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Abstract 
Motivation: 

Machine learning based prediction of compound-protein interactions (CPIs) is important for drug de-

sign, screening and repurposing. Despite numerous recent publication with increasing methodological 

sophistication claiming consistent improvements in predictive accuracy, we have observed a number 

of fundamental issues in experiment design that produce overoptimistic estimates of model perfor-

mance. 

Results: 

We systematically analyze the impact of several factors affecting generalization performance of CPI 

predictors that are overlooked in existing work: 

1. Similarity between training and test examples in cross-validation 

2. Synthesizing negative examples in absence of experimentally verified negative examples 

3. Alignment of evaluation protocol and performance metrics with real-world use of CPI predic-

tors in screening large compound libraries. 

Using both state of the art approaches by other researchers as well as a simple kernel-based baseline, 

we have found that effective assessment of generalization performance of CPI predictors requires 

careful control over similarity between training and test examples. We show that, under stringent per-

formance assessment protocols, a simple kernel based approach can exceed the predictive perfor-

mance of existing state of the art methods. We also show that random pairing for generating synthetic 

negative examples for training and performance evaluation results in models with better generalization 

in comparison to more sophisticated strategies used in existing studies. Our analyses indicates that 

using proposed experiment design strategies can offer significant improvements for CPI prediction 

leading to effective target compound screening for drug repurposing and discovery of putative chemical 

ligands of SARS-CoV-2-Spike and Human-ACE2 proteins. 

Availability: Code and supplementary material available at https://github.com/adibayaseen/HKRCPI. 

 

1 Introduction  

Compound Protein Interaction (CPI) prediction is an important task in Tar-

get Compound Screening for identifying protein targets of compounds, drug 

design, and drug repurposing studies (Schirle and Jenkins 2016). Affinity 

chromatography (Broach and Thorner 1996) and protein microarrays (Lee 

and Lee 2016; Zhao et al. 2021) are among the most frequently used exper-

imental methods for the identification of CPIs. However, such wet-lab 

approaches can be expensive and time-consuming (W. Zhang, Pei, and Lai 

2017). The emergence of pandemics such as Ebola and COVID-19 and the 

global challenge of antimicrobial resistance have highlighted the need of im-

proving efficiency and throughput in drug design (Thafar et al. 2019). Con-

sequently, CPI prediction using computational methods has become an at-

tractive area of research (X. Chen et al. 2016) as such approaches can im-

prove the cost, time, and efficiency of drug discovery in contrast to experi-

mental methods (Mazandu et al. 2018).  

https://github.com/adibayaseen/HKRCPI
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1.1 Methods for CPI Prediction 

Conventionally, structure-based and ligand-based virtual screening are the 

most well-researched areas of drug discovery (Lim et al. 2021) but such 

techniques require tertiary structure of the protein of interest. As a conse-

quence, machine learning (ML) based methods that use sequence character-

istics of proteins and chemical structural representations of compounds for 

interaction prediction have been developed (Bredel and Jacoby 2004) 

(Bleakley and Yamanishi 2009). Classicial ML approaches in this domain 

range from similarity-based methods (R. Chen et al. 2018) to feature repre-

sentation and kernel based approaches ((Bleakley and Yamanishi 2009), 

(Gönen 2012), pairwise kernels (Jacob and Vert 2008), etc.). Comparative 

analysis by Ding et al. has shown that pairwise kernels outperforms other 

approaches (Ding et al. 2014). In recent years, researchers have developed 

multiple deep learning models for CPI prediction. DeepDTA (Öztürk, 

Özgür, and Ozkirimli 2018) extracts real-valued sparse feature representa-

tions of proteins as well as compounds using convolutional neural networks 

(CNNs) and appends these features through the final fully connected layer. 

WideDTA (Öztürk, Ozkirimli, and Özgür 2019) and Conv-DTI (S. Wang et 

al. 2020) also used an analogous idea with additional features, ligand struc-

tural similarity, and information about protein domains and motifs to en-

hance model accuracy. For the representation of compound structures, CPI–

NN (Tsubaki, Tomii, and Sese 2019) and Graph-DTA (Nguyen et al. 2021) 

used novel graph neural networks (X.-M. Zhang et al. 2021) (GNNs) as an 

alternative to CNNs resulting in state of the art prediction accuracy. 

