyun Jian ${ }^{1,2}$, Daniel Griffiths ${ }^{1 \ddagger}$, Douglas M. Roberts ${ }^{1}$, Matias Rey-Carrizo ${ }^{1 \ddagger}$ and Gregory L. Challis ${ }^{1,2,3,4 *}$
${ }^{1}$ Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
${ }^{2}$ Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK
${ }^{3}$ Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
${ }^{4}$ ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, VIC 3800, Australia

*Corresponding Author; Email: G.L.Challis@warwick.ac.uk
†These authors contributed equally
${ }^{\ddagger}$ Current addresses: Willow Biosciences Inc, Vancouver, British Columbia, Canada (C.H.); Monash University Accident Research Centre, Clayton, VIC 3800, Australia (D.G.); BCN Medical Writing, Sabadell, Catalunya 08203, Spain (M.R.-C.); Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia (X.J.)

Supplementary Table 1: Measured and calculated (in parentheses) masses for the wild type and mutant DH-ACP di-domain from module 13 of the gladiolin PKS bearing substrate analogues products.

Substrate	Mass of di-domain bearing substrate $/ \mathrm{Da}$	Mass of di-domain bearing dehydration products / Da	Mass of di-domain bearing rehydration products / Da	Corresponding Figure
DH-ACP di-domain				

5	$\begin{gathered} 52706.6 \\ (52706.5) \end{gathered}$	$\begin{gathered} 52687.4 \\ (52688.5) \end{gathered}$	-	Fig. 2 b
6	$\begin{gathered} 52705.3 \\ (52706.5) \end{gathered}$	$\begin{gathered} \text { N.D. } \\ (52688.5) \end{gathered}$	-	Fig. 2c
7	$\begin{gathered} 52658.6 \\ (52660.4) \end{gathered}$	-	$\begin{gathered} 52676.4 \\ (52678.4) \end{gathered}$	Fig. 2d
8	$\begin{gathered} 52658.8 \\ (52660.4) \end{gathered}$	-	$\begin{gathered} \text { N.D. } \\ (52678.4) \end{gathered}$	Fig. 2 e
9	$\begin{gathered} 52693.6 \\ (52694.5) \end{gathered}$	$-1 \times \mathrm{H}_{2} \mathrm{O}$ 52676.3 (52676.4) $-2 \times \mathrm{H}_{2} \mathrm{O}$ 52657.8 (52658.4)	${ }^{-}$	Fig. 3a
10	$\begin{gathered} 52657.2 \\ (52658.4) \end{gathered}$	-	$+1 \times \mathrm{H}_{2} \mathrm{O}$ 52674.6 (52676.4) $+2 \times \mathrm{H}_{2} \mathrm{O}$ 52695.6 (52694.5)	Fig. 3b
11	$\begin{gathered} 52692.9 \\ (52694.5) \end{gathered}$	$-1 \times \mathrm{H}_{2} \mathrm{O}$ 52675.1 (52676.4) $-2 \times \mathrm{H}_{2} \mathrm{O}$ 52657.2 (52658.4)	-	Extended Data Fig. 1d
12	$\begin{gathered} 52693.6 \\ (52694.5) \end{gathered}$	$-1 \times \mathrm{H}_{2} \mathrm{O}$ 52673.0 (52676.4) $-2 \times \mathrm{H}_{2} \mathrm{O}$ 52656.5 (52658.4)	-	Extended Data Fig. 1a (top)
13	$\begin{gathered} 52657.2 \\ (52658.4) \end{gathered}$	-	$+1 \times \mathrm{H}_{2} \mathrm{O}$ 52675.8 (52676.4) $+2 \times \mathrm{H}_{2} \mathrm{O}$ 52695.7 (52694.5)	Extended Data Fig. 1a (bottom)
14	$\begin{gathered} 52692.9 \\ (52694.5) \end{gathered}$	$-1 \times \mathrm{H}_{2} \mathrm{O}$ 52675.1 (52676.4) $-2 \times \mathrm{H}_{2} \mathrm{O}$ 52657.9 (52658.4)	-	Extended Data Fig. 1b
15	$\begin{gathered} 52675.1 \\ (52676.4) \end{gathered}$	$\begin{gathered} 52657.5 \\ (52658.4) \end{gathered}$	$\begin{gathered} 52693.6 \\ (52694.5) \end{gathered}$	Fig. 4a
16	$\begin{gathered} 52675.1 \\ (52676.4) \end{gathered}$	$\begin{gathered} 52657.2 \\ (52658.4) \end{gathered}$	$\begin{gathered} 52694.3 \\ (52694.5) \end{gathered}$	Extended Data Fig. 1e
DH-ACP (H158Y mutant)				
11	$\begin{gathered} 52701.2 \\ (52702.4) \end{gathered}$	N.D.	$\begin{gathered} 52719.1 \\ (52720.4) \end{gathered}$	Fig. 5b

trans-AT PKSs

tartrolon E

cis-AT PKSs

$\mathrm{KS} \mathrm{AT} \mathrm{KR}_{\mathrm{A}}^{\mathrm{ACP}} \mathrm{KS} \mathrm{AT}$

$\xrightarrow{E R}$

epothilone C

Supplementary Figure 1: Examples of DH-like domains in trans- and cis-AT PKSs proposed to be responsible for diene incorporation. Domains flanking the DH-like domains (as defined in the MIBIG database, ${ }^{1}$ except the TE domain at the C-terminus of the basiliskamide assembly line, which was identified using PFAM, and the dehydratase docking (DHD) domains, which were identified as recently described ${ }^{2}$) are illustrated and the predicted stereospecificities ${ }^{3}$ of the up- and downstream KR domains are indicated. To avoid ambiguity, KS domains are numbered sequentially from the N- to Cterminus of each PKS. This is unrelated to the module numbering. Note that the organization of domains in the trans-AT systems differ significantly from that in the canonical cis-AT PKSs: the second module is split across two subunits, with a DHD domain mediating communication between them, and the KR domain in the second module is positioned downstream of the ACP domain. In the case of the gladiolin and etnangien PKSs a putative non-elongating KS domain (highlighted in orange) is juxtaposed between the ACP and KR domains. In the case of tatrolon PKS, the second module lacks a KR domain and the KR domain in the first module is predicted to produce a ($3 R$)-3-hydroxyacyl thioester. Dienes in the biosynthetic intermediates that correspond to those in the final products are highlighted in the same color. In most cases, the configuration of the diene in the final product matches the predicted $2 E$, $4 Z$-configuration of the diene in the corresponding biosynthetic intermediate. In a minority of cases (highlighted by stereochemical descriptors adjacent to double bonds), the configuration of the diene in the final product differs from the predicted $2 E, 4 Z$-configuration of the diene in the corresponding biosynthetic intermediate. The reasons for this are currently unclear, but in the case of difficidin the triene is known to be configurationally labile. ${ }^{4}$ In the case of kirromycin, one of the double bonds of the diene produced by the module 12 DH -like domain undergoes oxidative modification by the cytochrome P450 KirOII, resulting in formation of a dehydroxylated tetrahydrofuran. ${ }^{5}$

Supplementary Figure 2: Subunit, module and domain organization of the gladiolin trans-AT PKS. The proposed structures of the ACP domainbound thioester intermediates following α - and β-carbon processing are shown. Note that although the PKS harbors 20 KS domains, only 17 chain elongation reactions are required for the assembly of the gladiolin backbone. No canonical non-elongating ketosynthase (KS^{0}) domains are present in the PKS, but the KS12, KS15 and KS20 domain (all highlighted in gold) are hypothesized not to elongate the polyketide chain based on comparisons with analogous PKS architectures containing canonical KS ${ }^{0}$ domains. Domain abbreviations are as follows: KS, ketosynthase; KR, ketoreductase; DH, dehydratase; ER, enoyl reductase; MT, C-/O-methyltransferase; ACP, acyl carrier protein and TE, thioesterase. To avoid ambiguity, KS domains are numbered sequentially from the N - to C -terminus of the PKS. This is unrelated to the module numbering.

ACP domain

MHHHHHHGKP IPNPLLGLDS TENLYFQGLD PFT-

10	20	30	40	50	60
VAAGYDGARA	AALAAGESTR	ASFDEALRRF	VTDQLAAQGV	ALAGRLGDDT	PFFDAGLDST
70	80	90	100	110	
HLLALVRALE	THCGRTFYPT	LLFEHQTLRE	LAAHLHRETP	AAFGQAVPVW	SESVAA

MW: 16,105 Da

DH-ACP di-domain

MHHHHHHGKP IPNPLLGLDS TENLYFQGLD PFT-

10	20	30	40	50	60
MTHRHAASYE	LDFEHDNLIL	RDㅐㅏRVHGVSI	LPGVTLIDVV	YRLGQHLLGH	QRFELAQLLF
70	80	90	100	110	120
RLPLATSGHE	ARRMTVRFA \bar{P}	GADHGCWTVS	LSSVPLRSGV̄	PGTGRDLHAE	CVLRELDAED
130	140	150	160	170	180
LRDPAEADFD	VAGFIASAER	STRVDEVYRG	VRELGVVHGP	FMQTLGEIFH	RGDEELMRLS
190	200	210	220	230	240
LGPLAESLRE	RFHAHPALLD	GATFAGSAFK	LVGEVAADFR	DDRPHIPFSV	ERVRLLRPFP
250	260	270	280	290	300
ARILVASRHG	DKLGGAGAA \bar{R}	REVTSSDLR \bar{I}	LDEEGRVLAL	FERLSYKRVR	QAADIVRLVD
310	320	330	340	350	360
QAPGEAEGAV	AGEAARSAGA	DVGVGAVPAS	TVAAGYDGAR	AAALAAGEST	RASFDEALRR
370	380	390	400	410	420
FVTDQLAAQG	VALAGRLGDD	TPFFDAGLDS	THLLALVRAL	ETHCGRTFYP	TLLFEHQTLR
430	440				

MW: 52,223 Da

Supplementary Figure 3: Sequences and calculated molecular weights of the DH-ACP didomain and the excised ACP domain from module 13 of the gladiolin PKS. The extra residues encoded by the expression vector appended to the N-termini of the proteins are in red. The Ser residue in the ACP domain that serves as the phosphopantheine attachment site and the active site His 1 , His2 and Asp residues in the DH domain are bold/underlined/blue.

Supplementary Figure 4: Intact protein MS analysis of the 3-hydroxy- and 3,5-dihydroxyhexaonyl thioesters attached to the excised $\operatorname{ACP}(\mathrm{DH})$ domain from module 13 of the gladiolin PKS. Deconvoluted mass spectra of the excised $\mathrm{ACP}(\mathrm{DH})$ domain resulting from conversion of pantetheine thioesters to the corresponding coenzyme A thioesters and subsequent loading onto the apo-ACP domain. a, Using (3R)-3-hydroxyhexanoyl thioester 5 (top) and (3S)-3-hydroxyhexanoyl thioester 6 (bottom). b, Using ($3 R$, 5S)-3,5-dihydroxyhexanoyl thioester 9 (top) and ($3 R, 5 R$)-3,5dihydroxyhexanoyl thioester 14 (bottom) c, Using (3S, 5R)-3,5-dihydroxyhexanoyl thioester 13 (top) and (3S, 5S)-3,5-dihydroxyhexanoyl thioester 12 (bottom). In all cases, little or no spontaneous dehydration is observed. Experiments were performed in triplicate and representative data are shown.

Supplementary Figure 5: Comparison of the H158Y mutant of the DH-ACP di-domain from module 13 of the gladiolin PKS with the wild type protein. a, 10\% SDS-PAGE analysis of the purified wild type DH-ACP di-domain (middle lane) and the H158Y mutant (right lane). b, Mass spectra of the DH-ACP di-domain (top) and the H158Y mutant (bottom). The calculated and measured masses are given for each protein. Unprocessed (left) and deconvoluted (right) mass spectra are shown. The difference in mass between the wild type and mutant di-domain is consistent with the change of H 158 to Y .

Supplementary Note: Synthesis of Pantetheine Thioesters

General Procedures

Room temperature refers to ambient temperature (298 K), $5^{\circ} \mathrm{C}$ refers to a cold water bath and $0{ }^{\circ} \mathrm{C}$ refers to an ice slush bath. Heated experiments were conducted using thermostatically controlled oil baths. All chemicals were purchased from Sigma-Aldrich and were used without further purification. The stereochemistry of purchased chiral starting materials was confirmed using optical rotation. NMR spectra were recorded on Bruker Advance HD-500 and HD-700 MHz spectrometers at room temperature (298 K). Chemical shifts are reported in parts per million (ppm) referenced to either CDCl_{3} ($\boldsymbol{\delta H}_{\mathrm{H}}: 7.26 \mathrm{ppm}$ and $\delta_{\mathrm{c}}: 77.0 \mathrm{ppm}$) or $\mathrm{CD}_{3} \mathrm{OD}\left(\delta_{\mathrm{H}}: 3.31 \mathrm{ppm}\right.$ and $\left.\delta_{\mathrm{C}}: 49.0 \mathrm{ppm}\right)$. Coupling constants (J) are rounded to the nearest 0.5 Hertz (Hz). Multiplicities are given as multiplet (m), singlet (s), doublet (d), triplet (t$)$, quartet (q), quintet (quin.), sextet (sext.), septet (sept.), octet (oct.) and nonet (non.). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ assignments were established on the basis of COSY, DEPT, HSQC and HMBC correlations. Infra-red spectra were recorded using either a Perkin Elmer Spectrum 100 FT-IR spectrometer or an Alpha Bruker Platunium ATR single reflection diamond ATR module. Optical rotations were measured using an Optical Activity Ltd AA-1000 millidegree auto-ranging polarimeter (589 nm). Specific rotations are given in units of 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. Melting points were recorded on a Stuart scientific melting point apparatus and are uncorrected. Silica column chromatography was performed on 40-60 A silica gel. Thin layer chromatography (TLC) was carried out on aluminium sheets coated with 0.2 mm silica gel $60 \mathrm{~F}_{254}$. Plates were visualized using UV light (254 nm) or potassium permanganate solution followed by heating. Low resolution mass spectra (LRMS) were recorded using an Agilent 6130B single quadropole ESI-MS. High resolution mass spectra (HRMS) were obtained were obtained by either Dr Lijiang Song or Mr Philip Aston using a Bruker MaXis- ESI-Q-TOF-MS.

Synthesis of 3-hydroxy pantetheine thioesters

Synthesis of 3-hydroxy pantetheine thioesters 5 and 6 . Auxiliary 17 and thiol 20 were synthesized according to literature procedures. ${ }^{6,7}$ Confirmation of stereochemistry for known aldol products 18 and 19 was obtained by hydrolysis to corresponding acids 23 and 23a. ${ }^{8}$
(R)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-3-hydroxyhexan-1-one (18) and (S)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-3-hydroxyhexan-1-one (19) ${ }^{8}$