1.2 Issues in performance assessment of CPI models 

Despite increasing sophistication of CPI models through deep learning, the 

generalization performance of existing approaches on independent or real-

world datasets is still not perfect (Riley 2019). One of the fundamental issues 

behind this is biased and overly-optimistic performance assessment strate-

gies arising from the use of unsuitable datasets, poor non-redundancy control 

in train-test data splitting in cross-validation, improper procedures for gen-

eration of negative example, lack of independent test sets, and choice of per-

formance metrics. Here, we discuss each of these issues in further detail.  

A number of ML-based CPI prediction models have used the MUV (Roh-

rer and Baumann 2009), DUD-E (Mysinger et al. 2012) and Human-CPI da-

tasets (Tsubaki, Tomii, and Sese 2019; Liu et al. 2015) for model training 

and performance evaluation. However, most datasets in this domain do not 

contain true or experimentally verified negative examples and may have a 

large degree of redundancy between proteins and compounds which can lead 

to biased machine learning models (Lieyang Chen et al. 2019), (Sieg, Flach-

senberg, and Rarey 2019) (Lifan Chen et al. 2020). 

Another issue associated with the performance assessment of ML CPI 

models is the protocol used for generating negative examples. As there are 

no standardized datasets of negative examples for compound-protein inter-

action prediction, researchers in this domain resort to one of two approaches 

for the generation of “synthetic” negative examples for training and perfor-

mance assessment: Random pairing and Inter-class similarity-controlled 

negative example generation. In random pairing, proteins and compounds in 

the positive set are simply randomly paired for generating synthetic negative 

examples after exclusion of known positive pairs as in the dataset used in 

CPI-NN (Tsubaki, Tomii, and Sese 2019). However, researchers have ar-

gued that random-pairing can produce examples that are highly similar to 

positive examples and this can add labeling noise in training (Ding et al. 

2014). As a consequence, they have proposed that negative examples should 

be generated with controls over inter-class similarity. This process first cre-

ates a candidate negative set through random pairing of compounds and pro-

teins. Then a similarity function is used to calculate the degree of similarity 

between a candidate negative example and the given set of positive exam-

ples. Only those candidate negative examples are added to the final negative 

set whose similarity score with positive examples is lower than a pre-speci-

fied threshold resulting in negative examples that are sufficiently dissimilar 

to known positive examples (Ding et al. 2014). However, as in the case of 

protein-protein interaction prediction models (Ben-Hur and Noble 2006), the 

use of similarity-controlled negative example generation in model evalua-

tion can result in overly optimistic performance results with a high likeli-

hood of generalization failure on real-world test sets.  

Many existing approaches also use an equal number of positive and neg-

ative examples even though the number of compounds that can be expected 

to bind to a given protein can be significantly smaller in comparison to the 

size of the universe of possible compounds. This results in the generation of 

a large number of false positives in real-world applications. Furthermore 

cross-validation protocols employed in most existing ML CPI models also 

do not consider protein sequence and compound similarity in generating 

training and test folds resulting in overly optimistic performance estimates 

as the training set can contain examples that are very similar to test exam-

ples. Ideally, the examples in the test folds should be sufficiently different 

from training examples to reflect real-world use cases.  

Lastly, existing methods report areas under the Receiver Operating Charac-

teristic or Precision-Recall curves (AUCROC/AUCPR) as performance met-

rics. However, given that such approaches are typically used for screening 

interactions from a large number of candidate compound-protein pairs for 

wet-lab validation, these metrics do not provide a directly interpretable esti-

mate of how good a method is at ranking interacting compounds of a protein.  

1.3 Contributions of this work 

In this work, we highlight the issues discussed above with a number of ex-

periments using existing state of the art CPI prediction model (CPI-NN) 

(Tsubaki, Tomii, and Sese 2019) and Graph-DTA (Nguyen et al. 2021) as 

well as a simple heterogeneous kernel-based approach. We suggest improve-

ments in the evaluation protocol used for performance assessment of such 

models in terms of negative example generation as well as performance met-

rics. We report the prediction results of the proposed approach for screening 

candidate compounds for a number of test proteins not included in the data 

sets used in model construction including SARS-CoV-2 Spike and Human 

ACE2 proteins.   

2 Methods 

In this section, we discuss details of our datasets, experiments and ma-

chine learning methods for compound protein interaction prediction.  

2.1 Datasets 

2.1.1. Non-redundant Liu et al. Human CPI Dataset (NR-HCPI) 

We use the human protein-compound interaction dataset originally proposed 

by (Liu et al. 2015) and employed in a number of existing methods such as 

CPI-NN (Tsubaki, Tomii, and Sese 2019). In this dataset, positive examples 

consisting of protein-compound pairs were collected from two experimen-

tally verified databases: DrugBank 4.1 (Wishart et al. 2008) and Matador 

(Günther et al. 2008). This dataset has 3,364 positive examples of interacting 

protein-compound pairs constituting 852 unique proteins and 1,179 unique 

compounds. It also contains an equal number of negative examples obtained 

by randomly pairing proteins and compounds in the positive set provided as 

part of the CPI-NN code repository (Tsubaki, Tomii, and Sese 2019). We 

found that the aforementioned dataset by Liu et al. used in CPI-NN (Tsubaki, 

Tomii, and Sese 2019) contained duplicated examples. We removed these 

duplicated examples from the positive set resulting in 2,633 unique positive 

examples that constitute our NR-HCPI dataset together with negative exam-

ples obtained by randomly pairing proteins and compounds in the positive 
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set excluding any pairs already included in the positive set. We generated 

different ratios of positive to negative examples (P:N = 1:1, 1:3, 1:5, and 

1:7) for the evaluation of predictive performance under more realistic eval-

uation scenarios with high-class imbalance. In conjunction with this dataset, 

we also utilized a non-redundant cross-validation (NRCV) protocol which is 

detailed in the performance evaluation section. 

2.1.2 Binding DB dataset 

As discussed in the Introduction, one of the fundamental issues with protein-

compound interaction datasets is the lack of experimentally verified negative 

examples. For performance assessment of CPI prediction methods and for 

studying the impact of various approaches for generating synthetic negative 

examples, we have used the binding affinity values of protein-compound 

pairs in the latest version (June 2021) of Binding DB (Gilson et al. 2016) 

with a total of 22,782,226 examples. For this purpose, we applied a number 

of data filtering steps (detailed in github supplementary material) such as 

using only single-chain protein targets with experimentally verified inhibi-

tion constant values that are sufficiently high to ensure very low probability 

of interaction (Ganesh et al. 2005; Çavdar et al. 2012) to select our final 

dataset of 3,657 negative examples. 

2.1.3 Superdrug bank for drug repurposing and SARS= 

For drug repurposing analysis, we use the SuperDRUG2 (version 2) data-

base (Siramshetty et al. 2018) of approved and commercially available drugs 

with a total of 3,633 unique small molecules. We have also used the Super-

drug bank molecules for screening potential targets of SARS-Cov-2 Spike 

protein and the human ACE2 protein. 

2.2 Machine Learning Models 

For performance analysis, we have used the available implementations of 

Graph-DTA (Nguyen et al. 2021) and CPI-NN methods which give state-of-

the-art results (Tsubaki, Tomii, and Sese 2019). CPI-NN has been validated 

for human and C. elegans proteins with high AUC-ROC (0.95) and under 

different class ratio settings over the same datasets. Similarly, Graph-DTA 

is a state of the art approach for predicting binding affinity of drugs and pro-

teins which can be used for CPI prediction. We have used the publicly avail-

able codes of CPI-NN and Graph-DTA for conducting experiments with var-

ious cross-validation and assessment strategies after verifying the reproduc-

ibility of the results using the experimental settings as reported in the original 

papers. 

As a baseline, we have also developed a simple kernel-based approach for 

CPI prediction (see Fig. 1). For this purpose, we model compound protein 

interaction (CPI) prediction as a classification problem in which every ex-

ample 𝑥 ≡ (𝑐, 𝑝) consists of a protein 𝑝 and a compound 𝑐 with correspond-

ing feature representations 𝜓(𝑝) and 𝜙(𝑐), respectively. Each example in 

the training dataset 𝐷 = {((𝑝𝑖 , 𝑐𝑖), 𝑦𝑖)|𝑖 = 1 … 𝑁} is associated with a binary 

label 𝑦𝑖 ∈ {−1, +1} indicating whether the corresponding protein and com-

pound interact (+1) or not (−1).  

2.2.1 Protein and Compound Features  

In order to capture amino-acid specific binding characteristics of proteins 

with their target compounds in the predictive model, we have used the amino 

acid composition (AAC) of protein (denoted by 𝜓𝐴𝐴𝐶(𝑝)) which is a 20-di-

mensional vector representation of a protein sequence containing the fre-

quency of occurrence of various amino acids in the protein sequence  (K. 