(R)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-3-hydroxyhexan-1-one 18 and (S)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-3-hydroxyhexan-1-one 19 were synthesized according to the procedure described
by Pompeo et al. ${ }^{8}$ To a solution of (S)-1-(4-benzyl-2-thioxothiazolidin-3-yl)ethan-1-one 17 (648 mg, 2.58 mmol, 1.0 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ under an Ar atmosphere was added a 1 M solution of TiCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2.58 \mathrm{~mL}, 2.58 \mathrm{mmol}, 1.0$ equiv.) dropwise at $-78^{\circ} \mathrm{C}$. The orange suspension was allowed to stir for 10 min at the same temperature before N, N-diisopropylethylamine ($0.90 \mathrm{~mL}, 5.16 \mathrm{mmol}, 2.0$ equiv.) was added dropwise resulting in an immediate colour change to dark burgundy. After 1 h , a solution of butyraldehyde ($697 \mu \mathrm{~L}, 7.73 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ was added dropwise, and the solution stirred for a further 45 min at the same temperature. The resulting burgundy-orange solution was diluted with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(20 \mathrm{~mL})$ and deionized water (20 mL). The cooling bath was removed and the mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{~mL})$. The combined organic extracts were washed sequentially with an aqueous sodium bisulfite solution ($1 \mathrm{M}, 3 \times 40 \mathrm{~mL}$) and brine (40 mL), before being dried (MgSO_{4}), filtered, and concentrated in vacuo. The resulting orange residue was purified by silica chromatography ($\mathrm{Et}_{2} \mathrm{O}$: Petroleum ether, $30: 70$) to afford (R)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-3-hydroxyhexan-1-one 18 (250 mg, 30%) as a bright yellow solid, and (S)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-3-hydroxyhexan-1-one 19 (409 mg, 49%) as a bright yellow oil. Spectroscopic data for both compounds were consistent with that reported by Pompeo et al. ${ }^{8}$ Further confirmation of stereochemistry for each aldol product was obtained by hydrolysis to the corresponding acid and comparison of spectral data to the literature.
(R)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-3-hydroxyhexan-1-one 18: δ н ($700 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) 7.37-7.34 (2H, m, m-ArH), 7.30-7.27 (3H, m, o-ArH, p-ArH), 5.42 (1H, ddd, J 10.5, 7.0 and 4.0, CHN), 4.07 (1H, ddtd, J 11.5, $7.0,4.5$ and $2.5, \mathrm{CHOH}$), $3.46\left(1 \mathrm{H}\right.$, dd, J 17.5 and 9.5, $\mathrm{CH}_{2} \mathrm{CON}$), 3.41 (1 H , ddd, J 11.5, 7.5 and $1.0, \mathrm{CH}_{2} \mathrm{~S}$), $3.34\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.5\right.$ and $2.5, \mathrm{CH}_{2} \mathrm{CON}$), 3.23 (1 H , dd, J 13.5 and 4.0, $\mathrm{CH}_{2} \mathrm{Ar}$), 3.09 (1H, d, J 4.0, OH), 3.05 (1 H , dd, J 13.0 and 10.5, $\mathrm{CH}_{2} \mathrm{Ar}$), 2.91 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.5, \mathrm{CH}_{2} \mathrm{~S}$), 1.61-1.54 (1H, m, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.52-1.38 (3H, m, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $0.94\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\delta c(175 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 201.7\left(\mathrm{CS}_{2}\right), 174.1(\mathrm{CON}), 136.6$ ($\left.\mathrm{ArC}_{\text {quat }}\right)$, 129.6 (ArC), 129.1 (ArC), 127.5 (ArC), 68.4 (2C, CHN, $\mathrm{CHOH}), 46.7\left(\mathrm{CH}_{2} \mathrm{CON}\right), 38.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), \quad 37.0\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 32.2\left(\mathrm{CH}_{2} \mathrm{~S}\right), 18.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NNaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires 346.0906, found 346.0905. [$\left.\alpha\right]_{D}^{25}$ (c 0.5, $\left.\mathrm{CHCl}_{3}\right):+97$.
(S)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-3-hydroxyhexan-1-one 19: $\delta \mathrm{H}\left(700 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.37-7.33$ (2H, m, m-ArH), 7.30-7.27 (3H, m, o-ArH, p-ArH), $5.40(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 11.0,7.0$ and 4.0, CHN), $4.17(1 \mathrm{H}$,
ddtd, J 11.5, 7.0, 4.5 and 2.5, CHOH), $3.65\left(1 \mathrm{H}\right.$, dd, J 17.5 and 2.5, $\mathrm{CH}_{2} \mathrm{CON}$), 3.41 (1 H , ddd, J 11.5, 7.0 and $\left.1.0, \mathrm{CH}_{2} \mathrm{~S}\right), 3.23\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.5\right.$ and $\left.4.0, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.13\left(1 \mathrm{H}\right.$, dd, J 17.5 and $\left.9.5, \mathrm{CH}_{2} \mathrm{CON}\right), 3.05$ (1H, dd, J 13.0 and 10.5, CH2Ar), $2.91\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.5, \mathrm{CH}_{2} \mathrm{~S}\right), 2.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.0, \mathrm{OH}), 1.61-1.55(1 \mathrm{H}$, m, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.52-1.38 (3H, m, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $0.94\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta \mathrm{c}(175$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 201.6\left(\mathrm{CS}_{2}\right), 173.6(\mathrm{CON}), 136.6$ (ArCquat), 129.6 (ArC), 129.1 (ArC), 127.5 (ArC), 68.5 $(\mathrm{CHN}), 67.8(\mathrm{CHOH}), 46.1\left(\mathrm{CH}_{2} \mathrm{CON}\right)$, $38.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $37.0\left(\mathrm{CH}_{2} \mathrm{Ar}\right)$, $32.2\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $18.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $14.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NNaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires 346.0906, found 346.0906. [$\left.\alpha\right]_{D}^{25}$ (c 0.5, $\left.\mathrm{CHCl}_{3}\right):+126$.
(3R)-Hydroxyhexanoic acid (23)

23

To a stirred solution of $(R)-1-((S)$-4-benzyl-2-thioxothiazolidin-3-yl)-3-hydroxyhexan-1-one $18(81 \mathrm{mg}$, $0.25 \mathrm{mmol}, 1.0$ equiv.) in THF (2 mL) was added aqueous LiOH solution ($1.0 \mathrm{M}, 1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}, 4.0$ equiv.) and the reaction stirred at room temperature for 18 h . The THF was then removed in vacuo and the resulting solution was washed with EtOAc $(5 \times 10 \mathrm{~mL})$ to remove residual (S)-1-(4-benzyl-2-thioxothiazolidin-3-yl)ethan-1-one. The aqueous solution was then acidified to $\mathrm{pH} \sim 1$ before being extracted with EtOAc $(5 \times 10 \mathrm{~mL})$. The combined organics were then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford (3R)-Hydroxyhexanoic acid 23 as a colourless oil ($24 \mathrm{mg}, 74 \%$). Spectroscopic data was consistent with that reported by Pompeo et al. ${ }^{8}$
$\delta_{\mathrm{H}}\left(700 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.05(1 \mathrm{H}, \mathrm{tdd}, \mathrm{J} 8.0,4.5$ and $3.0, \mathrm{CHOH}), 2.57\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.5\right.$ and 3.0, $\left.\mathrm{CH}_{2} \mathrm{COOH}\right)$, $2.48\left(1 \mathrm{H}\right.$, dd, J 16.5 and 9.0, $\left.\mathrm{CH}_{2} \mathrm{COOH}\right), 1.58-1.35\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.94(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0$, $\left.\mathrm{CH}_{3}\right)$; $\delta \mathrm{c}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 177.9(\mathrm{COOH}), 67.9(\mathrm{CHOH}), 41.2\left(\mathrm{CH}_{2} \mathrm{COOH}\right), 38.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 18.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $14.1\left(\mathrm{CH}_{3}\right) ;[\alpha]_{D}^{25}\left(\mathrm{c} 2.2, \mathrm{CHCl}_{3}\right):-27.1 .{ }^{9}$
(3S)-Hydroxyhexanoic acid (23a)

23a
(3S)-Hydroxyhexanoic acid 23a was synthesized using the same procedure as for the synthesis of (3R)Hydroxyhexanoic acid 23 using (S)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-3-hydroxyhexan-1-one 19 ($81 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv.) to afford the product as a colourless oil ($23 \mathrm{mg}, 72 \%$). Spectral data was identical to that of (3R)-Hydroxyhexanoic acid 23. $[\alpha]_{D}^{25}\left(\mathrm{c} 2.2, \mathrm{CHCl}_{3}\right):+26.6 .{ }^{10}$

S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) (R)-3-

 hydroxyhexanethioate (21)

To a stirred solution of (R)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-3-hydroxyhexan-1-one $18(150 \mathrm{mg}$, 0.47 mmol , 1 equiv.) in acetonitrile (10 mL), was added $\mathrm{K}_{2} \mathrm{CO}_{3}(64 \mathrm{mg}, 0.47 \mathrm{mmol}, 1$ equiv.) and (R)- N -(3-((2-mercaptoethyl)amino)-3-oxopropyl)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamide 20 (148 mg, $0.47 \mathrm{mmol}, 1$ equiv.). The mixture was stirred at room temperature for 1 h before being quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (1 mL). The acetonitrile was then removed in vacuo and the resulting solution extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organics were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a crude oil, which was purified by silica chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 10: 1\right)$ to give the product as a colourless oil ($169 \mathrm{mg}, 86 \%$).
$v_{\max } / \mathrm{cm}^{-1}$ (neat) $3428(\mathrm{OH}), 2935(\mathrm{NH}), 1653,1533(\mathrm{C}=\mathrm{O}), 1151(\mathrm{C}-\mathrm{O}) ; \delta \mathrm{f}\left(700 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.98(1 \mathrm{H}$, br. t, J 6.0, NH $), 6.27\left(1 \mathrm{H}\right.$, br. s, $\left.\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 4.14-4.09(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 4.08(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCONH}), 3.68$ (1H, d J 11.5, $\left.\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 3.59-3.33 ($5 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}, \mathrm{OH}$), $3.28(1 \mathrm{H}, \mathrm{d} \mathrm{J}$ 11.5, $\left.\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.12\left(1 \mathrm{H}\right.$, ddd, J 14.0, 7.0 and $\left.5.5, \mathrm{CH}_{2} \mathrm{~S}\right), 2.98\left(1 \mathrm{H}\right.$, ddd, J $14.0,6.5$ and $\left.5.5, \mathrm{CH}_{2} \mathrm{~S}\right)$, $2.72\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.0\right.$ and $\left.3.5, \mathrm{CH}_{2} \mathrm{COS}\right), 2.69\left(1 \mathrm{H}\right.$, dd, J 15.0 and 9.0, $\left.\mathrm{CH}_{2} \mathrm{COS}\right), 2.42(2 \mathrm{H}$, td J 6.5 and 3.5, $\mathrm{CH}_{2} \mathrm{CONH}$), 1.55-1.35 (4H, m, $\left.\mathrm{CHOHCH}_{2} \mathrm{CH}_{2}\right), 1.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.93\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\delta \mathrm{c}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 199.4 (COS), $171.3\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $170.7(\mathrm{CHCONH})$, $99.3\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $77.3(\mathrm{CH})$, $71.6\left(\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $68.7(\mathrm{CHOH}), 51.4\left(\mathrm{CH}_{2} \mathrm{COS}\right)$, $39.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 39.3\left(\mathrm{CH}_{2} \mathrm{CHOH}\right), 36.5\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $35.4\left(\mathrm{CH}_{2} \mathrm{NH}\right)$,
$33.2\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $29.6\left(\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)\right.$, $28.8\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $22.3\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $19.0\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 18.9 $\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 18.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;$ HRMS $(\mathrm{ESI}) \mathrm{C}_{20} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$requires 455.2192, found 455.2190; $[\alpha]_{D}^{25}\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right):+16.2$.

S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) (R)-3-

hydroxyhexanethioate (5)

S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl)
(R)-3hydroxyhexanethioate 21 ($100 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.0$ equiv.) was stirred in $\mathrm{AcOH}: \mathrm{H}_{2} \mathrm{O}(2: 1,3 \mathrm{~mL})$, for 16 h at room temperature. The mixture was concentrated in vacuo and purified using silica chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{MeOH}, 85: 15$) to give the product as a colourless oil ($75 \mathrm{mg}, 83 \%$).
$v_{\max } / \mathrm{cm}^{-1}$ (neat) 3400 (OH), 2876 (NH), 1644, 1530 (C=O), 1065 (C-O); $\delta \mathrm{H}\left(700 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right)$ 4.06-4.02 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$), $3.89(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 3.52-3.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2}\right), 3.46\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0, \mathrm{CH}_{2} \mathrm{OH}\right), 3.39(1 \mathrm{H}, \mathrm{d}$, J 11.0, CH2OH), $3.34\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.02\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{~S}\right), 2.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.0$ and 5.0, $\mathrm{CH}_{2} \mathrm{COS}$), $2.68\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.0\right.$ and $7.5, \mathrm{CH}_{2} \mathrm{COS}$), $2.41\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{CONH}\right)$, 1.52-1.34 ($4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $0.93\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.92\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta \mathrm{c}(175 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) 198.9$ (COS), $176.0(\mathrm{CHCONH})$, $174.0\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $77.3(\mathrm{CH}), 70.4\left(\mathrm{CH}_{2} \mathrm{OH}\right)$, $69.3(\mathrm{CHOH})$, $52.6\left(\mathrm{CH}_{2} \mathrm{COS}\right), 40.4$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $40.3\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 40.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 36.4\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 36.3\left(\mathrm{NHCH}_{2}\right)$, $29.3\left(\mathrm{CH}_{2} \mathrm{~S}\right), 21.3$ $\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 20.9\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 19.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) 14.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) ;$ HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}[\mathrm{M}+$ Na^{+}requires 415.1879 , found $415.1880 ;[\alpha]_{D}^{25}(\mathrm{c} 0.2, \mathrm{MeOH}):+10.4$.

The ${ }^{1} \mathrm{H}$ NMR spectrum of S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido) propanamido)ethyl) (R)-3-hydroxyhexanethioate 5 ($\mathrm{d}^{4}-\mathrm{MeOD}$).

The ${ }^{13} \mathrm{C}$ NMR spectrum of S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido) propanamido)ethyl) (R)-3-hydroxyhexanethioate 5 ($\left.\mathrm{d}^{4}-\mathrm{MeOD}\right)$.

S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) (R)-3-

 hydroxyhexanethioate (22)

S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl)
(S)-3hydroxyhexanethioate 22 was synthesized using the same procedure as for the synthesis of S-(2-(3-$((R)$-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido) propanamido)ethyl) (R)-3-hydroxyhexanethioate 21 using (S)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-3-hydroxyhexan-1-one 19 (150 mg, $0.47 \mathrm{mmol}, 1$ equiv.) to give the product as a colourless oil ($159 \mathrm{mg}, 81 \%$).
$v_{\max } / \mathrm{cm}^{-1}$ (neat) $3430(\mathrm{OH}), 2935(\mathrm{NH}), 1655,1534(\mathrm{C}=\mathrm{O}), 1147(\mathrm{C}-\mathrm{O}) ; \delta \mathrm{H}\left(700 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.99(1 \mathrm{H}$, br. t, J 6.0, NH), $6.35\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.5, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 4.13-4.08(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 4.07(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCONH})$, $3.68\left(1 \mathrm{H}, \mathrm{d} \mathrm{J} 11.5, \mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 3.59-3.44 (4H, m, $\mathrm{NHCH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}$), 3.38 (1 H , br. s, OH), 3.28 ($\left.1 \mathrm{H}, \mathrm{d} \mathrm{J} 11.5, \mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.10\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.0\right.$ and $\left.6.0, \mathrm{CH}_{2} \mathrm{~S}\right), 3.01\left(1 \mathrm{H}\right.$, ddd, J 14.0 and $6.0, \mathrm{CH}_{2} \mathrm{~S}$), 2.73 (1H, dd, J 15.0 and 3.5, CH2COS), 2.68 (1H, dd, J 15.0 and 9.0, CH2COS), 2.42 (1H, dt, J 15.0 and 6.5, $\mathrm{CH}_{2} \mathrm{CONH}$), $2.40\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.0\right.$ and $\left.7.0, \mathrm{CH}_{2} \mathrm{CONH}\right), 1.56-1.35\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CHOHCH}_{2} \mathrm{CH}_{2}\right), 1.46(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.93(3 \mathrm{H}, \mathrm{t}$, J 7.0, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;$ cc (175 MHz, $\left.\mathrm{CDCl}_{3}\right) 199.4(\mathrm{COS}), 171.3\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 170.7(\mathrm{CHCONH}), 99.3$ $\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 77.3(\mathrm{CH}), 71.6\left(\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $68.9(\mathrm{CHOH}), 51.4\left(\mathrm{CH}_{2} \mathrm{COS}\right), 39.4\left(\mathrm{CH}_{2} \mathrm{CHOH}\right), 39.3$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$, $36.5\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $35.4\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $33.2\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $29.6\left(\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)\right.$, $28.9\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, 22.3 $\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $19.1\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $18.9\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $18.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $14.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; HRMS (ESI) $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$requires 455.2192, found 455.2193; $[\alpha]_{D}^{25}\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right):+38.1$.

S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) (R)-3hydroxyhexanethioate (6)

6

S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) (S)-3-hydroxyhexanethioate 6 was synthesized using the same procedure as for the synthesis of S-(2-(3-((R)-2,4-dihydroxy-3,3dimethylbutanamido)propanamido)ethyl) (R)-3-hydroxyhexanethioate 5 using S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) (S)-3-hydroxyhexanethioate 22 (100 mg , $0.22 \mathrm{mmol}, 1$ equiv.) to give the product as a colourless oil ($72 \mathrm{mg}, 85 \%$).
$v_{\max } / \mathrm{cm}^{-1}$ (neat) 3306 (OH), 2875 (NH), 1641, 1522 (C=O), 1074 (C-O); $\delta \mathrm{H}\left(700 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 4.06-4.02$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.89(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 3.52-3.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2}\right), 3.46\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0, \mathrm{CH}_{2} \mathrm{OH}\right), 3.39(1 \mathrm{H}, \mathrm{d}$, J 11.0, CH2OH), $3.34\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.02\left(2 \mathrm{H}, \mathrm{td}, \mathrm{J} 6.5\right.$ and $\left.2.0 \mathrm{CH}_{2} \mathrm{~S}\right)$, $2.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.0$ and 5.0, $\mathrm{CH}_{2} \mathrm{COS}$), $2.68\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.0\right.$ and $7.5, \mathrm{CH}_{2} \mathrm{COS}$), 2.41 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{CONH}$), 1.51-1.34 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.93\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.92\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta \mathrm{c}\left(175 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ 198.9 (COS), 176.1 (CHCONH), $173.9\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $77.3(\mathrm{CH})$, $70.4\left(\mathrm{CH}_{2} \mathrm{OH}\right)$, $69.3(\mathrm{CHOH})$, 52.6 $\left(\mathrm{CH}_{2} \mathrm{COS}\right)$, $40.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 40.3\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 40.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$, $36.4\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $36.3\left(\mathrm{NHCH}_{2}\right)$, $29.3\left(\mathrm{CH}_{2} \mathrm{~S}\right), 21.3\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $20.9\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 19.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) 14.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$; HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$requires 415.1879, found 415.1881; [$\left.\alpha\right]_{D}^{25}$ (c 0.2, MeOH): +13.2.

The ${ }^{1} \mathrm{H}$ NMR spectrum of S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido) propanamido)ethyl) (S)-3-hydroxyhexanethioate 6 ($\mathrm{d}^{4}-\mathrm{MeOD}$).