Huang et al. 2020). For modelling the physiochemical similarity across 

amino acids, we used grouped k-mer composition of proteins as a feature 

vector. In this approach, each amino acid in a protein is assigned one of 

seven predetermined groups based on its physicochemical characteristics 

(Hashemifar et al. 2018) and the counts of all possible group-level k-mers 

are used as a feature vector. For 𝑘 = 2 and 𝑘 = 3, this results in 72 = 49- 

and 73 = 343-dimensional features of a protein denoted by  𝜓2(𝑝) and as 

𝜓3(𝑝), respectively.  

For modeling compound characteristics, we extract features from SMILES 

of compounds in the compound protein interaction pair using its Extended-

Connectivity Fingerprint (ECFP) (also known as Morgan Fingerprint) (M. 

Veselinovic et al. 2015) using RDKit (Cao et al. 2013). This fingerprint is a 

topological feature of a chemical compound and captures its structural con-

firmation within a given radius. The feature dimension of this representation 

is 1024 for a radius of 3 atoms. 

2.2.2 Heterogeneous Kernel Representation  

We have developed a simple kernel method for compound-protein interac-

tion prediction. As each classification example in this problem comprises a 

protein and compound, we first construct non-linear kernel representations 

of proteins and compounds separately which are then merged to form a het-

erogeneous feature space kernel for classification as shown in Figure 1.  

Compound Similarity kernel 

We use the compound feature representation 𝜙(𝑐) to construct a radial basis 

function (RBF) similarity kernel between pairs of compounds as follows: 

𝐾𝑐(𝑐𝑖 , 𝑐𝑗) =  𝑒𝑥𝑝(−𝛾𝑐‖𝜙(𝑐𝑖) − 𝜙(𝑐𝑗)‖2). In this equation 𝜙(𝑐𝑖) and 𝜙(𝑐𝑗) 

are Morgan Fingerprint feature vectors as described in the previous section. 

The kernel 𝐾𝑐(𝑐𝑖 , 𝑐𝑗) essentially measures the degree of similarity of two 

compounds in the feature space in a non-linear manner with a single hyper-

parameter 𝛾𝑐 > 0.  

Protein Similarity kernel 

For a protein 𝑝, all three feature vectors of protein sequence 𝑝 are concate-

nated in a feature representation 𝜓(𝑝) resulting in a 412-dimensional column 

vector of the protein features as: 𝜓(𝑝) = [ 𝜓𝐴𝐴𝐶(𝑝) |  𝜓2(𝑝) |  𝜓3(𝑝) ] 
This feature representation is then used to generate a protein-protein simi-

larity kernel as follows: 𝐾𝑝(𝑝𝑖 , 𝑝𝑗) =  𝑒𝑥𝑝(−𝛾𝑝 ‖𝜓(𝑝𝑖) − 𝜓(𝑝𝑗)‖2). 

Heterogeneous kernel Representation and Classification 

Based on protein and compound similarity kernels, we construct a heteroge-

neous feature space kernel between pairs of examples  (𝑝, 𝑐) and (𝑝′, 𝑐′) 

each consisting of a protein and a compound as follows. 

𝐾((𝑝, 𝑐), (𝑝′, 𝑐′)) = ⟨𝜑(𝑝, 𝑐), 𝜑(𝑝′, 𝑐′)⟩ = (𝐾𝑝(𝑝, 𝑝′) + 𝐾𝑐(𝑐, 𝑐′))
2

= 𝐾𝑝(𝑝, 𝑝′)2 + 𝐾𝑐(𝑐, 𝑐′)2 + 2𝐾𝑝(𝑝, 𝑝′)𝐾𝑐(𝑐, 𝑐′) 

This joint kernel essentially measures the degree of similarity between pairs 

of examples with each example being a protein-compound pair. Note that 

the joint kernel is a quadratic sum of the protein and compound kernels 

 

Figure 1 Concept diagram of Kernel Compound-Protein Interaction (Kernel-CPI) Prediction. 

Protein sequence and SMILES are given as input, amino acid composition and grouped k-

mer (k = 2, k = 3) features are extracted from protein sequence and concatenated into a single 

feature vector 𝜓(𝑝) for computing a protein-level kernel 𝐾𝑝(𝑝, 𝑝′). The Morgan Fingerprint 

𝜙(𝑐) is extracted from SMILES representation of a compound to calculate kernel 𝐾𝑐(𝑐, 𝑐′). 

These kernels are combined into a kernel representation 𝐾((𝑝, 𝑐), (𝑝′, 𝑐′)) for CPI prediction. 
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which gives rise to an abstract and nonlinear joint feature space 𝜑(𝑝, 𝑐) for 

compound-protein pairs with the kernel 𝐾 being an implicit generalized dot 

product between  𝜑(𝑝, 𝑐)  and 𝜑(𝑝′, 𝑐′). The product 𝐾𝑝(𝑝, 𝑝′)𝐾𝑐(𝑐, 𝑐′) in 

the above formulation implicitly corresponds to the tensor-product of the 

protein and compound feature spaces. It is also important to note that two 

examples will have a high kernel score if the corresponding proteins and 

compounds in the two examples are similar. The joint kernel over the train-

ing dataset  𝐷 = {((𝑝𝑖 , 𝑐𝑖), 𝑦𝑖)|𝑖 = 1 … 𝑁} is used for training a kernelized 

Support Vector Machine (SVM) which is then used  to infer the prediction 

score 𝑓(𝑝, 𝑐) for a given test example (𝑝, 𝑐). This approach is in line with 

the work by (Jacob and Vert 2008) with major differences in the choice of 

constituent kernels and construction of the joint kernel (see github supple-

mentary material for comparative results between these kernel methods).  

3 Performance Comparison & Screening  

We have designed multiple experiments to identify issues in performance 

evaluation and generalization of CPI predictors which are described below.   

3.1 Cross-Validation 

For direct comparison with previous methods, we have used stratified five-

fold cross-validation which is typically used for reporting CPI prediction re-

sults. Each cross-validation experiment is repeated ten times to obtain the 

average and standard deviation of different performance metrics such as 

AUCROC and AUC-PR.  

One of the limitations of five-fold cross-validation is that very similar pro-

teins or compounds may end up in different folds resulting in an overly op-

timistic assessment of prediction performance. To estimate the generaliza-

tion performance in a real-world setting where test proteins may not share 

very high sequence similarity with proteins in the training set, we have per-

formed a more stringent non-redundant cross-validation analysis which has 

not been performed in previous studies. For this purpose, proteins in the NR-

HCPI dataset are first clustered based on a given sequence identity threshold 

through CD-HIT (Y. Huang et al. 2010). These clusters are then divided into 

five folds such that no two folds have examples from the same cluster while 

ensuring that the number of examples in every fold remains approximately 

the same. This guarantees that the sequence similarity of proteins in exam-

ples in a test fold is always less than a specified threshold with proteins in 

the training set. We used two different sequence similarity thresholds (40% 

and 90%) in our analysis.  

3.2 Validation over experimentally verified negative examples  

We have also analyzed the prediction quality of different CPI predictors on 

an external set containing experimentally verified negative examples from 

Binding DB as described in the dataset section. In this experiment, the ML 

models are trained on four folds of NRCV as described above. However, the 

original negative examples in the test fold are replaced with experimentally 

verified negative examples from Binding DB. This process is repeated by 

alternating across different folds and then multiple runs to generate mean 

and standard deviation values of performance metrics.  

3.3 Analysis of Negative Example Generation Strategies 

As discussed in the Introduction section, there are two strategies used in the 

literature for generating negative examples: Random Pairing and Similarity 

Controlled Negative Example Generation. In this work, we systematically 

compare these strategies for training and performance assessment of the 

proposed model. For this purpose, we have developed the algorithm shown 

in Table-1 to generate negative examples at different inter-class similarity 

thresholds using kernel-based calculations. This algorithm can be used to 

generate a desired number of synthetic negative examples by controlling 

their degree of similarity to examples in a given positive set based on an 

inter-class similarity threshold α∈[0,1]. For our systematic comparison, we 

first pick a value of α and then generate synthetic negative examples through 

this algorithm for training and performance evaluation. It is important to note 

that for sufficiently high values of α (α→1), this algorithm essentially gen-

erates randomly-paired negative examples which can be similar to known 

positive examples whereas for low values (α→0), the generated negative ex-

amples are highly dissimilar to known positive examples. The resulting data 

of positive and synthetic negative examples is then divided into five folds in 

a stratified manner as for non-redundant cross-validation. Similar to NRCV, 

training is performed on four folds followed by testing on examples in the 

held-out set in two different ways: first by using the held-out set of positive 

and synthetic negative examples and, secondly, by using the held-out set of 

positive examples and “true” negative examples from Binding DB. The pro-

cess is then repeated for different values of α. Differences in predictive per-

formance of a given method between the cross-validation protocol and the 

evaluation with true negative examples from Binding DB indicate system-

atic biases resulting from synthetic negative example generation strategies.  