The ${ }^{13} \mathrm{C}$ NMR spectrum of S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido) propanamido)ethyl) (S)-3-hydroxyhexanethioate 6 ($\mathrm{d}^{4}-\mathrm{MeOD}$).

Synthesis of 2-enoyl pantetheine thioesters

Synthesis of 2-enoyl pantetheine thioesters 7 and 8. The reduction of intermediate 26 afforded substrate 8 in a 95:5, Z/E ratio.
(R)-S-(2-(3-(2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl)
(E)-hex-2enethioate (24)

24

Procedure modified from Roberts et al. ${ }^{11}$ To a solution of (2E)-2-hexenoic acid (76 mg, $0.67 \mathrm{mmol}, 1.3$ equiv.), (R)-N-(3-((2-mercaptoethyl)amino)-3-oxopropyl)-2,2,5,5-tetramethyl-1,3-dioxane-4carboxamide 20 ($235 \mathrm{mg}, 0.74 \mathrm{mmol}, 1.4$ equiv.) and DMAP ($18 \mathrm{mg}, 0.16 \mathrm{mmol}, 0.3$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL), was added EDC ($141 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.4$ equiv.) at $0^{\circ} \mathrm{C}$. The reaction was stirred at room temperature for 17 h and was quenched by the addition of 2 M HCl . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The residue was purified by silica chromatography (EtOAc) to afford the product as a colourless oil (167 mg , $61 \%)$.
$v_{\max } / \mathrm{cm}^{-1}$ (neat) $2914(\mathrm{NH}), 1618,1520(\mathrm{C}=\mathrm{O}), 1159(\mathrm{C}-\mathrm{O}) ; \delta \mathrm{H}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.01$ (1H, br. t, J 6.0, NH), $6.92(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.5$ and 7.0, CHCHCOS$), 6.18-6.07\left(2 \mathrm{H}, \mathrm{br} . \mathrm{m}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}, \mathrm{CHCOS}\right), 4.07(1 \mathrm{H}$, s, CH), $3.67\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.0, \mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.62-3.40\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.0$, $\left.\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.07\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.0, \mathrm{CH}_{2} \mathrm{~S}\right), 2.40\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.0, \mathrm{CH}_{2} \mathrm{CONH}\right), 2.17\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 1.50-1.44 (2H, m, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 0.97-0.89 (6H, m, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta \mathrm{c}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 190.1(\mathrm{COS}), 171.6\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 170.1$ (CHCONH), 146.7 (CHCHCOS), 128.5 (CHCOS), $99.2\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $77.2(\mathrm{CH}), 71.5\left(\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $39.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$, $36.0\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $34.8\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $34.2\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $33.0\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $29.5\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $22.2\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $21.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $21.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $19.0\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $18.8\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 13.6 $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$; HRMS (ESI) $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$requires 437.2086, found 437.2088; $[\alpha]_{D}^{26}$ (c 0.2, $\left.\mathrm{CHCl}_{3}\right):+6.5$.

Procedure modified from Roberts et al. ${ }^{11}$ To a solution of (R)-S-(2-(3-(2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) (2E)-2-hexenethioate 24 (167 mg, $0.4 \mathrm{mmol}, 1.0$ equiv.) in MeOH (2 mL) was added Dowex® ${ }^{\circledR} 50 \mathrm{w}$ X8 resin (85 mg) and the resulting mixture was stirred at room temperature for two days. The reaction mixture was then filtered and concentrated in vacuo to afford the product as a colourless oil ($91 \mathrm{mg}, 60 \%$).
$v_{\max } / \mathrm{cm}^{-1}$ (neat) 3301 (OH), 2946 (NH), 1642, 1530 (C=O), 1099 (C-O); $\delta н\left(700 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 6.93$ (1H, $\mathrm{dt}, \mathrm{J} 15.5$ and 7.0, CHCHCOS), $6.17(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.5$ and 1.5, CHCOS), $3.89(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 3.51-3.33(6 \mathrm{H}$, $\mathrm{m}, \mathrm{NHCH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{CHOH}$), $3.07\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{CH}_{2} \mathrm{~S}\right.$), $2.41\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{CONH}\right)$, 2.21 (2H, qd, J 7.0 and $\left.1.5, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.51\left(2 \mathrm{H}\right.$, sext., J $\left.7.5, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.95\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.92(6 \mathrm{H}$, s, $\left.\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta c\left(175 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 191.1$ (COS), $176.0(\mathrm{CHCONH}), 173.9\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 147.3$ (CHCHCOS$), 129.7(\mathrm{CHCHCOS}), 77.3(\mathrm{CH}), 70.4\left(\mathrm{CH}_{2} \mathrm{OH}\right), 40.4\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 40.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 36.4$ $\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 36.3\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $35.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $28.9\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $22.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $21.3\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 20.9$ $\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $13.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$; HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$requires 397.1768, found 397.1770; $[\alpha]_{D}^{26}(\mathrm{c} 0.2, \mathrm{MeOH}):+8.3$.

The ${ }^{1} \mathrm{H}$ NMR spectrum of (R)-S-(2-(3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) (E)-hex-2-enethioate 7 ($\mathrm{d}^{4}-\mathrm{MeOD}$).

The ${ }^{13} \mathrm{C}$ NMR spectrum of (R)-S-(2-(3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) (E)-hex-2-enethioate 7 ($\mathrm{d}^{4}-\mathrm{MeOD}$).

(R)-S-(2-(3-(2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) hex-2-

 ynethioate (25)

To a solution of hex-2-ynoic acid ($0.12 \mathrm{~mL}, 0.75 \mathrm{mmol}, 1.3$ equiv.), (R)- N-(3-((2-mercaptoethyl)amino)-3-oxopropyl)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamide 20 ($255 \mathrm{mg}, 0.80 \mathrm{mmol}, 1.4$ equiv.) and DMAP (21 mg, $0.23 \mathrm{mmol}, 0.3$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, was added EDC ($156 \mathrm{mg}, 0.80 \mathrm{mmol}, 1.4$ equiv.) at $0^{\circ} \mathrm{C}$. The reaction was stirred at room temperature for 16 h and was quenched by the addition of 1 M HCl . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, washed with saturated NaHCO_{3} solution (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a viscous oil, which was purified by silica chromatography (EtOAc) to give the product as a colourless oil (305 mg, 99 \%).
$v_{\max } / \mathrm{cm}^{-1}$ (neat) $3309(\mathrm{OH}), 2939(\mathrm{NH}), 1649,1529(\mathrm{C}=\mathrm{O}), 1158(\mathrm{C}-\mathrm{O}) ; \delta \mathrm{H}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.01$ (1H, br. t, J 6.0, NH $)$, $6.20\left(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 4.07(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 3.67\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.5, \mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 3.61-3.39 (4H, m, NHCH2, CH2CH2S), $3.27\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.5, \mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.09\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{~S}\right)$, 2.43 (2H, t, J 6.0, CH2CONH), $2.37\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $1.62\left(2 \mathrm{H}\right.$, sextet, J 7.5, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.46(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.02\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.96(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta c\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.4(\mathrm{COS}), 171.4\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 170.3(\mathrm{CHCONH}), 99.2$ $\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 96.7(\mathrm{CCCOS}), 78.9(\mathrm{CCCOS}), 77.3(\mathrm{CH}), 71.6\left(\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 42.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 36.1$ $\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $34.9\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $33.1\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $29.6\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $29.5\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $22.3\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 21.2 $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $21.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $19.0\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $18.8\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $13.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$; HRMS (ESI) $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$requires 435.1924, found 435.1926; $[\alpha]_{D}^{26}\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right):+4.8$.

(R)-S-(2-(3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) hex-2-ynethioate (26)

(R) - S-(2-(3-(2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) hex-2-ynethioate 25 ($300 \mathrm{mg}, 0.73 \mathrm{mmol}$) was stirred in $\mathrm{AcOH}(4 \mathrm{~mL})$ and water $(2 \mathrm{~mL})$ for 16 h at room temperature. The mixture was then concentrated in vacuo and purified using silica chromatography (MeOH:EtOAc 1 : 10) to give the product as a colourless oil ($216 \mathrm{mg}, 80 \%$).
$v_{\max } / \mathrm{cm}^{-1}$ (neat) 3299 (OH), 2964 (NH), 1643, 1533 (COS), 1037 (C-O); δ (500 MHz ; CD ${ }_{3} \mathrm{OD}$) 3.89 (1H, s, CH), 3.61-3.39 (6H, m, NHCH2, CH2CH2S, CH2CHOH), 3.09 (2H, t, J 6.5, CH2S), $2.42(2 H, t, J 7.0$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.41\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{CONH}\right), 1.62\left(2 \mathrm{H}\right.$, sextet, J 7.5, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.03(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.92\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta c\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 177.2$ (COS), 176.1 (CHCONH), 174.0 $\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 96.9$ (CCCOS), $79.6(\mathrm{CCCOS}), 77.3(\mathrm{CH}), 70.4\left(\mathrm{CH}_{2} \mathrm{OH}\right), 40.4\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 39.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$, $36.4\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $36.3\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $30.1\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $22.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $21.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 21.2$ $\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 19.0\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $13.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; \operatorname{HRMS}(\mathrm{ESI}) \mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$requires 395.1611, found 395.1615; $[\alpha]_{D}^{26}(\mathrm{c} 0.4, \mathrm{MeOH}):+15.4$.

(R)-S-(2-(3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) (Z)-hex-2-enethioate (8)

8

Procedure modified from Alhamadsheh et al. ${ }^{12}$ A mixture of Lindlar catalyst ($10 \mathrm{mg}, 5 \%(\mathrm{w} / \mathrm{w})$ of Pd on CaCO_{3}, poisoned with lead) and quinoline ($5 \mu \mathrm{~L}, 0.1$ equiv. 0.05 mmol) in anhydrous ethanol (5 ml) was stirred at room temperature for 20 min . A solution of (R)-S-(2-(3-(2,4-dihydroxy-3,3dimethylbutanamido)propanamido)ethyl) hex-2-ynethioate 26 ($200 \mathrm{mg}, 0.51 \mathrm{mmol}, 1$ equiv.) in ethanol (5 ml) was added and the mixture was stirred for an additional 20 min at room temperature. The reaction mixture was placed under hydrogen atmosphere (balloon) and stirred for an additional 4 h . Mass spectrometric analysis indicated that the reaction had not yet reached completion. More catalyst was added (10 mg), and this process was repeated until the reaction was complete (8 days, 100 mg total catalyst). The catalyst was removed by filtration through celite and the filtrate was concentrated in vacuo to afford a yellow oil which was purified by silica chromatography (MeOH : EtOAc, $1: 10$) to give the product as a colourless oil (168 mg, $88 \%, 95: 5, Z: E)$.
$v_{\max } / \mathrm{cm}^{-1}$ (neat) $3287(\mathrm{OH}), 2951(\mathrm{NH}), 1640,1539(\mathrm{COS}), 1070(\mathrm{C}-\mathrm{O}) ; \delta \mathrm{H}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right)$ 6.14-6.06 (2H, m, CHCHCOS, CHCHCOS), $3.89(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 3.53-3.33\left(6 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{CHOH}\right)$, $3.05\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{CH}_{2} \mathrm{~S}\right), 2.59\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $2.41\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{CONH}\right), 1.48(2 \mathrm{H}$, sextet, J 7.5, $\mathrm{CH}_{3} \mathrm{CH}_{2}$), $0.94\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.92\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta \mathrm{c}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ 190.4 (COS), 176.1 (CHCONH), $173.9\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 148.5$ (CHCHCOS), 127.2 (CHCHCOS), $77.3(\mathrm{CH})$, $70.3\left(\mathrm{CH}_{2} \mathrm{OH}\right), 40.4\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $40.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$, $36.4\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $36.3\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $32.9\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, 29.1 $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $23.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $21.3\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $20.9\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $14.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$; HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$requires 397.1768, found 397.1767; $[\alpha]_{D}^{26}(\mathrm{c} 0.1, \mathrm{MeOH}):+7$.

The ${ }^{1} \mathrm{H}$ NMR spectrum of (R)-S-(2-(3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) (Z)-hex-2-enethioate 8 ($\mathrm{d}^{4}-\mathrm{MeOD}$).

The ${ }^{13} \mathrm{C}$ NMR spectrum of (R)-S-(2-(3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) (Z)-hex-2-enethioate 8 ($\mathrm{d}^{4}-\mathrm{MeOD}$).

Synthesis of 3,5-dihydroxyacyl pantetheine thioesters

Synthesis of thioesters 9 and 12. Aldehyde 27 was synthesized according to literature procedure. ${ }^{13}$

(S)-3-((tert-butyldimethylsilyl)oxy)butanal (27)

27

Procedure modified from Wang et al. ${ }^{13}$ Under an Ar atmosphere, $\operatorname{TBSCI}(1.34 \mathrm{~g}, 8.88 \mathrm{mmol}, 1.05$ equiv.) was added to a solution of commercially available methyl (S)-3-hydroxybutanoate ($1.0 \mathrm{~g}, 8.48 \mathrm{mmol}$, 1.00 equiv.) and imidazole ($0.86 \mathrm{~g}, 12.7 \mathrm{mmol}, 1.50$ equiv.) in DMF (25 mL) at $0{ }^{\circ} \mathrm{C}$, and the mixture was
stirred for 16 h at RT . The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}$, successively washed with HCl solution ($10 \%, 25 \mathrm{~mL}$), saturated $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford a colourless oil $(1.88 \mathrm{~g})$ which was used without further purification. The resulting oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and 1 M solution DIBAL-H in hexane ($9.33 \mathrm{~mL}, 9.33 \mathrm{mmol}, 1.1$ equiv.) was added dropwise at $-78^{\circ} \mathrm{C}$ under an Ar atmosphere. After being stirred for 30 minutes at this temperature, $\mathrm{MeOH}(10 \mathrm{~mL})$ was added, and the reaction was warmed to RT. A saturated solution of sodium potassium tartrate was then added (50 mL), and the mixture stirred until clear separation was observed. The organic layer was removed, and the aqueous layer further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$, the combined organics were washed with brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The resulting oil was then purified by silica chromatography ($3: 100 \mathrm{Et}_{2} \mathrm{O}$: Petroleum ether) to afford the product as a colourless oil ($1.30 \mathrm{~g}, 76 \%$ (2 steps)).
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.79(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.0$ and 2.0, CHO$), 4.35(1 \mathrm{H}, \mathrm{dqd}, \mathrm{J} 7.0,6.0$ and 5.0, CH$), 2.55$ (1 H , ddd, J 15.5, 7.0 and 3.0, CH2), 2.46 (1 H , dd, J 15.5, 5.0 and $2.0, \mathrm{CH}_{2}$), $1.23\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0, \mathrm{CH}_{3}\right.$), $0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$; $\mathrm{\delta c}_{\mathrm{c}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 202.6(\mathrm{CHO}), 64.9$ (CH), $53.4\left(\mathrm{CH}_{2}\right)$, $26.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $24.6\left(\mathrm{CH}_{3}\right)$, $18.3\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right),-4.0\left(\mathrm{SiCH}_{3}\right),-4.6\left(\mathrm{SiCH}_{3}\right)_{3} \text {; HRMS (ESI) }}\right.$ cald. for $\mathrm{C}_{11} \mathrm{H}_{26} \mathrm{NaO}_{3} \mathrm{Si}\left(\mathrm{M}+\mathrm{MeOH}+\mathrm{Na}{ }^{+}\right)$requires 257.1543, found 257.1543; $[\alpha]_{D}^{25}\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: +11.2. Spectroscopic data were consistent with those previously reported in the literature. ${ }^{14}$
(3R,5S)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexan-1-one (28) and (3S,5S)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexan-1-one (29)