3.4 Target Compound Screening  

In a practical setting, compound-protein interaction prediction approaches 

are used for screening a large number of compounds for potential binding 

with a target protein of interest. Ideally, interacting compounds of a given 

protein should rank close to the top in comparison to non-interacting com-

pounds in the screening library based on prediction scores of all test exam-

ples from the predictor. However, cross-validation experiments used in pre-

vious works do not model this “screening” use case as they are restricted to 

a fixed evaluation data set and do not analyze how a predictor would rank 

known interacting partners in a setting in which all compounds are paired 

with all proteins. In this work, we have performed in silico screening of all 

unique compounds against all proteins in a given test set. This all-vs-all pair-

wise screening is useful for drug discovery and repurposing studies and is 

carried out by computing the prediction score of all possible pairs of proteins 

and compounds in a test set using a prediction model and calculating how 

often a predictor ranks a known interacting pair in its top predictions. We 

have performed multiple screening experiments for comparison between 

CPI prediction models: 

Screening with Non-redundant Cross-validation (NRCV) 

In this experiment, we train a model using training folds of the NRCV da-

taset and then compute prediction scores of all-vs-all compound-protein 

pairs in the test fold using the trained model (see github supplementary file 

for an illustration of the experimental setup). This process is repeated for all 

five folds of the dataset to compute a rank-based performance metric (RFPP) 

described in the next subsection.  

Screening SuperDRUG2 for drug-repurposing & SARS-Cov-2 targets 

For drug-repurposing analysis with the proposed model, we used the Super-

DRUG2 dataset containing 3,633 FDA-approved drugs. In this experiment, 

the model is first trained on all examples in training folds of the NRCV da-

taset and then used to generate prediction scores for all proteins in the test 

fold paired with all compounds in the SuperDRUG2 database (see supple-

mentary material on GitHub for an illustration of the experimental setup). 
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These scores are used to rank known interacting compounds of each protein 

in the test set relative to the compounds in SuperDRUG2 to compare the 

predictive performance of different models and identify putative compounds 

in SuperDRUG2 that can bind test proteins in the NRCV dataset.  

We have also used Kernel-CPI to generate predictions for interactions of 

SARS-CoV-2 Spike protein and Human ACE2 protein across all compounds 

in SuperDrug2 (Goulter et al. 2004), (Xia and Lazartigues 2008; Zou et al. 

2020). We performed a literature search for any experimental evidence of 

interaction of the top-scoring compound with these proteins or their associ-

ation with SARS-CoV-2 treatment effects.  

3.5 Using Ranks for Performance Evaluation 

For quantifying the prediction quality of CPI predictors in screening exper-

iments, we have developed an interpretable performance metric called Rank 

of First Positive Prediction (RFPP) inspired from our previous work on pro-

tein-protein interactions (Minhas, Geiss, and Ben-Hur 2014). It essentially 

shows the expected number of compounds that will need to be screened in 

the wet lab to identify at least one true interacting partner of a protein. For a 

given protein in the test set, RFPP is obtained by first pairing all possible 

test compounds with the protein and computing the prediction scores of all 

such examples using the CPI model under evaluation. Then the rank of the 

highest-scoring compound that is a known interacting partner of the test pro-

tein is used as the RFPP value of that protein (see github supplementary ma-

terial for an illustration of this experimental setup). Note that for an ideal 

predictor, the RFPP for all test proteins should be one, i.e., the top-ranked 

compound of each test protein should be an interaction partner of that pro-

tein. In order to quantify the predictive quality of a CPI model across all test 

proteins, we first compute RFPP for all test proteins and then calculate per-

centiles of the RFPP values across all proteins. The percentile values across 

all proteins can be used to compare the predictive performance of screening 

models based on their ability to rank putative compound-protein interac-

tions. The 𝑟th percentile of RFPP of a predictor will be 𝑞 (denoted as 

𝑅𝐹𝑃𝑃(𝑟) = 𝑞) if 𝑟% test proteins have at least one known interacting com-

pound in the top q predictions from the predictor. For an ideal predictor, the 

RFPP value for all proteins in the test set should be one, i.e., RFPP (100) =1. 

We have generated the RFPP percentile plots of different CPI predictors. As 

a baseline we have also plotted the RFPP percentiles of a random predictor 

which generates random prediction scores given a protein and compound. 

These values provide more directly interpretable estimates of prediction 

quality for such screening experiments. 

4 Results and Discussion  

4.1 Non-redundant cross-validation analysis is essential for re-

alistic performance evaluation  

Previous approaches have used five-fold cross-validation (CV) or multiple 

bootstrap runs for performance evaluation. In order to provide a direct com-

parison between different methods, we have performed stratified five-fold 

cross-validation on the original Liu et al. dataset as well as after removing 

duplicated examples from it (see Table-2). This analysis shows that the pre-

dictive performance in terms of AUROC CPI-NN (94%) and GraphDTA 

(97%) is comparable to kernel-CPI baseline (99%). As expected, removal of 

duplicated examples reduces the prediction accuracy of these methods. In 

order to get a more realistic estimate of the generalization performance of 

these methods, we have performed 5-fold non-redundant cross-validation 

(NRCV) analysis with 90% sequence identity threshold as discussed in the 

previous section. As expected, the predictive performance of the predictors 

decreases significantly with the removal of redundancy between training and 

test sets through NRCV. These experiments clearly show that it is very im-

portant to analyze prediction performance through NRCV. Results at 40% 

thresholds are reported in the supplementary material (on GitHub) and fol-

low a similar trend. 

4.2 Validation over true negative examples from Binding DB 

allows realistic performance evaluation 

As outlined in section 3.2, we have used a set of experimentally verified 

negative examples from the Binding-DB dataset to analyze the generaliza-

tion performance of CPI predictors. For this purpose, these models were first 

trained on the NR-HCPI dataset with a balanced (1:1) class ratio. The results 

of this analysis are given in Table 3 which shows that, upon using true neg-

ative examples from Binding-DB in testing, both CPI-NN (AUC-ROC of 

76.8%) and Graph-DTA (AUC-ROC of 61.5%) perform significantly worse 

than the simple kernel-CPI approach (AUC-ROC of 89.9%). This shows 

generalization failure of these approaches and is line with the NRCV results 

discussed in the previous sub-section. As expected, increasing the ratio of 

negative examples in training for the proposed method improves the predic-

tion performance over the binding DB test set further. 

4.3 Random pairing for generating negative examples yields 

more realistic and better generalization performance 

We have analyzed the impact of different strategies of generating synthetic 

negative examples (random-pairing vs. inter-class similarity controlled neg-

ative example generation) on estimation of prediction quality of a CPI model 

through cross-validation and its generalization performance on an external 

dataset containing experimentally verified negative examples from Binding-

DB. For this purpose, we have used the procedure discussed in Section 3.3 

that allows us to generate synthetic negative examples by controlling their 

degree of similarity with a given positive set through an inter-class similarity 

threshold α. The AUCPR values of CPI-NN, Graph-DTA and the proposed 

model for cross-validation and the external test set for different values of α  

are plotted in the Fig 2. It shows that, as expected, as the similarity between 

the synthetic negative examples and the positive set is increased, the AUC-

PR values of all three methods obtained from cross-validation decreases. 

This is inline with the findings by (Ding et al. 2014) and support similarity 

controlled generation of negative examples. However, if models trained over 

such “easy” negative examples that are significantly different from the pos-

itive set are tested on an external set containing experimentally verified 

Table 1 Algorithm for negative example generation with inter-class similarity 𝛼 

Inputs: 

Set of positive examples ℘ = {(𝑝𝑖 , 𝑐𝑖)|𝑖 = 1 … 𝑃} 

Set of unique proteins 𝑃𝑈 (𝑃𝑈 = {𝑝|(𝑝, 𝑐) ∈  ℘}) 

Set of unique compounds 𝐶𝑈 (𝐶𝑈 = {𝑐|(𝑝, 𝑐) ∈  ℘}) 

Desired number of negative examples N (based on P:N ratio) 

Desired inter-class similarity threshold 𝛼 ∈ [0,1] 
Output: Set ℵ of N negative examples with similarity to positive examples 

℘ less than 𝛼 

Algorithm: 

Initialize ℵ ← {} 

While |ℵ| < N: 

Randomly select a protein-compound pair (𝑝, 𝑐) from 𝑃𝑈 × 𝐶𝑈 

Calculate similarity of candidate negative example with positive set as 
follows:  

𝛼𝑝𝑐 = 𝑚𝑎𝑥𝑝′∈𝑃𝑈−{𝑝}𝐾𝑝(𝑝, 𝑝′)𝑚𝑎𝑥𝑐′∈𝐶𝑈−{𝑐}𝐾𝑐(𝑐, 𝑐′) 

If 𝛼𝑝𝑐 < 𝛼 and (𝑝, 𝑐) ∉ ℘ ∪ ℵ:  ℵ ← ℵ ∪ {(𝑝, 𝑐)} 

Return ℵ 
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negative examples, the generalization performance is significantly lower. On 

the other hand, generalization performance over experimentally verified 

negative test examples improves as the value of α is increased. This experi-

ment clearly shows that using random pairing of proteins and compounds 

(corresponding to α→1) can be a superior strategy for generating synthetic 

negative examples as it not only gives more realistic estimates of predictive 

quality but can improve the performance of CPI models over unseen test sets 

in comparison to strictly controlling the degree of inter-class similarity in 

model training (corresponding to α→0). 