Procedure taken from Gao et al. ${ }^{15}$ To a solution of (S)-1-(4-benzyl-2-thioxothiazolidin-3-yl)ethan-1-one 17 (600 mg, 2.39 mmol , 1 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under an Ar atmosphere was added a 1 M solution of TiCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2.55 \mathrm{~mL}, 2.51 \mathrm{mmol}, 1.05$ equiv.) dropwise at $0^{\circ} \mathrm{C}$. The orange suspension
was allowed to stir for 15 min at the same temperature before diisopropylethylamine ($0.46 \mathrm{~mL}, 2.63$ mmol, 1.1 equiv.) was added dropwise. The resulting purple solution was allowed to stir for a further 40 min at $0^{\circ} \mathrm{C}$. 1-Methyl-2-pyrrolidinone ($0.46 \mathrm{~mL}, 4.78 \mathrm{mmol}, 2.0$ equiv.) was then added at the same temperature and the reaction stirred for an additional 10 min before a solution of (S)-3-((tertbutyldimethylsilyl)oxy)butanal 27 ($978 \mathrm{mg}, 4.4 \mathrm{mmol}$, 2.0 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added. The reaction was left to stir for 2 h at $0^{\circ} \mathrm{C}$ before the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The organic layer was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product, which was purified by silica chromatography (EtOAc : Petroleum ether, $10: 90$) to give ($3 R, 5 S$)-1-((S)-4-benzyl-2-thioxothiazolidin-$3-\mathrm{yl})-5$-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexan-1-one 28 (196 mg, 18%) and (3S,5S)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexan-1-one 29 (326 mg, 30 \%) as yellow oils respectively.
(3R,5S)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexan-1-one 28: δ н $\left(700 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.36-7.32(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.30-7.26(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.42(1 \mathrm{H}$, ddd, J 10.5, 7.0 and 4.0, CHN), $4.38(1 \mathrm{H}, \mathrm{tq}, \mathrm{J} 9.5$ and $3.0, \mathrm{CHOH}), 4.18(1 \mathrm{H}, \mathrm{dqd}, \mathrm{J} 7.5,6.5$ and $3.0, \mathrm{CHOSi}), 3.57(1 \mathrm{H}, \mathrm{d}$, J 3.0. OH), $3.48\left(1 \mathrm{H}\right.$, dd, J 17.5 and $\left.9.0, \mathrm{CH}_{2} \mathrm{CON}\right), 3.39\left(1 \mathrm{H}\right.$, dd, J 11.5 and $\left.7.5, \mathrm{CH}_{2} \mathrm{~S}\right), 3.36(1 \mathrm{H}$, dd, $J 17.5$ and $\left.3.5, \mathrm{CH}_{2} \mathrm{CON}\right), 3.24\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.0\right.$ and $\left.4.0, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.04\left(1 \mathrm{H}\right.$, dd, J 13.0 and $\left.10.5, \mathrm{CH}_{2} \mathrm{Ar}\right)$, 2.89 ($\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.5, \mathrm{CH}_{2} \mathrm{~S}\right), 1.68$ (1 H , ddd, J 14.0, 10.0 and 3.0, $\mathrm{CHCH}_{2} \mathrm{CHOH}$), 1.53 (1 H , ddd, J 14.0, 7.5 and 2.5, $\left.\left.\mathrm{CHCH}_{2} \mathrm{CHOH}\right), 1.21\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5, \mathrm{CH}_{3} \mathrm{CH}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.10(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH})_{3}\right), 0.09$ (3H, s, SiCH_{3}); $\delta \mathrm{c}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 201.3\left(\mathrm{CS}_{2}\right), 173.1$ (CON), 136.5 ($\mathrm{ArC}_{\text {quat }}$), 129.4 (ArC), 128.9 (ArC), $127.2(\mathrm{ArC}), 68.3(\mathrm{CHN}), 66.2(\mathrm{CHOSi}), 65.1(\mathrm{CHOH}), 46.3\left(\mathrm{CH}_{2} \mathrm{CON}\right), 44.9\left(\mathrm{CHCH}_{2} \mathrm{CHOH}\right), 36.8$
 (ESI) $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NO}_{3} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$requires 454.1900, found 454.1915. [$\left.\alpha\right]_{D}^{24}\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right):+99.8$.
(3S,5S)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexan-1-one 29: $\delta \mathrm{H}\left(700 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.36-7.33(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.30-7.25(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.40(1 \mathrm{H}$, ddd, J 11.0, 7.0 and 4.0, CHN), $4.36(1 \mathrm{H}, \mathrm{tq}, \mathrm{J} 9.0$ and $3.5, \mathrm{CHOH}), 4.12(1 \mathrm{H}$, dqd., $8.5,6.0$ and $4.5, \mathrm{CHOSi}), 3.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 2.0, OH), $3.50\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.5\right.$ and $3.5, \mathrm{CH}_{2} \mathrm{CON}$), 3.39 (1 H , dd, J 11.5 and 7.0, $\mathrm{CH}_{2} \mathrm{~S}$), 3.29 (1 H , dd, J 17.5 and $8.5, \mathrm{CH}_{2} \mathrm{CON}$), $3.23\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.5\right.$ and $4.0, \mathrm{CH}_{2} \mathrm{Ar}$), $3.04\left(1 \mathrm{H}\right.$, dd, J 13.5 and $10.5, \mathrm{CH}_{2} \mathrm{Ar}$), $2.88\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.5, \mathrm{CH}_{2} \mathrm{~S}\right), 1.73\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.0\right.$ and $\left.9.0, \mathrm{CHCH}_{2} \mathrm{CHOH}\right), 1.62(1 \mathrm{H}$, ddd, J 14.0, 4.5 and 3.5, $\left.\mathrm{CHCH}_{2} \mathrm{CHOH}\right), 1.21\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0, \mathrm{CH}_{3} \mathrm{CH}\right), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.10(3 \mathrm{H}, \mathrm{s}$,
$\left.\mathrm{SiCH}_{3}\right) ; \delta \mathrm{c}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 201.3\left(\mathrm{CS}_{2}\right)$, $172.4(\mathrm{CON}), 136.5(\mathrm{ArCquat})$, 129.4 (ArC), $128.9(\mathrm{ArC}), 127.2$ (ArC), $68.6(\mathrm{CHOSi}), 68.4(\mathrm{CHN}), 67.0(\mathrm{CHOH}), 46.1\left(\mathrm{CH}_{2} \mathrm{CON}\right), 45.4\left(\mathrm{CHCH}_{2} \mathrm{CHOH}\right), 36.7\left(\mathrm{CH}_{2} \mathrm{Ar}\right)$,
 $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NNaO}_{3} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$requires 476.1720, found 476.1724. $[\alpha]_{D}^{24}$ (c 0.4, CHCl_{3}): +141.1. Spectroscopic data for both compounds were consistent with those reported by Gao et al. ${ }^{15}$ The stereochemistry of both aldol products was further confirmed by comparison of diagnostic NMR signals relative to those previously reported in the literature (Supplementary Table 1) and Mosher's ester analysis (See 'Confirmation of the stereochemistry of aldol products'). ${ }^{16,17}$

S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) (3R,5S)-5-((tert-

 butyldimethylsilyl)oxy)-3-hydroxyhexanethioate (30)

Procedure modified from Gao et al. ${ }^{15}$ To a stirred solution of (3R,5S)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexan-1-one 28 (150 mg, $0.33 \mathrm{mmol}, 1$ equiv.) in acetonitrile $(5 \mathrm{~mL})$, was added $\mathrm{K}_{2} \mathrm{CO}_{3}(63 \mathrm{mg}, 0.33 \mathrm{mmol}, 1$ equiv. $)$ and $(R)-\mathrm{N}-(3-((2-$ mercaptoethyl)amino)-3-oxopropyl)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamide 20 (106 mg, 0.33 mmol, 1 equiv.). The mixture was stirred at room temperature for 1 h before being quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (1 mL). The acetonitrile was then removed in vacuo and the resulting solution extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organics were washed with brine, dried (MgSO_{4}), filtered and concentrated in vacuo to give a crude oil, which was purified by silica chromatography ($\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 10$) to give the product as a colourless oil ($128 \mathrm{mg}, 70 \%$). $v_{\max } / \mathrm{cm}^{-1}$ (neat) $3323(\mathrm{OH}), 2956(\mathrm{NH}), 1656,1530(\mathrm{C}=\mathrm{O}), 1099(\mathrm{C}-\mathrm{O}) ; \delta \mathrm{f}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.02(1 \mathrm{H}$, br. t, J 6.0, CHCONH), $6.32\left(1 \mathrm{H}\right.$, br. s, $\left.\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 4.43-4.38(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 4.17(1 \mathrm{H}$, quin.d, J 6.0 and 3.5, CHOSi), $4.06(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCONH}), 3.83(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}), 3.67\left(1 \mathrm{H}\right.$, d J 11.5, $\left.\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 3.60$3.35\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.27\left(1 \mathrm{H}, \mathrm{d} \mathrm{J} 11.5, \mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.05\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.0\right.$ and $\left.6.5, \mathrm{CH}_{2} \mathrm{~S}\right)$,
$3.01(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.0$ and 6.5, CH2S), $2.75(1 \mathrm{H}$, dd, J 15.0 and 8.5, CH2COS), 2.65 (1H, dd, J 15.0 and 4.0, $\left.\mathrm{CH}_{2} \mathrm{COS}\right) 2.40\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{CONH}\right), 1.65\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 14.0,9.5\right.$ and $\left.4.0, \mathrm{CH}_{2} \mathrm{CHOSi}\right), 1.50(1 \mathrm{H}$, ddd, J 14.0, 6.5 and 2.5, $\left.\mathrm{CH}_{2} \mathrm{CHOSi}\right), 1.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.21(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 6.0, $\left.\mathrm{CHCH}_{3}\right), 1.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiCH}_{3}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta \mathrm{c}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 198.5\left(\mathrm{CO}_{2} \mathrm{~S}\right), 171.4\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 170.4(\mathrm{CHCONH})$, $99.3\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 77.3(\mathrm{CH}), 71.6\left(\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 70.0(\mathrm{CHOSi}), 66.0(\mathrm{CHOH}), 51.9\left(\mathrm{CH}_{2} \mathrm{COS}\right), 44.4$ $\left(\mathrm{CH}_{2} \mathrm{CHOSi}\right)$, $39.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$, $36.2\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $35.0\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $33.1\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $29.6\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $28.9\left(\mathrm{CH}_{2} \mathrm{~S}\right), 26.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $23.3\left(\mathrm{CHCH}_{3}\right)$, $22.3\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $19.1\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $18.9\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$,
 found 585.3004; $[\alpha]_{D}^{26}\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right):+40$.
(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) (3R,5S)-3,5dihydroxyhexanethioate (9)

S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl)
$(3 R, 5 S)-5-(($ tert-butyldimethylsilyl)oxy)-3-hydroxyhexanethioate $\mathbf{3 0}$ ($100 \mathrm{mg}, 0.18 \mathrm{mmol}$) was stirred in a $2: 1$ ratio of $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ at room temperature for 16 h . The mixture was then concentrated in vacuo and purified by silica chromatography ($15: 85 \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford the desired product as a colourless oil (51 mg, 70%).
$v_{\max } / \mathrm{cm}^{-1}$ (neat) $3380(\mathrm{OH}), 2960(\mathrm{NH}), 1654,1528(\mathrm{C}=\mathrm{O})$; $\delta \mathrm{H}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 4.28(1 \mathrm{H}$, quintet, J 6.5, $\left.\mathrm{CH}_{2} \mathrm{CHOHCH}_{2}\right), 3.97\left(1 \mathrm{H}\right.$, sextet, J 6.0, $\left.\mathrm{CH}_{3} \mathrm{CHOH}\right), 3.89(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCONH}), 3.54-3.30(6 \mathrm{H}, \mathrm{m}$, $\mathrm{NHCH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}, \mathrm{CH} \mathrm{CHH}_{2}$), $3.02\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{~S}\right), 2.74\left(1 \mathrm{H}\right.$, dd, J 15.0 and $\left.7.5, \mathrm{CH}_{2} \mathrm{COS}\right), 2.71(1 \mathrm{H}$, dd, J 15.0 and 6.0, $\left.\mathrm{CH}_{2} \mathrm{COS}\right) 2.41\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{CH}_{2} \mathrm{CONH}\right), 1.53\left(2 \mathrm{H}\right.$, dd, J 7.0 and 5.5, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOH}\right)$, $1.18\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5, \mathrm{CHCH}_{3}\right), 0.92\left(6 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta \mathrm{c}(125 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) 198.7\left(\mathrm{CO}_{2} \mathrm{~S}\right), 176.1$ $\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 174.0(\mathrm{CHCONH}), 77.3\left(\mathrm{CHOHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 70.4\left(\mathrm{CH}_{2} \mathrm{OH}\right), 66.9\left(\mathrm{CH}_{2} \mathrm{CHOHCH}_{2}\right), 65.1$ $\left(\mathrm{CH}_{3} \mathrm{CHOH}\right), 53.1\left(\mathrm{CH}_{2} \mathrm{COS}\right), 46.8\left(\mathrm{CHOHCH}_{2} \mathrm{CHOH}\right), 40.4\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 40.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 36.4$
$\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $36.3\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $29.3\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $24.3\left(\mathrm{CHCH}_{3}\right)$, $21.3\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $20.9\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$requires 431.1822, found 431.1824; $[\alpha]_{D}^{26}(\mathrm{c} 0.3, \mathrm{MeOH}):+8.2$.

The ${ }^{1} \mathrm{H}$ NMR spectrum of S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido) propanamido)ethyl) (3R,5S)-3,5-dihydroxyhexanethioate 9 ($\mathrm{d}^{4}-\mathrm{MeOD}$).

40

The ${ }^{13} \mathrm{C}$ NMR spectrum of S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido) propanamido)ethyl) (3R,5S)-3,5-dihydroxyhexanethioate 9 ($\mathrm{d}^{4}-\mathrm{MeOD}$).

S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) (3S,5S)-5-((tert-

 butyldimethylsilyl)oxy)-3-hydroxyhexanethioate (31)

S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl)
(3S,5S)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexanethioate 31 was synthesized using the same procedure as that used for the synthesis of S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4carboxamido)propanamido)ethyl) (3R,5S)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexanethioate 30 using (3S,5S)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexan-1-one 29 ($200 \mathrm{mg}, 0.44 \mathrm{mmol}$), to afford the product as a colourless oil ($193 \mathrm{mg}, 78 \%$).
$v_{\max } / \mathrm{cm}^{-1}$ (neat) $3320(\mathrm{OH}), 2953(\mathrm{NH}), 1655,1529(\mathrm{C}=\mathrm{O}), 1098(\mathrm{C}=\mathrm{O}) ; ~ \delta н\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.01(1 \mathrm{H}$, br. t, J 6.0, CHCONH), $6.20(1 \mathrm{H}$, br. t, J 6.0, NHCH2CH2S), $4.25(1 \mathrm{H}, \mathrm{tt}, \mathrm{J} 8.0$ and 4.0, CHOH), 4.11$4.04(2 \mathrm{H}, \mathrm{m}, \mathrm{CHOSi}, \mathrm{CHCONH}), 3.86(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}), 3.67\left(1 \mathrm{H}, \mathrm{d} \mathrm{J} 11.5, \mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.60-3.41$ (4H, m, NHCH2, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.28\left(1 \mathrm{H}, \mathrm{d} \mathrm{J} 11.5, \mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $3.07\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.0\right.$ and $\left.6.0, \mathrm{CH}_{2} \mathrm{~S}\right), 3.02$ (1H, dt, J 14.0 and 6.0), CH2S), 2.75 (1 H , dd, J 15.0 and 8.0, $\mathrm{CH}_{2} \mathrm{COS}$), 2.68 (1 H , dd, J 15.0 and 4.5, $\left.\mathrm{CH}_{2} \mathrm{COS}\right) 2.42\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.0\right.$ and $\left.6.5, \mathrm{CH}_{2} \mathrm{CONH}\right), 2.39\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.0\right.$ and $\left.6.5, \mathrm{CH}_{2} \mathrm{CONH}\right), 1.67(1 \mathrm{H}$, $\mathrm{dt}, \mathrm{J} 14$ and 9, $\left.\mathrm{CH}_{2} \mathrm{CHOSi}\right), 1.58\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.0\right.$ and 4.0, $\left.\mathrm{CH}_{2} \mathrm{CHOSi}\right), 1.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.42(3 \mathrm{H}$, s, $\left.\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.18\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0, \mathrm{CHCH}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.89(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta c\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 198.4\left(\mathrm{CO}_{2} \mathrm{~S}\right), 171.3$ $\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 170.4(\mathrm{CHCONH})$, $99.3\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $77.3(\mathrm{CH}), 71.6\left(\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 69.0(\mathrm{CHOSi}), 68.2$ $(\mathrm{CHOH}), 51.6\left(\mathrm{CH}_{2} \mathrm{COS}\right), 45.6\left(\mathrm{CH}_{2} \mathrm{CHOSi}\right)$, $39.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 36.2\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 35.1\left(\mathrm{CH}_{2} \mathrm{NH}\right), 33.1$ $\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $29.7\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $28.9\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $26.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $24.5\left(\mathrm{CHCH}_{3}\right)$, $22.4\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)^{2}, 19.1$ $\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 18.9 \quad\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 18.1 \quad\left(\mathrm{C}_{2}\left(\mathrm{CH}_{3}\right)_{3}\right), \quad-3.8 \quad\left(\mathrm{SiCH}_{3}\right), \quad-4.6 \quad\left(\mathrm{SiCH}_{3}\right) ;$ HRMS (ESI) $\mathrm{C}_{26} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}$requires 585.3000, found 585.3004; $[\alpha]_{D}^{26}\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right):+64$.

S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) (3S,5S)-3,5-

 dihydroxyhexanethioate (12)

S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl)
(3S,5S)-3,5dihydroxyhexanethioate $\mathbf{1 2}$ was synthesized using the same procedure as that used for the synthesis of (2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido) ethyl) (3R,5S)-3,5dihydroxyhexanethioate $9 \quad$ using $\quad 9$-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4carboxamido)propanamido)ethyl) (3S,5S)-5-((tert-butyldimethylsilyl) oxy)-3-hydroxyhexanethioate 31 ($100 \mathrm{mg}, 0.18 \mathrm{mmol}$), to afford the product as a colourless oil ($70 \mathrm{mg}, 96 \%$).
$v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) $3326(\mathrm{OH}), 2966(\mathrm{NH}), 1647,1560(\mathrm{C}=\mathrm{O}) ; \delta \mathrm{H}\left(500 \mathrm{MHz}\right.$; CD $\left.{ }_{3} \mathrm{OD}\right) 4.21$ ($1 \mathrm{H}, \mathrm{tt}, \mathrm{J} 8.5$ and 5.5, $\mathrm{CH}_{2} \mathrm{CHOHCH}_{2}$), 3.93 (1 H , dquin., J 7.5 and 6.0, $\mathrm{CH}_{3} \mathrm{CHOH}$), 3.89 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHCONH}$), 3.53-3.33 ($6 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{OH}$), 3.04 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 13.5$ and 6.5, $\mathrm{CH}_{2} \mathrm{~S}$), 3.01 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 13.5$ and 6.5, $\mathrm{CH}_{2} \mathrm{~S}$), $2.76\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.0\right.$ and 5.0, $\left.\mathrm{CH}_{2} \mathrm{COS}\right), 2.72\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.0\right.$ and $\left.7.5, \mathrm{CH}_{2} \mathrm{COS}\right) 2.41(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 7.0, $\mathrm{CH}_{2} \mathrm{CONH}$), 1.66 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.0$ and $8.0, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOH}$), 1.55 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.0$ and 5.0 , $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOH}$), $1.18\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0, \mathrm{CHCH}_{3}\right), 0.92\left(6 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta \mathrm{c}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 198.7\left(\mathrm{CO}_{2} \mathrm{~S}\right)$, $176.1\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 174.0(\mathrm{CHCONH}), 77.3\left(\mathrm{CHOHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 70.3\left(\mathrm{CH}_{2} \mathrm{OH}\right), 68.2\left(\mathrm{CH}_{2} \mathrm{CHOHCH}_{2}\right), 66.8$ $\left(\mathrm{CH}_{3} \mathrm{CHOH}\right)$, $52.6\left(\mathrm{CH}_{2} \mathrm{COS}\right)$, $46.3(\mathrm{CHOHCH} 2 \mathrm{CHOH}), 40.4\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 40.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$, 36.4 $\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $36.3\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $29.3\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $23.5\left(\mathrm{CHCH}_{3}\right)$, $21.3\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $20.9\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$requires 431.1822, found 431.1821; [$\left.\alpha\right]_{D}^{26}$ (c $0.35, \mathrm{MeOH}$): +17.7.

The ${ }^{1} \mathrm{H}$ NMR spectrum of S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido) propanamido)ethyl) (3S,5S)-3,5-dihydroxyhexanethioate 12 (d4-MeOD).

The ${ }^{13} \mathrm{C}$ NMR spectrum of S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido) propanamido)ethyl) (3S,5S)-3,5-dihydroxyhexanethioate 12 (d44-MeOD).

Synthesis of thioesters 13 and 14. Auxiliary 17a was synthesized according to a literature procedure. ${ }^{7}$
(R)-3-((tert-butyldimethylsilyl)oxy)butanal (27a)

27a
(R)-3-((tert-butyldimethylsilyl)oxy)butanal 27a was synthesized using the same procedure as that used for the synthesis of (S)-3-((tert-butyldimethylsilyl)oxy)butanal 27, using commercially available methyl (R)-3-hydroxybutanoate $(1.0 \quad \mathrm{~g}, \quad 8.48 \mathrm{mmol}, 1.00$ equiv.) to afford (R)-3-((tertbutyldimethylsilyl)oxy)butanal 27a (1.27 g, $74 \%,[\alpha]_{D}^{25}\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: -11.5). Spectroscopic data were consistent with those reported in the literature. ${ }^{13}$
(3S,5R)-1-((R)-4-benzyl-2-thioxothiazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexan-1-one (28a) and (3R,5R)-1-((R)-4-benzyl-2-thioxothiazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexan-1-one (29a)

(3S,5R)-1-((R)-4-benzyl-2-thioxothiazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexan-1-one 28a and $(3 R, 5 R)-1-((R)$-4-benzyl-2-thioxothiazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexan-1-one 29a were synthesized using the same procedure as that used for the synthesis of (3R,5S)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexan-1-one 28 and (3S,5S)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexan-1-one 29, using (R)-1-(4-benzyl-2-thioxothiazolidin-3-yl)ethan-1-one 17a (600 mg, 2.39 mmol) and (R)-3-((tert-butyldimethylsilyl)oxy)butanal 27a (978 mg, 4.78 mmol) to afford the products (3S,5R)-1-((R)-4-benzyl-2-thioxothiazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexan-1-one 28a (227 mg, 21 $\left.\% \quad[\alpha]_{D}^{24} \quad\left(\mathrm{c} \quad 0.4, \quad \mathrm{CHCl}_{3}\right):-100.5\right)$ and (3R,5R)-1-((R)-4-benzyl-2-thioxothiazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexan-1-one 29a (292 mg, 27%, $[\alpha]_{D}^{24}$ (c 0.4, CHCl_{3}): -140.7). Spectroscopic data for aldol products 28a and 29a were identical to that of their respective enantiomers 28 and 29, with the exception of optical rotation which was inverted.

S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) (3S,5R)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexanethioate (32)
 butyldimethylsilyl)oxy)-3-hydroxyhexanethioate 32 was synthesized using the same procedure as that used for the synthesis of S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4carboxamido)propanamido)ethyl) (3R,5S)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexanethioate 30 using (3S,5R)-1-((R)-4-benzyl-2-thioxothiazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexan-1-one 28a (200 mg, 0.44 mmol), to afford the product as a colourless oil (176 mg, 71%). $v_{\max } / \mathrm{cm}^{-1}$ (neat) $3310(\mathrm{OH}), 2953(\mathrm{NH}), 1655,1527(\mathrm{C}=\mathrm{O}) ;$ дн ($\left.500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.02$ (1H, br. t, J 6.0, CHCONH), $6.19\left(1 \mathrm{H}\right.$, br. t, J 6.0, $\left.\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 4.28(1 \mathrm{H}, \mathrm{tt}, \mathrm{J} 8.5$ and $3.5, \mathrm{CHOH}), 4.12-4.04(2 \mathrm{H}, \mathrm{m}$, CHOSi, CHCONH), $3.68\left(1 \mathrm{H}\right.$, d J 11.5, $\left.\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $3.60-3.40\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$, $3.28(1 \mathrm{H}$, d J 11.5, $\left.\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.07\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.0\right.$ and $\left.6.0, \mathrm{CH}_{2} \mathrm{~S}\right), 3.02(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.0$ and 6.0$\left.), \mathrm{CH}_{2} \mathrm{~S}\right), 2.75$ (1H, dd, J 15.0 and 8.5, CH2COS), 2.67 (1H, dd, J 15.0 and 4.0, CH2COS) 2.42 ($1 \mathrm{H}, \mathrm{dt}$, J 15.0 and 6.5, $\mathrm{CH}_{2} \mathrm{CONH}$), $2.40\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.0\right.$ and $\left.6.5, \mathrm{CH}_{2} \mathrm{CONH}\right), 1.67\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.0\right.$ and $\left.8.5, \mathrm{CH}_{2} \mathrm{CHOSi}\right), 1.57$ (1H, dt, J 14.0 and 3.5, $\left.\mathrm{CH}_{2} \mathrm{CHOSi}\right), 1.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.18(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0$, $\left.\mathrm{CHCH}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$, $0.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta c\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 198.5\left(\mathrm{CO}_{2} \mathrm{~S}\right), 171.3\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 170.3(\mathrm{CHCONH}), 99.3$ $\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 77.4(\mathrm{CH}), 71.5\left(\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 69.0(\mathrm{CHOSi}), 68.2(\mathrm{CHOH}), 51.6\left(\mathrm{CH}_{2} \mathrm{COS}\right), 45.7$ $\left(\mathrm{CH}_{2} \mathrm{CHOSi}\right)$, $39.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$, $36.2\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $35.0\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $33.1\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $29.8\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $28.9\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $26.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $24.5\left(\mathrm{CHCH}_{3}\right)$, $22.4\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $19.1\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $18.9\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $\left.18.1\left(\mathrm{C}_{\left(\mathrm{CH}_{3}\right)}\right)_{3}\right),-3.8\left(\mathrm{SiCH}_{3}\right),-4.6\left(\mathrm{SiCH}_{3}\right) ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{C}_{26} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}$requires 585.3000, found 585.3003; $[\alpha]_{D}^{26}\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right):+45.5$.

S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) (3S,5R)-3,5dihydroxyhexanethioate (13)

13 dihydroxyhexanethioate 13 was synthesized using the same procedure as that used for the synthesis of (2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido) ethyl) (3R,5S)-3,5dihydroxyhexanethioate using 9 -(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl)(3S,5R)-5-((tert-butyldimethylsilyl) oxy)-3-hydroxyhexanethioate 32 ($100 \mathrm{mg}, 0.18 \mathrm{mmol}$), to afford the product as a colourless oil ($54 \mathrm{mg}, 74 \%$). $v_{\max } / \mathrm{cm}^{-1}$ (neat) $3328(\mathrm{OH}), 2964(\mathrm{NH}), 1648,1543(\mathrm{C}=\mathrm{O})$; $\delta \mathrm{H}\left(500 \mathrm{MHz}\right.$; CD $\left.{ }_{3} \mathrm{OD}\right) 4.28(1 \mathrm{H}$, quintet, J 6.5, $\mathrm{CH}_{2} \mathrm{CHOHCH}_{2}$), $3.97\left(1 \mathrm{H}\right.$, sextet, J 6.0, $\left.\mathrm{CH}_{3} \mathrm{CHOH}\right)$, $3.89(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCONH})$, $3.53-3.32(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NHCH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.02\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{~S}\right), 2.74\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.0\right.$ and $\left.7.5, \mathrm{CH}_{2} \mathrm{COS}\right), 2.71(1 \mathrm{H}$, dd, J 15.0 and 5.5, $\left.\mathrm{CH}_{2} \mathrm{COS}\right) 2.41$ (2H, t, J 7.0, $\mathrm{CH}_{2} \mathrm{CONH}$), 1.53 (2 H , dd, J 6.5 and 5.5, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOH}$), $1.18\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5, \mathrm{CHCH}_{3}\right), 0.92\left(6 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta \mathrm{c}(125 \mathrm{MHz}, \mathrm{CD} 3 O \mathrm{D}) 198.6\left(\mathrm{CO}_{2} \mathrm{~S}\right), 176.1$ $\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 173.9(\mathrm{CHCONH}), 77.3\left(\mathrm{CHOHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 70.3\left(\mathrm{CH}_{2} \mathrm{OH}\right), 66.8\left(\mathrm{CH}_{2} \mathrm{CHOHCH}_{2}\right), 65.1$ $\left(\mathrm{CH}_{3} \mathrm{CHOH}\right), 53.1\left(\mathrm{CH}_{2} \mathrm{COS}\right), 46.8\left(\mathrm{CHOHCH}_{2} \mathrm{CHOH}\right), 40.4\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 40.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 36.4$ $\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $36.3\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $29.3\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $24.3\left(\mathrm{CHCH}_{3}\right)$, $21.3\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $20.9\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$requires 431.1822, found 431.1822; $[\alpha]_{D}^{26}(\mathrm{c} 0.5, \mathrm{MeOH}):+5.3$.

The ${ }^{1} \mathrm{H}$ NMR spectrum of S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido) propanamido)ethyl) $(3 S, 5 R)$-3,5-dihydroxyhexanethioate 13 ($\left.\mathrm{d}^{4}-\mathrm{MeOD}\right)$.

The ${ }^{13} \mathrm{C}$ NMR spectrum of S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido) propanamido)ethyl) $(3 S, 5 R)$-3,5-dihydroxyhexanethioate 13 ($\mathrm{d}^{4}-\mathrm{MeOD}$).

S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) (3R,5R)-5-((tert-

 butyldimethylsilyl)oxy)-3-hydroxyhexanethioate (33)

S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) (3R,5R)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexanethioate 33 was synthesized using the same procedure as that used for the synthesis of S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4carboxamido)propanamido)ethyl) (3R,5S)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexanethioate 30 using (3R,5R)-1-((R)-4-benzyl-2-thioxothiazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexan-1-one 29a (200 mg, 0.44 mmol), to afford the product as a colourless oil ($168 \mathrm{mg}, 68 \%$).
$v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) $3310(\mathrm{OH}), 2954(\mathrm{NH}), 1655,1529(\mathrm{C}=\mathrm{O})$; $\delta \mathrm{H}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.02(1 \mathrm{H}$, br. t, J 6.5, CHCONH), 6.33 (1H, br. t, J 6.0, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}$), 4.40 (1 H , dddd, J 10.0, 8.5, 4.5 and 2.5 CHOH), 4.17 (1H, quin.d, J 6.5 and $3.5, \mathrm{CHOSi}), 4.06(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCONH}), 3.81(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}), 3.67(1 \mathrm{H}, \mathrm{d} \mathrm{J} 11.5$, $\left.\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $3.60-3.35\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$, $3.26\left(1 \mathrm{H}, \mathrm{d} \mathrm{J} 11.5, \mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.05(1 \mathrm{H}$, dt, J 14.0 and $\left.6.0, \mathrm{CH}_{2} \mathrm{~S}\right), 3.01\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.0\right.$ and $\left.6.5, \mathrm{CH}_{2} \mathrm{~S}\right), 2.74\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.0\right.$ and $\left.8.5, \mathrm{CH}_{2} \mathrm{COS}\right), 2.66$ (1H, dd, J 15.0 and 4.0, CH2COS), 2.42 (1 H , dt, J 15.0 and 5.5, CH2CONH), 2.38 (1 H , dt, J 15.0 and 6.0, $\mathrm{CH}_{2} \mathrm{CONH}$), 1.65 (1 H , ddd, J 14.0, 10.0 and $3.5, \mathrm{CH}_{2} \mathrm{CHOSi}$), 1.51 (1 H , ddd, J 14.0, 6.5 and 2.5, $\left.\mathrm{CH}_{2} \mathrm{CHOSi}\right), 1.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.20\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5, \mathrm{CHCH}_{3}\right), 1.02(3 \mathrm{H}, \mathrm{s}$, $\left.\left.\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH})_{3}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$; $\delta c\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 198.5\left(\mathrm{CO}_{2} \mathrm{~S}\right)$, $171.4\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $170.4(\mathrm{CHCONH}), 99.3\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 77.3(\mathrm{CH})$, $71.6\left(\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $66.9(\mathrm{CHOSi})$, $66.0(\mathrm{CHOH})$, $52.0\left(\mathrm{CH}_{2} \mathrm{COS}\right), 44.5\left(\mathrm{CH}_{2} \mathrm{CHOSi}\right)$, $39.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$, $36.2\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $35.1\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $33.1\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $29.6\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $28.9\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $26.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $23.3\left(\mathrm{CHCH}_{3}\right)$, $22.3\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $19.1\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $18.9\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $18.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $-4.3\left(\mathrm{SiCH}_{3}\right)$, $4.8\left(\mathrm{SiCH}_{3}\right) ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{C}_{26} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}$requires 585.3000, found $585.3007 ;[\alpha]_{D}^{26}(\mathrm{c} 0.15$, $\left.\mathrm{CHCl}_{3}\right):+27.7$.

S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) (3R,5R)-3,5-

 dihydroxyhexanethioate (14)

S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl)
$(3 R, 5 R)-3,5-$ dihydroxyhexanethioate 14 was synthesized using the same procedure as that used for the synthesis of (2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido) ethyl) (3R,5S)-3,5dihydroxyhexanethioate using 9 -(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4carboxamido)propanamido)ethyl) (3R,5R)-5-((tert-butyldimethylsilyl) oxy)-3-hydroxyhexanethioate 33 ($100 \mathrm{mg}, 0.18 \mathrm{mmol}$), to afford the product as a colourless oil ($61 \mathrm{mg}, 83 \%$).
$v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) $3344(\mathrm{OH}), 2960(\mathrm{NH}), 1647,1560(\mathrm{C}=\mathrm{O})$; $\delta \mathrm{H}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 4.21(1 \mathrm{H}, \mathrm{tt}, \mathrm{J} 8.5$ and 5.0, $\mathrm{CH}_{2} \mathrm{CHOHCH}_{2}$), $3.93\left(1 \mathrm{H}\right.$, dquin., J 8.0 and $6.0, \mathrm{CH}_{3} \mathrm{CHOH}$), $3.89(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCONH})$, 3.53-3.32 (6 H , m, $\mathrm{NHCH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{OH}$), $3.02\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{~S}\right.$), 2.76 (1 H , dd, J 15.0 and 5.0, $\mathrm{CH}_{2} \mathrm{COS}$), 2.72 (1H, dd, J 15.0 and 7.5, CH2COS), 2.41 (2H, t, J 6.5, CH2CONH), 1.66 (1H, dt, J 14.0 and 8.0, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOH}$), $1.55\left(1 \mathrm{H}\right.$, dt, J 14.0 and $\left.5.0, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOH}\right)$, $1.18\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0, \mathrm{CHCH}_{3}\right), 0.92(6 \mathrm{H}$, s, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta c(125 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}) 198.7\left(\mathrm{CO}_{2} \mathrm{~S}\right)$, $176.1\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $174.0(\mathrm{CHCONH})$, 77.3 $\left(\mathrm{CHOHC}\left(\mathrm{CH}_{3}\right)_{2}\right), 70.3\left(\mathrm{CH}_{2} \mathrm{OH}\right), 68.2\left(\mathrm{CH}_{2} \mathrm{CHOHCH}_{2}\right), 66.8\left(\mathrm{CH}_{3} \mathrm{CHOH}\right), 52.6\left(\mathrm{CH}_{2} \mathrm{COS}\right), 46.3$ $\left(\mathrm{CHOHCH}_{2} \mathrm{CHOH}\right), 40.4\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 40.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 36.4\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $36.3\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $29.3\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $23.6\left(\mathrm{CHCH}_{3}\right)$, $21.3\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $20.9\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$requires 431.1822, found 431.1822; $[\alpha]_{D}^{26}(\mathrm{c} 0.45, \mathrm{MeOH}):+3.9$.