4.4 RFPP for interpretable performance evaluation in screen-

ing experiments 

Fig 3 shows the RFPP percentiles across all proteins resulting from the all-

vs-all screening experiment over the NR-HCPI dataset with non-redundant 

cross-validation detailed in section 3.4. In this experiment, a CPI model is 

first trained over examples in the training folds of the non-redundant cross-

validation dataset and then used to rank all possible pairs of proteins and 

compounds in the test set to see how good is the method at ranking known 

interacting compounds for all proteins through the RFPP metric. The total 

number of all such possible combinations in this dataset is ~292,500. It 

shows that for 85% of test proteins, the Kernel-CPI baseline is able to find 

at least one known interacting compound of those proteins in its top 10 hits 

(i.e., RFPP(85) = 10) whereas for CPI-NN and Graph-DTA only 50% and 

12% proteins, respectively, have at least one known hit in their top 10 pre-

dictions for each protein. In contrast, a random predictor can be expected to 

have at least one interacting compound in its top 10 predictions for only 5% 

of proteins in this test set. This clearly shows the efficacy of the proposed 

approach as well as the ease of interpreting results of model evaluation 

through RFPP in screening experiments. As expected, adding more ran-

domly paired negative examples to training improves RFPP further. 

4.5 Drug repurposing analysis using SuperDRUG2 

In order to evaluate the prediction performance for possible drug-repurpos-

ing studies, we have conducted a virtual screening experiment using the 

FDA approved drugs in the SuperDRUG2 dataset. For this purpose, we score 

all possible (~ 908,250) pairs of proteins from the NR-HCPI with com-

pounds from SuperDRUG2. All these predictions from the Kernel-CPI 

model are made available to the community as supplementary results. As an 

additional step, we have also calculate the RFPP percentiles across all pro-

teins from different models for this screening experiment which are given in 

the supplementary file. These results show that, for a random predictor we 

can expect to find at least one true interacting compound in the top 10 hits 

for only 3% of the proteins in this analysis. However, CPI-NN and Kernel-

CPI models are able to identify at least one interacting compound for 50% 

and 75% of proteins, respectively.  

The results of in silico screening of compounds in the SuperDRUG2 dataset 

for Human ACE2 (Uniprot ID: Q9BYF1) and SARS-Cov-2 Spike (Uniprot 

ID: P59594) proteins through the proposed method are given in the supple-

mentary file (on GitHub) which shows the top 100 predictions of our model 

for ACE2 and Spike protein along with evidence from the literature support-

ing the predicted interaction. We have found that the proposed model is able 

to identify a number of compounds as potential interaction partners of these 

proteins even though these were not included in its training. Specifically, we 

have identified Trandolapril, Dimethyl Sulfoxide (DMSO), Remdesivir, 

Ramipril, N-Acetylglucosamine, Perindopril, Sunitinib and Glutathione in 

our top hits for ACE2 binding with strong support from experiments and in 

silico studies in the literature. Similarly, N-Acetylglucosamine, DMSO, 

Remdesivir, Sunitinib, Nilotinib, Dasatinib and Sorafenib show binding po-

tential with the spike protein of SARS-Cov-2 with strong support in recent 

literature (references added in online supplementary material). 

5 Conclusions 

In this work, we have identified a number of shortcomings in experiment 

design approaches for CPI prediction. We hope that the insights, perfor-

mance assessment strategies and baselines discussed in this work will enable 

researchers to address these issues so that future CPI models are more effec-

tive in prediction of CPIs with higher generalization performance.  
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Figure 2 Analysis of the impact of negative example generation strategies. AUC-PR (with 

error bars) for different CPI predictors (Kernel-CPI, Graph-DTA and CPI-NN) over different 

values of the inter-class similarity threshold 𝛼 for cross-validation (solid lines) and testing 

over experimentally verified negative examples from binding-DB.  

 
Figure 3 Percentiles of RFPP across proteins in the NRCV screening experiment for a 

random predictor, Graph-DTA, CPI-NN and Kernel-CPI (proposed) for different P:N. 