The ${ }^{1} \mathrm{H}$ NMR spectrum of S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido) propanamido)ethyl) (3R,5R)-3,5-dihydroxyhexanethioate 14 (d44-MeOD).

The ${ }^{13} \mathrm{C}$ NMR spectrum of S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido) propanamido)ethyl) (3R,5R)-3,5-dihydroxyhexanethioate 14 ($\mathrm{d}^{4}-\mathrm{MeOD}$).

Synthesis of 5-hydroxy-2-enoyl pantetheine thioesters

Supplementary Fig. 32: Synthesis of 5-hydroxy-2-enoyl pantetheine thioester 15. Thioester 16 was synthesized via the same route from (R)-configured aldehyde 27 a.
(S,E)-5-((tert-butyldimethylsilyl)oxy)hex-2-enoic acid (34)

34

To a solution of (S)-3-((tert-butyldimethylsilyl)oxy)butanal 27 ($610 \mathrm{mg}, 3.0 \mathrm{mmol}, 1.0$ equiv.) in dry toluene (25 mL) was added methoxycarbonylmethylenetriphenylphosphorane ($1.10 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.1$ equiv.) and the mixture heated to reflux for 16 hours. The precipitate was removed by filtration and the filtrate concentrated in vacuo to afford a colourless oil, which was purified by silica chromatography (3:10 $\mathrm{Et}_{2} \mathrm{O} /$ petroleum ether) to afford the corresponding methyl ester as a colourless oil (723 mg). The oil was then dissolved in a 5:3 mixture of THF $(10 \mathrm{~mL})$ and water $(6 \mathrm{~mL})$ before $\mathrm{LiOH}(120 \mathrm{mg}, 6.0 \mathrm{mmol}, 2.0$ equiv.) was added and the reaction stirred at RT for 16 h . The THF was removed in vacuo and the resulting solution acidified to pH 2.0 using 1 M HCl . The mixture was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10$ $\mathrm{mL})$, the combined organics washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford the product as a colourless oil ($520 \mathrm{mg}, 71 \%$ (2 steps)).
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.07\left(1 \mathrm{H}, \mathrm{dt}, J 15.5\right.$ and $\left.7.5, \mathrm{CH}_{2} \mathrm{CHCH}\right), 5.84\left(1 \mathrm{H}, \mathrm{dt}, J 15.5\right.$ and $\left.1.5, \mathrm{CH}_{2} \mathrm{CHCH}\right)$, $3.94\left(1 \mathrm{H}\right.$, sext., J 6.0, CH), 2.40-2.30 (2H, m, CH2), $1.17\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0, \mathrm{CH}_{3}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.05$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta \mathrm{c}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.4(\mathrm{COOH}), 149.4\left(\mathrm{CH}_{2} \mathrm{CHCH}\right), 122.8$ $\left(\mathrm{CH}_{2} \mathrm{CHCH}\right), 67.9(\mathrm{CH}), 42.9\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 24.2\left(\mathrm{CH}_{3}\right)$, $18.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $-4.2\left(\mathrm{SiCH}_{3}\right)$, -4.4 $\left(\mathrm{SiCH}_{3}\right)_{3}$; HRMS (ESI) cald. for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{Si}\left(\mathrm{M}-\mathrm{H}+\right.$) requires 243.1422, found 243.1420; $[\alpha]_{D}^{24}$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right):+9.8 .{ }^{18}$ Spectroscopic data were consistent with those previously reported in the literature. ${ }^{19}$

S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) (S,E)-5-((tert-butyldimethylsilyl)oxy)hex-2-enethioate (35)

To a solution of $(5 S, 2 E)-5-((t e r t-b u t y l d i m e t h y l s i l y l) o x y)-2-h e x e n o i c ~ a c i d ~ 34(60 \mathrm{mg}, 1.3$ equiv., 0.25 mmol),
(R)-N-(3-((2-mercaptoethyl)amino)-3-oxopropyl)-2,2,5,5-tetramethyl-1,3-dioxane-4-
carboxamide 20 (85 mg , 1.4 equiv., 0.27 mmol) and DMAP ($7 \mathrm{mg}, 0.3$ equiv., 0.06 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4$ mL) was added EDC ($52 \mathrm{mg}, 1.4$ equiv., 0.267 mmol) at $0^{\circ} \mathrm{C}$, and the mixture allowed to stir at room temperature for 16 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, washed with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, saturated NaHCO_{3} solution $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give a colourless oil, which was purified by silica chromatography ($1: 99 \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford the desired product as a colourless oil ($108 \mathrm{mg}, 80 \%$).
$v_{\max } / \mathrm{cm}^{-1}$ (neat) 3304 (NH), 2953 (C=C-H), 1664, 1525 (C=O); $\delta н\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.03$ (1H, br. t, J 5.5, NH), $6.92(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.5$ and 7.5, CHCHCOS$), 6.14\left(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 6.13(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.5$ and 1.5, CHCHCOS), $4.07(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCONH}), 3.93(1 \mathrm{H}$, sextet, J 6.0, CHOSi), $3.68(1 \mathrm{H}, \mathrm{d} \mathrm{J} 11.5$, $\left.\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 3.61-3.39 (4H, m, $\left.\mathrm{NHCH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.27\left(1 \mathrm{H}, \mathrm{d} \mathrm{J} 11.5, \mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.08(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.6.5, \mathrm{CH}_{2} \mathrm{~S}\right), 2.42\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{CONH}\right), 2.32\left(2 \mathrm{H}, \mathrm{td}, \mathrm{J} 6.5\right.$ and $\left.0.5, \mathrm{CH}_{2} \mathrm{CHOSi}\right), 1.46(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.16\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0, \mathrm{CHCH}_{3}\right), 1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.97(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta \mathrm{c}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 190.3$ $\left(\mathrm{CO}_{2} \mathrm{~S}\right), 171.6\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 170.5(\mathrm{CHCONH}), 144.0$ (CHCHCOS), 130.5 (CHCHCOS), 99.5 $\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $77.5(\mathrm{CH})$, $71.9\left(\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $67.9(\mathrm{CHOSi}), 42.8\left(\mathrm{CH}_{2} \mathrm{CHOSi}\right), 40.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 36.3$ $\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 35.1\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $33.4\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $29.9\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $28.6\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $26.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)^{2}, 24.3$ $\left(\mathrm{CHCH}_{3}\right)$, $22.5\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $19.3\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $19.1\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $18.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $-4.1\left(\mathrm{SiCH}_{3}\right)$, -4.4 $\left(\mathrm{SiCH}_{3}\right) ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{C}_{26} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}$requires 567.2895, found 567.2901; [$\left.\alpha\right]_{D}^{26}$ (c 0.2, $\left.\mathrm{CHCl}_{3}\right):+37.5$.

S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) (5S, 2E)-5-hydroxy-2-

 hexenethioate (15)

S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) (5S, 2E)-5-((tert-butyldimethylsilyl)oxy)-2-hexenethioate $35(100 \mathrm{mg}, 0.18 \mathrm{mmol})$ was stirred in a $2: 1$ ratio of $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}$
$(3 \mathrm{~mL})$ at room temperature for 16 h . The mixture was concentrated in vacuo and purified by silica chromatography ($12: 88 \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford the desired product as a colourless oil ($63 \mathrm{mg}, 88 \%$). $v_{\max } / \mathrm{cm}^{-1}$ (neat) $3310(\mathrm{OH}), 2967(\mathrm{C}=\mathrm{C}-\mathrm{H})$, 1644, $1534(\mathrm{C}=\mathrm{O})$; $\delta \mathrm{H}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 6.96(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}$ 15.5 and 7.5, CHCHCOS), 6.23 (1H, dt, J 15.5 and 1.5, CHCHCOS), 3.91 (1H, sextet, J 6.5, CHOH), $3.91(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCONH}), 3.55-3.32\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{NHCH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.09\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{~S}\right), 2.43$ (2H, t, J 6.5, CH2CONH), 2.38-2.34 (2H, m, CH2CHOH), $1.16\left(3 H, d, J 6.0, \mathrm{CHCH}_{3}\right), 1.03(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $0.94\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta \mathrm{c}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 191.3\left(\mathrm{CO}_{2} \mathrm{~S}\right)$, $176.4(\mathrm{CHCONH}), 174.2$ $\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 144.3(\mathrm{CHCHCOS}), 131.6(\mathrm{CHCHCOS}), 77.6(\mathrm{CHONH}), 70.6\left(\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 67.8$ $(\mathrm{CHOH}), 42.9\left(\mathrm{CH}_{2} \mathrm{CHOH}\right), 40.7\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 40.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 36.7\left(\mathrm{CH}_{2} \mathrm{NH}\right), 36.6\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, 29.2 $\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $23.7\left(\mathrm{CHCH}_{3}\right)$, $21.6\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $21.2\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$ requires 413.1717, found 413.1717; $[\alpha]_{D}^{26}(\mathrm{c} 0.2, \mathrm{MeOH}):+8.5$.

The ${ }^{1} \mathrm{H}$ NMR spectrum of S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido) propanamido)ethyl) (S, E)-5-hydroxyhex-2-enethioate 15 ($\mathrm{d}^{4}-\mathrm{MeOD}$).

The ${ }^{13} \mathrm{C}$ NMR spectrum of S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido) propanamido)ethyl) (S, E)-5-hydroxyhex-2-enethioate 15 ($\mathrm{d}^{4}-\mathrm{MeOD}$).
(R,E)-5-((tert-butyldimethylsilyl)oxy)hex-2-enoic acid (34a)

(R, E)-5-((tert-butyldimethylsilyl)oxy)hex-2-enoic acid 34a was synthesized using the same procedure as that used for the synthesis of $(S, E)-5-(($ tert-butyldimethylsilyl)oxy)hex-2-enoic acid 34, using (R)-3-((tertbutyldimethylsilyl)oxy)butanal 27a (610 mg) to afford the product as a colourless oil (544 mg, 74 \% (2 steps), $\left.[\alpha]_{D}^{24}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right):-9.2\right) .{ }^{19}$ Spectroscopic data was consistent with that previously reported in the literature. ${ }^{19}$

S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) (5R, 2E)-5-((tert-

 butyldimethylsilyl)oxy)2-hexenethioate (35a)

S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) (5R, 2E)-5-((tert-butyldimethylsilyl)oxy)2-hexenethioate 35a was synthesized using the same procedure as that used for the synthesis of S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) (5S, 2E)-5-((tert-butyldimethylsilyl)oxy)-2-hexenethioate 35 using (5R, 2E)-5-((tert-butyldimethylsilyl)oxy)-2hexenoic acid 34a ($180 \mathrm{mg}, 0.74 \mathrm{mmol}$), to afford the product as a colourless oil ($296 \mathrm{mg}, 73 \%$). $v_{\max } / \mathrm{cm}^{-1}$ (neat) 3339 (NH), 2953 (C=C-H), 1660 (C=O); $\delta н\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.03$ (1H, br. t, J 5.5, NH), $6.94(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.5$ and 7.5, CHCHCOS$), 6.14\left(1 \mathrm{H}\right.$, br. s, $\left.\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 6.12(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.5$ and 1.5, CHCHCOS), 4.07 (1H, s, CHCONH), 3.93 (1H, sextet, J 6.0, CHOSi), $3.68\left(1 \mathrm{H}, \mathrm{d} \mathrm{J} 11.5, \mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 3.60-3.39 (4H, m, NHCH2, CH2CH2S), $3.29\left(1 \mathrm{H}, \mathrm{d} \mathrm{J} 11.5, \mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $3.08\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{~S}\right)$, 2.40 (2H, t, J 6.5, CH2CONH), $2.32\left(2 \mathrm{H}, \mathrm{td}, \mathrm{J} 6.5\right.$ and $\left.0.5, \mathrm{CH}_{2} \mathrm{CHOSi}\right), 1.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.41(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.16\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0, \mathrm{CHCH}_{3}\right), 1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.88(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta c\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 190.2\left(\mathrm{CO}_{2} \mathrm{~S}\right), 171.6$ $\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 170.4(\mathrm{CHCONH}), 144.0(\mathrm{CHCHCOS}), 130.5(\mathrm{CHCHCOS}), 99.5\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 77.4(\mathrm{CH})$, $71.9\left(\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $67.9(\mathrm{CHOSi})$, $42.8\left(\mathrm{CH}_{2} \mathrm{CHOSi}\right), 40.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$, $36.3\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, 35.1 $\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $33.6\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $29.9\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $28.6\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $26.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $24.3\left(\mathrm{CHCH}_{3}\right)$, 22.5 $\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $19.2\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $19.1\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $18.4\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right),-4.1\left(\mathrm{SiCH}_{3}\right),-4.3\left(\mathrm{SiCH}_{3}\right) \text {; HRMS }}\right.$ (ESI) $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}$requires 567.2895, found 567.2896; $[\alpha]_{D}^{26}$ (c 0.2, CHCl_{3}): +17.5 .

S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) (R,E)-5-hydroxyhex-2enethioate (16)

S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) (5R, 2E)-5-hydroxy-2hexenethioate 16 was synthesized using the same procedure as that used for the synthesis of S-(2-(3-((R)-2,4-dihydroxy-3,3- dimethylbutanamido)propanamido) ethyl) (5S, 2E)-5-hydroxy-2-hexenethioate 11 using S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) (5R, 2E)-5-((tert-butyldimethylsilyl)oxy)-2-hexenethioate 35 a ($100 \mathrm{mg}, 0.184 \mathrm{mmol}$), to afford the product as a colourless oil ($60 \mathrm{mg}, 84 \%$).
$v_{\max } / \mathrm{cm}^{-1}$ (neat) $3327(\mathrm{OH}), 2966(\mathrm{C}=\mathrm{C}-\mathrm{H})$, 1655, 1561 (C=O); $\delta \mathrm{H}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 6.96$ (1 H , dt, J 15.5 and $7.5, \mathrm{CHCHCOS}), 6.23(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.5$ and $1.5, \mathrm{CHCHCOS}), 3.89(1 \mathrm{H}$, sextet, J 6.5, CHOH), 3.91 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHCONH}$), 3.53-3.33 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{NHCH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}$), 3.07 (2H, t, J 6.5, CH2S), 2.41 (2H, t, J 6.5, CH2CONH), 2.36-2.32 (2H, m, CH2CHOH), $1.18\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5, \mathrm{CHCH}_{3}\right), 1.03(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.92\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta \mathrm{c}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 190.9\left(\mathrm{CO}_{2} \mathrm{~S}\right), 176.1(\mathrm{CHCONH}), 173.9$ $\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 143.9$ (CHCHCOS), 131.3 (CHCHCOS), $77.3(\mathrm{CHONH}), 70.3\left(\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 67.4$ $(\mathrm{CHOH}), 42.6\left(\mathrm{CH}_{2} \mathrm{CHOH}\right), 40.4\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 40.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 36.4\left(\mathrm{CH}_{2} \mathrm{NH}\right), 36.3\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, 28.9 $\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $23.4\left(\mathrm{CHCH}_{3}\right)$, $21.3\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $20.9\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$ requires 413.1717, found 413.1719; $[\alpha]_{D}^{26}(\mathrm{c} 0.55, \mathrm{MeOH}):+12.7$.

The ${ }^{1} \mathrm{H}$ NMR spectrum of S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido) propanamido)ethyl) (R, E)-5-hydroxyhex-2-enethioate 16 ($\mathrm{d}^{4}-\mathrm{MeOD}$).

The ${ }^{13} \mathrm{C}$ NMR spectrum of S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido) propanamido)ethyl) (R, E)-5-hydroxyhex-2-enethioate 16 ($\mathrm{d}^{4}-\mathrm{MeOD}$).

Synthesis of dienoyl pantetheine thioesters

Synthesis of dienoyl thioesters 11 and 10. Acid 37 and thiol 38 were synthesized according to literature procedures. ${ }^{20,21}$

S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) (2E, 4E)-2, 4hexadienethioate (36)

36

S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) (2E, 4E)-2, 4hexadienethioate 36 was synthesized using the same procedure as that used for the synthesis of S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) (5S, 2E)-5-((tert-butyldimethylsilyl)oxy)-2-hexenethioate 35 using sorbic acid ($61 \mathrm{mg}, 0.54 \mathrm{mmol}, 1.3$ equiv.), to afford the product as a colourless oil ($199 \mathrm{mg}, 90 \%$).
$v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) $3328(\mathrm{NH}), 2940(\mathrm{C}=\mathrm{C}-\mathrm{H}), 1671,1512(\mathrm{C}=\mathrm{O}) ; \delta \mathrm{H}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.19(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and 10.5, CHCHCOS), 7.03 (1H, br. t, J 6.0, NH), $6.24\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 15.0\right.$ and $\left.7.0, \mathrm{CH}_{3} \mathrm{CH}\right), 6.23(1 \mathrm{H}$, br. m, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}$), 6.15 (1H, ddd, J 15.0, 11.0 and 1.0, $\mathrm{CH}_{3} \mathrm{CHCH}$), 6.06 (1H, d, J 15.0, CHCOS), 4.06 (1H, s, CHCONH), 3.67 ($\left.1 \mathrm{H}, \mathrm{d} \mathrm{J} 11.5, \mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $3.60-3.40\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.26(1 \mathrm{H}$, d J 11.5, $\left.\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.08\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{~S}\right), 2.41\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{CONH}\right), 1.87(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0$, $\left.\mathrm{CHCH}_{3}\right), 1.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.96(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta c\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 190.3\left(\mathrm{CO}_{2} \mathrm{~S}\right), 171.4\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 170.2(\mathrm{CHCONH}), 142.1$ $\left(\mathrm{CH}_{3} \mathrm{CH}\right), 142.0(\mathrm{CHCHCOS}), 129.7\left(\mathrm{CH}_{3} \mathrm{CHCH}\right), 125.8(\mathrm{CHCHCOS}), 99.2\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 77.3(\mathrm{CH}), 71.6$ $\left(\mathrm{CH}_{2} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 40.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 36.1\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 34.9 \quad\left(\mathrm{CH}_{2} \mathrm{NH}\right), 33.1 \quad\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 29.7$ $\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $28.5\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $22.3\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $19.1\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $18.9\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $14.1\left(\mathrm{CHCH}_{3}\right)$; HRMS (ESI) $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$requires 435.1924, found 435.1923; $[\alpha]_{D}^{28}\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right):+21.2$.

S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) (2E, 4E)-2, 4-hexadienethioate 11 was synthesized using the same procedure as that used for the synthesis of $S-(2-(3-((R)-2,4-$ dihydroxy-3,3- dimethylbutanamido)propanamido) ethyl) (5S, 2E)-5-hydroxy-2-hexenethioate 8 using S -(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) (2E, 4E)-2, 4hexadienethioate 36 ($180 \mathrm{mg}, 0.45 \mathrm{mmol}, 1.0$ equiv.), to afford the product as a colourless oil (42 mg , 25%).
$v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) $3340(\mathrm{OH}), 2969(\mathrm{NH}), 2940(\mathrm{C}=\mathrm{C}-\mathrm{H}), 1651,1540(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 7.21$ (1H, dd, J 15.0 and 10.0, CHCHCOS), $6.30\left(1 \mathrm{H}\right.$, dq, J 15.0 and 6.5, $\mathrm{CH}_{3} \mathrm{CH}$), 6.24 (1H, dd, J 15.0 and 10.0, $\mathrm{CH}_{3} \mathrm{CHCH}$), 6.15 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0, \mathrm{CHCOS}$), $3.89(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCONH}), 3.53-3.33\left(6 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.08\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{CH}_{2} \mathrm{~S}\right), 2.41\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{CONH}\right), 1.87\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0, \mathrm{CHCH}_{3}\right)$, $0.92\left(6 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta \mathrm{c}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 191.2\left(\mathrm{CO}_{2} \mathrm{~S}\right), 176.1\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 173.9(\mathrm{CHCONH}), 142.8$ $\left(\mathrm{CH}_{3} \mathrm{CH}\right), 142.8(\mathrm{CHCHCOS}), 130.8\left(\mathrm{CH}_{3} \mathrm{CHCH}\right), 126.9(\mathrm{CHCHCOS}), 77.3(\mathrm{CH}), 70.3\left(\mathrm{CH}_{2} \mathrm{OH}\right), 40.4$ $\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 40.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 36.4\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $36.3\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $29.0\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $21.3\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 20.9 $\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $14.2\left(\mathrm{CHCH}_{3}\right)$; HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$requires 395.1611, found 395.1605; $[\alpha]_{D}^{28}$ (c 0.5, MeOH): +40.4.

The ${ }^{1} \mathrm{H}$ NMR spectrum of S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) ($2 E, 4 E$)-hexa-2,4-dienethioate 11 ($\mathrm{d}^{4}-\mathrm{MeOD}$).

The ${ }^{13} \mathrm{C}$ NMR spectrum of S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) ($2 E, 4 E$)-hexa-2,4-dienethioate 11 ($\mathrm{d}^{4}-\mathrm{MeOD}$). dienethioate (10)

10

To a stirred solution of $(2 E, 4 Z)-2$, 4-hexadienoic acid $37(50 \mathrm{mg}, 0.45 \mathrm{mmol}, 1$ equiv., $94: 6, E / Z: E / E)$ in DCM (1 mL) was added oxalyl chloride ($0.04 \mathrm{~mL}, 0.45 \mathrm{mmol}, 1$ equiv.) drop-wise, followed by 2 drops of DMF. The reaction was stirred for 2 h after which time the reaction was added drop-wise to a prestirred mixture of (R)-2,4-dihydroxy- N-(3-((2-mercaptoethyl)amino)-3-oxopropyl)-3,3dimethylbutanamide 38 ($125 \mathrm{mg}, 0.45 \mathrm{mmol}, 1$ equiv.) and triethylamine ($0.06 \mathrm{~mL}, 0.45 \mathrm{mmol}, 1$ equiv.) in dry THF (1 mL). The reaction was then stirred at room temperature for 1 h under an inert atmosphere before being concentrated in vacuo. The resulting orange oil was purified by silica chromatography (MeOH/EtOAc, 1:10) to afford the product as a yellow oil (23 mg, $14 \%, 80: 20, E, Z: E, E)$. $v_{\max } / \mathrm{cm}^{-1}$ (neat) $3355(\mathrm{OH}), 2976(\mathrm{NH}), 2921(\mathrm{C}=\mathrm{C}-\mathrm{H}), 1636,1543(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 7.61$ (1H, ddd, J 15.0, 11.5 and 1.0, CHCHCOS), 6.24 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.0, \mathrm{CHCOS}$), 6.19-6.15 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CHCH}$), 6.07 (1 H , dqt, J 11.0, 7.0 and 1.0, $\mathrm{CH}_{3} \mathrm{CH}$), $3.89(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCONH}), 3.52-3.35\left(6 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right.$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.10\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{CH}_{2} \mathrm{~S}\right), 2.41\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{CH}_{2} \mathrm{CONH}\right), 1.90\left(3 \mathrm{H}\right.$, dd, J 7.0 and 1.5, $\left.\mathrm{CHCH}_{3}\right)$, $0.92\left(6 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta \mathrm{c}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 191.3\left(\mathrm{CO}_{2} \mathrm{~S}\right), 176.1\left(\mathrm{CH}_{2} \mathrm{CONH}\right), 173.9(\mathrm{CHCONH}), 138.9$ (CHCHCOS), $136.5\left(\mathrm{CH}_{3} \mathrm{CH}\right), 128.8\left(\mathrm{CH}_{3} \mathrm{CHCH}\right), 128.3(\mathrm{CHCOS}), 77.3(\mathrm{CH}), 70.4\left(\mathrm{CH}_{2} \mathrm{OH}\right), 40.4$ $\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 40.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$, $36.4\left(\mathrm{CH}_{2} \mathrm{CONH}\right)$, $36.3\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $29.1\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $21.3\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 20.9 $\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $14.2\left(\mathrm{CHCH}_{3}\right)$; HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$requires 395.1611, found 395.1613; $[\alpha]_{D}^{28}$ (c 0.3, MeOH): +28.9.

The ${ }^{1} \mathrm{H}$ NMR spectrum of S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) (2E,4Z)-hexa-2,4-dienethioate 10 ($\left.\mathrm{d}^{4}-\mathrm{MeOD}\right)$.

The ${ }^{13} \mathrm{C}$ NMR spectrum of S-(2-(3-(($\left.R\right)$-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) (2E,4Z)-hexa-2,4-dienethioate 10 ($\mathrm{d}^{4}-\mathrm{MeOD}$).

Confirmation of the stereochemistry of aldol products

Relative stereochemistry of aldol products

A study by Hodge and coworkers showed that the relative stereochemistry of aldol products from acetate aldol reactions can be assigned based on diagnostic coupling constants of the C-2 protons. They observed that the downfield C-2 proton consistently has a smaller vicinal $\left({ }^{3} \mathcal{f}\right)$ coupling constant (around 3.0 Hz) than the upfield C-2 proton (around 9.0 Hz) in the syn-aldol product, and this is reversed in the anti-aldol product; the downfield C-2 proton has a larger vicinal coupling constant (around 9.0 Hz) than the upfield C-2 proton (around 3.0 Hz). This trend was consistent for aldol products with a variety of side chains and was validated by crystallography. ${ }^{16}$ The trend is also consistent with acetate aldol products from other studies (See table below) ${ }^{8,22-24}$ and is in agreement with the predicted relative stereochemistry of aldol products from this study.

${ }^{1} \mathrm{H}$ NMR spectra of aldol products 29 and 28 . The coupling constants of the $\mathrm{C}-2$ protons (red) are in agreement with those reported in the literature for syn- and anti-aldol products, respectively. Note that the geminal coupling constant $\left({ }^{2} \downharpoonleft\right)$ for the C-2 protons is 17.5 Hz .

Coupling constant data for various syn- and anti-acetate aldol products. ${ }^{3} \mathrm{~J}$ coupling constants observed for the C-2 protons (red).

		Syn-product		Anti-product		
R_{1}	\mathbf{R}_{2}	Downfield H J value (Hz)	Upfield H J value (Hz)	Downfield H J value (Hz)	Upfield H J value (Hz)	Ref.
$-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{5}$	$i-\mathrm{Pr}$	3.1	8.7	8.8	3.5	Hodge ${ }^{16}$
$-\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	$i-\mathrm{Pr}$	3.0	8.9	8.8	3.4	
$-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CHBr}$	$i-\mathrm{Pr}$	3.1	8.6	8.9	3.3	
$-\mathrm{C}_{6} \mathrm{H}_{5}$	$i-\mathrm{Pr}$	2.7	9.3	9.5	3.3	
$-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$	$i-\mathrm{Pr}$	2.7	9.4	9.5	3.1	
- $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$i-\mathrm{Pr}$	2.0	10.5	10.5	2.0	
$-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$	$i-\mathrm{Pr}$	2.6	9.2	9.4	2.8	
$-\mathrm{CH}_{2} \mathrm{CH}_{3}$	$i-\mathrm{Pr}$	2.3	9.5	9.1	3.0	
$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	$i-\mathrm{Pr}$	2.5	9.2	9.4	2.7	
$-\mathrm{CH}=\mathrm{CH}_{2}$	$i-\mathrm{Pr}$	3.0	8.8	8.9	3.4	
$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	Bn	2.3	9.4	9.1	2.4	
$-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	Bn	2.2	9.5	9.3	2.6	Cochrane ${ }^{22}$
$-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OTBS}$	Bn	2.2	5.5	9.4	2.5	Yadav ${ }^{23}$
	Bn	2.0	9.4	9.3	2.5	Das ${ }^{24}$
	$i-\mathrm{Pr}$	3.6	8.4	9.2	3.2	Prasad ${ }^{25}$
$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	Bn	2.4	9.5	9.4	2.6	Pompeo ${ }^{8}$
$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	$B n$	2.5	9.5	9.5	2.5	This Study (19 and 18)
	Bn	3.5	8.5	9.0	3.5	This Study (29 and 28)
	$B n$	3.5	8.5	9.0	3.5	This Study (29a and 28a)

Absolute stereochemistry of aldol products

To confirm the absolute stereochemistry of aldol products $\mathbf{2 8}$ and 29 , they were first converted to methyl esters 39 and 40, respectively, before being subjected to Mosher's ester analysis. ${ }^{17}$ The C-3 hydroxyl group of each ester was acylated with (S) - and (R)-Mosher's acid to afford two pairs of Mosher's ester derivatives: 41 and 41a (from 39), and 42 and 42a (from 40). The $\Delta \delta^{S R}$ values ($\Delta \delta^{S R}=\delta_{S}-\delta_{R}$) for protons either side of the chiral C-3 carbon were calculated and used to assign the absolute stereochemistry of the C-3 hydroxyl group in both 39 and 40 . The negative $\Delta \delta^{S R}$ values of the C-2 protons, and positive $\Delta \delta^{S R}$ values of the C-4 protons of alcohol 39 clearly confirm the expected (R)-configuration of the C-3 hydroxyl group. Correspondingly, the positive $\Delta \delta^{S R}$ values of the C-2 protons, and negative $\Delta \delta^{S R}$ values of the C-4 protons of alcohol 40 confirm a (3S)-configured alcohol. ${ }^{17,25}$

28

39
(S)- or (R)-MTPA 2,4,6-trichlorobenzoyl chloride DMAP, $E t_{3} \mathrm{~N}$, Toluene

41, $R=(S)$-MTPA, 78%

40

(S)- or (R)-MTPA 2,4,6-trichlorobenzoyl chloride DMAP, $\mathrm{Et}_{3} \mathrm{~N}$, Toluene

42, $\mathrm{R}=(S)$-MTPA, 81% 42a, $\mathrm{R}=(R)$-MTPA, 71 \%

Mosher's ester analysis of 28 and 29. The $\Delta \delta^{S R}$ values $\left(\Delta \delta^{S R}=\delta_{S}-\delta_{R}\right)$ for each diastereomer confirm that the C-3 hydroxyl group is (R)-configured in aldol product 28, and (S)-configured in 29.

Methyl (3R,5S)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexanoate (39)

39

To a solution of (3R,5S)-1-((S)-4-benzyl-2-thioxothiazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexan-1-one 28 ($50 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0$ equiv.) in anhydrous methanol (3.0 mL) at $0{ }^{\circ} \mathrm{C}$ was added imidazole ($37.4 \mathrm{mg}, 0.55 \mathrm{mmol}, 5.0$ equiv.) and the mixture was stirred for 16 h at RT. The reaction mixture was then quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$. Methanol was removed in vacuo and the mixture extracted with EtOAc, washed with water, brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The resulting oil was purified by silica chromatography (EtOAc: Hexane, 1:5) to afford the product as a colourless oil ($25 \mathrm{mg}, 83 \%$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.35(1 \mathrm{H}$, dddt, J 10.0, 7.0, 4.5 and 2.0, CHOH), $4.09(1 \mathrm{H}$, dquin., J 6.5 and 3.5, $\left.\mathrm{CHCH}_{3}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.62(1 \mathrm{H}$, br. d, J $2.0, \mathrm{OH}), 2.49\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.0\right.$ and $\left.8.0, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, $2.43\left(1 \mathrm{H}\right.$, dd, J 16.0 and $\left.4.5, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 1.65\left(1 \mathrm{H}\right.$, ddd, J 14.0, 10.0 and $\left.3.5, \mathrm{CH}_{2} \mathrm{CHOSi}\right), 1.51(1 \mathrm{H}$, ddd, J 14.0, 6.5 and 2.5, $\left.\mathrm{CH}_{2} \mathrm{CHOSi}\right), 1.22\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5 . \mathrm{CHCH}_{3}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.09(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiCH}_{3}\right), 0.08(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH} 3) ; \delta \mathrm{c}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 172.9\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 66.7(\mathrm{CHOSi}), 65.0(\mathrm{CHOH}), 51.7$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 44.3\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 41.9\left(\mathrm{CH}_{2} \mathrm{CHOSi}\right), 25.8\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 23.2\left(\mathrm{CHCH}_{3}\right), 18.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, -$4.5\left(\mathrm{SiCH}_{3}\right),-5.0\left(\mathrm{SiCH}_{3}\right) ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{C}_{13} \mathrm{H}_{28} \mathrm{NaO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$requires 299.1655, found 299.1656.

Methyl (3S,5S)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexanoate (40)

40

Methyl (3S,5S)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexanoate 40 was synthesized according to the same procedure as that used for the synthesis of methyl ($3 R, 5 S$)-5-((tert-butyldimethylsilyl)oxy)-3hydroxyhexanoate $\quad 39, \quad u s i n g \quad(3 S, 5 S)-1-((S)$-4-benzyl-2-thioxothiazolidin-3-yl)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexan-1-one 29 ($50 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0$ equiv.) to afford the product as a colourless oil ($26 \mathrm{mg}, 86 \%$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.18(1 \mathrm{H}$, ddddd, J 9.0, 7.5, 5.5, 3.5 and $2.0, \mathrm{CHOH}), 4.09(1 \mathrm{H}$, dqd, J $8.5,6.0$ and 5.0, $\left.\mathrm{CHCH}_{3}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.36(1 \mathrm{H}$, br. d, J 2.0, OH), $2.51(1 \mathrm{H}$, dd, J 16.0 and 7.5,
$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$), $2.45\left(1 \mathrm{H}\right.$, dd, J 16.0 and $5.5, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$), $1.66\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.0\right.$ and $\left.8.5, \mathrm{CH}_{2} \mathrm{CHOSi}\right)$, $1.59\left(1 \mathrm{H}\right.$, ddd, J 14.0, 4.5 and $\left.3.5, \mathrm{CH}_{2} \mathrm{CHOSi}\right), 1.18\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0 . \mathrm{CHCH}_{3}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta \mathrm{c}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 172.6\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 68.8(\mathrm{CHOSi}), 67.5$ $(\mathrm{CHOH}), 51.7\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 45.3\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 41.7\left(\mathrm{CH}_{2} \mathrm{CHOSi}\right), 25.8\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $24.2\left(\mathrm{CHCH}_{3}\right), 17.9$ $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-4.0\left(\mathrm{SiCH}_{3}\right),-4.8\left(\mathrm{SiCH}_{3}\right) ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{C}_{13} \mathrm{H}_{28} \mathrm{NaO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$requires 299.1655, found 299.1658.
(3R,5S)-5-((tert-butyldimethylsilyl)oxy)-3-(((S)-3,3,3-trifluoro-2-methoxy-2phenylpropanoyl)oxy)hexanoate (41)

41

Procedure modified from Das et al. ${ }^{24}$ To a solution of (S)-Mosher's acid ($28 \mathrm{mg}, 0.12 \mathrm{mmol}, 3.0$ equiv.) in anhydrous toluene (1 mL) was added DMAP ($17 \mathrm{mg}, 0.14 \mathrm{mmol}, 3.5$ equiv.), Et ${ }_{3} \mathrm{~N}(0.02 \mathrm{~mL}, 0.14$ mmol, 3.5 equiv.) and 2,4,6-trichlorobenzoyl chloride ($0.02 \mathrm{~mL}, 0.12 \mathrm{mmol}, 3.0$ equiv.) at RT. The white turbid mixture was stirred for 30 min , and a solution of methyl ($3 R, 5 S$)-5-((tert-butyldimethylsilyl)oxy)-3hydroxyhexanoate 39 ($10 \mathrm{mg}, 0.04 \mathrm{mmol}, 1.0$ equiv.) in dry toluene (0.5 mL) was then cannulated. After being stirred for 4 h at room temperature, the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(0.5 \mathrm{~mL})$ and extracted with EtOAc. The combined organic extracts were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Purification by silica chromatography (EtOAc : hexane, $1: 20$) afforded ester 41 as a colourless oil ($15 \mathrm{mg}, 78 \%$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.56-7.51(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.42-7.37(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.51(1 \mathrm{H}, \mathrm{tt}, \mathrm{J} 7.0$ and 5.0, CHOCO), 3.91 (1 H , dqd, J 9.5, 6.0 and $3.5, \mathrm{CHOSi}$), $3.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.53(3 \mathrm{H}$, br. q, J 1.0, $\left.\mathrm{OCH}_{3}\right), 2.72\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.0\right.$ and $\left.5.5, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.66\left(1 \mathrm{H}\right.$, dd, J 16.0 and $\left.7.0, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 1.85$ (1H, ddd, J 14.0, 7.5 and 3.5, $\left.\mathrm{CH}_{2} \mathrm{CHOSi}\right), 1.73\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 14.0,9.0\right.$ and $\left.5.0, \mathrm{CH}_{2} \mathrm{CHOSi}\right), 1.15(3 \mathrm{H}$, d, J 6.0, $\left.\mathrm{CHCH}_{3}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta \mathrm{c}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $170.1\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 165.8\left(\mathrm{CO}_{2} \mathrm{CH}\right), 132.0\left(\mathrm{ArC}_{\text {quat }}\right), 129.6(\mathrm{ArC}), 128.4(\mathrm{ArC}), 127.5(\mathrm{ArC}), 124.7\left(\mathrm{CF}_{3}\right)$, $121.8\left(\mathrm{COCH}_{3}\right), 71.9(\mathrm{CHOCO}), 65.5(\mathrm{CHOSi}), 55.4\left(\mathrm{COCH}_{3}\right), 51.7\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 44.0\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 39.3$
$\left(\mathrm{CH}_{2} \mathrm{CHOSi}\right)$, $25.8\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $24.4\left(\mathrm{CHCH}_{3}\right)$, $17.9\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $-4.0\left(\mathrm{SiCH}_{3}\right)$, $-4.9\left(\mathrm{SiCH}_{3}\right)$; HRMS (ESI) $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{NaO}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$requires 492.2155 , found 492.2156 .
(3R,5S)-5-((tert-butyldimethylsilyl)oxy)-3-(((R)-3,3,3-trifluoro-2-methoxy-2phenylpropanoyl)oxy)hexanoate (41a)

41a
$(R),(R, S)$-Ester 41a was synthesized using the same procedure as that used for $(S),(S, R)$-Ester 41, using (R)-Mosher's acid ($28 \mathrm{mg}, 0.12 \mathrm{mmol}, 3.0$ equiv.) to afford the product as a colourless oil (14 mg , 73 \%).

бн (400 MHz; CDCl 3) 7.57-7.51 (2H, m, ArH), 7.42-7.37 (3H, m, ArH$), 5.50(1 \mathrm{H}, \mathrm{tt}, \mathrm{J} 7.0$ and 5.0 , $\mathrm{CHOCO}), 3.85(1 \mathrm{H}$, dqd, J 9.5, 6.0 and $3.5, \mathrm{CHOSi}), 3.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.53(3 \mathrm{H}$, br. q, J 1.0, $\left.\mathrm{OCH}_{3}\right), 2.77\left(1 \mathrm{H}\right.$, dd, J 16.0 and $\left.5.5, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.71\left(1 \mathrm{H}\right.$, dd, J 16.0 and $\left.7.0, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 1.77$ (1 H , ddd, J 14.0, 7.0 and $3.5, \mathrm{CH}_{2} \mathrm{CHOSi}$), $1.67\left(1 \mathrm{H}\right.$, ddd, J 14.0, 9.0 and 5.0, $\left.\mathrm{CH}_{2} \mathrm{CHOSi}\right), 1.10(3 \mathrm{H}$, d, J 6.0, $\left.\mathrm{CHCH}_{3}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta \mathrm{c}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $170.3\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 165.9\left(\mathrm{CO}_{2} \mathrm{CH}\right), 132.1(\mathrm{ArCquat}), 129.6(\mathrm{ArC}), 128.4(\mathrm{ArC}), 127.4(\mathrm{ArC}), 124.7\left(\mathrm{CF}_{3}\right)$, $121.9\left(\mathrm{COCH}_{3}\right), 72.0(\mathrm{CHOCO}), 65.5(\mathrm{CHOSi}), 55.3\left(\mathrm{COCH}_{3}\right), 51.8\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 43.9\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 39.5$ $\left(\mathrm{CH}_{2} \mathrm{CHOSi}\right)$, $25.8\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $24.4\left(\mathrm{CHCH}_{3}\right)$, $17.9\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $-4.0\left(\mathrm{SiCH}_{3}\right)$, -4.9 $\left(\mathrm{SiCH}_{3}\right)$; HRMS (ESI) $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{NaO}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$requires 492.2155 , found 492.2155 .
(3S,5S)-5-((tert-butyldimethylsilyl)oxy)-3-(((S)-3,3,3-trifluoro-2-methoxy-2phenylpropanoyl)oxy)hexanoate (42)

42
$(S),(S, S)$-Ester 42 was synthesized using the same procedure as that used for $(S),(S, R)$-Ester 41, using methyl (3S,5S)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexanoate 40 ($10 \mathrm{mg}, 0.04 \mathrm{mmol}, 1.0$ equiv.) to afford the product as a colourless oil ($16 \mathrm{mg}, 81 \%$).

бн (400 MHz; CDCl 3) 7.56-7.50 (2H, m, ArH), 7.42-7.37 (3H, m, ArH), 5.57 (1H, dtd, J 8.0, 6.5 and 4.5, CHOCO), $3.75\left(1 \mathrm{H}\right.$, sext., J 6.0, CHOSi), $3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.54(3 \mathrm{H}$, br. q, J 1.0, OCH3$), 2.77$ (1 H , dd, J 16.0 and $4.5, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$), $2.70\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.0\right.$ and $\left.8.0, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 1.88(1 \mathrm{H}$, dt, J 14.0, $6.5, \mathrm{CH}_{2} \mathrm{CHOSi}$), $1.67\left(1 \mathrm{H}\right.$, ddd, J 14.0, 6.5 and $\left.1.0, \mathrm{CH}_{2} \mathrm{CHOSi}\right), 1.13\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0, \mathrm{CHCH}_{3}\right), 0.85(9 \mathrm{H}$, s, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-0.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right),-0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta \mathrm{c}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 170.5\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 165.7$ $\left(\mathrm{CO}_{2} \mathrm{CH}\right), 132.2(\mathrm{ArCquat}), 129.6(\mathrm{ArC}), 128.4(\mathrm{ArC}), 127.3(\mathrm{ArC}), 124.7\left(\mathrm{CF}_{3}\right), 121.9\left(\mathrm{COCH}_{3}\right), 71.3$ (CHOCO), $65.0(\mathrm{CHOSi}), 55.4\left(\mathrm{COCH}_{3}\right)$, $51.9\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, $42.8\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, $39.9\left(\mathrm{CH}_{2} \mathrm{CHOSi}\right), 25.8$ $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 23.2\left(\mathrm{CHCH}_{3}\right), 17.9\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-4.4\left(\mathrm{SiCH}_{3}\right),-5.0\left(\mathrm{SiCH}_{3}\right) ;$ HRMS $(\mathrm{ESI}) \mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{NaO}_{6} \mathrm{Si}$ $[\mathrm{M}+\mathrm{Na}]^{+}$requires 492.2155, found 492.2157.
(3S,5S)-5-((tert-butyIdimethylsilyl)oxy)-3-(((R)-3,3,3-trifluoro-2-methoxy-2phenylpropanoyl)oxy)hexanoate (42a)

42a
$(R),(S, S)$-Ester 42a was synthesized using the same procedure as that used for $(S),(S, R)$-Ester 41, using (R)-Mosher's acid ($28 \mathrm{mg}, 0.12 \mathrm{mmol}, 3.0$ equiv.) and methyl ($3 S, 5 S$)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxyhexanoate $40(10 \mathrm{mg}, 0.04 \mathrm{mmol}, 1.0$ equiv.) to afford the product as a colourless oil (14 mg, 71%).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.55-7.49(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.43-7.37(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.59(1 \mathrm{H}, \mathrm{dtd}, \mathrm{J} 8.0,7.0$ and 4.5, CHOCO), $3.90\left(1 \mathrm{H}\right.$, sext., J 6.0, CHOSi), $3.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.50(3 \mathrm{H}$, br. q, J 1.0, OCH3$), 2.75$
(1 H , dd, J 16.0 and $4.5, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$), $2.64\left(1 \mathrm{H}\right.$, dd, J 16.0 and $\left.8.0, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 1.97(1 \mathrm{H}$, dt, J 14.0, $\left.6.5, \mathrm{CH}_{2} \mathrm{CHOSi}\right), 1.76\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 14.0,6.5\right.$ and $\left.1.0, \mathrm{CH}_{2} \mathrm{CHOSi}\right), 1.21\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0, \mathrm{CHCH}_{3}\right), 0.88(9 \mathrm{H}$, s, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH} \mathrm{S}_{3}\right) ; \delta \mathrm{c}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 170.2\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 165.7$ $\left(\mathrm{CO}_{2} \mathrm{CH}\right), 132.0(\mathrm{ArCquat}), 129.6(\mathrm{ArC}), 128.4(\mathrm{ArC}), 127.5(\mathrm{ArC}), 124.7\left(\mathrm{CF}_{3}\right), 121.9\left(\mathrm{COCH}_{3}\right), 71.4$ (CHOCO), $65.2(\mathrm{CHOSi}), 55.3\left(\mathrm{COCH}_{3}\right)$, $51.8\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, $43.0\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, $39.7\left(\mathrm{CH}_{2} \mathrm{CHOSi}\right), 25.8$ $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 23.4\left(\mathrm{CHCH}_{3}\right), 18.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-4.4\left(\mathrm{SiCH}_{3}\right),-5.0\left(\mathrm{SiCH}_{3}\right) ;$ HRMS $(\mathrm{ESI}) \mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{NaO}_{6} \mathrm{Si}$ $[M+N a]^{+}$requires 492.2155, found 492.2155

References

1. Kautsar, S. A. et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 48, (2020).
2. M. Jenner, et al. Mechanism of intersubunit ketosynthase-dehydratase interaction in polyketide synthases. Nat. Chem. Biol. 14, 270-275 (2018).
3. Keatinge-Clay, A. Stereocontrol within polyketide assembly lines. Nat. Prod. Rep. 33, 141-149 (2016).
4. Wilson, K.E. et al. Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. II. Isolation and physico-chemical characterization. J. Antibiot. 40, 1682-1691 (1987).
5. H. L. Robertsen et al. Filling the Gaps in the Kirromycin Biosynthesis: Deciphering the Role of Genes Involved in Ethylmalonyl-CoA Supply and Tailoring Reactions. Sci. Rep. 8, 3230 (2018).
6. Agarwal, V. et al. Chemoenzymatic Synthesis of Acyl Coenzyme A Substrates Enables in Situ Labeling of Small Molecules and Proteins. Org. Lett. 17, 4452-4455 (2015).
7. Skaanderup, P. R. \& Jensen, T. Synthesis of the Macrocyclic Core of (-)-Pladienolide B. Org. Lett. 10, 2821-2824 (2008).
8. Pompeo, M. M., Cheah, J. H. \& Movassaghi, M. Total Synthesis and Anti-Cancer Activity of All Known Communesin Alkaloids and Related Derivatives. J. Am. Chem. Soc. 141, 14411-14420 (2019).
9. Evans, D. A., Bartroli, J. \& Shih, T. L. Enantioselective aldol condensations. 2. Erythro-selective chiral aldol condensations via boron enolates. J. Am. Chem. Soc. 103, 2127-2129 (1981).

Hsiao, C. N., Liu, L. \& Miller, M. J. Cysteine- and serine-derived thiazolidinethiones and oxazolidinethiones as efficient chiral auxiliaries in aldol condensations. J. Org. Chem. 52, 2201-2206 (1987).
11. Roberts, D. M. et al. Substrate selectivity of an isolated enoyl reductase catalytic domain from an iterative highly reducing fungal polyketide synthase reveals key components of programming. Chem. Sci. 8, 11161126 (2017).
12. Alhamadsheh, M. M., Palaniappan, N., Daschouduri, S. \& Reynolds, K. A. Modular polyketide synthases and cis double bond formation: establishment of activated cis-3-cyclohexylpropenoic acid as the diketide
intermediate in phoslactomycin biosynthesis. J. Am. Chem. Soc. 129, 1910-1 (2007).

Wang, G. et al. Highly stereoselective total synthesis of fully hydroxy-protected mycolactones A and B and their stereoisomerization upon deprotection. Chemistry 17, 4118-4130 (2011).

Perlmutter, P., Selajerern, W. \& Vounatsos, F. Enantioselective synthesis of the dioxabicyclo[3.2.1]octane core of the zaragozic acids via intramolecular Wacker-type cyclisation reactions. Org. Biomol. Chem. 2, 2220-2228 (2004).

Gao, Z. et al. Investigation of Fungal Iterative Polyketide Synthase Functions Using Partially Assembled Intermediates. J. Am. Chem. Soc. 135, 1735-1738 (2013).

Hodge, M. B. \& Olivo, H. F. Stereoselective aldol additions of titanium enolates of N -acetyl-4-isopropylthiazolidinethione. Tetrahedron 60, 9397-9403 (2004).

Hoye, T. R., Jeffrey, C. S. \& Shao, F. Mosher ester analysis for the determination of absolute configuration of stereogenic (chiral) carbinol carbons. Nat. Protoc. 2, 2451-2458 (2007).

Reber, K. P., Mease, J., Kim, J. Total Synthesis of Cladosins B and C. J. Org. Chem. 85, 11571-11578 (2020).

Solladié, G., Gressot, L. \& Colobert, F. Enantioselective Synthesis of the Unsymmetrical Bis(lactone) (-)-(3E,6R,9E,12S,14R)-Colletol Induced by Chiral Sulfoxides and an Approach to (+)-Colletodiol by Asymmetric Hydroxylation of an α, β-Hydroxy Lactone. European J. Org. Chem. 2000, 357-364 (2000).

Davies, S. G. et al. Asymmetric total synthesis of sperabillins B and D via lithium amide conjugate addition. Org. Biomol. Chem. 2, 2630 (2004).

Heine, D. et al. A widespread bacterial phenazine forms S-conjugates with biogenic thiols and crosslinks proteins. Chem. Sci. 7, 4848-4855 (2016).

Cochrane, S. A., Surgenor, R. R., Khey, K. M. W. \& Vederas, J. C. Total Synthesis and Stereochemical Assignment of the Antimicrobial Lipopeptide Cerexin A1. Org. Lett. 17, 5428-5431 (2015).

Yadav, J. S., Ganganna, B., Dutta, P. \& Singarapu, K. K. Synthesis and Determination of Absolute Configuration of α-Pyrones Isolated from Penicillium corylophilum. J. Org. Chem. 79, 10762-10771 (2014). Das, S. \& Goswami, R. K. Stereoselective Total Synthesis of leodomycins A and B and Revision of the NMR Spectroscopic Data of leodomycin B. J. Org. Chem. 78, 7274-7280 (2013).

Prasad, K. R. \& Revu, O. Total Synthesis of (+)-Seimatopolide A. J. Org. Chem. 79, 1461-1466 (2014).

